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Introduction
An organism is a living entity that has developed the ability to store its biological information in form of

linear arrangements of four bases in deoxyribonucleic acid (DNA), and has the capacity to transfer this

information to its offspring. However, DNA is not stable and the spontaneous damage occurs at high rates

under normal physiological conditions. In addition, the genome is under constant attack from endogenous

as well as environmental factors that can alter its chemical structure.

Types of DNA damage
Bases in DNA as well as the sugar and phosphate backbone are constantly damaged. Three of the

four bases normally present in DNA (cytosine, adenine, guanine), as well as 5-methylcytosine contain

exocyclic amino groups. Spontaneous hydrolytic deamination converts these bases to uracil, hypoxanthine,

xanthine, and thymine respectively (Figure 1), of which some give rise to mutations during replication.

Figure 1. Products formed from the deamination of bases in DNA
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Spontaneous loss of bases, mostly purines, occurs at considerable rates that generate the cytotoxic and

mutagenic apurinic/apyrimidinic (AP) sites (1). Attack by reactive oxygen species (ROS) is a major source

of DNA damage. ROS can generate mutagenic oxidative base lesions (8-oxo-G) and modified bases that

can block replication (thymine glycol) (Figure 2), as well as strand breaks (reviewed in (2)). Alkylation

lesions in DNA result from endogenous compounds, environmental agents and alkylating drugs. Alkylating

agents are electrophilic compounds with affinity for nucleophilic centers in DNA (Figure 3). In general, the

ring nitrogens of the bases are nucleophilic, with the N7 position of guanine and the N3 position of adenine

the most reactive, followed by O6 in guanine (3). Alkylated bases can be mutagenic (O6-mG) or can block

replication (3-meA). Alkylation of oxygen in the phosphodiester linkage results in the formation of

phosphotriesters, which apparently are not repaired and are assumed to be relatively harmless (3).
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Normal, but mispaired bases, can be introduced in DNA during replication of tracts of short repeated

sequences (DNA polymerase slippage) (4). Certain modified bases in the template DNA can cause insertion

of incorrect bases by replicative DNA polymerases into nascent DNA, giving rise to mutations. UV-light at

260-310 nm is absorbed by the bases, exciting them, giving rise to bulky adducts, e.g. cyclobutane dimers

between adjacent pyrimidines (3). These DNA distorting lesions block DNA replication and transcription

and cause strand breaks. High energy ionizing radiation (IR) cause base modifications as well as single- and
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Figure 3. Some products of alkylation damage of bases in DNA

Figure 2. Some common oxidative base damage in DNA
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double-strand DNA break (DSB). Single-strand DNA breaks (SSDB) can be converted to DSB when

encountered by replisomes (3).

Large scale chromosomal rearrangements frequently occur in human cells, but some specific forms

are associated with disease like leukemia. Chromosomal translocations create a fusion gene by bringing

together sequences from two genes located in different chromosomes (5).

The consequences of DNA lesions
The types of DNA damage (base damage or strand break), the location of the lesions in the genome

(a promoter region, introns or exons, and actively transcribed regions or transcriptionally silent regions), as

well as the cell cycle, and type of the cell affect the level of mutagenicity or cytotoxicity of DNA lesions.

Damaged bases are by far the most frequent form of DNA lesions (6). One major consequence of DNA base

lesions is the introduction of mutations that could result in the alteration of the genetic information. In this

respect, a significant group of DNA base lesions are relatively harmless until they are “fixed” as mutations

during replication. Hence, DNA repair is particularly important in actively replicating cells. Accordingly,

non-dividing human cells are also known to accumulate base damage in their genome (7). Mutations may

contribute to the evolutionary diversity of the species (8). The capacity of an organism to evolve is named

evolvability or evolutionary adaptability, and includes the capacity to generate heritable mutations through

selectable phenotypic variations (9). However, evolutionary favorable mutations are rare events and most

of the mutations are neutral or harmful at the cellular level and cause disease and may reduce the biological

fitness of the affected individual. The oxidative base damage 8-oxo-guanine can pair with adenine during

replication resulting in G:C to T:A transversion mutation. Deamination of cytosine to uracil occurs at a rate

of 100 to 500 bases per cell per day causing C:G to T:A transition mutations upon DNA replication (10,11).

Therefore, this class of base damage is referred to as mutagenic lesions. Another group of base lesions is

considered potentially cytotoxic because they can block DNA replication or RNA polymerase and may

result in cell death. Base lesions like uracil that likely do not arrest RNA polymerase may result in mutant

transcripts and protein molecules (12,13). However, it should be noted that cells can switch from a replicative

DNA polymerase to different damage bypass DNA polymerases that permit replication across lesions in a

process known as translesion DNA synthesis. In vitro experiments have demonstrated that several bypass

DNA polymerases in fact insert correct bases into the nascent DNA across certain lesions in template DNA

(14,15). The biological importance of translesion DNA synthesis was demonstrated when xeroderma

pigmentosum variant (XP-V) patients were found to carry mutations in the POLH gene that encodes POLη

(16), a member of the Y-family damage bypass DNA polymerases.
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How DNA lesions are detected?
A central question in the process of DNA repair is how lesions are detected in the human genome

consisting of 3.2 × 109 base pairs. The organization of the chromosomes adds more complexity to this

problem. The DNA is wrapped around a core of histone proteins forming beadlike structures of nucleosomes.

The nucelosome core comprises 147 base pairs DNA and eight histones, two of each of the four core

families- H2A, H2B, H3, and H4. A minimum of another 20 base pairs of DNA stretches between nucelosomes

is complexed with the linker histone H1. The string of nucleosomes is folded into a shorter, thicker filament,

called a 30-nm fiber. This is further folded into fibers, 100 to 300 nm in diameters, which are organized into

loop domains of 15, 000 to 100, 000 base pairs (17) (Figure 4).
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The cellular responses to DNA damage and mechanisms of damage recognition vary considerably depending

on the type of damage. Single- and double-strand breaks are cytotoxic, only few DSBs can cause cell death.

The cellular response and repair systems handling these types of damage have characteristics distinct from

Figure 4. Levels of chromatin packing. (From http://www.accessexcellence.org  Published by Garland Pub-
lishing , The Taylor & Francis Group)
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excision repair of base lesions and bulky adducts. Higher eukaryotic cells primarily repair DSBs by one of

two pathways; nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ repairs

broken ends with little or no requirement for sequence homology. The ends of the broken DNA are recognized

by heterodimer Ku consisting of Ku 70 and Ku 80 proteins. Ku is an abundant molecule at about 4 × 105

molecules per cell (18). The average distance between two Ku molecules is only 4-6 times the Ku diameter

which means that there is an average one Ku molecule within 4-6 molecular diameters of a DSB (18). The

end-processing (removal of 5´and trimming of 3´overhangs) is carried out by a 469 kDa protein known as

the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in complex with Artemis. The final ligation

step is done by XRCC4-LIG4 complex. HR is active in replicating cells and repairs DSBs that occur as a

result of collapse of the replication fork. In contrast to NHEJ, HR uses extensive homologous DNA sequences

making it in most cases error-free but also a slower repair process. In human cells the main steps in HR are

mediated by RPA, Rad51, Rad52, and Rad54. The key protein in HR is Rad51 that forms nucleoprotein

filament on ssDNA regions and catalysis the search for homologous sequences, strand pairing and strand

exchange.

Immediately after occurrence of a DSB, a remarkably rapid cascade of protein modifications starts,

mainly in the form of phosphorylation. The histone H2AX becomes phosphorylated within one minute (γ -

H2AX) in a chain reaction covering several mega bases in either direction of the site of break (reviewed in

(19)). This wave of H2AX phosphorylation facilitates rapid recruitment of repair factors. The rapidity of

response and availability of DSB repair proteins in the nucleus are excellent configurations distinct for

DSB detection and repair. Other proteins that constitute the early cellular responses to DSBs are ataxia

telangiectasia mutated (ATM), and ATM-and-Rad3-related (ATR) kinases, and the MRE11/RAD50/NBS1

complex (MRN complex). While ATM seems to be the main kinase that responds to ionizing radiation, the

ATR pathway is dominant in the signaling pathway triggered by stalled replication forks or UV-light. ATM

is rapidly activated upon induction of a DSB (20) and regulates cell cycle and DNA repair by phosphorylation

of key proteins in these systems (reviewed in (21)).

The rapidity of the cellular responses to SSDB shares characteristics of responses to DSB. Poly

(ADP-ribose) polymerase-1 (PARP-1) is rapidly and directly activated by SSDB. Upon binding to a SSDB,

PARP-1 catalyzes polymer synthesis of ADP-ribose on nearby proteins as well as itself and the levels of

polymers can increase more than 100-fold in minutes (22). These events “flag” the position of DNA damage

and start a rapid repair process of recruitment of repair proteins mainly through XRCC1-associated repair

protein complexes (23,24).

DNA replication and transcription as well as chromatin remodeling complexes facilitate DNA

damage recognition and repair. Insertion of normal but inappropriate bases during replication is repaired by



13

INTRODUCTION

the post-replicative mismatch repair (MMR) pathway. In E.coli the major MMR is the MutHLS pathway.

MutS initiates repair by binding to the mismatched bases and activates together with MutL, the MutH

endonuclease, which incises DNA at hemimethylated dam sites and thereby mediates strand discrimination.

In humans MMR can be initiated by the heterodimeric complexes MSH2-MSH6 (MutSα) and MSH2-

MSH3 (MutSβ). Insertion/deletion loops (IDLs) with up to eight unpaired nucleotides are recognized by

MutSβ, and base-base mismatches by MutSα. The heterodimer MLH1-PMS2 (MutLα) is the major human

MutL activity. No MutH homologue has been identified in eukaryotes, suggesting that strand discrimination

in these organisms is different from E.coli. (25). Exactly how human MMR distinguishes the newly inserted

normal but wrong base from the base in template DNA is not completely understood. However, the ends of

Okazaki fragments on the lagging strand as well as PCNA likely play key roles in the process of strand

discrimination by human MMR (26).

A number of chemicals as well as UV-light generate bulky base adducts that cause helical distortion.

cis-syn-cyclobutane dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs) are formed

between adjacent pyrimidines, and constitute the two major classes of lesions induced by UV-light. These

lesions are substrate for nucleotide excision repair (NER). The initial damage recognition step of NER

involves distinct enzymes and is generally divided into a global genome repair (GGR) and a transcription-

coupled repair (TCR) (27). The XPC/hHR23B complex and the UV-DNA damage-binding complex (UV-

DDB) comprised of DDB1 and DDB2 subunits, are the initial and damage recognition enzymes in GGR.

Upon binding to the DNA lesion, they initiate a repair reaction that involves about 30 enzymes. The initial

DNA damage recognition step in TCR involves the action of Cockayne syndrome A and B proteins (CS-A

and CS-B) (27) (discussed later).

It appears that certain repair proteins are spatially organized in tight association with the nuclear

matrix (28). Thus, aberrant DNA structures may be brought into proximity to repair proteins at fixed sites.

Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes

Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Very recently,

truncated lamin A was found to act dominant negatively to perturb DNA damage response and repair,

resulting in genomic instability (29). Although it needs further investigation, spatial organization of DNA

repair proteins may be an important cellular mechanism for damage detection and repair.

In a highly compacted DNA-protein complex all cellular processes that use the DNA as a template,

including DNA repair require a high degree of coordination between the DNA repair machinery and chromatin

modification/remodelling, which regulates the accessibility of DNA in chromatin. Most small base lesions

are recognized and removed by DNA glycosylases that start base excision repair. Typically, base excision

repair analyses have relied on the use of damaged DNA substrates that are not assembled into nucleosomes
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or chromatin. A few recent in vitro analyses have shown that chromatin structure of DNA impedes action of

DNA glycosylases and BER (30,31). Thus, factors other than the “core” BER proteins may be required for

the efficient repair of base lesions in chromatin. Reports are emerging that rather than stochastic collisions,

at least some DNA glycosylases undergo posttranslational modifications as well as protein-protein interactions

that channel them to the damaged bases and facilitate damage recognition and repair. Hence, specific

association of DNA glycosylases with certain auxiliary proteins, DNA replication proteins and possibly

transcription factors as well as chromatin remodeling complexes may facilitate the initial step of base

excision repair.

DNA repair
In their historical article in Nature in 1953, Francis Crick and James Watson wrote: “It has not

escaped our notice that the specific pairing we have postulated immediately suggests a possible copying

mechanism for their genetic material”. However, they completely overlooked possible existence of

mechanisms for maintenance of the integrity of DNA. In 1974, Crick wrote rather regrettably : “We totally

missed the possible role of ... repair although ... I later came to realize that DNA is so precious that probably

many distinct repair mechanisms would exist” (32). Since then, various DNA repair mechanisms have been

identified that maintain the integrity of DNA (reviewed in (33)). DNA repair pathways function as integral

parts of an interconnected network of DNA metabolism mechanisms, cell cycle regulation, cell survival and

apoptosis that makes is impossible to present a comprehensive article about human DNA repair pathways

without addressing other cellular mechanisms. Even an in-depth coverage of one “DNA repair pathway” in

a single article is a challenging task. The focus of the present work is base excision repair (BER) in human

cells and I will only briefly address other DNA repair pathways. Several proteins known as BER enzymes

are also involved in other DNA metabolism processes. So, throughout this review by a BER protein I

merely mean a protein that has a specific function in BER pathway. I will briefly discuss the function of

each BER enzyme, but will provide in rather more detail the available reports on protein-protein interactions

as well as posttranslational modifications of BER proteins. I will discuss BER in association with DNA

replication and transcription, BER in disease, and finally mitochondrial BER and ageing.

Base excision repair (BER)
BER pathways play a major role in counteracting the cytotoxic and mutagenic effects of a broad

range of DNA lesions caused by environmental (exogenous) as well as spontaneous (endogenous) factors.

Until few years ago, BER was thought to function in a simple and linear pathway in which individual repair

enzymes carried out the catalytic reactions independently of one another. In this model, BER started by the



15

INTRODUCTION

removal of a damaged base by a DNA glycosylase generating a baseless or an apurinic/apyrimidinic (AP)

site. This was followed by the incision of DNA at the 5´ end of the AP-site by the action of AP endonuclease

1 (APE1), then insertion of the correct nucleotide(s) by DNA POLβ or POLδ/ε, the removal of 5´-dRp

residue by POLβ or flap endonuclease 1 (FEN1), and finally end joining and completion of the repair by a

DNA ligase (Figure 5). However, we know now that BER pathways are regulated at several levels including

posttranslational modifications of BER proteins (Table 1) as well as through the action of some auxiliary

factors, and specific protein-protein interactions (34). Moreover, the cell cycle regulates the expression of

several BER proteins and importantly affects the mechanisms of BER pathways, adding more complexity

Figure 5. A simplified presentation of BER pathways in human cells. (* Has been reported but needs further
investigation).
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Table1. Proteins involved in human BER.* 

 

PROTEIN LOCALIZATION SUBSTRATES, FUNCTIONS MODIFICATIONS 

 

UNG2 Nucleus ssU, U/G, U/A), alloxan,  

isodialuric acid, 5-hydroxyuracil 

Phosphorylation (cell 

cycle specific, UV-light) 

UNG1 Mitochondria ssU, U/A, U/G) None 

 

SMUG1 Nucleus ssU, U/A, U/G), isodialuric acid,  

5-hydroxyuracil, alloxan, 5-fU,  

5-hmU 

 

TDG Nucleus T/G, U/G Acetylation, 

SUMOylation 

MBD4 Nucleus U/G, T/G, C/G (CpG-context)  

MYH Nucleus, 

mitochondria 

A/8-oxoG, 2-OH-A/G Phosphorylation (PKC?) 

OGG1 Nucleus, 

mitochondria 

8-oxoG/C, associated AP lyase Phosphorylation 

NTH1 Nucleus, 

mitochondria 

Tg, Fapy, dihyroxyuracil, 

dihyroxyuracil, urea 

 associated AP lyase 

 

NEIL1 Nucleus Tg, 5-OHU, 5-OHC, urea, Fapy, 

8-oxoG, associated  elimination 

 

NEIL2 Nucleus 5-OHU, 5-OHC, AP-sites,   

associated ,  elimination 

Acetylation (p300)  

NEIL3 Nucleus   

MPG Nucleus 3-meA, 7-meG  

APE1 Nucleus, 

mitochondria 

5´-endonuclease at AP-sites, DHU, 

and redox reaction 

Phosphorylation (CK I/II, 

PKC), acetylation 

APE2 Nucleus, 

mitochondria 

Weak 5´-endonuclease at AP-sites  

POL   Nucleus DNA polymerase, dRP lyase  Acetylation (p300) 

POL  Nucleus DNA polymerase with associated 

proof reading function 

 

POL   Mitochondria DNA polymerase with associated 

proof reading function, dRP lyase 

 

FEN1 Nucleus Incises RNA-DNA flaps & DNA 

flaps, 5´-3´exonuclease  

Phosphorylation (cdk1), 

acetylation (p300) 

LIG I Nucleus DNA ligation Phosphorylation (CKII) 

LIG III Nucleus, 

mitochondria 

DNA ligation  

XRCC1 Nucleus Scaffolds DNA repair proteins Phosphorylation (CKII) 

PARP-1 Nucleus poly(ADP-ribosyl)ation  

PCNA Nucleus Sliding clamp for replication & repair 

proteins 

Ubiquitination, 

SUMOylation, 

acetylation 

RPA Nucleus Binds ssDNA during replication & 

repair 

Phosphorylation 

 
* See the text for references. 
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to the function of BER. An example of a highly coordinated BER pathway is the repair of 8-oxoG during

DNA replication. 8-oxoG is the most stable and mutagenic oxidative base damage known, that in its syn-

conformation can pair with adenine during replication resulting in a G:C to T:A transversion mutation.

8-oxoG can also occur in DNA by incorporation of 8-oxodGTP opposite adenine during replication. Hence,

repair of A:8-oxoG mispairs during DNA replication requires precise timing for removal 8-oxoG and adenine

in the nascent strand to avoid fixation of mutation in DNA (reviewed in (35)).

DNA glycosylases
DNA glycosylases start BER by removing a damaged base from DNA. X-ray crystallographic

analysis of several DNA glycosylases complexed with DNA have shown that a general strategy is used by

DNA glycosylases. So, upon binding to the damaged base, DNA glycosylases “flip” the aberrant base from

DNA into a specific pocket in the active site followed by hydrolysis of the N-glycosylic bond between the

damaged base and deoxyribose producing an AP-site in DNA. In human cells, 11 DNA glycosylases are

identified so far (Table 1). DNA glycosylases are relatively small monomeric proteins that do not require

cofactors for their function (reviewed in (36)). Most DNA glycosylases are monofunctional and only remove

the damaged base, while some are bifunctional with an associated AP lyase activity producing a 3´-

deoxyribophosphate residue. The recently discovered DNA glycosylases (NEIL1 and NEIL2) have an

associated β/δ elimination function and generate a gap in DNA after removal of the damaged base. The

kinetics of DNA glycosylases have been extensively studied and found to vary considerably (37). DNA

glycosylases UNG2 and MYH that function in association with DNA replication show higher rates of

turnover (37), possibly in order to cope with the speed of DNA synthesis during the replication. DNA

glycosylases show varying substrate preference and specificity. UNG is highly specific for removal of

uracil from DNA, while 3-meA-DNA glycosylase (MPG) removes several different types of alkylated (Table

1) as well as normal bases.

Uracil-DNA glycosylase (UNG)

In Ung –/– mouse embryonic fibroblast cells, the number of steady state level of uracil in DNA was

estimated about 3600 uracil residues/diploid genome (38). This number includes uracil from the incorporation

during replication and from the deamination of cytosine that occurs at a rate of 100 to 500 bases per cell per

day (10,11). Gene-targeted mice deficient in Ung displayed a modest rate of mutation in a nontranscribed

lacI reporter transgene (39), and developed B-cell lymphoma (40). The nuclear (UNG2) and the mitochondrial

(UNG1) isoforms of UNG are generated from a single gene by alternative splicing and transcription from

different positions in the UNG gene (41). UNG2 is the major DNA glycosylase for removal of uracil, both
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from incorporation of uracil during replication (42) and deamination of cytosine which occurs anywhere in

the genome (43). UNG1 is constitutively expressed and possesses a unique 35 amino acid N-terminal

region that contains a mitochondrial targeting signal. The expression of UNG2 is cell cycle regulated (44-

46), and has a unique 44 amino acid N-terminal that contains a nuclear localization signal (41). This region

is the target of multiple phosphorylation events (47) and is the site of interaction with PCNA (42) and RPA

(48). The function of the phosphorylation modifications is not completely understood. The level of

phosphorylated protein peaks during the S-phase of the cell cycle, but apparently none of the phosphorylations

alters the enzymatic activity of UNG2 (47). A role for phosphorylation might involve regulation of interaction

of UNG2 with PCNA and RPA during the replication. UNG2-associated BER complexes have been reported

(49-51). It remains to be seen whether specific phosphorylations of UNG2 may facilitate formation of such

complexes. Recently, a role for UNG2 phosphorylation was reported to be the cell cycle dependent

degradation of the protein (52).

