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Measurement error in regression models has obtained a lot of attention in the

past decades. However, error in count outcomes of Poisson or negative binomial

regression has not been explicitly addressed in the literature. In this paper, we

illustrate potential effects of miscounting error in the outcome by employing both

theoretical considerations and simulations, and propose methodology to adjust

for such error. While covariate-independent response error leads to potentially

attenuated parameter estimates, covariate-dependent error may also overestimate

the treatment effects. The overestimation of effects is, however, particularly del-

icate in the context of clinical trials, where an important assumption is that esti-

mation procedures are conservative and do not overestimate treatment effects. A

hierarchical Bayesian model, comprising negative binomial regression and error

models, is suggested to account for covariate-dependent miscounting error. The

methodology was applied to data from a large randomized controlled trial with

the number of exacerbations of Chronic Obstructive Pulmonary Disease (COPD)

patients as outcome. Validation data from an external study was used to obtain

prior information on the response error model. Posterior distributions were es-

timated by a standard Markov chain Monte Carlo (MCMC) sampling approach.

The results reveal that the treatment efficacy of the presented study might have

been under- or overestimated due to miscounting error in the response.
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1 Introduction

The modelling of measurement error (ME) and the description of its effects on the parameter

estimates of regression models have a long tradition in the statistical literature (Pearson,

1902; Wald, 1940; Berkson, 1950; Fuller, 1987; Carroll et al., 2006; Buonaccorsi, 2010). The

ME-induced biases in parameters can roughly be classified into attenuation (bias towards

zero) and reverse attenuation (bias away from zero) effects. Interestingly, the vast majority

of literature on ME in regression focusses on error in the covariates, which is also reflected by

the attention given to it by recent monographs on error modelling (Gustafson, 2004; Carroll

et al., 2006; Buonaccorsi, 2010).

In contrast to the covariates, which are not required to obey any distributional assumptions

and are assumed to be error-free in standard regression methods, variability in the response

is allowed and modelled via the likelihood of the regression model. The linear regression

case, for instance, has been discussed by Abbrevaya and Hausman (2004) and Carroll et al.

(2006), who mentioned that unbiased, additive, homoscedastic ME in the response of a linear

model is simply absorbed in the variance of the distribution, and thus requires no additional

modelling efforts. For heteroscedastic error in a continuous response, weighted regression or

generalized least squares methods can be used (Carroll and Ruppert, 1988), while methods

for the linear model with biased response were proposed by Buonaccorsi (1991, 1996) and

Buonaccorsi and Tosteson (1993). On the other hand, there exists no variance term that

could absorb response error in logistic regression, i. e. response misclassification, and this

case thus needs specific treatment. Methods have been discussed in various papers (Ekholm

and Palmgren, 1987; Copas, 1988; Neuhaus, 1999, 2002). Paulino et al. (2003) presented

a Bayesian approach towards error modelling for the response in binomial regression, and

Magder and Hughes (1997) proposed an EM algorithm to recover unbiased estimates of the

odds ratios and their variances.

Our work was motivated by the paper by Frei et al. (2015), where it was recently shown that

self-counted exacerbation numbers of COPD patients may contain considerable miscounting

error. Exacerbation numbers are frequently used as a response variable in clinical trials.

One example of such an application is the Towards a Revolution in COPD Health (TORCH)

study (Calverley et al., 2007), where the rate of moderate COPD exacerbations was included

as a secondary endpoint. Self-counted exacerbation numbers of COPD patients were used

as proxies for the true values, and a negative binomial regression model was fitted. In this

paper, we will therefore focus on miscounting error in count outcomes of Poisson or negative

binomial regression models. Count outcomes occur in virtually all disciplines, for instance

in ecology (White and Bennets, 1996), epidemiological studies (Wakefield, 2007) or in the

context of randomized clinical trials (RCTs) (Suissa, 2006). Specific literature discussing

miscounting error in the outcome of Poisson or negative binomial regression models is so far

lacking. Effects of error in count outcomes of Poisson or negative binomial regression models
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will be discussed here, and we propose a general modelling framework using a Bayesian

approach to adjust for such error. We will formulate a hierarchical model, including a

Poisson regression model and a negative binomial error model. In the simplest setup the

error model is independent of the covariates, in which case the observed response is called

a surrogate for the true response (Prentice, 1989; Carroll et al., 2006). However, it can be

useful to formulate the response error models in more generality by allowing for covariate-

dependency, as it was done for binomial regression (Neuhaus, 1999, 2002; Paulino et al.,

2003). This leads to a non-surrogate response. The idea of a non-surrogate response is the

analogue to the well-known concept of non-differential ME for error in a covariate, which

holds if the error is independent of the response, given the true covariate(s) (Carroll et al.,

2006). Implications of surrogate and non-surrogate responses and how to model them will be

discussed, and potential effects will be illustrated from theoretical considerations and with

simulations. In the application to the TORCH data, we use both a surrogate model and a

model with an explicit dependency of the miscounting process on the binary treatment, and

it will be shown that the results are sensitive to the model choice. A proper error model

is thus crucial, as the correction might otherwise be in the wrong direction and then could

lead to an increased bias. Our results indicate that the treatment-effect might have been

underestimated in the original analysis.

An important step in error modelling, be it in covariates or in the response of regression

models, is the estimation of the error model parameters from validation data, expert knowl-

edge or instrumental variables (Carroll et al., 2006). Such information then enters in the

form of prior information. However, hierarchical measurement error models are commonly

nonidentifiable if all parameters are unknown, although Gustafson (2005) has illustrated

that in a Bayesian setup, already the use of crude prior information may be an alternative

to gaining identifiability through a change in the model formulation, in particular if there is

sufficient indirect learning about nonidentifiable model parameters. However, we will show

that crude priors are sometimes not sufficient in our models, which are very different from

those considered by Gustafson (2005).

