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Genetiske avvik i myelomceller 
 
Myelomatose (beinmargskreft) er kreft i plasmacellene i beinmargen. Det er 
den nest vanligste hematologiske kreftformen og rammer ca 300 personer i 
Norge hvert år. Kun 15% av pasientene er under 65 år. Det finnes ingen 
helbredende behandling for denne sykdommen, men i de siste årene har 
behandlingen blitt forbedret og i snitt lever pasientene nå i 5 år etter 
diagnosetidspunktet. 
 
Genetikken i myelomatosecellene er ikke godt kartlagt, men grovt kan 
sykdommen deles inn i to genetiske grupper basert på antall kromosom og 
tilstedeværelse av translokasjoner i genet for den tunge immunglobulingenet 
(IGH). Den ene typen, hyperdiploid myelomatose, har 48-74 kromosom og 
sjelden IGH-translokasjoner, mens den andre hovedtypen, ikke-hyperdiploide 
myelomatose, har under 48 eller over 74 kromosom og ofte IGH-
translokasjoner. Den hyperdiploide gruppen kjennetegnes ved at det ofte er 
tre kopier av minst fire av de åtte kromosomene 3, 5, 7, 9, 11, 15, 17, 19 og 
21, men man vet enda ikke hva den grunnleggende genskaden som fører til 
kreftutviklingen er. Hos den ikke-hyperdiploide gruppen er det et fellestrekk at 
gen som er involvert i IGH-translokasjonen er den type gen som kan bidra i 
kreftutvikling. 
  
Når man studerer myelomatose i laboratoriet bruker man vanligvis cellelinjer 
som er udødeliggjorte celler fra myelomatosepasienter. Alle til nå publiserte 
cellelinjer er ikke-hyperdiploide, og derfor har mesteparten av 
laboratorieforskningen på myelomatose blitt gjort på celler som bare 
representerer halvparten av pasientene.  
 
I denne doktorgraden er det fokusert på genetikken til myelomatoseceller. Det 
er både lagt vekt på å beskrive cellelinjene i bruk på laboratoriet og å 
undersøke både generelle og spesifikke avvik i celler fra 
myelomatosepasienter.  
 
Første artikkel er en beskrivelse av cellelinjen OH-2 som ble etablert i 
Trondheim i 1992. Det viktigste funnet er at cellelinjen OH-2 er den første 
hyperdiploide cellelinjen som er beskrevet. Cellelinjen har tre kopier av 
kromosom 3, 7, 15 og 21 og den har ingen IGH-translokasjon. Den har 
derimot en del av IGK (Immunglobulin lettkjede kappa-genet) satt inn mellom 
genene MAFB og MYC i en kompleks translokasjon.  
Andre artikkel er en undersøkelse av Fibroblast vekstfaktor 3 (FGFR3). 
Cellelinjen INA-6 har ikke den vanlige translokasjonen mellom IGH og 
FGFR3, som er den eneste beskrevne årsaken til uttrykk av FGFR3 i 
myelomceller, men den uttrykker likevel FGFR3. INA-6 har i stedet en ekstra 
kopi av FGFR3, noe vi tror er skyld i uttrykket av FGFR3 i denne cellelinjen. Vi 
viser at uttrykket av FGFR3 er viktig i denne cellelinjen.  
Tredje artikkel beskriver fosfatase i regenerativ lever 3 (PRL3), som tidligere 
er vist å være overuttrykt i metastaser i andre kreftformer. Det er også vist at 
ekstra kopier av PRL3 genet er funnet i noen av disse metastasene. Vi 
undersøkte derfor om dette også var tilfellet i myelomatose. Det ser ikke ut til 
at ekstra kopier er utbredt i myelomatose, og det er mer sannsynlig at andre 
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faktorer enn ekstra genkopier er årsaken til høyt nivå i myelomcellene 
undersøkt. 
Fjerde artikkel beskriver BCL3 som uttykkes i myelomceller som en respons 
på stimulering av forskjellige vekstfaktorer. BCL3 genet er involvert i 
translokasjoner i andre kreftformer og vi fant også en translokasjon i BCL3 
locus i en pasient. Både PRL3 og BCL3 er høyt uttrykt i en undergruppe av 
pasienter med dårlig prognose, og begge genene/proteinene kan være viktige 
hos disse pasientene.  
Femte artikkel er en foreløpig analyse av genetisk avvik og kliniske parametre 
som blant annet Beta-2-mikroglobulin og beinlesjoner hos nydiagnostiserte 
myelomatosepasienter i Norge. Vi fant ingen spesielle korrelasjoner mellom 
de ulike parameterne ved diagnose. 
 
Arbeidet er utført i perioden 2006-2008 ved NTNU og St.Olavs hospital, med 
støtte fra Norges forskningsråd (NFR).  
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1. GENERAL INTRODUCTION 
 

1.1 Multiple myeloma 

 

1.1.1 Multiple myeloma epidemiology 

 

Multiple Myeloma (MM) has probably existed for ages. Morse et al. described 

possible MM in skeletons from Indians (AD200-1300)1. The first published 

case of MM in the literature is Sarah Newburry, who was described by Samuel 

Solly in 18442. Not until 1873 the term ‘multiple myeloma’ was introduced by 

the Russian von Rustizky3. The name came from the many tumors (greek, 

myelos=marrow, oma= tumor) that were present in the patient’s bones. 

 

24 500 persons in Norway are diagnosed with cancer each year. MM is the 

second most common haematological malignancy and 305 new cases were 

reported to the Cancer Registry in 2006. It is primarily a disease of the elderly 

and only 15 % of the patients are below the age of 65. MM is more common in 

men, with male:female ratio 1.5:14. It is still an incurable disease but in the 

recent years with new therapy median survival is 5 years5. Also, some 

patients can live >10 years after diagnosis6,7. A Swedish study from 1973-

2003 found that 1-year survival has increased and that survival after 5- and 10 

years also have increased, but only in patients of age below 708. In 2004 MM 

was responsible for 2.5% of all cancer-related deaths in Norway4.  

 

1.1.2 Clinical characterization 

 

MM is a neoplasm of long-lived bone marrow plasma cells (PC)9. This 

accumulation of malignant plasma cells leads to monoclonal production of 

immunoglobulins (Ig). This can be measured in patient serum or urine, and 

excess secretion can lead to renal failure. The PCs will usually not be evenly 
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distributed in the bone marrow (BM), but be located in high numbers 

especially in the red bone marrow. In these locations the typical bone lesions 

arises, and bone pain is a common and debilitating symptom of MM. The 

international staging system (ISS) is the standard for staging of MM10.  

 

1.1.3 Prognostic factors 

 

Several prognostic factors that identify groups of MM patients have been 

found. Not including genetic variations, which will be discussed later, 

predictors of survival are; age, ISS, hemoglobin level, creatinine, calsium, 

albumin, immunoglobulin subtype, and bone marrow infiltration11.   

 

1.1.4 The pathogenesis of multiple myeloma 

 

MM, usually precedes by the pre-malignant tumor monoclonal gammopathy of 

undetermined significance (MGUS)12. MGUS is the most common lymphoid 

tumor and occurs in approximately 3% of persons over the age of 5013. MGUS 

is asymptomatic, and the line of a progression to MM increases by 1% each 

year14. Even though the prevalence of MGUS and MM is higher in African-

Americans15, and some evidence of familial clustering is seen16-18, the effects 

of the genetics and the environment are not clear. An intermediate, usually 

asymptomatic, but more adverse pre-malignant stage is referred to as 

smoldering multiple myeloma (SMM). SMM progresses to MM at a rate of 

approximately 10-20% per year. It is however thought that not all MM cases 

progress through SMM19 (also shown in figure 3).  
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1.2 Genetics in MM 

 
Cancer is a genetic disease at the cellular level. The genetic disease can 

generally be divided into two scenarios of genetic events which contribute to 

transformation of the cell: Inactivation of genes by deletions, mutations, 

epigenetics, microRNAs or activation of genes by amplifications, 

translocations, mutations, epigenetics and microRNAs. The genes involved 

can be divided into three groups: oncogenes, tumor suppressor genes and 

DNA repair genes. Proto-oncogenes are genes that in healthy cells are 

involved in normal growth. Aberrations in proto-oncogenes lead to oncogenes 

that result in production of proteins that will enhance the cells’ ability to growth 

and enhance cell divisions. Tumor suppressor genes are normal genes that 

codes for proteins that slow down cell growth and cell division or induce 

apoptosis. These genes might lead to malignancies if they are inactivated. 

DNA repair genes codes for proteins that remove mutations that arise during 

cell division. If these genes get mutated and loose their function, mutations in 

proto-oncogenes and tumor suppressor genes will not be repaired.  

 

1.2.1 Genetic aberrations lead to dysregulation of several genes  

 
To get a functional antibody repertoire it is crucial for the B-cell lineage to be 

able to rearrange its germ-line DNA. This is essential to create a functional 

adaptive immune system to fight infections. Hence, this is also a dual-edged 

sword and will occasionally lead to translocations of oncogenes to the Ig-loci. 

In all malignancies genetic aberrations are crucial for the development and 

transformation. In some malignancies there can be one or a few aberrations 

causing the transformation. In MM the initiating aberrations that lead to 

transformation are however still a mystery. It is unknown if there is any 

common genetic aberration in all MM patients. However, some aberrations 

are known and are shown to have impact on prognosis20.  
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Classical cytogenetics has historically been used to define genomic 

aberrations by analyzing hundreds of patients. It has however been difficult to 

generate metaphases of patient tumor cells in MM because of the primary 

cells’ slow proliferation rate. But recent studies using array comparative 

genomic hybridization (CGH) have revealed that virtually all MM patients have 

chromosomal abnormalities21,22.  

 

1.2.2 B-cell development 

 

Normal B-cell development is illustrated in figure 1. During adaptive immune 

response, normal B-cells initiate variation (diversity) and joining (V(D)J) 

recombination. During primary immune response the immature B-cells migrate 

to secondary lymphoid organs to form pre-germinal center PCs. B-cells that 

enter the germinal center undergo affinity maturations by multiple rounds of 

somatic hypermutation of immunoglobulin heavy chain (IGH)- and 

immunoglobulin light chains κ/λ (IGK/IGL)- V region sequences. Cells that 

express high-affinity antigen receptors are selected for survival and undergo 

Ig switch recombination. A subset of activated B-cells then mature into 

memory B-cell differentiation into memory B-cells that can reside in the body 

for decades and then be activated upon exposure to the same antigen. Other 

B-cells form post-germinal center plasma cells that home to the bone marrow 

where they can be as differentiated, non-proliferating, long-lived PC for 

months and even years23. 
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Figure 1 
Normal B-cell development. Figure with permission23 
 

1.2.3 Malignant B cell development: Translocations in MM involve three 
DNA modification systems 

 

The translocations in the Ig genes are common in many B cell tumors, as well 

as in MM, and are thought to be caused by either: I) V(D)J recombination 

early in the B-cell development, II) somatic hypermutation in germinal center B 

cells or III) switch recombination in germinal center B-cells (figure 1). These 

processes can cause double strand DNA breaks in or near Ig, and it is thought 

that the same mechanism can occur near oncogenes, with the consequence 

of Ig translocations24.  
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1.2.4 Primary translocations in MM 

 

Primary translocations in MM are reciprocal translocations between the IGH 

gene at 14q32 and seven known genes. These translocations are termed 

primary since they are seen in MGUS, i.e. occur early and might initiate 

transformation. In primary translocations one of the strong IGH enhancers 

(Eµ, Eα1 and Eα2) is juxtaposed to an oncogene/proto-oncogene. The switch 

translocations in MM separate the strong 3`α- and µ-enhancers of the IGH 

onto different derivative (der) chromosomes. The enhancers can thereby turn 

on or up the transcription of the juxtaposed gene. The reciprocal partners to 

IGH are: 4p16, MMSET/FGFR3; 11q13, Cyclin D1; 12p13, cyclin D2; 6p21, 

Cyclin D3; 16q23, MAF; 20q12, MAFB and 8q24.3, MAFA. Translocations 

involving an IGH locus are present in nearly 50% of pre-malignant MGUS 

tumors, approximately 60% of fully malignant MM tumors, and nearly 90% of 

human myeloma cell lines (HMCLs)25-28. Figure 2 gives an overview of a 

normal switch recombination and an illegimate switch recombination resulting 

in a t(4;14)23. 
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Figure 2 
This figure illustrates a reciprocal translocation between IGH on chromosome 
14 and FGFR3/MMSET on chromosome 4. The second line from the top shows 
germ line IGH gene, and the arrow up to the first line illustrates a normal switch 
recombination where the cells go from making IgM to IgG. The breakpoint 
leading to the translocation illustrated here is in the middle of the switch 
region and hereby dissociates the intronic enhancer (Eµ) and the 3'Eα. The 
double strand break dissociates the enhancers and the two ends are joined by 
another double strand breaks in another chromosome (here chr 4). By this the 
Eµ will be located on der(4) juxtaposed to MMSET, and can result in a hybrid 
mRNA transcript usually initiated from the Jh and the Iµ (intronic promoter). 
Also, the cryptic promoter (P*) on 4p16 can initiate transcription. The 3'Eα on 
der(14) dysregulates the expression of FGFR3. Illustration with permission23. 
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t(4;14) 
The t(4;14)(p16.3;q32) is one of the most common translocations and is 

present in 15% of newly diagnosed patients, but at a bit lower frequency in 

MGUS. The t(4;14) has not been described in other malignancies29. This 

translocation was also the first to show that IGH could dysregulate two genes 

at two derivative chromosomes, namely fibroblast growth factor receptor 3 

(FGFR3) and multiple myeloma SET domain (MMSET)30.  

 

The translocations result in ectopic expression of functional FGFR3 in 70 % of 

the t(4;14) patients31,32. The reason for the lack of FGFR3 expression in the 

last 30% is mainly loss of der(14)32. FGFR3 is one of 4 high-affinity tyrosine 

kinase receptors for the FGF family of ligands. It is normally expressed in the 

lungs and kidneys, and it is expressed at high levels in the developing central 

nervous system, precursor bone cartilage rudiments, and resting cartilage at 

the end of growing bones33. FGFR3 is not normally expressed in PCs34. 

However, the chimeric IGH/MMSET gene fusion product is expressed in all 

t(4;14) patients32,35. The MMSET isoform RE-IIBP has been shown to be a 

histone methyltransferase with transcriptional repression activity36. MMSET 

has also been shown to be of importance in cellular adhesion, clonogenic 

growth and tumorigenicity37, and knocking MMSET down has recently been 

shown to decrease the expression of genes that eventually decrease cell 

viability, adhesion and cell cycle progression38. 

  

t(4;14) has been associated with poor prognosis irrespective of FGFR3 

expression31. Genetic studies show also that ~85% of t(4;14) patients have a 

deletion (del)13 (described later). These two abnormalities together show a 

worse prognosis than t(4;14) alone29. However, not all patients with t(4;14) 

have the same poor prognosis, and it might be correlated with other factors. 

This was found by the newest large study by Intergroup Francophone du 

Myelome (IFM), where t(4;14) patients with low β2-microglobulin level showed 

longer survival compared to t(4;14) patients with high β2-microglobulin level20.  
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Figure 3 
IH-1, a HMCL established here in Trondheim39, has a t(4;14) (paper 2) and a 
fusion transcript detected by PCR with primers in Jh in IGH and exon 6 in 
MMSET. Left shows the gel with the specific fusion band next to the arrow. The 
joining area of IGH is fusioned to exon 4 of MMSET detected by sequencing the 
PCR product. The breakpoint in chromosome 4 is in the intron between exon 3 
and 4 in this particular HMCL. Illustration prepared by author.  
 

t(11;14) 

The t(11;14)(q13;q32) is also one of the most common translocations in MM 

patients and is present in ~15% of newly diagnosed patients as well as in 

MGUS. Cyclin D1 (CCND1) at 11q13 encodes CCND1 which is over-

expressed as a consequence of this translocation40. Myeloma over-expressed 

gene (MYEOV) is also in the same locus and has been shown to be over-

expressed. The function of this gene is not well known41. So far the oncogenic 

role of the cyclin D1 over-expression is not known either, even though the 

cyclin Ds control entry of the cell cycle to the S (DNA-synthesis) phase by 

binding and activating cyclin-dependent kinases -4 and -6, which 

phosphorylate the retinoblastoma proteins, and thereby promotes the cell 

cycle 42. Even though the cyclin Ds are involved in the cell cycle, the t(11;14) 

MMs are characterized by a low proliferation index43. Although an increased 

cyclin D1 expression does not cause increased proliferation, it might make the 

cells more susceptible to other proliferative stimuli from the microenvironment, 

e.g. BM stromal cells that express interleukin (IL)-6, insulin-like growth factor 

(IGF)-1 or other cytokines25. Early studies reported the t(11;14) patients to 



 18

show better survival44. However, later and larger studies did not confirm this 

better survival20,45.  

t(14;16), t(14;20) and t(8;14) 

The t(14;16)(q32;q23) is present in ~5% of MM patients46. This translocation 

is not known in other malignancies than MM29. The t(14;20)(q32;q11) is even 

less common and is present in less than 1% of MM patients47. The 

translocations dysregulate musculoaponeurotic fibrosarcoma oncogene 

homolog (MAF/c-MAF) and MAFB, respectively. MAF proteins belong to the 

activator protein (AP)-1 superfamily of basic leucine zippers. MAFs work as 

transcription factors that positively regulate e.g. cyclin D2 (CCND2), Integrin 

β7 (ITGB7) and ARK5 together with other MAF-related genes26,48,49, that 

induce deregulation of cell cycle, cell-cell interaction and migration, 

respectively. Another feature is that MAF in oncogenesis has an ability to 

enhance the interaction between tumor cells and stromal cells49. Surprisingly, 

when compared to the translocation frequency, MAF was overexpressed in 

half of MM primary samples49. The mechanism behind this is not yet 

understood50, and with GEP only 8-10% of the samples with overexpression 

of MAFs cluster together51. MAFA (L-MAF) on 8q24.3 has also been shown to 

be involved in MM, but at a much lower level (<1%) (mentioned in figure 5)9. 

The t(14;16) has been associated with short survival28. 

 

t(6;14) and t(12;14)  

The t(6;14)(p21;q32) and t(12;14)(p13;q32) dysregulate cyclin D3 (CCND3) 

and CCND2 and are present in ~2% and <1% of MM respectively9. The 

molecular consequences of these translocations are not well characterized.  
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1.2.5 Structures of IGH translocations in MM 

 

The structures of IGH translocations in MM tumors can be divided into four 

groups; a) the classical balanced translocations have no loss of DNA, and can 

be distinguished by Fluorescence in situ Hybridization (FISH) (described later) 

by dissociation of the IGH-constant region (CH) and IGH-variable region (VH) 

signals. CH is left on der(14) while VH is located on the telomere of the other 

derivative chromosome. This is the typical pattern found in the five primary 

IGH translocations; b) the variant translocations are distinguished by the 

whole IGH locus translocated to a derivative chromosome. Seen by FISH the 

CH and VH is colocalized on the derivative chromosome, and the der(14) has 

no CH/VH signal. It is therefore not possible to detect this variant translocation 

by  conventional interphase FISH; c) the unbalanced translocations are 

described by a FISH pattern where there is either a der(14) CH signal or a VH 

signal, and the other derivative chromosome is lost; d) The fourth group of 

IGH translocations is the simple insertions. The CH signal is dissociated from 

the VH signal and is found internally on the recipients chromosomes. Usually, 

no whole chromosome paint (WCP)14 is detected together with the CH 

signal23,52. Figure 4 explains these kinds of translocations with metaphase 

FISH picture and chromosome illustration. By Spectral Karyotyping (SKY) it is 

only possible to detect some of the balanced translocations, and unbalanced 

translocations der(14). The other variants are hard to detect because of the 

relative small fragments of DNA that have been translocated. Hence, FISH 

with locus specific probes must be used. 
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Figure 4. The different IGH translocations in MM: A) The classical IGH 
translocation is demonstrated by the t(4;14) in HMCL IH-1 (paper II). The two 
chromosomes to the left are shown with CH in green and VH in red, with VH 
translocated to chromosome 4. The two chromosomes to the right show the 
specific translocation with IGH in green and FGFR3/MMSET in red. A fusion 
signal between the labeled loci appears yellow. WCP in Aqua on chromosome 
14. The chromosome drawing shows where the FISH probes cover the IGH 
gene. CH probe is labeled in green and VH probe is labeled in red. The der(14) 
and der(4) chromosome drawing depict the two derivative chromosomes and 
its translocation partner. The black small circles image the centromere. B) The 
variant IGH translocation is depicted by a figure because our laboratory does 
not have a HMCL with known variant IGH translocation. The der(14) to the left 
has lost the whole IGH which has been translocated to chromosome 8. This 
translocation results in a t(8;14) that dysregulates MYC, and can be found in 
e.g. HMCL XG-152. The chromosome drawing to the right depicts the der(8). C) 
The unbalanced translocation is depicted by INA-6 where der(11) is lost, and 
der(14) with CH in green is translocated to chromosome 11 with CCND1 in red. 
WCP aqua on chromosome 14. Chromosome drawing to the right depicts the 
only derivative translocated chromosome. D) CH in green has dissociated from 
VH and is inserted into CCND1 in red on der(11) in U266. The chromosome 
drawing to the right depicts that a small part of CH is juxtaposed to CCND1. 
The black box depicts the rest of chromosome 11. The figure is made by the 
author after inspiration in article text from ref23,52. 
 

1.2.6 Secondary translocations 

 

Secondary translocations occur during late stage of MM progression and do 

not involve B-cell specific DNA modification mechanisms. Secondary 

translocations also include the IGL gene (10%) and IGK (<1%). The 

secondary translocations are rarely reciprocal, and can also be complicated 

insertions of the genes53. Almost 20% of MM patients with IGH translocation 

involved a non-recurrent translocation partner, and many of these are 

secondary translocations29,52. 

 

MYC 

 

Perhaps the most important secondary translocated gene in MM is MYC at 

8q24. MYC was one of the first oncogenes identified, and has been linked to a 

spectrum of malignancies54. MYC is an important transcription factor that 

regulates cell growth, differentiation and apoptosis. In Burkitts lymphoma, 

MYC translocation to an Ig-gene is an early and unifying event55. This is in 
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contrast to MM where dysregulation of MYC apparently is caused by complex 

genomic rearrangements during late stages of MM progression involving B-

cell specific DNA modification mechanisms56. In MM, IGH-MYC translocations 

are often a part of a complex rearrangement. Almost 90% of the HMCLs have 

MYC rearrangements and express high amounts of MYC detected on 

microarray (e.g. Paper I). Many MYC rearrangements involve an Ig locus, but 

the break point is only near the locus and not within the switch regions or the 

V(D)J sequence. This is similar to other IGH secondary translocations where 

the brake points are not involving J or switch region. The MYC translocations 

are mostly non-reciprocal or involve insertions, amplifications, inversions, and 

three chromosomes are often involved in the rearrangement57. In e.g. HMCL 

JJN-3 the IGH-MYC fusion was found on two different chromosomes 58. And 

the HMCL RPMI-8226 has the MYC-region associated with IGL in a complex 

translocation to c-MAF56. This is very much like the IGK rearrangement in OH-

2, where the IGK3’-enhancer is juxtaposed to MYC and MAFB (paper I). It 

was quite difficult to detect this IGK3’-enhancer by FISH, and similar 

translocations in other HMCLs and patients can easily be missed. MYC 

rearrangement has the same prevalence in both hyperdiploid and non-

hyperdiploid tumors (explained later)52. MYC rearrangements are however 

rare in MGUS and SMM and are present in ~15 % of newly diagnosed MM 

tumors59. 40 % of the MYC translocations do not involve an Ig locus57. MYC 

translocation has no apparent impact on the progression of the disease20, but 

it might have a yet hidden prognostic impact, since MYC is expressed also by 

other, yet unknown, mechanisms than translocations in the patients20,60.  

 

MYC has many target genes, and it is not known which are the most important 

in MM. Lately interferon regulatory factor 4 (IRF4, also known as multiple 

myeloma oncogene 1 (MUM1)) and MYC were found to positively reinforce 

the expression of each other in MM HMCL. IRF4 worked as a transcription 

factor that targeted MYC in myeloma cells, and at the same time IRF4 was 

also a downstream target gene for MYC. Knocking out IRF4 was found to kill 

MM HMCLs, as did the knocking out of MYC61. 
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1.2.7 Other genetic aberrations 

Chromosome 13 deletion 

 

Chromosome 13 deletion (del13), or more specifically 13q14 retinoblastoma 

(RB)-1 deletion occurs in about half of MM karyotypes62. This abnormality is 

probably an early or primary event, since it is observed with similar frequency 

in MGUS and in patients with relapsed MM. The molecular consequences are 

not well known, and because most del13s are monosomies, many genes are 

lost and may be deregulated. GEP has revealed that this feature has a 

molecular signature60,63. Del13 was one of the first genetic markers to be used 

as a prognostic marker64-66. University of Arkansas for Medical Science 

(UAMS) published in 1995 the first findings of monosomy 13 having negative 

impact on survival67, which was also confirmed later in their total therapy II 

study68. Chiecchio claims there is prognostic impact in del13 when found by 

conventional cytogenetics but not by interphase FISH only69. In the recent IFM 

study, del13 identified with FISH was not an independent prognostic factor, 

but was associated with poor prognosis related to the concomitant t(4;14) or 

del17p. Del13 may therefore not be a specific prognostic factor after all in MM, 

and may be considered a pseudomarker or a marker frequently associated 

with other more specific poor prognostic factors20.  

 

Deletion of 17p13 

 

In MM it has more recently been found a deletion in chromosome 17p in 10% 

of newly diagnosed patients. TP53 is located on 17p13 and down-regulation 

of the gene was correlated to the 17p13 deletion, which therefore makes 

TP53 the top-target gene to be the important gene in the deleted locus. 

Mutation in TP53 is associated with significantly shorter survival, with median 

survival only 1.5 years70, and an IFM study found it associated with poor 

outcome20. Since TP53 is involved in apoptosis and induced by most 

chemotherapeutic agents, the loss or/and mutations in TP53 may participate 

in the treatment resistance seen in del17 patients29. It appears that mutations 
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in TP53 are rare, and it was reported in only 3% of the patients in a large 

study. Half of the cases with mutation were correlated to hemizygous loss of 

17p1370.  

 

Chromosome 1 

 

As we also show in paper I, for the OH-2 HMCL and primary cells, the 1q 

region is gained. This is also the case in about one third of MM patients71. 