A recently identified interaction between UNG2 and PPM1D (Wip1) phosphatase is particularly

interesting (53). PPM1D is transcriptionally upregulated by p53 following UV-light and IR exposure. UNG2

was phosphorylated at threonines 6 and 126 following UV-light irradiation. The UV-light-induced

phosphorylated forms of UNG2 were more active in the removal of uracil from DNA. Dephosphorylation

of UNG2 by PPM1D at phosphothreonine 6 reduced activity of UNG2 (53). Although the biological relevance

of activation of UNG2 in response to UV-light needs further investigation, these observations demonstrate

the regulation of function of UNG2 by transient posttranslational phosphorylation.

A recently discovered role for UNG2 is in immunoglobulin diversification in B-cells (54). Here,

UNG2 plays a role distinct from its function in BER by creating AP-sites which are not correctly repaired.

Rather, they facilitate induction of mutations in the immunoglobulin genes.

Analysis of the posttranslational modifications of UNG2 as well as specific protein-protein

interactions will likely help us understand the mechanisms that regulate the function of UNG2 in such

diverse contexts.

Hypoxia is associated with a variety of DNA lesions. Some of the first associations between hypoxia

and DNA damage came from earlier studies on the pathophysiology of reperfusion injury. In a reperfusion

injury the greatest tissue damage observed after a transient period of decreased blood flow and occurred

during the return of blood flow to that region (55). A brief cerebral ischemia enhanced BER including

uracil-DNA glycosylase activity (56). Ung-/- fibroblasts and primary cortical neurons showed increased

cell death when treated with a nitric oxide donor and oxygen-glucose deprivation, respectively (57). Ung-/

- mice had major increases in infarct size after focal-brain ischemia as compared with the control mice. In

Ung+/+ the mitochondrial UDG activity was increased after cerebral ischemia (57). Increased UDG activity
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might be a result of a general cellular response to ischemia. However, data indicate a role for UNG in repair

of oxidatively damaged bases (58,59).

Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1)

SMUG1 was identified by an in vitro expression cloning strategy and screening for enzymes that

bound to synthetic DNA glycosylase inhibitors (60). SMUG1 is a member of the UDG family of proteins

(61). SMUG1 is found in insects and vertebrates but is not present in C.elegans, A. thaliana, and yeast (62).

SMUG1 was proposed to provide a “backup” activity for UNG (63). Although, both this and later work has

provided evidence for a more specific function of SMUG1. So, in addition to uracil, SMUG1 removes the

oxidized bases 5-hydroxymethyluracil (5-hmU) and 5-formyluracil (5-fU) (63,64). A more specific role for

SMUG1 was demonstrated by identification of a direct interaction between SMUG1 and POLλ for repair

of oxidative DNA damage (65). Stable siRNA-mediated silencing of Smug1 in mouse embryo fibroblasts

generated a mutator phenotype (58). The cells were also sensitive to ionizing radiation further supporting a

role for Smug1 in the  repair of oxidative DNA lesions (58).

Human thymine-DNA glycosylase (TDG)

TDG is a monofunctional mismatch-specific T/U:G DNA glycosylase that removes thymine or

uracil in CpG contexts as a result of deamination of 5-methylcytosine or cytosine, respectively. TDG associates

with transcriptional coactivator CREB binding protein (CBP/ p300) and is a substrate for CBP/p300

acetylation (66). The acetylation apparently regulates recruitment of APE1 (66). p300 may play a regulatory

role in TDG-initiated BER by easing the topological constrains on chromatin and facilitating recruitment of

APE1 to the AP-site produced by TDG. In addition to CBP/p300, TDG interacts with transcription factors;

retinoid receptors (RAR/RXR) and the thyroid transcription factor-1 (TTF-1) suggesting a role for TDG in

transcription regulation. TDG also interacts with, and is covalently modified by the ubiquitin-like proteins

SUMO-1 and SUMO-2/3 (67). TDG strongly associates with AP-sites in vitro (68). Interestingly, both

forms of the SUMOylation reduced AP-site binding affinity of TDG (67).

A physical and functional interaction between TDG and xeroderma pigmentosum group C protein

(XPC) has been reported (69). The interaction enhanced the enzymatic turnover of TDG. In vitro experiments

suggested that XPC and TDG likely compete for binding to the opposite G, causing dissociation of TDG

from DNA and promoting access of APE1 to the AP-site (69).

In vitro experiments have shown that most DNA glycosylases are inhibited by their products, the

AP-sites, thus protecting these highly reactive repair intermediates. Reversible protein modifications like
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SUMOylation as well as specific protein-protein interactions might be an important part of regulation of the

function of many DNA glycosylases.

Methyl-CpG-binding protein 4 (MBD4)

MBD4 is a member of the methyl-CpG-binding protein family. It contains two DNA binding

domains; an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific

glycosylase domain (70). MBD4 removes uracil and thymine when paired with a guanine which occurs as

a result of deamination of cytosine and 5-meC, respectively. The optimal substrates for the MBD4 are T:G

and U:G mispairs in the context of CpG or 5-meCpG sites (71). So, it appears that the glycosylase function

of MBD4 is the preservation of the integrity of genome at CpG sites. MBD4 is a particularly interesting

DNA glycosylase. It interacts with FADD (Fas-associated death domain protein) (72), probably providing

a mechanism for MBD4 mediated genome surveillance and apoptosis and suggests a role for MBD4 in a

functional link between DNA repair and apoptosis. MBD4 also interacts with MLH1 (73) a protein involved

in mismatch repair (MMR). Embryonic fibroblast cells prepared from mice lacking functional MBD4

(Med1-/-) showed reduced steady-state levels of several MMR proteins, indicating a role for MBD4 in the

integrity of MMR system (74).

Human MutY homolog DNA glycosylase (hMYH)

Adenine mispaired with 8-oxoG can arise during DNA replication either by incorporation of an

adenine nucleotide opposite an 8-oxoG derived from the direct oxidation in the template strand, or by

incorporation of an 8-oxoGTP that results from direct oxidation of dGTP in the nucleotide pool. Both bases

in the A:8-oxoG mispairs are mutagenic, which if not repaired correctly will result in G:C to T:A transversion

mutation. The 59 kDa hMYH protein interacts with PCNA at the sites of replication and removes adenine

from A:8-oxoG mispairs (75,76). In s.cerevisiae, which does not have a MYH homolog, mismatch repair is

the main pathway for repairing the A:8-oxoG mispairs (77). hMYH is apparently the only DNA glycosylase

in humans that directly interacts with APE1 (76). Multiple forms of hMYH have been identified in nuclei

and mitochondria (78,79). The glycosylase activity of hMYH but not its DNA binding function, is apparently

modulated by posttranslational modifications of the protein (80). Recently, defective phosphorylation of

hMYH was found in colorectal cancer cell lines with wild type hMYH alleles (81). In this report, protein

kinase C (PKC) was shown to directly phosphorylate hMYH, a process that increased the level of hMYH-

dependent repair of A:8-oxoG (81). Biallelic germline mutations of hMYH have been found in patients

with familial colorectal cancer with multiple adenomas and carcinomas (82,83), suggesting a role for hMYH

in promoting genetic stability and prevention of cancer. The phosphorylation status of hMYH may also
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regulate its binding to APE1, PCNA and RPA (81). hMYH may be phosphorylated in response to DNA

damage, because induction of oxidative stress by H2O2 stimulates activity of PKC (84).

Human OGG1 DNA glycosylase 1 (hOGG1)

The most stable and mutagenic oxidative base damage known so far is 7, 8-dihydro-8-oxoguanine

(8-oxoG). 8-oxoG is formed at a rate of ~1000 lesions/cell/day (85). 8-oxoG does not appear to block

replication, but when in syn-conformation, it pairs with adenine during DNA replication causing G:C to T:A

transversion mutations (2). In human cells hOGG1 removes 8-oxoG from DNA (35). hOGG1 was shown to

associate with chromatin and the nuclear matrix during interphase, and the chromatin-bound hOGG1 was

found to be phosphorylated on a serine residue in vivo, possibly by protein kinase C (86). Since the

phosphorylation did not seem to affect the catalytic function of the protein, it might be involved in the

subnuclear localization of the protein. hOGG1 interacts with XRCC1 and the interaction stimulated the

DNA glycosylase activity of hOGG1 (87).

The human ribosomal protein S3 cleaves AP DNA via a β,δ−elimination reaction and binds to

8-oxoG and AP-sites in DNA. S3 was co-immunoprecipitated with hOGG1. In vitro experiments showed

higher hOGG1 turnover in the presence of S3 protein (88).

Recently, hOGG1 was found to interact with protein kinases cdk4 (a serine-threonine kinase) and

c-Abl (a tyrosine kinase) (89). In vitro phosphorylation of OGG1 by cdk4 resulted in a 2.5-fold increase in

the 8-oxoG incision activity of OGG1, but the phosphorylation of OGG1 by c-Abl did not affect this activity

(89). hOGG1 is a bifunctional DNA glycosylase with associated AP lyase activity. Previously, in vitro

repair of 8-oxoG was shown to mainly proceed via short patch (90). So, the AP lyase function of hOOG1

was assumed to prevent long patch repair of clustered DNA damage avoiding the generation of DSB. In a

later report, using an in vivo repair assay, 55-80% of repaired 8-oxoG was found to constitute 2-6 nucleotides

long patches (91). Several reports have shown that the AP lyase activity of the enzyme was slower than its

glycosylase activity, and hOGG1 remained tightly bound to the AP-site and APE1 enhanced the turnover of

the enzyme (92,93). Furthermore, the AP lyase function of hOGG1 was shown to be inhibited by free

8-oxoG and physiological MgCl2 concentrations (94). These results suggest that the glycosylase and AP

lyase functions of the protein are uncoupled. Uncoupled glycosylase/AP lyase functions were also shown

for hNTH1, a human DNA glycosylase for removal of oxidized pyrimidines from DNA (95). However, the

E. coli Fpg and Nth, have coupled glycosylase and AP lyase activity, catalyzing strand incision at about the

same rate as base release. So, the biological significance of the AP lyase function of mammalian DNA

glycosylases remains unclear and may only be active under specific circumstances and possibly controlled



22

INTRODUCTION

by posttranslational modifications of the protein. Alternatively, it may be an evolutionary “spin off” function

with little or no biological relevance in mammalian BER.

Human thymine glycol DNA glycosylase (hNTH1)

Thymine glycol (Tg; 5,6-dihydroxy-5,6-dihydro-thymine) is recognized as one of the major

oxidative DNA lesions caused by oxidative stress and ionizing radiation. hNTH1, a homolog of the E. coli

endonuclease III (Nth) is a DNA glycosylase with AP lyase activity that cleaves thymine glycol in DNA.

Cells from Cockayne syndrome patients with mutations in the XPG gene show reduced global repair of

thymine glycol (96). XPG is a structure specific endonuclease. It introduces a nick at the 3´side of a DNA

lesion in the dual incision of nucleotide excision repair. XPG interacts with hNTH1 stimulating its DNA

glycosylase/AP lyase activity (96,97). Gene-targeted Nth1 mutated mice showed no detectable phenotypical

abnormality (98).

Apparently, hNTH1 physically interacts with p53 and PCNA (99). p53 stimulated DNA glycosylase/

AP lyase activity of hNTH1 supporting a modulatory role for p53 in BER (100). Interaction of NTH1 and

PCNA is particularly interesting. First, thymine glycol blocks DNA replication. Second, the expression of

hNTH1 is regulated during the cell cycle with increased transcription during early and mid S-phase (101).

Thus, hNTH1 may act “pre-replicative” to avoid replication block by thymine glycol. Such a mechanism

has been suggested for SDBR through interaction of XRCC1 with PCNA (102).

DNA glycosylases NEIL1 and NEIL2

DNA damage caused by reactive oxygen species (ROS) generates miscoding as well as blocking

lesions that may lead to mutations or cell death. In E.coli the DNA glycosylases Nei, Fpg, and Nth initiate

BER of oxidative lesions. In humans oxidized base-specific DNA glycosylases named NEIL1, NEIL2, and

NEIL3 which belong to the FPG/Nei family, have been identified (103). NEIL1 and NEIL2 possess intrinsic

AP lyase activity (103), but unlike OGG1 and NTH1 they carry out β/δ-elimination and generate 3'-phosphate

and 5'-phosphate termini. NEIL1 removes oxidative base lesions 5-OHU, 5-OHC, Tg, urea, FapyA, FapyG.

NEIL2 shows narrower substrate specificity and is primarily involved in excision of 5-OHU as well as AP-

sites. So far, little is known about substrate specificity of NEIL3. The expression of NEIL1 is cell cycle

dependent and is enhanced during S-phase, whereas the expression of NEIL2 is not (103), suggesting a role

for NEIL1 in replications-coupled BER. NEIL1 stably interacts with POLβ and DNA ligase III (104). p300

is a transcriptional co-activator (105) for a number of sequence specific transcription factors, and has an

intrinsic histone acetyltransferase (HAT) activity. NEIL2 is acetylated both in vitro and in vivo by p300,

with which it stably interact (106). In vitro acetylation of NEIL2 decreases its 5-OHU excision



23

INTRODUCTION

activity as well as its AP lyase activity, suggesting a regulatory role of acetylation on the catalytic function

of the enzyme (106). Possibly under normal physiological conditions NEIL2 remains in an inactive form as

a result of acetylation and becomes activated by deacetylation for instance because of oxidative stress.

3-meA DNA glycosylase (MPG)

Alkylating agents like methyl methanesulphonate (MMS) and the cellular methyl group donor S-

adenosylmethionine (SAM) generate covalent modifications at ring nitrogen residues of DNA bases, in

particular 7-methylguanine (7-meG) and 3-methyladenine (3-meA). Mammalian cells have a single 3-meA

DNA glycosylase (MPG) that excises the alkylated base from DNA (36). Whereas 7-meG seems to be a

relatively harmless modification, 3-meA is a cytotoxic lesion that blocks both replication and transcription.

3-meA DNA glycosylase activity has been detected in many species, suggesting that it has an important

biological function. Mpg null mice are viable and develop normally (107). Recently, interaction between

MPG and PCNA was reported (108), suggesting a role for MPG in the removal of 3-meA during replication

(108). hHR23B binds to MPG and stimulates its activity by increasing the affinity of MPG for substrate

(109). hHR23B acts in the recognition of damaged bases in nucleotide excision repair suggesting a role for

this protein in the initial DNA damage recognition step of MPG BER. It also appears that MPG interacts

with XRCC1 (110). MPG is expressed at low concentrations in most human cells and shows relatively poor

turnover in vitro (37). So, direct interactions of MPG with these proteins may enhance base damage sensing

and removal by MPG and may contribute to increase local concentrations of the enzyme in replication foci.

AP endonuclease (APE)

CN

NLS

DNA repair

Redox

1 36 316

AP-sites are potentially cytotoxic lesions that can block DNA replication and stall RNA polymerase

II during transcription, but they are also mutagenic, causing base substitutions. An estimated number of

9,000-10,000 AP-sites are generated in each cell per day under normal physiological conditions (1,111). In

addition to the spontaneous loss of bases from DNA, AP-sites are the intermediate products of monofunctional

DNA glycosylases. In humans, AP-sites are incised at the 5´-site by AP-endonuclease I (APE1) generating

Figure 6. Schematic diagram of APE1. NLS; nuclear localization signal.
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a 3´-OH and a 5´-deoxyribose-5-phosphate (dRP) group flanking the DNA strand break. APE1 (also known

as Hap-1, Apex, and Ref-1) is the human homologue of the E. coli exonuclease III and has a molecular mass

of ~37 kDa. It contains two distinct domains. The N-terminal domain contains the nuclear localization

sequence (residues 1-36) and is essential for redox activity, while the endonuclease activity resides in the C-

terminal region (Figure 6). Recent studies have shown some overlap in the functional domains. The structure

of APE1 bound to AP DNA showed that APE1 uses a rigid, preformed surface to bend the DNA helix by

~35o that enables the enzyme to flip the AP-site out of the DNA and move it into the active site in a MgCl2

dependent reaction (112). APE1/Ref-1 is expressed ubiquitously, and shows a complex and heterogeneous

staining pattern among different tissues (113), even between neighboring cells probably reflecting the different

roles of this multifunctional protein (114). The N-terminal domain of APE1 is responsible for the second

function of APE1/Ref-1, that is the redox activation of several transcription factors including; Fos, Jun and

p53. In addition to its AP endonuclease and redox-regulation function, APE1 exhibits 3´ to 5´exonuclease,

phosphodiesterase, 3´-phosphatase and RNase H, although these additional functions are much weaker than

its AP endonuclease activity. Very recently, APE1 was shown to remove 3'-8-oxoG within a single-strand

break (115), that may occur as a result of oxidative DNA damage and IR.

Generation of mice lacking Apex (APE1) has been attempted. However, the homozygous mutant

mice (Apex–/–-) are embryonic lethal (116), indicating a role for this protein in embryonic development.

However, heterozygous mice survive and are fertile (117). In a separate study, Apex +/– mice were shown to

display APE haploinsufficiency (118). These mice showed 40-50% reduction in APE mRNA, and protein

concentration as well as reduced 5' endonuclease activity in all tissues. However, in vitro tests showed

significant tissue-specific variations in POLβ dependent BER, likely because of reduced redox function of

APE1 in the cells (118). Using an RNAi approach, the endonuclease activity of APE1 was shown to be

essential for maintaining genomic integrity of the cell and the absence of this function resulted in the

accumulation of AP-sites and apoptosis (119). Expression of yeast Apn1 that lacks the redox function of

APE1 reversed these processes indicating involvement of the AP endonuclease function of APE1 in these

processes (119). Very recently, conditional APE1–/– MEF cells were established using LoxP-flanking APE1

constructs and Cre expression by microinjection (120). Removal of APE1 was found to result in apoptosis

within 24 h. A microinjection of mutants lacking either the DNA repair or acetylation-mediated gene regulatory

function did not prevent apoptosis. However, co-injection of these mutants or the wild type APE1 rescued

the cells from apoptosis, indicating that separate functions of the APE1 are required for cell survival (120).

The product of a bifunctional glycosylase is a normal 5´-deoxynucleoside-5´-phosphate, and an abnormal

3´-terminal α,β-unsaturated aldehyde residue that is cleaved by 3´-phosphodiestratse activity of APE1.
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Human POLβ is the main repair DNA polymerase in BER. POLβ lacks 3´ to 5´ exonuclease

(proofreading) activity. In vitro fidelity analyses of POLβ using DNA substrates containing U opposite A or

G demonstrated an error rate of ≤ 0.3 to ≤ 2.8×10-4 (121). So, other proteins may act in BER to secure error

free DNA repair. Recently, it was shown that APE1 had a DNA exonuclease activity on mismatched

deoxyribonucleotides at the 3´-termini of nicked or gapped DNA (122), suggesting a role for APE1 as a

potential proofreading factor in BER.

APE1 is a target for cellular defense response. Cytotoxic granules trigger death in target cells via

the action of perforin and the granule proteases, the granzymes. Granzyme A was shown to interact with and

cleave APE1, thus impairing DNA repair ability of the infected cell and preventing the target cell to recover

from the death signal (102).

A repair pathway for removal of oxidative base damage independent of DNA glycosylase was

identified in E.coli (123). In this nucleotide incision repair (NIR) pathway, Nfo-like endonucleases incise

DNA on the 5´-side of various oxidatively induced damaged bases, generating a 3´-hydroxyl end and a 5´-

phosphate residue. The 3´-hydroxyl terminus is then a substrate for DNA polymerase I (123). A similar

repair pathway was found to be active in human cells (124). Here, APE1 was shown to incise several

oxidatively damaged bases in DNA generating 3´-hydroxyl and 5´-phosphate residue. The 3´-hydroxyl end

was substrate for DNA polymerase and the 5´-residue was cleaved by FEN1. Because the APE1 initiated

NIR removed damaged bases including those formed under IR and anoxic conditions like 5,6-dihydro-2'-

deoxyuridine (DHU), a specific role for NIR in removal of these types of lesions was suggested (124).

Overlapping DNA substrate between APE1 and human DNA glycosylase hNTH have been

demonstrated and may partly explain the absence of deleterious effects of lack of this glycosylase in NTH

knockout mice (117).

APE1 is a substrate for phosphorylation by the serine/threonine casein kinases (CK) I and II and

protein kinase C (125-127). Although, two of these studies reported conflicting results with regard to the

effect of phosphorylation on the endonuclease activity of APE1, they both showed that phosphorylation of

APE1 stimulated its redox function. The redox activation of several transcription factors by APE1 provides

a rapid cellular response to environmental stress. Although, the level of APE1 in response to oxidative

stress was shown to increase, redox activation of transcription factors via upregulation of APE1 is a rather

slow response. APE1 is translocated from cytoplasm to the nucleus in response to oxidative stress, probably

providing a rapid activation of transcription factors (128).