This paper is organized as follows. Section 2 recalls regression models for count outcomes

and introduces the negative binomial error model for a miscounted response, which is then

combined with the regression model to a hierarchical Bayesian model. Potential effects

of error in the response are discussed. In Section 3 we provide some simulation results

to illustrate the effect of miscounting response error in specific cases. We then apply the

methodology in Section 4 to study data from COPD patients that were included in the

TORCH study (Calverley et al., 2007). Finally, Section 5 provides some conclusions, and we

discuss the importance, but also possible difficulties, of error modelling.

3



2 Methodology

2.1 Poisson and negative binomial regression models

Assume we have regression model with n observations, count outcome y = (y1, . . . , yn)>, a

binary vector x = (x1, . . . , xn)>, hereafter called the treatment, and a covariate matrix z of

dimension n × p containing p additional covariates. A count outcome yi is often modelled

with Poisson regression, yi |µi ∼ Po(µi), where the mean µi = E(yi) and the linear predictor

ηi are linked via

h−11 (µi) = ηi = β0 + βxxi + ziβz , (1)

with link function h−11 , which is typically the log. The row vector zi contains the p covariate

measurements of individual i. The regression parameters β0, βx and βz are the intercept,

the treatment-effect and the parameters of the remaining covariates, respectively.

A possible limitation of the Poisson model is that the mean and the variance of the Poisson

distribution are equal, which is an assumption that is often not justified in applications.

Models with count outcome are thus frequently analyzed by negative binomial regression

to account for additional variability between individuals, which results in overdispersion

(Hilbe, 2011). A negative binomially distributed random variable y ∼ NBin(µ, θ) can be

parameterized in various ways. Here, we use

Pr(y = k) =
Γ(θ + k)

k! Γ(θ)

(
θ

θ + µ

)θ (
µ

θ + µ

)k
, k = 0, 1, 2, . . . ,

with expected value E(y) = µ and variance Var(y) = µ(1 + µ/θ). The parameter θ thus

accounts for overdispersion, and Poisson data without overdispersion can be obtained for

θ → ∞, i. e. the smaller θ, the more overdispersion. As in (1), the mean µi of a negative

binomial regression

yi |µi ∼ NBin(µi, θ) (2)

is linked to the linear predictor via µi = h1(ηi) with link function h−11 typically being the log

or the identity link function.

2.2 Error model for count outcome

Assume that a count outcome yi has been observed with error, so that not yi, but a proxy y?i

is recorded. Let us further assume that the observation y?i is again a count, i. e. that there

is some miscounting error. It is then natural to formulate a negative binomial error model

y?i | yi ∼ NBin(h2(γ0 + γ1yi), θE) , (3)
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with parameters γ = (γ0, γ1)
> and overdispersion parameter θE > 0. The function h2 is

the inverse link function, where h−12 is usually the identity function, but could be replaced

with the log or any other monotonically increasing function. The identity link is predestined

when the true and the observed counts are on the same scale.

At first glance it may be more natural to formulate the even simpler error model y?i | yi ∼
NBin(yi, θE), i. e. the special case with identity link and parameters γ0 = 0 and γ1 = 1. This

is also the model that leads to unbiased error, i. e. E(y?i | yi) = yi. However, outcomes with

yi = 0 then necessarily lead to observations y?i = 0, meaning that zero counts are always

correctly reported. This restriction seems unnatural, and it can be avoided only if γ0 > 0

to allow for over-reporting in the case yi = 0. This consideration shows that unbiasedness is

not an essential property of count error modelling, as the error distribution is not naturally

symmetrical, especially for small counts.

Note that the use of a negative binomial error model implicitly presumes that the error

variance is Var(y?i | yi) ≥ E(y?i | yi), and equality holds when the model is Poisson, i. e. θE =

∞. The model thus imposes a minimal variance for the distribution of the observed counts

around the true counts. In some situations such a modelling assumption could be implausible,

in which case the negative binomial error model may be replaced by a count model that allows

for underdispersion, such as the generalized event count model or the generalized Poisson

distribution (Winkelmann, 2008). However, we do not further discuss underdispersion of

count error models here.

The formulation of model (3) implies that Pr(y?i | yi, xi, zi) = Pr(y?i | yi), i. e. the error is

independent of the covariates (xi, zi), given the true response yi. Observation y?i is then

called a surrogate response (Prentice, 1989; Carroll et al., 2006). In a more general setup,

however, y?i may depend on the covariates (xi, zi). The most general formulation is then

y?i | yi, xi, zi ∼ NBin(h2(γ
(xi,zi)
0 + γ

(xi,zi)
1 yi), θ

(xi,zi)
E ) . (4)

However, to keep notation simple, we omit the representation with covariate dependency

from now on, except when explicitly needed.

2.3 The effect of a miscounted response

It is important to understand the effect of error-prone count outcomes y?i on the parameter

estimates in the negative binomial regression model (2). As discussed in Section 2.2, the

error model (3) may induce bias in the observed counts y?i , i. e. E(y?i | yi) 6= yi, and unbiased

error is only obtained for the identity link h−12 = id and parameters γ0 = 0 and γ1 = 1. If

the response error is unbiased, the parameter estimates for β0 and βx are also unbiased in

the naive regression because h−11 (E(y?i )) = h−11 (E(yi)) = β0 + βxxi. For γ0 = 0 but γ1 6= 1,

the error model is no longer unbiased, but with the standard log-link, the slope parameter
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βx can still be consistently estimated, as can be seen from

log(E(E(y?i | yi)) = log(E(γ1yi))

= log(γ1) + log(E(yi)) (5)

= log(γ1) + β0 + βxxi .