UAMS reports poor outcome of patients with 1q abnormalities, with locus 

1q21 especially in focus72, but a Mayo study and IFM report that the 

prognostic value disappears when combined with other classical biological 

and genetic prognostic factors20,29,73. Since the correlation between the 1q 

amplification and prognosis is weak it is suggested that this is more of a 

marker of a clonally advanced and genomic unstable tumor that is more likely 

to have a faster progression9. 

 

Deletions in 1p are also common. A study on 1p32 shows that 15% of MM 

patients have a deletion of this locus harboring CDKN2C. Patients with hemi- 

or homozygote deletions had a shorter overall survival and the homozygote 

deleted cases were the most proliferative myelomas74. 

 

1.2.8 Ploidity 

 

MM can be genetically classified in two: hyperdiploid (HRD) and non-

hyperdiploid (NHRD) tumors. It has been established that both MM and 

MGUS can be separated by these two groups distinguishable by chromosome 

content75-78. Approximately 50% of tumors are hyperdiploid and contain 48-74 

chromosomes. Although this classification appears somehow artificial, the 

HRD appears as a relatively uniform group, typically with non-random gains of 

at least four of eight odd-numbered chromosomes (3, 5, 7, 9, 11, 15, 19, 21). 

The remaining tumors are non-hyperdiploid, containing less than 48 and/or 

more than 74 chromosomes (near tetraploid). These two groups are further 
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classified by IGH translocations with the seven reciprocal partners described 

above. These are present in about 70% of NHRD tumors but only in about 

15% of HRD tumors79.  

 

It appears that recurrent IGH translocations and HRD are primary events 

occuring early in pathogenesis. Secondary translocations, which include most 

IGH rearrangements not involving one of the seven recurrent partners, most 

IGL and IGK rearrangements, and MYC rearrangements, appear to contribute 

equally to progression of both HRD and NHRD tumor52. 

 

A lot has been published on NHRD MM with primary translocations, and 

virtually all HMCLs used in laboratories are derived from NHRD tumors. On 

HRD MM, however, there has just been a few publications, and only from 

more recent years. Two studies from Chng et al have exploited the GEP and 

the prognostic factors for the HRD tumors. They conclude that HRD patients 

have a better partial event-free survival and overall survival than NHRD 

patients. The presence of IGH translocations, especially those with unknown 

partners, has a negative impact on the HRD tumors. These translocations are 

perhaps a result of later secondary translocation events due to genomic 

instability in advanced tumors80. The GEP was able to identify four biologically 

relevant subtypes with prognostic implications. Cluster 1 is defined by 

overexpression of various cancer testis antigens and mitotic/proliferation-

related genes. Since hypomethylation is implicated in the expression of 

cancer testis antigens in tumors, it is a possibility that the GEP is a surrogate 

marker for deregulated epigenetic mechanism. Cluster 2 is defined by 

overexpression of hepatocyte growth factor (HGF) and interleukin (IL)-6 

genes. Deregulation of HGF induces migration, survival and growth via 

multiple downstream pathways. IL-6 mediates similar effects. Cluster 3 is 

defined by overexpression of genes involved in nuclear factor (NF)-κB-

signalling. NF-κB is important in many downstream effects of MM–bone 

marrow interactions. Cluster 4 was less defined, except for the lack of high 

expression of the above genes, and with particularly low expression of HGF81. 
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Another interesting finding is that HRD are more common in MGUS than 

NHRD. In addition, del13 is far more common in the HRD MGUS, in contrast 

to in MM where the del13 is more common with NHRD82.  

 

1.2.9 Molecular pathogenesis 

 

The latest model for the molecular pathogenesis by Chng et al is shown in 

figure 5. The figure summarizes most of the events described above. Figure 5 

shows the two pathways of pathogenesis; the NHRD and the HRD pathway. 

Four early events are described, for which the timing is yet unknown: IGH-

translocations, HRD with multiple trisomies, loss of chromosome 13 

sequences and dysregulation of a CCND gene. Later events include other Ig 

translocations, and secondary translocations involving MYC, mutations of 

KRAS, NRAS or FGFR3 in t(4;14) tumors. Inactivation of TP53 by various 

mechanisms is a progression event. Also, mutations to constitutively activate 

the nuclear factor (NF)-κB-pathway occur in half of MM tumors. This might 

induce independence from environmental factors necessary for activating 

pathways at earlier stages. Also, other secondary translocations, inversions, 

insertions, deletions, methylation of promotors or genes and additional 

inactivation of the RB1 pathway can occur at all stages9. 
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Figure 5 
Description of disease stages, with molecular pathogenesis and timing of 
oncogenic events in the tumorigenesis of MM. The degree of overlap between 
triangles estimates the percentage overlap of genetic subgroups harboring 
coexisting genetic abnormalities. The translocation partners in the IGH 
translocation (TLC) group are ordered according to increasing frequency of 
coexisting del13. The different mutations activating signal or cell-cycle 
pathways are mutually exclusive, i.e. RAS and FGFR3 always occur in different 
patients. *The 8q24 partner referred to here is MAFA; MYC is also located in 
this locus, but is usually a secondary IGH translocation. Illustration with 
permission 9  
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1.3 Genetic and molecular classification systems of MM 

 

Several MM research groups have made their own classification systems for 

MM. Since the survival period for patients varies from a few months to more 

than ten years it is important to be able to identify different risk groups. New 

advanced technologies have made it easier to look globally at genetic 

aberrations at both DNA and RNA levels. Perhaps some models are more 

useful for classifications of single patients than others. In the future, we 

hopefully have easily accessible technologies to do studies at the protein 

level, which might make it easier to see the full picture of the current 

classifications. I also miss a microRNA profile study in MM, but hopefully it will 

come in reasonable future. A classification system with high predictive power 

would hopefully contribute to tailored treatment for the MM patients. 

 

1.3.1 Translocation and cyclin D (TC) classification 

 

A characteristic feature of MM cells is the expression of CCNDs. Together 

with the occurrence of IGH translocations, CCND expression form the basis 

for the TC classification of MM. This classification of the patients is based on 

the observation that most tumor cells in MGUS and MM, have relatively high 

levels of CCND mRNAs. This, combined with the type of primary IGH 

translocation, gives the eight groups [listed a)-h)] described by Bergsagel and 

Kuehl (2005). The groups are: a) 11q13: with t(11;14) and CCND1 

expression, NHRD, (16 % of cases); b) 6p21: with t(6;14) and CCND3 

expression, NHRD, (3 %); c) D1: no t(11;14) but with CCND1 expression, 

HRD, (34 %); d) D1+D2: As D1 but with additional CCND2 expression, HRD, 

(6 %); e) D2: CCND2 expression, HRD=NHRD, (17 %); f) none: express no 

cyclins, NHRD, (1 %); g) 4p16: with t(4;14)  and CCND2 expression, 

NHRD>HRD, (15 %) and h) MAF: with either t(14;16) or t(14;20) and C-

MAF/MAFB and CCND2 expression, NHRD, (7 %)25. 
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This classification system has the advantage that it involves few markers that 

need to be measured, and the primary translocations can easily be detected 

with interphase FISH. However, the TC classification does not identify the 

HRD MM, and the majority of these patients will fall into the D1 and D1+D2 

groups. There is no significant difference in survival for D1 and D1+D29,25,26.  

 

1.3.2 Molecular classification based on gene expression profile 

 

At UAMS, seven groups of MM patients were identified based on co-

expression of unique gene clusters based on gene expression profile (GEP). 

The seven subgroups are classified by unique expression patterns. PR: 

proliferation; LB: low bone disease; MS: MMSET; HY: hyperdiploid; CD-1: 

cyclin D1; CD-2: cyclin D3; MF: MAF/MAFB. These groups also identify the 

primary IGH translocations51. This classification is relevant because it defines 

the high-risk groups, PR and MS. However, the study is made on a large set 

of genes and it might be difficult to use it clinically for single patients9. 

 

UAMS also identified a 17-gene model based on GEP, sufficient for defineing 

the high risk myeloma patient. Most of these genes are on chromosome 1 and 

the profile does not detect the different IGH translocation groups as in their 

gene cluster grouping72. Similar to this, the IFM proposes a 15-gene model to 

define the high risk myeloma patient. The two models do not share a single 

common gene. When applying both the 17- and the 15-gene model together, 

it is possible to identify subgroups that e.g. do not benefit from bortezomib83. 

Both these models might be very useful for tailored therapy. 

 

1.3.3 Genetic factors and β-2 microglobulin based classification 

 

The IFM has one of the newest models to predict prognosis. It uses genetic 

factors t(4;14) and 17p13 deletion detected by FISH combined with β-2 

microglobulin level. The high risk group is defined by the presence of either 

t(4;14) or 17p13 deletion and β-2 microglobulin above 4, and it could dissect 
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the survival of patients in each ISS stage. This study shows that it is possible 

to find high risk groups with FISH and simple parameters like β-2 

microglobulins20. This might be one of the most easy ways for classifying the 

patients, and manageable for most hospitals. However, this did not correlate 

with the Eastern Cooperative Oncology Group (ECOG) clinical trials. They 

saw no difference in survival comparing t(4;14) and del17 patients with β-2 

microglobulin level. The IFM and the ECOG patients have been treated 

differently, and this factor might also be included to get the right picture of this 

way of classifying high risk patients84.  

 

1.3.4 Array Comparative Genomic Hybridization (CGH) based 
classification 

 

The two main genetic groups, HRD and NHRD can be detected using array 

CGH to classify MM. The array study by Carrasco et al. also divided the HRD 

into two subgroups based on gain of 1q, del13 in the poor prognosis group 

and trisomy 11 in the better prognosis group. The NHRD could also be 

separated in two groups mainly by one of them having chromosome 1 

abnormalities but with no significant difference in survival21. The finding on 

array CGH does not give more information than FISH regarding prognosis.  
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1.4 How to discover chromosomal abnormalities 

 

In 1914 Theodor Boveri described in his book “Zur Frage der Entstellung 

maligner Tumoren“, an hypothesis that chromosomal abnormalities were the 

cellular change that lead to transformation. But at the first part of the 20th 

century it was difficult to prove his hypothesis. Not until Caspersson et al. 

introduced techniques to detect the chromosome bands, the cytogenetic 

analysis was revolutionized. Each and every chromosome could now be 

identified by its specific bands85. One of the famous chromosome aberrations 

is the Philadelphia chromosome, discovered by Nowell and Hungerford in 

196086. This t(9;22) was the first documented bona fide genetic signature of 

malignancy. The discovery that this was a t(9;22) and not a deletion of chr 22 

was made because of improved techniques for chromosome banding, the 

Giemsa-banding (G-banding)87. Still Giemsa-banding is routinely used to 

visualize chromosome bands. Unfortunately the genomic aberrations needs to 

be more than 3Mb to be detected88.  

 

In situ hybridizations allow analysis of nucleic acids in its cytogenetic context 

on the chromosome, in the nucleus or in tissues. This technique was 

developed in the late 60ies using radioactive labeled probes. In the 80ies the 

radioactivity was replaced by the less harmful fluorescence dyes. 

Fluorescence in situ hybridization (FISH) was born89. 

 

1.4.1 Fluorescence in situ hybridization 

 

FISH uses fluorescence labeled DNA probes that are homologous to the 

target gene or area. There are basically three different FISH-probes; locus 

specific probes (LSI) that cover one gene/locus, centromeric enumeration 

probes (CEP) and whole chromosome paint (WCP) probes. FISH on nuclei in 

interphase (interphase FISH), uses one to three LSI probes to e.g. discover 

chromosome translocations. CEP and LSI together are useful for detection of 

deletions or amplifications of genes and areas. The limitations here are that 
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you can only look at three to four colors at the same time, and it is necessary 

to have a hypothesis on what is wrong, in order to choose the right probes. In 

routine work, the detection of the primary IGH translocations and chromosome 

deletions in MM are done by interphase FISH on MM cells from patients. The 

IGH is labeled in e.g. green, and the other gene of interest, e.g. FGFR3, is 

labeled in red. A fusion signal, where green and red fluorescence are seen 

together, indicates that a translocation is present (Figure 6a). A rule of thumb 

is that in nuclei in interphase, a fusion signal between two probes means they 

are no more than 500kb apart.  

 

Metaphases and FISH on metaphase chromosomes give some more 

information about a tumors’ genetics. But because it is difficult to get 

informative metaphases from the low proliferative MM cells, this technique is 

therefore not suitable on a routine basis. However, FISH on metaphase 

chromosomes is a very useful technique for research purposes, especially 

when using HMCLs. The use of WCP, CEP and LSI probes together are often 

very informative for detecting new aberrations in the cell. Fig 6b shows HMCL 

OH-2 metaphase with both CEP and LSI probes. Doing the same experiment 

on interphase FISH would only give the number of MYC loci present 

compared to the number of chromosomes, and the fact that the extra copy 

was on the p-arm of chromosome 8 would have been missed.  
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Figure 6  
a) Interphase FISH on CD-138 separated MM cells from a patient. Arrows show 
fusion signals between IGH and FGFR3/MMSET. Green signals alone are 
normal IGH on chromosome 14, and red signals alone are normal 
FGFR3/MMSET on chromosome 4. 
b) Metaphase FISH on HMCL OH-2. CEP probes help determine the different 
chromosomes and identified an extra copy of MYC at chromosome 8 (paper I). 
Pictures prepared by author. 
 

1.4.2 Spectral Karyotyping (SKY) 

 

SKY is the deluxe variant of metaphase FISH. With SKY each chromosome 

gets its own pseudocolor based on the combination of fluorescence-labeled 

probes. The advantage is that it is easy to visualize and detect novel 

deletions, translocations and amplifications. The resolution however, is not 

great. To be able to detect an abnormality it needs to be larger than 3-5Mb. It 

is also not possible to know which part of the chromosome which is involved 

in the abnormality without consulting e.g. corresponding Giemsa-banding or 

doing LSI FISH. Successful multicolor/SKY FISH was first available in the 

90ies90,91. An example of SKY is given in section 4 in figure 7a of the HMCL 

RPMI 8226. 
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1.4.3 Array Comparative Genomic Hybridization 

 

Conventional comparative genomic hybridization (CGH) is a technique where 

DNA is extracted from e.g. a tumor sample, labeled in one color and normal 

DNA is labeled in another color, and both samples are co-hybridized to normal 

metaphase chromosomes. Amplifications or deletions in the tumor sample will 

then be visualized on the corresponding normal chromosome, and it is 

possible to detect the specific area with aberrations. This technique has been 

improved by replacing the metaphase chromosomes by a microarray chip 

where DNA from clones or sequences has been spotted on a slide. The 

samples are labeled the same way as in conventional CGH but are co-

hybridized to the array. The resolution is restricted only by the number of 

clones or spotted sequences. An array with overlapping clones will cover the 

whole genome92. An example of an array CGH of HMCL RPMI-8226 is shown 

in section 4 in figure 7b. This array CGH is made from bacterial artificial 

chromosomes (BAC) and Pi artificial chromosome (PAC) at a ~1 Mb 

resolution. In addition, it has a tiling path between 1q12 and the beginning of 

1q2593.  
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2. AIMS OF THE STUDY 
 

The overall objective of this work was to study the genetics of myeloma cells. 

Especially we wanted to focus on not well known genetic aberrations linked to 

expression data in HMCLs and complement other studies in our myeloma 

group. But also a goal was to detect known genetic aberrations in Norwegian 

myeloma patients. More specifically the aims can be divided into the following 

aspects: 

 

Characterization of HMCLs 
 

It is important to choose the most relevant HMCLs to work with. Therefore it is 

important to characterize HMCLs both genetically and also how they respond 

to e.g. different stimulations of cytokines. First and foremost, the HMCLs 

established at our own lab were investigated. When we found OH-2 to be a 

hyperdiploid HMCL, it was important to characterize this cell carefully, so also 

others could fully enjoy the potential of it. Important methods have been, 

among others, FISH, array CGH, SKY, gene arrays, real time RT-PCR and 

proliferation studies. 

  
Are there genetic aberrations that cause the over-expression of 
oncogenes, potential oncogenes or transcription factors in myeloma 
cells? 
 

Many projects in our group are based on microarray data. Known putative 

oncogenes and known oncognes from MM and other cancers, as FGFR3 and 

PRL3, and other potential oncogenes, as BCL3, were studied. Since MM often 

has translocations and genetic aberrations, it was a goal to see if the 

overexpression of some of these genes were caused by translocations or 

amplifications.  
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Study of genetic aberrations in Norwegian MM patients 
 

Unfortunately MM is a very heterogeneous genetic disease. Interphase FISH 

is the preferred method to detect the known genetic aberrations. In addition to 

detect the most prevalent translocations, we wanted to look at the prevalence 

of some of the less common translocations in the Norwegian patient 

population, and to find out if the Norwegian patients differed from patients 

from other parts of the world. We also wanted to see if we could find 

correlations between genetic aberrations, and other parameters measured at 

time of diagnosis (e.g. β-2 microglobulin, M-component and PC%). Also, a 

part of the study was to make the preparation of cells and the FISH method as 

short, easy and reproducible as possible. 

  

This is a prospective study, and it is not finished. The study started in 2006 

and we decided to include 300 patients. We have only come half way in the 

patient inclusion process, and therefore the data on overall survival, response, 

time to remission and type of treatment has not yet been collected. The aim in 

the end is to see if there is any correlation between genetics, clinical findings 

at diagnosis, treatments, time to relapse and overall survival in the Norwegian 

MM patients. Because this is a prospective study we do not report other 

findings than what were measured at the time of diagnosis. 
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3. SUMMARY OF PUBLICATIONS AND MANUSCRIPTS 
 

3.1 Paper I 
 

OH-2, a hyperdiploid myeloma cell line without an IGH translocation, has a 

complex translocation juxtaposing MYC near MAFB and the IGK locus 

 

Despite the heterogeneity, MM can be classified into two major groups: 

hyperdiploid HRD tumors with 48-74 chromosomes, which typically have extra 

copies of at least four of the eight odd numbered chromosomes 3, 5, 7, 9, 11, 

15, 19, and 21; and non-hyperdiploid NHRD tumors, which usually have IGH 

translocations and 46< and >74 chromosomes. HMCL with a typical HRD 

phenotype was lacking, and this made the characterization of OH-2 even 

more interesting. The OH-2 HMCL is derived from extramedullary myeloma 

(EMM), and retains the same HRD phenotype as the EMM tumor, with extra 

copies of chromosomes 3, 7, 15, 19, and 21 as demonstrated by the array 

CGH. This provides a unique example of an HMCL and the corresponding 

primary tumor that share the same HRD phenotype. Spectral Karyotyping 

shows the same HRD phenotype in the HMCL. We also did a microarray of 

the HMCL to look at the expression of genes and compare it to a panel of 47 

other HMCLs. High expression of cyclin D2, MAFB and MYC were striking 

findings, which were also confirmed by realtime RT PCR on the primary tumor 

material. This expression we eventually found out was caused by a complex 

translocation. The IGK enhancers had been translocated to MYC on 

chromosome 8 and also juxtaposing MAFB on chromosome 20 to the 

enhancers. The breakepoints were identified by high density array CGH. As a 

result of this analysis, we identified breakpoints, manifested by an 

approximately 30% decrease in copy number, involving all three loci: 685 kb 

telomeric of MYC; 138kb centromeric of MAFB; 10kb centromeric and 18 kb 

telomeric of the 3’ kappa enhancer. These results indicate that the 3’ kappa 

enhancer effectively is inserted between the MYC and MAF genes, so that 

both genes can be dysregulated by the same enhancer element.  
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3.2 Paper II 
 

FGFR3 is expressed and is important for survival in INA-6, a myeloma cell line 

without a t(4;14). 

 

FGFR3 is an oncogene dysregulated by the t(4;14) in myeloma cells, and is 

not usually expressed without this translocation. In INA-6 we discovered an 

amplification of the FGFR3 locus by FISH. This amplification did not involve 

any immunoglobulin loci. By array CGH we discovered that the area of 

chromosome 4 from 4p15.32 to the telomere of the p-arm was amplified. This 

was in concordance with the extra copy found on metaphase FISH. This extra 

copy probably causes the expression of FGFR3 in the cells that we 

demonstrated by RealTime-PCR and Western blot. To find out if the FGFR3 

was important for INA-6 we used the small FGFR3 inhibitors SU5402 and 

PD173074. Both decrease the proliferation and enhance apoptosis in INA-6, 

which indicate that FGFR3 not only can be present, but also be important 

even when the t(4;14) is not present in the cells. 

 

 

3.3 Paper III 
  
Overexpression and involvement in migration by the metastasis-associated 

phosphatase PRL3 in human myeloma cells 

 

Numerous cytokines are known to support growth and survival of MM cells 

and there is likely to be redundancy in the signal. Attempts to block one signal 

will be compensated by other signals and we hypothesized that knowing the 

common genes upregulated by several cytokines would lead us to possible 

future targets. Preliminary microarrays showed that a limited number of genes 

were upregulated after cytokine stimulation in myeloma HMCLs OH-2 and IH-

1. Phosphatases of regenerating liver (PRL phosphatises)-3 was one of these 

genes. PRLs constitute at class of small phosphatases with possible 

oncogenic activity. The PRL3 is known as a metastasis-associated 

phosphatase, and several reports show its importance in cancer cell invasion 
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and migration. Since cell migration is one of the processes fundamental to 

MM cell invasion and dissemination, we decided to look closer at PRL3 in 

MM. We show here for the first time, that PRL3 expression, demonstrated at 

mRNA and protein level, was increased in several MM HMCLs when 

stimulated with mitogenic cytokines. Also a large cohort of MM patients 

expressed PRL3 at higher levels than normal PCs. Because amplification of 

PRL3 has been associated with increased expression in other cancers, we 

used FISH to detect the copy number in the HMCLs. There are HMCL with 

many copies of chromosome 8/PRL3, but OH-2, which has the highest 

expression of PRL3, had an apparent normal chromosome 8/PRL3 copy 

number. However, in RPMI-8226 we found an extra copy of the PRL3, which 

might be the cause of the expression of PRL3 in this cytokine independent 

HMCL. The FISH results indicate that gene expression levels seem to be copy 

number independent. Amplification due to chromosome copy numbers does 

not correlate with gene expression levels in the MM cell lines. Most likely, 

other mechanisms are involved in most of the up-regulation of PRL-3 

expression. Immunohistochemistry on MM patients detected PRL3 protein in 

18 out of 20 patients. In OH-2 the PRL3 was detected by anti-PRL3 staining to 

cycle between the cytosol and the nucleus in a cell-cycle dependent way. 

PRL3 was predominantly nuclear localized in G0/G1-phase and exclusively 

staining in the cytoplasm in the G2M phase. The same was also shown in 

patient sample. Downregulation of PRL3 expression by siRNA reduced SDF-1 

-induced migration in the INA-6 cells, but had no effect on the cell cycle 

distribution or cell proliferation. Taken together these data suggest that PRL3 

is one of the proteins translated as a response to several mitogenc cytokines 

and that it might have a role in migration also in MM cells. Several protein 

tyrosine phosphatases seem to be attractive drug targets in cancers PRL3 

could be a molecular target in subgroups of patients with MM. 

 

3.4 Paper IV 

 

High expression of BCL3 in human myeloma cells is associated with 

increased proliferation and inferior prognosis. 
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This paper started with the same hypothesis as Paper III i.e. that intracellular 

signals generated by cytokines known to be important for growth and survival 

of myeloma cells, target common genes which may be important node 

molecules in myeloma pathogenesis. BCL3 was one of a limited number of 

genes that were activated in the IH-1 and OH-2 cell lines in response to all 

cytokines analyzed. BCL3 is located at 19q13, and is a putative oncogene 

encoding BCL3 that belongs to the inhibitory ĸB (iĸB) family. The i-ĸB proteins 

modulate the DNA-binding activity of NFĸB, a family of transcription factors 

involved in apoptosis and cell growth. Activation of NFĸB is implicated as an 

important mechanism for the development of anti-apoptosis and drug 

resistance in MM. Depending on context, BCL3 either activates or inhibits 

NFĸB-dependent gene transcription through interactions with homodimers of 

NFĸB, p50 or p52. We found in a large cohort of myeloma patients, that Bcl-3 

was over-expressed in MM cells from a subset of MM patients, and that high 

expression level on GEP by the time of diagnosis is associated with the 

proliferation subgroup of patients with an inferior prognosis. Furthermore, 

expression of BCL3 in HMCLs induced by growth promoting cytokines as IL-6, 

IL-21 and TNF-α is associated with increased proliferation of the cells. The 

array data was verified with RT-PCR in a small material with randomly 

selected patients, and BCL3 was also detected at the protein level, both with 

immunohistochemistry and Western blot. Because BCL3 first was identified 

through its involvement in the t(14;19)(q32;q13) in B-cell chronic lymphocytic 

leukemia we also wanted to check if MM patients had an aberration in the 

locus of BCL3. We used a split probe and interphase FISH, and found that 

there was an unbalanced translocation in one out of the 19 randomly picked 

patients investigated. Also, four of the patients had an extra copy of the gene.  

In conclusion, we here showed for the first time that BCL3 is present in a 

subset of myeloma patients and that high expression at diagnosis is 

associated with inferior prognosis. We have not shown that BCL3 is an 

independent adverse prognostic factor in myeloma; however we found that 

BCL3 is a common target gene for several growth-promoting cytokines in 

myeloma cells. Taken together, this may indicate a potential oncogenic role 

for BCL3 in MM, but further studies are needed to clarify this. 
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3.5 Paper V  

 

Genetic aberrations in Norwegian myeloma patients 

-a study based on interphase FISH on newly diagnosed patients from 2006-

2008. 

 

This manuscript is a preliminary report of the findings in a so far three year 

long study. The aim has been to screen the Norwegian MM patients and look 

at genetic aberrations by interphase FISH. This is a prospective study, and we 

intend to include 300 patients before the final report will be given.  

 

We analyze 139 MM patients IGH translocations by break-apart strategy and 

looked at the specific primary IGH translocations t(4;14), t(11;14), t(6;14) and 

t(14;16). All patients were also analyzed for del13 and del17. Up until now we 

have found an IGH translocation incidence that is a bit lower than some others 

have published (41% versus 60% in published studies). However, the 

prevalence of t(11;14) and t(4;14) is approximately the same as others have 

reported with an incidence of 16% and 12% respectively. The incidence for 

t(6;14) and t(14;16) are low, which might be caused by the lack of material for 

some patients. Deletion in chromosome 13 and 17 were present in 30% and 

17% respectively. The del13 frequency is lower than others have reported, 

and del17 frequency is approximately the same as others have reported. 

There was no significant correlation between the specific IGH translocations 

and the deletions in chromosome 13 and 17. We did however find a significant 

correlation between del13 and del17. Del13 was seen in 12 patients (50%) of 

the 24 patients with del17, and in 31 (27%) of the 115 patients without del17. 