Helicobacter pylori (H. pylori) infection causes inflammation, accumulation of ROS, and oxidative

DNA damage in the gastric mucosa. H. pylori enhanced APE1 protein synthesis and nuclear accumulation
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in human gastric epithelial cells implicating APE1 in the modulation of the pathogenesis of H. pylori infection

(129).

APE1 is directly involved in Ca2+-dependent downregulation of expression of parathyroid hormone

(PTH) by binding to negative calcium response elements (nCaREs) present in the PTH promoter (130).

Both in vitro and in vivo acetylation of APE1 by p300 resulted in down regulation of expression of PTH

(131). This suggests that the acetylation is a regulatory mechanism of transcriptional function of APE1. The

AP-endonuclease activity of APE1 was not affected by this acetylation (131). Together, these studies show

how the function of a multifunctional protein like APE1 is regulated by posttranslational modifications.

A second human AP-endonuclease named APE2 has been identified in humans (132), but shows

significantly lower endonuclease activity than APE1 (133). APE2 is localized in both nuclei and mitochondria

(134). The nuclear APE2 associates with PCNA, suggesting a role for APE2 in replication-associated BER.

The role of mitochondrial APE2 is still unclear, but it may play a role in mitochondrial BER. Recently,

APEX2 null mice were generated (135). These mice showed growth retardation and defects in lymphopoiesis.

Furthermore, the knockout mice showed a weaker immune response against ovalbumin in comparison with

the wild-type mice. However, class switch recombination was found normal in the absence of APEX2

(135).

DNA polymerase β (POLβ)

DNA polymerase β is 39 kDa in size and is the smallest eukaryotic DNA polymerase and belongs

to X-family DNA polymerases. It contains two specialized domains. An 8 kDa N-terminal domain that

possesses a lyase activity, removes the 5´-deoxyribose-5-phosphate (dRp) intermediates generated by APE1

during BER. In addition to its dRP lyase function, the 8 kDa N-terminal has single-strand DNA binding

activity. The DNA binding directs the protein to gaps that contain a 5´-phosphate (136). Only when the gap

was between one to six nucleotides, POLβ filled the gap in a processive manner (136). The larger domain

is 31 kDa and has nucleotidyl transferase activity. POLβ is the major polymerase in SDBR and BER mainly

through single-nucleotide insertion or short-patch BER, but also inserts the first nucleotide in long-patch

BER (137,138). POLβ together with FEN1 carry out long-patch by strand displacement synthesis (137)

and/ or by a “hit and run” mechanism (139).

POLβ also plays a role in meiosis events associated with synapses and recombination (140).

Knockout of Polβ in mice is embryonic lethal (141), suggesting that Polβ is important for maintaining

development. Although Polβ deficient null mice are not viable, the corresponding embryonic cells survive

in culture, indicating that Polβ is not essential for cell viability. Cells lacking Polβ are highly sensitive to

alkylating agents. However, overexpression of a truncated form of Polβ consisting of the dRP lyase domain
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reversed the methylating agent hypersensitivity in Polβ null cells (142). This indicates that the dRP lyase

activity of Polβ and not its DNA synthesis function is essential for repair of methylation-damaged bases.

The accumulation of dRP moieties triggers apoptosis in a replication-dependent fashion (143), indicating

that the apoptotic signals are generated as a result of conversion of ssDNA breaks to dsDNA breaks during

replication and not through detection of dRP moieties. In fact, MMS-induced ssDNA breaks were found to

be recombinogenic in Polβ deficient mouse and activated homologous recombination (HR) (144). POLβ

was reported to become acetylated by p300 (145). The acetylated form showed a reduced dRP lyase activity.

POLβ interacts with DNA ligase I (146), XRCC1 (147), PCNA (148), PARP-1 (149), and p53 (100),

implicating POLβ in both short- and long patch BER and SDBR .

DNA polymerases δ and ε (POLδ / POLε)

POLδ is a high fidelity replicative DNA polymerase with intrinsic exonuclease (proofreading)

activity. POLδ interacts with the sliding DNA clamp PCNA in replication foci and is responsible for DNA

synthesis of leading and likely lagging strand. POLδ is also involved in DNA repair synthesis in MMR,

NER, and BER. POLδ together with PCNA, FEN1, and DNA ligase I is responsible for the repair DNA

synthesis step of long patch BER (150). POLδ-dependent and PCNA-mediated long patch BER is active in

replication forks (discussed later) and possibly in repair of modified bases by BER (151). The second

replicative DNA polymerase, POLε, may also be involved in long patch BER (152).

DNA polymerase λ (POLλ)

POLλ is a member of the X-family of DNA polymerases and shares catalytic features of POLβ,

therefore making it a plausible candidate for BER. Recently, a BER deficiency in the POLλ–/– cell extract

compared with extract from wild-type cells was reported (65). In addition, neutralizing POLλ-antibodies

reduced in vitro BER in the POLβ–/– cell extract. POLλ interacts with PCNA (153). Although, this interaction

is likely involved in replication-associated DNA lesion bypass (153), a role for POLλ  in long patch BER is

conceivable. POLλ null mouse fibroblasts were hypersensitive to oxidative DNA damaging agents (154).

Moreover, POLλ was found to localize to sites of oxidative DNA lesions and to interact with SMUG1

(154). Thus, POLλ may be important in cellular BER for protection against oxidative DNA damage.

Flap endonuclease I (FEN1)

FEN1 is a structure-specific nuclease that plays an important role in DNA replication and repair.

In DNA replication, it is required for Okazaki fragment maturation where it removes the displaced RNA-

DNA primers. Mice homozygous for the Fen1 mutation were not viable (155), suggesting that Fen1 is
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important for embryonic development. The proteins identified to physically and/or functionally interact

with FEN1 include PCNA (156), WRN (157), RPA (158), APE1 (159), possibly POLβ (160), as well as

proteins involved in chromatin remodeling (161).

A specific role for FEN1 in BER was demonstrated in FEN1–/– chicken cells (162). The mutant

cells were viable, but were hypersensitive to MMS, MNNG, and H2O2, but not to UV-light, X-ray, or

etoposide (162). In BER, FEN1 is involved in long patch repair. Repair of modified AP-sites that are

refractory to the dRP lyase activity of POLβ takes place by long patch and involves FEN1, PCNA and

POLδ (151). FEN1 was shown to tightly bind to chromatin in response to MMS treatment of the cells (163).

This binding did not require the nuclease function of the enzyme, but was strictly dependent on the intact

PCNA-binding domain of FEN1 (163). A PCNA-independent scenario that is mediated by POLβ and FEN1

have been suggested (137,139). PARP-1 was shown to stimulate FEN1 and POLβ probably as part of a

repair complex for long patch BER (50). A physical interaction was also identified between APE1 and

FEN1 (159). APE1 stimulated endo- and exonuclease activity of FEN1. So, a repair complex composed of

APE1, POLβ, FEN1, and PARP1 may function in long patch repair of modified AP-sites. This repair complex

may function independent of PCNA or its function may be mediated by PCNA through interaction of PCNA

with POLβ (148).

A way to regulate FEN1 in different biochemical processes is posttranslational modification of the

protein. Cyclin-dependent kinase 1 (Cdk1) phosphorylates FEN1 at Ser-187 in late S-phase (164). The

phosphorylation reduced FEN1 endo- and exonucleotic cleavage activity of the protein, and abolished

interaction with PCNA, but the phosphorylated form retained normal substrate binding ability (164). FEN1

interacts with p300, which allows acetylation of FEN1 at the C-terminus. The acetylation resulted in reduced

endo- and exonucleotic cleavage activity because of reduced substrate binding of FEN1 (161). Although

these modifications may be important for the role of FEN1 in replication, their possible regulatory effects

on the role of FEN1 in BER cannot be ruled out.

DNA ligases I and III

The final step in BER is the formation of phosphodiester bond at the site of repair by a DNA ligase

that proceeds in a three-step reaction. First, the enzyme reacts with ATP to form a covalent enzyme-AMP

complex through linkage of the AMP moiety to a specific lysine residue. Next, the AMP group is transferred

from the enzyme to the 5´-phosphate terminus of a DNA nick. Finally, the enzyme catalyzes the phosphodiester

bond formation between the 3´-hydroxyl and 5´-phosphate termini of the nick and releases the AMP. In

humans three DNA ligase genes have been identified (LIG1, LIG3, LIG4) with distinct functions, but all
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share a conserved catalytic domain. DNA ligase I and III the products of LIG1 and LIG3 genes respectively,

function in BER.

DNA ligase I

DNA ligase I has a molecular mass of 125 kDa when measured by SDS-PAGE. The protein is

recruited to replication factories during S-phase and is responsible for joining of Okazaki fragments generated

during the lagging strand synthesis. The recruitment is directed by interaction with PCNA (165). DNA

ligase I was copurified with a high-molecular weight replication complex (166). DNA ligase I was shown to

interact with POLβ (146). The interaction of DNA ligase I with PCNA and POLβ occurs through its non-

catalytic N-terminal region, implicating the protein in both short- and long-patch BER. A 180-kDa BER

complex containing POLβ and DNA ligase I was isolated from extracts of bovine testes (51).

Mutations in LIG1 in a fibroblast cell line isolated from a patient with immunodeficiency  has been

reported (167). The cells were defective in the joining of Okazaki fragments (168) and were hypersensitive

to the cytotoxic effects of monofunctional DNA alkylating agents like MMS as well as UV-light and IR

(169).

The N-terminal domain of the protein (residues 1-216), which is not necessary for its catalytic

activity and has no counterpart in the other DNA ligases includes the site of cell cycle specific

phosphorylations (170,171). The serine 66 is part of a casein kinase II (CKII) motif and was found to

become dephosphorylated in early G1, but phosphorylated through S-phase peaking in the G2-phase (171).

The dephosphorylation in G1 required nuclear localization of the protein and a functional PCNA-binding

site (171). DNA ligase I interacted with PCNA in G1- and S-phase, but not in G2/M-phases. Moreover,

Ser91, Ser76, and Ser91 which are part of the motifs for cyclin-dependent kinases were also found to

become phosphorylated in a cell cycle-dependent manner (172).

DNA ligase III

The Lig3 gene encodes several polypeptides with different cellular functions and subcellular

localizations. Two forms of DNA ligase III (α and β) are produced by alternative splicing resulting in

proteins with different C termini (173). DNA ligase IIIα mRNA is expressed in all tissues, and is localized

in nucleus and mitochondria (174), whereas the expression of DNA ligase IIIβ mRNA is restricted to male

germ cells (173). Apparently the mitochondrial and nuclear isoforms of DNA ligase IIIα are produced by

alternative translation initiation (174). DNA ligase III is absent in S. cerevisiae, D. melanogaster, and C.

elegans, suggesting that this gene was a relatively recent evolutionary event in the genome of mammals

(175).
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A zinc finger motif at the N-terminus of DNA ligase III distinguishes the products of the LIG3

gene from other eukaryotic DNA ligases (176) and is closely related to the two zinc fingers located at the N-

terminus of PARP-1 (176). The zinc finger was not required for DNA ligase activity, but enabled DNA

ligase III to interact with and ligate nicked DNA (177). DNA ligase III in nucleus interacts with the scaffold

protein XRCC1 (178), and PARP-1 (179). XRCC1 is required for the stability and normal levels of DNA

ligase III in nucleus (178), but not in mitochondria (180).

Auxiliary BER proteins
In recent years, several proteins have been found to modulate BER by direct interaction with BER

proteins. Although these proteins are not strictly required for in vitro BER assays they are important for

BER in vivo.

X-Ray Repair Cross-Complementing protein 1 (XRCC1)

XRCC1 has no enzymatic activity and acts as a molecular scaffold repair protein. XRCC1 deficiency

is associated with reduced SDBR capacity, increased frequencies of sister chromatin exchange, and

hypersensitivity to ionizing radiation, oxidizing chemicals, and alkylating agents (181). Xrcc1-/- mice display

Figure 7. Schematic presentation of XRCC1 and some of its interacting proteins.
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embryonic lethality (182). XRCC1 is also implicated in coordinating BER, because it interacts with repair

enzymes that are common for SDBR as well as BER such as APE1 (183), DNA ligase III (178), PNK (184),

POLβ (147), PARP-1 (147,185), and hOGG1 (87). XRCC1 stimulated the base excision activity of hOGG1

in vitro (87). XRCC1 is a phosphorprotein (186) and is phosphorylated in vitro and in vivo by CK2 (187,188).

An increased phosphorylation stimulated interaction of XRCC1 with polynucleotide kinase (PNK) and

facilitated recruitment of this protein to chromosomal DNA breaks after H2O2 treatment of the cells (187).

Interaction of XRCC1 with damaged DNA may occur through direct interaction with PARP-1/2 bound to

the lesion (189), and via interaction with POLβ (190). Moreover, XRCC1 was shown to bind

tightly to nicked and 1 nucleotide-gapped DNA substrate indicating that it is able to directly recognize and
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bind to DNA lesions (191). XRCC1 rapidly forms foci after H2O2 treatment (187,189). It remains to be seen

if H2O2 induced phosphorylation of XRCC1 would increase recruitment of XRCC1-hOGG1 or other DNA

glycosylases to the sites of oxidative DNA damage. Recently, DNA glycosylases MPG, NTH1, and NEIL2

were also found to interact with XRCC1 (110). In vitro tests showed that XRCC1 was able to stimulate the

enzymatic activity of the DNA glycosylases (110). They also detected uracil repair activity in both XRCC1

and control samples, therefore they concluded that this activity was a result of unspecific interaction (110).

However, in a recent report XRCC1 was identified in UNG2-associated repair complexes (49). Whether

UNG2 and other DNA glycosylases interact directly or indirectly via a common protein with XRCC1 needs

further investigation.

Poly(ADP-ribose) polymerase (PARP)

Poly(ADP-ribose) polymerase-1 (PARP-1) has in recent years received considerable attention as a

BER modulator. PARP-1 is ~116 kDa and is an abundant nuclear enzyme found in many eukaryotes, with

the exception of yeast. PARP-1 is constitutively expressed at high levels from a promoter with features

typically found in housekeeping genes (192). PARP-1 mRNA is present in all tissues with highest levels in

testes, spleen, brain, and thymus (193). PARP-1 knockout mice are viable and fertile, but are sensitive to γ-

rays as well as MNU and show increased genomic instability and sister chromatin exchanges (194). When

bound to DNA, PARP-1 uses NAD+ and rapidly catalyzes poly(ADP-ribose) synthesis resulting in covalent

modification of itself and other nearby proteins like histones (22). The automodification of PARP-1 results

in dissociation of the protein from DNA that is necessary for the DNA repair to proceed. PARP-1 binds to

SSDB and nicks in DNA and facilitates recruitment of repair factors through XRCC1, thus, functioning as

a SSDB sensor (195). However, the absence of PARP-1 did not prevent SDBR but only reduced the rate of

repair 2-3-fold (196). PARP-1 may affect DNA repair indirectly, because PARP-1 affects the regulation of

expression of  genes (197) and PARP-1 deficient cell extracts showed reduced concentration of FEN-1 and

DNA ligase I (196).

A role for PARP-1 in BER was demonstrated by a BER assay in cell extracts from PARP-1 deficient

mice. Long patch repair was reduced in PARP-1 deficient mice extract compared with the wild type (198).

However, other studies, did not find a major role for PARP-1 in BER (199,200). PARP-1 interacts with

XRCC1 (185), POLβ (149), and DNA ligase III (179). PARP-1 was shown to be required for the rapid

formation of XRCC1 foci at sites of oxidative DNA damage (189). Further characterization of the role of

PARP-1 in BER demonstrated that PARP-1, POLβ, APE1, and FEN-1 form complex for repair of AP-sites

(201). It is possible that PARP-1 modulates the selection of BER pathways. PARP-1 may also protect BER

DNA intermediates from degradation during repair (202). Although the main cellular poly(ADP-ribosyl)ation
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activity is attributed to PARP-1, cells contain several other PARPs. PARP-2 accounts for 10% of the cellular

PARP activity. PARP-2 is a 62 kDa protein and is the closest homologue of PARP-1. Poly(ADP-ribose)

synthesis activity of PARP-2 as well as different experimental conditions may explain the apparent conflicting

results on the essential role of PARP-1 in BER (198-200). PARP-2 forms homo- and heterodimers with

PARP-1 and interacts with XRCC1, POLβ, and ligase III (203), and enhances BER in association with

PARP-1 and XRCC1 (203).

Proliferating cell nuclear antigen (PCNA)

PCNA is a member of the DNA sliding clamp family, which includes the E.coli DNA

polymerase III β-subunit and the phage T4 gene45 protein. PCNA was originally characterized as a DNA

sliding clamp for replicative DNA polymerases and as an essential component of chromosomal replisome.

The clamp loader for PCNA is the replication factor C (RFC) complex, an ATPase composed of four

subunits (p149, p40, p38, p37, and p36). The homotrimeric PCNA encircles DNA and interacts with many

proteins involved in DNA metabolism including DNA repair. The BER proteins that interact with PCNA

include; UNG2 (42), MYH (76), MPG (108),  POLδ (204), POLε (205), FEN1 (206), DNA ligase I (165),

APE1 (159), and POLβ (148). PCNA also interacts with APE2 (134). However, a role for APE2 in BER is

still unknown. PCNA is thought to be involved in long patch BER, including repair of modified AP-sites by

recruiting POLδ, FEN1 and DNA ligase I to the site of lesion (151).

P21 is a cyclin-dependent kinase inhibitor. In response to DNA damage, the expression of p21 is

increased by p53. p21 binds to the same domain in PCNA as FEN1, POLδ, and DNA ligase I. Binding of

p21 to PCNA was shown to decrease long patch BER (207). PCNA interacting proteins show different

binding affinity (208). Therefore, the availability of the proteins as well as their binding affinity are among

the factors that regulate interaction of proteins with PCNA. Posttranslational modifications of the PCNA-

interacting proteins as well as PCNA itself are additional regulatory mechanisms. Posttranslational

ubiquitination (209), SUMOylation (210) and acetylation (211) modifications of PCNA have been reported.

Deacetylation was found to reduce the ability of PCNA to bind POLβ and POLδ (211). However, it is

currently unknown if these modifications may affect BER.

Replication protein A (RPA)

RPA is essential for multiple DNA metabolism processes like DNA replication, recombination,

and DNA repair pathways including BER. RPA is a single-stranded DNA-binding protein composed of

three subunits of 70-, 32- and 14-kDa (212). RPA binds ssDNA with high affinity and interacts specifically

with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA
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to become hyper-phosphorylated (213). RPA directly interacts with PCNA, hMYH (76), and UNG2 (42).

The fact that these proteins are found in replication foci and RPA was shown to enhance the activity of DNA

ligase I (214) and long patch BER (215) indicates that these protein complexes are involved in the replication

associated BER pathway.

P53

The tumor suppressor and transcription factor p53 that is inactivated in many human cancer cells

is involved in BER (216). The stimulation of BER by p53 was independent of its transactivation function

(217), and was likely through direct interactions with BER factors APE1 and POLβ (100). Recognition of

certain types of DNA lesions by p53 have been previously reported (218,219) and represents one of the

several functions of this protein in response to DNA damage. Recently, a role for p53 in sensing oxidative

DNA damage was reported (220). 8-oxoG containing oligonucleotides pulled down p53 together with hOGG1

and APE1 (220). In vitro analysis showed that p53 enhanced activities of hOGG1 and APE1 (220). So, p53

regulates BER through direct interactions with BER enzymes and likely also by facilitating the recruitment

of these enzymes to the site of damage.

Werner syndrome protein (WRN)

WRN is a member of RecQ family of helicases that play central roles in genomic stability of

organisms ranging from prokaryotes to mammals. WRN is a bifunctional protein with an additional

exonuclease activity. Defects in WRN cause Werner syndrome (WS) which is an autosomal recessive

premature aging disease manifested by the mimicry of age-related phenotypes. WRN interacts with POLδ,

and RPA (reviewed in (221)). A role for WRN in BER has been investigated. WRN was shown to interact

with FEN-1 (157), and APE1 (222) and stimulated strand-displacement DNA synthesis of POLβ on a nicked

BER intermediate in vitro (222).

