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Abstract5

Technologies of real-time data measurement during drilling operation have6

kept the attention of petroleum industries in the past years, especially with the7

benefit of real-time formation evaluation through logging-while-drilling technol-8

ogy. It is expected that most of the logging data will be recorded in real-time9

operation. Hence, application of automated lithology prediction tool will be10

essential.11

An automatic method to predict lithology from borehole geophysical data12

was developed. It was solved as a multivariate classification problem with mul-13

tidimensional explanatory variables. The learning algorithm combines kernel14

density estimates and a classification rule that is based on these estimates. The15

goal of this work is to test the method on a univariate variable and validate the16

prediction accuracy by calculating the misclassification rates. In addition, the17

results will be established as a baseline for application in practice and future18

developments for multivariate variables analysis.19

Gamma-ray from wireline logging is selected as the variable to describe two20

lithology groups of shale and not-shale. Data from six wells in the Norwegian21

Continental Shelf were extracted and examined with aids of explorative data22

analysis and hypothesis testing, and then divided into a training- and test data23

set. The selected algorithm processed the training data into models, and later24

each element of test data was assigned to the models to get the prediction. The25

results were validated with cutting data, and it was proved that the models26

predicted the lithology effectively with misclassification rates less than 15 %27

at its lowest and average of ±31%. Moreover, the results confirmed that the28

method has a promising prospect as lithology prediction tool, especially in real-29

time operation, because the non-parametric approach allows real-time modeling30

with fewer data assumptions required.31

Keywords: Real-time drilling data, gamma ray, statistical classification,32

kernel density estimation, non-parametric data, lithology prediction33

∗Corresponding author
Email addresses: anisa.corina@ntnu.no (A.N. Corina), sigve.hovda@ntnu.no (S.

Hovda)

Preprint submitted to Elsevier June 9, 2018



1. Introduction34

The process of lithology identification is traditionally executed using data35

from cutting visualization, core inspection, or wireline logging. And today,36

many new technologies are advancing and replacing the manual process into37

a more automated process, such as high-speed telemetry. This development38

means that more types of borehole geophysical data are measured in the real-39

time operation, and hence lithology identification methods are expected to be40

more straightforward and precise than the traditional methods. This motivates41

the development of an automated method of lithology prediction.42

The early technique of lithology interpretation was accomplished using qual-43

itative approach through identification of log separations or unique trends be-44

tween several well log curves visually without the requirement of calculations.45

In practice, this technique provides quick evaluations, especially over a depth46

of interval which is consistent. However, the application becomes demanding47

for complex lithologies identification that requires large dataset analysis and48

depends on the geological history of the area (Ellis and Singer, 2007).49

The advanced progress of modern computers has stimulated the develop-50

ment of quantitative methods of lithology identification with improved speed51

and accuracy. There are wide variations of mathematical techniques adapted as52

lithology identification tool, such as clustering (Wolf and Pelissier-Combescure,53

1982; Ye and Rabiller, 2000), fuzzy logic (Cuddy et al., 1997; Saggaf and Ne-54

brija, 2003), and neural networks (Benaouda et al., 1999; Maiti et al., 2007).55

One of the early studies that implemets statistical probability method with com-56

bination of clustering and classification technique for lithofacies determination57

was accomplished by Delfiner et al. (1987). Since then, many other studies were58

carried out in similar manners, including studies by Busch et al. (1987) and59

Coudert et al. (1994). Those studies came in conclusion that the classification60

technique based on probability density was promising for lithology prediction61

and the statistical methods were suitable for handling large databases. However,62

the assumption of normal (Gaussian) distribution for the density probability63

function was believed to be strict for modeling non-parametric data.64

Modeling the non-parametric data that are infinite-dimensional is best ap-65

proached using non-parametric statistic technique. The application is conve-66

nient for dataset that grows in size – i.e. a dataset whose final structure of data67

distribution is yet unknown–, such as model from real-time dataset. In statis-68

tic probability, the estimation of probability density function of non-parametric69

data is usually accomplished using kernel density estimator. It is also an ex-70

cellent tool for estimating univariate, bivariate, or trivariate data, even when71

the number of data points is relatively low (Silverman, 1986). Kernel density72

estimator has also been applied to solve geophysical and geologicals problem in73

