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Introduction 
 

In contrast to the general belief established by pioneering molecular biologists, 

the essential information-storing molecule for life (DNA) is constantly damaged. The 

most common type of DNA damage is base damage, which occurs at the rate of 

several thousand base pairs per cell per day in humans (Lindahl, 1993). Damage can 

stem from numerous sources: by-products of normal aerobic respiration, 

environmental chemicals found in cigarette smoke or chemical drugs, ultraviolet (UV) 

light or ionizing radiation (IR). To maintain the genetic information, cells have 

evolved efficient, specific means to repair DNA damage. The focus of this thesis is on 

the structural biochemistry of the DNA glycosylase (or glycosylase/AP lyase) step 

that catalyzes the key damage recognition and excision activities of the Base Excision 

Repair (BER) pathway and enzymes that perform Direct Damage Reversal (DDR). 

The following introduction is to a large extent based on the review paper entitled 

“DNA base damage recognition and removal: New twists and grooves” by Joy L. 

Huffman, Ottar Sundheim and John A. Tainer published in Mutation Research in 

2005 (Huffman et al., 2005) with current updates in the field, particularly with respect 

to the structure-function studies on the human uracil-DNA glycosylases and the AlkB 

family of enzymes. 

 

Repair pathways and single step repair 
 

To deal with the wealth of DNA damage, cells have evolved several repair 

pathways that maintain the integrity of the genome. The diversity of repair 

mechanisms in each cell is mirrored in the number of gene products involved, e.g. in 

humans there are more than 150 known proteins known to be involved in repair 

pathways of DNA ((Friedberg  et al., 2006), and “Human DNA Repair Genes” at 

http://www.cgal.icnet.uk/DNA_Repair_Genes.html). DNA repair pathways may be divided 

into 5 major pathways: Base Excision Repair (BER), Mismatch Repair (MMR), 

Nucleotide Excision Repair (NER), Single Strand Break Repair (SSBR), and Double 

Strand Break Repair (DSBR). In addition, at least three families of repair enzymes 

(oxidative demethylases, methyltransferases and photolyases) repair DNA damages 

by Direct Damage Reversal (DDR). However, the complexity of the different repair 



 11

pathways is more comprehensive, hence a more detailed division of the main groups 

is more explanatory and descriptive. Here, I will briefly outline the different main 

DNA repair pathways/step and defined subgroups thereof. 

 

Base Excision Repair 

 

BER occurs in two stages: an initial, damage-specific stage carried out by a 

monofunctional DNA glycosylases or glycosylase/AP lyases targeted to distinct base 

lesions, and a damage-general stage during which the resulting abasic (AP) site 

intermediates and 3´-termini are processed, followed by DNA repair synthesis and 

ligation (Fortini and Dogliotti, 2007; Hitomi et al., 2007; Krokan et al., 2000) (Figure 

1). Initiation of BER is the committed step, in that each subsequent step produces 

another form of DNA damage, such as an AP site, until repair is completed. In the 

case of monofunctional DNA glycosylases, the recognized damaged base is removed. 

Then a separate enzyme with AP-lyase activity acts upon the AP site and cleaves the 

DNA backbone. Bifunctional DNA glycosylase/AP lyases combine the first two 

functional steps within a single enzyme. The damage-general stages of BER require a 

repair DNA polymerase to insert the proper deoxymononucleotide, and finally the 

nick in DNA is sealed by DNA ligase to complete repair of the damaged base site. All 

these enzymes represent essential steps in BER and are frequently conserved from E. 

coli to humans, as well as in archea. Base excision repair may, after removal of the 

damaged base and incision of the DNA backbone, proceed via a short patch repair 

pathway (replacement of damaged nucleotide exclusively) or a long patch repair 

pathway (replacement of 2-8 nucleotides). Removal by short patch or long patch 

strategies is dependent on the initial glycosylase enzyme acting upon the damage, 

chemical modifications of the AP sites and possibly the stage of the cell cycle 

(reviewed in (Krokan et al., 2000)).  
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Figure 1: Schematic overview of short- and long patch repair of uracil initiated by 

UNG. The simplified figure illustrates the sequential enzymatic steps in the repair 

process and only the core factors are included. The proteins are exemplified by using 

the crystal structures of UNG (PDB ID 1AKZ), APE1 (PDB ID 1DEW), BRCT 
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domain of XRCC1 (PDB ID 1CDZ), Polβ (PDB ID 1BPX) to illustrate Polβ and 

Polδ/ε, Fen1/PCNA (PDB ID 1UL1), and DNA ligase 1 (PDB ID 1X9N) to illustrate 

DNA lig 1 and 3. 

 

Nucleotide Excision Repair 

 

Two NER subpathways, Global Genome Repair (GGR) and Transcription 

Coupled Repair (TCR), remove a variety of lesions that significantly distort the DNA 

helix throughout the genome and in the transcribed strand in transcriptionally active 

genes, respectively. These lesions are generally too large to be accommodated within 

the active sites of DNA glycosylases. The lesions are instead removed as a part of a 

larger oligonucleotide. Defects in NER are linked to three rare autosomal-recessive 

inherited syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and 

trichothiodystrophy (TTD). Lesions that are repaired by NER include the UV-induced 

cyclobutane pyrimidine dimers (CPD) and (6-4)-photoproducts (6-4PP), in addition to 

lesions induced by polycyclic aromatic hydrocarbons found in e.g. tobacco smoke and 

DNA crosslinks introduced by agents such as the chemotherapeutic agent cisplatin 

(reviewed in (Leibeling et al., 2006)). NER is a multistep process involving at least 

20-30 proteins. The general mechanism may be divided in 5 distinct events: 1) 

damage recognition; 2) strand segregation; 3) strand incision on both sides of the 

lesion; 4) removal of the ~28-mer single-stranded oligonucleotide; and 5) gap filling 

using the undamaged strand as template. The two subpathways differ only in the first 

step. In GGR a heterotrimeric complex of XPC, HHR23B and centrin2 recognizes the 

damage and recruits downstream NER factors. This heterotrimeric complex is, 

however, dispensable in TCR where the stalled RNA polymerase II complex seems to 

be the responsible sensor for attracting downstream NER components to the lesion 

((de Boer and Hoeijmakers, 2000) and references within).  

 

Mismatch Repair 

 

Although the 3´-5´ proofreading activity of the primary DNA polymerase δ 

corrects at least 99% of its own errors, the remaining mispaired nucleotides as well as 

DNA bubble structures resulting from “slippage” at repeated sequences must be 
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repaired to maintain genomic stability. Thus, the mismatch repair system has been 

conserved through evolution to correct such replication-produced errors. The MMR 

pathway may be divided into four events: 1) recognition of the mismatch damage by 

MutS proteins; 2) recruitment of repair enzymes; 3) excision of the new-synthesized 

strand containing the mismatch lesion; 4) resynthesis by DNA polymerase using the 

parental strand as a template (Jascur and Boland, 2006). In humans, the damage is 

recognized by heterodimers that are homologs of E. coli MutS (hMSH2/6 or 

hMSH2/3). Recently, Modrich and colleagues reported that the human homolog of E. 

coli MutLα, the heterodimer consisting of hMLH1/hPMS2, possessed endonuclease 

activity that produces several nicks at both sides of the mismatch damage. The nicks 

5´ of the mismatch serve as entry sites for MutS activated ExoI that removes the new 

synthesized daughter strand over the damage site in a 5´-to-3´hydrolytic reaction 

(Kadyrov et al., 2006). Inactivation the human MMR proteins MSH2, MSH6, and 

MLH1 are responsible for over 95% of all known HNPCC/Lynch syndrome-

associated mutations. Furthermore, mutations in PMS2 are associated with Turcot 

syndrome and early onset colorectal cancer (Peltomaki, 2005). 

 

Single Strand break repair 

 

Unmodified single strand breaks (SSB) produced by DNA damaging agents 

are suitable for direct rejoining by DNA ligases. However, by the reaction of reactive 

oxygen species the 3´end of the single strand breaks may be modified and these are 

subsequently not substrates for direct repair by DNA ligases. In addition, ionizing 

radiation (IR) produces base damage in close proximity of SSBs. The major pathway 

in repair of modified SSBs is BER, which itself is a major source of SSBs. (Dianov 

and Parsons, 2007). Notably, incomplete BER in the vicinity of SBR could result in 

the more dangerous double strand break lesion. Poly(ADP-ribose) polymerase-1 

(PARP-1) binds different types off SSBs (Parsons et al., 2005) and recruits repair 

proteins through its interaction with XRCC1 (X-ray Repair Cross-Complementing 

protein 1) (Masson et al., 1998). Depending of the nature of the SSB, the damage may 

be processed to generate 3´-hydroxyl and 5´-phosphate termini prior to initiating 

repair mechanisms. It is known that APE1, polynucleotide kinase (PNK), tyrosyl-



 15

DNA phosphodiesterase 1 (TDP-1), and aprataxin are all important proteins in 

processing of modified SSBs (reviewed in (Dianov and Parsons, 2007)).  

 

Double strand break repair 

  

Double strand breaks (DSBs) are introduced in cells from ionizing radiation, free 

radicals, chemicals, and during replication at SSBs (Friedberg  et al., 2006). Repair of 

DSBs is critical to life, as they are one of the most toxic and mutagenic DNA lesions 

in human cells. DSB may, if not repaired properly, give rise to chromosomal 

breakage. There are two main pathways in repair of DSBs, and they are usually 

described as non-homologous end joining (NHEJ) and homologous recombination 

(HR) (reviewed in (Helleday et al., 2007). The choice of preferred pathway in repair 

of DSBs depends on the stage of the cell-cycle. NHEJ is dominating in G1, whereas 

HR is more prominent in the S and G2 phases (Essers et al., 2000; Liang et al., 1998; 

Takata et al., 1998). 

NHEJ is template independent since the enzymes involved in the repair bring 

the DNA termini together and join them without the need for homology. Repair by 

NHEJ may be divided mechanistically into 4 steps: 1) DSB detection; 2) formation of 

DNA-protein complex bridging the two ends; 3) processing of non-complementary or 

damaged ends; and finally 4) ligation (Weterings and van Gent, 2004). The central 

enzymes acting in NHEJ repair are the Ku70/80 heterodimer, DNA-dependent protein 

kinase catalytic subunit (DNA-PKCS), and DNA ligase IV in complex with the co-

factors XRCC4 and XLF (Helleday et al., 2007). Some DNA termini require 

processing prior to ligation and enzymes like PNK (Chappell et al., 2002), Artemis 

(Ma et al., 2002), and WRN (Perry et al., 2006) have been reported to be involved in 

NHEJ. In addition, several DNA polymerases, such as pol μ and pol λ that can fill in 

5´ single-stranded extensions, are also suggested to be involved in NHEJ (Nick 

McElhinny et al., 2005). The DNA end-processing may lead to either loss or gain of 

nucleotides, making NHEJ a less accurate pathway than HR for repair of DSBs. 

Whereas NHEJ often is error-prone, HR is “error-free” using a template, 

preferably in the sister chromatid, to resynthesize damaged or missing DNA. HR is 

initiated by 5´-3´ DNA degradation of DNA ends, leaving 3´ single-stranded 

overhangs of typically several hundred base pair in length. These overhangs can then 
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invade and displace the original strands of a homologous sequence creating a 

heteroduplex. The subsequent steps of homology directed repair are redirected into 

either synthesis-dependent strand annealing pathway, double-Holliday junction model 

for DSB repair, single-strand annealing in repair of two-ended DSBs, or repair of 

broken replication fork by one-ended double-strand break repair ((Helleday et al., 

2007) and see http://web.mit.edu/engelward-lab/animations.htm for animations). The initial 

resection step is common for all the subpathways in HR and the Mre11/Rad50/Nbs1 

(MRN) complex that localizes to DSBs may execute this process (Helleday et al., 

2007). Mutations in the Nbs1 protein are responsible for the Nijmegen breakage 

syndrome (NBS), a rare genetic disorder that results in developmental defects, 

microcephaly, immune deficiency, and high incidence of cancer (The International 

Nijmegen Breakage Syndrome Study Group 2000; Matsuura et al., 1998; Varon et al., 

1998). Furthermore, mutations in the Mre11 gene have been reported to cause ataxia-

telangiectasia-like disease (ATLD), a genetic disorder with a phenotype similar to 

ataxia-telangiectasia (AT) and NBS (reviewed in (Petrini, 2000)). The complete 

biological role of the MRN complex in HR has not been completely sorted out. 

However, it is generally accepted that the MRN complex is bridging the two dsDNA 

ends, thereby preventing separation of chromosomes, as first suggested by Hopfner et 

al., (Hopfner et al., 2000a; Hopfner et al., 2000b). The 3´ ssDNA overhang is 

protected by RPA (replication protein factor A) (Sugiyama et al., 1997). RPA is 

displaced by the strand exchange protein Rad51, aided by Rad52, Rad55/57 

heterodimer, Rad54, and the breast cancer susceptibility protein BRCA2, generating a 

nucleoprotein filament that invades homologous segments (West, 2003). 