Heat-shock protein 70 (Hsp70)

Molecular chaperones are proteins that assist the structure formation of proteins in vivo. In the

mammalian cells, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of

key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases. Hsp70 was found

to interact with and stimulate the enzymatic activities of APE1 (223) and POLβ (224). The mechanisms of

these interactions are currently unknown, but these results extend the protective role of Hsp70 in mammalian

cells to BER and genomic stability.
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Rad9-Rad1-Hus1 (9-1-1) complex

Rad9-Rad1-Hus1 (9-1-1) complex is a heterotrimer toroidal molecule that is loaded onto DNA by

Rad17-RFC2-5 clamp loader in response to many different genotoxic stresses, including alkylation, UV-

light, IR, and replication inhibitors (225). Possible involvement of the 9-1-1 complex in BER have been

investigated. In human cells the 9-1-1 complex interacts with FEN1, POLβ, and DNA ligase I and modulates

their activity (226-228). In S. pombe, DNA glycosylase MYH interacts with all subunits of the 9-1-1 complex

(229). H2O2 treatment increased the interaction between Hus1 and MYH, and correlated with Hus1

phosphorylation. MYH interacts with PCNA. However, this interaction remained unchanged after H2O2

treatment (229). So, it appears that cells have developed sliding clamps that interact with the same repair

enzymes, but are involved in distinct repair pathways. The exact function of the 9-1-1 complex in BER is an

interesting field of research and more BER enzyme partners of this complex may be identified in the near

future. These investigations will increase our understanding of the network of the cellular stress response,

DNA damage recognition and BER.

BER protein complexes
BER has long been thought to function through sequential interactions of repair proteins with the

site of ongoing repair independently of each other. Our conception of the apparent simplicity of BER

pathways may be partly because BER is relatively easy to reconstitute in vitro with limited number of

proteins. However, in recent years, a number of stable interactions not only between the core BER enzymes,

but also between BER enzymes (34) and proteins involved in other DNA metabolic processes have been

reported suggesting a more complicated scenario (Figure 8). Moreover, isolation of protein complexes

from mammalian cell extracts capable of complete BER have been reported (49-51).  Formation of a BER

complex for  repair of AP-sites was suggested as early as in 1991 (230). In this study tetrahydrofuran

(synthetic AP-site) containing cccDNA was incubated with cell extract in the absence of dNTPs and the

repair proteins that were bound to the DNA were eluted by gel filtration (230). Using a series of experiments

they showed a concerted repair of AP-sites that they suggested to be carried out by a repair complex. Few

years later, a separate group used affinity column chromatography with POLβ protein or POLβ antibodies

as baits and isolated BER protein complexes from bovine testes (51). The eluted proteins carried out the

complete repair of uracil in DNA. Later, the same group incubated oligonucleotides containing tetrahydrofuran

with mouse cell extract in the presence of a novel photoaffinity labeling probe to identify the interaction of

BER enzymes. Six proteins were strongly labeled including PARP-1, FEN1, POLβ, and APE1 (50).
Recently, we used antibodies against the non-catalytic N-terminal domain of UNG2 and isolated

UNG2-associated repair complexes (UNG2-ARC) that completely repaired uracil in DNA (49). Western
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analysis showed that the complexes contained UNG2, APE1, POLβ, XRCC1, PCNA, and POLδ, suggesting

that UNG2-ARC might consist of repair complexes that function in distinct locations on the genome and in

different phases of the cell cycle. Hence, UNG2-ARC isolated from growth arrested HaCaT cell extracts

showed lower long patch repair compared with the cycling cells. This agrees with DNA replication-associated

long patch repair of uracil through direct interactions of UNG2 and PCNA (42). Neutralizing anti-POLβ -

antibodies significantly inhibited repair DNA synthesis in arrested cells compared with freely cycling cells,

indicating POLβ as the main DNA polymerase in UNG2-ARC in non-cycling cells (49). Moreover, UNG2-

ARC isolated from extract prepared from HeLa cells overexpressing UNG2 showed increased uracil repair

compared with the control cell extract, suggesting that the formation of a fraction of complexes might be

independent of damage in genomic DNA (49). The N-terminal of UNG2 is phosphorylated at multiple sites

(Lars Hagen et al. unpublished results and (47)). It remains to be seen whether modified forms of the

protein may affect the formation of UNG2-ARC.

In a recent study, uracil-containing oligonucleotides with 3´-biotinylated end  were incubated with

cell extracts and the reactions were stopped at different times by the addition of formaldehyde to crosslink
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the bound proteins with DNA. This novel approach identified formation of stable complexes of POLβ,

XRCC1, and DNA ligase III during the repair of uracil in DNA (231).

Stable single-strand break repair complexes have been identified. Repair of single-strand breaks

shares both the mechanistic characteristics of BER as well as the components involved (232). Thus, XRCC1

interacts with several repair enzymes including, POLβ (147), DNA ligase III (178), APE1 (183), PNK

(184), and PARP-1 (147,185). Direct interaction between XRCC1, and hOGG1 (87), MPG as well as

NEIL1/NTH1 (110) supports a role for XRCC1 as a component of some BER complexes (49), and XRCC1-

mediated BER complex formation. However, role of XRCC1 in BER and the extent of stable interactions of

repair proteins other than DNA ligase III with XRCC1 is still under debate. Recently, repair of several types

of lesions in oligonucleotides was investigated in whole cell extract prepared from XRCC1 deficient Chinese

ovary hamster cells (EM9) and their wild-type counterpart (233). They found that the ligation step of BER

and SDBR was inefficient in the absence of XRCC1, while repair of base lesions as well as AP-site, and

gap-filling were unaffected (233). This is somewhat in contrast to an earlier report that XRCC1 deficient

cell extract showed reduced AP incision activity (183). XRCC1 is required for the stability of the nuclear

DNA ligase III (178). So, the observed low ligation activity in EM9 cells (233) maybe merely a result of

low concentration of catalytically active ligase III in the cell extract. In a separate study, using a DNA-

protein cross-linking assay as well as gel filtration of whole cell extracts they did not find a stable preassembled

complex of Polβ with the XRCC1-ligase III heterodimer (190). However, another group immunoprecipitated

preformed XRCC1-POLβ complexes in extracts from cycling HeLa cells (188).

Recently, XRCC1 was found to interact with PCNA and to exist as multidimers in vivo (234),

likely through interactions between the BRCT domains of XRCC1 and those of its partners DNA ligase III

and PAPR-1 (235). Several repair enzymes use the same domain in XRCC1 for binding. Interaction between

XRCC1 molecules circumvents the problem of the overlapping binding sites and may provide a platform

for the buildup of higher order complexes enhancing DNA repair (235).

Probably, BER complexes are highly dynamic in composition and may include preassembled

complexes with specific functions as well as complexes formed during sequential accumulation of the

repair proteins at the site of damage (236). However, our knowledge on the extent of BER complexes as

well as mechanisms that control the buildup of specific complexes is limited. The flexibility of the complexes

may be provided by series of posttranslational modifications and protein-protein interactions between the

core BER enzymes as well as specific “auxiliary BER factors” that would bring together repair proteins for

special repair functions and subnuclear compartmentalization. These include BER during DNA replication,

transcription and specific BER complexes that function in different phases of the cell cycle and those that

are formed in response to exogenous sources of DNA damage. Hence, a fraction of UNG2 and possibly
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hMYH as well as MPG may be integrated parts of BER complexes with specific subnuclear function during

replication as all interact with PCNA (42,76). The BRCT domains of XRCC1 were shown to play a cell

cycle (237,238) and a damage specific (186) role, illustrating the dynamic of function of repair proteins. In

BER, repair of adenine and 8-oxoG during replication requires a coordinated repair process to avoid

generation of mutation (35). Hence, to analyze and to dissect BER complexes may require carefully designed

model systems. Probably using DNA glycosylases as bait would help us to study the extent of BER complexes

and the mechanisms of their buildup. Transient knockdown of individual BER proteins by expression of

short interference RNA (siRNA) is an attractive tool to study BER complexes.

In vitro studies of BER complexes encounter certain challenges. During preparation of cell extracts,

the spatial organization of proteins may become disrupted making it difficult to study BER pathways in

their original site of function. In addition, nuclear DNA is packed in chromatins, constituting physical

barriers for repair proteins to get access to damaged bases (31,239), whereas naked DNA is mostly used in

BER analysis. Thus, more in vivo tests are needed to clarify significance of BER complexes, as in vitro tests

maybe highly sensitive to the experimental conditions.

DNA replication associated BER and SDBR
Using fluorescence tagged proteins or antibodies against specific proteins, the cellular DNA

replication process can be visualized in form of specific foci, which represent large multiprotein complexes

known as replication factories. Using this approach, BER proteins have been found to physically interact

with the components of the DNA replication machinery (42,240). During DNA replication and possibly

transcription, chromosomal DNA is single-stranded in the surrounding regions (241). The DNA remodeling

process provides the suitable conditions for repair proteins to get access to DNA lesions. The significant

role of replication-assisted DNA repair was demonstrated in non-replicating cells in which DNA damage

was found to accumulate in non-transcribed genes (242). However, we need to distinguish between post-

replicative DNA repair that acts on DNA errors produced during DNA replication itself such as incorporation

of uracil and adenine opposite 8-oxoG (42,240), as well as normal but mispaired bases, and those which

should be preferentially repaired before replication encounters the lesion. Deamination of cytosine results

in uracil, and unless repaired would result in C:G to T:A transition mutation during the replication. Moreover,

DNA base lesions that can block replication (e.g. thymine glycol and 3-meA) must be preferably removed

ahead of replication. Such lesions may be repaired during G1- and S-phase, but before the segment is

replicated, and/or ahead of replication. Although a coordinated pre-replicative removal of base lesions has

not been identified so far, its existence is possible. The recently identified interaction of XRCC1 and PCNA

may provide pre-replicative SDBR and BER systems (34). Importantly, in this study the XRCC1-PCNA
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interaction was found to be independent of exogenous DNA damage, suggesting a ubiquitous DNA replication

associated DNA repair. Cell cycle specific role of XRCC1 have been reported. Thus, BRCT domains of

XRCC1 play a G1- and S-phase specific roles in BER and SDBR (237,238) as well as DNA replication

recovery after MMS treatment (186). MPG removes 3-meA that can block DNA replication. Therefore,

direct interaction of MPG with PCNA (108) and maybe also XRCC1 (110), further suggests that a coordinated

pre-replicative BER may exist.

Transcription-coupled repair (TCR) BER
Detection and repair of some DNA damage is closely coordinated with the process of RNA

transcription. Irradiation of cells with UV-light results in DNA damage, which is primarily in the form of

covalent linkage between adjacent pyrimidines. Such photoproducts represent blocks to RNA polymerases.

A blocked RNA polymerase II targets components of nucleotide excision repair (NER) to repair the

transcribed strand. This process repairs DNA lesions from actively transcribed DNA strand and is known as

transcription-coupled repair (TCR). Two major factors of this pathway are Cockayne syndrome A and B

proteins (CS-A and CS-B, respectively); so called because their inactivation results in the Cockayne syndrome.

A previous report showed that the repair of thymine glycol and 8-oxoG was normal in NER defective (XP)

cells (243). However, CS cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS lacked TCR of 8-oxoG

in a transcribed sequence, despite its efficient repair when not transcribed (243). Since then several reports

have implicated CS proteins in the repair of oxidative DNA damage. CSB functions as a chromosome

remodeling protein in an ATP-dependent manner (244). Array analysis showed that CS-B cells had a general

deficiency in H2O2 induced gene expression compared with the wild type cells. Several of these genes were

involved in DNA repair, transcription, and signal transduction. This deficiency was related to the ATPase

function of the protein (245). The transcription-coupled repair of 8-oxoG did not require DNA glycosylase

Ogg1 (246), implying that other DNA glycosylases might be involved. Bubble structures are transiently

formed in DNA during the transcription. Of the four DNA glycosylases tested (OGG1, NTH1, NEIL1, and

NEIL2) NEIL1 and NEIL2 were able to remove 8-oxoG from bubble DNA in vitro (247). So, it appears that

TCR of 8-oxoG takes place, although it is still unknown what DNA glycosylases are involved.

Deregulation and inactivation of BER
Knudson’s two-hit model of tumorigenesis states that mutation of both alleles of a tumor suppressor

gene is needed to trigger tumor formation (248). However, some more recent studies have shown that

mutation or loss of a single allele may be sufficient for tumorigenesis without inactivation of the second

allele (249-251). This gene-dose effect is called haploinsufficiency, and has also been demonstrated for
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BER proteins Ape1 (118), Polβ (252), and Fen1 (155) in mice. Thus, a reduction in cellular concentration

of some BER proteins either as a result of deregulation of gene expression, mutations, or direct inactivation

by exogenous agents like certain chemicals or virus infections may result in a mutator phenotype and cancer

development. The long time held view that mutagenic chemicals and radiation in the environment increase

cancer rates by inducing mutations in normal human cells has been challenged by alternative hypothesis

that common environmental risk factors may rather have a favorable selective action on preneoplastic cells

previously initiated by spontaneous mutations (253). In support of this view, several recent reports have

shown that direct inactivation of DNA repair proteins by environmental agents may account for the

carcinogenetic effects of these agents. Cadmium is a natural element in the soil. It is usually found as a

mineral combined with other elements such as oxygen, chlorine, or sulfur. Animals given cadmium in food

or water had high blood pressure, iron-poor blood, liver disease, and nerve or brain damage (254). Recently,

cadmium was found to specifically inactivate mismatch repair (255,256), and hOGG1 (257). The reduced

hOGG1 activity might be through inactivation of transcription factor SP1 (258). hOOG1 was also shown to

be inhibited by nitric oxide (NO) an inflammatory mediator, through formation of S-nitrosothiol adducts

(259). This suggests a synergism between the ability of NO to generate DNA damage and the ability to

inhibit repair of such lesions. Both lead and cadmium were reported to inhibit endonuclease activity of

APE1 (260). Furthermore, arsenic inhibited poly(ADP-ribosyl)ation, which is mainly mediated by poly(ADP-

ribose) polymerase-1 (PARP-1), at very low concentrations (261).

Many types of papillomavirus (HPV) cause benign skin tumors (warts) in their natural hosts. These

warts often regress spontaneously, but human genital warts (tumors caused by specific types of papillomavirus,

particularly types 16 and 18) may become malignant if they persist for a sufficiently long time. The E6

protein of HPV1, HPV8, and HPV16 was found to bind XRCC1, causing reduced SDBR (262). This report

showed selective inactivation of a host DNA repair protein by a DNA tumor virus, likely providing an

explanation for the genomic instability seen in cells infected by HPV.

Several studies have reported enhanced oxidative stress in patients with HIV infection. A reduced

DNA glycosylase activity and higher levels of oxidative DNA damage in CD4+ , but not CD8+ cells of HIV-

infected patients was reported (263). Interestingly, antiretroviral therapy induced increased glycosylase

activity in CD4+ T cells and normalized 8-oxoG levels (263).

In recent years, the epidemiology of BER capacity implicating single mutations as well as single

nucleotide polymorphism (SNP) of BER proteins in human cancer has been the focus of investigation. In

this regard, the scaffold protein XRCC1 has received a particular attention. XRCC1 interacts with several

BER proteins and is important for the coordination and stimulation of this repair pathway. Two polymorphisms

have been rather extensively studied and suggested as biomarkers for cancer susceptibility; the Arg194Trp
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polymorphism which resides in the linker region separating the POLβ domain from the PARP interacting

domain, and the Arg399Gln polymorphism which resides within the BRCT1 domain (Figure 7) (264). The

hOGG1 gene is localized on the short arm of chromosome 3 in a region commonly deleted in lung cancer

(265), and Ser326Cys polymorphism in hOGG1 gene has been suggested to increase lung cancer susceptibility

(266). hMYH, hAPE, and hOGG1 repair activities varied in human lung cancer cells because of somatic

mutations or SNP (267). The low efficiency of 8-oxoG removal in these cells may be involved in lung

cancer (268). Recently, germline mutations in hMYH were implicated in colorectal adenoma and carcinoma

predisposition (269). MBD4 (also known as MED1, for methyl-CpG binding endonuclease 1) was found to

be mutated in human carcinomas with microsatellite instability (270). These mutations were predominantly

monoallelic and the majority occured at a poly-A tract. MBD4 deficiency did not seem to increase mutation

or accelerate tumorigenesis in mice lacking MMR (271). So, it appears that mutations in MBD4 are a

consequent rather than a cause of genomic instability. Epidemiological studies of BER polymorphisms and

mutations have been thoroughly reviewed (264). Uracil-DNA glycosylase (UNG) is evolutionary highly

conserved. The only reported mutation in the coding region of UNG gene in human cancer was detected in

sporadic human glioma (272), which might be a result of PCR error (273). The human UNG gene from 62

different sources including 42 human cancer cell lines was screened and considerable sequence variations

were identified, but none in the coding region of the gene (274). A separate group screened 100 samples and

found no mutations in the catalytic region of UNG (275). However recently, patients with hyper-IgM syndrome

(HIGM) were found to be defective in uracil-DNA glycosylase as a result of truncation mutations in the

UNG gene (275).

Based on the reports so far, it appears that mutations in BER genes in cancer cells are rare events

probably because severe defects in BER are incompatible with cell survival. For instance, it is very unlikely

that defects in AP-site repair can ever be detected in human cells. However, certain polymorphisms as well

as subtle variations in the gene expression and protein function likely modulate susceptibility to endogenous

DNA damage and contribute to inter-individual variations in BER function and development of disease.

Cancer occurs as a consequence of rounds of genetic instability and mutations and only cells that carry

mutations that provide growth advantage and clonal expansion will develop into cancerous cells. Hence, it

is possible that neoplastic cells carrying gross mutations in BER genes will not acquire growth advantage

and are eliminated by the fierce selection pressure during the development of cancer.

Gene-targeted disruptions of DNA glycosylases in mice have produced none or mild phenotypes

and modest levels of genomic mutations (117), with two exceptions: An age-dependent increased B-cell

lymphomas in Ung knockout mice (40,276), and an increased spontaneous rate of liver and intestinal cancer,

concomitant with the accumulation of 8-oxoG residues in mice with both the Myh and Ogg1 genes inactivated
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(277). Functional redundancy and “backup activity” of DNA glycosylases have also been suggested as

explanations for these observations. Some base lesions may be tolerated under certain threshold, but rapid

environmental challenges may cause harmful effects in the absence of a functional DNA glycosylase (57,58).

We should also consider an important role of DNA glycosylases in the preservation of population and

species by counteracting gradual accumulation of mutations through generations as discussed before (47).

BER in mitochondria
Mitochondria, which probably evolved from endosymbiotically incorporated organisms, have their

own genome. Mitochondrial DNA (mtDNA) is more vulnerable to damage than nuclear DNA (278), probably

because of its proximity with the inner mitochondrial membrane which is the site of oxidative phosphorylation

and generation of ROS. Thus, higher rates of mutation in mtDNA are expected. In fact, mutation rates of

mtDNA were found to be considerably higher than nuclear gene mutation rates (279). Specific mutations in

mtDNA have been found to associate with diseases as diverse as diabetes and deafness (280,281), and

neurodegenerative disorders including Alzheimer disease (reviewed in (282)). Initially, mitochondria were

believed to lack DNA repair activity, because they were unable to repair UV-light induced pyrimidine

dimmers in their genome (283). Although, subsequent research supported this observation, it became apparent

that mitochondria were able to repair certain types of DNA lesions (284). We know now that human

mitochondria have BER activity (285) and the mitochondrial isoforms of DNA glycosylases for removal of

oxidized base lesions (286) and uracil (41) have been identified (Table 1). Commonly, the mitochondrial

DNA glycosylases are generated by alternative splicing from the same gene that encodes the nuclear form.

Although it needs further investigation, MMR activity in mitochondria has also been reported (287).

APE1 does not have a mitochondrial N-terminal presequence, but the presence of APE1 in

mitochondria was demonstrated by electron microscopy immunocytochemistry and by subcellular

fractionation combined with western analysis (288). APE1 was localized to mitochondria after H2O2 treatment

of the cells (289), possibly to enhance BER of oxidative DNA damage. A role for the redox activation

function of APE1 in mitochondria is unknown. A second human AP endonuclease (APE2) with similarity to

the S.cerevisiae APN2 has been identified (132). APE2 has class II AP endonuclease activity in vitro, which

is much lower than the AP endonuclease activity of APE1 (133). APE2 has a functional N-terminal

mitochondrial localization signal (MLS) and is localized in mitochondria (134). The biological significance

of APE2 in mitochondria is currently unknown.

Apparently, POLγ is the only DNA polymerase in human mitochondria (reviewed in (290)).

POLγ comprises a catalytic core (POLγA) in a heterotrimeric complex with two subunits of the processivity

factor (POLγB) (291). The holoenzyme is an efficient and processive polymerase, which exhibits
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high fidelity in nucleotide selection and incorporation with intrinsic 3' to 5' exonuclease proofreading activity

(292). POLγ is also able to catalyze the removal of a 5'-deoxyribose phosphate (293). The accessory subunit

stimulates the ability of the catalytic subunit to function in BER by enhancing the rate at which POLγ is able

to locate damage in DNA, and by stimulating the dRP lyase activity of POLγA (294). The DNA synthesis

step in nuclear BER is via single nucleotide insertion (short-patch) or long-patch through incorporation of

several nucleotides. The mitochondrial uracil repair was found to solely occur via short patch BER (295).