the past (Mwenifumbo, 1993; Mwenifumbo et al., 2004). Mwenifumbo (1993)74

specifically applied the estimator on well logging data and proved that the re-75

sults of probability density function were precise in showing the major features76

of each lithofacies.77

Until recently, the automated lithology predictions that based on statistical78
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probability density did not take account of non-parametric modeling, meaning79

that the assumptions were not practicable on real-time dataset. Therefore, in80

this study we attempted to develop a lithology prediction method using a classi-81

fication technique based on probability density function of explanatory variables,82

which was estimated using kernel density estimator. The selected classification83

technique implemented a classification rule, or classifier, to generate the final84

classification models. Two types of classifiers were presented in this study, one85

of which implemented prior probability value.86

To give a brief overview of the proposed method, we presented a set of two-87

dimensional data with 30 points (black, red, and blue points) as a contour plot88

of the probability density functions, estimated by kernel density estimator in89

Fig. 1a. Fig. 1b describes a trinary classification rule, which neglected the prior90

probability, based on two-dimensional data, dividing the data into three different91

classes marked with the green, blue, and yellow region. If the classification rule92

was modified, by taking prior probability into account, some regions expanded93

or shrunk depends on the probability value of the particular region (see Fig.94

1c). Notice that there are some black points now classified into the blue region95

after the classification rule was modified.96

One of the principal aims in this study is to test the proposed learning97

algorithm by using a univariate data, which is gamma ray log, and acquire98

the accuracy given by the models from classifying new observations to lithology99

groups of shale and not-shale. Our methods to select the data and how to employ100

them into the learning algorithm are described in detail prior the test. Another101

of our aims is to present the application of the proposed method in practice as a102

baseline for petroleum engineers to implement, especially in real-time operation.103

2. Dataset description104

The data used in this study was from six wells located in Norwegian Con-105

tinental Shelf. The wells are situated at the eastern part of the South Viking106

Graben with three wells from Block 15, situated at Gina Krog field within Ve107

sub-basin, and three wells from Block 16, situated at Ivar Aasen field within108

the Gudrun Terrace (Fig. 2). The configuration of the South Viking Graben109

is mainly due to the Callovian-Ryazinian rift event. The South Viking Graben110

has a steep bounding with a small terrace to the east (The Gudrun Terrace).111

The Gudrun Terrace is dominated with shallow marine deposition on the basin112

flanks, with terrace topography. The fault bounding the graben to the west was113

active during the regressive phase of Lower Oxfordian, while sediment gravity114

flowed to the grabenal area. The Ve sub-basin is located at the grabenal area115

with a thick section of Cretaceous (Steel et al., 1995).116

The available data included gamma-ray logs, well schematic, geological de-117

scriptions, and mud logging. In this study, we chose gamma ray log as the118

explanatory variable to distinguish shale and not-shale lithology because it is a119

reliable shale detector and the tool is commonly run in combination with high120

pulse telemetry. Gamma ray tool measures the composition of the natural-121

occurring isotopes contained in the rocks, such as potassium, uranium, and122
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(a)

(b) (c)

Fig. 1: The 2-dimensional multivariate analysis: (a) probability density function from kernel
density estimation, (b) group region based on classification rule without prior probability, and
(c) group region based on classification rule with prior probability.

thorium (Ellis and Singer, 2007). Due to high content of radioactive mineral in123

shale, the tool is effective to identify shale (Schlumberger Educational Services,124

1989). However, the tool is sensitive to several borehole environment factors,125

such as hole diameter, borehole quality (e.g. caving or washout), mud weight,126

casing properties, and cement thickness. In addition to borehole environment127

factors, false gamma ray reading can be caused of the tool offset from the hole128

center during the tool running.129

Both geological description and mud logging data contained information of130

lithology description, but each was given by different sources. The lithology in-131

formation from geological descriptions is a rough estimation given by geologists132

prior drilling operation. Meanwhile, lithology information from mud logging is133

obtained based on cutting visualization during drilling operation. Hence, the134

mud logging data has better accuracy than geological descriptions. Both lithol-135

ogy information showed that the wells were composed of four major lithologies:136

sandstone, shale, carbonate, and chalk. Within the study, sandstone, carbonate,137

chalk, and other minor lithologies were grouped into non-shale lithology.138

4



Structural elements

Deep Cretaceous Basin

Marginal Volcanic High

Palaeozoic High in Platform

Platform

Pre-Jurassic Basin in Platform

Shallow Cretaceous Basin in Platform

Terraces and Intra-Basinal Elevations

Volcanics

Cretaceous High

Fig. 2: Location of the selected wells at the South Viking Graben: Ve Sub-basin and Gudrun
Terrace (Norwegian Petroleum Directorate, 2017)