There were no significant correlations between clinical findings and genetic 

aberrations. The establishment of the method and an estimate of the 

prevalence of genetic aberrations in myeloma patients in Norway, may have 

significant implications for the future treatment strategy.  
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4. GENERAL DISCUSSION 

4.1 Methodological considerations 

4.1.1 HMCLs –Are they a good model for the MM disease? 

 

Doing basic myeloma research usually means doing experiments with 

HMCLs. A lot of conclusions have been drawn based on observations from 

experiments with these HMCLs grown in monocultures in the laboratories. 

There are more than a hundred HMCLs around the world, and they are 

important tools in the study of MM 94. Most of the genetic abnormalities in the 

HMCL are still the hidden secrets of the cells’. But the information of IGH 

translocation status and chromosome copy number is available for the most 

commonly used HMCLs 52. Also the Multiple Myeloma Genomics Portal 

(MMGP) provides information from studies from different myeloma research 

groups (http://www.broad.mit.edu/mmgp/pages/publicPortalHome.jsf). GEP 

and CGH array results for a wide range of HMCLs and patients are available 

at MMGP.  

 

HMCLs are not fully representative of MM. Some of the translocations are 

more common in HMCLs compared to MM patients. t(4;14) is present in ~25% 

of HMCLs versus ~15% of MM patients. t(14;16) is present in ~25% of HMCL 

versus only ~5% of MM patients29. This discrepancy may reflect the more 

aggressive disease conferred by this t(14;16) translocation, and thereby 

making it easier for the cells to grow in vitro. The difference between the 

prevalence of the translocations in the HMCL versus MM patients will however 

be smaller if one takes into consideration that only approximately half of the 

MM patients are represented with HMCLs. This is because most of HMCLs 

are derived from specimens from patients belonging to the NHRD MMs. The 

bias that most HMCLs are from NHRDs has to be considered when HMCLs 

are used as models of the human disease29. It appears that NHRDs more 

likely become independent of their environment compared to HRDs, and this 

confers a more aggressive disease allowing some NHRDs to grow in vitro. 

 



 43

The disconcordance between the HMCLs and the MM patients is a major 

concern. How well do the HMCLs represent the vide range of MM patients, 

especially since there is a lack of HRD HMCLs? And how well do the HMCLs 

represent the BM tumors in the MM patients. 

 

To discuss the last question first: the HMCLs’ originality. How much does the 

cell change when grown in vitro for several years-not to say decades? It is 

difficult to grow primary cells more than a couple of weeks in the lab, even 

with addition of stromal cells and mitogenic cytokines. Also, most HMCLs are 

from patients with relapse and/or extramedullary disease94,95. When 

establishing HMCLs there is also a clonal selection of one or more clone of 

the cells that proliferate more rapidly96. The HMCLs can therefore be 

considered to represent the most malignant end-stage PCs with multiple 

genetic abnormalities21,22. Also it is worth noticing that the same HMCLs used 

at different laboratories in the world might not be identical (personal 

communication M Kuehl). It is left to find out if this is due to for instance 

contamination, mislabelling or mutations during culture. However, on the 

positive side: our experiment with the HMCL OH-2 (paper I) showed only a 

really small difference between the primary cells and the HMCL on CGH 

array. The differences were a small deletion on 10q and an amplification on 

8q in the OH-2 HMCL, which were not present in the primary cells. These 

aberrations might have occurred in vitro, but they could also have been 

present in a small fraction of the primary cells, and been selected during 

culturing. 

 

There are hardly any HMCLs representing the huge hyperdiploid MM patient 

group, and not many HMCLs without IGH translocations. There have been 

attempts to describe hyperdiploid cell lines, and Li et al. described two stromal 

dependent hyperdiploid HMCLs without IGH translocations97. Although, I am a 

bit reluctant to call these two cell lines “true” hyperdiploid when looking at the 

SKY they present. Neither of the cells have more than two of the common 

triploid odd numbered chromosomes. This, and more, has also been criticized 

by others98.  
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I find the fact that there are not available HMCLs for the HRD patient group 

somewhat a problem for the relevance of the MM research being done on 

HMCLs in labs all over the world. Looking at the publicly available array CGH 

at MMGP, it is easy to see that only a few HMCLs have the proper 

chromosome number to be an HRD HMCL. By looking deeper into the arrays I 

would only define the HMCL XG-2 (49 chromosomes) to be a HRD HMCL. 

The other HMCLs with HRD chromosome number (RPMI 8226, 60-62 

chromosomes; JK-6L, 50 chromosomes; KHM-1B, 59 chromosomes; OCI-

MY1, 49 chromosomes) I would not without more considerations put into the 

HRD group. I would like to use RPMI 8226 as an example. Figure 7 shows 

both SKY and array CGH of this HMCL. The HMCL has the correct number of 

chromosomes to be HRD, but when examining the chromosomes it is only 

chromosome 3, 19 (array CGH shows that a piece of one chromosome 19 is 

deleted) and 21 that are the odd number triploid chromosomes. The other 

chromosomes, having more than the normal two copies are even numbered 

chromosomes. Comparing the SKY and the array CGH gives a better picture 

of the real karyotype, because it is not only made from one or a few cells, but 

gives the global copy number in the whole HMCL population at the time of 

harvest. Another feature that gives this HMCL a pro-HRD karyotype, besides 

the total chromosome number, is the fact that it does not have one of the 

primary IGH translocations. It has a t(1;14)(q12;q32) which must be 

considered a non-recurrent IGH translocation, perhaps present at the same 

frequency in both HRD and NHRD 52. The array CGH value zero on the Y-axis 

represents three chromosome copies, evident when compared with the SKY. 

There might be small differences between the SKY and array CGH that may 

also come from the fact that the HMCLs are harvested at different labs (Little 

Rock and Trondheim respectively).   

  



 45

 
 

   
 

Figure 7. Upper figure shows a SKY of HMCL RPMI 8226 (with permission dr J 
Sawyer, UAMS, Little Rock). Lower figure shows an array CGH of RPMI 8226 
(prepared by SH Kresse and L Meza-Zepada)  
 

4.1.2 Isolation of primary MM cells from bone marrow aspirate from 
patients using anti-CD138 antibodies 

 

Since HMCLs are what they are, a model system, it might be important to look 

at responses in freshly isolated primary MM cells. It is believed that 

experiments with primary MM cells in vitro are more relevant to the in vivo 

situation than HMCLs. Even though it is easy to argue that primary cells are 

better to use for experiments than HMCLs, there are also disadvantages. The 

cells have been harvested and have been kept together with e.g. EDTA or 
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heparin. There will also be a time gap between harvest and experiments. It is 

difficult to control if the mRNAs, microRNAs, epigenetics or proteins are not 

disturbed by this handling. Primary cells will always have the heterogeneity 

and it might be difficult to get the same result with samples from different 

patients. At least when the sample is from a newly diagnosed patient, we do 

not know anything about it. This is a good thing in that experiments become 

randomized. However, if the goal is to look at for instance FGFR3 responses, 

it will be more difficult. 

  

Isolation of primary PCs has been done with anti-CD138 antibody from BM 

aspirates from MM patients. In Paper III and IV Macs CD138 coated 

Microbeads (Miltenyi biotech) were used and cells were separated sterile to 

be used also for long time cultures. For FISH and over-night cultures 

RoboSep (Stem Cell technology) automatic CD138 separation of BM 

aspirates was used. With both techniques purity of PCs were determined by 

May Grünvald-Giemsa staining to be on average >97%. With the RoboSep 

separations freshly drawn samples with more than 10 mill cells were usually 

>98% pure and samples sent to us by over night post 95-97% pure. Samples 

shipped over night with fewer cells were usually down to 90% pure, but this 

was still good enough to use for FISH analysis. Samples shipped over night 

were used for FISH analysis only.  

 

4.1.3 FISH 

 

In paper V interphase FISH was done on three different kinds of samples from 

patients. When using BM spreads and mononuclear cells it was important to 

positively select the PCs with antibodies for IGK and IGL. This cytoplasmatic 

(c)Ig-FISH works well to separate out the myeloma cells and to only score the 

PC. In some patients the cytoplasmatic staining can be weak, and if the PC% 

in addition is low, the FISH scoring is time consuming, and will not always give 

conclusive results. The introduction of CD138 separation of PCs the FISH 

procedure was considerably improved and less time consuming (Paper V).  
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4.2 Why is it difficult to establish HRD HMCLs? 

 
As already stated, it is difficult to get primary MM cells to grow, and even more 

difficult to establish a HMCL, especially from HRD that miss one of the 

primary IGH translocations. One reason might be that tumors with HRD 

phenotype are more dependent on the microenvironment than cells with 

primary IGH translocations. As we explain in paper I, OH-2 is strictly 

dependent on mitogenic cytokines and on human serum to be able to grow, 

and even then it grows significantly slower than the other HMCLs in our lab. In 

our experience, other IL-6-dependent cell lines become IL-6-independent after 

culture for extended periods, but this has never been seen with OH-2. To be 

able to establish more HRD HMCL, we need to get primary MM cells to grow 

better in vitro. However, even when growing primary cells with human serum 

and a cocktail of mitogenic cytokines, we experience that the cells die after a 

few months.  

 

Less than 10% of EMM are HRD99,100. It is not yet known what makes an 

intramedullary myeloma to become extramedullary. One genetic answer might 

be the acquisition of autonomous CCND dysregulation. One possible 

explanation is that HRD MM tumors, and especially those that ectopically 

express CCND1, are dependent on signals from the bone marrow 

microenvironment to enable bi-allelic expression of a CCND gene. If this is 

true, then progression to independence from the bone marrow 

microenvironment might require an alternative mechanism to dysregulate a 

Cyclin D gene. It has been proposed that CCND is dysregulated in all MGUS 

and MM, either by a translocation or by bi-allelically expression in many HRD 

tumors. The mechanism for this bi-allelically expression is still to be 

determined26. Perhaps OH-2, and also RPMI 8226 and XG-2, have 

accomplished CCND expression by a genomic rearrangement that 

dysregulates MAF or MAFB, both of which increase expression of CCND2. 

We need to answer at least two important questions regarding HRD MM 

tumors. First, what is the mechanism by which CCND1 is bi-allelically 

dysregulated in HRD MM tumors? Second, why do HRD MM tumors so 

infrequently progress to EMM tumors or HMCL that express CCND1? 
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4.3 Is FGFR3 important in myeloma? 

 

FGFR3 is one of the genes affected by the t(4;14). It was the finding of 

ectopically expressed FGFR3 in MM that gave the first indication that FGFR3 

was a potential oncogene101. In MM, activating mutations in FGFR3 are 

present in about 1/3 of t(4;14) patients and half of the HMCLs102. It is reported 

that RAS and FGFR3 mutations are mutually exclusive. Since both RAS and  

FGFR3 activation, lead to MAPK activation, they may induce overlapping 

oncogenic signaling103. This is in concordance with our findings in HMCLs IH-

1 and INA-6. Both IH-1 and INA-6 have no mutations in FGFR3, but NRAS is 

mutated in codon 12 in both HMCLs (unpublished data). In paper II we 

describe that INA-6 has expression of FGFR3 without t(4;14) and that FGFR3 

might be important for the myeloma cells. Acidic-Fibroblast growth factor 

stimulated IH-1 and INA-6 have phosphorylated ERK1 and ERK2 detected by 

WB. Adding the inhibitors described in paper II the phosphorylation is only 

partly taken down compared to cells not treated with the inhibitors 

(unpublished data). This is expected with the mutated NRAS present. We 

believe that FGFR3 contributes to proliferation in INA-6 and IH-1 and it 

deserves to be more looked into. 

 

4.4 The relevance of doing FISH analysis on every myeloma 
patient 

 

Genetics as a prognostic tool is already established. NHRD patients have 

poorer survival than HRD and del17, t(4;14) and t(14;16) have poorer survival 

than other genomic aberrations20,29. We established FISH to be able to give 

the service to hospitals in Norway. 

 

Some studies evaluate the genetic impact of prognosis and outcome after 

different treatment strategies. A study by Gertz et al. showed that when high 

dose therapy with stem cell support was used, t(4;14) patients had a 

progression-free survival of 8.2 months compared to 20.1 months for t(11;14) 
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patients. For patients with del17 progression-free survival was 8.7 months. 

This suggest that high-dose therapy with stem cell support might not be the 

best therapy for these patients45. In the UAMS total study II it was seen that 

patients with non-favorable cytogenetics/GEP have greatest benefit from 

thalidomide with a significantly higher overall and event free survival 

compared to favorable cytogenetics/GEP patients104. Also Chng et al.105 

suggested that the various genetic subtypes at diagnosis and relapse appear 

similar, but at the same time the prognosis of some genetic subtypes, like 

t(11;14), might be worse at relapse. Whereas for instance HRD patients 

appeared to behave similarly, both at diagnosis and at relapse. They therefore 

suggested that patients with t(11;14) should be treated more aggressively 

when relapsed. They also report that t(4;14) patients benefitted from 

bortezomib, improving the prognosis of these patients to that of genetic 

subgroups with better prognosis. All in all this states the fact that different 

treatment strategies may be needed for newly diagnosed and relapsed 

patients, even in the same genetic group105. Bortezomib also seemed to 

exacerbate some of the poor prognosis in del13 patients106,107.  

 

It is difficult to draw uniform conclusions from the studies that have been 

published until today. We have still not come so far that there are tailored 

treatments for patients with different translocations or other genetic 

aberrations. But it is a hope for the future that such treatments will come. I am 

hoping for a large study that correlates the outcome of treatments with genetic 

aberrations. Perhaps as Chng et al. reports that t(4;14) patients go from poor 

to a more average prognosis, treated with bortezomib, and perhaps patients 

with other genetic abnormalities like the del17 could benefit from some other 

drugs? I am looking forward to read about a large prospective study that 

incorporates genetic aberrations to treatment strategies, and I hope it will 

come soon. Some of the motivation, studying genetics in MM, is that it 

somehow eventually can help the patient to be treated fully, at least a longer 

event free survival and a better quality of life with managing the disease. So, I 

think is not unreasonable to do FISH on all patients, but I am not sure we 

know the full potential of it yet. 
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5. CONCLUSION AND FURTHER THOUGHTS 
 

As with all research -the more you find out -the more questions are asked. 

This thesis answers some questions, but there are still more to be asked. In 

this study we provide further insight in the complex genetic field of the 

myeloma cells, particularly the HMCLs. More specifically, we have revealed 

the OH-2 cells’ hidden hyperdiploid phenotype and thereby given a long 

sought hyperdiploid MM model system in vitro. We will however not stop here, 

and hopefully we will reveal why OH-2 HMCL are strictly dependent on human 

serum. We hope that an answer to that might help us to establish more 

HMCLs from HRD patients. We have also revealed that more specific genes 

like the PRL3, FGFR3 and BCL3 can be amplified or translocated, even 

though the specific mechanism behind it is not clear. It has also been 

interesting to screen Norwegian MM patients for genetic aberrations. Because 

this study is not completed, this will also be a study for the future. The biggest 

thoughts for future basic research are perhaps the questions I ask in the 

discussion about HRD MM, and I hope to be able to investigate the secrets of 

the HRD MM further. 
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Abstract 
 
Multiple myeloma (MM) can be classified into two groups: hyperdiploid (HRD) tumors 
(48-74 chromosomes), which typically have extra copies of chromosomes 3, 5, 7, 9, 
11, 15, 19, and 21; and non-hyperdiploid (NHRD) tumors, which usually have 
immunoglobulin heavy chain (IGH) translocations.  The OH-2 HMCL was derived 
from extramedullary myeloma, and retains the same HRD phenotype as the primary 
tumor, with extra copies of chromosomes 3, 7, 15, 19, and 21. This provides a unique 
example of an HMCL and the corresponding primary tumor that are shown to share 
the same HRD genotype. The OH-2 HMCL and the primary tumor cells both express 
high levels of Cyclin D2, but do not have an IGH or IGL translocation. Instead, both 
have a complex translocation in which a 28 kb sequence, including the IGK 3’ 
enhancer, is inserted between MYC and MAFB, resulting in dysregulation of both 
oncogenes.  These data, together with published results for two other HMCL, suggest 
that secondary MAF/MAFB translocations provide one mechanism that enables HRD 
tumors to overcome microenvironment dependence, enabling an intramedullary 
tumor to progress to an extramedullary phase from which an HMCL sometimes can 
be generated.  
 
Introduction 
  
Multiple myeloma (MM) is a neoplasm of long-lived bone marrow plasma cells 1. Both 
MM and pre-malignant monoclonal gammopathy of undetermined significance 
(MGUS) can be separated into two groups that are distinguished by chromosome 
content 2,3. Approximately 50% of tumors are hyperdiploid (HRD), and contain 48-74 
chromosomes, typically with extra copies of at least four of eight odd-numbered 
chromosomes (3, 5, 7, 9, 11, 15, 19, 21). The remaining tumors are non-hyperdiploid 
(NHRD), containing <48 and/or >74 chromosomes. These two groups are further 
dustinguished by IGH translocations with five reciprocal partners (4p16, 
MMSET/FGFR3; 11q13, Cyclin D1; 6p21, Cyclin D3; 16q23, MAF; and 20q12, 
MAFB) that are present in about 70% of NHRD tumors but only about 15% of HRD 
tumors. It appears that recurrent IGH translocations and hyperdiploidy are primary 
events that occur early in pathogenesis. Secondary translocations, which include 
most IGH rearrangements not involving one of the five recurrent partners, most IGL 
and IGK rearrangements, and MYC rearrangements, appear to contribute equally to 
progression of both HRD and NHRD tumor 4. 
 
Despite a low proliferation index, there is increased expression of one of the three 
CYCLIN D genes in virtually all MGUS and MM tumors, suggesting that this is a 
unifying and early oncogenic event. Primary translocations can directly dysregulate 
Cyclin D1 or Cyclin D3, or indirectly dysregulate Cyclin D2 (transcription target of maf 
proteins and unknown mechanism for MMSET/FGFR3 translocation). The HRD 
tumors lacking a primary translocation mostly express increased levels of Cyclin D1 
(~70%), Cyclin D1+Cyclin D2 (~10%), or Cyclin D2 (~20%) compared to normal 
plasma cells 5.   
  
In contrast to intramedullary MM tumors, most (~60%) extramedullary (EMM) tumors 
have one of the recurrent IGH translocations, and less than 10% are HRD 6,7. 
Similarly, human myeloma cell lines (HMCL) are derived almost exclusively from 
EMM tumors, mostly are NHRD and usually have one of the recurrent IGH 
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translocations (~75%), suggesting that intramedullary HRD tumors are less likely to 
develop into EMM tumors or HMCL 8. There are no known examples of HMCL that 
have been shown to be derived from a primary tumor that has a HRD phenotype and 
does not have a recurrent IGH translocation 9.  
 
OH-2 is a stroma-independent HMCL derived from an EMM tumor that developed 
following treatment and progression of an intramedullary MM tumor  10. Previously, it 
was reported that the OH-2 HMCL, which has a doubling time of about four days, is 
completely dependent on interleukin (IL)-6, and human serum for stromal cell 
independent growth in culture. In this paper we report that the OH2 HMCL retains the 
same HRD genotype as the EMM tumor cells. We also characterize its chromosomal 
composition, some genetic anomalies, and some of its growth characteristics. 
 
Material and Methods 
 
Cell line, OH-2 
The HMCL OH-2 was established in 1991 at St. Olavs University Hospital from 
pleural fluid of an MM patient in terminal stage of the disease 10. The cell line is 
cultured in RPMI 1640 (Gibco, Paisley, UK) with L-glutamine (100 µg/ml) and 
gentamicine (20µg/ml), supplemented with 10 % human serum (AIT, St. Olavs 
University Hospital, Trondheim, Norway) and IL-6 2 ng/ml, in a humidified 
atmosphere containing 5 % CO2 at 37°C. For an experiment to optimize growth 
condition for the HMCL, OH-2 was grown in various combinations, as denoted in 
legend to Fig 7.  
 
Primary cells from the patient who gave rise to the OH-2 cell line 
Cells from the pleural fluid of the patient who gave rise to the OH-2 cell line were 
separated by lymphoprep centrifugation and kept in RPMI 1640 with 10% DMSO and 
30% fetal calf serum (FCS) in liquid nitrogen, frozen at the day of sampling. Cells 
were thawed, and RNA and DNA were isolated shortly after thawing. The cell 
suspension contained 90-95 % pure plasma cells. These cells are further called 
primary OH-2 cells. An epon-embedded biopsy taken 10 months before the pleura 
fluid harvest was unfortunately not applicable for either DNA analysis or 
immunohistochemistry. 
 
Other HMCLs and culture conditions 
JJN-3 11, ANBL-6 (gift from Dr D Jelinek, Mayo Clinic, Rochester, MN) RPMI-8226 
(from America Type Culture Collection, Rockville, MD) and INA-6 (gift from Dr M 
Gramatzki, Erlangen, Germany) are maintained as previously described 12,13. 
   
Fluorescence in situ hybridization (FISH) 
Probes for FISH were made from Bacterial Artificial Chromosome (BAC) clones 
containing the desirable genomic region covering loci 2p11, 4p16, 11q13, 14q32, 
16q23, 20q12 and 22q11. In addition a break-apart probe for IGK was purchased 
from Dako (Dako Cytomation, Glostrup, Denmark). Supplementary Table A shows 
probe loci and clones. Probes for 4p16, 11q13, 14q32 and 16q23 were gifts from R. 
Fonseca, probes for 20q12 and IGK from M. Kuehl, the rest was purchased from 
Invitrogen. Whole Chromosome Paint (WCP) probes for chromosome 2, 14, 20 and 
22 in aqua, and chromosome 8 in green (Applied Spectral Imaging, Micro System 
AB, Spånga, Sweden) were used to verify genes on their respective chromosomes. 
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CEP 2 and CEP 8 SpectrumAqua were used to label the centromeric region in the 
chromosomes (Vysis, Abbot Laboratories, Des Plaines, IL). FISH with WCP and in-
lab LSI probes were used as follows: 2 µl LSI probe in water + 2 µl WCP with 6 µl LSI 
hybridization buffer (Vysis). For IGK 2 µl WCP 2 and 8 µl of IGK probe mix (Dako) 
were used. Metaphase spreads was made according to standard methods 14. The 
metaphases were prepared at least one week prior to use without additional heating 
or chemical treatment. Method and microscopy as described earlier 12. 
 
Karyotyping 
Conventional cytogenetic methods Giemsa-banding (G-banding) and spectral 
karyotyping (SKY) were performed after standard procedure as described 15. 
 
Microarray-based comparative genomic hybridization (array CGH) 
The genomic microarray was done using 500 ng genomic DNA sample from OH-2 
cell line and primary cells after methods as described 16,17.  
 
Southern Blot for IGH, IGK and MAFB 
Southern Blots were performed on genomic DNA from OH-2 to look for IGH 
illegitimate switch recombination fragments, as previously described 18.  
 
Gene expression profiling 
Total RNA was profiled and analyzed as described previously (8,24), using Affymetrix 
HG-U133_Plus_2.0 Chips (Affymetrix, Santa Clara, CA).  Profiling data were 
available for 559 newly diagnosed MM tumors (GEO accession GSE2658; 
http://www.ncbi.nlm.nih.gov) and 46 HMCL 
(http://www.broad.mit.edu/mmgp/pages/publicPortalHome.jsf).  The expression of 
individual genes was normalized to the median expression of that gene in the entire 
sample set of 559 MM tumors and 47 HMCL. A MAF index (MAFI) was calculated 
from the median expression of 50 genes that are up-regulated in the MAF group 19, 
and the samples in Table 1 were arranged in descending order, based on the value 
of the MAFI.  Other probe sets used in Table 1 included: CCND1, 208711_s_at; 
CCND2, 200951_s_at; CCND3, 201700_at; FGFR3, 204379_s_at; MMSET, 
223472_at; MAF is the median of 206363_at, 209347_s_at, 209348_s_at, and 
229327_s_at; MAFB is the median of 218559_s_at and 222670_s_at; and MYC is 
202431_s_at.  A proliferation expression index, P(12), was calculated from the 
median expression of twelve genes that are included in a proliferation signature 8. 
 
Cell proliferation assay 
Cell proliferation assay was performed as previously described 20. The cells were 
stimulated with one or several of these cytokines: 1 ng/ml recombinant human IL-6, 
200 ng/ml a proliferation inducing ligand (APRIL), 200 ng/ml B-cell activating factor 
(BAFF), 100 ng/ml IGF-1, 10 ng/ml IL10, 20 ng/ml IL15, 10 ng/ml IL-21 (R&D 
Systems, Abingdon, UK), 10 ng/ml TNF (Genetech, South San Fransico, CA) and 
100 ng/ml hepatocyte growth factor (HGF) purified in our own laboratory 21. The 
counts per minute (cpm) obtained was normalized to the serum control sample. 
 
Real-time RT-PCR on Cyclin Ds, and MAFB  
Total RNA from OH-2, INA-6 and ANBL-6 cells cultured as described, was isolated 
using RNeasy Mini Kit (Qiagen, Crawley, UK), with DNase treatment. cDNA was 
made from RNA using SuperScript®III First Strand Synthesis System for RT-PCR 
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(Invitrogen). Cyclin D1-3 and MAFB TaqMan primers, (HS00765553_A1, 
HS00277041_A1, HS01017690_g1 and HS00271378_s1 respectively, TaqMan, 
Gene Expression Assays, Applied Biosystems, Foster City, CA), were used to detect 
cyclin Ds and MAFB expression. A control without reverse transcriptase added was 
used for the one exon gene MAFB to make sure there was no genomic DNA 
contamination. The comparative Ct-method was used for quantization with GAPDH 
(HS99999905_m1) as housekeeping gene.  
 
Sequencing of TP53 and RAS 
TP53, NRAS, HRAS or KRAS2A/B cDNA was PCR-amplified and sequenced to 
examine for nucleotide mutations.  All RT-PCR reactions were purified with QIAquick 
PCR Purification Kit (Qiagen) and directly sequenced using BigDye Terminator v1.1 
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA), DyeEx 2.0 Spin Kit 
(Qiagen) was used to purify the sequencing reaction that was analysed on ABI3100 
Genetic Analyzer (Applied Biosystems). Details of primers and primer position are 
listed in Supplementary Fig B-C. 
 