The DNA ligase III gene, LIG3, encodes a mitochondrial form of the protein using an alternative

translation initiation site upstream of the initially identified start site (174). Transfection of human cells

with an antisense human DNA ligase III vector reduced the mtDNA content (296). The residual mtDNA had

numerous single-strand nicks (296), demonstrating a requirement for DNA ligase III in mtDNA repair.

Heterodimerization of DNA ligase III with XRCC1 is necessary for the maintenance of normal cellular

levels of cellular DNA ligase III (178). However, Chinese hamster ovary cells lacking XRCC1 (EM9)

showed no defect in their mtDNA repair activity, indicating that the function of mitochondrial DNA ligase

III is independent of XRCC1 (180).

Mitochondrial BER and ageing
Ageing can be defined as a progressive general weakening of function, resulting in an increasing

vulnerability to environmental challenge and growing risk of disease and death. Commonly, theories of

ageing involve damage to macromolecules (297). DNA damage from ROS is considered a major cause of

ageing, and includes base modifications as well as single- and double-strand breaks. The vast majority of

cellular ROS (~90%) can be traced back to the mitochondria implicating these organelles in ageing (reviewed

in (298)). A systematic RNAi screen that inactivated over 5600 random C.elegans genes that increased

lifespan also implicated mitochondria (299). A large number of life span determining genes were identified

in this screen; the largest functional genes appeared to include genes that somehow regulate mitochondrial

function. Oxidative DNA base modifications, large-scale deletions, and point mutations of mtDNA have

been found to increase with age in various human tissues (300,301). These observations has led to the

concept of “vicious circle” in which an initial ROS-induced damage, including mtDNA mutations, results in

impairment of mitochondrial function that in turn leads to more mitochondrial damage. The significance of

maintenance of mtDNA integrity was recently demonstrated in knock-in mice that expressed a proofreading-

deficient DNA POLγ (302). These mice exhibited a significantly higher number of mtDNA deletions as

well as mutations (302). Interestingly, these mice had a significantly shortened lifespan and displayed a

number of age-related phenotypes (302). A gradual reduction in the integrity of mtDNA may be partly

attributable to compromised mitochondrial BER by ageing that is the main mitochondrial DNA repair
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system if not the only. In fact, in older mice a large fraction of the mitochondrial Ogg1, and Ung1 were

stuck to the membrane in the precursor form, which could not be translocated into the mitochondrial matrix

(303). Apparently specific cell types such as neurons are particularly sensitive to the effects of age-related

accumulation of mtDNA mutations. An age-dependent decline of DNA repair activity for removal of oxidative

base lesions and uracil was found in rat brain mitochondria (304,305). Very recently, it was shown that

normal ageing was associated with the activation of a caspase 3-mediated apoptotic pathway (306). Mice

with POLγ defect in proofreading function and high mtDNA mutations displayed an early onset of this

phenotype (306). Hence, accumulation of mtDNA mutations may contribute to apoptosis-mediated loss of

irreplaceable cells and ageing. In support of this, an enhanced mtDNA repair and cellular survival after

oxidative stress was seen by targeting  hOGG1 to mitochondria (307).
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Aims of the study
Four uracil-DNA glycosylases (UNG, SMUG1, TDG, and MBD4) have been identified in human

cells. SMUG1 was suggested to be the main enzyme for removal of uracil from U:G mispairs, while UNG2

was the major enzyme for removal U:A that occur during replication. To further clarify roles of UNG2 and

SMUG1 in repair of uracil in human genome we decided to carry out in vitro and in vivo analysis of these

proteins in human cells. This work is presented in paper I.

Trypanosoma cruzi (T.cruzi), causes Chagas’ disease in humans. A single uracil-DNA glycosylase

has been identified in T.cruzi (TcUNG). To develop drugs that specifically target T.cruzi without adverse

affects on human cells is needed. For this purpose we wanted to see if human UNG and TcUNG show any

distinct biochemical properties. This work is presented in paper II.

Specific protein-protein interactions as well as formation of multiprotein complexes that carry out

specific biochemical actions are rather common in human cells. We were interested to see if UNG2 was

able to form complex(es) with other BER proteins for complete repair of uracil in DNA. We decided to use

non-neutralizing antibodies against the N-terminal region of UNG2 to immuonoprecipitate possible UNG2-

associated proteins. For functional analysis of the immunoprecipitates we decided to use BER assay with

circular DNA containing uracil at a defined position. For identification of BER proteins in the

immunoprecipitates we decided to use western analysis. The results of this work are shown in paper III.

Next, we were interested to carry out a similar but slightly modified line of investigation to see if the

mitochondrial UNG1 was able to form complex(es) with other BER proteins. This time we used extracts

from HeLa cells stably expressing UNG1-EYFP fusion proteins and antibodies against EYFP protein for

immunoprecipitation. This work is presented in paper IV. We decided to include analysis of UNG2-EYFP

expressing HeLa cells in this study to directly compare this method of immunoprecipitation to the method

we used to immunoprecipitate UNG2-associated BER proteins in paper III.

Uracil-DNA glycosylase (UNG2) is an evolutionary highly conserved DNA repair enzyme that

removes uracil from U:A and U:G mispairs in DNA. Unrepaired U:G mispairs result to C to T transition

mutations during replication. Human tumors contain a high proportion of C to T transition mutations. Hence,

theoretically, mutation inactivation of UNG2 can contribute to the accumulation of such mutations in cancer

cells. To test this we decided to screen human UNG gene for mutations in a number of human cancer cell

lines (paper V) as well as in DNA isolated from paraffin-embedded tissue samples from gastric cancer

patients (paper VI).
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Summary of the results and general discussion

Paper I (hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches,

and U in single-stranded DNA, with hSMUG1 as a broad specificity backup)

N-terminal proteolysis of hUNG2 has impeded the purification of full-length protein. Therefore,

most studies on hUNG2 have been carried out on the purified catalytic domain of the protein. In this study

purified full-length of hUNG2 and SMUG1 DNA glycosylases were used in comparative biochemical analysis

to investigate their role in human BER. This study contains novel results on the biochemical behavior of

full-length hUNG2 that varied significantly from earlier results from the purified catalytic domain of the

protein. Contrary to the catalytic core of hUNG which is inhibited by MgCl2 at all concentrations, full-

length enzyme was stimulated 10-fold in the presence of 10 mM MgCl2. So, the N-terminal region of

hUNG2 is needed for the effect of MgCl2. The same concentration of MgCl2 stimulated SMUG1 by 2-fold.

MgCl2 affected the catalytic turnover of hUNG2 on dsDNA, whereas only the affinity of the enzyme was

affected on ssDNA (reduced Km). So, under near physiological concentrations, MgCl2 turns hUNG2 to an

efficient ssDNA selective enzyme. Interestingly, in the presence of physiological concentrations of MgCl2

the affinity of SMUG1 for ssDNA substrate was reduced. Hence, the term “single-strand selective

monofunctional uracil-DNA glycosylase” does not reflect its true function. Another interesting result presented

in this study was the effect of AP-sites on the catalytic function of the enzymes. The catalytic core of UNG

was known to bind to AP-sites more strongly than to uracil-containing DNA. However, no inhibition by AP-

sites was seen for the full-length hUNG2. SMUG1 displayed a somewhat different response. Hence, ss-

oligonucleotides containing AP-sites were found to have no inhibitory effect on SMUG1, whereas AP-sites

containing ds-oligonucleotides strongly inhibited the catalytic activity. Furthermore, this study showed

that SMUG1 had broader substrate specificity than hUNG2. Hence, UNG2 was active on ssU, U:A, U:G,

and 5-flourouracil (5-FU):A, while SMUG1 was in addition active on 5-hydroxymethyluracil (5-HmU):G,

and 3,N4-ethenocytosine (εC):G. A fraction of hUNG2 was previously shown to localize in replication foci

in the S-phase (42). In this study we used EYFP-hUNG2 and EYFP-hSMUG1 fusion proteins and

demonstrated that hUNG2 was distributed in the nucleoplasma outside the S-phase, and a fraction was

accumulated in replication foci in the S-phase. Moreover, hUNG2 appeared to be excluded from nucleoli

both in the S-phase and outside the S-phase. However, hSMUG1 appeared to be less strictly localized to

nuclei, and a substantial fraction was distributed throughout the cytoplasm. SMUG1 also appeared to be

abundant in the nucleoli both in replicating and non-replicating cells.

SMUG1 was suggested to represent a major glycosylase against U:G mismatches, the product of

cytosine deamination (62). Using neutralizing antibodies against UNG2 we showed that UNG2 constituted
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the major cellular DNA glycosylase activity both against U:A and U:G DNA substrates in human cell

extracts. In the presence of both antibodies DNA glycosylase activity on both substrates was completely

inhibited. This indicated that UNG2 and SMUG1 constituted the main uracil-DNA glycosylases for repair

of U:A and U:G in these cell extracts. Moreover, we found that a complete inhibition of repair of U:A in

circular dsDNA substrate was achieved by preincubation of extracts with neutralizing antibodies against

UNG2, while antibodies against SMUG1 had no detectable inhibitory effect. Interestingly, repair of U:G in

circular dsDNA substrate produced a different result. Therefore, a somewhat delayed but significant repair

of U:G was seen in the presence of both antibodies. Possibly a fraction of UNG2 is inaccessible for UNG2

antibodies, which agrees with a previous observation in our lab not included in this paper.

In summary, the results presented in this paper showed that hUNG2 is the main DNA glycosylase

for removal of uracil from U:A and U:G. Moreover, the results clearly demonstrate that UNG2 and SMUG1

have common as well as distinct functions in human BER, and act in specific subcellular locations.

Paper II (Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil

exclusively via short patch base excision repair)

A few species of Trypanosoma are found in the world. From the standpoint of human health, the

most important is Trypanosoma cruzi (T.cruzi), causing Chagas’ disease. Chagas’ disease affects primarily

the nervous system and the heart. Chronic infections result in various disorders, including dementia,

megacolon, and megaesophagus, and damage to the heart muscle. Acute infection can be lethal, but the

disease usually evolves into a chronic stage, accompanied in 25 to 30% of cases by severe debilitation and

ultimately death. In most cases, treatment of symptoms is all that is possible. Present medications can

reduce the duration and severity of an acute infection, but are only 50% effective, at best, in eliminating the

organisms. Hence, drugs or vaccines that can specifically target T.cruzi without adverse effects on the host

cells are needed. Uracil DNA glycosylases have a broad distribution and proteins from eukaryotes,

prokaryotes, eukaryotic viruses show a high degree of sequence homology. Inactivation of E.coli Ung

causes a mutator phenotype, but mice deficient in Ung show a moderate increase of mutation frequency

(39) probably because of presence of alternative uracil DNA glycosylases. Active UNG was previously

shown to be essential for replication of herpes simplex virus type 1 (HSV-1) (308). A single uracil-DNA

glycosylase has been identified in T.cruzi (TcUNG) (309). Hence, developing drugs that can specifically

target DNA repair of T.cruzi is an appealing thought. To this end, we aimed to investigate the biochemical

properties of TcUNG compared with human UNG (hUNG). A striking difference was the effect of MgCl2.

hUNG2 is stimulated about tenfold in the presence of 10 mM MgCl2 which is attributable to the N-terminal
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domain of hUNG2 (paper I). However, this concentration resulted in nearly 85% inhibition of TcUNG.

TcUNG contains an N-terminal presequence of about the same length as hUNG2, but with low apparent

sequence similarity with hUNG2. A second obvious difference between TcUNG and hUNG was seen in the

inhibitory effects of AP-sites. The purified catalytic domain of hUNG is inhibited by AP-site in the micromolar

range. But, the presence of the N-terminal domain eliminates inhibition by AP-sites (paper I). We found that

despite the presence of N-terminal presequence in TcUNG, the enzyme was susceptible to inhibition by

double-stranded, but not single-stranded AP-containing oligonucleotides.

Depending on the length of DNA repair synthesis, base excision repair (BER) is divided into a

short-patch pathway (single-nucleotide insertion) or a long-patch pathway when several nucleotides are

inserted. BER in mitochondria seems to occur through short patch repair only (295), despite POLγ the only

known DNA polymerase in human mitochondria, being a processive DNA polymerase. Under our

experimental conditions, we found that repair of uracil (U:G) in circular double-stranded DNA (cccDNA)

by extracts prepared from log-phase as well as stationary phase T.cruzi takes place via short-patch. POLβ

is the main BER DNA polymerase in human cells for short-patch BER. POLβ is not inhibited by N-

ethylmaleimide (NEM), but efficiently incorporates ddNTPs in DNA, hence inhibiting further DNA synthesis.

A human POLβ-like DNA polymerase has been identified in T.cruzi (310). This DNA polymerase was

insensitive to aphidicolin, and NEM, but was markedly inhibited by the dideoxythymidine triphosphates

(310). We found that repair of U:G in cccDNA substrate was not inhibited by ddCTP, while NEM completely

inhibited repair DNA synthesis displaying a POLδ-like pattern of inhibition. This was somewhat in odds

with the dominant short-patch repair we detected in T.cruzi extracts which, we expected to involve the

reported human POLβ-like. Moreover, TcUNG contains a putative PCNA-binding motif and DNA sequence

analysis of T.cruzi have identified the presence of Polδ and PCNA both of which are involved in long-patch

BER in humans. Analysis of the complete sequence of T.cruzi genome identified several human counterpart

DNA polymerases including translesion DNA polymerases η, κ, ζ, and Rev1, as well as X-family DNA

polymerases proteins λ, µ, and Polβ (311). Recently, human DNA POLλ was found to function in BER

(154). Involvement of DNA polymerases other than Polβ in T.cruzi BER may also explain the apparent

discrepancies we observed here.

The uracil BER analysis we carried out in this study demonstrated certain organ specific biochemical

properties distinct for TcUNG that may be beneficial for development of target-specific anti T.cruzi drugs.
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Paper III (Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place

predominantly by short-patch repair both in proliferating and growth-arrested cells)

The N-terminal sequence of the nuclear form of uracil-DNA glycosylase (UNG2) is required for

targeting (41). This region is the site of interactions with RPA (48) and PCNA (42) as well as a range of

phosphorylation modifications (47). Terminal extension with unconserved polypeptide sequence, either at

the N- or C-terminus, is quite common among mammalian glycosylases but are absent in E.coli. In addition

to subcellular targeting, these segments are likely involved in establishment of communications among

BER proteins and interactions with auxiliary proteins during replication, transcription and different phases

of cell cycle. In this study we used non-neutralizing antibodies against the N-terminal region of UNG2 to

immunoprecipitate (IP) UNG2-associated proteins. We showed that the UNG2-IP contained functional

proteins and completely repaired uracil in DNA, which we called UNG2-associated repair complexes (UNG2-

ARC). Using western analysis we showed that the UNG2-ARC contained UNG2, APE1, POLβ, POLδ,

PCNA, and XRCC1. Recently, we showed that neutralizing UNG-antibodies completely inhibited repair of

U:A but not U:G in circular DNA by human cell extracts (Paper I). In the present study, we showed that anti-

UNG-antibodies completely inhibited repair of U:A and U:G DNA substrates by UNG2-ARC, Moreover,

we showed that inhibition of UNG did not impair subsequent BER steps by UNG2-ARC and recombinant

SMUG1 partially restored BER of U:G, but not U:A by UNG2-ARC. Previously, hUNG2 was proposed to

represent the main uracil DNA glycosylase for removal of U:A from incorporation of uracil during the

replication (39), while SMUG1 was the major DNA glycosylase for removal U:G from deamination of

uracil (62). However, in a later study we demonstrated that at close to physiological MgCl2 concentrations,

UNG2 was the main DNA glycosylase for removal of both U:A and U:G (Paper I). In support of this, later

studies showed a more specific role  for SMUG1 in removal of oxidative base lesions (58,63,65). Our

results presented in this study and in paper I support the view that UNG2 is the main DNA glycosylase for

removal of both U:A and U:G in DNA.

We tested role of APE1 in UNG2-ARC and found that antibodies against APE1 completely impaired

repair of uracil by UNG2-ARC. This result agrees with APE1 as the major AP endonuclease in human cells.

Moreover, we found that UNG2-ARC prepared from extract immunodepleted for XRCC1 showed reduced

uracil and AP-site repair as well as the amount of ligated repair products. This result agrees with the interaction

of POLβ and DNA ligase III with XRCC1, and suggests that association of POLβ with UNG2-ARC may

occur through interaction with XRCC1.

Possibly, UNG2-ARC consists of repair complexes that are formed in different phases of the cell

cycle. To better characterize possible sub-complexes of UNG2-ARC, we isolated complexes from freely

cycling and growth arrested HaCaT cells. We found lower long patch repair in growth arrested cells compared

with the cycling cells. This agrees with a DNA replication-associated long patch repair of uracil through

direct interactions of UNG2 and PCNA. Furthermore, preincubation of UNG2-ARC with neutralizing
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POLβ-antibodies significantly inhibited repair DNA synthesis in arrested cells compared with freely cycling

cell, indicating that POLβ is the main DNA polymerase for repair of uracil in DNA in non-cycling cells.

The buildup of repair complexes like UNG2-ARC depends on the concentration of repair proteins

and/or to the rate of damage to DNA. We tested these possibilities using stably transfected HeLa cells

overexpressing hUNG2. We found that repair of U:A in cell extract as well as UNG2-ARC  increased by

nearly 4- and 2-fold compared with control cells, respectively. But, the level of the cellular UDG enzymatic

activity was 15-fold higher than in the normal cells. These results imply that UNG2 may be a limiting factor,

but not the sole rate-limiting factor in the generation of repair complexes. Importantly, the results show that

the formation of at least a fraction UNG2-ARC may be independent of damage in DNA, possibly in form of

preassembled complexes.

Conventionally, we think of BER as a linear pathway initiated by a DNA glycosylase with subsequent

processing of the damage by interaction of individual proteins with DNA lesion independently of each

other. This model was developed mostly on the basis of in vitro analysis of naked DNA in cell free extracts

or purified proteins. Data started accumulating on the posttranslational modifications and partial interactions

of BER proteins, as well as interactions of core BER proteins with proteins that assisted BER, but were not

required for in vitro conditions. It has been demonstrated that the protein modifications and protein-protein

interactions affected BER through regulation of localization of repair enzymes as well as regulation of

catalytic activity of individual proteins. Some recent in vitro studies demonstrated that BER on chromatin

DNA was impeded at several steps (30,31), indicating that core BER enzymes likely need special conditions

and additional factors to carry out repair. The results presented in this work and others point to a more

complex and organized BER process that is regulated at several levels rather than random collisions of

individual repair proteins with damaged DNA. Such interactions will not only make the process of DNA

repair more efficient, but also the highly reactive repair intermediates will in this way be better protected

from harmful modifications. Moreover, specific interactions can contribute to elevated local concentration

of the repair proteins where they are needed.

Paper IV ( Different organization of base excision repair of uracil in nuclei and mitochondria) (manuscript)

Mitochondrial uracil-DNA glycosylase (UNG1), and the nuclear form (UNG2) have different N-

terminal sequences, but a common catalytic domain (41). Recently, we reported isolation of functionally

active UNG2-associated repair complexes (UNG2-ARC) by using non-neutralizing antibodies targeted to

the N-terminal region of UNG2 (paper III). In the present study, we tested a new approach for isolation of

UNG-associated repair complexes. We prepared cell extracts from HeLa cells expressing UNG1 or UNG2

fused to enhanced yellow fluorescent protein (EYFP) placed C-terminally, and used antibody against EYFP
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to isolate possible UNG-associated repair complexes. We found that UNG2-EYFP immunoprecipitates

carried out complete repair of uracil in DNA in agreement with our recent report (paper III). However, we

did not detect uracil-BER activity in UNG1-EYFP immunoprecipitates. Moreover, we demonstrated that

UNG1-EYFP had catalytic activity similar to UNG2-EYFP, indicating that the fusion proteins were

catalytically functional. Very recently, most mitochondrial BER proteins were shown to associate with the

inner membrane, independently of mtDNA (312). In our study, we carried out an in organnello formaldehyde

crosslinking of mitochondrial proteins and showed that interactions between UNG1 and other proteins

including BER proteins (APE1) may take place. However, these interactions may not be stable, because we

were unable to isolate sufficient amounts of stable complexes for complete repair of uracil in DNA. Therefore,

it appears that contrary to the nuclear UNG2, the mitochondrial form of the enzyme does not undergo stable

protein interactions with other BER proteins. There are some indications that at least certain nuclear repair

enzymes are organized in tight association with nuclear matrix (28). Based on our results and others (312)

it appears that mitochondrial and nuclear BER take place in more organized and coordinated fashion than

previously thought. However, the form of organization differ between these organelles.

Perhaps the most important and time consuming step for analysis of BER complexes is a successful

generation of antibodies that do not compete with other proteins for binding and are not inhibitory. Our

findings demonstrate a versatile method for functional as well as structural analysis of nuclear BER complexes.