3. Data exploration139

Data exploration of the gamma-ray dataset was carried out using explana-140

tory data analysis and hypotheses testing. This approach allowed us to identify141

the characteristic of the gamma ray dataset in describing lithology, and hence it142

was relevant for the modeling task. Moreover, with the lack of information on143

gamma ray tool properties, this approach would also be a countermeasure for144

any neglected calibration offset of the tool or the missing corrections of gamma145

ray reading.146

3.1. Exploratory data analysis147

The exploratory data analysis was comprised of the numerical descriptions of148

mean, median, and standard deviation, and graphical descriptions of boxplots149

and histograms. The boxplot visualization was adapted from Tukey method150

that illustrates three quartiles value indicated by three lines forming a box and151

extreme values or outliers indicated by whiskers perpendicular to the quartile152

lines (Frigge et al., 1989). In addition, the histogram bin width was calculated153

following Scott rule (Scott, 1992).154
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Table 1: Statistic description of gamma ray data of each lithology in Well 15/5-7 A by: (a)
ungrouping and (b) grouping according hole size

Lithology Mean Median St. Dev

Shale 112.92 127.61 43.65

Non-shale 82.79 75.54 36.16

(a)

Lithology Hole size Mean Median St. Dev

17 1/2” 138.42 139.37 13.07
Shale

8 1/2” 104.06 88.38 47.46

Non-shale
17 1/2” 118.52 118.01 11.73

8 1/2” 58.63 56.77 16.32

(b)
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Fig. 3: Comparison of gamma-ray data of Well 15/5-7 A when ungrouped and grouped based
on hole size, visualized in: (a) histogram and b) boxplot
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Based on the result of one example from Well 15/5-7 A , high variance and155

bimodal distributions of gamma ray value were detected in both shale and non-156

shale lithology (see the ungrouped plots in Fig. 3 and Table 1a). After plotting157

the data in log traces, it appeared that the gamma ray logs shifted from one158

hole section to others (Fig. 4). Because of data limitation, the source of error159

factors could not be recognized, hence clustering the gamma ray based on the160

hole size was considered as the most relevant attempt to reduce data variation.161

Improvements of data distribution were observed by hole size grouping as each162

group had reduced standard deviations (see the grouped plots in Fig. 3 and163

Table 1b). In addition, it was observed from the histogram and boxplot that164

lithology data distributions in each hole size group were not symmetrical and165

the shapes did not follow the normal distribution.166

3.2. Hypothesis testing167

The result of exploratory data analysis above indicated that the gamma-ray168

data of one lithology type in a hole section could not be used interchangeably169

with the same lithology type in other hole sections for the same well. However,170

the process of exploratory data analysis tended to be visually qualitative and171

mostly concentrated on the comparison of the statistical properties and the172

data distribution. Thus, drawing a conclusion from explanatory data analysis173

by itself was considered inadequate, advancing us to perform hypothesis testing.174

Hypothesis testing is a method for testing a hypothesis of a group within a175

population (Privitera, 2015). Hypothesis testing tests the null hypothesis (H0)176

