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Abstract

Motivation: The number and complexity of genome-scale metabolic models is steadily increasing, empowered by
automated model-generation algorithms. The quality control of the models, however, has always remained a signifi-
cant challenge, the most fundamental being reactions incapable of carrying flux. Numerous automated gap-filling
algorithms try to address this problem, but can rarely resolve all of a model’s inconsistencies. The need for fast in-
consistency checking algorithms has also been emphasized with the recent community push for automated model-
validation before model publication. Previously, we wrote a graphical software to allow the modeller to solve the
remaining errors manually. Nevertheless, model size and complexity remained a hindrance to efficiently tracking
origins of inconsistency.

Results: We developed the ErrorTracer algorithm in order to address the shortcomings of existing approaches:
ErrorTracer searches for inconsistencies, classifies them and identifies their origins. The algorithm is �2 orders of
magnitude faster than current community standard methods, using only seconds even for large-scale models. This
allows for interactive exploration in direct combination with model visualization, markedly simplifying the whole
error-identification and correction work flow.
Availability and implementation: Windows and Linux executables and source code are available under the EPL 2.0
Licence at https://github.com/TheAngryFox/ModelExplorer and https://www.ntnu.edu/almaaslab/downloads.
Contact: nikolay.martyushenko@ntnu.no or eivind.almaas@ntnu.no
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The existence of multiple software platforms for the automated
reconstruction and curation of genome-scale metabolic networks
(e.g. Arkin et al., 2018; Karp et al., 2016; Wang et al., 2018) has
made such models commonplace. However, despite the existence of
a variety of automated gap-filling algorithms incorporated in these
tools (Faria et al., 2018), a large number of existing models contain
significant errors, such as energy-generating cycles (Fritzemeier
et al., 2017) and blocked reactions that leave parts of the metabolic
network unable to carry flux. Typical gap-filling tools are narrowly
focused on ensuring that a metabolic network produces biomass,
and these tools draw upon the same reaction databases as were used
for making the model in the first place. Additionally, model
consistency-checking is at the center of the current community-push
for standardized model testing and quality assessment (Lieven et al.,
2018), and it is necessary with fast algorithms for consistency check-
ing and error identification. To address these challenges, we have
developed a novel set of algorithms, called ErrorTracer, which are
implemented in a published graphical model-correction framework

(Martyushenko and Almaas, 2019). We demonstrate that
ErrorTracer is not only orders of magnitude faster than existing
algorithms (Dreyfuss et al., 2013; Martyushenko and Almaas, 2019;
Vlassis et al., 2014) at finding inconsistent reactions, but can also
identify non-trivial model elements causing the inconsistencies.

2 Approach

The ErrorTracer algorithm is a hybrid between logical inference and
linear optimization (see Fig. 1a for an overview, and Section 2 of
Supplementary Note S1 for a detailed description of the algorithm).
In the first part, the logical inference steps simplify the model, identi-
fying local metabolic network errors in the process. This model-
reduction phase is based on three principles: (i) fusion of duplicate
reactions, (ii) concatenation of reaction pairs that share a common
metabolite not shared with any other reaction and (iii) conditional
removal of metabolites interfacing import/export reactions (see
Supplementary Fig. S5 for an illustration of the rules of local error
spreading). Model errors determined at this stage are classified
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as: source, reversibility or stoichiometry (for a detailed description
of the error types, see Section 1 of Supplementary Note S1). Based
on the analysis of 17 commonly used metabolic models (see
Supplementary Table S1) these errors on average amount to �85%
of the total error count in a genome-scale metabolic model.

In the second part of ErrorTracer (Fig. 1a, second column), we first
identify remaining errors using our previous algorithm, ExtraFastCC
(Martyushenko and Almaas, 2019). Subsequently, ErrorTracer deter-
mines stoichiometrically constrained cycles within the model which
could cause these inconsistencies, assigning each inconsistency to its re-
spective cycle. These errors are termed cycle errors. It is theoretically
possible that the metabolic model would have errors being neither local
nor cycle-related, and the algorithm warns the user if such inconsisten-
cies are discovered. However, testing a large number of genome-scale
models, we have not observed such errors: Chemical equations with in-
teger stoichiometries very much reduce the scope of errors that a model-
ler could possibly encounter. The final step is to visually present the
errors and dependencies within the interactive ModelExplorer frame-
work (see Fig. 1b).

3 Results

In order to assess the speed of our algorithm, we tested ErrorTracer
on a range of 17 genome-scale reconstructed models (see
Supplementary Table S1) from the OpenCOBRA repository previ-
ously used by Ebrahim et al., 2015, the models ranging in size from
about 1000 to 7500 reactions. We compared the execution time of
ErrorTracer on these models with our previous algorithm—
ExtraFastCC (Martyushenko and Almaas, 2019) and with its prede-
cessor FastCC (Vlassis et al., 2014) (Fig. 1c). ErrorTracer is one
order of magnitude faster than the others on smaller models, with
the difference increasing to more than two orders of magnitude
against FastCC for the largest model, RECON2 (Thiele et al.,
2013). The execution speed difference is even greater if we compare
ErrorTracer with the modern cycle-free flux variability algorithms
Fast-SNP (Saa and Nielsen, 2016) and LLC-NS (Chan et al., 2018).
These are up to three orders of magnitude slower (see
Supplementary Fig. S4), probably due to the additional constrain of
only being allowed to attain non-cyclic flux distributions.

ErrorTracer also demonstrates relatively homogeneous execu-
tion times, with all of the values falling between 0.12 and 3.5 s on
an Intel Core i5-5300U CPU. This gave a longest to shortest time

ratio of 28 as compared to 84 for ExtraFastCC and 250 for FastCC.
The execution time of FastCC was found to be proportional to the
product of total reaction number with the number of reversible
blocked reactions in the model. The other algorithms scaled with the
square of the total reaction number, but with much smaller propor-
tionality coefficients (Supplementary Fig. S3).

Assessing the complexity of the different subroutines of
ErrorTracer, we found that the initial logical reduction and error
tracing scales linearly with model size (Supplementary Fig. S1a). The
size of the resulting reduced model also showed a clear linear de-
pendence on the size of the original model (Supplementary Fig. S1b).
The subsequent ExtraFastCC-based subroutine showed a quadratic
dependence on the size of the reduced model (Supplementary Fig.
S2a), with the values showing significantly less spread than those
obtained with same approach run on the full model (Supplementary
Fig. S2b). Additionally, model reduction with ErrorTracer allowed
ExtraFastCC in the second part of the algorithm to use the faster
but less stable reduced-gradient method instead of the slower barrier
optimization used in previous versions. This indicates that the
ErrorTracer logical-reduction algorithm can make models more nu-
merically tractable for LP solvers in addition to reducing their size.

4 Discussion

ErrorTracer provides a significant improvement to the time-consuming
process of correcting metabolic reconstructions by identifying model
inconsistencies and pin-pointing the causes of errors. Additionally, the
fast algorithms of ErrorTracer is a much needed addition in the commu-
nity push for standardized consistency checking of models of any size.
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