More generally, the likelihood for a response y?i following error model (4) can be written

as

Pr(y?i |xi, zi) =
∑
yi

Pr(y?i | yi, xi, zi)Pr(yi |xi, zi) . (6)

If y?i is a surrogate for yi, the expression Pr(y?i | yi, xi, zi) can be replaced by Pr(y?i | yi).
If there is no relationship between yi and the covariates (xi, zi), both terms of (6) are

independent of (xi, zi), and thus also y?i is independent of the predictors. A naive regression

analysis then leads to valid conclusions about the association of the predictors with the

true response, although the resulting tests have decreased power, as discussed in Carroll

et al. (2006)[section 15.4]. However, if the observation y?i is not a surrogate for yi, there

may be a relationship between y?i and (xi, zi), even if the true response does not depend

on the covariates. Classical hypothesis tests for the regression parameters βx and βz are

then no longer valid and their significance can be spurious (reverse attenuation). On the

other hand, a true relation between the covariates and yi may be masked by a surrogate

or a non-surrogate response. The direction of a potential bias in the parameter estimates

induced by the ME in y?i can thus not be predicted in general.

2.4 Hierarchical Bayesian model

Consider a negative binomial regression model with count outcome yi and linear predictor ηi

as given in equation (1), but assume that yi can only be observed via a proxy y?i containing

miscounting error. We then formulate a hierarchical model that comprises a Poisson model

for the true observations, and a negative binomial error model:

yi ∼ Po (h1(ηi)) , (7)

y?i | yi ∼ NBin (h2(γ0 + γ1yi), θE) .

Again, h1 and h2 denote the inverse link functions of the regression and error models, re-

spectively. The use of a Poisson regression model has an intuitive interpretation: all extra-

variability in the measured response is attributed to the miscounting process. The assump-

tion could be relaxed by using a negative binomial regression model, but it may then be

difficult to identify the various contributors to the variance of y?i , in particular if no prior

information about the overdispersion parameter of the regression model is available. Inde-

pendent normal priors with small precisions are usually specified for β0, βx and βz in the
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linear predictor ηi. Information on the parameters of the error model γ = (γ0, γ1)
> and θE

must be obtained from validation data or expert knowledge. If the error model is expected

to be covariate-dependent, it is beneficial if the model parameters can be estimated from

separate validation data (sub)sets.

The marginal distribution of the measured response yi
? following model (7) is overdispersed

by construction. This also holds if y?i | yi is Poisson distributed, i. e. when θE =∞, in which

case the marginal expectation and variance of y?i are given as

E(y?i ) = E(E(y?i | yi))

= E(h2(γ0 + γ1yi)) ,

Var(y?i ) = E(Var(y?i | yi)) + Var(E(y?i | yi))

= E(h2(γ0 + γ1yi)) + Var(E(y?i | yi)) .

The last equality holds because variance and expected value are equal under the Poisson

assumption. Except in the practically irrelevant case with γ1 = 0, the term Var(E(y?i | yi))
is > 0, leading to Var(y?i ) > E(y?i ), i. e. overdispersion. Clearly, the variance term Var(y?i )

increases if the error model is overdispersed with θE <∞, in which case Var(E(y?i | yi)) (and

thus the overdispersion) depends on all three error model parameters γ0, γ1 and θE. This

indicates that strong prior information might be important in practical applications, as the

parameters may otherwise not be identifiable.

The aspect of identifiability is a general concern in ME modelling, namely when the error

model parameters are unknown (Gustafson, 2005). Equation (5), for instance, illustrates

that confounding between γ1 and β0 could be an issue. Another situation that leads to

potential identifiability problems is when the error model is treatment-dependent, i. e. when

there are two sets of error model parameters γ(0) = (γ
(0)
0 , γ

(0)
1 )> and γ(1) = (γ

(1)
0 , γ

(1)
1 )>. The

treatment effect βx and the error model parameters are then confounded by construction,

as both act on the difference between the treatment groups in the observed outcome y?.

Interestingly, Gustafson (2005) has illustrated that already relatively crude priors can be

sufficient to obtain good results if there is enough indirect learning about nonidentifiable

model parameters. However, it will be illustrated in Section 3 that crude priors may not be

adequate for our models, in particular when the error model is treatment-dependent.

Irrespective of identifiability considerations, marginal posterior distributions for the pa-

rameters of model (7) can be obtained by Markov chain Monte Carlo (MCMC) sampling.

Note that the latent variable y = (y1, . . . , yn)> is not Gaussian, and it is thus not possible to

approximate the posterior marginals by integrated nested Laplace approximations (INLA),

which are a computationally convenient alternative to sampling approaches for Bayesian in-

ference in latent Gaussian models (Rue et al., 2009), in particular in the presence of covariate

measurement error (Muff et al., 2015).
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3 Simulation study

As discussed in Section 2.3, the effect of response ME as given in model (4) on the parameters

in a negative binomial regression model cannot generally be predicted. In order to obtain

some intuition of the biases induced by such error it is useful to generate data from different

error models. Parameters estimates from naive regression models are then compared to

their error-free counterparts, as well as to the results that are obtained when the error is

modelled. The impact of nonidentified error models is also illustrated by incorporating both

fixed error model parameters and prior uncertainty in the analyses of simulations 1 and 2. In

each example presented here, we generated n = 2000 observations and included a treatment

indicator x with xi = 0 for i = 1, . . . , 1000 and xi = 1 otherwise. The linear predictor of

regression model (2) thus simplifies to

ηi = β0 + βxxi ,

with regression parameters fixed at simulation-specific values. Each simulation was repeated

200 times. In each iteration, parameter estimates for the treatment effect βx from the

following three models were stored:

(i) the maximum likelihood (ML) estimate including the data without error.

(ii) the ML estimate including the data with error, leading to the naive estimate.

(iii) the posterior mean of an MCMC sample for the hierarchical Bayesian model (7) with

a burn-in of 1000 and a sampling of 5 000 iterations. Here, independent zero-mean

Gaussian priors with a variance of 108 have been specified for β0 and βx.