 

Direct Damage Reversal 

 

DDR does not rely on cascades of enzymatic events; instead the DNA lesion is 

repaired in a single step by a single protein. To date, four different systems for DDR 

have been described in the literature: 1) light-dependent reversal of UV-induced cis-

syn pyrimidine dimers by photolyases identified in almost all living organisms 

exposed to light except for placental mammals like mice and humans (Essen and Klar, 

2006); 2) one-step ligation of simple single-strand breaks (described above); 3) direct 

reversal of O6-alkylguanine and O4-alkylthymine lesions in a stoichiometric suicide 

reaction by DNA alkyltransferases such as the human AGT (O6-alkylguanine-DNA 
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alkyltransferase) (Daniels and Tainer, 2000; Pegg, 2000); and 4) enzymatic removal 

of the methyl group from 1-methyl adenine (1-meA) and 3-methyl cytosine (3-meC) 

by proteins in the AlkB family, as recently reviewed in Falnes et al., 2007 (Falnes et 

al., 2007), and demethylation of 3-methyl thymine by the FTO (fat mass and obesity 

associated) dioxygenase enzyme (Gerken et al., 2007). 

 

DNA glycosylases and direct damage repair enzymes 
 

The efficiency of BER and DDR relies upon the remarkably specific detection 

and removal of damaged bases in the context of an enormous background of normal 

DNA. The elucidation of the initial steps of BER and direct damaged base repair has 

provided critical insights into protein-DNA interactions and chemistry with broad and 

profound impacts on our understanding of biochemistry, cell biology and life itself. 

For example, the DNA glycosylases that initiate BER must be exquisitely specific 

even for sometimes single-atom modifications. Furthermore, they must flip damaged 

nucleotides ~180° out of the base stack into damage-specific pockets, and use unique 

DNA binding motifs to initiate a choreographed and perhaps coordinated handoff of 

damaged DNA intermediates to downstream components ((Allinson et al., 2004; 

Dianova et al., 2001; Levin et al., 2000; Wong and Demple, 2004) and paper 2 

(Pettersen et al., 2007)). Experimental characterization of base repair processes are 

providing critical understanding of structural biology at escalating levels of 

complexity, from DNA base damage and protein-DNA complexes to dynamically 

assembled macromolecular machines and even to the level of understanding how 

single-site mutations can lead to diseases such as cancer. I will in the following 

sections give an overview of structure-function relationships of the known human 

DNA glycosylases and direct damage repair enzymes. 

 

DNA glycosylase structural families 

 

Crystal structures have been determined for several DNA glycosylases, 

allowing for classification into structural families by architectural folds: helix-hairpin-

helix (HhH), helix-two-turn-helix (H2TH), and uracil-DNA glycosylases (UDGs) 

(Figures 2, 3, and 4). However, overall folds do not provide mechanistic details 
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regarding the varying specificity of these enzymes, and, hence, a full understanding of 

individual family members requires detailed structural and biochemical analyses, 

particularly of enzyme:DNA complexes. In addition, each enzyme is regulated and 

targeted differentially, and the structural basis for these differences must lie in subtle 

changes in protein surfaces and protein–DNA conformations that are not yet well 

understood. 

 

The Helix-hairpin-Helix motif  

 

The helix-hairpin-helix (HhH) motif was first discovered in E. coli EndoIII 

(Endonuclease III or Nth) (Thayer et al., 1995) as a sequence-independent DNA 

binding motif. The HhH motif is a major motif for sequence independent DNA 

binding proteins that is present in a superfamily of glycosylases, including EndoIII, 

AlkA (3-methyladenine-DNA glycosylase II), and Ogg1 (8-oxoguanine glycosylase), 

which remove a broad spectrum of oxidized and alkylated base lesions (Bruner et al., 

2000; Kuo et al., 1992; Thayer et al., 1995; Yamagata et al., 1996). Structures of a 

number of HhH-containing DNA glycosylases have been determined (Figure 2) 

(Bruner et al., 2000; Drohat et al., 2002; Eichman et al., 2003; Fromme et al., 2004; 

Guan et al., 1998; Labahn et al., 1996; Lingaraju et al., 2005; Mol et al., 2002; 

Vassylyev et al., 1995; Yamagata et al., 1996). Structural studies on bacterial EndoIII, 

AlkA, MutY, and human Ogg1 (hOGG1) in complex with DNA have shown that their 

HhH motifs participate in DNA recognition through interaction with phosphate and 

oxygen atoms of the DNA backbone (Bruner et al., 2000; Fromme et al., 2004; 

Fromme et al., 2003; Hollis et al., 2000; Lau et al., 1998). The HhH motif has also 

been found in a number of other proteins that bind DNA in a sequence-independent 

manner, such as DNA polymerase β and NAD+-dependent DNA ligase (Doherty et 

al., 1996).  

The core fold of the HhH-containing glycosylases is comprised of two α-

helical N- and C-terminal domains. The N-terminal domain typically has four α 

helices and the C-terminal domain has six to seven α helices. A number of these 

helices point their helical N-termini, and thus positively charged dipoles, toward the 

DNA binding site, located at the cleft between the two domains. Cocrystal structures 
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have revealed that the DNA is bent 60-70° at the lesion site by HhH-containing 

enzymes. 

 
 

Figure 2: Representative structures of selected HhH superfamily members. HhH 

motifs are colored green, α helices are blue, β strands dark red, the lesion strand is 

orange, and the complementary strand is dark green. The DNA binding cleft is located 

between the N- and C-terminal domains for EndoIII (PDB ID 1P59), and DNA is 

almost encircled by addition of the MutT domain in MutY (PDB ID 1RRQ). The iron 

sulfur clusters in the DNA-bound EndoIII and MutY structures and in the apo 

structures of EndoIII (PDB ID 2ABK) and MIG (PDB ID 1KEA) are displayed as 

mustard and dark oranged colored spheres. AlkA (PDB ID 1DIZ) and OGG1 (PDB 

ID 1KO9) have additional β sheet containing domains. The HhH motifs of EndoIII, 

MutY and AlkA bind magnesium-, calcium-, and sodium-ions, respectively. MBD4 

(PDB ID 1NGN) display only limited structural homology with the other HhH family 

members outside the HhH motif. 
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The HhH motif itself, also found near the cleft, is composed of two α helices 

that cross at a conserved angle and are linked by a type II hairpin. Specificity of base 

removal strongly correlates with the amino acid sequence within this motif. In most 

HhH-containing glycosylases of known structure, the hairpin loop shows strong 

sequence conservation, with consensus sequence L/F-P/K/H-G-V/I-G-K/R/T 

(Doherty et al., 1996). The HhH structural element is followed by a Gly/Pro-rich loop 

and a highly conserved aspartate (referred to a GPD element). The aspartate is 

proposed to activate nucleophilic attack of the scissile glycosylic bond. TAG (3-

methyladenine glycosylase) and AGOG (archaeal GO glycosylase) are HhH proteins 

(Drohat et al., 2002; Lingaraju et al., 2005), yet this was an unexpected feature in both 

due to low sequence homology with other HhH enzymes of known structure. 

The HhH DNA glycosylase structures show a variety of small additions, such 

as an [Fe4-S4] iron sulfur cluster in EndoIII, MutY (adenine DNA glycosylase) and 

MIG (thymine DNA glycosylase), a MutT-like domain in MutY, a β sheet in AlkA 

and hOGG1, a zinc-binding domain in TAG, and a methyl-CpG binding domain in 

MBD4 (methyl-CpG binding domain protein 4). The iron sulfur cluster found in 

EndoIII-like enzymes is involved in DNA binding (Fromme et al., 2003). The loop 

extending from the iron sulfur cluster protrudes into the minor groove of DNA and 

interacts with the HhH motif in DNA binding and damage recognition. Similar types 

of interactions involving different loop structures have been reported in other DNA 

glycosylases; i.e. the asparagine loop of hOGG1 or the leucine wedge loop of AlkA, 

which intercalate into the minor groove of DNA (Bruner et al., 2000; Lau et al., 

1998). The MutT-like domain of MutY recognizes 8-oxoG opposite adenine to be 

excised (Fromme et al., 2004). 

 

The Helix-Two Turn-Helix motif 

 

 The helix-multi turn-helix motif was first discovered in the flap endonuclease 

1 (FEN1) structure (Hosfield et al., 1998), but it also occurs in several DNA 

glycosylases as a prevalent helix-two turn-helix (H2TH) motif. Family members to 

date include bacterial EndoVIII (Endonuclease VIII or Nei), MutM/Fpg, and the 

mammalian Nei-like proteins (NEIL1, NEIL2, and NEIL3), and representative 
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structures have been determined for each subgroup (Figure 3) (Doublie et al., 2004; 

Fromme and Verdine, 2002, 2003a; Gilboa et al., 2002; Serre et al., 2002; Sugahara et 

al., 2000; Zharkov et al., 2002). Interestingly, these enzymes catalyze similar 

mechanisms of base removal and backbone cleavage as the HhH enzymes, although 

they use a completely different molecular scaffold.  

 

 
 

Figure 3: Structures of the H2TH family of DNA repair glycosylases, represented by 

the DNA bound Fpg (PDB ID 1KFV) and EndoVIII (PDB ID 1K3W) and the apo 

structure of Neil1 (PDB ID 1TDH). H2TH motifs are colored green, α helices are 

blue, β strands dark red, the lesion strand is orange, and the complementary strand is 

dark green. The six N-terminal residues are colored red. 

 

The overall topology of these enzymes is conserved across the glycosylase 

family. Similar to the HhH proteins, N- and C-terminal proteins have conserved 

amino acids at positions 1-6, followed by two 4-stranded β sheets that form an 

antiparallel β sandwich flanked by two helices. The C-terminal domain contains the 

H2TH motif and is helix-rich, with the zinc finger contributing the only two β strands. 

The β-hairpin loop of the zinc finger motif intercalates into the minor groove of DNA. 

Positively charged residues line the surface of the cleft to create an electrostatically 

positive surface for DNA binding, rather than the helix dipoles used by the HhH 

enzymes. Interestingly, the structure of the catalytic core of NEIL1 revealed “a zinc-

less finger” in which the structural motif was conserved despite lacking a true zinc 

binding site (Doublie et al., 2004); however, NEIL2 has been shown to bind zinc as 

observed in the other families members (Das et al., 2004). The H2TH motifs are used 

in a manner similar to the HhH, namely recognizing DNA through interactions with 

the backbone. 
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The Uracil-DNA Glycosylase Superfamily 

 

 The uracil-DNA glycosylases (UDGs) comprise a prominent and highly 

important glycosylase structural superfamily, as UDGs are the major enzymes that 

recognize and initiate repair of uracil resulting from both misincorporation of dUTP 

and cytosine deamination in DNA. Five distinct families have been identified to date 

with confirmed glycosylase activity (Pearl, 2000; Sartori et al., 2002). Although the 

families share limited sequence similarity, structures have revealed that they possess a 

common core fold. Family 1, typified by the uracil-DNA N-glycosylase (UNG) 

enzyme and its close orthologs are highly conserved DNA glycosylases. Family 2 

enzymes, the bacterial MUG (mismatch-specific uracil-DNA glycosylase) and the 

eukaryotic homolog thymine-DNA glycosylase (TDG), initiate BER of G:U/T 

mismatches. Single-strand-selective monofunctional uracil-DNA glycosylase 1 

(SMUG1) comprises the third enzyme class in the UDG superfamily. The families 4 

and 5, identified exclusively in thermophilic organisms, contain iron sulfur clusters 

and possess relative high sequence similarity to each other. However, family five is 

distinct from the other UDGs since it lacks a polar active site residue that mediates the 

hydrolysis of the glycosylic bond (Kosaka et al., 2007; Sartori et al., 2002). 

 Representatives from all five families have been structurally characterized: 

UNG proteins from human, Herpes Simplex Virus type 1 (HSV1), E. coli, 

Deinococcus radiodurans, Epstein-Barr vírus, and vaccinia vírus (Geoui et al., 2007; 

Leiros et al., 2001; Leiros et al., 2005; Mol et al., 1995; Savva et al., 1995; 

Schormann et al., 2007; Xiao et al., 1999); MUG/TDG from human, E. coli, and 

Deinococcus radiodurans (Baba et al., 2005; Barrett et al., 1998; Moe et al., 2006); 

SMUG1 from Xenopus laevis (Wibley et al., 2003); family 4 UDGa (Hoseki et al., 

2003) and family 5 UDGb (Kosaka et al., 2007) from Thermus thermophilus HB8 

(Figure 4). The topology of the common core of the UDG superfamily consists of a 

central four-stranded parallel twisted β sheet flanked by α helices (Mol et al., 1995). 