Paper V (Sequence variation in the human uracil-DNA glycosylase (UNG) gene)

In this study we PCR amplified regions of the human UNG gene covering all exons including

exon-intron boundaries, both promoters, and intron V from 42 cell lines derived from tumor tissues, 10 cell

lines established from normal tissues and DNA from blood (total of 62 sources). We carried out direct

sequencing of the PCR products for possible mutations. We identified a number of alleles variants, but non

in the coding region of the gene. We did not find any significant correlation between UDG activity and

sequence variants. The frequencies for the variant alleles ranged from 0.01 to 0.23, which corresponds to

the identification of one variant allele per 3.8 kb in non-coding sequences of the gene. The sequence variation

within NER genes was found to be one variant allele in every 2.3 kb in coding and 1.2 kb in non-coding

regions. Thus, apparently there is less sequence variation in the UNG gene than in genes for NER.

We found four different sequence variants in promoter B with allele frequencies ranging from 0.01

to 0.21, including a transition (C to T) in a putative binding site for transcription factor AP2, and a T to A

transversion within a Yi element. Introducing the substitution in AP2 into chimaeric promoter-luciferase

constructs affected transcription from the promoter. We detected this substitution only in cancer cells with
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an allele frequency of 0.1. The T to A transversion in a Yi element and a downstream G to A transition

appeared to be linked with an average allele frequency of 0.18 and 0.2, respectively. Introducing these

substitutions in concert into promoter B sequence did not influence expression from chimaeric promoter-

luciferase construct.

In some cell lines, all identified sequence variants appeared to be homozygous. Two cancer cell

lines and one normal cell line showed homozygosity for three substitutions. We carried out analysis of loss

of heterozygosity using polymorphic markers; one for intron V in the UNG gene, as well as one centromic

and one telomeric marker. The cancer cells showed homozygosity for the markers suggesting that they have

undergone loss of heterozygosity. The normal cell line was heterozygous for the centromic marker and

homozygote for the intron V and the telomeric markers.

Although, we found a number of sequence variation in non-coding regions of the UNG gene in cell

lines from normal fibroblasts and tumor tissues, none was accompanied by significantly reduced UDG

activity. Our results suggest that mutations affecting the function of human UNG gene are infrequent in

human cell lines.

Paper VI (Low copy number DNA template can render polymerase chain reaction error prone in a

sequence-dependent manner)

Human tumors contain a high proportion of C to T transition mutations, a fraction of these may be

a result of deamination of cytosine to uracil, which left unrepaired may result in the C:G to T:A mutations

during replication. Uracil DNA glycosylase (UNG) is an evolutionary highly conserved protein and is the

major DNA glycosylase that removes uracil from DNA and counteracts accumulation of such mutations.

Previously, a guanine to adenine mutation in exon III of the UNG gene resulting in a G143R substitution

was reported (272). We conducted mutation analysis of UNG gene in DNA isolated from paraffin-embedded

tissue samples from gastric cancer patients. In some samples we detected a mutation in exon III identical to

the above mentioned mutation. However, we experienced difficulties to reproduce the results, and further

experiments showed that the mutation was a PCR artifact, and its occurrence was inversely proportional to

the amounts of DNA template in PCR samples. Importantly, we found that these errors occurred at particularly

high rate at GC-rich sequences of the gene. This suggests that certain DNA sequences are particularly

vulnerable for this type of PCR errors. In an earlier study we screened 62 samples including 42 human

cancer cell lines for possible mutations in UNG gene (paper V). We found considerable sequence variations,

but none in the coding region of the gene. In a separate study, no mutations were found in the coding region

of the UNG gene from 100 human samples (275). So, it seems that mutations in the catalytic region of the

UNG gene in human cancers if occur are very rare events and so far no verifiable data is available for such
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mutations. Although, germ line mutations in UNG gene have been reported in the patients with hyper IgM

syndrome (275). Our results have general implications for mutation analysis of the so-called hot-spots, in

particular in samples with low DNA contents like those isolated by laser-capture microdissection.
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Enzymes involved in genomic maintenance of human parasites are
attractive targets for parasite-specific drugs. The parasitic protozoan
Trypanosoma cruzi contains at least two enzymes involved in the protection
against potentially mutagenic uracil, a deoxyuridine triphosphate nucleo-
tidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the
highly conserved UNG-family. Uracil-DNA glycosylase activities excise
uracil from DNA and initiate a multistep base-excision repair (BER)
pathway to restore the correct nucleotide sequence. Here we report the
biochemical characterisation of T. cruzi UNG (TcUNG) and its contribution
to the total uracil repair activity in T. cruzi. TcUNG is shown to be the major
uracil-DNA glycosylase in T. cruzi. The purified recombinant TcUNG
exhibits substrate preference for removal of uracil in the order ssUOU:GO
U:A, and has no associated thymine–DNA glycosylase activity. T. cruzi
apparently repairs U:G DNA substrate exclusively via short-patch BER, but
the DNA polymerase involved surprisingly displays a vertebrate POLd-
like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and
MBD4were not found, underlying the importance of the TcUNG enzyme in
protection against uracil in DNA and as a potential target for drug therapy.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: base excision repair; Trypanosoma cruzi; uracil analogues; uracil-
DNA glycosylase; Ugi
*Corresponding author
Introduction

Trypanosoma cruzi is the causative agent of the
Chagas disease, a tropical disease affecting 16–18
million people in an area where 100 millions are
estimated to be at risk†. Neither effective drugs nor
vaccines are available for treatment despite
lsevier Ltd. All rights reserve
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ds, double-stranded.
ing author:
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considerable research efforts.1 T. cruzi undergoes a
complex life cycle shuttling between the digestive
tract of an insect vector, the blood of a mammalian
host and inside the target cells.2–4 During its life
cycle the parasite is exposed to rigorous environ-
mental changes, and effective protection of the
genome against genotoxic stress is likely to be
crucial for its survival. Thus, proteins serving DNA-
protective functions in T. cruzi are considered
potential targets for drug therapy. Two such
enzymes encoded by the T. cruzi genome are
deoxyuridine pyrophosphatase (TcdUTPase)5 and
uracil-DNA glycosylase (TcUNG)6 which are both
involved in protection against uracil in DNA. The
former is responsible for the hydrolysis of dUTP to
dUMP and pyrophosphate, and thereby eliminates
the triphosphate form of deoxyuridine, and
erroneous incorporation of dUMP into DNA. The
latter excises uracil occurring either from misincor-
poration of dUMP or from deamination of cytosine,
d.

http://www.who.int/ctd/chagas/burdens.htm
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and initiates a multistep base-excision repair (BER)
pathway.7,8 BER can be completed either by short-
patch repair (one nucleotide insertion), or long-
patch repair (two to eight nucleotides insertion).9,10

These mechanisms largely use different enzymes
and accessory proteins that may differ from organ-
ism to organism. Uracil DNA glycosylases have a
broad phylogenetic distribution and proteins from
prokaryotes, eukaryotes and eukaryote viruses
display a high degree of sequence homology.11

TcUNG also shows high homology at the amino
acid level with its counterparts.6 Uracil DNA
glycosylases form a protein superfamily consisting
of five families.12,13 Family-1 enzymes (comprising
human UNG and Escherichia coli Ung) are active
against uracil in ssDNA and dsDNA, and recognise
uracil in an extrahelical conformation. Family-2
enzymes (comprising human TDG and E. coli Mug)
are mismatch specific and recognise the widowed
guanine in the complementary strand. Family-3
(SMUG) and family-4 (predicted from a wide range
of archaea as well as thermophilic and mesophilic
eubacteria) enzymes have common active site
motifs but their catalytic residues are not conserved.
Family 5 has recently been described and comprise
an enzyme which also catalyses the removal of
hypoxanthine from DNA.14 The many functional
back-up UDG activities in mammalians probably
explains why homozygous ungK/Kmice display no
immediately apparent phenotype, and only have a
moderately increased mutation frequency.15 How-
ever, in organisms that apparently rely on only one
UDG, such as several viruses, this gene appears to
be essential.16,17 Moreover, it has been shown that
the intracellular pathogens Pseudomonas aeruginosa
and Mycoplasma smegmatis, which have GCC rich
genomes, depend on functional UDG activity for
their survival.18

Human UNG is the best studied enzyme among
the family-1 enzymes and accounts for more than
95% of the total UDG activity in human cells
in vitro.19 The enzyme is a monomeric protein, not
dependent on cofactors and with preference for
uracil in ssDNA. hUNG mostly removes uracil
faster from U:G mismatches than from U:A
matches, but this is sequence dependent, and has
no activity against thymine in T:G mismatches. The
enzyme is inhibited by micromolar concentrations
of certain uracil analogues,20,21 and shows dose-
dependent and stoichiometric inhibition by the
UDG inhibitor protein Ugi encoded by the bacterio-
phage PBS2.22 Human UNG2 likely has a major
function in both post-replicative removal of uracil
near the replication fork as well as overall removal
of deaminated cytosine residues and certain uracil
analogues derived from oxidative damage.23–26

Viral members of family-1 UDGs (vaccinia-and
herpesviral UDGs) have been shown to be required
for viral replication.27,28 Thus, cellular and viral
UDGs are potential chemotherapeutic targets for
cancer and viral diseases, respectively. Several
uracil analogues have been tested and are already
in use for the treatment of such diseases although
their mechanisms of action are not completely
understood.29–31

In contrast, less is known about DNA base
excision repair in trypanosomatids. The existence
of a gene encoding uracil-DNA glycosylase in
T. cruzi and AP endonuclease genes in both
Leishmania major and T. cruzi provides molecular
evidence for base excision repair of uracil.6,32,33 In
addition, several DNA polymerases have been
partially characterised whereas their role in repair
has not yet been defined.34,35 In T. cruzi, the udg
gene encoding TcUNG exists as a single copy, and
Western analysis of parasite extracts indicates the
presence of only one protein species encoded by
this gene.6 The sequence revealed high degree of
homology with UDGs belonging to the family-1 of
the UDG superfamily. Recombinant TcUNG protein
was expressed and purified. The protein behaved as
a monomer in gel filtration chromatography and
activity was measured using a qualitative assay
dependent on enhanced fluorescence of ethidium
bromide when intercalated into double stranded
DNA at pH 12.6 In the present work we have
quantified the contribution of TcUNG to the total
UDG activity in T. cruzi by using inhibitory anti-
bodies and the protein inhibitor Ugi. The presence
of enzymes belonging to the other UDG families is
investigated by using alternative substrates. The
type of BER (short- or long-patch) is studied and the
roles of TcUNG and polymerases analysed. Finally,
an extensive biochemical characterisation of recom-
binant TcUNG is performed, and the data compared
to human UNG. In particular, the kinetics of
inhibition by a panel of known UNG-inhibitors is
investigated to further establish the potential of
TcUNG as a target for drug design.
Results

Activity and substrate specificity of TcUNG

When [3H]dUMP:A-containing calf-thymus
DNA was used as substrate, maximum TcUNG
activity was found at 45 8C, pH 7.5–8.0 and 65 mM
NaCl (data not shown). These values are similar to
what is observed for the nuclear human UNG2.25

Under standard conditions, the specific activity
obtained was 6000 units/mg, which is about two-
fold higher than the specific activity of hUNG2.
Kinetic analyses revealed that this was mainly
caused by a markedly higher affinity of TcUNG
(lower Km) for both ss-and ds-substrates than
hUNG2, whereas kcat of TcUNG was somewhat
lower than that of the human enzyme for both
substrates (Table 1). Excision of U or T by TcUNG
from oligonucleotides with variant base partners
revealed a substrate preference in the order ssUO
U:GOU:A (96, 28 and 16% uracil excised, respect-
ively), while no G:T-mismatch activity was
observed (Figure 1). Furthermore, excision of 3C
and oxoG from dsDNA or HMU from either ssDNA
or dsDNA was not detectable (data not shown).



Table 1. Enzyme kinetic parameters of TcUNG and hUNG2

Substrate Km (mM) kcat (minK1) kcat/Km (minK1 mMK1)

TcUNG U:A 0.44 82 185
ssU 0.62 222 358

hUNG2 U:A 3 187 62
ssU 13 1060 79

Kinetic parameters were analysed from direct linear plots using the method of Wilkinson.
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This is similar to that observed for hUNG2 25.
TcUNG demonstrated no dependence on divalent
cations and complete inhibition of activity was
observed with 10 mM Co2C, Cu2C, Fe3Cor Zn2C.
Approximately, 70% activity was retained at 10 mM
Ca2Cor Mn2C, while 15% residual activity was
retained at 10 mM Mg2C. The latter stands in
contrast to the about tenfold stimulation of
hUNG2 observed in the presence of 10 mMMg2C.25
 

TcUNG complements E. coli ung mutants in vivo

The similarities between the TcUNG and the
other Family-1 UDGs, raised the question whether
TcUNG was able to complement E. coli ung
mutants, as shown for human Ung.36 To asses
functional activity of the TcUNG in E. coli, wild-
type (NR8051) and ung mutant cells (NR8052) were
transformed with either pETTcung or pET28a
empty vector. Mutant frequencies were scored by
counting rifampicin-resistant colonies in induced
and non-induced cells.36 Induction of TcUNG
resulted in a threefold decrease of revertants in
NR8052, demonstrating that TcUNG is able to
suppress the weak mutator phenotype of these
cells. The frequency of rifR mutations was of 0.77G
0.01 and 0.22G0.1 per 108 cells for the control and
the cells overexpressing TcUNG, respectively.
Figure 1. Substrate specificity of TcUNG. Denaturing
PAGE of the products of the reaction catalysed by TcUNG
with single stranded oligonucleotides containing uracil
(lane 1), and double stranded oligonucleotides containing
either U:A mismatches (lane 2), U:G mismatches (lane 3)
or T:G mismatches (lane 4).
Sequence specificity of TcUNG resembles that
of other family-1 UDGs

To study the dependence of local sequence
context upon uracil excision, 32P-labelled dsM13-
DNA containing uracil at random positions was
used as substrate. Uracil-excision varied about 20-
fold at the different positions (Figure 2). Melting
temperature (Tm) for the 10 nt sequence encompas-
sing uracil at each position was calculated, and the
average values for the ten “best” and ten “poorest”
substrates were 29.4 8C and 33.6 8C, respectively.
Figure 2. Sequence specificity of uracil excision for
TcUNG. Sequences are shown in order of decreasing rate
of removal. a Position number is the distance from the
M13 sequencing primer to the uracil residue (bold).
b Removal of uracil is given as the mean of four
independent experiments. Total (100%) removal is con-
sidered as the removal of uracil in the band presenting
higher intensity.



Figure 3. Effect of apyrimidinic sites on TcUNG. The
activity of TcUNG against [3H]dUMP-containing calf-
thymus DNA in the presence of oligonucleotides contain-
ing AP-sites is measured. Filled squares, duplex AP93:A;
empty squares, duplex AP93:G; empty circles, ss-
AP(AP93); filled triangles, ss-C control(C93); empty
triangles, duplex C93:G control. 100% activity is
measured in the absence of added oligonucleotides.
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The sequence specificity resembled what has
previously been reported for the human UNG and
E. coli Ung proteins.19,37–39 Several sequences from
which U is removed fastest were common among
the three organisms when using the same substrate.
Moreover, the sequence preference of TcUNG was
in accordance with the consensus sequence for
“poor removal” of uracil observed with hUNG and
E. coli Ung (5 0-(G/C)U(T/G)-3 0 or 5 0-UT-3 0).
Inhibition of TcUNG by uracil and uracil
analogues

T. cruzi UNG is subject to product inhibition by
uracil with a IC50 value of 0.3 mM (data not shown).
For the uracil analogues 6-chlorouracil, 6-amino-
uracil and 5-fluorouracil, IC50 values of 0.1 mM,
2 mM and 5 mM were observed, respectively.
A 25 bp oligonucleotide (2 0FU141) containing the
uracil analogue bFdUrd was previously shown to
Figure 4. Inhibition of purified recombinant TcUNG by Ugi
Ugi protein. (B) Plot of Vmax versus amount (fmol) of enzym
represents the amount of enzyme titrated by the irreversib
performed in the absence of Ugi.
specifically inhibit HSV-1 Ung, while hUNG was
less affected.40 TcUNG proved to be even less
inhibited by the human enzyme, retaining about
95% and 80% activity in contrast with the 70% and
40% retained activity found with the recombinant
catalytic domain of human UNG (UNGD84)
enzyme against ss and ds 2 0FU141, respectively.40

Product inhibition of TcUNG by AP sites

AP-sites have been demonstrated to be micro-
molar product inhibitors for UDGs from different
organisms, including the family-1 UNG proteins.
Recently, however, it was demonstrated that the
N-terminal presequences of the mitochondrial
(UNG1) and nuclear (UNG2) of human UNG
precluded such inhibition.25,41 To investigate the
effect of AP-sites on TcUNG, 4–20 mM ss or ds-
oligonucleotides containing AP sites or normal
bases were included in the standard UDG-assay.
More than 50% of the TcUNG activity was inhibited
by the presence of 8 mM of the double-stranded
AP-containing oligos, increasing to about 80%
inhibition at 16 mM. The specificity of the AP-
containing oligos was verified by the low
inhibition observed with normal G:C-containing
oligos. Interestingly, no significant inhibition was
observed with the single-stranded AP93 relative
to ss controls at the same concentration
(Figure 3). A selective product-inhibition of
TcUNG by AP-sites in duplex DNA may thus
contribute towards the low kcat of the enzyme
against double stranded substrates.

Inhibition of TcUNG by the PBS2 inhibitor
protein, Ugi

The PBS2-encoded inhibitor protein Ugi is a
strong inhibitor that binds stoichiometrically and
irreversibly to family-1 UDGs.42,43 TcUNG was also
found to be stoichiometrically inhibited by Ugi,
with an IC50 value of 3.1 fmol when using 7.07 fmol
enzyme. A plot of [S] versus [S]/V shows that the Km
. (A) Hanes plot of the effects of various concentrations of
e [E]Total added in the presence and absence of Ugi. [E]i
le inhibitor and controls in (A) and (B) are experiments
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is not affected by Ugi (Figure 4(A)) and a plot of
Vmax versus enzyme amount in the presence and
absence of Ugi furthermore indicated that the
binding was irreversible (Figure 4(B)).

Family-1 TcUNG is the major uracil-DNA
glycosylase in T. cruzi

The specific UDG activity in cell-free T. cruzi
extracts was 0.03 unit/mg when measured under
standard conditions. To quantify the relative
contribution of TcUNG to the total UDG activity
in T. cruzi, cell free extracts were preincubated with
the hUNG-neutralising antibody PU101.19 In sep-
arate experiments, PU101 was shown to neutralise
the recombinant TcUNG in a dose-dependent
manner, while no inhibition is observed with
antibodies toward human SMUG1 or a control
antibody (2261) against a region of the mouse
UNG1 N-terminal domain with no homology to
TcUNG (Figure 5). The UDG activity in T. cruzi
extracts was strongly inhibited by PU101. Using
1.25 mg antibody a 95% inhibition of the total UDG
activity is found, increasing to O99% in the
presence of 11.5 mg antibody (Figure 5). In contrast,
essentially no inhibition was observed by corre-
sponding amounts of PSM1 or 2261. This strongly
indicates that TcUNG is the major, if not only uracil-
DNA glycosylase in T. cruzi cells.

It could not be excluded, however, that the calf-
thymus (A:U-containing) substrate used in these
experiments was not optimal for the detection of
other potential UDG-activities, such as G:T(U)-
mismatch-specific glycosylases corresponding to
human TDG or MBD4 (MED1). To investigate this
further, T. cruzi extracts were subjected to analysis
using a panel of oligonucleotides containing U (or
T) and HMU with either A or G as the opposite
base. An 3C:G containing oligonucleotide known to
Figure 5. Inhibition of total UDG activity in T. cruzi
extracts by polyclonal PU101 IgG. Extracts were incu-
bated with various amounts of PU101 IgG (filled squares)
directed towards the catalytic domain of hUNG, prior to
analysis of UDG activity. The polyclonal IgG PSM1
against human SMUG1 (filled circles) and 2261 control
IgG (open circles) demonstrated essentially no neutralis-
ation of UDG activity. The abscissa represents the
logarithm of the amount of IgG (in ng) added in each
reaction.
be a substrate of hTDG and hSMUG1 was also
assayed. The assay was carried out in presence and
absence of Ugi. As shown in Figure 6, and by
quantitation of damage excision from the various
substrates (data not shown), detectable activity is
observed with all three uracil-containing substrates.
However, no G:T-mismatch or 5-HMU activity is
observed. The latter supports the notion that
double-strand specific UDGs and SMUG-type
activities are absent in T. cruzi. The absence of
SMUG1 is also verified by western analysis of
Figure 6. TcUNG is the major T. cruzi Uracil-DNA
glycosylase. Denaturing PAGE of the 32P-labelled products
of the reaction catalysed by T. cruzi cell-free extracts. Single
stranded oligonucleotides containing uracil (lane 1) or
HMU (lane 7), and double stranded oligonucleotides
containing either U:A (lane 2), U:G (lane 3) T:G (lane 4),
3C:G (lane 5), oxoG:C (lane 6), HMU:A (lane 8) or HMU:G
(lane 9) were employed. Panels A and B corrrespond to the
oligonucleotides treated with T. cruzi cell-free extracts in
absenceandpresenceofUgi, respectively. The controlpanel
C corresponds to the substrates incubated in absence of
T. cruzi cell-free extracts. Gels were run in 0.5x TBE buffer,
and quantified after phosphoimaging.
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cell-free extracts and probing with anti-hSMUG1, as
well as the lack of sequence similarity to SMUG1
proteins of translated EST’s in the T. cruzi genome
database. To date no other UDG-family proteins
have been annotated in the T. cruzi genome project.
 