– a statement of a population parameter that is assumed to be true – whether177

it is likely to be true or not. The statement that opposes the null hypothesis is178

called the alternative hypothesis (H1). This study adapted the Mann-Whitney179

test, a rank-based test which evaluates if there are any independent variables180

contained between two sets of non-parametric data. If the probability value181

(p-value) given from the test is less than the level of significance, then the null182

hypothesis will be rejected (Mann and Whitney, 1947).183

In this test, the null hypothesis was the distribution of gamma ray of two184

groups of hole section is equal. Each lithology group in one hole section was185

tested toward other hole section with the level of significance at 5%. The test186

was repeated for a different combination of groups because more than two hole187

sections appeared in one well. The results, summarized in Table 2, showed that188

the returned probabilities from the combinations of all of the wells were lower189

than the level of significance, and hence the null hypothesis was rejected. In190

other words, gamma ray data between two groups of hole section were indepen-191

dent of each other. Based on data exploration, we concluded that the modelling192

task was better performed for each hole size of the well.193

4. Approach of the machine learning algorithm for lithology predic-194

tion195

Classification is an instance of learning the model f that projects the ob-196

served variables, x, to one of the predefined group, y. The process employs197
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(a) (b)

Fig. 4: Shifted gamma ray value from logging visualization: (a) 26” and 17 1/2” in Well 15/5-7
A and b) 17 1/2” and 12 1/4” in Well 15/6-11 S

a learning algorithm that implements classification, also known as classifica-198

tion rule, to identify the best fit model that provides a relationship between199

the attribute set and the class labels from the input data. Before classifying200
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Table 2: Example of hypothesis testing result for wells in Ivar Aasen field

Well Lithology Section #1 Section #2 P Value

Shale 17 1/2” 8 1/2” 2.90× 10−257

15/5-7 A
Non-shale 17 1/2” 8 1/2” < 2.251× 10−308 ∗

15/6-11 S

Shale

17 1/2” 12 1/4” 7.71× 10−292

17 1/2” 8 1/2” 3.81× 10−170

12 1/4” 8 1/2” 2.81× 10−160

Non-shale

17 1/2” 12 1/4” < 2.251× 10−308 ∗

17 1/2” 8 1/2” 5.32× 10−67

12 1/4” 8 1/2” 1.19× 10−67

Shale 17 1/2” 8 1/2” < 2.251× 10−308 ∗
15/6-9 S

Non-shale 17 1/2” 8 1/2” < 2.251× 10−308 ∗

∗ The smallest positive normalized floating point number in IEEE ® double

precision.

new observation, the training dataset, which consists of the observation whose201

groups are known, is trained to develop the models. Afterwards, the models are202

employed to predict the group of new observations whose groups are unknown,203

also called as test data. Then, the prediction of test data will be validated with204

the expected output for model evaluation.205

The type of classification rule proposed in this paper was based on probabil-206

ity density function, and hence the probability density estimation from train-207

ing data was required. Based on the data exploration above, the gamma-ray208

dataset had a non-parametric distribution, and hence kernel density estimation209

was suitable to generate the probability density function. Descriptions of the210

kernel density estimation and the classification rule are explained in this section.211

4.1. Probability density function from kernel density estimation212

The fundamental concept underlying the analysis of univariate data is the213

probability density function for non-parametric distribution. Different from the214

parametric approach which implements strong assumptions, the non-parametric215

approach uses relatively weak assumptions. Thus, the non-parametric approach216

can get the true pattern of the data and identify any subgroups within the data217

(Simonoff, 1996).218

Kernel density estimation is an expansion of histogram method, the simplest219

method to estimate probability density. Because histogram method returns a220

discrete result and does not sensitive to probability density function f , the221

smoothing method, such as kernel density estimation, is more favorable to re-222

turn a continuous probability density. Study also showed that this method was223

suitable to estimate borehole geophysical data, especially on data with fat-tailed224

distribution and analysis of multivariate data (Mwenifumbo, 1993).225
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The density function of a random variable X which has probability density226

function f(x) is shown as below227

P (a < X < b) =

∫ b

a

f(u)du (1)

for any constants a and b.228

Let {x1, ..., xn} represent a random sample of size n from the density f . For229

univariate density estimation, the empirical cumulative distribution function230

gives:231

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(2)

The degree to which the data are smoothed is dependent on the smoothing232

parameter, or bandwidth, h. The optimal bandwidth value is obtained by min-233

imizing the mean square error. Even though there is no objective method to234

determine it, several approaches have been studied (Simonoff, 1996). The kernel235

function, K, is a non-negative function, and the area underneath the function236

integrates to 1. Different forms of kernel function are available, and the choice237

of kernel function is beyond the topic of this study (Silverman, 1986; Simonoff,238