ML estimates were obtained using the glm.nb() or glm() functions in R (R Core Team,

2013). MCMC samples were generated in JAGS via the R-interface rjags (Plummer, 2003).

Means with 2.5% and 97.5% quantiles of the stored parameter estimates were then plotted

in Figure 1.

Simulation 1: Surrogate response error

In the first example, data were generated as

yi ∼ Po (exp(β0 + βxxi), θ) ,

y?i | yi ∼ NBin (γ0 + γ1yi, θE) , (8)

with (β0, βx) = (0.5, log(0.65)), γ = (0.4, 1.2), and θE = 4. The effect of the erroneous

response values y?i in naive regression was attenuation of βx (bias towards 0), and thus the

rate ratio exp(βx) was biased towards 1, as illustrated in the upper left panel of Figure 1.

Simple analytical calculations show that the error in the hierarchical model (8) always induces

8



this attenuation effect, independent of the error model parameters or the values of (β0, βx)

(see Appendix B). In a first MCMC analysis, γ was included as fixed parameter vector using

the same values as for generating the data, and the overdispersion parameter was given a

log-normal prior θE ∼ LN(log(4), 0.05). The posterior means were unbiased, but with larger

variances than when the error-free data were used in an ML analysis. The results are labelled

as Corrected.a in Figure 1.

A second analysis was then realized with the same prior for θE, but replacing the fixed

parameters γ by a Gaussian prior centered around the correct values γ ∼ N((0.4, 1.2)>,Σ(γ))

with covariance matrix

Σ(γ) =

(
0.01 −0.0025

−0.0025 0.01

)
. (9)

This reflects a prior standard deviation of 0.1 for γ0 and γ1 with prior correlation of -0.25.

The results labelled as Corrected.b indicate that exp(βx) could still be estimated with almost

no bias, despite the use of flexible priors. To further study the effect of prior uncertainty

of the γ parameters on the estimate of the rate ratio, the analysis was repeated with the

same setup, but replacing the covariance matrix (9) with 10 ·Σ(γ). The results labelled as

Corrected.c then show that the estimate moves further away from the correct value, although

the bias is not too severe. However, this example illustrates that identifiability considerations

are relevant in the hierarchical models presented here, as already discussed in Section 2.4.

In contrast to the models approached in Gustafson (2005), the lesson from this simulation

is that prior uncertainty in the error model parameters should be incorporated with great

care, and vague priors should be avoided, if possible.

Simulation 2: Non-surrogate error with treatment-dependent modelling

We again used the log link for the Poisson regression model, and (β0, βx) = (0, log(0.65)). A

treatment-dependent negative binomial error model

y?i | {yi, xi = j} ∼ NBin
(
γ
(j)
0 + γ

(j)
1 yi, θ

(j)
E

)
, j = 0, 1 , (10)

was used with γ(0) = (0.4, 0.8)>, γ(1) = (0.2, 1.2), and θ
(0)
E = θ

(1)
E = 4. The naive estimate

of exp(βx) was biased towards 1, i. e. attenuated, as can be seen in the upper right panel of

Figure 1.

The treatment-dependency was incorporated by assuming γ(0) and γ(1) to be known. The

dispersion parameters θ
(0)
E and θ

(1)
E were given log-normal priors LN(log(4), 0.05). The results

from the MCMC simulations are depicted as Corrected.a in Figure 1, showing that correct

parameter estimates can be recovered. We then added separate Gaussian priors for γ(0)

and γ(1), centered around the correct values and with covariance matrix (9). The results

labelled as Corrected.b indicate that almost unbiased parameter estimates for exp(βx) could

be recovered, despite the incorporation of some uncertainty in the priors.
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The analysis was again repeated with ten times larger variances and covariances on the

γ priors. The results labelled with Corrected.c show that the model is then unable to re-

cover approximately correct parameter estimates on average. The treatment effect is on

average more attenuated than in the naive approach, and the variability has increased dra-

matically. This result underlines the identifiability problem of the hierarchical model with

treatment-dependent error, as discussed in Section 2.4. We conclude that prior uncertainty

in treatment-dependent error model parameters should be incorporated with even more care

than for surrogate error models. The use of informative priors should be considered, if

possible.

Simulation 3: Non-surrogate error with surrogate modelling

The aim of this simulation was to illustrate how a treatment-dependent response error may

lead to reverse attenuation and thus to overestimated treatment-effects. The error model

was given as in equation (10) with (β0, βx) = (0.5, 0), γ(0) = (0, 1.2)>, γ(1) = (0.2, 0.8)>, and

θ
(0)
E = θ

(1)
E = 4. Note that xi is now chosen to have no effect on the response, since βx = 0.

The naive estimate of exp(βx) was severely affected by the error in the response, as can be

seen in the bottom left panel of Figure 1.

In contrast to simulation 2, the naive effect appeared stronger, i. e. the estimated rate

ratio was biased away from 1, as can be seen in the plot labelled as Naive in Figure 1. This

shows that the bias induced by treatment-dependent error in the response may be in both

directions. In practice this would mean that the naive analysis does not give a conservative

estimate of the treatment effect. To illustrate that an error model that ignores a treatment-

dependency is generally not able to recover unbiased parameter estimates, we incorporated

a surrogate response model for y?i | yi using error parameters fixed at the true value θE = 4

and at the average values of the two groups γ = (0.1, 1.0)>. The correct value exp(βx) = 1

could not be recovered, and although the correction was in the right direction, the use of

such average error model parameters appears essentially useless. The results for this case

are labelled as Corrected in the bottom left panel of Figure 1.