Figure 7. BER assay of U:G repair in T. cruzi cell
extracts. Mode of BER is analysed by using a cccDNA
substrate containing a uracil. In lanes 1–4, cell extract
from parasites growing in logarithmic phase is used. In
lanes 5–8, cell extract from non-growing parasites is
employed. Upper panels show results after digestion of
the repair mixture with the restriction enzymes XbaI/
HincII, the lower band indicates radioactivity incorpor-
ation at the site of damage (one nucleotide insertion).
Repair of U:G mismatches in T. cruzi cell
extracts proceeds via short-patch BER

Repair of cccDNA containing a U:G mismatch at
a defined position (Material and Methods) was
analysed using T. cruzi extracts prepared from cells
in both stationary and exponential growth phase.
BER was also measured in the presence of the
TcUNG inhibitor Ugi, the polymerase d-type
inhibitor N-ethylmaleimide (NEM) and ddCTP
(Figure 7). ddCTP can be readily incorporated into
nascent DNA by the human DNA Pol b, and to a
lesser extent by Pol a or Pol d resulting in the
inhibition of elongation of the DNA chain and
therefore it is used to detect polymerase b-type
activities. Short-patch but no long-patch BER was
detected (lane 1, low molecular mass band). Repair
is inhibited when TcUNG is inhibited by Ugi (lane
2) and also when the polymerase inhibitor NEM is
used (lane 3). ddCTP does not have any effect on
repair (lane 4) indicating that the polymerase
involved is a polymerase d-like. We obtained
identical results using cell-extracts from parasites
in stationary phase (lanes 5–8, respectively). The
lower panels corresponding to “total BER” show
only the 22 nt repair product indicating that repair
was completed and ligation of the final product
occurred. The weaker band of high molecular mass
DNA (HMW, theoretically 3191 base-pairs) in
Figure 7 represents unspecific incorporation in the
rest of the plasmid. The increased strength of the
corresponding HMW band in the intermediate
panels is the result of the contribution of short-
patch repair in this band, as expected from the
HincII/PstI cleavage pattern.
Intermediate panels show results after digestion of the
substrate with the restriction enzymes HincII/PstI, the
lower band arise from radioactive nucleotide incorpor-
ation in positions 3 0 to the site of damage (several
nucleotides insertion). Lower panels show results after
digestion with BamHI/PstI, the lower band in this case
indicates complete repair and ligation of the substrate.
Lanes 1 and 5 correspond to substrate repair in absence of
inhibitors, in lanes 2 and 6 the samples were incubated in
the presence of Ugi, samples 3 and 7 contain NEM, and
samples 4 and 5 contain ddCTP. HMW (high molecular
mass DNA).
Discussion

In a previous study the existence of a uracil-DNA
glycosylase in the parasitic protozoan Trypanosoma
cruzi was demonstrated. Cloning of the gene and
deduction of the encoded amino acid sequence
revealed that the corresponding protein, TcUNG,
belonged to the group of highly conserved family-1
UDGs.13,19 In the present study a detailed charac-
terisation of the recombinant enzyme and its
interactions with different inhibitors is presented,
as well as the contribution of TcUNG to the total
UDG-activity in T. cruzi cell-free extracts. Recombi-
nant TcUNG was enzymatically active, and
expression of the enzyme in E. coli ung mutants
restored the wild-type phenotype. This corresponds
to previous findings that human UNG is able to
complement E. coli ung mutants and indicates a
functional homology between the E. coli, human
and T. cruzi enzymes. This is supported by the
similar biochemical characteristics of the human
UNG2 and TcUNG enzymes with respect to NaCl,
pH and temperature optimum. A striking difference
between TcUNG and hUNG2 is, however, observed
with regard to the effect of Mg2C. Whereas hUNG2
is about tenfold stimulated in the presence of
10 mM Mg2C, this resulted in approximately
85% inhibition of TcUNG. Interestingly, the
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Mg2C-responsiveness is confined to the N-terminal
regulatory domain of UNG2,25 and is also associ-
ated with the mitochondrial UNG1 N-terminal
domain (unpublished results). TcUNG contains an
N-terminal presequence of about the same length as
human UNG2 and UNG1 presequences, but with
low apparent sequence similarity with the human
enzymes (Figure 8). The molecular basics under-
lying the difference in Mg2C-responsiveness and its
functional implications, thus remain to be eluci-
dated. Catalytic efficiency of TcUNG against uracil
in ss- and dsDNA in the absence of divalent cations
is in the same range as hUNG2, and the enzyme has
essentially the same substrate preference as pre-
viously observed with hUNG2 with respect to the
opposing base.25 Moreover, additional activities
against 3C, 5-HMU T:G mismatches are not associ-
ated with the recombinant TcUNG. The absence of
5-HMU glycosylase activity, such as SMUG1, has
already been described in several kinetoplastid
protozoans, and may rely on the capability of
these organisms to synthesise the unusual modified
base B-D-glucosyl(hydroxymethyl)uracil, called J. J
is synthesised through an intermediary 5-hydroxy-
methyldeoxyuridine44–46 and expression of a
SMUG1-like enzyme in protozoa causes DNA
damage and interferes with J biosynthesis.47

Sequences for good removal do not exhibit a clear
(A/T)UA(A/T) pattern found for the calf thymus
and E. coli enzymes but resemble those obtained
with the human enzyme with lower melting
temperature values and preferentially two A
residues adjacent to the uracil.19,37–39 The effects of
sequence context have been shown to arise from
differences in binding and not catalysis and have
been explained as originated by local differences in
DNA flexibility in the region surrounding uracil.38,48

The very similar catalytic properties of TcUNG
and hUNG2 are reflected in the high degree of
conservation of the residues involved in binding to
DNA and recognition of the uracil among these
proteins (Figure 8). Conservation of the residues
involved in dUMP-interaction and catalysis among
hUNG49,50 and TcUNG likely also explains that
uracil and uracil analogues used in this study
showed IC50 values in the same range as for the
human enzyme,21 being 6-chlorouracil the most
effective inhibitor tested. Likewise, the strong
inhibition by Ugi is in agreement with the con-
servation in TcUNG of residues demonstrated to be
involved in Ugi-binding to other UDGs22,51–58

(Figure 9). An oligonucleotide containing 2 0-
fluoro-uridine (2-F-U) was also tested for inhibition
of the T. cruzi enzyme. This approach was proven to
be useful for specific inhibition of the herpex
simplex virus UDG over the human UNG.40

Remarkably, IC50 values for inhibition of TcUNG
with double and single-stranded oligonucleotides
were even higher than those for hUNG2 showing
possible differences between rates for removal of
uracil from the oligonucleotide sequence or specific
effects of the 2-F-U among both enzymes.

A pronounced difference in inhibition between
TcUNG and hUNG2 was observed in the presence
of AP-sites. We have demonstrated that the catalytic
domain of hUNG is inhibited by AP-sites in the
micromolar range,49 whereas the presence of
mitochondrial (hUNG1) or nuclear (hUNG2)
N-terminal domains obviates inhibition by AP-
sites.25,41 The presence of an N-terminal pre-
sequence in TcUNG, however, still renders the
enzyme susceptible to inhibition by double-
stranded AP-containing oligonucleotides. This is
also in agreement with the observed stimulation of
TcUNG activity in the presence of AP endonuclease
from Leishmania major6 and likely contribute to the
preference of TcUNG for ssDNA substrate. Further-
more, the AP-site responsiveness supports the
differences in Mg2C-responsiveness, in that the
N-terminal sequences of TcUNG and hUNG2 confer
different functional properties to the two proteins.
Whether TcUNG is responsible for both nuclear

and mithochondrial uracil repair in the parasite
remains to be determined. A single band detected in
Western analysis of T. cruzi cell-free extracts indi-
cates the presence of only one TcUNG species,
although two or more closely migrating species
could not be ruled out. The N-terminal presequence
of TcUNG contains motifs in agreement with both
nuclear and mitochondrial targeting, and based on
known mitochondrial targeting sequences in other
early branching eukaryotes, a potential cleavage
site for mitochondrial localisation is located at the
N-terminal QRT/LL6 (Figure 8). Thus, proteolytic
cleavage could yield a mitochondrial form lacking
only five N-terminal residues compared to the full-
length protein. Interestingly, this putative cleavage
site is an integral part of a sequence highly similar
to a conserved PCNA-binding motif in other
eukaryotes (Figure 9).59 The PCNA sliding clamp
can mediate the interaction of proteins with DNA.
One of the proteins known to interact with PCNA is
the hUNG2 enzyme. This interaction has been
described in post-replicative long-patch BER.60 A
PCNA homologue has been predicted in T. cruzi
(TIGR, T. cruzi Genome Project,†), and such
homologues have also been described in other
protozoa like Leishmania61 and Plasmodium. In
Plasmodium, BER seems to occur predominantly as
a PCNA-dependent, long-patch BER pathway62

and the absence of a short-patch BER pathway
may provide opportunities to develop selective
chemotherapeutic strategies for damaging the
parasites in vivo. In T. cruzi, despite the putative
presence of PCNA and a PCNA bindingmotif in the
TcUNG sequence and that the polymerase involved
follows a pol d-like pattern of inhibition, BER
apparently proceeds via short-patch BER only. The
absence of a polymerase b role in short-patch BER in
these parasites constitutes a unique feature in
opposition to the well-documented role of this
enzyme as part of short-patch BER in vertebrates
and other organisms. In addition, Ugi inhibits

http://www.who.int/ctd/chagas/burdens.htm


Figure 8. TcUNG is a family-1 uracil-DNA glycosylase. Comparison of the entire amino acid sequences of TcUNG and
the family-1 UDGs from Homo sapiens, E. coli and herpes simplex virus type-1 (HSV-1). Amino acid residues involved in
Ugi binding are depicted in red. Amino acid residues involved in uracil catalysis are depicted in yellow. Amino acid
residues highlighted in orange are involved in both processes.
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completely BER in agreement with the results
obtained using oligonucleotides and indicates that
TcUNG is the main enzyme involved in BER of
uracil in DNA. Since TcUNG appears to be
responsible for at least 99% of the total UDG
activity, it represents a potential target for inhibition
of BER. The nearly complete inhibition of endo-
genous UDG-activity by Ugi could furthermore be
exploited to assess the importance of uracil repair
for the genome stability and survival of T. cruzi
parasites by generation of functional T. cruzi knock-
out cells. A similar approach was used to generate
functional Plasmodium UNG knockouts by over-
expressing Ugi.62

In summary, the above results provide a better
insight in themechanisms underlying uracil removal
Figure 9. PCNA binding domain in TcUNG. The
putative N-terminal PCNA-binding motif of TcUNG
aligned with amino acid sequences of verified PCNA-
binding motifs in other eukaryotic proteins. Conserved
motifs for PCNA-binding are in bold.
and uracil base excision repair in T. cruzi. Specific
differences between the parasite and human UNG
enzymes appear to reside mainly in the functional
properties of the N-terminal regulatory domains of
the proteins, and this may be exploited for a better
rational design of specifically targeted inhibitorswith
therapeutic value against Chagas disease.
Materials and Methods

T. cruzi cell-free extracts

T. cruzi parasites were grown in liver infusion tryptose
(LIT) medium supplemented with 10% newborn calf
serum and collected in early exponential phase (4!
107 cells/ml) and late stationary phase (O12!
107 cells/ml). Cell-free extracts for oligonucleotide assays
were obtained by sonication in homogenisation buffer
(20 mM Tris–HCl (pH 7.5), 80 mM NaCl, 1 mM EDTA,
1 mM DTT) containing Completew mini (EDTA-free)
protease inhibitors (Roche). After centrifugation at
20,000g for 30 minutes, supernatants were collected and
either analysed directly or snap-frozen in liquid nitrogen
and stored at K80 8C. Cell-free extracts for BER assays
were prepared essentially as described by Tanaka et al.63

Briefly, the cells were pelleted at 1500g and resuspended
at 2! packed cell volume in buffer containing 10 mM
Tris–HCl, (pH 8.0), 200 mM KCl, 1 mM EDTA, 20% (v/v)
glycerol, 0.25% (v/v) Nonidet P-40, 1 mM dithiothreitol
(DTT), Completew protease inhibitors. The mixture was
incubated at 4 8C for two hours on a rotary shaker and cell
debris precipitated at 25,000g at 4 8C for ten minutes. The
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protein concentration of the supernatant (extract) was
measured using the Bio-Rad protein assay (BSA as
standard) prior to snap freezing in liquid nitrogen and
storage in small aliquots at K80 8C.

Immunological analyses

Cell-free T. cruzi extracts and purified proteins were
subjected to SDS-PAGE and electroblotted to Immobilon
PVDF membranes (Millipore). Primary antibodies were
polyclonal rabbit IgGs against either the catalytic domain
of human UNG (PU101), the N-terminal domain of the
mouse UNG1 (2261), or full-length human SMUG1
(PSM1). Secondary antibody was HRP-conjugated goat
anti rabbit IgG (DAKO). Proteins were visualised by ECL-
western blotting reagents (Amersham Biosciences, UK).
To quantify the contribution of TcUNG to the total UDG-
activity in T. cruzi cell-free extracts, 1.25 mg total protein
was incubated with various amounts of antibodies for 30
minutes on ice prior to the UDG assay as described below.

Bacterial strains, growth media and plasmids

E. coli BL21 (DE3) (Novagen, EMD Biosciences, San
Diego, CA) were employed for expressing the TcUNG
protein, E. coli NR8051 (D(pro-lac), thiK, ara, trp9777) and
NR8052 (D(pro-lac), thiK, ara, trp9777, ung1)64 were used
for mutation rate analyses. Bacterial cultures were grown
in LB-medium with the required antibiotics. The pET
expression system and His-bind resin were from
Novagen. M13 forward primer and USB Sequenase
sequencing kit containing modified T7 DNA polymerase
were fromUnited States Biochemical (Cleveland, OH), T4
polynucleotide kinase was from New England Biolabs
(Beverly, MA). Synthetic oligodeoxyribonucleotides were
from MWG-Biotech AG (Ebersberg, Germany).

Mutator assay

E. coli NR8052 and NR8051 were transformed with the
expression plasmids pET28a and pET28-TcUNG contain-
ing the TcUNG cDNA. To detect the number of rifampicin
resistant bacteria, 200 ml of the appropriate bacterial
culture was mixed with 3 ml top agarose, poured on
LB-plates containing 100 mg/ml rifampicin (Sigma) and
incubated overnight at 37 8C. The colonies were counted
and the number of rifampicin resistant colonies per 108

viable cells was calculated.

Overexpression and purification of TcUNG

The pET-28a expression vector was employed to clone
the coding sequence for the TcUNG gene. E. coli BL21
(DE3) cells carrying the target vector pETTcUNG were
used for overexpression of the recombinant TcUNG
protein carrying an N-terminal 6! His-tag sequence
under conditions previously established.6 Protein was
purified by affinity chromatography with a His-bind
metal chelation resin as described.6

Measurement of uracil-DNA glycosylase activity

Unless otherwise stated, UDG activity wasmeasured in
(referred to as standard conditions) 20 ml of assay mixture
containing (final) 62.5 mM NaCl, 20 mM Tris–HCl
(pH 7.5), 1 mM EDTA, 1 mM DTT, 0.5 mg/ml BSA and
1.8 mM [3H]dUMP:A-containing calf-thymus DNA sub-
strate (specific activity 0.5 mCi/mmol). The mixture was
incubated for ten minutes at 30 8C and the amount of
uracil released was measured as described.19 One unit of
UDG activity was defined as the amount of enzyme
releasing 1 nmol of uracil per min at 30 8C. Proteins were
estimated either by the modified Bradford assay (Bio-
Rad) using BSA as standard or by measuring absorbency
at 280 nm using the following molar extinction coeffi-
cients: TcUNG 3280Z4.3!104, UNGD84 3280Z5.04!104,
Ugi 3280Z0.83!104.
Measurement of Michaelis constants and interaction
with inhibitors

Enzyme kinetic constants and inhibition were
measured in the presence of 0.1–8.5 mM and 1.8 mM
[3H]dUMP-containing calf-thymus DNA substrate
(measured as uracil), respectively, and 7.07 fmol of
TcUNG. Single stranded substrate was prepared by
heating the dsDNA substrate at 100 8C for ten minutes
and then quenching on ice immediately prior to the
assays. Uracil analogues were prepared as 0.1 M stock
solutions in homogenisation buffer and a final pH of 7.5.
IC50 values were calculated using the Enzfitter software
(Biosoft, Cambridge, UK). Catalytic constants were
calculated using Enzpack, version 3.0 (Biosoft) using the
method of Wilkinson. UNG-Ugi interactions were
measured by incubating different amounts of Ugi with
7.07 fmol of either TcUNG or the recombinant catalytic
domain of human UNG (UNGD8419) in 10 ml homo-
genisation buffer for ten minutes prior to the UDG-assays.
To calculate the amount of TcUNG titrated by Ugi, 1.8mm
of substrate was used together with 4 fmol of Ugi and 2-14
fmol of purified TcUNG.
All oligonucleotides analysed for inhibition of TcUNG

were PAGE-purified. A 19 bp duplex oligonucleotide
containing 2 0-fluoro-uridine (2 0-F-U) was prepared by
annealing the following oligonucleotides:
2 0FU141
 5 0-CATAAAGTG20-F-UAAAGCCTGG-3 0
141G
 5 0-CCAGGCTTTGCACTTTATG-3 0
Seventy-five micromolar of the single stranded 2 0FU141
or 50 mM of double stranded 2 0FU141G were used in final
reactions of 20 ml.
Oligonucleotides containing AP-sites were prepared

from the following.
Target strands:
U93
 5 0-TGAAATTGUTATCCGCTCA-3 0
NormC93
 5 0-TGAAATTGCTATCCGCTCA-3 0
Complementary strands:
93G
 5 0-TGAGCGGATAGCAATTTCA-3 0
93A
 5 0-TGAGCGGATAACAATTTCA-3 0
Ten nanomolar of U93 and NormC93 (control) were
incubated with 1 mg of UNGD84 for 30 minutes at 37 8C in
a final volume of 100 ml and the reactions stopped by
heating at 80 8C for 15 minutes This yielded AP93 and
C93, respectively. In separate reactions, equimolar
amounts of the complementary strands were added
prior to heat inactivation. The oligonucleotides were
allowed to anneal by slow cooling to room temperature,
to yield AP93A, AP93G and C93G, respectively.
Substrate specificity analyses

Oligodeoxyribonucleotides of 19 bp, each containing a
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central altered base, were 5 0 labelled using [g-32P]ATP
and T4 polynucleotyde kinase. The following oligo-
nucleotides were used:
Target strands.
U141
 5 0-CATAAAGTGUAAAGCCTGG-3 0
HMU141
 5 0-CATAAAGTGHMUAAAGCCTGG-3 0
3C141
 5 0-CATAAAGTG3CAAAGCCTGG-3 0
oxoG141
 5 0-CATAAAGTGoxoGAAAGCCTGG-3 0
T141
 5 0-CATAAAGTGTAAAGCCTGG-3 0
Complementary strands:
141A
 5 0-CCAGGCTTTACACTTTATG-3 0
141G
 5 0-CCAGGCTTTGCACTTTATG-3 0
Figure 10. Substrate and strategy for BER studies.
(A) As substrate for the BER assay we used double
stranded circular covalently closed pGEM-3Zf(C) with
U/A or U/G in the marked positions 1* and 2*

respectively. The cleavage sites for restriction enzymes
used for mapping of the repair patches are indicated. The
shaded region corresponds to the long-patch. (B) The
quality of the substrate in terms of the amount of
covalently closed circular plasmid DNA (form I) and
nicked circular forms (form II) purified by CsCl/ethidium
bromide equilibrium centrifugation. Purity was assessed
by running 100 ng of DNA on 1% agarose gel with PstI
digested l DNA as marker.
Duplexes were prepared by mixing equimolar amounts
of the appropriate single stranded oligonucleotides
followed by heating for two minutes at 65 8C and slowly
cooling to room temperature. Each labelled substrate was
then mixed with 100! excess of the corresponding
unlabelled substrate, and used in UDG assays at a final
concentration of 2 mM. Release of uracil was visualised by
cleaving the resulting AP-sites with hot piperidine and
subjecting the reaction products to denaturing PAGE.
After drying and phosphorimaging of the gels, uracil
excision was quantified as percent cleaved, labelled
fragments. For analysis of substrate specificity of T. cruzi
cell-free extracts, 1.8 mg of protein was used in the
presence or absence of 4 fmol of Ugi.