Results 
 
OH-2 does not have an IGH translocation 
Using a split probe strategy on metaphase spreads, there was no dissociation of the 
centromeric and telomeric probes for the IGH, IGK, or IGL loci (Figs 1a-c). OH-2 was 
also tested with dual fusion probes for the recurrent IGH translocation partner loci at 
4p16, 6p21, 11q13, 16q23, and 20q12, but no cryptic translocation involving IGH with 
any of these loci was detected (not shown). WCP probes confirmed that the IGH, 
IGK, and IGL loci were on chromosomes 14, 2, and 22, respectively. However, it was 
noted that there was a complex translocation near the IGK locus on chromosome 2, 
with both IGK probes localizing to der(2) (Fig 1b).  Southern blots identified 4.4 kb 
and 4.7 kb Hind III 5’ switch mu/3’ switch gamma legitimate switch recombination 
fragments, consistent with normal rearrangements involved in expression of IgG by 
the OH-2 tumor cells (not shown), but no illegitimate switch recombination fragments 
were detected.  
 
Identical hyperdiploid chromosome content of OH-2 cell line and primary tumor 
Conventional G-banding and SKY analyses (Fig 2a-b) revealed the presence of 48-
51 chromosomes, with trisomies of chromosomes 3, 7, 15, 19, and 21, in the OH-2 
HMCL. In addition to aneuploidy, ten translocations and one large interstitial deletion 
were identified (Fig. 2a-b). Unfortunately, karyotypic analyses are not available for 
either the initial intramedullary MM tumor or the EMM tumor. Therefore, array CGH 
was performed to check for additional chromosomal aberrations in OH-2, and to 
compare the OH-2 HMCL and the EMM tumor. The OH-2 HMCL and OH-2 primary 
tumor showed virtually identical array CGH patterns apart from a 10q deletion and 
amplification of a portion of 8q that were uniquely present in the HMCL (Fig. 2c). 
Significantly, array CGH analyses confirmed in both the cell line and tumor the extra 
copies of the five odd-numbered chromosomes, and also chromosome 14, which 
were confirmed by additional FISH analyses (not shown). Finally, the array CGH and 
karyotypic analyses also verified loss of one copy of chromosome 13, as well as loss 
of 1p and gain of 1q sequences. 
 
OH-2 cell line and primary tumor cells express a high level of MAFB RNA 
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The gene expression profile of the OH-2 cell line was determined using an Affymetrix 
HG-U133_Plus_2 chip, and compared to results that are available for 46 other 
HMCL. Selected results are shown in Table 1. Strikingly, the OH-2 HMCL expresses 
MAFB RNA at a level that is higher than the three HMCL (SACHI, EJM, SKMM-1) 
that have t(14;20) translocations. Consistent with the expression of high levels of 
MAFB, the OH-2 cells express extremely high levels of Cyclin D2 RNA, low levels of 
Cyclin D3 RNA, and very low levels of Cyclin D1 RNA. Real time PCR assays 
confirmed that the OH-2 primary tumors cells also express high levels of MAFB and 
Cyclin D2 but low levels of Cyclin D1 RNA (Fig. 3).  Significantly, the OH-2 HMCL 
has a MAF expression signature that places it among the 42 MM tumors and 14 other 
HMCL that express high levels of MAF or MAFB RNA (Table 1 plus Materials and 
Methods). In addition to Cyclin D2, some other apparent MAF targets with expression 
levels at least tenfold above the median of the tumors and cell lines include integrin 
beta7, ARK5, and MRF-1. Finally, the MYC RNA level in the OH-2 HMCL is in the 
highest quartile of the 47 HMCL (Table 1). 
 
MAFB and MYC are juxtaposed by a complex translocation process involving IGK 
In view of the high level of MAFB expression in OH-2, we suspected the 
translocations involving chromosomes 2, 8, and 20, as der(20)t(2;20)(p11;q12), 
der(8)t(8;20)(q24;q12)t(8;20)(q24;q12) or der(8)t(8;20)(q24;q12) and 
der(2)t(2;8)(p11;?q24) might be the cause.  To determine if there is a rearrangement 
near MAFB, we performed FISH with a MAFB probe, as well as nearby centromeric 
and telomeric probes, in combination with WCP 2, 8, and 20, and also CEP probes 
for chromosomes 2 and 8 (Fig. 4c,e). MAFB is normally located at 20q11.2-q13.1 
(http://www.genecards.org). There is one intact copy of chromosome 20 (Fig 4b), but 
the MAFB locus was also translocated to chromosome 8. There were two clones of  
the HMCL, with either der(8)t(8;20)(q24;q12)t(8;20)(q24;q12) (~30%) or 
der(8)t(8;20)(q24;q12) (~70%), each paired with a normal chromosome 8. The 
translocated MAFB was localized at the 8;20 junction on der(8), or on both 8;20 
junctions on der(8)t(8;20)t(8;20) (Fig 4e-f). Probes that were about 400 and 700 kb 
centromeric to MAFB were present only on der(20), and a probe that was about 1100 
kb telomeric to MAFB was present only on der(8) (Table 2). Thus the breakpoint on 
chromosome 20 apparently occurred less than 400kb centromeric to MAFB. A MYC 
probe hybridized to the 8;20 junction on der(8) or to both 8;20 junctions on 
der(8)t(8;20)t(8;20), but not to der(2)t(2;8) (Fig 4f-g). Therefore, MYC and MAFB are 
juxtaposed on both der(8). Despite the lack of a Vkappa/Ckappa split by conventional 
FISH analyses (Fig 1b) we suspected that a Ckappa enhancer was juxtaposed to 
MAF and MYC.  By using a relatively small BAC that included intronic and 3’ 
enhancer sequences from the IGK locus, we detected a hybridization signal on der 
(8)t(8;20)(q24;q12) (Table 2). A similar result was obtained with a pair of PCR probes 
that included 25 kb of sequences that encompass the intronic enhancer, the 3’ 
enhancer, and the 3’ kappa deleting element (Fig 4d) (Table 2). The co-localization of 
one or both kappa enhancers together with MYC and MAFB was confirmed, and is 
present in all t(8;20) junctions (Fig 4d).  Interphase FISH analyses confirmed a 
MAFB/MYC fusion signal, both in the cell line and in primary tumor cells, thereby 
demonstrating that the close (<500 kb) juxtaposition of these two genes occurred in 
the patient (Fig 4f-g). The complex der(8)t(8;20)t(8;20) was also present in the EMM 
tumor cells (Fig 4f-g). These and additional FISH mapping studies are summarized in 
Table 2 and Fig 4. 
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Mapping breakpoints near MAFB, MYC, and kappa enhancer by high density array 
CGH. The colocalization of MAFB, MYC, and kappa sequences on both kinds of 
der(8) suggested that breakpoints should be localized telomeric of MYC, on both 
sides of kappa sequences, and centromeric to MAFB (Fig. 5).  The rearrangements 
involving chromosomes 2, 8, and 20 appeared to be balanced in most cells, but a 
partial imbalance was suggested by the duplication of the t(8;20) junction in about 
30% of OH2 cells.  Therefore, high density tiling CGH arrays were designed in an 
attempt to identify breakpoints near the MAFB, MYC, and kappa enhancer 
sequences. As a result of this analysis, we identified breakpoints, as  
manifested by an approximately 30% decrease in copy number, involving  
all three loci: 598 kb telomeric of MYC, 148 kb centromeric of MAFB;  
18.6 kb telomeric and 9.9 kb centromeric of the 3' kappa enhancer. These results 
(Supplementary Figure D) indicate that the 3’ kappa enhancer effectively is inserted 
between the MYC and MAF genes, so that both genes can be dysregulated by the 
same enhancer element.  The combined FISH and array CGH results are consistent 
with sequential translocations as depicted in Fig 5.  
 
Additional genotypic and phenotypic characteristics of OH-2 
The sequence of KRAS was normal, but there was a CAA (GLN) to AAA (LYS) 
mutation in codon 61 of NRAS. Although all but three (KMS-28BM; KMS-28PE; XG-
6) of 46 HMCL either have a mutation in TP53, no or very low expression of TP53, or 
an increased level of MDM-2 expression (M. Kuehl, unpublished), there were no 
sequence abnormalities of TP53 or RNA expression abnormalities of TP53 or MDM-2 
in OH-2. Similarly, although approximate 50% of the 46 HMCL have inactivated either 
p18INK4c or RB1 22, the RNA expression of both of these genes appears to be 
normal in OH-2 (data not shown).  Surprisingly, despite an extremely slow rate of 
growth in culture (below), the OH-2 HMCL has a proliferation expression index of 
18.9, the fourth highest of the 47 HMCL.  
 
Proliferative response to mitogenic cytokines 
We previously published the response of OH-2 to different cytokines, e.g. a 
synergistic response to TNFα and IL-21, an intermediate response to IL-10, IL-15, 
and TNFα alone, and a modest response to IL-2 and IGF-1 20. Although OH-2 has a 
low NF-kappaB index (MK, unpublished), we also wanted to test the TNF analogs 
BAFF and APRIL on OH-2 23,24. Both BAFF and APRIL gave a lower proliferative 
response, as measured with 3H-thymidine incorporation, and did not show any 
synergism with IL-21. This is depicted in Fig 6, which also shows that a variety of 
cytokines can enhance proliferation in OH-2.   
 
Culture requirements for the OH-2 cell line 
The growth of OH-2 is strictly dependent on IL-6 and human serum, although growth 
is extremely slow, with a doubling time of about four days. In an attempt to find a 
more effective way to culture OH-2 we modified ingredients of the medium as FCS 
with various cytokines, FCS concentrations, and advanced RPMI 1640. Fig 7 shows 
a representative selection of the cell counts measured before media was replenished. 
The only condition to keep the cells for long-term was to use IL-6 together with 
human serum. The cells with human serum without IL-6 showed better survival than 
cells with cytokines and FCS, but could not survive for extensive time under this 
condition either. 
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Discussion 
 
Approximately 50% of MM tumors are HRD and do not have one of the five recurrent 
IGH translocations.  However, this phenotype is found in less than 10% of reported 
EMM tumors 6,7.  Significantly, for the very limited number of HRD EMM tumors that 
have been reported, it is unknown whether the corresponding intramedullary MM 
tumor had the same HRD genotype. Similar to EMM, from which virtually all HMCL 
are derived, HMCL only infrequently are HRD in the absence of one of the five 
recurrent IGH translocations 4,25.  For example, of the 46 HMCL (excluding OH-2) in 
Table 1, only ten (22%) do not have one of the recurrent IGH translocations. Five 
(10% overall) of these HMCL have a HRD chromosome content (RPMI 8226, 60 
chromosomes; XG-2, 49 chromosomes; JK-6L, 50 chromosomes; KHM-1B, 59 
chromosomes; OCI-MY1, 49 chromosomes). Unfortunately, it is not known whether 
or not the corresponding intramedullary MM tumor or EMM tumor had the same 
chromosome number as these five HMCL.  
 
As summarized above, the OH-2 HMCL, which was derived from an EMM tumor, 
does not have an IGH translocation and retains the same HRD phenotype as the 
tumor, with extra copies of chromosomes 3, 7, 15, 19, and 21. This provides a unique 
example of an HMCL and the corresponding primary tumor that share the same HRD 
phenotype. However it has a complex translocation involving the IGK locus, which is 
juxtaposed with both MYC and MAFB. The OH-2 HMCL and primary EMM tumor 
expresses very high levels of Cyclin D2 but only low levels of Cyclin D1, consistent 
with the phenotype of the 20% of HRD MM tumors that express increased levels of 
Cyclin D2 but not Cyclin D1 8.  The OH-2 HMCL is similar to the RPMI 8226 HMCL in 
that both have dysregulated MYC through complex translocations events that 
juxtapose MYC with MAFB and IgK or MAF and IgL, respectively 4.  
 
Other notable features of the OH-2 HMCL include the loss of 1p sequences, gain of 
1q sequences, deletion of chromosome 13, and lack of trisomy 11, all of which are 
associated with the poorest clinic outcome amongst the hyperdiploid patient group 
(Carrasco et al). These genetic signatures correspond to the aggressive disease in 
the patient whose malignant cells derived OH-2 cell line 10. Despite an extremely high 
expression proliferation index and dysregulation of MYC, the OH-2 HMCL has a 
doubling time of at least four days when grown in vitro. In this regard, it may be 
relevant that OH-2 is one of the few HMCL that does not have a mutation or markedly 
decreased expression of TP53 or a substantial increase in MDM-2 expression. It is 
also worth noticing the gene expression profile study by Chng et al. that classified 
different clusters of hyperdiploid myeloma patients, where one of the clusters is 
defined by the overexpression of PRL-3, SOCS, HGF and IL-6 genes 26. We have 
recently published that PRL-3 is highly over-expressed in OH-2 12. Other experiments 
in our lab have shown that IL-6 induces transcription of HGF in OH-2 (Hov personal 
communication). 
 
It is a pertinent question why it seems more difficult to establish HMCL from tumors 
that are HRD and lack one of the five recurrent IGH translocations. A reasonable 
answer could be that tumors with this phenotype are more dependent on the 
microenvironment than cells with primary IGH translocations. The strict dependence 
of OH-2 on mitogenic cytokines and on human serum supports this. In addition it is 
worth noticing that OH-2 grows significantly slower than the other HMCLs in our lab. 
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In our experience, other IL-6-dependent cell lines become IL-6-independent after 
culture for extended periods, but we have never experienced this with OH-2. Most 
HMCLs reported in the literature grow in medium supplemented with FCS, but OH-2 
cells are impossible to wean from their dependence on human serum, which is 
something that remains to be clarified. Anyway, one way of circumventing the 
problem with establishing similar cell lines might be to use human serum in the 
growth medium. An additional genetic answer to this might be the acquisition of 
autonomous Cyclin D dysregulation. In fact, it is remarkable that all of the six HDR 
HMCL (above) express high levels of Cyclin D2, whereas ~70% of HRD MM tumors 
express increased levels of Cyclin D1 (but not of Cyclin D2) compared to normal 
bone marrow plasma cells 8. Significantly, of two recently reported stromal cell 
dependent HMCL, neither expresses Cyclin D1;  instead, one expresses high levels 
of Cyclin D2 and the other expresses extremely low levels of RB1, perhaps 
eliminating the need for increased expression of a Cyclin D gene 27. One possible 
explanation is that HRD MM tumors, and especially those that ectopically express 
Cyclin D1, are dependent on signals from the bone marrow microenvironment to 
enable bi-allelic expression of a Cyclin D gene. If this is true, then progression to 
independence from the bone marrow microenvironment might require an alternative 
mechanism to dysregulate a Cyclin D gene. Perhaps OH-2, and also RPMI 8226 and 
XG-2, have accomplished this by virtue of a genomic rearrangement that 
dysregulates MAF or MAFB, both of which increase expression of Cyclin D2.   
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Titles and legends to figures 
 
Figure 1.  FISH detects intact immunoglobulin genes 
a-c) Break-apart probes for IGH, IGK and IGL, a-c respectively, were used together 
with WCP for the corresponding chromosome 14, 2 and 22. The yellow co-
localization signal for the immunoglobulin loci indicates co-localization of the probes. 
a) WCP 14 and IGH break-apart probe show no abnormalities. b) WCP 2 and IGK 
break-apart probe suggest no translocation within the IGK locus. On the two 
derivatives involving chromosome 2, both IGK probes remain together near the 
breakpoint on der(2) (Fig. 2b). c) WCP 22 and IGL break-apart probe show no 
abnormalities. (Original magnification 1000x).  
 
Figure 2. The karyotype of OH-2 has a hyperdiploid profile 
a) Representative G-band with karyotype; 48~51<2n>,XX,-1, 
der(1)t(1;3)(q12;q13)del(3)(q24), der(2)t(2;8)(p11;?), +3, der(3)t(1;3)(p22;q21), 
del(6)(q23), +7, der(8)t(8;20)(q24;?q12)t(8;20)(q24;?q12), der(10)t(8;10)(?;q26), -13, 
der(13)(13qter→13p11::1q21→1q41::19?p13), +15, der(16)t(9;16)(?;?), 
der(18)t(1;18)(q21;p11), der(20)t(2;20)(p11;q13), +21, 
der(21)t(1;21)(q21;q22)dup(1)(q21q32)x2 
 b) SKY of the OH-2 cell line. The G-band and the SKY analyses demonstrate the 
aberrations in the OH-2 cell line. The chromosome number and the trisomy 3, 7, 15, 
19 and 21 indicate a hyperdiploid karyotype. c) Array CGH shows the genomic 
aberrations of the OH-2 primary cells (black) and the OH-2 cell line (red) in the same 
plot. Log2 ratios for each of the BACs and PACs are plotted according to 
chromosome position. Log2 values ~ 0.6 indicate one extra copy of the chromosome 
area, and values ~ -1 indicate loss of one copy of the chromosome area. Smoothing 
of the mean of 15 clones is used in this plot. Detailed array CGH in supplementary 
Fig A.  
 
Figure 3. Expression of CCNDs and MAFB mRNA in primary and HMCL OH-2 
The expression patterns of OH-2 primary cells and OH-2 cell line are quite similar. 
Both have high expression of cyclin D2 and low expression of cyclins D1 and D3, but 
with a higher expression of cyclin D3 in the primary sample. INA-6 is a t(11;14) cell 
line and expresses high amounts of cyclin D1. ANBL-6 is a t(14;16) cell line and 
expresses high amounts of cyclin D2. MAFB is almost equally expressed in HMCL 
and primary OH-2 cells. The scale is in log10 and the values are relative quantitation 
based on the delta Ct method (see Methods). Cyclin D3 expression in OH-2 cell line 
was set as 1 and all values are normalized to this. Error bars show standard 
deviation of triplicates. 
 
Figure 4. MAFB and MYC is juxtaposed in a complexed translocation 
a) Normal chromosome 8 with WCP8 in green and MYC red; b) normal chromosome 
20 with WCP20 in aqua and MAFB red; c) MAFB and probes centromeric to MAFB 
localize the breakpoint on der(20); d) Ck Enh is a PCR derived probe covering the 
enhancers in IGK, co-localizes with MAFB and MYC on both junctions on der(8); e) 
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der(8)t(8;20) with MAFB red; f) der(8) is replaced by der(8)t(8;20)t(8;20) in some 
cells, with MYC and MAFB juxtaposed at both 8;20 junctions. This is also detected in 
primary OH-2 cells giving two fusion MYC/MAFB (arrows) signals together with two 
CEP8 and one normal MYC and MAFB signals; g) Most of the cells have only one 
8;20 junction. This is also detected in interphase nuclei with MYC/MAFB (arrow) 
fusion signal both in the HMCL and primary cells. 
 
Figure 5. How did the complex translocation process occur? 
There might have been an initial reciprocal translocation between chromosomes 2 
and 20, which juxtaposed MAFB and the IGK locus on der(2), but without the usual 
split between the two IGK probes. A subsequent reciprocal translocation between 
der(2) and normal chromosome 8 would have generated der(8)t(8;20) and 
der(2)t(2;8), with the IGK sequences localized on der(2), but with co-localization of 
MYC, MAFB, and IGK enhancer sequences on der(8). The der(8)t(8;20)t(8;20) must 
have been generated subsequently by a rearrangement of der(8) that included 
duplication of the 8;20 junction.  See Table 2 and text for further details. 
 
Figure 6. OH-2 responds to a wide selection of cytokines. 
Proliferation measured with methyl-[3H]-thymidine incorporation in DNA in OH-2 cell 
line. Stimulation with different cytokines shows that OH-2 is responsive to a wide 
selection of cytokines, both alone and to different cytokines together with additive or 
synergistic effects. Error bars show standard deviation of triplicates. 
 
Figure 7. Continuously growth of OH-2 HMCL 
OH-2 is a slow growing cell line that is difficult to grow without human serum and IL-
6. The chart shows a “stock experiment” in which different RPMI media, FCS and 
human serum, and different cytokines were used. 200 000 cells/ml were seeded at 
day 1. The cells were counted before media was replenished twice a week. After 24 
days the only stock that survived was the one supplemented with human serum and 
IL-6. Fourteen different conditions were examined, but only eight representative 
conditions are shown in this chart. 
 
Table 1.  Selected HH-U133-Plus-2 expression results in 47 myeloma cell lines.  
The values are normalized for 606 samples, including 559 untreated MM tumors and 
47 HMCL. The sample order is in descending order based on a MAF index (MAFI), 
with 15 HMCL and 42 of 45 MM tumors in the MF group (not shown) included among 
the 57 samples with the highest MAF index. Translocation (TLC) targets are mainly 
associated with IGH but a few involve IGL (*), IGK (§) or no detectable Ig sequences 
(#). $ All HMCL express MYC except for PE-2 and U266, which express MYCN and 
MYCL, respectively (MK, unpublished). See Materials and Methods for additional 
details. 
 
Table 2. FISH mapping of translocated chromosomes.  The positions of probes 
relative to the IGK constant region and the 5’ ends of the MYC and MAFB genes are 
indicated in kb, with negative values indicating a location 5’ of the gene.  *These 
smaller PCR (-1>+25kb) and BAC probes that were labeled with biotin and reacted 
with FITC-streptavidin uniquely detected IGK sequences at 8;20 junctions on both 
kinds of der(8). 
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Figure A. Array CGH of primary and HMCL OH-2. 
Genome-wide ratio plot of OH-2 primary cells (upper panel) and OH-2 cell line 
(bottom panel) by array CGH. 
 
Figure B. Sequencing results, primer position and sequences of the 
TP53 primers. 
There were no mutations in TP53 in the cell line. Figure B I  and B II show the 
position and sequence of the primers, respectively. OH-2 has the amino acid 
prolin in codon 72. 
 
Figure C. Sequencing of RAS in OH-2 cell line.  
OH-2 has a mutation in codon 61 in NRAS. There is no expression of HRAS, 
and KRAS2B is wild-type.  
 
Figure D.  Array comparative genomic hybridization identifies duplicated 
sequences and breakpoints in OH2 cell line. 
Copy number of OH2 genomic DNA sequences normalized to placental male 
DNA was determined by segmental analysis on Agilent custom arrays for 
chromosome 8 (A), chromosome 2 (B), and chromosome 20 (C). Affected 
translocation targets: MYC locus, 3’-enhancer of IgK, and MAFB locus are 
indicated by vertical arrows, and distances from targets to the breakpoints are 
shown above horizontal arrows.  
Abscissa: position for corresponding chromosome, bp 
Ordinate: log2 ratio of Cy5 to Cy3 signal 
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Abstract  
 
Fibroblast Growth Factor Reseptor 3 (FGFR3) is an oncogene that is dysregulated by 
the t(4;14) in multiple myeloma (MM) cells, and which is usually not expressed in MM 
cells without this translocation. By fluorescence in situ hybridization (FISH) we 
discovered an amplification of the FGFR3 locus in INA-6, an MM cell line without t(4;14). 
There was also no involvement of the other Ig loci in translocations with the FGFR3 
gene. By PCR and Western blot we demonstrated expression of FGFR3 mRNA and 
protein in the cells, probably caused by the extra copy of the gene. The FGFR3 
inhibitors SU5402 and PD173074 decreased the proliferation of INA-6, which indicates 
that FGFR3 may play a role also in cells without the t(4;14). 
 
Introduction 
     
MM is a genetically unstable malignancy of long-lived plasma cells and accounts for 
10% of all haematological malignancies. Characteristic of this neoplasm is accumulation 
of a malignant clone within the bone marrow. Multiple and complex chromosomal 
abnormalities are common in MM, and translocations involving the immunoglobulin 
heavy chain (IGH) locus on 14q32 are present in 40-60 % of patients. The five primary 
IGH translocations include 11q13, 4p16, 16q23, 6p21 and 20q12, targeting CCND1, 
FGFR3/MMSET, C-MAF, CCND3  and MAFB respectively (1). 
 
Switch translocations in MM separate the strong 3’α- and µ enhancers of IGH onto 
different derivative chromosomes. The primary t(4;14)(p16.3;q32) chromosomal 
translocation results in dysregulation of genes on both derivative chromosomes. On der4 
Multiple Myeloma SET-domain (MMSET) and on der14 fibroblast growth factor receptor 
3 (FGFR3) is the target gene involved. The translocation results in ectopic expression of 
functional (FGFR3) in 70 % of the t(4;14) patients. The IgH/MMSET fusion product is 
expressed in all t(4;14) patients (2). The MMSET isoform RE-IIBP has recently been 
shown to be a histone methyltransferase with transcriptional repression activity (3). 
MMSET has also been shown to be of importance in cellular adhesion, clonogenic 
growth and tumorigenicity (4). t(4;14) implies a poor prognosis and shorter survival after 
traditional MM treatment (5), whereas novel treatment regimens seem to be particularly 
effective in this patient group and conceal the prognostic impact of t(4;14). 
FGFR3 is one of four transmembrane tyrosine kinase receptors for the FGF family of 
ligands. Normally, FGFR3 is expressed in the kidneys and lungs and during the 
development of the nervous system and not in normal plasma cells (6). It has been 
demonstrated that FGFR3 can function as an oncogene, and contribute to tumor 
progression in MM (7, 8). It has also been shown that ectopic expression of FGFR3 
promotes cytokine independence and that inhibition of the FGFR3 promotes apoptosis 
(7, 9).  
 
It is uncommon for MM cells to express FGFR3 without a t(4;14) (10, 11). On this 
background, we here describe that the human myeloma cell line (HMCL) INA-6 has 
FGFR3 expression without the t(4;14) or any other Ig locus involvement. We also 
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demonstrate that the expression of the FGFR3 is important for survival of this particular 
cell line. 
 
Materials and Method: 
 
Cell lines 
The cell lines INA-6 (gift from Dr Gramatzki, Erlangen, Germany), OH-2 (12) and IH-1 
(13, 14) were maintained as previously reported. All three cell lines are IL-6 dependent 
(15). 
 
Fluorescence in situ Hybridization 
The probes used for fluorescence in situ hybridization (FISH) were made from Bacterial 
Artificial Chromosome clones containing the desirable regions (gift from R. Fonseca). 
For the detection of the translocations we used a fusion strategy employing two sets of 
probes, one that hybridizes to 14q32 and one that hybridizes to the desired region, 
4p16.3 or 11q13 (Table of clones in supplementary material A). The probes were 
labelled according to standard nick translation protocol (Vysis, Abbot laboratories, Des 
Plaines, IL). Centromere enumeration probe (CEP) 4 SpectrumGreen (Vysis) and Whole 
Chromosome paint (WCP) 14 in aqua (Applied Spectral Imaging (ASI), Micro System 
AB, Spånga, Sweden) were used for assessing the locus-specific probes to their 
chromosomes. Metaphase spreads were made according to standard methods (16). The 
metaphase spreads were air-dried at least over night, but not chemically treated in any 
way before hybridization. Hybridization was done after standard Vysis protocol. Cells 
were scored using a NIKON ECLIPSE 90i epifluorescense microscope with PlanApo VC 
60x/1.4 oel (Nikon Instruments Europe B.B, Badhoevedorp, The Netherlands), and 
software from Applied Imaging (CytoVision version 3.7 Build 58, San Jose, CA).  
 