Simulation 4: Surrogate error with wrong parameters

Suitable prior information on the error model parameters is important to obtain useful cor-

rections of regression parameters. To illustrates this aspect of response error modelling,

we generated data according to model (8) with exactly the same parameters as in simula-

tion 1 with (β0, βx) = (0.5, log(0.65)), γ = (0.4, 1.2)> and θE = 4. Error correction was

then done by using a misspecified error model with fixed values γ = (0, 1.2)>, i. e. with a

wrong γ0 parameter. The overdispersion parameter was again given the log-normal prior

θE ∼ LN(log(4), 0.05). Instead of diminishing the bias, the resulting correction then led to

estimated rate ratios that were even closer to 1, meaning that the bias was enlarged. The

results are depicted in the bottom right panel of Figure 1.
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0.5 0.65 0.8

Simulation 1

●●

0.4 0.65 1.15 1.9

Corrected.c

Corrected.b

Corrected.a

Naive

Error−free

Simulation 2

0.7 0.8 1.0

Simulation 3

Rate ratio

●

0.65 0.75 0.85

Corrected

Naive

Error−free

Simulation 4

Rate ratio

Figure 1: Boxplots for the ML estimates of error-free and naive estimates, as well as for
the posterior means for the error-corrected estimates of the treatment vs. placebo
rate ratio exp(βx). Each boxplot was generated from the 200 iterations of the
simulations. Note that the x-axis is given in log-scale.
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4 Application to the TORCH study data

The TORCH trial (Calverley et al., 2007) was a large trial of pharmacotherapy in patients

with COPD that lasted for 3 years. The study included 6112 patients in the efficacy pop-

ulation, of which n1 = 1524 received a placebo and n2 = 1533 a combination treatment

(salmeterol plus fluticasone). Another 1521 patients received only salmeterol and 1534 re-

ceived only fluticasone, but these treatment arms were not included in our analyses. The

primary objective of the study was to demonstrate a significant reduction in all-cause mortal-

ity in COPD subjects that obtained the combination treatment, compared with the placebo

group. The rate of moderate COPD exacerbations was included as a secondary endpoint,

which is the interest of this example. The data from the TORCH study was provided by

a data access system and was accessed through the SAS Solutions on Demand secure por-

tal (https://researchenvadmin.ondemand.sas.com). All analyses were carried out in the

provided Clinical Trial Data Transparency Research Environment, from where results could

then be exported.

Calverley et al. (2007) analyzed the frequency of exacerbations using a negative binomial

model, with x indicating the treatment (xi ∈ {0, 1}), adjusted for region of recruitment

(Eastern Europe, Western Europe, USA, Asia and Pacific, Other), age, sex, baseline smok-

ing status (yes/no), BMI, number of exacerbations in the 12 months prior to screening

(categorized as 0, 1, ≥ 2), and baseline disease severity. These confounder variables were

summarized in the matrix z. To account for inter-individual differences in the time under

treatment, the logarithm of the time log(Ei) during which individual i received treatment

was included as an offset variable (Suissa, 2006). The rate ratio for treatment vs. placebo was

estimated as 0.75 with a 95% confidence interval of (0.69, 0.81). These values are depicted

as the ”naive” result in Figure 2. Note that the presence of additional covariates introduces

another level of complexity, compared to the simulations of Section 3 without covariates

apart from x.

Importantly, the exacerbation numbers that were used in the analysis of Calverley et al.

(2007) stem from patient self-reports, and miscounting error is thus a concern. Denote

by y? = (y?1, . . . , y
?
n) the vector of self-reported exacerbation numbers, with y?i being the

number reported by patient i. We modelled the error in y? using the data from Frei et al.

(2015), an external validation study, where self-reported exacerbation numbers of COPD

patients were compared to the numbers ascertained by an adjudication committee who had

access to the patients charts of their general practitioners, patient self-reports and from all

follow-up assessments. The aggregated validation data are shown in Table 1. A negative

binomial regression model with identity link was fitted to describe the distribution of the

reported counts as a function of the true counts. The model parameters were estimated

without stratification for treatment or any additional covariates, which seemed natural, as

the validation data in Frei et al. (2015) stem from an observational study and were thus not
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collected in the context of a randomized clinical trial.

0 1 2 3 4 5 6 7 8 9 10 11 12
0 127 24 5 4 2 2 1 0 0 0 0 0 0
1 26 40 5 2 1 3 0 0 0 0 0 0 0
2 9 17 10 4 2 1 0 0 0 0 0 0 0
3 3 6 7 10 2 3 2 1 0 0 0 0 0
4 1 7 3 6 2 3 2 1 0 0 0 1 0
5 0 3 5 4 0 4 1 1 0 0 0 0 0
6 0 2 4 1 6 1 2 0 0 0 0 0 0
7 0 2 2 0 2 0 0 0 0 0 0 0 0
8 0 0 0 2 2 0 1 2 1 0 0 0 1
9 0 0 0 1 0 0 0 1 1 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 2 0 0 2 0 0 0 0
13 0 0 0 0 0 1 1 0 0 0 0 0 0
14 0 0 0 0 1 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 1: Data on miscounting. Shown is the total number of centrally adjudicated exacerba-
tions per patient (columns) by the total number of self-reported exacerbations per
patient (rows).

ML estimates and variance-covariance matrix for the error model parameters γ are given

as

γ̂ = (0.3644, 1.0762)> ,

Σ(γ̂) =

(
0.00229 −0.000989

−0.000989 0.00460

)
, (11)

and the overdispersion parameter was estimated as θ̂E = 3.49 with a standard error of 0.765.

The fact that θ̂E � ∞ indicates that an error model with overdispersion is appropriate for

the miscounting error in this study. It was checked that the residuals are in the expected

range without obvious outliers. The plot with the deviance residuals versus fitted values is

shown in Figure 3 of Appendix A.