The β sheet in MUG is extended, with one extra strand oriented in an antiparallel 

direction at the edge of the sheet (Barrett et al., 1998). A positive DNA binding 

groove traverses one face of the molecule, where the C-terminal ends of the sheet 

form the base of the cleft. The uracil binding pocket penetrates back from the groove 



 23

into the core of the enzyme. UNG and SMUG1 have an additional small β sheet made 

up of two and three strands, respectively, located on the larger lobe of the DNA 

binding cleft (Wibley et al., 2003). MUG also lacks the coil of helices at the N-

terminal side present in both UNG and SMUG1. A short helix immediately follows 

the β2 strand in MUG and SMUG1, and a segment of ~40 residues leading to helix 5 

is unique to the SMUG1 fold. The iron sulfur clusters of family four and five are 

apparently not involved in DNA binding (Kosaka et al., 2007). 

 

 
 

Figure 4: Overall structures of the members in the uracil-DNA glycosylase family. 

Secundary structure elements are colored blue and dark red for α helices and β 

strands, respectively. The DNA lesion strand is orange and the complementary strand 

is dark green in the DNA bound structures of UNG (PDB ID 1SSP) and family 5 

UDG (PDB ID 2DDG). Family 2, 3, and 4 are represented by structures of E. coli 

MUG (PDB ID 1MUG), xenopus SMUG1 (PDB ID 1OE5), and thermophilic type 

four UDG (PDB ID 1UI0). The iron sulfur clusters in family 4 and 5 are displayed as 

mustard- and dark oranged-colored spheres. 
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Monofunctional DNA glycosylases and Bifunctional DNA glycosylases/AP lyases 

 

 A general mechanistic distinction can be drawn between monofunctional DNA 

glycosylases and bifunctional DNA glycosylases/AP lyases. Monofunctional DNA 

glycosylases cleave only the glycosidic bond between N and C1´ and then the product 

abasic site is acted upon by an AP endonuclease. Bifunctional DNA glycosylases 

process the abasic site with an AP lyase activity inherent to the glycosylase itself. In 

either case, the resulting strand break requires further processing by other proteins 

(lyases and/or nucleases) to remove the sugar-phosphate residue remaining at the 3´- 

or 5´-end, respectively. Repair is completed by the concerted actions of a DNA 

polymerase to fill the gap and a DNA ligase to seal the strand (Reviewed in (Fortini 

and Dogliotti, 2007; Hitomi et al., 2007; Krokan et al., 2000; Memisoglu and Samson, 

2000; Seeberg et al., 1995).  

 Monofunctional glycosylases typically use an activated water molecule as a 

nucleophile in attacking the C1´ of the target nucleotide, whereas bifunctional 

glycosylases/AP lyases often use a lysine side chain or an N-terminal proline (Dodson 

et al., 1994). An intermediate step in the mechanism for AP lyase activity in the 

bifunctional enzymes is formation of a Schiff base between the nucleophilic lysine or 

proline and C1´ of the sugar. This Schiff base can be chemically reduced to form a 

covalently “trapped” complex resembling the Schiff base intermediate (Tchou and 

Grollman, 1995). This trapping reaction has been instrumental in determination of 

several enzyme-DNA complex crystal structures (Verdine and Norman, 2003), which 

have provided much insight into the mechanisms of DNA recognition and AP lyase 

activity for the bifunctional enzymes (Fromme et al., 2003; Fromme and Verdine, 

2002, 2003b; Gilboa et al., 2002; Zharkov et al., 2002). This covalent enzyme-DNA 

trapping reaction is impossible with monofunctional DNA glycosylases that use an 

activated water as the attacking nucleophile, but has been observed in some other 

instances where protein residues act as nucleophiles (Williams and David, 1998). 

 

Common themes for base damage recognition 

 

 Despite differences in protein folds and specific residues used to recognize 

damaged bases, unifying common themes for BER initiation have emerged. Among 

these, extrahelical flipping of the damaged base into a lesion-specific recognition 
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pocket is particularly intriguing, as it must rely on an intrinsic property of the 

damaged DNA. All DNA glycosylases studied to date bind the minor groove, kink 

DNA at the site of damage, and flip the lesion base out of the DNA major groove. 

Thus, an initial step in recognition evidently exploits the deformability of the DNA at 

a base pair destabilized by the presence of the lesion. Each glycosylase is necessarily 

damage-specific, so only bases that can be accommodated in a defined binding pocket 

upon nucleotide flipping provide the necessary contacts and orientation for base 

excision. The critical importance of the extrahelical base binding pocket for 

glycosylase specificity was first shown by Kavli et al., who demonstrated that the 

uracil pocket in human UNG (hUNG) could be mutated to allow the removal of 

normal cytosine and thymine bases from DNA (Kavli et al., 1996).  

 A second emerging theme is a twist about the 3´-phosphate during flipping of 

some bases, first noticed for the direct damage repair protein AGT (Daniels et al., 

2004) but also present in some other enzymes that flip the lesion site extrahelically. 

Other protein:DNA complexes contain an extrahelical nucleotide and rotated 3´-

phosphate, including the DNA glycosylases AlkA (Hollis et al., 2000), hOGG1 

(Bruner et al., 2000), MUG (Barrett et al., 1998), hUNG (Parikh et al., 1998), and the 

endonucleases APE1 (Mol et al., 2000) and EndoIV (Hosfield et al., 1999).  

 A third, and as yet, incompletely understood feature of DNA glycosylases is 

their coordination with the enzymes that follow them in the BER pathway. Abasic 

sites or nicked DNA strands left unrepaired are more cytotoxic than base lesions 

(Lindahl, 1993), so most glycosylases remain bound to their product until “handed 

off” to the next enzyme in the pathway. Although the exact nature of this transfer is 

not clear, it is likely that protein-DNA interaction surfaces play a significant role 

coupled to protein-protein interactions and steric displacements.  

 

Specific mechanisms for recognition of damage 

 

 As new enzyme:substrate DNA structures are accumulated, themes for 

recognition of specific types of damage as well as discriminating between canonical 

and non-canonical bases are expected to emerge. These systems are delicately tuned 

such that canonical bases are largely excluded by steric and hydrogen bonding 

patterns, with differences such as a single hydrogen bond playing critical roles. As 

will be discussed in the following sections, recognition of oxidized bases or uracil is 
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typically achieved by these means, and alkyl adducts are more specified by π-π and 

cation-π interactions resulting from the delocalized positive charge on the modified 

base. However, upon examination of the atomic details of base recognition, the theme 

quickly turns to a lack of discernable theme for recognition. For example, structures 

of hOGG1, MutM, MutY, and MutT in specific complexes with 8-oxoG reveal that 

each uses different residues and makes different discriminating contacts to the 8-oxoG 

base (Figure 5). 

 

 
 

Figure 5: Specific recognition of oxidized bases presented as balls and sticks models. 

The lesion is colored yellow, amino acids are in grey, and hydrogen bonds are 

presented as green dashes. A) Recognition of 8oxoG by hOGG1 (PDB ID 1NC3). B) 

8oxoG specific binding in MutY (PDB ID 1RRQ). C) 8oxoG recognition in AGOG 

(PDB ID 1XQP). D)-F) MutM specifically recognizes 8oxoG (D, PDB ID 1R2Y), 

DHU (E, PDB ID 1R2Z), and FapyG (F, PDB ID 1TDZ). 
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Oxdation damage 

 

 Oxidation of cellular macromolecules occurs at significant frequencies in 

aerobic organisms due to by-products of normal metabolism and the immune 

response. Furthermore, the oxidation of both mitochondrial and nuclear DNA has 

been implicated in human disease and aging. Strand breaks, abasic sites, and oxidized 

base residues, with 7,8-dihydro-8-oxoguanine (8-oxoG) and 5-hydroxycytosine (5-

OHC) representing the most frequent base lesions, can all be caused by oxidative 

damage (Lindahl, 1993). 

 DNA glycosylases that remove oxidized base residues can be divided into two 

functional subgroups: those that repair oxidized purines (e.g. E. coli Fpg 

(formamidopyrimidine-DNA glycosylase) or MutM) and those that repair oxidized 

pyrimidines (e.g. E. coli EndoIII (Endonuclease III or Nth) and EndoVIII 

(Endonuclease VIII or Nei). In human cells, five DNA glycosylases for removal of 

oxidized bases have been cloned and characterized: hNth (human EndoIII); hOGG1 

(human OGG1), hNEIL1, hNEIL2, (human Nei-like1/2) and SMUG1 (Bjoras et al., 

1997; Hazra et al., 2002a; Hazra et al., 2002b; Ikeda et al., 1998; Masaoka et al., 

2003; Radicella et al., 1997; Takao et al., 2002; Wibley et al., 2003). hNTH1, 

hNEIL1, hNEIL2, and hSMUG1 catalyze excision of oxidized pyrimidines, such as 5-

OHC, whereas hOGG1 removes oxidized purines, such as 8-oxoG. However, hNEIL1 

also appears to be an alternative glycosylase for the removal 8-oxoG. Because 

hSMUG1 is a member of the UDG family of glycosylases and its major task in cells 

is to initiate repair of deaminated bases, its structure and base recognition mechanism 

will be discussed with those enzymes. Each of the human DNA glycosylases involved 

in repair of oxidized damages, except from hSMUG1, also removes imidazole ring-

fragmented Fapy (formamidopyrimidine) residues, which block replication and 

thereby are cytotoxic.  

 With the exception of SMUG1, glycosylases that repair oxidative damages fall 

into two structural families, determined by the presence of either an HhH or an H2TH 

motif and unrelated to the type of oxidized base recognized. Representative structures 

have been determined for both families. E. coli EndoIII was one of the first DNA 

repair protein elucidated (Kuo et al., 1992), however, the cocrystal structure with 

DNA was not determined until quite recently (Fromme and Verdine, 2003b). Other 

HhH structures for oxidative damage-sensing glycosylases have included hOGG1 and 
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MutY (Bjoras et al., 2002; Bruner et al., 2000; Fromme et al., 2004; Guan et al., 

1998) and those carrying the H2TH motif include MutM, Fpg, EndoVIII, and Neil1 

(Doublie et al., 2004; Fromme and Verdine, 2002, 2003a; Gilboa et al., 2002; Serre et 

al., 2002; Sugahara et al., 2000; Zharkov et al., 2002). Structures determined in the 

presence of damaged bases have provided invaluable details regarding specific lesion 

recognition, and these will be discussed briefly according to the human glycosylases 

in the following sections. 

 

Human 8-oxoguanine-DNA glycosylase 1 (hOGG1) 

 

 Several distinct enzymes recognize 8-oxoG in different contexts because it is a 

major mutagenic base lesion, pairing in syn conformation with A rather than in anti 

with C and thereby causing G:C to T:A transversion mutations upon replication 

(Lindahl, 1993). Mutations in hOGG1 have been linked to lung cancer in humans (Le 

Marchand et al., 2002; Park et al., 2004). The structure of a catalytically inactive 

hOGG1 enzyme core bound to 8-oxoG-containing duplex DNA revealed that hOGG1 

contains an HhH motif and flips the 8-oxoG base out of the double helix into a 

specific recognition pocket (Bruner et al., 2000). hOGG1 discriminates 8-oxoG from 

G using a single hydrogen bond between the Gly42 carbonyl and the purine N7, 

which is protonated only in 8-oxoG, and no direct contacts are made to the 8-oxo 

moiety.  

hOGG1 is a bifunctional glycosylase/AP lyase, and Lys249 has been proposed 

to attack C1´ and promote β-elimination. Interestingly, hOGG1 AP-lyase activity is 

stimulated by free 8-bromoG or 8-aminoG (Fromme et al., 2003; Morland et al., 

2005), but inhibited by free 8-oxoG base (Morland et al., 2005). The preference for 

bases opposite 8-oxoG is C>T>G>>A, and the preference for C was shown to result 

from specific hydrogen bonds donated by Arg154 and Arg204 to N3 and O2 of the 

cytosine base. A structure of apo hOGG1 showed that, in the absence of DNA, the 

overall enzyme conformation is conserved but that catalytic residues, such as Lys249, 

are positioned improperly for catalysis (Bjoras et al., 2002). Binding of the correct 

substrate is proposed to be coupled to reorientation of these side chains and 

subsequent catalysis. 
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The adenine-DNA glycosylase human MutY homolog (hMYH) 

 

 The adenine-DNA glycosylase, MYH, is the human homolog of bacterial 

MutY and aids the protection against 8-oxoG lesions. MutY and its functional 

homologues recognizes 8-oxoG:A pairs and excises the misincorporated adenine. 