1996).239

In this study, the process of estimation was performed using a MATLAB240

R2015A function, ksdensity, which returns the estimation of the probability241

density evaluated at equally spaced points xi that cover the range of the in-242

put data of x (Bowman and Azzalini, 1997). The kernel function applied was243

Epanechnikov function and the optimal bandwidth was given from ksdensity244

function automatically, of which value is calculated based on the distribution of245

normal densities.246

4.2. Classification scheme based on probability density247

Consider a population consists two sub-populations, denoted as π1 and π2.248

The probability density of each population is denoted as f1(x) and f2(x), with249

random variable of X = (X1, . . . , Xp). Denote that Ω is the collection of all250

possible outcomes x. As f1(x) and f2(x) usually overlap, some points of Ω can251

belong to π1 and π2, with different probability values. In order to divide Ω into252

two non-overlapping regions R1 and R2 (R1 ∪ R2 = Ω and R1 ∩ R2 = Ø), the253

probability of misclassification must be minimum.254

For a new observation x0, a rule is exist to allocate x0 to π1 if the probability255

value from π1 is greater that probability value of x0 from π2, or to allocate x0 to256

π2 if the opposite holds. Based on this criterion, then R1 is the set of possible257

outcomes of x such that f1(x) > f2(x) and R2 is the set of possible outcomes258

of x such that f1(x) < f2(x). The classification rule is, therefore:259

R1 :
f1(x)

f2(x)
≥ 1, R2 :

f1(x)

f2(x)
< 1 (3)
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If equality holds, x0 is allocated to one of the group randomly. This type of260

classification rule is also known as likelihood ratio rule (Cios et al., 2007).261

In case the prior probability information is available, the classification rule262

from probability density can be combined with prior probabilities. The prior263

probabilities represent initial knowledge about how likely each class may emerge264

without any help of any further information about the object, or without in-265

formation from explanatory variable x. Denote by p(1) the prior probability266

that x0 belongs to π1 and p(2) the prior probability that x0 belongs to π2, the267

classification rule will become,268

R1 :
f1(x)

f2(x)
≥ p(2)

p(1)
, R2 :

f1(x)

f2(x)
<
p(2)

p(1)
(4)

The results from classification are validated toward the expected results,269

which then summarized in a confusion matrix, a table that reports the number270

of false positive (FP), false negative (FN), true positive (TP), and true negative271

(TN), see Table 3. From the observed numbers, the misclassification rate can272

be calculated following.273

Misclassification rate =
FP + FN

TN + FP + FN + TP
, (5)

Table 3: Confusion matrix table of two sub-population, π1 and π2

Predicted

π1 π2

A
c
tu

a
l

π1

True Negative (TN) :

Number of observations correctly

classified as π1 that belong to π1

False Positive (FP):

Number of observations incorrectly

classified as π2 that belong to π1

π2

False Negative (FN):

Number of observations incorrectly

classified as π1 that belong to π2

True Positive (TP):

Number of observations correctly

classified as π2 that belong to π2

5. Simulations of lithology prediction and discussions274

Once the proposed method was coded together using MATLAB R2015A,275

simulations of lithology prediction were carried out by model testing.Two types276

of model testing were run to understand the extent of the models in predicting277

accurate lithology using different test dataset. In the first test (Test 1), each278

model that was trained from a portion of the dataset from one particular well was279

tested using the rest of dataset from the same well. Meanwhile, each model in280

the second test (Test 2) was trained from a complete dataset from one particular281

well. Then, the models were tested using dataset from the neighboring wells.282
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In both tests, we used two approaches of classifications: (1) classification283

adopting likelihood ratio rule (Equation 3) and (2) classification adopting the284

rule that regards prior probability values (Equation 4), respectively named as285

rule #1 and rule #2 for ease of reference. The prior probability for rule #2 was286

calculated based on the number of observations of shale and non-shale lithology287

from the geological description of the test set, which then normalized to 1 to288

fulfill the condition p(1) + p(2) = 1. Afterwards, the result from the prediction289

were verified with lithology data taken from cuttings, and then summarized in290

the confusion matrix. Within the context of the present paper, the accuracy of291

the prediction was reported in term of percentage of misclassification rates. This292

approach was consistent with the large size of test set (> 450 samples). And to293

correspond the result from data exploration, the test had to be performed on294

the models from training data that had equivalent hole size.295

5.1. Test 1296

Table 4: Misclassification rates of Test 1 for rule #1 and #2 applied

Training data Testing data
Misclassification

Error (%)