We started by formulating a hierarchical model for the analysis of the TORCH trial,

including a surrogate response error model as

yi ∼ Po
(
exp(log(Ei) + β0 + βxxi + β>z zi)

)
, (12)

y?i | yi ∼ NBin (γ0 + γ1yi, θE) .

Independent N(0, 102) priors were assigned to the components of β = (β0, βx,β
>
z )>. The

overdispersion parameter of the error model, estimated as θ̂E = 3.49, was given a log-
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normal prior LN(log(3.49), 0.222), whereas the second argument is the squared standard

error that was calculated using the delta-rule for log-transformed variables, se(log(θ̂E)) =

0.765/3.49 = 0.22. A Gaussian distribution with moments estimated in (11) was taken as

prior for γ, because simulation 1 indicated that the treatment-effect βx is not severely affected

by confounding problems when flexible priors are used. Importantly, by employing the

parameter estimates from the validation data as prior information for the TORCH analysis,

we implicitly assume that the error model deduced from the validation data is transportable

to the TORCH study. This seems to be a plausible assumption here, as both data sets

were collected over the same duration of three years, and the mean number of reported

exacerbations was 2.02 in the validation data, while it was 2.19 in the TORCH study, thus

length and exacerbation counts were similar.

Independent normal priors N(0, 102) were assigned to the components of β = (β0, βx,β
>
z )>.

Following the discussion in Section 2.4, we used a Poisson model for yi by setting θ = ∞.

The overdispersion parameter of the error model, that has been estimated as θ̂E = 3.49, was

given a flexible U[0,100] prior. I’m not

happy

with

the uni-

form

prior

on θE.

Better

using a

gamma

prior?

Any-

thing

else?

I’m not

happy

with

the uni-

form

prior

on θE.

Better

using a

gamma

prior?

Any-

thing

else?

A Bayesian analysis using MCMC was performed in rjags by running two parallel chains

for 25 000 iterations each, with a burn-in of 2 500 and a saving frequency of 5. The posterior

mean of the rate ratio for treatment vs. placebo was exp(β̂x) = 0.81 with a 95% credible

interval (CI) from 0.73 to 0.89. The graph labelled as Corrected.a in Figure 2 depicts this

estimate in comparison to the uncorrected estimate from Calverley et al. (2007). Error-

correction hence leads to a less pronounced estimated treatment effect, but also to more

uncertainty. To ascertain that the estimate of the treatment effect was not biased by a

confounding effect originating from the flexible priors on the error model parameters (see

simulations 1 and 2), we repeated the calculation by using fixed values γ> = (0.3644, 1.0762).

This did not change the result for exp(β̂x), which was then 0.81 with a slightly narrower 95%-

CI ranging from 0.74 to 0.89.

It has been illustrated in simulation 1 and analytically derived in Appendix B that sur-

rogate response error always leads to attenuation effects, thus reverse attenuation can only

occur when the error is treatment-dependent. The fact that surrogate error modelling led

to a correction towards 1 thus indicates that the model did not correctly capture the error

structure, or that the error parameters were not correctly specified, see simulation 4. Be-

cause information on the treatments of the patients in the validation data was available, we

incorporated a treatment-dependency into the error model. Simulation 2 revealed that, due

to identifiability problems, treatment-dependent error modelling is particularly challenging

and requires the specification of informative priors for γ(0) and γ(1). To obtain plausible

prior information on γ(0) and γ(1), we split our validation data set into two groups: one

group with patients that received a pharmacotherapy comparable to the one investigated in

the TORCH study (n1 = 332 patients), and a second group that did not (n0 = 75 patients).
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Estimates

γ̂(0) = (0.3973, 0.8433)> , Σ(γ̂(0)) =

(
0.00871 −0.00464

−0.00464 0.03024

)
, (13)

γ̂(1) = (0.3550, 1.1015)> , Σ(γ̂(1)) =

(
0.00309 −0.00130

−0.00130 0.00536

)
, (14)

were obtained when fitting the negative binomial regression models with identity link to

the two subsets. The overdispersion parameters were estimated as θ̂
(0)
E = 6.36 (se = 7.19)

and θ̂
(1)
E = 3.39 (se = 0.77). We first modelled the error using values fixed at the point

estimates from (13) and (14) for γ(0) and γ(1), log-normal priors θ
(0)
E ∼ LN(log(6.36), 1.132)

and θ
(1)
E ∼ LN(log(3.39), 0.232), while keeping the priors for β as before. The posterior

mean treatment effect from the MCMC simulations was then exp(β̂x) = 0.62 with 95%-CI

ranging from 0.56 to 0.69. This result is depicted as Corrected.b in Figure 2. The use of a

treatment-dependent response error model thus led to a noticeable increase in the treatment

effect estimate, although its uncertainty is probably underestimated due to the use of fixed

error model parameters γ(0) and γ(1).

A final analysis was then conducted by including flexible priors on the error parameters,

using the covariance matrices from (13) and (14). Note, however, that the prior covariance

matrix for γ(0) in (13) suffers from more uncertainty than the one for γ(1) in (14). This

large uncertainty is at least partially due to the low number of patients in the group without

treatment (n0 = 75 vs. n1 = 332). On the other hand, it must be kept in mind that

the validation data were not collected in the context of an RCT, meaning that patients

without treatment are probably those with less severe symptoms and thus experienced fewer

exacerbations, which also leads to more uncertainty in the parameter estimates. The estimate

exp(β̂x) = 0.74 and 95%-CI ranging from 0.53 to 1.03 are depicted as Corrected.c in Figure 2.

The shift of the estimate towards 1 and the increase of the CI when changing from fixed to

flexible priors for the γ parameters is exactly what has been observed in simulation 2, i. e. a

bias due to nonidentifability of the model. We thus conclude that the results for fixed error

model parameters are more trustworthy.

It would be tempting to use the Gaussian priors according to error model (11) for γ.