Then cytosine can be inserted opposite the 8-oxoG lesion that in E. coli is repaired by 

the functional homolog of OGG1, Fpg (MutM), thus avoiding propagation of a G:C to 

T:A mutation upon further replication (Michaels and Miller, 1992). hMYH has been 

implicated in one form of hereditary colon cancer named MAP (MYH-associated 

colon cancer), that closely resembles familial adenomatous polypsis (FAP) (Lipton 

and Tomlinson, 2006). The contribution of MYH to the multiple adenoma phenotype 

was first documented in a study of a Welsh Caucasian sibship with multiple colorectal 

adenomas and carcinomas but no inherited APC or mismatch repair mutations (Al-

Tassan et al., 2002). The third bacterial enzyme in protection of 8-oxoG lesions, 

MutT, recognizes free 8-oxoG deoxyribonucleotide triphosphates and catalyzes the 

removal of pyrophosphate, thus preventing misincorporation of this base into DNA 

(Michaels and Miller, 1992). Mice with MutT homolog (Mth1) deficiency display 

increased frequency of spontaneous tumors (Tsuzuki et al., 2001), underscoring the 

importance of averting misincorporation in protecting against 8-oxoG damage. 

 MutY and its homologues are monofunctional HhH family members with the 

N-terminal catalytic core holding an iron sulfur cluster that has been proposed to play 

a role in DNA damage sensing (Boon et al., 2003). The C-terminal domain of MutY 

is MutT-like (Fromme et al., 2004; Volk et al., 2000), and seems to play an active role 

in 8-oxoG:A recognition of MutY since truncation of the MutT-like domain resulted 

in loss of 8-oxoG:A versus G:A mispair discrimination (Gogos et al., 1996; Noll et 

al., 1999). Structures of MutY have been determined for: 1) the catalytic active core 

domain alone (Guan et al., 1998); 2) an inactive mutant alone and in complex with 

free adenine, which is an inhibitory product (Guan et al., 1998); 3) other regulatory 

and catalytic mutants of the core domain (Zharkov et al., 2000); and 4) full-length 

MutY crosslinked to DNA containing 8-oxoG base pair (Fromme et al., 2004). In the 

adenine-bound structure, the base is bound in a deep pocket surrounded by a large 

positively charged groove, ideal for DNA binding. MutY makes specific hydrogen 

bonds similar to Watson-Crick base pairing using Arg26 and two water molecules 

that discriminate against other bases in the adenine binding pocket. 
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 The structure of full-length MutY complexed to DNA has contributed answers 

to many long-standing questions regarding how the protein specifically recognizes 

both 8-oxoG and adenine bases (Fromme et al., 2004). The catalytic core and MutT-

like domains encircle the DNA strand together. Whereas the adenine is flipped out 

similarly to its position in the MutY core:adenine structre, the 8-oxoG moiety is not 

flipped out of the base stack. Although 8-oxoG makes extensive contacts with the 

MutT-like domain, the contacts are quite different from those with MutT (Massiah et 

al., 2003). The 8-oxoG anti conformation is stabilized in the MutY complex structure 

rather than the syn conformation, which is normally the energetically favored 

conformer when paired opposite A. The 8-oxoG base is specifically recognized 

through a hydrogen bond to N7 from the Ser308 hydroxyl group, which in turn, is 

oriented by a hydrogen bond to the hydroxyl of Tyr88. The O8 atom may also form a 

hydrogen bond to the backbone amino group of Ser308, although the geometry is not 

ideal. Notably, the residue in humans corresponding to Tyr88 is equivalent to one of 

the germline mutations found in hMYH in some MAP patients (Al-Tassan et al., 

2002). 

 

Human EndoIII homolog 1 (hNTH1) 

 

The second major DNA glycosylase for correcting oxidized base lesions in 

human is hNTH1, which was first cloned and characterized a decade ago (Aspinwall 

et al., 1997; Hilbert et al., 1997; Ikeda et al., 1998; Liu and Roy, 2002). hNTH may 

initiate BER of a wide range of oxidized pyrimidine derivates, such as thymine glycol 

(Tg), 5-hydroxycytosine, dihydrouracil (DHU), urea, and at least six other oxidized 

pyrimidines in addition to AP-sites, and the ring-opened structure of 1, N6-

ethenoadenine reviewed in Hazra et al., (Hazra et al., 2007). It has been demonstrated 

that the structure specific endonuclease XPG both interacts with and stimulates the 

activity of hNTH1 (Bessho, 1999; Klungland et al., 1999), and, interestingly, cells 

from patients with Cockayne syndrome due to XPG deficiency possessed reduced 

global repair of Tg lesions (Klungland et al., 1999). EndoIII contacts the backbone of 

both the lesion- and the non-lesion-containing DNA strand (Fromme and Verdine, 

2003b). In contrast, the structurally related HhH/GPD proteins AlkA and hOGG1 

bind only the lesion containing DNA strand. The trapped complex of bacterial 

EndoIII and DNA also provides structural evidence that the redox-inert iron sulfur 
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cluster (Fu et al., 1992) is likely to be involved in DNA binding, as suggested by 

mutagenesis and the apo crystal structure of EndoIII (Thayer et al., 1995). 

 

Human Nei-like proteins 1, 2, and 3 (hNEIL1, 2, and 3) 

 

Three potential human functional orthologs of Endo VIII (Nei) have been 

identified (Bandaru et al., 2002; Hazra et al., 2002a; Hazra et al., 2002b). DNA 

glycosylase/AP lyase activity has, however, only been detected in hNEIL1 and 

hNEIL2. The two enzymes recognize different types of oxidized DNA lesions. 

Whereas NEIL1 preferably recognize and initiate repair of ring-opened purines-

formamidopyrimidine (Fapy)-A and –G and thymine glycol, NEIL2 prefer cytosine-

derived lesions, such as 5-hydroxyuracil and 5-hydroxycytosine. A more detailed list 

of substrates is reviewed in Hazra et al., 2007 (Hazra et al., 2007). The Endo VIII 

proteins are of H2TH fold, and the trapped Nei-DNA complex revealed a MutM like 

acid/base chemistry by conserved proline and glutamate in the extreme N-terminus 

(Zharkov et al., 2002). The crystal structure of the enzymatically active C-terminal of 

hNEIL1 revealed that it possess an internal “Zn-less finger” element (Doublie et al., 

2004), in contrast to the C-terminal Zn-holding finger motif present in other Nei 

orthologs like hNEIL2 (Das et al., 2004). In NEIL1, this element mimics the anti-

parallel β-hairpin Zn-finger motif but lacks the loops holding the residues involved in 

Zn-binding. NEIL2 has higher affinity for DNA bubble structures compared to single 

or double-stranded DNA (Dou et al., 2003). NEIL1 is furthermore upregulated in S-

phase whereas the level of NEIL2 is independent of cell cycle status. Taken together, 

this implies a role in replication and transcription associated repair for NEIL1 and 

NEIL2, respectively.  

 

Uracil in DNA 

 

 Uracils occur in DNA at a frequency of 100-500 per cell per day (Lindahl, 

1993), either by misincorporation of dUMP or by spontaneous deamination of 

cytosine (Lindahl and Nyberg, 1974; Tye et al., 1977). Deamination of cytosine can 

induce C:G to T:A transition mutations, as uracil preferentially base pairs with 

adenine during replication. The human glycosylases that remove uracil are uracil-
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DNA N-glycosylase (UNG), thymine-DNA glycosylase (TDG), single-strand-

selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and methyl-CpG 

binding endonuclease 1 (MED1/MBD4). Recent research has revealed that UNG 

plays an important role in the vertebrate specific immune system. It was reported that 

activated induced deaminase (AID) is required for both somatic hypermutation 

(SHM) and class switch recombination (CSR), and that it probably works directly on 

DNA by deamination of cytosine to uracil in the Ig (immunoglobulin) locus, followed 

by uracil removal by the nuclear UNG2 enzyme (Petersen-Mahrt et al., 2002). Both 

UNG2 deficiency and AID deficiency are associated with a hyper IgM2 (HIGM2)-

like phenotype both in a mouse model (Revy et al., 2000) and in human patients (Imai 

et al., 2003). In addition, UNG deficient mice were found to have a higher than 

normal morbidity beyond 18 months of age, accompanied by increased incidence of 

B-cell lymphonas (Nilsen et al., 2003). 

 

Human uracil-DNA N-glycosylase (hUNG1/2) 

 

 UNG initiates base excision repair of uracil from single-stranded DNA and 

from double-stranded DNA, regardless of whether the opposite base is a G or an A 

(Paper 1: (Kavli et al., 2002)). UNG enzymes are highly specific for uracil in DNA, 

with negligible activity against T or C (Kavli et al., 1996) or naturally occurring uracil 

in RNA (Caradonna and Cheng, 1980; Talpaert-Borle et al., 1982). Other substrates 

reported for UNG are largely restricted to uracil analogs with minor modifications at 

the 5 position (Paper 1: (Kavli et al., 2002)). In humans, UNG is targeted to either 

nuclei (UNG2) or mitochondria (UNG1) by distinct N-terminal pre-sequences 

generated by alternative splicing and alternative promoter usage in the UNG gene 

(Nilsen et al., 1997). Thus, unique N-terminal regions determine the subcellular 

localization, while the catalytic domain, whose structure is known, is the same for 

both nuclear and mitochondrial forms.  

 Five conserved motifs have been described in Parikh et al., (1998) as being 

important for DNA recognition and catalysis by UNG enzymes: 1) the water-

activating loop (144-GQDPYH-148; human UNG1 nomenclature); 2) the 5´-side 

backbone compression loop (165-PPPPS-169); the uracil recognition region (199-

GVLLLN-204); 4) the 3´-side backbone compression loop (246-GS-247); and 5) the 

minor groove-intercalation loop (268-HPSPLS-273) (Parikh et al., 1998). UNG binds 
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to DNA using three rigid loops made up of motifs 2, 4, and 5. These three loops 

largely consist of serine and proline residues, which permit close approach of the 

polypeptide chain to the DNA backbone. The loops compress the backbone (pinch) 

and slightly bend the DNA, which becomes fully bent (~45°) and kinked (~2°) when a 

push from the minor groove intercalation loop and a pull from the complementary 

uracil specific recognition pocket flip the uridine into an extrahelical position (Parikh 

et al., 1998; Wong et al., 2002).  

 The highly conserved substrate-binding pocket provides the shape and 

electrostatic complementarity to fit uracil in an extrahelical conformation, but is too 

narrow to accommodate purines (Figure 6). Selection against thymine and 5-

methylated pyrimidines is provided by the side chain of a tyrosine (Tyr147 in human 

UNG1). Specific hydrogen bonds provide discrimination against cytosine. The O2 

carbonyl of uracil hydrogen bonds to the UNG main chain NH that joins a conserved 

Gly-Gln sequence (Gly143-Gln144). The amide side chain of a conserved asparagine 

(Asn204) makes specific hydrogen bonds to N3 and O4 of uracil, whereas cytosine is 

excluded by unfavorable interactions with its exocyclic amine N4. A water cluster at 

the base of the uracil-binding pocket provides interactions that fix the proper 

orientation of the amide group (Pearl, 2000). 

 

 
 

Figure 6: Specific recognition of uracil in A) UNG (PDB ID 1SSP) and B) SMUG1 

(PDB ID 1OE5). The balls and sticks figures show the uracil lesion in yellow and 

active site residues in grey. The water molecule thought to be responsible for thymine 

rejection in the active site in SMUG1 is shown as a red sphere. 
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Human thymine-DNA glycosylase (TDG) 

 

 Human TDG (thymine-DNA glycosylase) was first discovered for its ability to 

hydrolyze the N-glycosidic bond of deoxythymidine in T:G mismatches (Brown and 

Jiricny, 1987). T:G mismatches in DNA arise mainly as a result of deamination of 5-

methylcytosine (5-meC). TDG was later shown to remove thymine from C:T and T:T 

mismatches, but much less efficiently. More importantly, it removes uracil mispaired 

with guanine with ~10-fold higher activity than thymine (reviewed in (Cortazar et al., 

2007; Hardeland et al., 2001)). Mismatch uracil-DNA glycosylase (MUG), the 

bacterial ortholog of human TDG, only removes uracil and not thymine mismatched 

with guanine (Gallinari and Jiricny, 1996). E. coli MUG is closely related to TDG 

(37% sequence identity), and the crystal structures reveal that they share the same 

core fold (Baba et al., 2005; Barrett et al., 1998). Whereas UNG is substrate specific, 

TDG is reported to excise a broad range of base lesions, such as uracils with 

modifications or substituents at the 5-carbon position, the cyclic alkylation product 

3,N4-ethenocytosine (εC), deaminated purines (e.g. hypoxanthine) and thymine glycol 

(a comprehensive list of TDG/MUG substrates is recently given in (Cortazar et al., 

2007)). Remarkably, TDG can also remove 5-fluoruracil from single-stranded DNA, 

which was unexpected since TDG is double-strand specific for all other substrates 

tested.  