Well
Hole

size (”) Depth (m) N Depth (m) N
Rule

#1

Rule

#2

17 1/2 1039-2180 2283 2180-2657 954 35.74 32.18
15/5-7 A

8 1/2 2657-3800 2287 3800 -4119 639 10.33 9.86

17 1/2 690 - 1730 2081 1730-2181 903 78.74 86.38
15/6-11 S

12 1/4 2182-3320 2278 3320-3817 994 23.74 25.50

17 1/2 753-2180 2855 2180-2785 1212 44.88 30.78
15/6-9 S

8 1/2 2786-3590 1609 3590-3942 705 30.78 44.26

17 1/2 371-1145 1531 114-1477 666 64.86 64.26
16/1-4

12 1/4 1478-2002 1049 2002-2227 452 21.24 20.35

16/2-7 17 1/2 700-1450 1481 1450-1772 644 31.99 31.37

16/2-13 A 12 1/4 717-1955 2441 1955-2487 1064 26.97 12.03

Average 36.93 35.70

Error < 15% , Error 15 − 35%, and Error > 35%

The model testings in Test 1 were carried out using dataset from wells in297

Gina Krog and Ivar Aasen field. In each well, the dataset of each hole section298

were split into 70% of training data and 30% of test data. The training data299

was taken from the top depth of a hole section down to 70% of the total depth300

of a hole section, while the rest 30% was set as testing data, see illustration in301

Fig. 5. The scheme of dataset allocation was adjusted to be in-line with the302

purpose of this current study. Even though the gamma-ray value is independent303
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of depth, this scheme was made to correspond the process of real-time prediction304

in practice, with details explained in Chapter 6. The model testing result from305

Test 1, with total of 10 cases, is shown in Table 4. The misclassification rates306

for this test were fairly low, reaches down to ±10%, and the most often returned307

misclassification rate is ± 31% for both applied rules. Meanwhile, there are only308

two cases had high misclassification rates over 60%.309

Fig. 5: Data division of training and test dataset of well 15/6-11S 17 1/2”. The training dataset
was taken from Nordland group and upper part of Hordaland group, while test dataset was
from lower part of Hordaland group. Most shale layers in the Grid formation were poorly
predicted as not-shale using rule due low gamma-ray reading.
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The results showed that the high misclassification rates were mainly occured310

on tests that contain shale-sandstone layers, found in test 15/6-11 S (17 1/2”)311

– as shown in Fig. 5 – and 16-1/4 (17 1/2”), specifically on the Grid formation312

which is the member of Hordaland Group. The geological information confirmed313

that Grid formation has a soft sediment deformation that produces sand bodies314

with poor connectivity. This finding also suggested that the sand beds mixed315

with the shale beds, which are the main lithology of Hordaland Group. Hence,316

the shale in Grid formation had lower gamma-ray compared to other shale beds317

from other formations within the Hordaland Group.318

In general, the application of rule #2 decreased the average misclassification319

rates compared to the application of rule #1. However, the accuracy improve-320

ment was not significant. In addition, the application of this rule did not meet321

our expectancy to improve prediction on complex shale-sandstone bed. When322

the rule was applied to test well 16-1/4, the misclassification rate only decreased323

by 0.6%, and when applied to test well 15/6-11 S, the misclassification rate only324

increased by 7%. In the latter case, the increasing misclassification was due to325

false lithology data from geological interpretation, as seen in the geological data326

of Grid formation in Fig. 5.327

5.2. Test 2328

The models for Test 2 were trained using the complete dataset of each hole329

section of three wells from Gina Krog field. Then, the models were tested using330

dataset from: (a) the neighboring wells located in the same field as the models,331

Gina Krog field, and (b) wells located in another field, Ivar Aasen field.332

Table 5: Misclassification rates of the first test in Test 2, with test set from Gina Krog field