Sequensing 
The four FGFR3 regions extracellular (EC) domain, transmembrane (TM) domain, 
tyrosine kinase (TK) domain and stop codon (SC) are known to be hot spots for 
activating mutations. To determine if the receptor in our cell lines was mutated, the 
receptor was amplified by reverse transcription (RT)-PCR. Total RNA was isolated using 
RNeasy Mini Kit (Qiagen, Crawley, UK) from INA-6 and IH-1 cells grown in standard 
condition. cDNA was made from RNA using SuperScript®III First Strand Synthesis 
System for RT-PCR (Invitrogen). Primer sequences were obtained from Chesi et al (7) 
(Supplementary material B). Each PCR reaction was purified with QIAquick PCR 
Purification Kit (Qiagen), and then directly sequenced using BigDye Terminator v1.1 
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA). The sequencing reaction 
was purified with DyeEx 2.0 Spin Kit (Qiagen) and analyzed on ABI3100 Genetic 
Analyzer (Applied Biosystems). 
 
Real Time RT-PCR 
RNA was isolated and cDNA made as previously described (15) from cells directly from 
stock. FGFR3 and MMSET TaqMan primers (HS00179829_m1 and HS00370212_m1 
TaqMan, Gene Expression Assays, Applied Biosystems, Foster City, CA), were used to 
detect the FGFR3 and MMSET expression. The comparative Ct-method was used for 
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quantization with GAPDH (HS99999905_m1) as housekeeping gene on the 
StepOnePlus Real-Time PCR system (Applied Biosystems).  
 
Western Blot Analysis 
Samples of IH-1, OH-2 and INA-6 were made as previously described (15). Membranes 
were blocked with non-fat dried milk (5%) in Tris-Buffered Saline supplemented with 
Tween-20 (0.05%) and incubated with antibody against FGFR3 (rabbit polyclonal IgG 
anti-FGFR3 (H-100), Santa Cruz Biotechnology, Santa Cruz, CA) overnight at 4°C. 
GAPDH was used as loading control. Antibody binding was visualized after staining with 
horseradish peroxidise-conjugated secondary antibodies (DAKO Cytomation, 
Copenhagen, Denmark) and detection of chemiluminescense (ECL, Amersham, UK) by 
photographic film (Amersham).  
 
Cell Proliferation Assay  
Two small-molecule receptor tyrosine kinase inhibitors were employed in this study, 
each of which function in a similar manner by competing with ATP for the specific 
binding site at the catalytic domain of the fibroblast growth factor receptor. SU5402 (3-
[(3-(2-carboxyethyl)-4-methylpyrrol-2-yl)methylene]-2-indolinone) (17) and PD173074 (1-
tert-Butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylaminobutylamino)-pyrido[2,3-
d]pyrimidin-7-yl]-urea) (18) were both obtained from Pfizer Global Research and 
Development. The compounds were dissolved in DMSO and stored at -80°C. Cells at a 
density of 2.0 x 104 INA-6 and IH-1, and 4.0 x 104 OH-2, were seeded in 200 µl RPMI 
supplemented with 10 % FCS with or without cytokines in 96-wells plastic culture plates 
(Corning Costar, Corning, NY, USA). Cells were starved for 4h, then SU-5402 at 
concentrations from 3,125 µM to 60 µM or PD173074 at concentrations from 6,25 nM to 
200 nM was added. After 30 min, 20 ng/ml aFGF + 100 µg/ml Heparin (compounds and 
concentrations from (18, 19)) were added. The control was only provided with 10 % FCS 
and the appropriate concentration of DMSO. Proliferation was measured as previously 
described (15). The counts per minute (cpm) obtained were normalized to the serum 
control sample and shown in figure 3.  
 
Viability test 
Flow cytometry was used to determine the percentage of viable cells with annexin V-
FITC binding and PI uptake (Apoptest-FITC kit, Nexins Research, Kattendijke, 
Netherlands). 1 x 106 cells treated as above were incubated with 0.06 µg annexin-FITC 
for 1 h and 0.5 µg PI for 5 min on ice in PBS containing 0.1 % bovine serum albumin, 
before analysis.   
 
Results and Discussion 
 
INA-6 has an abnormal pattern of 4p16 
Most reported cases of FGFR3 expression in MM are correlated to the t(4;14)POS. The 
expression is caused by the IGH enhancer or a mutated FGFR3 believed to be caused 
by somatic hypermutation (20). Here we describe a HMCL, INA-6, that has expression of 
FGFR3 without involvement of the usual t(4;14)POS. To verify the chromosomal 
abnormalities in the cell lines, metaphase FISH was used, and any IGH rearrangement 
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was detected using fusion strategy. INA-6 had an unbalanced t(11;14)POS (21) with two 
der(14) chromosomes and no der(11) (Fig. 1a). Figure 1b shows that INA-6 has triploid 
chromosome 4 with two of the chromosomes apparently normal, and one chromosome 4 
with an extra copy of locus 4p16.3, which includes both FGFR3 and MMSET on the 4p 
arm. There was no difference between the signal pattern when using the probe covering 
FGFR3 or the probe covering MMSET alone. The aberration on chromosome 4 was 
verified by array-based comparative genomic hybridization showing that the area 
spanning from 4p15.32 near the LIM domain binding 2 gene to the 4p telomere was 
amplified (data not shown). This is in concordance with the array comparative genomic 
hybridization data on INA-6 from Mayo Clinic public available at: 
http://www.broad.mit.edu/mmgp/pages/portalHome.jsf#. Because secondary 
translocations to the other Ig genes are known to dysregulate genes in MM, IGL and IGK 
were also checked with FISH on metaphase chromosomes. The light chain loci where 
shown not to be rearranged (data not shown). In figure 1c we show that IH-1 has a 
classical t(4;14)POS with FGFR3 on der(14) and MMSET on der (4) and is used as 
positive controls in the assays. OH-2 is used as a negative control because it does not 
have an IGH translocation (Våtsveen, manuscript) and does not express FGFR3. 
 
Wild type FGFR3 is expressed in both HMCLs 
To check the expression of FGFR3 in IH-1 and INA-6, Real Time RT-PCR and Western 
blots (WB) were made. Figure 2a shows Real Time data. INA-6 expressed less FGFR3 
mRNA than IH-1. OH-2 was used as a negative control that did not express FGFR3. The 
WB showed that both IH-1 and INA-6 expressed FGFR3, also here IH-1 has a higher 
expression of FGFR3 but not to the same extent as seen by the PCR. Figure 2b shows 
the WB bands of the FGFR3 in the cell lines with GAPDH used as loading control. 
Because t(4;14)POS is associated with both increased expression and activating mutation 
of the FGFR3 (22), sequencing was done, with no mutation detected in FGFR3 in either 
INA-6 or IH-1 (data not shown). 
 
Inhibition of FGFR3 leads to lower DNA synthesis and apoptosis in INA-6 and IH-1 
Inhibition of FGFR3 in MM cell lines blocks growth and is associated with apoptosis (19). 
The FGFR3 inhibitors SU5402 and PD173074 were therefore tested on INA-6, IH-1 and 
OH-2. IH-1 is used as a positive control in the experiments because of its t(4;14)POS and 
unmutated FGFR3. OH-2 is used as a negative control because it has no IGH 
translocations or FGFR3 expression (Vatsveen submitted manuscript). The proliferation 
assay measuring DNA synthesis showed decreased proliferation of unstimulated INA-6 
and IH-1 in the presence of the inhibitor SU5402 at concentrations as low as 3,25 µM 
and 15 µM, respectively (figure 3a), and with the inhibitor PD173074 at 25 nM and 50 
nM respectively (supplementary figure Ia). On the basis of the titration curve 15 µM 
SU5402 and 100 nM PD173074 was used further to show the decrease in proliferation 
with 20 ng/ml aFGF + 100 µg/ml heparin added to the cells. IH-1 was more responsive 
to the inhibitor when aFGF was added, whereas INA-6 responded in approximately the 
same way both in the presence and in the absence of aFGF (Figure 3b). PD173074 in 
concentration at 100nM gave almost identical results as with 15µM SU5402 (PD173074 
results in supplementary figure Ib). In our experiments OH-2 showed no change in 
proliferation by addition of SU5402 or PD173074, not even at concentrations 60µM 
(figure 3a) or 200nM (supplementary figure Ia) respectively, which indicates that the 
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inhibitors were not toxic at the concentrations used. We also testes effects of the 
inhibitors in a viability assay based on annexin V binding. Figure 3c shows the viability of 
aFGF-stimulated cells with and without SU5402 inhibitor. In INA-6, the percentage of 
viable cells with the inhibitor was almost zero. IH-1 had also a decline in the percentage 
viable cells, but not to the same degree as INA-6, paralleling the relative responses of 
the two cell lines in the proliferation assay (viability data for PD173074 in supplementary 
figure Ic). OH-2 had no significant change in the viability with inhibitor added. It has 
earlier been demonstrated that even at 72-hour stimulation, PD173074 is not cytotoxic to 
myeloma cells (23). We thereby assume that the decreased proliferation and apoptosis 
seen in IH-1 and INA-6 was due to specific inhibition of the FGFR3. For INA-6 the extra 
copy of FGFR3 and the abnormal position of the locus can possibly explain the FGFR3 
detected on WB and the ability the inhibitors have to lower proliferation and enhance 
apoptosis. It also shows that the expression of FGFR3 is important for the survival in 
these cell lines. 
 
Because expression of FGFR3 in t(4;14) NEG only has been reported in a few cases (10, 
11, 24), it is likely that FGFR3 expression is not very common in t(4;14)NEG patients. 
Even though FGFR3 expression is rare in t(4;14) NEG, INA-6 can be a good model to 
elucidate the role of FGFR3 in MM cells. Since it does not express MMSET at a high 
level, contrary to all the t(4;14)POS cell lines (supplementary data II), and, hence, lacks 
the IGH/MMSET fusion transcript, it might be useful as a model system for investigating 
FGFR3’s role in MM cells independently of the interaction of high levels of MMSET.  
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Figure legends  
 
Figure 1. Fluorescence in vitro hybridization on metaphase spreads is used to 
identify chromosomal abnormalities in the HMCLs.  
a) INA-6 has an unbalanced t(11;14) with two copies of der(14). IGH is labelled in green 
and 11q13 CCND1 in red. Four copies of chromosome 11 is found in the HMCL; b) 
Probes for FGFR3 and MMSET red shows a extra copy of the 4p16.3 loci on one of the 
chromosome 4 p-arm. CEP4 green confirms that the genes are present on chromosome 
4; c) IH-1 has a classical t(4;14). IGH is labelled in green FGFR3/MMSET in red. 
 
Figure 2.  Real Time RT-PCR and Western Blot confirm FGFR3 expression in INA-6 
a) Real Time RT-PCR shows FGFR3 expression in both INA-6 and IH-1 with a higher 
expression in IH-1. Delta Ct-method with GAPDH as control is used for the relative 
quantisation. Western Blot shows IH-1 and INA-6 expresses FGFR3, with OH-2 as a 
negative control with no FGFR3 expression.  
  
Figure 3.  SU5402 and PD173074 similarly decrease proliferation measured as 
DNA synthesis and viability in HMCLs expressing FGFR3 
a) HMCL OH-2, INA-6 and IH-1 were treated with the FGFR3 inhibitor SU5402 in 
increasing concentrations from 3,25µM to 60µM and plotted against relative proliferation 
where 1 was set as proliferation in untreated (10% FCS and DMSO only) cells. 
Proliferation is measured as DNA synthesis by 3H-Tymidin incorporation. The 
proliferation decreased significantly in both INA-6 and IH-1 in as low concentrations as 
15µM, whereas OH-2 was unaffected by the inhibitors even at 60µM where both IH-1 an 
INA-6 had a very low proliferation. Error bars represent standard deviation of triplicates. 
b) The HMCLs where also grown with either 20ng/ml aFGF+100µg/ml heparin or in the 
presence of only serum and DMSO. Each condition was treated with or without the 
FGFR3 inhibitor SU5402 at 15µM. In both INA-6 and IH-1 aFGF + heparin induced cell 
proliferation, and, SU5402 led to a decrease in DNA-synthesis in both unstimulated and 
aFGF + heparin stimulated cells. In IH-1 the decrease in proliferation is greater when 
treated with aFGF compared to untreated control. OH-2 do not express FGFR3, and 
inhibition of the FGFR3 has no effect in this cell line. Error bars represent standard 
deviation of triplicated data. (Counts per minute were normalized to 1 to the HMCLs 
sample with serum, for simplification) 
c) OH-2, INA-6 and IH-1 with the same conditions as in b) were labelled with PI and 
annexin to measure the viable cells with flow cytometry. 15µM SU5402 with 20ng/ml 
aFGF+100µg/ml heparin is shown as an example. The inhibitors drastically decreased 
the viability in INA-6. In IH-1 the overall viability are a bit higher than in INA-6, but is also 
decreased with the inhibitors. OH-2 has as expected no significantly difference in 
viability with or without the inhibitors. The low % of viable cells in untreated sample OH-2 
and INA-6 is what we always experience when the cells are grown for more than over 
night without IL-6. Error bars represent standard deviation of duplicated flow data. All 
data shown in figure 3 are representative for at least two separate experiments. The 
results with FGFR3 inhibitor PD173074 is shown in supplementary figure I.  
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Supplementary figure legends 
 
Supplementary Table A: 
FISH probes are made from isolated Bacterial Artificial Clones covering the desired 
regions listed below. 
 
Supplementary Table B: 
Primers for sequencing the FGFR3 receptor are listed below. 
 
Supplementary figures: 
Figure Ia: HMCL OH-2, INA-6 and IH-1 were treated with the FGFR3 inhibitor 
PD173074 in increasing concentrations from 6,25 nM to 200nM and plotted against 
relative proliferation where 1 was set as proliferation in untreated (10% FCS and DMSO 
only) cells. Proliferation is measured as DNA synthesis by 3H-Tymidin incorporation. The 
proliferation decreased significantly in both INA-6 and IH-1 in as low concentrations as 
25nM and 50nM respectively, whereas OH-2 was unaffected by the inhibitors even at 
200nM where both IH-1 an INA-6 had low proliferation. Hence the concentration used in 
later experiments is not toxic to the cells. Error bars represent standard deviation of 
triplicates. 
Figure Ib: 
The HMCLs where also grown with either 20ng/ml aFGF+100µg/ml heparin or only 
serum and DMSO. Each condition was treated with or without the FGFR3 inhibitor 
PD173074 at 100nM. In both INA-6 and IH-1 aFGF + heparin induced cell proliferation, 
and the inhibitor it led to a decrease in DNA-synthesis in unstimulated and aFGF+ 
heparin stimulated cells. In IH-1 the decrease in proliferation is greater when treated with 
aFGF compared to untreated control. OH-2 do not express FGFR3, and inhibition of the 
FGFR3 had no effect in this cell line. Error bars represent standard deviation of 
triplicated data. (Counts per minute were normalized to 1 to the HMCLs sample with 
serum, for simplification) 
Figure Ic: 
OH-2, INA-6 and IH-1 with the same conditions as in figure II were labelled with PI and 
annexin to measure the viable cells with flow cytometry. The PD173074 drastically 
decreased the viability in INA-6 and IH-1. OH-2 has as expected no significantly 
difference in viability with or without the inhibitors. Error bars represent standard 
deviation of duplicated flow data. All data shown in figure 3 are representative for at 
least two separate experiments. 
 
Figure II 
Relative Quantitative Real Time PCR. TaqMan probes for MMSET (Hs00370212_m1, 
TaqMan) was used or detecting relative MMSET expression in OH-2, INA-6 and IH-1 
cells directly from stock. The comparative Ct-method was used for quantization with 
GAPDH (HS99999905_m1, TaqMan) as housekeeping gene. INA-6 had approximately 
double expression of MMSET compared to OH-2 which could be explained with the fact 
that INA-6 has four copies of the gene whereas OH-2 has two copies. IH-1 which has a 
IGH/MMSET fusion transcript (not shown) has more than four times as much MMSET as 
INA-6, and is regulated by the IGH enhancers. 
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Supplementary Table A: Probes for FISH 
Gene Locus Probe name/BAC-

clone 
IgH 14q32.33 CH 

  Ig6 

  U2-2 
  364 
  VH 

IgKc 
IgK v 

2p11.2 
RP11-15J7 

RP11-433C18  

IgLc 22q11.22 CTD-2194H2  

IgLv  RP11-22M5 
RB-1 13q14 RP11-305D15 
 
 

 
 

RP11-174I10 
 

TP53 17p13 RP11-89D17 
Myeov 11q13 1144 

  505 
Cyclin D1  365 
  J 
  C 
  E 
  B 

 
MMSET 4p16.3 184D6 
FGFR3 4p16.3 293022 

 
Supplementary Table B: Primer sequences for FGFR3 
FGFR3 region Base pair Primer  Sequence 5’-3’direction 
EC 117 F:o5666 

R:o5706
CGG CAG ACG TAC ACG CTG  
CTT GCA GTG GAA CTC CAC GTC 

TM 442 
 

F:o5580 
R:o202 

GCG CTA ACA CCA CCG ACA AG 
CTC CCC TGA GGA CAG CCT TGC GAT 

TK 120 F:o5724 
R:o5703

ATG AAG ATC GCA GAC TTC GGG 
GTA GAC TCG GTC AAA CAA GGC 

SC 313 F:o66 
R:o5725

CTC CCA GAG GCC AAC CTT CAA GCA G 
ATC TGC ACT GAG TCT CAT GCC 

F: forward primer, R: reverse primer 
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Abstract 
 
Multiple myeloma (MM) is a genetically unstable malignancy of long-lived 
plasma cells (PC), and complex chromosomal abnormalities such as 
translocations involving the immunoglobulin heavy chain (IGH) are common. 
The easiest way to detect genetic aberrations in MM patients is by interphase 
fluorescence in situ hybridization (FISH).  
In this study we wanted to use interphase FISH to find the prevalence of the 
most common primary translocations and deletions in chromosome 13 and 17 
in Norwegian MM patients. This study includes 139 bone marrow samples 
from newly diagnosed MM patients. The incidence was: 57 (41%) patients 
had an IGH translocation, 42 (30%) patients had del13 out of which 20 had 
del13 as only known aberration, 24 (17%) patients had del17 and 54 (38%) 
patients had none of the aberrations we looked for. Of the IGH translocations 
23 (16%) patients had t(11;14), 17 (12%) patients had t(4;14), 2 (1.5%) 
patients had t(6;14) and 1 (1%) patients had t(14;16). 14 (10%) patients had 
an unknown IGH translocation. Clinical information was collected in a subset 
of 65 patients. There was no significant correlation between clinical findings 
and genetics in these 65 patients.  
 
Introduction 
 
Multiple myeloma (MM) is a genetically unstable malignancy of long-lived 
plasma cells (PC) in the bone marrow (BM) and accounts for 10% of all 
haematological malignancies. Multiple and complex chromosomal 
abnormalities are common in MM, and translocations often involve the 
immunoglobulin heavy chain (IGH). Primary translocations involving an IGH 
locus are reported to be present in nearly 50% of pre-malignant monoclonal 
gammopathy of undetermined significance (MGUS), approximately 60% of 
fully malignant MM tumors, and nearly 90% of human multiple myeloma cell 
lines. In primary translocations one or all of the strong IGH enhancers are 
juxtaposed to an oncogene/proto-oncogene. The switch translocations in MM 
cells separate the strong 3`α- and µ-enhancers of the IGH onto different 
derivative chromosomes. The enhancers can thereby turn on the transcription 
of the juxtaposed genes. The reciprocal partners to IGH are: 4p16, 
MMSET/FGFR3; 11q13, Cyclin D1; 12p13, Cyclin D2; 6p21, Cyclin D3; 
16q23, MAF; 20q12, MAFB and 8q24.3, MAFA1-4.  
 
The t(4;14)(p16.3;q32) and t(11;14)(q13;q32) are the most common 
translocations and are present in 15% of newly diagnosed patients. The t(4;14 
has not been described in other malignancies5. This translocation was also 
the first example to show that IGH could dysregulate two genes at two 
derivative chromosomes, namely fibroblast growth factor receptor 3 (FGFR3) 
and multiple myeloma SET domain (MMSET)6. The translocation results in 
ectopic expression of functional FGFR3 in 70 % of the t(4;14) patients, but is 
associated with poor prognosis irrespective of FGFR3 expression7,8. However, 
the chimeric IGH/MMSET gene fusion product is expressed in all t(4;14) 
patients8,9. t(4;14) patients with low β2-microglobulin (B2M) level have shown 
longer survival compared to those with high levels. Genetic studies also imply 
that ~80-85% of t(4;14) patients have a deletion (del)13. These two 
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abnormalities together show a worse prognosis than t(4;14) alone10. It has, 
however, been reported that it is the t(4;14) and not the del13 that is the 
important adverse prognosis factor at least in relation to autologous stem cell 
transplantation11. The t(11;14)(q13;q32) involves cyclin D1 at 11q13 encoding 
the cyclin D1 protein is over-expressed as a consequence of this 
translocation12. Early studies reported the t(11;14) patients to have longer 
survival13. Later and larger studies did not confirm this better survival10,14. The 
t(6;14)(p21;q32) dysregulates cyclin D3 and is present in ~5% of myeloma. 
The t(14;16)(q32;q23) dysregulates MAF and is present in ~5% of MM 
patients15. This translocation is also unique for MM patients and has an 
unfavourable prognosis5. The t(14;20)(q32;q11) dysregulates MAFB, and is 
present in less than 1% of MM patients16.  
 
Del13 was one of the first genetic markers to be demonstrated to predict a 
negative outcome17-19, and is found in about half of MM karyotypes20. In the 
recent Intergroup Francophone du Myelome (IFM) study, del13 identified with 
interphase fluorescence in situ hybridization (FISH) was not an independent 
prognostic factor, but was associated with poor prognosis related to the 
concomitant t(4;14) or del17p. Del13 may be considered a pseudomarker or a 
marker frequently associated with other more specific poor prognostic factors 
10. In MM it has more recently been found a deletion in chromosome 17p in 
10% of newly diagnosed patients. TP53 is located on 17p13 and down-
regulation of the gene expression was correlated to the 17p13 deletion, which 
therefore makes TP53 likely to be the most important gene in the deleted 
locus. Del17 is associated with poor outcome10.  
 
Secondary translocations occur during late stage of MM progression and do 
not involve B-cell-specific DNA modification mechanisms. Secondary 
translocations also include the IGL gene (10%) and IGK (<1%)21. The 
secondary translocations are rarely reciprocal, and can also be complicated 
insertions of the genes. Almost 20% of MM patients with IGH translocation 
involved a non-recurrent translocation partner5,22. 
 
According to previous studies using interphase fluorescence in situ 
hybridization (FISH), translocations and deletions have been associated with 
unique biological, clinical, and prognostic features4,5. We aimed to investigate 
the prevalence of the following genetic aberrations at the time of diagnosis in 
Norwegian MM patients; IGH translocations, t(4;14), t(11;14), t(6;14), t(14;16), 
del13 and del17. Furthermore, we wanted to investigate a possible correlation 
between these genetic aberrations and clinical stage, β2-microglobulin (B2M), 
type of immunoglobulin and bone disease in patients at time point of 
diagnosis. A further motivation for the study is the emerging differentiated 
treatment according to cytogenetic aberration. 
 
Material and methods 
 
Patient samples 
From January 2006 to December 2008, 161 BM aspirates were investigated 
by interphase FISH. The patient material represents approximately 1/5 of the 
patients diagnosed with MM in Norway during the same period. After 
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exclusions as shown in figure 1, we report results from 139 newly diagnosed 
patients. The female to male ratio in the MM patient group was 1:1.8 and the 
median age at sampling was 68 (range 29-90 years) years. 80% of the 
samples were shipped with over night post from hospitals outside Trondheim. 
Clinical information about the myeloma patients was obtained from the 
patients records. Clinical information was available for 65 patients. Registered 
information was: stage according to Durie Salmon (DS) and International 
Scoring System (ISS), type and concentrations of serum and urine M-protein, 
PC percentage in bone marrow aspirate, serum β2-Microglobulin and bone 
lesions. Bone lesions were scored semi-quantitatively from x-ray findings, and 
assigned into three groups: 0 = no bone lesions, 1 = ≤ 5 bone lesions, and 2 = 
more than 5 bone lesions. The median age of these 65 MM patients at 
sampling was 65 (range 37-90 years) years and female to male ratio 1:1.8. 
The distribution of serum Ig-class was IgG type in 24 patients (40%), IgA in 17 
patients (26%), other Ig isotypes in 1 (2%) patients, only light chain secretion 
in 14 (22%) patients, and non-secretary myeloma in 1 (2%) patients. For 8 
(12%) patients no information was available. 20 (31%) patients were in stage 
1 according to the ISS, 17 (26%) patients in stage 2 and 14 (22%) in stage 3.  
For 13 (20%) patients no information was available.   
   
2-3 ml of bone marrow was aspirated from the crista iliaca into a EDTA-tube 
(Vacuette, Greiner Bio-One GmbH, Austria). The bone marrow aspirate of in-
house samples and shipped samples were received at the Laboratory of 
Hematology St. Olav’s University Hospital. Mononuclear cells (MNC) were 
enriched using Cell Preparation Tubes with citrate (CPT tubes, BD 
Vacutainer, Franklin Lakes, USA). Three methods for PC evaluation were 
used, BM smears, cytospins of MNCs or CD138 separated cells. Before 
March 2008, FISH was performed with cytoplasmatic-immunoglobulin-(cIg)-
FISH on cytospins from MNC or on BM smears. cIg-FISH uses a AMCA- (7-
amino-4-methylcoumarin-3-acetic acid) conjugated goat anti-human Igλ and 
Igκ (Vector laboratories, Brulingame, CA) which bind the light chains in the 
cytoplasm of the PC allowing specific detection of the PC in the samples. 
After March 2008 the PC were separated from MNC by immunomagnetic cell 
selection with CD138 monoclonal antibodies using the RoboSep (StemCell 
Technologies, Vancouver, BC, Canada) cell separation device. Cytospin with 
~10-30 000 of the CD138 positive selected MM and with 50 000 of MNC were 
used. One slide was always stained with May Grünwald-Giemsa to verify the 
PC % and the purity of the cells. With CD138 separation, cells from freshly 
drawn samples with more than 10 mill MNC were usually >98% pure and 
samples sent to us by over night post >95% pure. Samples shipped over night 
with fewer than 10 mill MNC might be down to 90% pure, but this is still good 
enough to use for FISH analysis. All samples were fixed in 100% EtOH for 5 
min, room temperature, before storing in -20°C until FISH was performed.  
 