The crystal structures of MUG (Barrett et al., 1998; Barrett et al., 1999; Pearl, 

2000) reveal a similar overall fold as the family 1 UDGs. Two highly conserved 

motifs in UNG have topological and conformational equivalents in MUG: the water 

activating loop (GQDPY) and the minor groove-intercalating loop (HPSPLS). The 

corresponding motifs in MUG are 16-GINPGL-20 (identical in human TDG) and 

140-NPSGLS-145 (MPSSSS in human TDG). The latter motif forms specific 

hydrogen bonds with the orphan guanine in a configuration that mimics Watson-Crick 

base pairing and constitutes the basis of the mismatch specificity (Barrett et al., 1999). 

The catalytic residues (underlined in the sequences above) in UNG are in both cases 

replaced by asparagines in E. coli MUG. The aspartate in the first motif in UNG 

activates a water molecule for nucleophilic attack on the C1´ of the deoxyribose. The 

asparagine in MUG and TDG in MUG cannot activate nucleophilic water, although a 

water molecule is found in almost the same position as seen in UNG.  
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The tyrosine residue that provides the barrier against thymine in UNG is 

replaced by a glycine (Gly20) in MUG. The preference for U:G over T:G in MUG is 

likely conferred by the position of a hydroxyl group in Ser23, which would clash with 

the 5´-methyl-group of thymine. In TDG, the residue corresponding to Ser23 is an 

alanine. The smaller alanine side chain allows better accommodation of thymine, 

explaining the increased specificity of TDG for T. The TDG/MUG specificity for 

G:U/T mispairs over canonical G:C base pairs results not from the scissile base itself 

as in the family 1 enzymes. Conversely, it results from a combination of the ease of 

flipping out a base from an unstable pair compared to flipping from a Watson-Crick 

C:G pair and from the deformability of DNA at non-canonical base pairs. 

 

Human single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1) 

 

 When first discovered in Xenopus laevis, the xSMUG1 enzyme was 

characterized as single-strand-selective monofunctional uracil-DNA glycosylase 

(Haushalter et al., 1999). However, in the initial characterization of xSMUG1 the 

strong product inhibition by the abasic site was not taken into account. In fact, human 

SMUG1 removes uracil efficiently from both U:G mismatches and U:A base pairs 

(Paper 1: (Kavli et al., 2002)). More recent studies on the substrate specificity of 

human and rat SMUG1 have revealed that SMUG1 initiates BER of 5-

hydroxymethyluracil, 5-hydroxyuracil, and 5-formyluracil (Boorstein et al., 2001; 

Masaoka et al., 2003; Matsubara et al., 2003). Removal of these oxidized lesions 

might, in fact, be the major functions of SMUG1 in vivo. 

 In the crystal structure of xSMUG1 in complex with uracil-containing double 

stranded DNA, the enzyme had detached from the abasic end-product and rebound to 

the DNA end prior to crystallization (Wibley et al., 2003). End binding was also 

observed with the substrate analog βFU [1-(2´-deoxy-2´-fluoro-β-D-

arabinofuranosyl)-uracil]. At the 5´-end of the damage-containing strand, a cytosine 

adopts an extrahelical conformation and points towards the pyrimidine specificity 

pocket of xSMUG1. Upon replacing the 5´-end cytosine base with βFU, a mixed 

population of extrahelical cleaved abasic sites and βFU in a productive orientation in 

the active site was observed. Two motifs, the minor groove intercalating loop (251-

PSPRN-255) and the following short α helix unique to the SMUG1 family (256-
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PQANK-260), are inserted as a wedge into the DNA duplex, flipping the scissile 

nucleotide through the major groove. Penetration of both motifs into the base stack 

creates a more extensive disruption of the double stranded DNA than seen for the 

other glycosylases in the UDG family. A conserved arginine (in vertebrates and 

insects (Paper 2: (Pettersen et al., 2007)), Arg254, occupies the gap left from the 

flipped-out base, whereas a proline from the unique α helix pushes into the base stack 

on the distal strand. 

 In the crystal structures, a second SMUG1 enzyme is bound to the 3´-end of 

the damage-containing strand, where the base pairing remains intact and the SMUG1 

active site is solvent accessible. Structures of the xSMUG1-dsDNA complex with free 

uracil or 5-hydroxymethyl-uracil (HmU) revealed the rather remarkable mechanism 

for achieving pyrimidine specificity in SMUG1. The uracil N3 imino and O4 carbonyl 

moieties hydrogen bond to the Asn174 side chain, and O2 accepts hydrogen bonds 

from the Met95 main chain NH group and the imidazole ring of His250 (Figure 6). 

This hydrogen bonding pattern implies that cytosine is rejected by SMUG1 in a 

manner analogous to that of UNG. 

 Rejection of thymine, however, is quite different in SMUG1 than in the 

family1 UDGs. The tyrosine that acts as the thymine barrier in UNG is substituted by 

a glycine (Gly98) in SMUG1. A well-ordered water molecule is found in place of the 

tyrosine side chain, which upon uracil binding retains a van der Waals contact with 

C5 and a hydrogen bond to the O4 carbonyl of the pyrimidine. Both lone-pairs of the 

water molecule accept hydrogen bonds from the NH groups of Gly98 and Met102, 

such that the water molecule specifically donates a hydrogen bond to the pyrimidine 4 

position. This provides additional discrimination against cytosine, which has an 

amino group at this position. Furthermore, this tightly held water makes three 

hydrogen bonds in the absence of a base and would have to be displaced to 

accommodate a thymine in the binding pocket. HmU, however, is able to compensate 

for the energetic penalty of displacing the water molecule by binding in the same 

orientation and with the same hydrogen bonding patterns as uracil, with its hydroxyl 

group at the 5 position reinstating the hydrogen bonds of the water molecule. 
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Mismatch repair glycosylases-MIG and MBD4 

 

 Deamination of 5-methylcytosine to thymine is more rapid that deamination of 

cytosine to uracil (Lindahl, 1993). This lesion is counteracted by specific G:T 

mismatch repair glycosylases, such as the thermostable MIG and MBD4. Both MIG 

and MBD4 are HhH-containing glycosylases with structural homology to EndoIII 

rather than to MUG/TDG, despite sharing similar substrate specificities. MIG 

recognizes G:T mispairs and removes the thymine base (Mol et al., 2002), whereas 

MBD4 preferentially recognizes G:T, but will also excise uracil from G:U mispairs 

(Petronzelli et al., 2000). A mechanism for G:T mismatch recognition and glycosylic 

bond cleavage has been proposed and that is consistent with structural analysis, 

complementary biochemistry, and characterization of key site-directed mutants. These 

studies suggest that MIG bond cleavage is enhanced by a physical distortion of the 

nucleotide that imparts a ~90° twist to the thymine base, away from its normal anti 

position in DNA (Mol et al., 2002), similar to a model proposed for UNG (Parikh et 

al., 2000).  

MBD4 is comprised of two DNA binding domains: a G:T mismatch specific 

DNA glycosylase and a methyl-CpG binding domain. This apparent fusion of 

functions results in an enzyme with preference for G:T mispair in a CpG context. As 

methyl-CpG steps often occur in clusters, this may lead to a local increase in repair 

enzyme concentration for damage sensing. NMR and crystal structures have been 

elucidated for domains homologous to the methyl-CpG domain (Ohki et al., 2001; 

Ohki et al., 1999; Wakefield et al., 1999) and for the MBD4 HhH-containing 

glycosylase domain (Wu et al., 2003), respectively. It remains to be shown how DNA 

might bind both domains simultaneously, particularly if the HhH-containing 

glycosylase domain bends DNA as significantly as the other HhH family members. 

 

dUTPases 

 

 As a complement to BER, nucleotide pool “sanitizing” enzymes have been 

discovered that remove improper bases to prevent their misincorporation into DNA. 

Among these, dUTPases are of particular importance, as dUTP can be 

misincorporated opposite an A during replication but is often repaired to C, 
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introducing T:A to G:C transitions. Structures of several of these ubiquitous enzymes 

are now available, revealing two distinct groups, one trimeric and one dimeric. 

Structures of trimeric (Bjornberg et al., 2003; Cedergren-Zeppezauer et al., 1992; 

Chan et al., 2004; Dauter et al., 1999; Huffman et al., 2003; Mol et al., 1996; Prasad 

et al., 1996) and dimeric (Harkiolaki et al., 2004; Moroz et al., 2004) dUTPases reveal 

distinct yet highly conserved folds and dUTP binding pockets across kingdoms, as has 

been observed in the UDG family, reflecting the ancient and essential nature of 

protection against deamination damage. 

 

Alkylation damage 

 

 The most common form of nonenzymatic methylation of DNA likely results 

from physiological exposure to endogenous S-adenosyl methionine (SAM), which is 

found in the nucleus and also participated in targeted enzymatic DNA methylation 

(Lindahl, 1993). The primary substrates for nonenzymatic methylation are ring 

nitrogens of purine residues, with 3-methyladenine (3-meA) and 7-methylguanine (7-

meG) being the predominant lesions formed. 7-meG does not alter base pairing with 

C, but 3-meA blocks replication and is cytotoxic. Each of the alkylated bases bears a 

formal positive charge likely to be important for recognition. Four classes of enzymes 

initiate BER of alkylated bases, typified by the following enzymes: 1) E. coli TAG (3-

meA-DNA glycosylase I); 2) E. coli AlkA (3-meA-DNA glycosylase II); 3) 

Heliobacter pylori MAGIII (3-meA-DNA glycosylase III); and 4) human AAG 

(alkyladenine-DNA glycosylase). TAG, AlkA, and MAGIII are HhH-containing 

enzymes, whereas AAG has an unusual fold not seen in other BER enzymes. Because 

3-meA is so deleterious, each of the alkyl base glycosylases efficiently removes this 

lesion. AlkA and AAG recognize a broad spectrum of substrates, including 

deamination and cyclic etheno adduct products. TAG removes 3-meA preferentially 

and 3-methylguanine (3-meG) with lower affinity, but not 7-meG, and MagIII has 

highest affinity for 3-meA (Bjelland et al., 1993; O'Rourke et al., 2000). 

 At least two mechanisms for repair of simple alkylation damage that do not 

rely on BER have been described. Two such mechanisms involve direct removal of 

the damage without further modification of the nucleotide or DNA, by proteins using 

either “suicidal” (single turnover) (AGT or Ada) or “non-suicidal” (AlkB or FTO) 

reactions. These proteins have no homology to the BER enzymes or to each other. 
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AGT becomes covalently modified in the process of repairing O6-alkylguanine 

lesions, and structures of the modified enzyme as well as a protein-DNA complex are 

discussed below (Daniels et al., 2000; Daniels et al., 2004; Hashimoto et al., 1999; 

Lin et al., 2001; Moore et al., 1994). Based on sequence homology, it was shown that 

the AlkB enzymes belong to a structural superfamily of 2-oxoglutarate (2OG) and 

iron-dependent oxygenases (Aravind and Koonin, 2001). The crystal structures of E. 

coli AlkB (Yu et al., 2006) and the functional human AlkB homolog 3 (hABH3) 

(Paper 5: (Sundheim et al., 2006)) have been elucidated. Interestingly, a very recent 

publication in Science by Schofield and collaborators demonstrates that the FTO (fat 

mass and obesity associated) protein demethylates 3-methylthymine (3-meT) in single 

stranded DNA using Fe(II) and 2OG as cosubstrates, suggesting a potential role for 

this enzyme in direct damage reversal of nucleic acids (Gerken et al., 2007). 

 

Human alkylbase-DNA glycosylase (AAG) 

 

AAG is the only known human alkylbase-DNA glycosylase, although other 

human enzymes exist that perform different types of alkylation damage repair, such as 

AGT and the human AlkB homologs 2 and 3 (hABH2 and hABH3). AAG is a 

structural outlier, with a topology unlike any of the other known BER glycosylases 

(Lau et al., 1998; Lau et al., 2000), consisting of a single α/β domain in which an 

antiparallel β sheet is surrounded by α helices. A β hairpin protrudes into the minor 

groove of DNA in cocrystal structures. A structure of AAG in complex with 1,N6-

ethenoadenine (εA)-containing DNA substrate revealed that the base is flipped out 

and inserted into a deep pocket, as occurs in the other structural families of DNA 

glycosylases. Alkylbases are specifically recognized using planar stacking and cation-

π interactions by Tyr127, His136, and Tyr159, and the chemical instability of the 

glycosidic bond in positively charged, alkylated nucleobases likely contributes to the 

catalytic specificity of AAG. Subsequent biochemical studies have revealed 

similarities between AAG and E. coli AlkA, particularly in their dependence on the 

weakened glycosidic bond of methylated bases for excision specificity (O'Brien and 

Ellenberger, 2004).  
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Human O(6)-alkylguanine-DNA alkyltransferase (AGT) 

 

AGT and ADA are homologous proteins that directly remove alkyl groups 

from the O6 position of guanine in a stoiciometric suicide reaction. Structures have 

been determined for bacterial, archeal, and human AGT/ADA proteins (Daniels et al., 

2000; Daniels et al., 2004; Hashimoto et al., 1999; Lin et al., 2001; Moore et al., 

1994). Human AGT is of particular interest because it repairs damage induced by 

some anticancer chemotherapeutics. The crystal structure of native human AGT, as 

well as structures of the methylated and benzylated product complexes (Daniels et al., 

2000), revealed a two domains α/β fold. The N-terminal domain consists of an 

antiparallel β sheet followed by two α helices. The C-terminal domain is comprised a 

β hairpin, four α helices, and a 310 helix which harbors a conserved Pro-Cys-His-Arg 

motif. Human AGT also contains a novel zinc binding site not seen in the bacterial or 

archael homologs that is likely to play a structural role. The C-terminal domain also 

contains a helix-turn-helix motif, often used by DNA binding proteins for sequence-

specific recognition (Wintjens and Rooman, 1996). The alkylated product structures 

in which Cys145 has a covalently attached benzyl or methyl group, established the 

active site as being near the recognition helix of the HTH motif. Surprisingly, the 

DNA-bound structures revealed that HTH motif is not used in the canonical way, with 

the recognition helix binding in the major groove where it can take a broad range of 

possible orientations that allow sequence-specific binding (Daniels et al., 2004). 