Rule #1 Rule #2
Model

Hole

size 15/5-7A 15/6-11S 15/6-9 S 15/5-7A 15/6-11S 15/6-9 S

17 1/2” N/A 58.45 40.56 N/A 65.04 34.55
15/5-7 A

8 1/2” N/A 26.93 30.26 N/A 26.93 29.05

15/6-11 S 17 1/2” 25.37 N/A 30.28 25.56 N/A 32.19

17 1/2” 20.60 44.41 N/A 21.00 51.33 N/A
15/6-9 S

8 1/2” 21.06 29.14 N/A 22.94 42.60 N/A

Average 32.706 43.278

Error < 15% , Error 15− 35%, and Error > 35%

From testing the models with the dataset from Gina Krog field (Table 5),333

more than half of the cases returned misclassification rate below 30.5% for both334

applied classification rules. Misclassification rates above 35% were mostly found335

when testing dataset from Well 15/6-11 S, especially on hole size 17 1/2”. A336

consistent misclassification was found for Skade and Grid formation with shale337

misclassified as sandstone. Even though all models of 17 1/2” hole section were338
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Table 6: Misclassification rates of the second test in Test 2, with test set from Ivar Aasen field

Rule #1 Rule #2
Model

Hole

size 16/1-14 16/2-7 16/2-13A 16/1-14 16/2-7 16/2-13A

17 1/2” 32.29 62.38 N/A 30.87 60.17 N/A
15/5-7 A

8 1/2” 50.55 75.53 53.42 52.42 76.03 57.27

17 1/2” 25.46 36.86 N/A 24.86 32.77 N/A
15/6-11 S

12 1/4” 11.47 36.50 21.35 16.07 35.52 23.57

17 1/2” 32.56 54.24 N/A 30.92 49.29 N/A
15/6-9 S

8 1/2” 40.56 70.29 45.71 56.16 80.52 70.75

Average 35.119 46.479

Error < 15% , Error 15− 35%, and Error > 35%

also trained using dataset from Grid formation, the prediction on this shaly339

sandstone section was still challenging. Meanwhile, the accuracy of prediction340

from the application of rule #2 in most cases did not improve significantly and341

the averaged misclassification rate even increased compared to the results with342

rule #1 applied.343

Less accuracy was observed when the models were tested using the dataset344

from Ivar Aasen field, with more than half of cases returned misclassification345

over 35 % (Table 6). In the most cases, the false prediction was due to shale346

misclassified as the not-shale lithology. Unlike the misclassification due to shaly-347

sandstone layers in the previous case, the misclassification in the current case348

was mainly due to the difference of gamma-ray data distribution between the349

models and test dataset. Comparing the gamma-ray probability density function350

of Hordaland formation group from wells at Gina Krog and Ivar Aasen field, we351

found that the shale reading from wells in Ivar Aasen was generally lower than352

wells in Gina Krog, see Fig. 6. In addition, the peaks of probability densities353

for both lithologies lie down on the different gamma-ray values, and the data354

range for each lithology was different. The discrepancy was presumed due to the355

sensitivity of the tool factors to the borehole environments. Indeed, it is common356

that wells in one field are exclusively drilled and logged in similar manners, but357

it is rarely done for wells in different fields. Hence, factors such as tool diameter358

and offset, mud weight, and cement thickness, caused inconsistency of gamma-359

ray reading from field to field.360

5.3. Summary of results361

Several lessons from tests above were learned regarding the automated lithol-362

ogy prediction method with gamma ray log. First, the method was successfully363

applied on univariate variable of gamma-ray and produced models that predicted364

lithology in two different tests with fair accuracy. In addition, we observed that365

the models in both test had high sensitivity to capture the change of thin lithol-366

ogy layers, as shown in Fig. 7. Second, the current models were limited by the367
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(c) Well 16/1-14
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(d) Well 16/2-7