FISH probes 
The probes used for the primary IGH translocations were made from Bacterial 
Artificial Chromosome (BAC) clones containing the desirable region (gift from 
R. Fonseca). BACs for probes covering CCND3, MYC, TP53 and RB1 were 
purchased from BACPAC resources (BACPAC resources, Children’s Hospital 
Oakland, CA). All clones are listed in supplementary table A. The probes were 
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labeled with SpectrumGreen or SpectrumOrange dUTPs (Vysis, Abbot 
Laboratories, Des Plaines, IL) according to standard nick translation protocol 
(Vysis). Before the start of the study the probes were hybridized to normal 
cells for control. All probes had an hybridization efficiency higher than 95%. 
For some samples commercial IGH brake apart probe, t(4;14), t(11;14), LSI 
RB-1 and LSI TP53 were used (Vysis). The strategy for identifying the IGH 
translocations is by IGHc/IGHv break apart probe before looking for the 
specific IGH translocation using dual fusion strategy. 
 
FISH procedure 
The cells were fixed in methanol/acetic acid (1:3 vol/vol) (-20°C, 40 min) and 
air dried. Probe mix (100 ng labelled DNA probe in 3 µl H2O + 7µl LSI 
hybridization Buffer (Vysis)). 2,5 µl probe mix was used for cytospin samples 
and 10 µl for BM smears. The probe mix was sealed with cover glass and 
rubber sement. Hybridization was done in a Dako hybridizer (Dako 
Cytomation, Glostrup, Denmark). Program: Denaturation (10 min, 75°C) 
Hybridization (10-18 h, 37°C). Posthybridization wash was performed in 0.4 x 
SSC/0.3% NP-40 (pH 7.0-7.5, 72°C, 2 min), then 2xSSC/0.1% NP-40 (pH 7.0-
7.5, RT, 6-60 s). For cIgFISH, the slides were directly put in 1x phosphate 
buffer saline (PBS) for 5 min then incubated with goat serum (15% in 1xPBS) 
(Invitrogen, Carlsbad, CA) for 5 min. The serum was poured off and incubated 
with AMCA conjugated goat-IgG anti-human Igλ/Igκ (1:200 in 3% BSA in 1x 
PBS) (Vector laboratories) for 10 min. The signal was amplified with a second 
AMCA labeled anti-goat IgG antibody (Vector laboratories). Slides were 
washed for 2x 10 min in 1x PBS, then air-dried and anti-fade added 
(Vectashield hard-set mounting medium without DAPI, (Vector Laboratories). 
All steps in the immunostaining were done at RT. For CD138 separated cells 
slides were air dried after the posthybridization wash and anti-fade with DAPI 
applied (Vectashield hard-set mounting medium with DAPI, (Vector 
Laboratories)). FISH was scored using NIKON ECLIPSE 90i epifluorescence 
microscope with PlanApo VC 100x/1.4oel (Nikon Instruments Europe B.V, 
Badhoevedorp, The Netherlands), and software from Applied Imaging 
(CytoVision, version 3.7 Build 58, 2005, San Jose, CA). 
 
Scoring of FISH  
All slides were scored by the same person. For every probe set 100 
interphase nuclei were scored. Cut-off levels were used according to the 
European Myeloma Network23: deletions ≥ 20% of evaluated cells; split 
signals and translocations ≥10% of evaluated cells. Slides with <95% 
hybridization efficacy in non-PC cells were not used. For cIgFISH all 
evaluated cells must have positive immunostaining and the typical 
morphology of the PC seen by May Grünwald-Giemsa staining. The 
percentage PC in the samples were determined by May Grünwald-Giemsa 
staining. For samples where less than 25 nuclei were possible to score, the 
specimens were considered non-informative. If only 25-50 cells were possible 
to score more than 50% of the cells must have a given aberration, to be 
considered positive for the genetic aberration. If more than 90% of the 25-50 
cells had normal signal pattern the samples were considered normal, if less 
than 50% of the cells had a given abnormality or less than 90% were normal 
the specimen were considered non-informative. For cells with informative 
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interphase nuclei between 50 and 100 cells normal cut-off levels were used. 
For non-informative samples a new sample, if available, was used to redo the 
experiment, and if e.g. cytospin of MNC gave non-informative result a BM 
smear could be used. After the introduction of CD138 selection of cells, the 
procedure was considerably improved, and all samples gave informative 
result.  
 
Statistics 
SPSS Statistical Software version 14.0 was used for statistic calculations 
(SPSS Inc., Chicago, IL). Pearsons’ χ2 or Fisher’s exact tests were used for 
between-group comparison of discrete variables, and Mann Whitney U test 
was used for continuous variables. The level of statistical significance was set 
at p < 0.05. P-values were 2-tailed. 
 
Ethics 
The work presented is a part of the Norwegian national biobank for multiple 
myeloma (4.2005.1438), and this particular study was approved by the 
Regional Ethic Committee (4.2007.933). All patients sign an informed consent 
form according to the Declaration of Helsinki. 
 
Results 
 
Genetic aberrations and clinical disease parameters 
Of the 147 samples from patients with reported MM, 139 were analyzed after 
excluding MGUS, non-MM samples and not newly diagnosed patients. The 
most common aberration found was as expected IGH translocations and 
del13. 57 (41%) patients had an IGH translocation, 42 (30%) patients had 
del13 out of which 20 had del13 as the only detected aberration, 24 (17%) 
patients had del17 and 54 (38%) patients had none of the aberrations we 
looked for. Of the IGH translocations 23 (16%) patients had t(11;14), 17 (12%) 
patients had t(4;14), 2 (1%) patients had t(6;14) and 1 (1%) patients had 
t(14;16). 16 (11%) patients had an IGH translocation with an unknown 
partner. Half of the patient samples with unknown translocation testing was 
only done for t(4;14) and t(11;14), because of lack of material. The prevalence 
of the abnormalities was the same in all age categories of the patients. There 
was significant correlation between del13 and del17. Del13 was seen in 12 
(50%) of the 24 patients with del17, and in 30 (26%) of the 115 patients 
without del17, odds ratio 2.83, 95% confidence interval (1.15, 6.98), p = 0.02. 
There was no significant correlation between del13 or del17 and the IGH 
translocations. Only 41 % of the t(4;14) patients had del13 simultaneously. 
The various combinations of aberrations are summarized in a Venn diagram 
in figure 2.   
 
For 48 patients, B2M levels were known. There was no significant correlation 
between B2M levels and the IGH translocations del13 or del17. However, 
when patients with any of these genetic aberrations were analyzed together 
as a group, the B2M levels were significantly higher than in patients with no 
detected aberration, with median B2M 4.3 mg/L (range 1.6-50.9) and 2.8 mg/L 
(range 1.0-11.2), respectively, p = 0.02. 
 



 7

There was no significant correlation between genetic aberrations and bone 
disease, ISS or DS stage, type of immunoglobulin or light chain at diagnosis.  
  
 
Discussion 
 
MM cells are characterized by genetic instability and chromosomal 
abnormalities24. In this FISH study we found that IGH translocations were the 
most frequent chromosomal abnormality. We found it at lower frequency than 
in many other studies, which reports ~60% in MM25,26, however, two studies 
from the UK find IGH translocations in 44-45% of their patients27,28. Table 1 
gives an overview of genetic aberrations reported from different countries. 
The studies indicate that the prevalence of IGH translocations in MM is lower 
in the Northwestern part of Europe although a random variation of the studies 
cannot be ruled out. The specific translocations t(11;14) and t(4;14) are 
present in approximately the same frequency as in other studies29. Is might be 
reasonable to speculate if the “correct” number primary translocations, and 
lower overall IGH translocations are due to the fact that all patients are newly 
diagnosed in the present study? If the patients included are diagnosed at an 
earlier stage of the disease than in other countries, the secondary IGH 
translocation might not yet have arisen or they are present below the cut-off 
level. Others have shown that aberrations increase during the progression of 
the disease30. For the t(14;16) and t(6;14) the results are lower than others 
have published29. The explanation for this is most likely that for eight of the 16 
t(?;14) patients there was not enough material left or the quality of the 
material left was poor. Hence, the test for t(6;14) and t(14;16) was not done 
on these patient samples. The del13 was present in the same frequency as in 
a Danish study30, but at lower level than in other studies19. For del17 the 
frequency was almost as others have found31.  
 
There was a significant correlation between del13 and del17. This is an 
interesting and novel finding. There was, however, no significant correlation 
between neither del13 nor del17 and the primary IGH translocations, which 
was quite surprising, given that others have published that 80-85% of t(4;14) 
patients have a del1320,32. Also there was no correlation between del13 and 
IGH translocations as a group, whereas others have found that they are 
correlated20,33.  
 
The level of B2M has in many studies been demonstrated to correlate with 
prognosis34, and it is also a factor in the ISS staging. There was no significant 
difference in B2M between the specific genetic groups. However, we found a 
higher level of B2M in the patients with genetic aberrations analyzed as a 
group.  
 
There was no significant correlation between genetic aberrations and bone 
disease, stage according to ISS or DS, type of immunoglobulin or light chain 
at diagnosis. A correlation between genetic aberrations and stage and 
prognosis has been shown by others31. They did, however, not use samples 
from newly diagnosed patients which could explain the difference between our 
findings. There was also no significant correlation with the genetic aberrations 
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and type of immunoglobulin or type of light chain, even though a correlation 
has been shown by others13. 
 
The detection of genetic abnormalities can be important to predict prognosis 
in patients and to predict responses to treatment. Recently bortezomib was 
shown to be beneficial for t(4;14) patients35 and it also seemed to overcome 
some of the poor prognosis in del13 patients36,37. In the University of 
Arkansas for Medical Science total therapy study II patients with non 
favourable cytogenetics/gene expression profile (GEP) group benefited the 
most from thalidomide, and they had a significantly better overall and event 
free survival compared to the same non-favourable cytogenetics/GEP control 
group. Conversely, it was noted that patients without cytogenetic 
aberrations/favourable GEP did not have the same benefit from thalidomide 
treatment38.  
 
The establishment of the method and estimate of the prevalence of genetic 
aberrations in MM patients in Norway may have significant implications for 
future treatment strategy 
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Figure 1. Flow chart of the included patients samples of the study 
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Figure 2. Venn diagram of the most common aberrations found in the 
study of MM patients in Norway. 
The most common aberration is the IGH translocation (57 of 139 patients). 54 
patients with IGH translocation are shown, 2 patients with t(6;14) and 1 
patient with t(14;16) are not drawn in the diagram. 42 patients had a del13, in 
which 20 the del13 was the only known aberration. For del17 2/3 of the 
patients had the del17 together with another known aberration. 23 patients 
had a t(11;14), in which 2/3 had no other known aberration.  For t(4;14) only 
half of the patients had no other known aberration. The only aberrations that 
are significantly correlated are del13 and del17. 
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Supplementary Table A: Probes for FISH 

Gene Locus 
Probe 

name/BAC-
clone 

IgH 14q32.33 CH 
  Ig6 
  U2-2 
  364 
  VH 
IgKc 
IgK v 2p11.2 RP11-15J7 

RP11-433C18  

IgLc 22q11.22 CTD-2194H2  
IgLv  RP11-22M5 
RB-1 13q14 RP11-305D15 
 
 

 
 

RP11-174I10 
 

TP53 17p13 RP11-89D17 
Myeov 11q13 1144 
  505 
Cyclin D1  365 
  J 
  C 
  E 
  B 

 
MMSET 4p16.3 184D6 
FGFR3 4p16.3 293022 
MAF 
 

16q23 
 

10205 
10206 

 
Cyclin D3 

 
6p21 
 

RP11-720D9 
RP11-298J23 

 







 
Dissertations at the Faculty of Medicine, NTNU 
 
1977 

1. Knut Joachim Berg: EFFECT OF ACETYLSALICYLIC ACID ON RENAL FUNCTION 
2. Karl Erik Viken and Arne Ødegaard: STUDIES ON HUMAN MONOCYTES CULTURED IN  

VITRO 
1978 

3. Karel Bjørn Cyvin: CONGENITAL DISLOCATION OF THE HIP JOINT. 
4. Alf O. Brubakk: METHODS FOR STUDYING FLOW DYNAMICS IN THE LEFT 

VENTRICLE  AND THE AORTA IN MAN. 
1979 

5. Geirmund Unsgaard: CYTOSTATIC AND IMMUNOREGULATORY ABILITIES OF 
HUMAN    BLOOD MONOCYTES CULTURED IN VITRO 

1980 
6. Størker Jørstad: URAEMIC TOXINS 
7. Arne Olav Jenssen: SOME RHEOLOGICAL, CHEMICAL AND STRUCTURAL 

PROPERTIES    OF MUCOID SPUTUM FROM PATIENTS WITH CHRONIC 
OBSTRUCTIVE BRONCHITIS 

1981 
8. Jens Hammerstrøm: CYTOSTATIC AND CYTOLYTIC ACTIVITY OF HUMAN 

MONOCYTES AND EFFUSION MACROPHAGES AGAINST TUMOR CELLS IN VITRO 
1983 

9. Tore Syversen: EFFECTS OF METHYLMERCURY ON RAT BRAIN PROTEIN. 
10. Torbjørn Iversen: SQUAMOUS CELL CARCINOMA OF THE VULVA. 

1984 
11. Tor-Erik Widerøe: ASPECTS OF CONTINUOUS AMBULATORY PERITONEAL 

DIALYSIS. 
12. Anton Hole: ALTERATIONS OF MONOCYTE AND LYMPHOCYTE FUNCTIONS IN 

REALTION TO SURGERY UNDER EPIDURAL OR GENERAL ANAESTHESIA. 
13. Terje Terjesen: FRACTURE HEALING AND STRESS-PROTECTION AFTER METAL 

PLATE FIXATION AND EXTERNAL FIXATION. 
14. Carsten Saunte: CLUSTER HEADACHE SYNDROME. 
15. Inggard Lereim: TRAFFIC ACCIDENTS AND THEIR CONSEQUENCES. 
16. Bjørn Magne Eggen: STUDIES IN CYTOTOXICITY IN HUMAN ADHERENT 

MONONUCLEAR BLOOD CELLS. 
17. Trond Haug: FACTORS REGULATING BEHAVIORAL EFFECTS OG DRUGS. 

1985 
18. Sven Erik Gisvold: RESUSCITATION AFTER COMPLETE GLOBAL BRAIN ISCHEMIA. 
19. Terje Espevik: THE CYTOSKELETON OF HUMAN MONOCYTES. 
20. Lars Bevanger: STUDIES OF THE Ibc (c) PROTEIN ANTIGENS OF GROUP B 

STREPTOCOCCI. 
21. Ole-Jan Iversen: RETROVIRUS-LIKE PARTICLES IN THE PATHOGENESIS OF 

PSORIASIS. 
22. Lasse Eriksen: EVALUATION AND TREATMENT OF ALCOHOL DEPENDENT 

BEHAVIOUR. 
23. Per I. Lundmo: ANDROGEN METABOLISM IN THE PROSTATE. 

1986 
24. Dagfinn Berntzen: ANALYSIS AND MANAGEMENT OF EXPERIMENTAL AND 

CLINICAL PAIN. 
25. Odd Arnold Kildahl-Andersen: PRODUCTION AND CHARACTERIZATION OF 

MONOCYTE-DERIVED CYTOTOXIN AND ITS ROLE IN MONOCYTE-MEDIATED 
CYTOTOXICITY. 

26. Ola Dale: VOLATILE ANAESTHETICS. 
1987 

27. Per Martin Kleveland: STUDIES ON GASTRIN. 
28. Audun N. Øksendal: THE CALCIUM PARADOX AND THE HEART. 
29. Vilhjalmur R. Finsen: HIP FRACTURES 

1988 



30. Rigmor Austgulen: TUMOR NECROSIS FACTOR: A MONOCYTE-DERIVED 
REGULATOR OF CELLULAR GROWTH. 

31. Tom-Harald Edna: HEAD INJURIES ADMITTED TO HOSPITAL. 
32. Joseph D. Borsi: NEW ASPECTS OF THE CLINICAL PHARMACOKINETICS OF 

METHOTREXATE. 
33. Olav F. M. Sellevold: GLUCOCORTICOIDS IN MYOCARDIAL PROTECTION. 
34. Terje Skjærpe: NONINVASIVE QUANTITATION OF GLOBAL PARAMETERS ON LEFT 

VENTRICULAR FUNCTION: THE SYSTOLIC PULMONARY ARTERY PRESSURE AND 
CARDIAC OUTPUT. 

35. Eyvind Rødahl: STUDIES OF IMMUNE COMPLEXES AND RETROVIRUS-LIKE 
ANTIGENS IN PATIENTS WITH ANKYLOSING SPONDYLITIS. 

36. Ketil Thorstensen: STUDIES ON THE MECHANISMS OF CELLULAR UPTAKE OF IRON 
FROM TRANSFERRIN. 

37. Anna Midelfart: STUDIES OF THE MECHANISMS OF ION AND FLUID TRANSPORT IN 
THE BOVINE CORNEA. 

38. Eirik Helseth: GROWTH AND PLASMINOGEN ACTIVATOR ACTIVITY OF HUMAN 
GLIOMAS AND BRAIN METASTASES - WITH SPECIAL REFERENCE TO 
TRANSFORMING GROWTH FACTOR BETA AND THE EPIDERMAL GROWTH 
FACTOR RECEPTOR. 

39. Petter C. Borchgrevink: MAGNESIUM AND THE ISCHEMIC HEART. 
40. Kjell-Arne Rein: THE EFFECT OF EXTRACORPOREAL CIRCULATION ON 

SUBCUTANEOUS TRANSCAPILLARY FLUID BALANCE. 
41. Arne Kristian Sandvik: RAT GASTRIC HISTAMINE. 
42. Carl Bredo Dahl: ANIMAL MODELS IN PSYCHIATRY. 

1989 
43. Torbjørn A. Fredriksen: CERVICOGENIC HEADACHE. 
44. Rolf A. Walstad: CEFTAZIDIME. 
45. Rolf Salvesen: THE PUPIL IN CLUSTER HEADACHE. 
46. Nils Petter Jørgensen: DRUG EXPOSURE IN EARLY PREGNANCY. 
47. Johan C. Ræder: PREMEDICATION AND GENERAL ANAESTHESIA IN OUTPATIENT 

GYNECOLOGICAL SURGERY. 
48. M. R. Shalaby: IMMUNOREGULATORY PROPERTIES OF TNF-α AND THE RELATED 

CYTOKINES. 
49. Anders Waage: THE COMPLEX PATTERN OF CYTOKINES IN SEPTIC SHOCK. 
50. Bjarne Christian Eriksen: ELECTROSTIMULATION OF THE PELVIC FLOOR IN FEMALE 

URINARY INCONTINENCE. 
51. Tore B. Halvorsen: PROGNOSTIC FACTORS IN COLORECTAL CANCER. 

1990 
52. Asbjørn Nordby: CELLULAR TOXICITY OF ROENTGEN CONTRAST MEDIA. 
53. Kåre E. Tvedt: X-RAY MICROANALYSIS OF BIOLOGICAL MATERIAL. 
54. Tore C. Stiles: COGNITIVE VULNERABILITY FACTORS IN THE DEVELOPMENT AND 

MAINTENANCE OF DEPRESSION. 
55. Eva Hofsli: TUMOR NECROSIS FACTOR AND MULTIDRUG RESISTANCE. 
56. Helge S. Haarstad: TROPHIC EFFECTS OF CHOLECYSTOKININ AND SECRETIN ON 

THE RAT PANCREAS. 
57. Lars Engebretsen: TREATMENT OF ACUTE ANTERIOR CRUCIATE LIGAMENT 

INJURIES. 
58. Tarjei Rygnestad: DELIBERATE SELF-POISONING IN TRONDHEIM. 
59. Arne Z. Henriksen: STUDIES ON CONSERVED ANTIGENIC DOMAINS ON MAJOR 

OUTER MEMBRANE PROTEINS FROM ENTEROBACTERIA. 
60. Steinar Westin: UNEMPLOYMENT AND HEALTH: Medical and social consequences of a 

factory closure in a ten-year controlled follow-up study. 
61. Ylva Sahlin: INJURY REGISTRATION, a tool for accident preventive work. 
62. Helge Bjørnstad Pettersen: BIOSYNTHESIS OF COMPLEMENT BY HUMAN ALVEOLAR 

MACROPHAGES WITH SPECIAL REFERENCE TO SARCOIDOSIS. 
63. Berit Schei: TRAPPED IN PAINFUL LOVE. 
64. Lars J. Vatten: PROSPECTIVE STUDIES OF THE RISK OF BREAST CANCER IN A 

COHORT OF NORWEGIAN WOMAN. 
1991 



65. Kåre Bergh: APPLICATIONS OF ANTI-C5a SPECIFIC MONOCLONAL ANTIBODIES FOR 
THE ASSESSMENT OF COMPLEMENT ACTIVATION. 

66. Svein Svenningsen: THE CLINICAL SIGNIFICANCE OF INCREASED FEMORAL 
ANTEVERSION. 

67. Olbjørn Klepp: NONSEMINOMATOUS GERM CELL TESTIS CANCER: THERAPEUTIC 
OUTCOME AND PROGNOSTIC FACTORS. 

68. Trond Sand: THE EFFECTS OF CLICK POLARITY ON BRAINSTEM AUDITORY 
EVOKED POTENTIALS AMPLITUDE, DISPERSION, AND LATENCY VARIABLES. 

69. Kjetil B. Åsbakk: STUDIES OF A PROTEIN FROM PSORIATIC SCALE, PSO P27, WITH 
RESPECT TO ITS POTENTIAL ROLE IN IMMUNE REACTIONS IN PSORIASIS. 

70. Arnulf Hestnes: STUDIES ON DOWN´S SYNDROME. 
71. Randi Nygaard: LONG-TERM SURVIVAL IN CHILDHOOD LEUKEMIA. 
72. Bjørn Hagen: THIO-TEPA. 
73. Svein Anda: EVALUATION OF THE HIP JOINT BY COMPUTED TOMOGRAMPHY AND 

ULTRASONOGRAPHY. 
1992 

74. Martin Svartberg: AN INVESTIGATION OF PROCESS AND OUTCOME OF SHORT-TERM 
PSYCHODYNAMIC PSYCHOTHERAPY. 

75. Stig Arild Slørdahl: AORTIC REGURGITATION. 
76. Harold C Sexton: STUDIES RELATING TO THE TREATMENT OF SYMPTOMATIC NON-

PSYCHOTIC PATIENTS. 
77. Maurice B. Vincent: VASOACTIVE PEPTIDES IN THE OCULAR/FOREHEAD AREA. 
78. Terje Johannessen: CONTROLLED TRIALS IN SINGLE SUBJECTS. 
79. Turid Nilsen: PYROPHOSPHATE IN HEPATOCYTE IRON METABOLISM. 
80. Olav Haraldseth: NMR SPECTROSCOPY OF CEREBRAL ISCHEMIA AND REPERFUSION 

IN RAT. 
81. Eiliv Brenna: REGULATION OF FUNCTION AND GROWTH OF THE OXYNTIC 

MUCOSA. 
1993 

82. Gunnar Bovim: CERVICOGENIC HEADACHE. 
83. Jarl Arne Kahn: ASSISTED PROCREATION. 
84. Bjørn Naume: IMMUNOREGULATORY EFFECTS OF CYTOKINES ON NK CELLS. 
85. Rune Wiseth: AORTIC VALVE REPLACEMENT. 
86. Jie Ming Shen: BLOOD FLOW VELOCITY AND RESPIRATORY STUDIES. 
87. Piotr Kruszewski: SUNCT SYNDROME WITH SPECIAL REFERENCE TO THE 

AUTONOMIC NERVOUS SYSTEM. 
88. Mette Haase Moen: ENDOMETRIOSIS. 
89. Anne Vik: VASCULAR GAS EMBOLISM DURING AIR INFUSION AND AFTER 

DECOMPRESSION IN PIGS. 
90. Lars Jacob Stovner: THE CHIARI TYPE I MALFORMATION. 
91. Kjell Å. Salvesen: ROUTINE ULTRASONOGRAPHY IN UTERO AND DEVELOPMENT IN 

CHILDHOOD. 
1994 

92. Nina-Beate Liabakk: DEVELOPMENT OF IMMUNOASSAYS FOR TNF AND ITS 
SOLUBLE RECEPTORS. 

93. Sverre Helge Torp: erbB ONCOGENES IN HUMAN GLIOMAS AND MENINGIOMAS. 
94. Olav M. Linaker: MENTAL RETARDATION AND PSYCHIATRY. Past and present. 
95. Per Oscar Feet: INCREASED ANTIDEPRESSANT AND ANTIPANIC EFFECT IN 

COMBINED TREATMENT WITH DIXYRAZINE AND TRICYCLIC ANTIDEPRESSANTS. 
96. Stein Olav Samstad: CROSS SECTIONAL FLOW VELOCITY PROFILES FROM TWO-

DIMENSIONAL DOPPLER ULTRASOUND: Studies on early mitral blood flow. 
97. Bjørn Backe: STUDIES IN ANTENATAL CARE. 
98. Gerd Inger Ringdal: QUALITY OF LIFE IN CANCER PATIENTS. 
99. Torvid Kiserud: THE DUCTUS VENOSUS IN THE HUMAN FETUS. 
100. Hans E. Fjøsne: HORMONAL REGULATION OF PROSTATIC METABOLISM. 
101. Eylert Brodtkorb: CLINICAL ASPECTS OF EPILEPSY IN THE MENTALLY RETARDED. 
102. Roar Juul: PEPTIDERGIC MECHANISMS IN HUMAN SUBARACHNOID HEMORRHAGE. 
103. Unni Syversen: CHROMOGRANIN A. Phsysiological and Clinical Role. 

1995 



104. Odd Gunnar Brakstad: THERMOSTABLE NUCLEASE AND THE nuc GENE IN THE 
DIAGNOSIS OF Staphylococcus aureus INFECTIONS. 

105. Terje Engan: NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY OF PLASMA 
IN MALIGNANT DISEASE. 

106. Kirsten Rasmussen: VIOLENCE IN THE MENTALLY DISORDERED. 
107. Finn Egil Skjeldestad: INDUCED ABORTION: Timetrends and Determinants. 
108. Roar Stenseth: THORACIC EPIDURAL ANALGESIA IN AORTOCORONARY BYPASS 

SURGERY. 
109. Arild Faxvaag: STUDIES OF IMMUNE CELL FUNCTION in mice infected with MURINE 

RETROVIRUS. 
1996 

110. Svend Aakhus: NONINVASIVE COMPUTERIZED ASSESSMENT OF LEFT 
VENTRICULAR FUNCTION AND SYSTEMIC ARTERIAL PROPERTIES. Methodology and 
some clinical applications. 