Instead, the recognition helix lies in the minor groove, which is likely to be 

advantageous for sequence-independent binding and nucleotide flipping. Another 

unexpected finding was that binding of AGT to DNA is cooperative and displays 

directionality, likely to be useful for targeting to areas of localized alkylation damage 

(Daniels et al., 2004). Furthermore, a 3´-phosphate twist mechanism by which a 

tyrosine is thought to facilitate nucleotide flipping was recognized and noted to be 

present in other base-flipping systems such as UNG, AlkA, AP endonuclease, and 

endonuclease IV. 
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The superfamily of Fe(II)/2OG dependent dioxygenases 

 

The structural family of non-heme-Fe(II)/2OG dependent dioxygenases 

catalyses a variety of enzymatic reactions, including protein side chain modification, 

biosynthesis of antibiotics and plant products, metabolism related to lipids, 

biodegradation of a whole string of compounds, and repair of alkylated DNA by AlkB 

enzymes (reviewed in (Clifton et al., 2006; Hausinger, 2004)). However, only the 

hydroxylation reaction is identified in animals for the Fe(II)/2OG dependent 

dioxygenase enzymes. Common for most of the enzymes in this family is the 

coupling of substrate oxidation to the conversion of 2OG into succinate and CO2. The 

members of this family share a conserved Fe(II) binding motif, HxD/ExnH, and a 

double stranded β-helix (DSBH) core fold. The DSBH fold is also found for proteins 

in the cupin and JmjC transcription factor families.  

 

The E.coli AlkB enzyme 

 

The expression E. coli AlkB is regulated by the adaptive response to 

alkylating agents. Transfer of the methyl lesion from methylphosphotriesters to Cys38 

in the N-terminal domain of Ada turns this multifunctional protein into an active 

transcription factor, which turns on the ada-alkB operon as well as the alkA and aidB 

genes (reviewed in (Sedgwick and Lindahl, 2002)). Following the in silico 

classification of AlkB as a Fe(II)/2OG dependent dioxygenase (Aravind and Koonin, 

2001), it was shown that E. coli AlkB directly reverses cytotoxic 1-methyladenine (1-

meA) and 3-methylcytosine (3-meC) DNA lesions (Falnes et al., 2002; Trewick et al., 

2002), that are mainly produced by SN2 methylating agents. Additional minor 

substrates reported for the AlkB enzyme are the alkylated DNA bases 3-

methylthymine (3-meT) and 1-methylguanine (1-meG) (Delaney and Essigmann, 

2004; Falnes, 2004; Koivisto et al., 2004), larger alkyl groups such as DNA-ethyl, -

hydroxyethyl, -propyl, and -hydroxypropyl (Duncan et al., 2002; Koivisto et al., 

2003), and the lipid peroxidation products 1,N6-ethenoadenine (εA) and 3,N4-

ethenocytosine (εC) (Delaney et al., 2005; Mishina et al., 2005). 

The crystal structure of AlkB in complex with the trinucleotide d(T-1meA-T) 

was determined by Yu and collaborators in 2006 (Yu et al., 2006), providing final 
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evidence of a DSBH fold for the AlkB family and structural information on iron, 2OG 

and lesion binding in the active site pocket (Figure 7). The AlkB structure is discussed 

in detail in paper 5 (Sundheim et al., 2006).  

 

 

 
 

Figure 7: The AlkB proteins possess similar double stranded β-helix (DSBH) core 

fold, represented by E. coli AlkB (PDB ID 2FD8), hABH3 (PDB ID 2IUW), and a 

homology model of hABH1 (Marianne P. Westbye personal communication). The tri-

nucleotide in AlkB and the 2OG cosubstrate are presented as balls and sticks colored 

yellow and green, respectively. The dark orange spheres illustrate the active site iron 

and α helices are blue and β strands dark red. The putative matrix-ancoring α helix in 

hABH1 model is colored green. 

 

The human AlkB homologs 1-8 (hABH1-8) 

 

Eight homologs of the AlkB enzyme are identified in the human genome 

(Drablos et al., 2004; Kurowski et al., 2003). hABH1 shares the highest degree of 

sequence similarity with the E. coli AlkB, and was reported to partially complement 

E. coli AlkB deficiency during treatment with methylating agents (Wei et al., 1996). 

Any AlkB like activity against 1-meA or 3-meC substrates was initially not found by 

us (Paper 3 (Aas et al., 2003)) or others (Duncan et al., 2002). However, our recent 

data reveal that hABH1 is predominantly a mitochondrial protein involved in direct 

reversal of 3-methylcytosine lesion in DNA and RNA (Feyzi et al., personal 

communication). Furthermore, molecular modeling of hABH1 based upon the known 

structures of AlkB and hABH3 predicts an additional hydrophobic α helix that might 

be involved in anchoring the protein to the mitochondrial matrix (Figure 7). hABH2 
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and hABH3 are functional homologs of E. coli AlkB in reversal of both 1-meA and 3-

meC lesions (Duncan et al., 2002; Aas et al., 2003), and these enzymes will be 

discussed in more detail below.  

The catalytic functions of hABH4-8 have not yet been elucidated. Based on 

the knowledge of hABH1-3, the most obvious functions of these proteins are in direct 

reversal of alkylated nucleic acids. Nevertheless, one cannot dismiss the possibility 

that these proteins are catalytic active against different types of substrates, such as 

methylated proteins. Reversal of histone methylation has been reported for several 

enzymes. The nuclear flavin-dependent amine oxidase, LSD1, specifically 

demethylates mono- and di-methylated H3-lysine4 releasing the methyl group as 

formaldehyde (Shi et al., 2004). Interestingly, the Fe(II)/2OG dependent dioxygenases 

JHDM1 and JHDM2A demethylates mono- and di-methylated H3-lysine36 (Tsukada 

et al., 2006) and H3-lysine9 (Yamane et al., 2006), respectively, whereas JMJD2 

demthylates trimethylated H3-lysines9 and 36 (Whetstine et al., 2006). Histone 

methylation is important in regulating chromatin structure and transcription, and to 

date 5 lysine residues in histone H3 (4 of them located in the tail) have been shown to 

be subject for mono- di- and tri-methylation ((Shi, 2007) with references therein). 

There is also a possibility that such a potential amino acid demethylase activity is 

linked to repair of damaged proteins, which could play an important role in cells that 

display a low protein turnover (Falnes et al., 2007). 

 

The function of human AlkB homologues 2 and 3 (hABH2 and hABH3) 

 

Both hABH2 and hABH3 catalyze hydrolytic demethylation of 1-meA and 3-

meC in an Fe(II)/2OG dependent reaction (Paper 3: (Aas et al., 2003) and (Duncan et 

al., 2002)). In addition, both these and the AlkB are capable of repairing 1-meG and 

3-meT (Falnes, 2004; Koivisto et al., 2004) while hABH3 repair εA lesion (Mishina 

et al., 2005). Our biochemical characterization revealed that hABH2 has a preference 

for lesions in dsDNA, whereas hABH3 displayed highest activity towards lesions in 

ssDNA (Paper 3 and 4: (Falnes et al., 2004; Aas et al., 2003)). Notably, both hABH3 

and AlkB were also found to remove 1-meA and 3-meC lesions from RNA substrates 

(Falnes et al., 2004; Aas et al., 2003). This underscores a possible role for AlkB and 

hABH3 in repair of methylated RNA, as first suggested by Aravind and Koonin 
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(Aravind and Koonin, 2001). hABH2 is strictly localized to nuclei and colocalizes 

with PCNA in replication foci during S-phase. Conversely, hABH3 is found both in 

nuclei and the cytoplasm, but not in replication foci (Konishi et al., 2005; Aas et al., 

2003). These results are compatible with a role for hABH2 in replication-associated 

repair of the replication-blocking 1-meA and 3-meC lesions and hABH3 in repair of 

single stranded DNA and RNA. A potential role for hABH3 and AlkB in repair of 

methylated mRNA and tRNA was investigated in vitro in the laboratory of Professor 

Falnes (Ougland et al., 2004). Both enzymes relieved methylation-induced mRNA 

translation blocks and reversed the aminoacylation and translation inhibition of 

methylated tRNAPhe.  Importantly, repair of 1-meA in tRNA by E. coli AlkB was also 

demonstrated experimentally in vivo. However, a definitive function for the AlkB 

enzymes in repair of damaged RNA in vivo has yet to be proven experimentally. The 

potential functions of AlkB-mediated RNA repair and RNA repair in general are 

reviewed in Falnes et al., (2007) (Falnes et al., 2007) and Feyzi et al., (To be 

published in Current Pharmaceutical Biotechnology).  

Distinct functional roles of ABH2 and ABH3 were recently demonstrated in 

knock-out mice by comparing repair efficiencies of cell-free extracts using synthetic 

1-meA- and 3-meC- containing DNA in vitro and by quantitating 1-meA from 

genomic DNA in vivo (Ringvoll et al., 2006). Whereas no detectable repair defects 

were observed in extracts lacking mABH3, mABH2 was found to be required to 

mediate efficient removal of these lesions from DNA. Although neither of the knock-

out mice displayed any overt phenotype, accumulation of 1-meA lesions in liver DNA 

was observed in the mABH2-null mice.  

Our integrated structural and biochemical study of hABH3 revealed a catalytic 

core domain of DSBH fold holding an iron and 2OG in accordance with its proposed 

iron and 2OG binding motifs (Figure 7) (Paper 5: (Sundheim et al., 2006)). 

Furthermore, structural investigations combined with site-specific mutations analysis 

suggested distinct recognition of the lesion in the active site and different composition 

of the nucleotide recognition lid compared to E. coli AlkB (Sundheim et al., 2006; Yu 

et al., 2006). Based on the location of the active iron center, we propose that also 

hABH3 use a β-hairpin in the putative nucleotide recognition lid to flip the damage 

base into active site pocket in consistence with the majority of nucleobase repair 

enzymes known.  
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 A putative role for FTO in nucleic acid demethylation? 

 

The human FTO (fat mass and obesity associated) gene encode a protein that 

is expressed in a wide range of human tissues (Frayling et al., 2007), and common 

variants in the first intron of FTO has been associated with obesity in both children 

and adults (Dina et al., 2007; Frayling et al., 2007; Scott et al., 2007; Scuteri et al., 

2007). Fto mRNA in wild type mice is most abundant in the brain, particularly in 

hypothalamic nuclei governing energy balance. Moreover, the level of murine Fto 

mRNA in the arcuate nucleus is regulated by feeding and fasting (Gerken et al., 

2007). In silico analysis of FTO revealed that it shares sequence motifs with the 

Fe(II)/2OG dependent dioxygenases within a predicted DSBH fold. It was also shown 

that recombinant murine FTO reverses 3-meT in single stranded DNA (Gerken et al., 

2007). The structural model of human FTO based upon the crystal structure of 

hABH3 suggests that it contains a core domain DSBH fold and, interestingly, a 

nucleotide recognition lid similar to that of hABH3. Their sequence alignment of FTO 

enzymes and AlkB homologues reveal that the hairpin corresponding to β4-β5-

hairpin in hABH3 (Sundheim et al., 2006) is of same length and 3 amino acids shorter 

to that predicted in hABH2. One might hypothesize that the composition of this 

hairpin-motif is important for single stranded versus double stranded specificity. It 

would also be interesting to know if the 3-meT demethylase activity is exclusively for 

DNA or whether FTO is able to reverse damaged RNA as well. 
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Aims of the study 
 

 In humans, there are four known glycosylases that initiate repair of uracils in 

DNA. These are UNG, TDG, SMUG1, and MBD4. It was proposed that the 

replication independent SMUG1 was the main enzyme initiating removal of 

deaminated cytosine, whereas UNG2 was responsible for replication associated repair 

of mis-incorporated dUTP (Nilsen et al., 2001). We aimed at elucidating the specific 

function of the two main human uracil-DNA glycosylases in vitro and in vivo to 

further clarify their distinct roles in repair of uracils in the genome (Paper I). In Paper 

II, we continued the in-depth analysis of the distinct roles of hUNG2 and hSMUG1. 