However, by doing this we would implicitly assume that the error model deduced from the

validation data is transportable to the TORCH study. Such an assumption can, however,

lead to a prior-data conflict (Box, 1980), particularly if the conditions under which the

validation data were collected differ from the study conditions, which is difficult to verify.

We therefore multiplied the covariance matrix from the validation data with a scalar g > 0,

leading to

γ ∼ N(γ̂, gΣ(γ̂)) , (15)
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Figure 2: Naive and error-corrected estimates for the treatment vs. placebo rate ratio exp(βx)
of exacerbation rates in the TORCH trial. Horizontal lines represent the 95% con-
fidence/credible intervals. The middle graph contains the result for the case when
a surrogate error model was used (Corrected.a), while the third and fourth graphs
shows the results for the treatment-dependent models with fixed (Corrected.b) and
flexible (Corrected.c) priors on γ(0) and γ(1). The vertical dashed line indicates a
rate ratio of 1, i. e. no treatment effect. Note that the x-axis is given in log-scale.

and used a hyper-g prior (Liang et al., 2008; Held et al., 2015) with

t =
g

g + 1
∼ U(0, 1) . (16)

A Bayesian analysis using MCMC was performed in rjags by running two parallel chains

for 25 000 iterations each, with a burn-in of 2 500 and a saving frequency of 5. The posterior

mean of the rate ratio for treatment vs. placebo was exp(β̂x) = 0.81 with a 95% credible

interval of (0.73,0.89), which corresponds to a posterior probability Pr(exp(βx) ≥ 1 | data) <

0.0001. The middle graph in Figure 2 depicts this estimate in comparison to the uncorrected

estimate from Calverley et al. (2007) (exp(β̂x) = 0.75, 95%-CI (0.69,0.81)). Error-correction

hence leads to a less pronounced estimated treatment effect, but also to more uncertainty.

Importantly, the posterior median of g was 5.04 with equi-tailed 95% credible interval ranging

from 0.87 to 38.44. The hyper-g prior thus decreased the weight of the prior on the regression

coefficients for the error model by a median factor of 1/5.04 = 0.20 (95% CI: 0.03 to 1.15),

which indicates that the error model deduced from Frei et al. (2015) indeed is in some conflict

with the error structure in the count response of the TORCH study, although the uncertainy

in g is large. Finally, the posterior median of θE is 3.59 with 95%-CI 2.68 to 5.31, which is

very close to the value observed in the validation study.

It has been illustrated in Section 3 that reverse attenuation effects may be the result

16



of a treatment-dependent response error model. However, as already mentioned, there is

no such information available here, neither from the study data (where miscounting error

was not assessed), nor from the validation data (where no treatments were involved). It is

nevertheless possible to introduce a treatment-dependency into model (12) by replacing the

error model with its treatment-dependent version, identical to the one formulated in (10).

This model was implemented here by using the same priors as for the surrogate response

error model for both sub-models, i.e., γ(0) = (γ
(0)
0 , γ

(0)
1 )> and γ(1) = (γ

(1)
0 , γ

(1)
1 )> were given

identical and independent priors(
γ(0)

γ(1)

)
∼ N

((
γ̂

γ̂

)
,

(
g0Σ(γ̂) 0

0 g1Σ(γ̂)

))
,

where 0 is the 2×2 matrix of zeros, assuming that the error model parameters for the

treatment and the placebo groups are independent. Individual inverse prior weights g0 and g1

for the two treatment-groups were used, and both were given the same hyperpriors as in (16).

The priors for β, θ, θ
(0)
E and θ

(1)
E were left unchanged. The posterior mean treatment effect

was now exp(β̂x) = 0.97 with a credible interval of (0.63, 1.64). The posterior probability

Pr(exp(βx|data) ≥ 1) = ..., thus indicating even less evidence for the efficacy of the therapy. check

from

simu-

lation

results

check

from

simu-

lation

results

The third level of Figure 2 illustrates this graphically. Again of interest are the posterior

median values for w0 = 1/g0 and w1 = 1/g1. While w0 was estimated to be 0.081 (95%-CI:

0.007 to 0.513) and thus considerably downweighted the prior for the placebo group, the

posterior median of w1 was 7.22 (95%-CI: 0.010 to 45.895), and thus increased the weight of

the prior distribution, although the uncertainty in w1 was large.

Figure ?? shows as lines the priors for the error model parameters, in comparison to

their posterior marginals, which are represented by histograms. The Figure clearly shows

two things: first, the prior and posterior distribution for γ0 are in strong disagreement,

indicating a prior-data conflict, which is also reflected by the small posterior median of w0.

On the other hand, priors and posteriors for γ1 are in good agreement, which is reflected

by the large posterior median of w1. Second, the substantial differences in the posteriors of

γ(0) and γ(1) further strengthens the conjecture that treatment-dependent error modelling

is necessary here.

5 Discussion

The use of a miscounted response in a Poisson or negative binomial regression may lead

to attenuated or reversely attenuated parameter estimates. We have proposed a statistical

framework to treat error in count outcomes to recover unbiased estimates of the regression

parameters. To this end, a negative binomial error model was formulated, and we have

shown how a Bayesian approach can be employed to jointly estimate posterior marginals for

the hierarchical model that encompasses a regression and an error model.
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In its most general form, the observed counts depend on the true counts via a covariate-

dependent error model, and it has been discussed in Section 2.3 and illustrated in Section 3

that the direction of the bias in the parameters is then not generally predictable. On the

other hand, if the count error is independent of the regression covariates, i. e. if y? is a

surrogate response for y, slope parameters are either unbiased or attenuated. In this case,

classical statistical tests that evaluate the predictive ability of a covariate are still valid, albeit

less powerful (Carroll et al., 2006). Most applied researchers are aware of biases induced by

ME in covariates or in the response of regression models. However, the assumption that

the observed covariates or the response are a surrogate for the true values is often made, in

which case the estimated effects are considered to be a lower bound of the true effects.