111. Klaus-Dieter Bolz: INTRAVASCULAR ULTRASONOGRAPHY. 
112. Petter Aadahl: CARDIOVASCULAR EFFECTS OF THORACIC AORTIC CROSS-

CLAMPING. 
113. Sigurd Steinshamn: CYTOKINE MEDIATORS DURING GRANULOCYTOPENIC 

INFECTIONS. 
114. Hans Stifoss-Hanssen: SEEKING MEANING OR HAPPINESS? 
115. Anne Kvikstad: LIFE CHANGE EVENTS AND MARITAL STATUS IN RELATION TO 

RISK AND PROGNOSIS OF CANCER. 
116. Torbjørn Grøntvedt: TREATMENT OF ACUTE AND CHRONIC ANTERIOR CRUCIATE 

LIGAMENT INJURIES. A clinical and biomechanical study. 
117. Sigrid Hørven Wigers: CLINICAL STUDIES OF FIBROMYALGIA WITH FOCUS ON 

ETIOLOGY, TREATMENT AND OUTCOME. 
118. Jan Schjøtt: MYOCARDIAL PROTECTION: Functional and Metabolic Characteristics of Two 

Endogenous Protective Principles. 
119. Marit Martinussen: STUDIES OF INTESTINAL BLOOD FLOW AND ITS RELATION TO 

TRANSITIONAL CIRCULATORY ADAPATION IN NEWBORN INFANTS. 
120. Tomm B. Müller: MAGNETIC RESONANCE IMAGING IN FOCAL CEREBRAL 

ISCHEMIA. 
121. Rune Haaverstad: OEDEMA FORMATION OF THE LOWER EXTREMITIES. 
122. Magne Børset: THE ROLE OF CYTOKINES IN MULTIPLE MYELOMA, WITH SPECIAL 

REFERENCE TO HEPATOCYTE GROWTH FACTOR. 
123. Geir Smedslund: A THEORETICAL AND EMPIRICAL INVESTIGATION OF SMOKING, 

STRESS AND DISEASE: RESULTS FROM A POPULATION SURVEY. 
1997 

124. Torstein Vik: GROWTH, MORBIDITY, AND PSYCHOMOTOR DEVELOPMENT IN 
INFANTS WHO WERE GROWTH RETARDED IN UTERO. 

125. Siri Forsmo: ASPECTS AND CONSEQUENCES OF OPPORTUNISTIC SCREENING FOR 
CERVICAL CANCER. Results based on data from three Norwegian counties. 

126. Jon S. Skranes: CEREBRAL MRI AND NEURODEVELOPMENTAL OUTCOME IN VERY 
LOW BIRTH WEIGHT (VLBW) CHILDREN. A follow-up study of a geographically based 
year cohort of VLBW children at ages one and six years. 

127. Knut Bjørnstad: COMPUTERIZED ECHOCARDIOGRAPHY FOR EVALUTION OF 
CORONARY ARTERY DISEASE. 

128. Grethe Elisabeth Borchgrevink: DIAGNOSIS AND TREATMENT OF WHIPLASH/NECK 
SPRAIN INJURIES CAUSED BY CAR ACCIDENTS. 

129. Tor Elsås: NEUROPEPTIDES AND NITRIC OXIDE SYNTHASE IN OCULAR 
AUTONOMIC AND SENSORY NERVES. 

130. Rolf W. Gråwe: EPIDEMIOLOGICAL AND NEUROPSYCHOLOGICAL PERSPECTIVES 
ON SCHIZOPHRENIA. 

131. Tonje Strømholm: CEREBRAL HAEMODYNAMICS DURING THORACIC AORTIC 
CROSSCLAMPING. An experimental study in pigs. 

1998 
132. Martinus Bråten: STUDIES ON SOME PROBLEMS REALTED TO INTRAMEDULLARY 

NAILING OF FEMORAL FRACTURES. 
133. Ståle Nordgård: PROLIFERATIVE ACTIVITY AND DNA CONTENT AS PROGNOSTIC 

INDICATORS IN ADENOID CYSTIC CARCINOMA OF THE HEAD AND NECK. 



134. Egil Lien: SOLUBLE RECEPTORS FOR TNF AND LPS: RELEASE PATTERN AND 
POSSIBLE SIGNIFICANCE IN DISEASE. 

135. Marit Bjørgaas: HYPOGLYCAEMIA IN CHILDREN WITH DIABETES MELLITUS 
136. Frank Skorpen: GENETIC AND FUNCTIONAL ANALYSES OF DNA REPAIR IN HUMAN 

CELLS. 
137. Juan A. Pareja: SUNCT SYNDROME. ON THE CLINICAL PICTURE. ITS DISTINCTION 

FROM OTHER, SIMILAR HEADACHES. 
138. Anders Angelsen: NEUROENDOCRINE CELLS IN HUMAN PROSTATIC CARCINOMAS 

AND THE PROSTATIC COMPLEX OF RAT, GUINEA PIG, CAT AND DOG. 
139. Fabio Antonaci: CHRONIC  PAROXYSMAL HEMICRANIA AND HEMICRANIA 

CONTINUA: TWO DIFFERENT ENTITIES? 
140. Sven M. Carlsen: ENDOCRINE AND METABOLIC EFFECTS OF METFORMIN WITH 

SPECIAL EMPHASIS ON CARDIOVASCULAR RISK FACTORES. 
1999 

141. Terje A. Murberg: DEPRESSIVE SYMPTOMS AND COPING AMONG PATIENTS WITH 
CONGESTIVE HEART FAILURE. 

142. Harm-Gerd Karl Blaas: THE EMBRYONIC EXAMINATION. Ultrasound studies on the 
development of the human embryo. 

143. Noèmi Becser Andersen:THE CEPHALIC SENSORY NERVES IN UNILATERAL 
HEADACHES. Anatomical background and neurophysiological evaluation. 

144. Eli-Janne Fiskerstrand: LASER TREATMENT OF PORT WINE STAINS. A study of the 
efficacy and limitations of the pulsed dye laser. Clinical and morfological analyses aimed at 
improving the therapeutic outcome. 

145. Bård Kulseng: A STUDY OF ALGINATE CAPSULE PROPERTIES AND CYTOKINES IN 
RELATION TO INSULIN DEPENDENT DIABETES MELLITUS. 

146. Terje Haug: STRUCTURE AND REGULATION OF THE HUMAN UNG GENE ENCODING 
URACIL-DNA GLYCOSYLASE. 

147. Heidi Brurok: MANGANESE AND THE HEART. A Magic Metal with Diagnostic and 
Therapeutic Possibilites. 

148. Agnes Kathrine Lie: DIAGNOSIS AND PREVALENCE OF HUMAN PAPILLOMAVIRUS 
INFECTION IN CERVICAL INTRAEPITELIAL NEOPLASIA. Relationship to Cell Cycle 
Regulatory Proteins and HLA DQBI Genes. 

149. Ronald Mårvik: PHARMACOLOGICAL, PHYSIOLOGICAL AND 
PATHOPHYSIOLOGICAL STUDIES ON ISOLATED STOMACS. 

150. Ketil Jarl Holen: THE ROLE OF ULTRASONOGRAPHY IN THE DIAGNOSIS AND 
TREATMENT OF HIP DYSPLASIA IN NEWBORNS. 

151. Irene Hetlevik:  THE ROLE OF CLINICAL GUIDELINES IN CARDIOVASCULAR RISK 
INTERVENTION IN GENERAL PRACTICE. 

152. Katarina Tunòn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE. 
153. Johannes Soma: INTERACTION BETWEEN THE LEFT VENTRICLE AND THE SYSTEMIC 

ARTERIES. 
154. Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-

MADE FEMORAL STEM. 
155. Agnar Tegnander: DIAGNOSIS AND FOLLOW-UP OF CHILDREN WITH SUSPECTED OR 

KNOWN HIP DYSPLASIA. 
156. Bent Indredavik: STROKE UNIT TREATMENT: SHORT AND LONG-TERM EFFECTS 
157. Jolanta Vanagaite Vingen: PHOTOPHOBIA AND PHONOPHOBIA IN PRIMARY 

HEADACHES 
2000 

158. Ola Dalsegg Sæther: PATHOPHYSIOLOGY DURING PROXIMAL AORTIC CROSS-
CLAMPING CLINICAL AND EXPERIMENTAL STUDIES 

159. xxxxxxxxx (blind number) 
160. Christina Vogt Isaksen: PRENATAL ULTRASOUND AND POSTMORTEM FINDINGS – A 

TEN YEAR CORRELATIVE STUDY OF FETUSES AND INFANTS WITH 
DEVELOPMENTAL ANOMALIES. 

161. Holger Seidel: HIGH-DOSE METHOTREXATE THERAPY IN CHILDREN WITH ACUTE 
LYMPHOCYTIC LEUKEMIA: DOSE, CONCENTRATION, AND EFFECT 
CONSIDERATIONS. 

162. Stein Hallan: IMPLEMENTATION OF MODERN MEDICAL DECISION ANALYSIS INTO 
CLINICAL DIAGNOSIS AND TREATMENT. 



163. Malcolm Sue-Chu: INVASIVE AND NON-INVASIVE STUDIES IN CROSS-COUNTRY 
SKIERS WITH ASTHMA-LIKE SYMPTOMS. 

164. Ole-Lars Brekke: EFFECTS OF ANTIOXIDANTS AND FATTY ACIDS ON TUMOR 
NECROSIS FACTOR-INDUCED CYTOTOXICITY. 

165. Jan Lundbom: AORTOCORONARY BYPASS SURGERY: CLINICAL ASPECTS, COST 
CONSIDERATIONS AND WORKING ABILITY. 

166. John-Anker Zwart: LUMBAR NERVE ROOT COMPRESSION, BIOCHEMICAL AND 
NEUROPHYSIOLOGICAL ASPECTS. 

167. Geir Falck: HYPEROSMOLALITY AND THE HEART. 
168. Eirik Skogvoll: CARDIAC ARREST Incidence, Intervention and Outcome. 
169. Dalius Bansevicius: SHOULDER-NECK REGION IN CERTAIN HEADACHES AND 

CHRONIC PAIN SYNDROMES. 
170. Bettina Kinge: REFRACTIVE ERRORS AND BIOMETRIC CHANGES AMONG 

UNIVERSITY STUDENTS IN NORWAY. 
171. Gunnar Qvigstad: CONSEQUENCES OF HYPERGASTRINEMIA IN MAN 
172. Hanne Ellekjær: EPIDEMIOLOGICAL STUDIES OF STROKE IN A NORWEGIAN 

POPULATION. INCIDENCE, RISK FACTORS AND PROGNOSIS 
173. Hilde Grimstad: VIOLENCE AGAINST WOMEN AND PREGNANCY OUTCOME. 
174. Astrid Hjelde: SURFACE TENSION AND COMPLEMENT ACTIVATION: Factors 

influencing bubble formation and bubble effects after decompression. 
175. Kjell A. Kvistad: MR IN BREAST CANCER – A CLINICAL STUDY. 
176. Ivar Rossvoll: ELECTIVE ORTHOPAEDIC SURGERY IN A DEFINED POPULATION. 

Studies on demand, waiting time for treatment and incapacity for work. 
177. Carina Seidel: PROGNOSTIC VALUE AND BIOLOGICAL EFFECTS OF HEPATOCYTE 

GROWTH FACTOR AND SYNDECAN-1 IN MULTIPLE MYELOMA. 
2001 

178. Alexander Wahba: THE INFLUENCE OF CARDIOPULMONARY BYPASS ON PLATELET 
FUNCTION AND BLOOD COAGULATION – DETERMINANTS AND CLINICAL 
CONSEQUENSES 

179. Marcus Schmitt-Egenolf: THE RELEVANCE OF THE MAJOR hISTOCOMPATIBILITY 
COMPLEX FOR THE GENETICS OF PSORIASIS 

180. Odrun Arna Gederaas: BIOLOGICAL MECHANISMS INVOLVED IN 5-AMINOLEVULINIC 
ACID BASED PHOTODYNAMIC THERAPY 

181. Pål Richard Romundstad: CANCER INCIDENCE AMONG NORWEGIAN ALUMINIUM 
WORKERS 

182. Henrik Hjorth-Hansen: NOVEL CYTOKINES IN GROWTH CONTROL AND BONE 
DISEASE OF MULTIPLE MYELOMA 

183. Gunnar Morken: SEASONAL VARIATION OF HUMAN MOOD AND BEHAVIOUR 
184. Bjørn Olav Haugen: MEASUREMENT OF CARDIAC OUTPUT AND STUDIES OF 

VELOCITY PROFILES IN AORTIC AND MITRAL FLOW USING TWO- AND THREE-
DIMENSIONAL COLOUR FLOW IMAGING 

185. Geir Bråthen: THE CLASSIFICATION AND CLINICAL DIAGNOSIS OF ALCOHOL-
RELATED SEIZURES 

186. Knut Ivar Aasarød: RENAL INVOLVEMENT IN INFLAMMATORY RHEUMATIC 
DISEASE. A Study of Renal Disease in Wegener’s Granulomatosis and in Primary Sjögren’s 
Syndrome  

187. Trude Helen Flo: RESEPTORS INVOLVED IN CELL ACTIVATION BY DEFINED URONIC 
ACID POLYMERS AND BACTERIAL COMPONENTS 

188. Bodil Kavli: HUMAN URACIL-DNA GLYCOSYLASES FROM THE UNG GENE: 
STRUCTRUAL BASIS FOR SUBSTRATE SPECIFICITY AND REPAIR 

189. Liv Thommesen: MOLECULAR MECHANISMS INVOLVED IN TNF- AND GASTRIN-
MEDIATED GENE REGULATION 

190. Turid Lingaas Holmen: SMOKING AND HEALTH IN ADOLESCENCE; THE NORD-
TRØNDELAG HEALTH STUDY, 1995-97 

191. Øyvind Hjertner: MULTIPLE MYELOMA: INTERACTIONS BETWEEN MALIGNANT 
PLASMA CELLS AND THE BONE MICROENVIRONMENT 

192. Asbjørn Støylen: STRAIN RATE IMAGING OF THE LEFT VENTRICLE BY 
ULTRASOUND. FEASIBILITY, CLINICAL VALIDATION AND PHYSIOLOGICAL 
ASPECTS 



193. Kristian Midthjell: DIABETES IN ADULTS IN NORD-TRØNDELAG. PUBLIC HEALTH 
ASPECTS OF DIABETES MELLITUS IN A LARGE, NON-SELECTED NORWEGIAN 
POPULATION. 

194. Guanglin Cui: FUNCTIONAL ASPECTS OF THE ECL CELL IN RODENTS 
195. Ulrik Wisløff: CARDIAC EFFECTS OF AEROBIC ENDURANCE TRAINING: 

HYPERTROPHY, CONTRACTILITY AND CALCUIM HANDLING IN NORMAL AND 
FAILING HEART 

196. Øyvind Halaas: MECHANISMS OF IMMUNOMODULATION AND CELL-MEDIATED 
CYTOTOXICITY INDUCED BY BACTERIAL PRODUCTS 

197. Tore Amundsen: PERFUSION MR IMAGING IN THE DIAGNOSIS OF PULMONARY 
EMBOLISM 

198. Nanna Kurtze: THE SIGNIFICANCE OF ANXIETY AND DEPRESSION IN FATIQUE AND 
PATTERNS OF PAIN AMONG INDIVIDUALS DIAGNOSED WITH FIBROMYALGIA: 
RELATIONS WITH QUALITY OF LIFE, FUNCTIONAL DISABILITY, LIFESTYLE, 
EMPLOYMENT STATUS, CO-MORBIDITY AND GENDER 

199. Tom Ivar Lund Nilsen: PROSPECTIVE STUDIES OF CANCER RISK IN NORD-
TRØNDELAG: THE HUNT STUDY. Associations with anthropometric, socioeconomic, and 
lifestyle risk factors 

200. Asta Kristine Håberg: A NEW APPROACH TO THE STUDY OF MIDDLE CEREBRAL 
ARTERY OCCLUSION IN THE RAT USING MAGNETIC RESONANCE TECHNIQUES 

2002 
201. Knut Jørgen Arntzen: PREGNANCY AND CYTOKINES 
202. Henrik Døllner: INFLAMMATORY MEDIATORS IN PERINATAL INFECTIONS 
203. Asta Bye: LOW FAT, LOW LACTOSE DIET USED AS PROPHYLACTIC TREATMENT OF 

ACUTE INTESTINAL REACTIONS DURING PELVIC RADIOTHERAPY. A 
PROSPECTIVE RANDOMISED STUDY. 

204. Sylvester Moyo: STUDIES ON STREPTOCOCCUS AGALACTIAE  (GROUP B 
STREPTOCOCCUS) SURFACE-ANCHORED MARKERS WITH EMPHASIS ON STRAINS 
AND HUMAN SERA FROM ZIMBABWE. 

205. Knut Hagen: HEAD-HUNT: THE EPIDEMIOLOGY OF HEADACHE IN NORD-
TRØNDELAG 

206. Li Lixin: ON THE REGULATION AND ROLE OF UNCOUPLING PROTEIN-2 IN INSULIN 
PRODUCING ß-CELLS 

207. Anne Hildur Henriksen: SYMPTOMS OF ALLERGY AND ASTHMA VERSUS MARKERS 
OF LOWER AIRWAY INFLAMMATION AMONG ADOLESCENTS 

208. Egil Andreas Fors: NON-MALIGNANT PAIN IN RELATION TO PSYCHOLOGICAL AND 
ENVIRONTENTAL FACTORS. EXPERIENTAL AND CLINICAL STUDES OF PAIN WITH 
FOCUS ON FIBROMYALGIA 

209. Pål Klepstad:  MORPHINE FOR CANCER PAIN 
210. Ingunn Bakke: MECHANISMS AND CONSEQUENCES OF PEROXISOME 

PROLIFERATOR-INDUCED HYPERFUNCTION OF THE RAT GASTRIN PRODUCING 
CELL 

211. Ingrid Susann Gribbestad: MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY OF 
BREAST CANCER 

212. Rønnaug Astri Ødegård: PREECLAMPSIA – MATERNAL RISK FACTORS AND FETAL 
GROWTH 

213. Johan Haux: STUDIES ON CYTOTOXICITY INDUCED BY HUMAN NATURAL KILLER 
CELLS AND DIGITOXIN 

214. Turid Suzanne Berg-Nielsen: PARENTING PRACTICES AND MENTALLY DISORDERED 
ADOLESCENTS 

215. Astrid Rydning: BLOOD FLOW AS A PROTECTIVE FACTOR FOR THE STOMACH 
MUCOSA. AN EXPERIMENTAL STUDY ON THE ROLE OF MAST CELLS AND 
SENSORY AFFERENT NEURONS 

2003 
216. Jan Pål Loennechen: HEART FAILURE AFTER MYOCARDIAL INFARCTION. Regional 

Differences, Myocyte Function, Gene Expression, and Response to Cariporide, Losartan, and 
Exercise Training. 

217. Elisabeth Qvigstad: EFFECTS OF FATTY ACIDS AND OVER-STIMULATION ON 
INSULIN SECRETION IN MAN 



218. Arne Åsberg: EPIDEMIOLOGICAL STUDIES IN HEREDITARY HEMOCHROMATOSIS: 
PREVALENCE, MORBIDITY AND BENEFIT OF SCREENING. 

219. Johan Fredrik Skomsvoll: REPRODUCTIVE OUTCOME IN WOMEN WITH RHEUMATIC 
DISEASE. A population registry based study of the effects of inflammatory rheumatic disease 
and connective tissue disease on reproductive outcome in Norwegian women in 1967-1995. 

220. Siv Mørkved: URINARY INCONTINENCE DURING PREGNANCY AND AFTER  
DELIVERY: EFFECT OF PELVIC FLOOR MUSCLE TRAINING IN PREVENTION AND 
TREATMENT 

221. Marit S. Jordhøy: THE IMPACT OF COMPREHENSIVE PALLIATIVE CARE 
222. Tom Christian Martinsen: HYPERGASTRINEMIA AND HYPOACIDITY IN RODENTS – 

CAUSES AND CONSEQUENCES  
223. Solveig Tingulstad: CENTRALIZATION OF PRIMARY SURGERY FOR OVARAIN 

CANCER. FEASIBILITY AND IMPACT ON SURVIVAL  
224. Haytham Eloqayli: METABOLIC CHANGES IN THE BRAIN CAUSED BY EPILEPTIC 

SEIZURES 
225. Torunn Bruland: STUDIES OF EARLY RETROVIRUS-HOST INTERACTIONS – VIRAL 

DETERMINANTS FOR PATHOGENESIS AND THE INFLUENCE OF SEX ON THE 
SUSCEPTIBILITY TO FRIEND MURINE LEUKAEMIA VIRUS INFECTION 

226. Torstein Hole: DOPPLER ECHOCARDIOGRAPHIC EVALUATION OF LEFT 
VENTRICULAR FUNCTION IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION 

227. Vibeke Nossum: THE EFFECT OF VASCULAR BUBBLES ON ENDOTHELIAL FUNCTION 
228. Sigurd Fasting: ROUTINE BASED RECORDING OF ADVERSE EVENTS DURING 

ANAESTHESIA – APPLICATION IN QUALITY IMPROVEMENT AND SAFETY 
229. Solfrid Romundstad: EPIDEMIOLOGICAL STUDIES OF MICROALBUMINURIA. THE 

NORD-TRØNDELAG HEALTH STUDY 1995-97 (HUNT 2) 
230. Geir Torheim: PROCESSING OF DYNAMIC DATA SETS IN MAGNETIC RESONANCE 

IMAGING 
231. Catrine Ahlén: SKIN INFECTIONS IN OCCUPATIONAL SATURATION DIVERS IN THE 

NORTH SEA AND THE IMPACT OF THE ENVIRONMENT 
232. Arnulf Langhammer: RESPIRATORY SYMPTOMS, LUNG FUNCTION AND BONE 

MINERAL DENSITY IN A COMPREHENSIVE POPULATION SURVEY. THE NORD-
TRØNDELAG HEALTH STUDY 1995-97. THE BRONCHIAL OBSTRUCTION IN NORD-
TRØNDELAG STUDY 

233. Einar Kjelsås: EATING DISORDERS AND PHYSICAL ACTIVITY IN NON-CLINICAL 
SAMPLES 

234. Arne Wibe: RECTAL CANCER TREATMENT IN NORWAY – STANDARDISATION OF 
SURGERY AND QUALITY ASSURANCE 

2004 
235. Eivind Witsø: BONE GRAFT AS AN ANTIBIOTIC CARRIER 
236. Anne Mari Sund: DEVELOPMENT OF DEPRESSIVE SYMPTOMS IN EARLY 

ADOLESCENCE   
237. Hallvard Lærum: EVALUATION OF ELECTRONIC MEDICAL RECORDS – A CLINICAL 

TASK PERSPECTIVE  
238. Gustav Mikkelsen: ACCESSIBILITY OF INFORMATION IN ELECTRONIC PATIENT 

RECORDS; AN EVALUATION OF THE ROLE OF DATA QUALITY 
239. Steinar Krokstad: SOCIOECONOMIC INEQUALITIES IN HEALTH AND DISABILITY. 