We wanted to investigate whether hUNG2 and hSMUG1 coordinated the subsequent 

step in BER differentially, to characterize active-site residues in hSMUG1, and to 

elucidate the role of the extended DNA minor-groove intercalating motif of hSMUG1 

in binding of the complementary DNA strand.  

 Studies in our laboratory in the mid-1990’s of the sequence upstream of the 

human UNG gene led to the discovery of a previously unrecognized gene in this 

region. Expression of the gene revealed that the product was translocated to the 

nucleus, and further bioinformatics analyses revealed weak but significant homology 

between the human protein (now called hABH2) and bacterial AlkB. An additional 

putative protein (hABH3) of weak homology was also identified in the human 

genome. Our biochemical characterization of the function of these gene products was 

guided by the finding that they belong to a family of enzymes functional dependent 

on Fe(II) and 2OG (Aravind and Koonin, 2001). The initial characterization of the 

two human proteins and comparison to E. coli AlkB resulted in Paper III. 

Discrepancies in substrate specificities reported by us and others led to a more 

extensive characterization of this enzyme with respect to preferred substrate (Paper 

IV). In addition to biochemical characterization of the human AlkB homologs we also 

initiated structural studies. The crystal structure of the catalytic core domain of 

hABH3 in complex with iron and 2OG and functional studies of residues within the 

active site are presented in Paper V. 
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Summary of results and discussion 
 

Paper I: hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A 

Matches, U:G Mismatches, and U in Single-stranded DNA, with hSMUG1 as a 

Broad Specificity Backup 

 

The uracil-DNA glycosylases hUNG2 and hSMUG1 constitute the first step in 

the quantitatively dominating base excision repair (BER) pathway, and these enzymes 

are the only known human glycosylases that excise uracil from both single- and 

double stranded DNA. The C-terminal catalytic core domain of hUNG has been 

subject to extensive structural and biochemical characterization (Kavli et al., 1996; 

Mol et al., 1995; Parikh et al., 1998; Parikh et al., 2000; Slupphaug et al., 1996). 

However, the biochemical behavior of the full-length nuclear hUNG2 (Muller-Weeks 

et al., 1998) was yet to be elucidated, mainly because the regulatory N-terminal is 

easily proteolytically degraded both in vivo during heterologous expression as well as 

during purification. The degradation problem was overcome in our study by use of a 

mixture of protease inhibitors and careful treatment of the protein sample during 

bacterial lysis and purification. The full-length hUNG2 enzyme of a molecular weight 

of 34.6 kDa eluted as 52 kDa protein as judged from size exclusion chromatography, 

suggesting that the N-terminal is flexible and most likely unstructured. Purification of 

full-length hSMUG1 yielded in a fully functional truncated protein lacking 16 N-

terminal amino acids. N-terminal sequencing of the hUNG2 enzyme revealed a 

mixture of full-length (60%) and hUNG2Δ1.  

Surprisingly, both enzymes were stimulated by divalent magnesium at 

physiological concentrations. In the presence of Mg2+, hUNG2 displayed catalytic 

activity 2-3 orders of magnitude higher than hSMUG1. Stimulation by Mg2+ stands in 

strong contrast to the behaviour of the catalytic core domain of UNG that is inhibited 

in presence of Mg2+. Thus, the mechanistic property for Mg2+ stimulation of hUNG2 

lies within or is aided by the regulatory N-terminal. Moreover, Michaelis-Menten 

kinetics revealed a weak preference (1.3-fold) for ssU substrate versus dsU substrate 

for hUNG2. Remarkably the ssU/dsU specificity ratio increased ~40 fold in the 

presence of Mg2+. The corresponding ratios for hSMUG were 1.6 and 3.8 in the 

absence and presence of Mg2+, respectively. These results show that hSMUG1 barely 
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justifies its name (single-strand-selective monofunctional uracil-DNA glycosylase) in 

the absence of Mg2+. In the presence of physiological concentrations of divalent 

magnesium, hUNG2 is actually selecting ssU at a much higher rate than hSMUG1.  

Furthermore, stimulation of uracil excision by APE1 was much more 

pronounced for hSMUG1 than for hUNG2. Actually, in the presence of APE1, the 

catalytic efficiency is higher for dsU than for ssU. DNA glycosylases were generally 

thought to protect the AP-site until the enzyme is alleviated and the damage is 

processed by BER enzymes downstream of the glycosylase. This behavior has 

previously been assigned to the catalytic core domain of UNG. Accordingly, AP-sites 

inhibit hSMUG1 activity. This was, however, not observed for the full-length hUNG2 

enzyme. Thus, the strong stimulatory effect of APE1 on the catalytic efficiency of 

SMUG1 is likely caused by enhanced dissociation of hSMUG1 from AP sites in 

dsDNA. 

Whereas the substrate specificity to hUNG2 is selective for uracil and uracil 

analogs with minor modifications at the 5-position, hSMUG1 is able to recognize and 

excise pyrimidines with bulky substitutions at the 3-, 4, and 5-positions. Our data 

shows that the substrate preference is U>>5-FU and U>HmU>>εC>5-FU for hUNG2 

and hSMUG1, respectively.  

In a previous work, a fraction of hUNG2 was shown to localize in replication 

foci in the S-phase (Otterlei et al., 1999). Here we applied fluorescently tagged 

hUNG2 (EYFP-hUNG2) and hSMUG1 (EYFP-hSMUG2) to study their localization 

during S-phase and outside the S-phase. hUNG2 was distributed to nucleoplasma 

outside the S-phase, a fraction accumulated in replication foci in S-phase. UNG2 also 

appeared to be excluded from nucleoli both in- and outside S-phase. Contrary, 

hSMUG1 was less strictly localized to nucleoli and is also found in cytoplasma. 

Moreover, hSMUG1 appeared to accumulate in nucleoli. 

By knocking down the hUNG2 activity with neutralizing antibodies in human 

cell extracts, we provided evidenve that hUNG2 is the major cellular uracil-DNA 

glycosylase in repair of U:A and U:G DNA substrates. Preincubation of the cell 

extracts with neutralizing antibodies against hSMUG1 had no effect on the uracil 

excision activity but knocked out most of the repair activity of HmU. Knocking down 

both hUNG2 and hSMUG1 by neutralizing antibodies diminished all uracil 

glycosylase activity on U:A substrates, whereas a delayed repair of U:G substrates 
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was observed. A possible explanation for the latter is that a fraction of hUNG2 could 

be inaccessible for hUNG2 antibodies. 

Summarized, the results presented in this study show that hUNG2 is the major 

uracil-DNA glycosylase initiating BER of U:A base pairs and U:G mismatches both 

in connection with replication and in resting cells. hSMUG1 seems to provide a broad 

specificity backup in the cellular defense of pyrimidine lesions in DNA, and may 

have a specific role in removal of uracil in nucleoli.  

 

Paper II: Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps 

of base excision repair by distinct mechanisms 

 

The catalytic core domain of UNG and SMUG2 possess similar overall fold 

and belong to the same structural and functional family of DNA glycosylase. Lines of 

evidence strongly suggest that hUNG2 has a role in replication associated repair, e.g. 

it binds PCNA and RPA, it localizes to replication foci, and it is cell-cycle regulated 

with highest levels in S-phase (Haug et al., 1998; Nagelhus et al., 1997; Nilsen et al., 

2000; Otterlei et al., 1999; Slupphaug et al., 1991). SMUG1 is neither involved in 

replication associated repair nor is it cell-cycle regulated (Paper I: (Kavli et al., 

2002)). Moreover, it excises uracil with a much slower efficiency than UNG2, but has 

broader substrate specificity (Paper I: (Kavli et al., 2002) and (Boorstein et al., 

2001)). SMUG1 was previously reported to be present in vertebrates and insects only 

(Aravind and Koonin, 2000; Nilsen et al., 2001). In this study, however, we found 

that some bacteria contain SMUG1 as their sole uracil-DNA glycosylase. Vertebrates 

contain both types of enzymes, suggesting a need for back-up systems in repair of 

U:G mismatches and/or distinct roles in initiating BER of U:G lesions. To further 

explore the distinct roles of hUNG2 and hSMUG1 we have studied how these BER 

enzymes recognize and process U:G mismatches. 

 We used an in vivo system in which U:G lesions were introduced by 

expressing AID in an Ung deficient E. coli strain and observed the effects when 

hUNG2 or hSMUG1 were expressed in this background. Surprisingly, only hUNG2 

reversed the mutator phenotype, whereas co-expression of hSMUG1 inhibited cell 

growth. These results reveal that SMUG1 is unable to functionally replace Ung in 

U:G repair in proliferating E. coli cells. To further investigate the observed in vivo 

effects, we investigated the end-product AP-site binding subsequent to uracil excision 



 50

by using EMSA. Unlike hUNG2, hSMUG1 readily binds AP-sites in dsDNA context 

with a slightly higher affinity for AP:G than for AP:A. Next, we investigated the 

effect of hAPE1 on uracil excision from U:G substrate by hSMUG1 and hUNG2. In 

accordance with previous results obtained using U:A substrate (Paper I: (Kavli et al., 

2002)), hSMUG1 was stimulated 2-3 fold by APE1, whereas hUNG2 was only 

weakly stimulated. Addition of hSMUG1 in molar excess inhibited both hAPE1 and 

bacterial ExoIII, suggesting that SMUG1 and AP endonucleases compete for binding 

to AP sites. Interestingly, hUNG2 had no effect on the activity of ExoIII, but 

stimulated the activity of hAPE1. Taken together, these results indicate that hSMUG1 

binds and protects AP-sites in dsDNA until displaced by an AP endonuclease. 

hUNG2 does not bind AP sites, but aids and coordinates hAPE1 activity possible 

through specific interactions. 

 Site-specific mutations of putative important residues in the active site pocket 

only moderately affected on the catalytic activity of hSMUG1 compared to the effects 

of corresponding mutations in UNG. A tyrosine residue in UNG (UNG1 Tyr147) 

blocks the entrance of thymine to the active site pocket is replaced by a glycine 

residue in SMUG1. Nevertheless, mutating the glycine residue to a tyrosine in 

hSMUG1 totally abolished uracil excision by the protein. A plausible explanation for 

this behavior could be that the tyrosine side chain blocks the entrance of the active 

side due to slightly different conformation of the loops holding these residues in UNG 

and SMUG1. 

 The crystal structure of X. laevis SMUG1 revealed an α-helix following the 

DNA minor groove intercalating loop motif. The authors suggested that this α helix 

was involved in wedging the duplex DNA (Wibley et al., 2003). We showed by 

mutational analysis that this extended intercalating motif binds the distal strand 

preferentially with an orphan guanine, thus providing AP-site end- product binding 

properties to SMUG1.  

 Although hUNG2 and hSMUG1 are both uracil-DNA glycosylases with 

similar structural catalytic core folds, they possess distinct catalytic and BER 

coordination properties. The catalytically superior hUNG2 lacks product binding 

capacity and stimulates the subsequent AP site cleavage by specific “hand over” 

interaction with hAPE1. These properties are compatible with rapid and highly 

coordinated replication associated repair of U:G (pre-replicative) and U:A (post-
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replicative). The role of the slow acting hSMUG1 is more likely in repair of 

deaminated cytosine (U:G) and other pyrimidine lesions in resting cells. The strong 

end-product binding suggest that hSMUG1 protects the potential harmful AP site until 

it is displaced by an AP endonuclease. 

 

Paper III: Human and bacterial oxidative demethylases repair alkylation damage 

in both RNA and DNA 

 

Minor alkylation damage in the genome is repaired by BER- and DDR-

mechanisms, including damage reversal by oxidative demethylation of 1-

methyladenine and 3-methylcytosine by E. coli AlkB (Falnes et al., 2002; Trewick et 

al., 2002). In the present paper, we demonstrate that the two human AlkB 

homologues, hABH2 and hABH3, also are functional oxidative DNA demethylases. 

hABH2 prefers double stranded DNA, whereas hABH3 and E. coli AlkB acts more 

efficiently on single stranded nucleic acids. The identification of distant homologs of 

AlkB in plant RNA viruses (Aravind and Koonin, 2001) led the authors to 

hypothesize that AlkB might be involved in RNA repair. Encouraged by this, we 

tested E. coli AlkB, and the human AlkB homologs 2 and 3 in the ability to reverse 1-

meA and 3-meC in RNA. Remarkably, both AlkB and hABH3 repaired alkylated 

poly(A) and poly(C), but no such repair activity was detected for hABH2. 

Furthermore, recombinant AlkB and hABH3 expressed in AlkB-deficient E. coli 

strain reactivated methylated RNA bacteriophage MS2 in vivo; suggesting that repair 

of RNA may have a biological relevance in living cells. 