Fig. 6: Gamma-ray distribution as probability density function of Hordaland formation group
in wells from Ivar Aasen- (a & b) and Gina Krog (c & d) field, estimated using kernel density
estimation

tool sensitivity from borehole environmental factors. Without including those368

error factors in the models, the prediction would only be valid for wells with the369

same hole size or wells from the same field as the models. Another source of370

weakness in the models was the prediction limitation on the complex lithology,371

such as shale-sandstone mixture, that relatively had low gamma-ray reading.372

Lastly, the contribution of geological interpretation to increase prediction accu-373

racy was not significant, especially in Test 2. It was still unclear whether the374

biggest cause was due to the poor lithology estimation from geological inter-375

pretation, or the large testing dataset size that reduced the sensitivity of prior376

probability, or the combination of both.377

6. Application of lithology prediction method in practice378

The tests above proved that models developed using the proposed algorithm379

could give accurate prediction, and hence the method is valid to be implemented380

in practice. The implementation can be done in multiple ways depending on the381

problems to be solved. In this paper, however, we highlighted the application382

in the most excellent way the proposed method can offer.383
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(a) Test 1, Well 15/5-7 A S, 81/2” (b) Test 2, Well 15/5-7 A S from model
Well 15/6-9 S, 171/2”

Fig. 7: Lithology predicition on thin layers: a) layers of shale (4,000-4,500 m) and sandstone-
shale-coal (4,085-4,115 m) and b) layers of shale-sandstone (1,735-1,885 m), are predicted
correctly.

The application of non-parametric technique within the method means that384

the modeling can be processed continuously to update the classification models385

everytime new elements of training data are observed. This type of modeling is386

very suitable for any operation in the field that implements mud-pulse telemetry387

system to obtain real-time data from borehole. Such as in drilling operation, the388

training data can be taken from the real-time log reading of the drilled section389
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that the lithology has been verified with valid information, such as cutting390

visualizations. As the drilling ongoing on a particular well and the models391

are updating, the prediction can be made for the undrilled section of the same392

well. The process of prediction following the suggested approach was reasonably393

represented by the data employment in Test 1, where the prediction was made394

using training dataset taken from the same well. In Test 1, the training data395

from the 70 % of the uppermost depth can be presumed as the drilled formation,396

while the test data from the 30 % of remaining depth can be presumed as the397

undrilled formation.398

Furthermore, the modeling can also be achieved without using real-time399

training data, for example by using history data from the neighboring wells.400

This way of application was closely represented by the process in Test 2 that used401

the training data from the neighboring wells for prediction. This approach of402

modeling can be applied to aid the prediction from the real-time data modeling,403

specifically at the beginning of real-time operation when the size of training data404

is insufficient to be modeled.405

7. Next steps406

A number of possible future studies using the proposed algorithm are appar-407

ent. In the next step, it would be necessary to improve and develop the method408

by modeling more explanatory variables using more sophisticated techniques of409

kernel density estimation (Hovda, 2014). Adding and combining more variables410

would enhance the features of each lithology, especially for complex mixture,411

such as shaly sandstone. For example, spectral gamma-ray log is relevant for412

describing the feature of mineral contents, while resistivity log is relevant for413

describing the feature of fluid contents. Therefore, the dimension of lithology414

groups that are inspected can be increased.415

A further investigation is suggested to examine the sensitivity of different416

logging tools toward error factors – such as drillstring mechanical effect, bore-417

hole quality, drilling fluid type. By acquiring the error factors, corrections can418

be included together in the algorithm, and automatically assigned during the419

modeling. Therefore, the prediction made by models will not be subjective for420

specific conditions, such as hole sizes or well location. Lastly, a greater focus421

on applying the method in practice, as suggested in the previous chapter, could422

provide definite evidence of the method’s effectivity.423

8. Conclusion424

An automated lithology prediction method was outlined in this paper. A425

univariate version that uses the gamma-ray log was evaluated in terms of its426

misclassification rates. Among the run tests, the most accurate predictions427

were found for gamma-ray models to predict: (a) dataset from the same well as428

the training data, as indicated in Test 1, and (b) dataset from the wells in the429

same field as the training data. More than half of the cases in the predictions430
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mentioned above returned misclassification rate less than 31%. These results431

are viewed as meeting the initial goal of providing accurate lithology prediction432

using the developed method. Despite the good accuracy, the non-parametric433

technique applied in the method is suitable for data modeling without the need434

to set initial assumptions of training data distribution, allowing the models to435

expand. The method is believed to be an effective tool applied in the field,436

especially for real-time operation.437
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