SOCIAL EPIDEMIOLOGY IN THE NORD-TRØNDELAG HEALTH STUDY (HUNT), 
NORWAY 

240. Arne Kristian Myhre: NORMAL VARIATION IN ANOGENITAL ANATOMY AND 
MICROBIOLOGY IN NON-ABUSED PRESCHOOL CHILDREN 

241. Ingunn Dybedal: NEGATIVE REGULATORS OF HEMATOPOIETEC STEM AND 
PROGENITOR CELLS 

242. Beate Sitter: TISSUE CHARACTERIZATION BY HIGH RESOLUTION MAGIC ANGLE 
SPINNING MR SPECTROSCOPY 

243. Per Arne Aas: MACROMOLECULAR MAINTENANCE IN HUMAN CELLS – REPAIR OF 
URACIL IN DNA AND METHYLATIONS IN DNA AND RNA 

244. Anna Bofin:  FINE NEEDLE ASPIRATION CYTOLOGY IN THE PRIMARY 
INVESTIGATION OF BREAST TUMOURS AND IN THE DETERMINATION OF 
TREATMENT STRATEGIES 



245. Jim Aage Nøttestad: DEINSTITUTIONALIZATION AND MENTAL HEALTH CHANGES 
AMONG PEOPLE WITH MENTAL RETARDATION 

246. Reidar Fossmark:  GASTRIC CANCER IN JAPANESE COTTON RATS 
247. Wibeke Nordhøy:  MANGANESE AND THE HEART, INTRACELLULAR MR 

RELAXATION AND WATER EXCHANGE ACROSS THE CARDIAC CELL MEMBRANE 
2005 

248. Sturla Molden:  QUANTITATIVE ANALYSES OF SINGLE UNITS RECORDED FROM THE 
HIPPOCAMPUS AND ENTORHINAL CORTEX OF BEHAVING RATS 

249. Wenche Brenne Drøyvold:  EPIDEMIOLOGICAL STUDIES ON WEIGHT CHANGE AND 
HEALTH IN A LARGE POPULATION.  THE NORD-TRØNDELAG HEALTH STUDY 
(HUNT) 

250. Ragnhild Støen:  ENDOTHELIUM-DEPENDENT VASODILATION IN THE FEMORAL 
ARTERY OF DEVELOPING PIGLETS 

251. Aslak Steinsbekk:  HOMEOPATHY IN THE PREVENTION OF UPPER RESPIRATORY 
TRACT INFECTIONS IN CHILDREN 

252. Hill-Aina Steffenach:  MEMORY IN HIPPOCAMPAL AND CORTICO-HIPPOCAMPAL 
CIRCUITS 

253. Eystein Stordal:  ASPECTS OF THE EPIDEMIOLOGY OF DEPRESSIONS BASED ON 
SELF-RATING IN A LARGE GENERAL HEALTH STUDY (THE HUNT-2 STUDY) 

254. Viggo Pettersen:  FROM MUSCLES TO SINGING:  THE ACTIVITY OF ACCESSORY 
BREATHING MUSCLES AND THORAX  MOVEMENT IN CLASSICAL SINGING 

255. Marianne Fyhn:  SPATIAL MAPS IN THE HIPPOCAMPUS AND ENTORHINAL CORTEX 
256. Robert Valderhaug:  OBSESSIVE-COMPULSIVE DISORDER AMONG CHILDREN AND 

ADOLESCENTS:  CHARACTERISTICS AND PSYCHOLOGICAL MANAGEMENT OF 
PATIENTS IN OUTPATIENT PSYCHIATRIC CLINICS 

257. Erik Skaaheim Haug:  INFRARENAL ABDOMINAL  AORTIC ANEURYSMS – 
COMORBIDITY AND RESULTS FOLLOWING OPEN SURGERY 

258. Daniel Kondziella: GLIAL-NEURONAL INTERACTIONS IN EXPERIMENTAL BRAIN 
DISORDERS 

259. Vegard Heimly Brun:  ROUTES TO SPATIAL MEMORY IN HIPPOCAMPAL PLACE 
CELLS 

260. Kenneth McMillan:  PHYSIOLOGICAL ASSESSMENT AND TRAINING OF ENDURANCE 
AND STRENGTH IN PROFESSIONAL YOUTH SOCCER PLAYERS 

261. Marit Sæbø Indredavik:  MENTAL HEALTH AND CEREBRAL MAGNETIC RESONANCE 
IMAGING IN ADOLESCENTS WITH LOW BIRTH WEIGHT 

262. Ole Johan Kemi:  ON THE CELLULAR BASIS OF AEROBIC FITNESS, INTENSITY-
DEPENDENCE AND TIME-COURSE OF CARDIOMYOCYTE AND ENDOTHELIAL 
ADAPTATIONS TO EXERCISE TRAINING 

263. Eszter Vanky: POLYCYSTIC OVARY SYNDROME – METFORMIN TREATMENT IN 
PREGNANCY 

264. Hild Fjærtoft:  EXTENDED STROKE UNIT SERVICE AND EARLY SUPPORTED 
DISCHARGE.  SHORT AND LONG-TERM EFFECTS   

265. Grete Dyb:  POSTTRAUMATIC STRESS REACTIONS IN CHILDREN AND 
ADOLESCENTS 

266. Vidar Fykse: SOMATOSTATIN AND THE STOMACH 
267. Kirsti Berg: OXIDATIVE STRESS AND THE ISCHEMIC HEART:  A STUDY IN PATIENTS 

UNDERGOING CORONARY REVASCULARIZATION  
268. Björn Inge Gustafsson:  THE SEROTONIN PRODUCING ENTEROCHROMAFFIN CELL, 

AND EFFECTS OF HYPERSEROTONINEMIA ON HEART AND BONE 
2006 

269. Torstein Baade Rø:  EFFECTS OF BONE MORPHOGENETIC PROTEINS, HEPATOCYTE 
GROWTH FACTOR AND INTERLEUKIN-21 IN MULTIPLE MYELOMA 

270. May-Britt Tessem:  METABOLIC EFFECTS OF ULTRAVIOLET RADIATION ON THE 
ANTERIOR PART OF THE EYE 

271. Anne-Sofie Helvik:  COPING AND EVERYDAY LIFE IN A POPULATION OF ADULTS 
WITH HEARING IMPAIRMENT 

272. Therese Standal:  MULTIPLE MYELOMA:  THE INTERPLAY BETWEEN MALIGNANT 
PLASMA CELLS AND THE BONE MARROW MICROENVIRONMENT 



273. Ingvild Saltvedt:  TREATMENT OF ACUTELY SICK, FRAIL ELDERLY PATIENTS IN A 
GERIATRIC EVALUATION AND MANAGEMENT UNIT – RESULTS FROM A 
PROSPECTIVE RANDOMISED TRIAL 

274. Birger Henning Endreseth:  STRATEGIES IN RECTAL CANCER TREATMENT – FOCUS 
ON EARLY RECTAL CANCER AND THE INFLUENCE OF AGE ON PROGNOSIS 

275. Anne Mari Aukan Rokstad:  ALGINATE CAPSULES AS BIOREACTORS FOR CELL 
THERAPY 

276. Mansour Akbari: HUMAN BASE EXCISION REPAIR FOR PRESERVATION OF GENOMIC 
STABILITY 

277. Stein Sundstrøm:  IMPROVING TREATMENT IN PATIENTS WITH LUNG CANCER – 
RESULTS FROM TWO MULITCENTRE RANDOMISED STUDIES 

278. Hilde Pleym: BLEEDING AFTER CORONARY ARTERY BYPASS SURGERY -  STUDIES 
ON HEMOSTATIC MECHANISMS, PROPHYLACTIC DRUG TREATMENT AND 
EFFECTS OF AUTOTRANSFUSION 

279. Line Merethe Oldervoll:  PHYSICAL ACTIVITY AND EXERCISE INTERVENTIONS IN 
CANCER PATIENTS 

280. Boye Welde:  THE SIGNIFICANCE OF ENDURANCE TRAINING, RESISTANCE 
TRAINING AND MOTIVATIONAL STYLES IN ATHLETIC PERFORMANCE AMONG 
ELITE JUNIOR CROSS-COUNTRY SKIERS 

281. Per Olav Vandvik:  IRRITABLE BOWEL SYNDROME IN NORWAY,  STUDIES OF 
PREVALENCE, DIAGNOSIS AND CHARACTERISTICS IN GENERAL PRACTICE AND 
IN THE POPULATION 

282. Idar Kirkeby-Garstad:  CLINICAL PHYSIOLOGY OF EARLY MOBILIZATION AFTER 
CARDIAC SURGERY 

283. Linn Getz: SUSTAINABLE AND RESPONSIBLE PREVENTIVE MEDICINE.  
CONCEPTUALISING ETHICAL DILEMMAS ARISING FROM CLINICAL 
IMPLEMENTATION OF ADVANCING MEDICAL TECHNOLOGY  

284. Eva Tegnander: DETECTION OF CONGENITAL HEART DEFECTS  IN A NON-SELECTED 
POPULATION OF 42,381 FETUSES 

285. Kristin Gabestad Nørsett:  GENE EXPRESSION STUDIES IN GASTROINTESTINAL 
PATHOPHYSIOLOGY AND NEOPLASIA 

286. Per Magnus Haram:  GENETIC VS. AQUIRED FITNESS:  METABOLIC, VASCULAR AND 
CARDIOMYOCYTE  ADAPTATIONS 

287. Agneta Johansson:  GENERAL RISK FACTORS FOR GAMBLING PROBLEMS AND THE 
PREVALENCE OF PATHOLOGICAL GAMBLING IN NORWAY  

288. Svein Artur Jensen:  THE PREVALENCE OF SYMPTOMATIC ARTERIAL DISEASE OF 
THE LOWER LIMB 

289. Charlotte Björk Ingul:  QUANITIFICATION OF REGIONAL MYOCARDIAL FUNCTION 
BY STRAIN RATE AND STRAIN FOR EVALUATION OF CORONARY ARTERY 
DISEASE.  AUTOMATED VERSUS MANUAL ANALYSIS DURING ACUTE 
MYOCARDIAL INFARCTION AND DOBUTAMINE STRESS ECHOCARDIOGRAPHY 

290. Jakob Nakling:  RESULTS AND CONSEQUENCES OF ROUTINE ULTRASOUND 
SCREENING IN PREGNANCY – A GEOGRAPHIC BASED POPULATION STUDY 

291. Anne Engum:  DEPRESSION AND ANXIETY – THEIR RELATIONS TO THYROID 
DYSFUNCTION AND DIABETES IN A LARGE EPIDEMIOLOGICAL STUDY 

292. Ottar Bjerkeset: ANXIETY AND DEPRESSION IN THE GENERAL POPULATION:  RISK 
FACTORS, INTERVENTION AND OUTCOME – THE NORD-TRØNDELAG HEALTH 
STUDY (HUNT) 

293. Jon Olav Drogset:  RESULTS AFTER SURGICAL TREATMENT OF ANTERIOR 
CRUCIATE LIGAMENT INJURIES – A CLINICAL STUDY  

294. Lars Fosse: MECHANICAL BEHAVIOUR OF COMPACTED MORSELLISED BONE – AN 
EXPERIMENTAL IN VITRO STUDY 

295. Gunilla Klensmeden Fosse: MENTAL HEALTH OF PSYCHIATRIC OUTPATIENTS 
BULLIED IN CHILDHOOD 

296. Paul Jarle Mork:  MUSCLE ACTIVITY IN WORK  AND LEISURE AND ITS ASSOCIATION 
TO MUSCULOSKELETAL PAIN 

297. Björn Stenström:  LESSONS FROM RODENTS:  I: MECHANISMS OF OBESITY SURGERY 
– ROLE OF STOMACH.  II: CARCINOGENIC EFFECTS OF HELICOBACTER PYLORI 
AND SNUS IN THE STOMACH 

2007 



298. Haakon R. Skogseth:  INVASIVE PROPERTIES OF CANCER – A TREATMENT TARGET ?  
IN VITRO STUDIES IN HUMAN PROSTATE CANCER CELL LINES 

299. Janniche Hammer:  GLUTAMATE METABOLISM AND CYCLING IN MESIAL 
TEMPORAL LOBE EPILEPSY 

300. May Britt Drugli:  YOUNG CHILDREN TREATED BECAUSE OF ODD/CD:  CONDUCT 
PROBLEMS AND SOCIAL COMPETENCIES IN DAY-CARE AND SCHOOL SETTINGS 

301. Arne Skjold:  MAGNETIC RESONANCE KINETICS OF MANGANESE DIPYRIDOXYL 
DIPHOSPHATE (MnDPDP) IN HUMAN MYOCARDIUM.  STUDIES IN HEALTHY 
VOLUNTEERS AND IN PATIENTS WITH RECENT MYOCARDIAL INFARCTION 

302. Siri Malm:  LEFT VENTRICULAR SYSTOLIC FUNCTION AND MYOCARDIAL 
PERFUSION ASSESSED BY CONTRAST ECHOCARDIOGRAPHY 

303. Valentina Maria do Rosario Cabral Iversen:  MENTAL HEALTH AND PSYCHOLOGICAL 
ADAPTATION OF CLINICAL AND NON-CLINICAL MIGRANT GROUPS 

304. Lasse Løvstakken:  SIGNAL PROCESSING IN DIAGNOSTIC ULTRASOUND:  
ALGORITHMS FOR REAL-TIME ESTIMATION AND VISUALIZATION OF BLOOD 
FLOW VELOCITY 

305. Elisabeth Olstad:  GLUTAMATE AND GABA:  MAJOR PLAYERS IN NEURONAL 
METABOLISM  

306. Lilian Leistad:  THE ROLE OF CYTOKINES AND PHOSPHOLIPASE A2s  IN ARTICULAR 
CARTILAGE CHONDROCYTES IN RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS 

307. Arne Vaaler:  EFFECTS OF PSYCHIATRIC INTENSIVE CARE UNIT IN AN ACUTE 
PSYCIATHRIC WARD 

308. Mathias Toft:  GENETIC STUDIES OF LRRK2 AND PINK1 IN PARKINSON’S DISEASE 
309. Ingrid Løvold Mostad:  IMPACT OF DIETARY FAT QUANTITY AND QUALITY IN TYPE 

2 DIABETES WITH EMPHASIS ON MARINE N-3 FATTY ACIDS 
310. Torill Eidhammer Sjøbakk:  MR DETERMINED BRAIN METABOLIC PATTERN IN 

PATIENTS WITH BRAIN METASTASES AND ADOLESCENTS WITH LOW BIRTH 
WEIGHT 

311. Vidar Beisvåg:  PHYSIOLOGICAL GENOMICS OF HEART FAILURE:  FROM 
TECHNOLOGY TO PHYSIOLOGY 

312. Olav Magnus Søndenå Fredheim:  HEALTH RELATED QUALITY OF LIFE ASSESSMENT 
AND ASPECTS OF THE CLINICAL PHARMACOLOGY OF METHADONE IN PATIENTS 
WITH CHRONIC NON-MALIGNANT PAIN 

313. Anne Brantberg: FETAL AND PERINATAL IMPLICATIONS OF ANOMALIES IN THE 
GASTROINTESTINAL TRACT AND THE ABDOMINAL WALL 

314. Erik Solligård: GUT LUMINAL MICRODIALYSIS 
315. Elin Tollefsen: RESPIRATORY SYMPTOMS IN A COMPREHENSIVE POPULATION 

BASED STUDY AMONG ADOLESCENTS 13-19 YEARS. YOUNG-HUNT 1995-97 AND 
2000-01; THE NORD-TRØNDELAG HEALTH STUDIES (HUNT) 

316. Anne-Tove Brenne:  GROWTH REGULATION OF MYELOMA CELLS 
317. Heidi Knobel:  FATIGUE IN CANCER TREATMENT – ASSESSMENT, COURSE AND 

ETIOLOGY 
318.  Torbjørn Dahl:  CAROTID ARTERY STENOSIS.  DIAGNOSTIC AND THERAPEUTIC 

ASPECTS 
319. Inge-Andre Rasmussen jr.:  FUNCTIONAL AND DIFFUSION TENSOR MAGNETIC 

RESONANCE IMAGING IN NEUROSURGICAL PATIENTS 
320. Grete Helen Bratberg:  PUBERTAL TIMING – ANTECEDENT TO RISK OR RESILIENCE ?  

EPIDEMIOLOGICAL STUDIES ON GROWTH, MATURATION AND HEALTH RISK 
BEHAVIOURS; THE YOUNG HUNT STUDY, NORD-TRØNDELAG, NORWAY 

321. Sveinung Sørhaug:  THE PULMONARY NEUROENDOCRINE SYSTEM.  
PHYSIOLOGICAL, PATHOLOGICAL AND TUMOURIGENIC ASPECTS 

322. Olav Sande Eftedal:  ULTRASONIC DETECTION OF DECOMPRESSION INDUCED 
VASCULAR MICROBUBBLES 

323. Rune Bang Leistad:  PAIN, AUTONOMIC ACTIVATION AND MUSCULAR ACTIVITY 
RELATED TO EXPERIMENTALLY-INDUCED COGNITIVE STRESS IN HEADACHE 
PATIENTS 

324. Svein Brekke:  TECHNIQUES FOR ENHANCEMENT OF TEMPORAL RESOLUTION IN 
THREE-DIMENSIONAL ECHOCARDIOGRAPHY 

325.  Kristian Bernhard Nilsen:  AUTONOMIC ACTIVATION AND MUSCLE ACTIVITY IN 
RELATION TO MUSCULOSKELETAL PAIN 



326. Anne Irene Hagen:  HEREDITARY BREAST CANCER IN NORWAY.  DETECTION AND 
PROGNOSIS OF BREAST CANCER IN FAMILIES WITH BRCA1GENE MUTATION 

327. Ingebjørg S. Juel :  INTESTINAL INJURY AND RECOVERY AFTER ISCHEMIA.  AN 
EXPERIMENTAL STUDY ON RESTITUTION OF THE SURFACE EPITHELIUM, 
INTESTINAL PERMEABILITY, AND RELEASE OF BIOMARKERS FROM THE MUCOSA 

328. Runa Heimstad:  POST-TERM PREGNANCY 
329. Jan Egil Afset:  ROLE OF ENTEROPATHOGENIC ESCHERICHIA COLI  IN CHILDHOOD 

DIARRHOEA IN NORWAY 
330. Bent Håvard Hellum:  IN VITRO INTERACTIONS BETWEEN MEDICINAL DRUGS AND 

HERBS ON CYTOCHROME P-450 METABOLISM AND P-GLYCOPROTEIN TRANSPORT 
331. Morten André Høydal:  CARDIAC DYSFUNCTION AND MAXIMAL OXYGEN UPTAKE 

MYOCARDIAL ADAPTATION TO ENDURANCE TRAINING 
2008 

332.  Andreas Møllerløkken:  REDUCTION OF VASCULAR BUBBLES:  METHODS TO 
PREVENT THE ADVERSE EFFECTS OF DECOMPRESSION 

333. Anne Hege Aamodt:  COMORBIDITY OF HEADACHE AND MIGRAINE IN THE NORD-
TRØNDELAG HEALTH STUDY 1995-97 

334.  Brage Høyem Amundsen:  MYOCARDIAL FUNCTION QUANTIFIED BY SPECKLE 
TRACKING AND TISSUE DOPPLER ECHOCARDIOGRAPHY – VALIDATION AND 
APPLICATION IN EXERCISE TESTING AND TRAINING 

335. Inger Anne Næss:  INCIDENCE, MORTALITY AND RISK FACTORS OF FIRST VENOUS 
THROMBOSIS IN A GENERAL POPULATION.  RESULTS FROM THE SECOND NORD-
TRØNDELAG HEALTH STUDY (HUNT2) 

336. Vegard Bugten:  EFFECTS OF POSTOPERATIVE MEASURES AFTER FUNCTIONAL 
ENDOSCOPIC SINUS  SURGERY 

337. Morten Bruvold:  MANGANESE AND WATER IN CARDIAC MAGNETIC RESONANCE 
IMAGING  

338. Miroslav Fris:  THE EFFECT OF SINGLE AND REPEATED ULTRAVIOLET RADIATION 
ON THE ANTERIOR SEGMENT OF THE RABBIT EYE 

339. Svein Arne Aase:  METHODS FOR IMPROVING QUALITY AND EFFICIENCY IN 
QUANTITATIVE ECHOCARDIOGRAPHY – ASPECTS OF USING HIGH FRAME RATE 

340. Roger Almvik:  ASSESSING THE RISK OF VIOLENCE:  DEVELOPMENT AND 
VALIDATION OF THE BRØSET VIOLENCE CHECKLIST 

341. Ottar Sundheim:  STRUCTURE-FUNCTION ANALYSIS OF HUMAN ENZYMES 
INITIATING NUCLEOBASE REPAIR IN DNA AND RNA 

342. Anne Mari Undheim:  SHORT AND LONG-TERM OUTCOME OF EMOTIONAL AND 
BEHAVIOURAL PROBLEMS IN YOUNG ADOLESCENTS WITH AND WITHOUT 
READING DIFFICULTIES 

343. Helge Garåsen:  THE TRONDHEIM MODEL.  IMPROVING THE PROFESSIONAL 
COMMUNICATION BETWEEN THE VARIOUS LEVELS OF HEALTH CARE SERVICES 
AND IMPLEMENTATION OF INTERMEDIATE CARE AT A COMMUNITY HOSPITAL 
COULD PROVIDE BETTER CARE FOR OLDER PATIENTS.  SHORT AND LONG TERM 
EFFECTS  

344. Olav A. Foss:  “THE ROTATION RATIOS METHOD”.  A METHOD TO DESCRIBE 
ALTERED SPATIAL ORIENTATION IN SEQUENTIAL RADIOGRAPHS FROM ONE 
PELVIS 

345. Bjørn Olav Åsvold:  THYROID FUNCTION AND CARDIOVASCULAR HEALTH 
346. Torun Margareta Melø: NEURONAL GLIAL INTERACTIONS IN EPILEPSY 
347. Irina Poliakova Eide:  FETAL GROWTH RESTRICTION AND PRE-ECLAMPSIA:   SOME 

CHARACTERISTICS OF FETO-MATERNAL INTERACTIONS IN DECIDUA BASALIS 
348. Torunn Askim:  RECOVERY AFTER STROKE.  ASSESSMENT AND TREATMENT;  WITH 

FOCUS ON MOTOR FUNCTION 
349. Ann Elisabeth Åsberg:  NEUTROPHIL ACTIVATION IN A ROLLER PUMP MODEL OF 

CARDIOPULMONARY BYPASS.  INFLUENCE ON BIOMATERIAL, PLATELETS AND 
COMPLEMENT 

350. Lars Hagen:  REGULATION OF DNA BASE EXCISION REPAIR BY PROTEIN 
INTERACTIONS AND POST TRANSLATIONAL MODIFICATIONS 

351. Sigrun Beate Kjøtrød:  POLYCYSTIC OVARY SYNDROME – METFORMIN TREATMENT 
IN ASSISTED REPRODUCTION 



352. Steven Keita Nishiyama:  PERSPECTIVES ON LIMB-VASCULAR HETEROGENEITY:  
IMPLICATIONS FOR HUMAN AGING, SEX, AND EXERCISE 

353. Sven Peter Näsholm:  ULTRASOUND BEAMS FOR ENHANCED IMAGE QUALITY 
354. Jon Ståle Ritland:  PRIMARY OPEN-ANGLE GLAUCOMA & EXFOLIATIVE GLAUCOMA. 

SURVIVAL, COMORBIDITY AND GENETICS 
355. Sigrid Botne Sando:  ALZHEIMER’S DISEASE IN CENTRAL NORWAY.  GENETIC AND 

EDUCATIONAL ASPECTS 
356. Parvinder Kaur: CELLULAR AND MOLECULAR MECHANISMS BEHIND 

METHYLMERCURY-INDUCED NEUROTOXICITY 
357. Ismail Cüneyt Güzey:  DOPAMINE AND SEROTONIN RECEPTOR AND TRANSPORTER 

GENE POLYMORPHISMS AND EXTRAPYRAMIDAL SYMPTOMS. STUDIES IN 
PARKINSON’S DISEASE AND IN PATIENTS TREATED WITH ANTIPSYCHOTIC OR 
ANTIDEPRESSANT DRUGS 

358. Brit Dybdahl:  EXTRA-CELLULAR INDUCIBLE HEAT-SHOCK PROTEIN 70 (Hsp70) – A 
ROLE IN THE INFLAMMATORY RESPONSE ? 

359. Kristoffer Haugarvoll:  IDENTIFYING GENETIC CAUSES OF PARKINSON’S DISEASE IN 
NORWAY 

360. Nadra Nilsen: TOLL.LIKE RECEPTOR – EXPRESSION, REGULATION AND SIGNALING 
361. Johan Håkon Bjørngaard: PATIENT SATISFACTION WITH OUTPATIENT MENTAL 

HEALTH SERVICES – THE INFLUENCE OF ORGANIZATIONAL FACTORS. 
362. Kjetil Høydal : EFFECTS OF HIGH INTENSITY AEROBIC TRAINING IN HEALTHY 

SUBJECTS AND CORONARY ARTERY DISEASE PATIENTS; THE IMPORTANCE OF 
INTENSITY,, DURATION AND FREQUENCY OF TRAINING. 

363. Trine Karlsen: TRAINING IS MEDICINE: ENDURANCE AND STRENGTH TRAINING IN 
CORONARY ARTERY DISEASE AND HEALTH. 

364. Marte Thuen: MANGANASE-ENHANCED AND DIFFUSION TENSOR MR IMAGING OF 
THE NORMAL, INJURED AND REGENERATING RAT VISUAL PATHWAY 

365. Cathrine Broberg Vågbø:  DIRECT REPAIR OF ALKYLATION DAMAGE IN DNA AND 
RNA BY 2-OXOGLUTARATE- AND IRON-DEPENDENT DIOXYGENASES 

366. Arnt Erik Tjønna:  AEROBIC EXERCISE AND CARDIOVASCULAR RISK FACTORS IN 
OVERWEIGHT AND OBESE ADOLESCENTS AND ADULTS 

367. Marianne W. Furnes:  FEEDING BEHAVIOR AND BODY WEIGHT DEVELOPMENT:  
LESSONS FROM RATS  

368. Lene N. Johannessen:  FUNGAL PRODUCTS AND INFLAMMATORY RESPONSES IN 
HUMAN MONOCYTES AND EPITHELIAL CELLS  

369. Anja Bye:  GENE EXPRESSION PROFILING OF INHERITED AND ACQUIRED MAXIMAL 
OXYGEN UPTAKE – RELATIONS TO THE METABOLIC SYNDROME. 

370. Oluf Dimitri Røe:  MALIGNANT MESOTHELIOMA:  VIRUS, BIOMARKERS AND GENES.  
A TRANSLATIONAL APPROACH 

371. Ane Cecilie Dale:  DIABETES MELLITUS AND FATAL ISCHEMIC HEART DISEASE. 
ANALYSES FROM THE HUNT1 AND 2 STUDIES 

372. Jacob Christian Hølen:  PAIN ASSESSMENT IN PALLIATIVE CARE:  VALIDATION OF 
METHODS FOR SELF-REPORT AND BEHAVIOURAL ASSESSMENT 

373. Erming Tian:  THE GENETIC IMPACTS IN THE ONCOGENESIS OF MULTIPLE 
MYELOMA 

374. Ole Bosnes:  KLINISK UTPRØVING AV NORSKE VERSJONER AV NOEN SENTRALE 
TESTER PÅ KOGNITIV FUNKSJON 

375. Ola M. Rygh:  3D ULTRASOUND BASED NEURONAVIGATION IN NEUROSURGERY.  A 
CLINICAL EVALUATION 

376. Astrid Kamilla Stunes:  ADIPOKINES, PEROXISOME PROFILERATOR ACTIVATED 
RECEPTOR (PPAR) AGONISTS AND SEROTONIN.  COMMON REGULATORS OF BONE 
AND FAT METABOLISM 

377. Silje Engdal:  HERBAL REMEDIES USED BY NORWEGIAN CANCER PATIENTS AND 
THEIR ROLE IN HERB-DRUG INTERACTIONS 

378. Kristin Offerdal:  IMPROVED ULTRASOUND IMAGING OF THE FETUS AND ITS 
CONSEQUENCES FOR SEVERE AND LESS SEVERE ANOMALIES 

379. Øivind Rognmo:  HIGH-INTENSITY AEROBIC EXERCISE AND CARDIOVASCULAR 
HEALTH 

380. Jo-Åsmund Lund:  RADIOTHERAPY IN ANAL CARCINOMA AND PROSTATE CANCER 
 



2009 
 
381. Tore Grüner Bjåstad:  HIGH FRAME RATE ULTRASOUND IMAGING USING PARALLEL 

BEAMFORMING 
382. Erik Søndenaa:  INTELLECTUAL DISABILITIES IN THE CRIMINAL JUSTICE SYSTEM 
383. Berit Rostad:  SOCIAL INEQUALITIES IN WOMEN’S HEALTH, HUNT 1984-86 AND 

1995-97, THE NORD-TRØNDELAG HEALTH STUDY (HUNT) 
384. Jonas Crosby:  ULTRASOUND-BASED QUANTIFICATION OF MYOCARDIAL 

DEFORMATION AND ROTATION 
385. Erling Tronvik:  MIGRAINE, BLOOD PRESSURE AND THE RENIN-ANGIOTENSIN 

SYSTEM 
386. Tom Christensen:  BRINGING THE GP TO THE FOREFRONT OF EPR DEVELOPMENT 
387. Håkon Bergseng:  ASPECTS OF GROUP B STREPTOCOCCUS (GBS) DISEASE IN THE 

NEWBORN.  EPIDEMIOLOGY, CHARACTERISATION OF INVASIVE STRAINS AND 
EVALUATION OF INTRAPARTUM SCREENING  

388. Ronny Myhre: GENETIC STUDIES OF CANDIDATE TENE3S IN PARKINSON’S  
DISEASE 

389. Torbjørn Eggebø:  ULTRASOUND AND LABOUR 
390. Eivind Wang:  TRAINING IS MEDICINE FOR PATIENTS WITH PERIPHERAL ARTERIAL 

DISEASE 
391. Thea Kristin Våtsveen: GENETIC ABERRATIONS IN MYELOMA CELLS 

 
  
 
 
 
 
 





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