The proposed method has been applied here to data from the TORCH study, where the

efficacy of a treatment on the exacerbation rate of COPD patients was studied (Calverley

et al., 2007). Exacerbation numbers from patient self-reports have been included as response

values in the negative binomial model of this study, but these values have recently been shown

to contain considerable error (Frei et al., 2015). A Bayesian hierarchical model, including a

Poisson regression model and a negative binomial error model, was formulated, and posterior

inference was done using MCMC. We started by employing a treatment-independent response

error model, which led to a smaller estimated treatment effect than in the original TORCH

study. The fact that surrogate error modelling corrected the treatment effect exp(βx) towards

1 indicated that the error model was misspecified, because a correctly specified error model of

a covariate-independent error structure would lead to a correction in the opposite direction. It

is, however, not clear whether the condition of covariate-independence is violated, or wheter

the parameters of the surrogate model were misspecified, as it was the case in simulation 4. To

illustrate that a change of the modelling assumptions can have a strong effect on the results,

we allowed for treatment-dependency in the error model and used prior information from

our validation data set, which resulted in a considerably more pronounced treatment effect

estimate. The TORCH example thus illustrated two important points: first, the choice of the

error model is crucial. We could argue why the surrogate model with the given parameters

was implausible, and although we cannot verify that the treatment-dependent error model

is correct or that it has been parameterized perfectly, the example illustrated that the error

correction is sensitive to model choice. And second, the fact that the observed counts are

perhaps not a surrogate for the true counts means that the treatment effect exp(β̂x) = 0.75,

as estimated in Calverley et al. (2007), was not necessarily conservative, as its bias could

have been in any direction. When using the treatment-dependent error model, we anyways

observed the well-known reverse attenuation effect here (i. e. the estimate is exp(β̂x) = 0.62,

indicating that 0.75 could be an attenuated version of it). We again refer to simulation 3 of

Section 3 for an example that, however, induced reverse attenuation.

Generally, the complexity of error models increases the requirements on the validation

or expert data, as has also been discussed by Muff and Keller (2015), where non-constant
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error variances and non-constant variances of latent variables were considered. Here, prior

information about misclassification in the response of the TORCH trial was extracted from

the data presented in Frei et al. (2015), an observational study that aimed to assess the mis-

counting error in patient’s self-reported numbers of exacerbations. An implicit assumption

in the context of prior information transfer typically is that this external validation data are

transportable to the study of interest, i. e. that the circumstances under which the valida-

tion and the study data were collected are comparable, as the information in the validation

data does otherwise not lead to sensible priors for the study data analysis. In our example,

the validation and study data were collected over the same duration (three years), and the

reported exacerbation numbers were comparable. However, it can be objected that the pa-

tients in the validation study were not randomly assigned to treatments, which is in contrast

to the TORCH study. Moreover, in order to estimate treatment-dependent error model pa-

rameters, the validation data were split into two subsets, one for the patients that received

a pharmacotherapy, and one for those that did not. Again, the fact that the treatment-free

patients were not a random subset of the study population could lead to biased estimates of

error model parameters.

The available information from the validation data naturally influences the uncertainty

in the prior information of the error model parameters. It is, however, important to under-

stand the mechanisms of the hierarchical model in order to avoid biases that emerge due

to nonidentifability problems. We have illustrated that, while it can be safe to use priors

with covariance matrices estimated from validation data when the error is a surrogate, the

same practice is not recommended in the covariate-dependent case, because the γ(0) and γ(1)

parameters are then confounded with the effect of that respective covariate.

In conclusion, we have discussed that error in count outcomes may bias parameter esti-

mates of negative binomial regression models, and that the bias may be in any direction.

We have introduced a miscounting error modelling framework, and have highlighted the im-

portance and also some difficulties of error modelling, particularly in the context of RCTs,

where a crucial assumption is that effect estimates originate from conservative estimation

procedures. Probably the best way to circumvent expensive and tricky error modelling pro-

cedures is to directly optimize the quality of the data. In the example of the TORCH study

this could have been achieved by replacing patient self-reports by ascertained values obtained

from an adjudication committee. A possible positive side-effect of such an optimization is

that smaller study sampling sizes might be sufficient.
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6 Appendix A
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Figure 3: Deviance residuals versus fitted values of the negative binomial regression, where
the centrally adjudicated exacerbation counts from the validation study were fitted
against the respective patient self reports. A small jitter has been added to both
the fitted values and the residuals.

7 Appendix B

Let us look at the hierarchical model (8) with log link for the regression model and identity

link for the error model. The rate ratio of the treatment effect is then given as

exp(β0 + βx)

exp(β0)
= exp(βx) ,

whereas the expected value of the naive estimate is

γ0 + γ1 · exp(β0 + βx)

γ0 + γ1 · exp(β0)
.

To show that the naive estimate is always attenuated, i. e. biased towards 1, distinguish two

cases.

Case 1: βx < 0

Then exp(βx) < 1, and therefore

γ0 > γ0 exp(βx) .
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Adding γ1 exp(β0 + βx) on both sides gives

γ0 + γ1 exp(β0 + βx) > γ0 exp(βx) + γ1 exp(β0 + βx)︸ ︷︷ ︸
=exp(βx)·(γ0+γ1 exp(β0))

.

Finally,
γ0 + γ1 · exp(β0 + βx)

γ0 + γ1 · exp(β0)
> exp(βx) .

which shows that the naive estimate is biased upwards. Moreover, the naive estimate is

bounded by 1, which shows that it is biased towards 1.

Case 2: βx > 0

In this case, exp(βx) > 1, and exactly inverted arguments as in case 1 show that the naive

estimate then lies between 1 and exp(βx), i. e. bias towards 1 and thus attenuation of the

rate ratio.
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