Transient transfection experiments of hABH2 and hABH3 in HeLa cells 

revealed that both enzymes localized to nuclei. hABH2 was homogenously distributed 

in the nucleoplasm with some accumulation in nucleoli outside S phase. In S phase, 

hABH2 accumulated in replication foci and colocalized with PCNA. In most cells, 

hABH3 was mainly distributed in nucleoplasm and some in cytoplasm as well, but 

was not observed in nucleoli. However, occasionally hABH3 accumulated in nucleoli 

as well as in the nucleoplasm, but no colocalization with PCNA was detected. 

In this paper, we show that both hABH2 and hABH3 are functional homologs 

of E. coli AlkB. Different substrate specificities and subnuclear localization suggest 

distinct roles for hABH2 and hABH3 in defence against alkylation damage in cells. 

hABH2 may be involved in removing replication blocking 1-meA and 3-meC lesions 



 52

in the vicinity of replication forks, whereas hABH3 may be involved in repair of 

nuclear single stranded DNA as well as RNA. 

 

Paper IV: Substrate specificities of bacterial and human AlkB proteins 

 

 E. coli AlkB and the human AlkB homologs 2 and 3 were previously 

identified as oxidative demethylases of 1-meA and 3-meC lesions in DNA (Duncan et 

al., 2002; Koivisto et al., 2003; Trewick et al., 2002; Aas et al., 2003). In addition, 

AlkB and hABH3 were also found to remove these lesions from RNA (Paper III: (Aas 

et al., 2003)). To further investigate the substrate specificities of AlkB, hABH2 and 

hABH3 we tested a panel of 1-meA and 3-meC lesions in different nucleic acids 

context.  

 Three different oligonucletide substrates were used to resolve ssDNA versus 

dsDNA specificity of the human and bacterial AlkB proteins. AlkB and hABH2 

displayed moderate preference towards ssDNA and dsDNA, respectively, while 

hABH3 preferred ssDNA substrate. This pattern was consistent for all substrates 

tested, suggesting that the observed preference is sequence independent and a general 

property of the enzyme. The hABH2 dsDNA preference was only observed under 

physiological concentrations of divalent magnesium that had an inhibitory effect upon 

the activity against ssDNA substrates. 

 To gain more insight into the possibility that the AlkB proteins are involved in 

specific types of RNA repair, we investigated the preference for lesions in RNA/DNA 

hybrids and dsRNA substrates. In accordance with previous results, hABH2 preferred 

methylated DNA annealed to complementary RNA, over methylated ssDNA. 

Moreover, no significant repair of methylated dsRNA or methylated RNA annealed to 

complementary DNA was observed for hABH2. hABH3 preferred ssDNA over 

methylated-DNA:RNA hybrid substrate, and ssRNA over DNA:methylated-RNA and 

dsRNA duplexes. Although bacteria AlkB displayed a preference for ssDNA over 

dsDNA, similar activity was observed against ssDNA and methylated-DNA:RNA. 

The AlkB activity against RNA substrates was, however, similar to that of hABH3. 

 In the experiments designed by Trewick et al., AlkB displayed a preference 

for dsDNA over ssDNA (Trewick et al., 2002). However, they used unmethylated 

poly(dT) annealed to an ~310 bp methylated poly(dA) substrate. This likely produces 

a heterogeneous mixture of substrates containing both single- and double- stranded 
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regions, and possibly also substrates containing more than two single stranded 

molecules, such as various concatemers and branched molecules. Thus, this substrate 

may not be ideal for comparing ssDNA versus dsDNA preference for AlkB activity, 

and thereby likely explain the discrepancy between their conclusion and ours. 

 Duncan et al., (Duncan et al., 2002) did not report any ssDNA versus dsDNA 

preferences for neither hABH2 nor hABH3, and concluded that they had similar 

functions in DNA repair. We show in this study that the dsDNA preference of hABH2 

is only displayed in the presence of Mg2+. This observation may in part explain the 

discrepancy in the reports by Duncan and collaborators and us ((Duncan et al., 2002), 

paper III: (Aas et al., 2003), and paper IV (Falnes et al., 2004)).  

 

Paper V: Human ABH3 structure and key residues for oxidative demethylation to 

reverse DNA/RNA damage 

 

 hABH3 and AlkB have been shown to directly reverse cytotoxic 1-meA and 

3-meC lesions in DNA and RNA. In this study, we present the crystal structure of the 

catalytic core domain of hABH3 (N-terminal truncated hABH3Δ69) in complex with 

iron and 2OG. The high resolution structure (1.5 Å) was solved using phases from a 

multiwavelength anomalous dispersion (MAD) experiments with a single Pt 

derivative. hABH3Δ69 contains a central double stranded β-helix (DSBH) core fold 

made up of β7-β11. In hABH3Δ69 the DSBH is extended with β1 in the smaller sheet 

and β2, β3, and β6 in the larger sheet. Two helices buttress the larger sheet. The 

active site iron is likely in the inactive Fe(III) state in the aerobically grown crystal, 

and is coordinated by His191, Asp193, His257, and the 2OG molecule. β4 and β5 

form a hairpin that creates a lid over the active site. We hypothesize that the 

positively charged groove formed between the hairpin and the DSBH core domain 

constitute the DNA/RNA binding cleft. 

 The crystal structure of E. coli AlkB in complex with a 1-meA-containing 

trinucleotide was published during the revision of our paper. Comparison of the 

structures reveals that the overall folds are similar dispite the relatively low sequence 

similarity between them. However, significant differences are observed in the 

substrate binding pockets and in other key regions in the vicinity of the active sites of 

the two enzymes. The substrate binding pocket of AlkB is predominantly 
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hydrophobic and 1-meA is sandwiched between His131 and Trp69 (Yu et al., 2006), 

whereas the substrate binding pocket in hABH3 is noticeably more polar. The more 

hydrophobic substrate binding pocket may explain the broader substrate specificity of 

AlkB compared to hABH3. AlkB binds the tri-nucleotide in a rather unusual 

conformation that not easily conforms to the hABH3 structure. Thus, we propose that 

the conformation of the trinucleotide is an artifact caused by the short oligonucleotide 

in combination with alternative binding of this substrate compared to longer 

biologically relevant oligonucleotides or that hABH3 and AlkB must bind 

oligonucleotides differently.  

 We combined structural information and biochemical characterization of site 

specific mutants of hABH3 to assign important residues involved in iron and 2OG 

binding, and residues located in the DNA/RNA binding groove likely to be involved 

in substrate recognition and nucleotide flipping. According to our data, the flexible 

β4-β5 hairpin is likely involved in both nucleotide flipping and ss/dsDNA 

discrimination. 

 hABH3 Leu177 is located in the active site and is essential for demethylation 

activity against 1-meA, and a leucine in this position is conserved in AlkB, hABH2, 

and hABH6. This leucine was found to be modified in the refined crystal structure, 

and MALDI-TOF MS analyses of tryptic peptides revealed a mass shift of +14 and 

+16, corresponding to a mixture of hydroxyl and carbonyl group at Leu177 Cδ atom. 

A corresponding modification was also observed in recombinantly expressed and 

purified AlkB, hABH2, and hABH6 proteins. We found that the oxidation of Leu177 

likely results from hydroxyl radicals formed by uncoupled decarboxylation of 2OG in 

the absence of primary substrate. Unable to separate un-oxidized protein from 

oxidized protein, a series of L177 mutants were made and analyzed for their 1-meA 

and 3-meC activities. The mutational data reveal that Leu177 likely serves as a 

“buffer stop” to prevent pyrimidines to be positioned too deep into the catalytic 

pocket. The mutants mimicking the oxidized leucine, L177Q and L177E, were found 

to possess no activity neither against 1-meA nor 3-meC. This strongly suggests that 

self-hydroxylation of this leucine residue inactivates the enzyme, maybe to avoid 

generation of reactive oxygen species and potentially harmful side reactions in the 

cell. 
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 In this study, we provide structural and biochemical information yielding new 

insights into the catalytic mechanism and divergent substrate preferences of 

nucleotide repair enzymes in the AlkB family. Moreover, we discovered a novel self-

hydroxylation of an active site leucine that may used to knock out the ability to 

produce harmful oxidative side reaction in the absence of primary substrate. 
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Future perspectives 
 

 In general, direct visualization of repair proteins in complex with nucleotides 

both in solution and in crystal diffraction experiments provide a molecular-level 

understanding based upon the discovery of testable general themes and principles for 

DNA/RNA base damage recognition, processing, and coordination. The structural 

biology of nucleobase damage and repair protein:DNA/RNA complexes furthermore 

gives an initial understanding of how dynamically assembled macromolecular 

machines and reversible complexes may control pathway progression and selection. 

Currently high-resolution structures coupled to characterization of protein active sites 

and protein interfaces are providing a mechanistic understanding of how single-site 

mutations can lead to degenerative diseases such as cancer. As one example, 

structures of the DNA base repair enzyme UNG provided the basis to understand 

damage specificity an to see how single site mutations in the UNG base specificity 

pocket can result in a mutator phenotype (Kavli et al., 1996). 

 In paper I, we showed that the full-length human UNG2 enzyme displays 

distinct properties compared to the catalytic core domain alone in respect to Mg2+ 

influenced catalytic activities and ss/ds DNA preference and to end product binding 

properties. Although extensive attempts to crystallize full-length hUNG2 have been 

undertaken this has not yet succeded. We have faced several obstacles in the process, 

especially regarding N-terminal proteolytic degradation. Crystals have been obtained 

using apparently homogenous purified N-terminal his-tagged hUNG2. However, the 

molecular replacement solution using the catalytic core domain of UNG as search 

model revealed that ~100 N-terminal residues including the his-tag were missing in 

the structure. The packing arrangement in the crystal furthermore suggested that these 

residues were cleaved off prior to crystallization, and this was confirmed with 

coomassie blue stained polyacrylamid gel electrophorese and mass spectrometry 

analyses of tryptic peptides. It remains to be determined if this is caused by 

protealytic cleavage due to contaminants in the purified solution or by a self-cleavage 

process. Either way, to crystallize the apo-enzyme is probably not the best approach 

to achieve structural information of the regulatory N-terminal domain, since it is most 

likely flexible and unstructured in non-physiological in vitro buffer solutions. 
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Therefore, structural analysis of the regulatory domain of hUNG2 will also be 

attempted by other techniques such as SAXS (small angular x-ray scattering).  

Schär and Steinacher proposed that the N-terminal of TDG forms a flexible 

DNA holding “clamp” and that in this state TDG may slide along the DNA in search 

for a G mismatched lesion (Cortazar et al., 2007). It is not inconceivable that the N-

terminal of hUNG2 also forms a “sliding clamp”, which upon binding of Mg2+ 

optimizes its conformation to slide along ssDNA. hUNG2 is a multifunctional 

glycosylase that removes uracils near replication forks and in resting cells, and is 

important for affinity maturation of antibodies in B-cells. Much of this dynamicity 

resides in the regulatory N-terminal, which is reported to contain at least one binding 

motif for replication protein A (RPA) as well as a PiP-box binding motif for PCNA 

(Otterlei et al., 1999). In addition, we have very recently published a study in wich 

hUNG2 is shown to be stepwise phosphorylated through the cell cycle, most likely by 

cyclin dependent kinases. Each of these phosphorylations confer distinct properties to 

UNG2 (Hagen et al., 2007). Utilizing this biochemical knowledge will be important to 

guide successful experiments that will provide structural pieces to elucidate the 

regulated and dynamic functionality of hUNG2. 

In paper II, we used the crystal structures of xenopus SMUG1 and hUNG to 

design site-specific mutations to characterize the distinct properties of hSMUG1 

compared to hUNG2. Insolubility even at low concentration of hSMUG1 has been 

great obstacle to overcome in retrieving crystals of hSMUG1. However, it will be of 

great importance to elucidate the structure of SMUG1 with a productive binding of 

DNA in the active site to further explore the properties of DNA binding motifs and 

find clues how SMUG1 regulates the subsequent processing of the AP-site in the BER 

pathway. 

In paper III and IV we report some of the first biochemical characterizations 

of bacterial AlkB and the human AlkB homologues 2 and 3. Interestingly, we found 

that AlkB and hABH3 may have a possible role in RNA repair. The crystal structure 

of AlkB in complex with a 1-meA-containing tri-nucleotide was solved by Yu and 

colleagues in 2006 (Yu et al., 2006) and we reported the structure of hABH3 later that 

year (Paper V: (Sundheim et al., 2006)). Several features of these enzymes were 

elucidated by these crystal structures, but still there are properties such as 

ss/dsDNA/RNA discrimination to be elucidated. We thus aim to crystallize 

protein:DNA complexes of the human Fe(II)/2OG nucleobase demethylases. 
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Moreover, we will pursuit the functions of the uncharacterized N-terminal regions of 

these enzymes as well as the biological functions of the remaining human AlkB 

homologs. 
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