Sequence specificity for removal of uracil

Sequence specificity of TcUNG was assayed using
[32P]dUMP-labelled M13-DNA essentially as described.39

Band intensities were quantified after phosphorimaging
of the gels.

DNA substrates for BER assay

Covalently closed circular DNA (cccDNA) substrates
were prepared essentially as described.65 Briefly, 20 mg of
ssDNA (pGEM-3zfC) were annealed to 4.2 mg of a 5 0

phosphorylated 22-mer complementary oligonucleotide
containing a uracil in a specific position (Figure 10).
Synthesis of duplex DNAwas carried out in the presence
of T4 DNA polymerase, T4 DNA ligase, and T4 gene 32
ssDNA-binding protein at 37 8C for two hours. cccDNA
duplex molecules were purified by CsCl gradient
centrifugation.

BER assay

The base excision repair mixtures (50 ml) contained
(final) 40 mM Hepes-KOH (pH 7.8), 70 mM KCl, 5 mM
MgCl2, 0.5 mM DTT, 2 mM ATP, 20 mM dATP, 20 mM
dTTP, 8 mM dCTP, 8 mM dGTP, 4.4 mM phosphocreatine,
2.5 mg creatine kinase, 18 mg bovine serum albumin, 2 mCi
[a-32P]dCTP and [a-32P]dGTP, 50 mg whole cell extract
(measured as protein) and 300 ng cccDNA substrate. The
repair mixtures were incubated at 30 8C for 60 minutes,
stopped by adding (final) 20 mM EDTA and 80 ng/ml
RNase A (37 8C, ten minutes), and further incubated with
(final) 190 ng/ml proteinase K and 0.5% SDS (37 8C, 30
minutes). When indicated, BER assays were performed in
the presence of either Ugi (100 fmol), 10mM (final),
N-ethylmaleimide (Sigma) or 25 mmol (final) ddCTP
(Amersham Biosystems). The repair products were
purified byphenol/chloroform extraction and ethanol/salt
precipitation. DNAwas digested with indicated restriction
enzymes (Figure 1), and analysed by electrophoresis in
denaturing 12% polyacrylamide gels and phosphorima-
ging (Fuji, BAS-1800II) of the dried gels. Digestion of the
U:G substrate with restriction enzymes XbaI/HincII
yielded an eight nucleotide fragment containing label in
the one nucleotide at the site of damage only (position 0).
Digestion with HincII/PstI yielded an eight nucleotide
fragment that could contain label in positionsC1,C3,C4,
C6 andC7 (long-patch repair) when using [a-32P]dCTP
and [a-32P]dGTP as radioactive labels. Digestion with
BamHI/PstI yielded a 22 nucleotide fragment if ends
were ligated, and a 14 nucleotide fragment if the dominant
short-patch product was not ligated. The purity of the
substrate prepared was estimated by agarose gel electro-
phoresis (Figure 1). Only DNA substrate containing >95%
cccDNAwas used in BER assays.
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Hôopital Necker-Enfants Malades, 75015 Paris, France

Received June 25, 2004; Revised and Accepted September 17, 2004

ABSTRACT

Nuclear uracil-DNA glycosylase UNG2 has an
established role in repair of U/A pairs resulting from
misincorporation of dUMP during replication. In anti-
gen-stimulated B-lymphocytes UNG2 removes uracil
from U/G mispairs as part of somatic hypermutation
and class switch recombination processes. Using
antibodies specific for the N-terminal non-catalytic
domain of UNG2, we isolated UNG2-associated repair
complexes (UNG2-ARC) that carry out short-patch
and long-patch base excision repair (BER). These
complexes contain proteins required for both types
of BER, including UNG2, APE1, POLb, POLd, XRCC1,
PCNA and DNA ligase, the latter detected as activity.
Short-patch repair was the predominant mechanism
both in extracts and UNG2-ARC from proliferating and
less BER-proficient growth-arrested cells. Repair of
U/G mispairs and U/A pairs was completely inhibited
by neutralizing UNG-antibodies, but whereas added
recombinant SMUG1 could partially restore repair of
U/G mispairs, it was unable to restore repair of U/A
pairs in UNG2-ARC. Neutralizing antibodies to APE1
and POLb, and depletion of XRCC1 strongly reduced
short-patch BER, and a fraction of long-patch repair
was POLb dependent. In conclusion, UNG2 is present
in preassembled complexes proficient in BER.
Furthermore, UNG2 is the major enzyme initiating
BER of deaminated cytosine (U/G), and possibly the
sole enzyme initiating BER of misincorporated
uracil (U/A).

INTRODUCTION

Uracil in DNA occurs as a result of deamination of cytosine
and incorporation of dUMP during replication. Deamination

of cytosine occurs at a rate of 100–500 per human cell per day,
yielding mutagenic U/G mispairs which, unless repaired,
result in GC to AT transitions upon replication (1). Incorpora-
tion of dUMP during replication results in U/A pairs which are
not miscoding, but which may yield cytotoxic and potentially
mutagenic abasic (AP) sites (2). Uracil in DNA may also affect
transcriptional fidelity (3), as well as binding of transcription
factors (4). A recently identified source of uracil in the genome
is the enzymatic deamination of cytosine to uracil by activa-
tion-induced cytidine deaminase (AID) in the process of
somatic hypermutation and antibody class switch in B-cells
(5). Uracil is recognized by a uracil-DNA glycosylase (UDG)
activity, which cleaves the N-glycosylic bond leaving an AP-
site in DNA. Human cells contain at least four types of UDG;
mitochondrial UNG1 and nuclear UNG2, SMUG1, TDG and
MBD4, which have overlapping substrate specificities (6).
Their specific functions are still unclear. Among these glyco-
sylases, UNG proteins are by far the catalytically most effi-
cient (6,7). UNG1 and nuclear UNG2 are both encoded by the
UNG-gene and have a common catalytic domain, but different
N-terminal sequences required for subcellular sorting (8).
Upon mitochondrial import the preform of UNG1 is processed
to a mature form lacking 29 N-terminal amino acid residues
(9). AP-sites in nuclear DNA are repaired by either single-
nucleotide (short-patch) base excision repair (BER) or via
replacement of several nucleotides (long-patch BER).
Short-patch BER requires an AP endonuclease, POLb and
DNA ligase III or possibly also DNA ligase I, while long-
patch BER depends on flap endonuclease I (FEN-1), and may
require proliferating cell nuclear antigen (PCNA), DNA poly-
merases d/e and DNA ligase I. POLb has also been suggested
to be required for long-patch repair either for insertion of the
first nucleotide (10) or for strand displacement (11). An APE1-
independent short-patch BER pathway has recently been sug-
gested. Thus, the bifunctional DNA glycosylases NEIL1 and
NEIL2 carry out b, d-elimination after excision of damaged
bases generating a one-nucleotide gap flanked by 30-phosphate
and 50-phosphate termini. The 30-phosphate terminus may
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subsequently be converted to a 30-OH terminus by polynucleo-
tide kinase (PNK), thus setting up for short-patch repair (12).

In DNA repair and related processes, there is evidence for
the existence of functional multi-protein complexes. Thus,
multi-protein complexes involved in eukaryote transcription
and replication have been reported (13,14). A group of pro-
teins that associates with DNA repair protein BRCA1 has been
identified and named BRCA1-associated genome surveillance
complex (BASC). It includes DNA repair proteins MSH2,
MSH6, MLH1, ATM, BLM and the RAD50–MRE11–
NBS1 protein complex, PCNA and RF-C (15). Furthermore,
a multi-protein complex that connects Fanconi anemia and
Bloom syndrome has recently been reported (16). Many inter-
actions between the proteins in the initial step of nucleotide
excision repair (NER) have also been reported and the exist-
ence of a multiprotein repairosome complex was suggested
(17), although a later study did not find evidence in support of
such a complex (18). Nevertheless, it is evident that many
interactions do occur and it may seem likely that the mechan-
ism of NER at least in part relies on formation of complexes
(19). There is also evidence for complex formation in BER.
Thus, a 180 kDa protein complex that repairs uracil-containing
DNA was isolated from bovine testis using DNA polymerase
b-affinity chromatography (20). Direct molecular interactions
between UNG2 and other BER factors, e.g. RPA (21) and
PCNA (22) have also been reported. However, PCNA interacts
with multiple partners, e.g. POLd, POLe, RF-C, DNA ligase I,
FEN-1, POLb, APE1 and XRCC1, all of which are involved in
long-patch BER, and all, except POLb and XRCC1, in DNA
replication (23–25). Most likely PCNA engages in different
complexes, but it is also possible that the three binding sites in
this homotrimeric protein bind different proteins. POLb also
interacts directly with ligase I (26), XRCC1 (27) and APE1
(28). In addition, XRCC1 interacts with DNA ligase III (27,29)
with poly(ADP-ribose) polymerase (PARP) through one of its
BRCT-modules (30), PNK (31), APE1 (32) and PCNA (24)
acting as a scaffold protein in BER and single-strand break
repair (33).

Given the plethora of interactions between BER proteins, it
seemed likely that it would be possible to isolate a complex
for nuclear BER of uracil-containing DNA, using a UNG2-
specific antibody or other BER-antibodies. The present work
demonstrates the presence and properties of an UNG2-
containing protein complex proficient in complete repair of
uracil-containing DNA.

MATERIALS AND METHODS

Synthetic oligonucleotides were from MedProbe (Oslo,
Norway). [a-32P]dTTP and [a-32P]dCTP (3000 Ci/mmol)
were from Amersham Biosciences. Primary antibodies against
POLd (mouse monoclonal) were from Transduction Laborat-
ories, Lexington, KY, antibodies against PCNA (ab29, PC10),
POLb (mouse monoclonal) and XRCC1 (rabbit polyclonal)
were from Abcam Ltd, UK, and antibodies against APE1
(rabbit polyclonal) from Novus Biologicals Inc., Littleton,
CO, USA. Rabbit antiserum to APE2 was kindly provided
by Magnar Bjørås (Centre of Molecular Biology and Depart-
ment of Molecular Biology, Oslo). Human recombinant POLb
and neutralizing antibodies to POLb were generous gifts from

Dr S. H. Wilson (Laboratory of Structural Biology, NIH).
Paramagnetic Protein A-beads were from Dynal, Oslo, Norway.
A neutralizing polyclonal rabbit anti-hSMUG1 IgG (PSM1)
was prepared as described previously (7). Silver-staining of
protein gels was carried out using the ProteosilverTM Plus,
Silver Stain Kit (Sigma-Aldrich Co.).

DNA substrates

Covalently closed circular DNA (cccDNA) substrates were
prepared essentially as described previously (34). Briefly,
20 mg of ssDNA [pGEM-3zf(+)] were annealed to 4.2 mg
of a 50 phosphorylated 22mer complementary oligonucleotide
containing either a uracil or normal base (molar ratio 1:30)
(Figure 1A). Synthesis of duplex DNA was carried out in the
presence of T4 DNA polymerase, T4 DNA ligase and T4 gene
32 ssDNA-binding protein at 37�C for 2 h. cccDNA duplex
molecules were purified by CsCl gradient centrifugation. The
purity of the substrate prepared was estimated by agarose gel
electrophoresis (Figure 1B). Only DNA substrate containing
>95% cccDNA was used in BER assays. By site-directed
mutagenesis of a pGEM-3zf(+) Phagemide, we prepared a
G to A mutation to be able to prepare substrates containing
U/A and U/G in the same sequence context. For AP-site sub-
strate, uracil-containing cccDNA was incubated with purified
catalytic domain of UNG (35) just before use. Complete
removal of uracil was confirmed by further incubation of an
aliquot of this DNA with purified APE1 protein resulting in
complete conversion of form I (supercoiled closed circular
DNA) to form II (nicked circular DNA) detected by agarose
gel electrophoresis (data not shown). For generation of AP-
nick substrate DNA, uracil-containing plasmid was incubated
with purified catalytic domain of UNG and purified APE1
protein.

UNG antibodies

Neutralizing anti-UNG-antibody PU101 against the catalytic
domain has been described previously (35). Polyclonal anti-
UNG2 PU1 was prepared following the same procedure.
PU1sub antibody against the N-terminal region of the
human UNG2 was prepared by passing PU1 IgG over a matrix
containing the recombinant C-terminal catalytic UNG-domain
bound to NHS-activated Sepharose (Amersham Biosciences).
The IgGs in the flow-through proved to be specific for the
UNG2 N-terminal regulatory domain as judged from western
analysis (Figure 1C and D), and did not inhibit UNG enzyme
activity.

HeLa Tet-On cells (HTO) overexpressing
UNG2 (HTO-UNG2)

UNG2 cDNA was cloned into the EcoRI/XbaI sites of vector
pTRE and the construct (pTRE-UNG2) co-transfected with
pTK-Hyg into HTO cells. Hygromycin resistant clones
were selected and subcloned by dilution. The subclone
that repeatedly gave the best expression after induction,
HTO-UNG2-45, was used in the present study.

Culture of cell lines and preparation of whole
cell extracts

HaCaT, HeLa S3 and HTO-UNG2 cells were cultured in
DMEM with 10% fetal calf serum (FCS), 0.03% glutamine
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and 0.1 mg/ml gentamicin at 5% CO2. Human myeloma cell
line JJN-3 was cultured under similar conditions but in RPMI
1640 medium. Peripheral blood lymphocytes were obtained
by density gradient centrifugation of buffy coat over
LymphoprepTM (Nycomed, Norway). The UNG�/� lympho-
blastoid cell line was from patient 2 (36) and carried a Phe251-
Ser homozygous mutation. Cells were grown in RPMI 1640,
with 0.03% glutamine, 10% heat-inactivated FCS, and 100 U/
ml penicillin and 100 mg/ml streptomycin at 5% CO2.

Whole cell extracts were prepared essentially as described
by Tanaka et al. (37). Briefly, cells were pelleted at 215 g and
resuspended at 1· packed cell volume in buffer I [10 mM Tris–
HCl (pH 8.0), 200 mM KCl] and 1· packed cell volume
of buffer II [10 mM Tris–HCl (pH 8.0), 200 mM KCl,
2 mM EDTA, 40% (v/v) glycerol, 0.5% NP-40, 2 mM
DTT, Complete1 protease inhibitor]. The mixture was rocked
at 4�C for 2 h and cell debris was pelleted at 22 000 g at 4�C for
10 min. The supernatant was recovered and protein concen-
tration measured using the Bio-Rad protein assay. Extracts
were snap frozen in liquid nitrogen and stored in small aliquots
at �80�C.

Preparation of BER complex UNG2-ARC

PU1sub IgGs were covalently linked to magnetic Dynabeads1

Protein A using dimethyl pimelimidate dihydrochloride
(DMP) according to instructions from the manufacturer
(Dynal, Norway) with minor modifications: 400 mg protein
from whole HeLa cell extract was mixed with 5 ml of the
antibody-coated beads or otherwise indicated, and kept in
suspension under constant and gentle rocking for 4 h at
4�C. The beads were washed three times with 10 mM Tris–
HCl, pH 7.5, transferred to a new tube, washed once more in

the same buffer and resuspended in appropriate buffer for
further use. For control experiments, we prepared beads linked
to the same amount of pre-immune IgG from the same
rabbit (pre-immune-IgG), and non-immunized rabbit serum
(non-immune-IgG).

BER assay

The BER mixtures (50 ml) contained (final) 40 mM HEPES–
KOH (pH 7.8), 70 mM KCl, 5 mM MgCl2, 0.5 mM DTT, 2 mM
ATP, 20 mM dATP, 20 mM dGTP, 8 mM dCTP or dTTP
depending on the isotope used, 4.4 mM phosphocreatine,
2.5 mg creatine kinase, 18 mg BSA, 2mCi [a-32P]dCTP or
[a-32P]dTTP, 50 mg whole cell extract (measured as protein)
or UNG2-ARC (5 ml beads) or otherwise immunoprecipitated
material, and 300 ng cccDNA substrate if not otherwise indi-
cated. For BER assay experiments, the beads were resus-
pended in 10 mM Tris–HCl, pH 8.0 containing Complete1

protease inhibitor and 7% glycerol (final). The repair mixtures
were incubated at 30�C for the indicated times (usually 60
min), and stopped by adding (final) 20 mM EDTA and 80 ng/
ml RNase A (37�C, 10 min), and further incubated with (final)
190 ng/ml proteinase K and 0.5% SDS (37�C, 30 min). The
repair products were purified by phenol/chloroform extraction
and ethanol/salt precipitation. DNA was digested with indi-
cated restriction enzymes (Figure 1), and analyzed by electro-
phoresis in 12% denaturing polyacrylamide gels and
phosphorimaging (Fuji, BAS-1800II) of the dried gels.

Western analysis

Proteins were separated on pre-cast 10% denaturing NuPAGE
gels (InvitrogenTM, Life Technologies) and transferred to
PVDF membranes (ImmobilonTM, Millipore). Primary rabbit

Figure 1. Substrate and strategy for BER studies. (A) As substrate for the BER assay we used double-stranded covalently closed circular pGEM-3Zf(+) with U/G, U/
A, AP-site/G or nicked AP-site/A in the same position. The cleavage sites for restriction enzymes used for mapping of the repair patches are indicated. The shaded
region corresponds to the repaired patch. (B) The quality of the substrate in terms of the amount of covalently closed circular plasmid DNA (form I) and nicked
circular forms (form II) purified by CsCl/ethidium bromide equilibrium centrifugation. Purity was assessed by running 100 ng of DNA on 1% agarose gel with PstI
digested l DNA as marker. (C) Specificity of anti-UNG-antibodies PU101 and PU1sub. Recombinant UNG2, the mitochondrial form UNG1D29 and the catalytic
UNG-domain were separated by polyacrylamide gel electrophoresis and subjected to western analysis using either PU101 or PU1sub, as indicated. (D) Structure of
the preform of UNG1, UNG1D29, UNG2 and the catalytic domain UNGD84.
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or mouse antibodies were diluted in 5% fat-free dry milk in
phosphate-buffered saline (PBS) containing 0.1% Tween1-
20. Membranes were incubated with the primary antibody
for 1–2 h, followed by incubation for 1 h with either
peroxidase-labeled goat anti-mouse IgG or peroxidase-labeled
swine anti-rabbit IgG (DAKO, Denmark). Membranes
were treated with ECL chemiluminescence reagent
(ECLTM, Amersham Biosciences) and the bands visualized
by exposing the membranes to HyperfilmTM, ECLTM

(Amersham Biosciences).

RESULTS

The primary objective of this study was to isolate
UNG2-containing complexes, if present, by immunoprecipita-
tion, and to examine their ability to carry out complete repair
of uracil-containing DNA. For this purpose, we used antibo-
dies attached to magnetic beads as bait. The experimental
strategy for the repair studies is outlined in Figure 1. As
DNA substrate for BER reactions, we used cccDNA contain-
ing a single uracil, an AP-site, or a nicked AP-site at a defined
position, either opposite of A or G (38,39). The BER type
(short-patch or long-patch) was examined after recovery of
DNA. Digestion of this DNA substrate with the restriction
enzymes XbaI/HincII yields an 8 nt fragment that will only
contain label in the one nucleotide at the site of damage (posi-
tion 0) (short-patch BER). Digestion with HincII/PstI yields an
8 nt fragment that may contain label in positions +3, +4 and +7
(long-patch repair) when using [a-32P]dCTP as radioactive
label. Note that while the HincII/PstI cleavage detects long-
patch repair exclusively (dCMP incorporated in positions +3
+4 and +7), XbaI/HincII cleavage detects short-patch predo-
minantly, but also the first nucleotide inserted in long-patch
repair. The relative contribution of short-patch and long-patch
repair is therefore not accurately defined by the assay. Diges-
tion with BamHI/PstI yields a fragment of 22 nt if ends are
ligated, and a fragment of 14 nt if the dominant short-patch
product is not ligated.

Isolation of functional UNG2-ARC prepared
from HeLa extracts

Using PU1sub antibodies attached to paramagnetic beads
(PU1sub-beads), we succeeded in isolating complexes profi-
cient in short-patch and long-patch repair of U/G substrate,
although short-patch repair was most prominent (Figure 2A).
The weaker band of high molecular weight DNA (HMW,
theoretically 3191 nt) in Figure 2A represents unspecific incor-
poration in the rest of the plasmid. The increased strength of
the corresponding HMW band in lane 3 is the result of the
contribution of short-patch repair in this band, as expected
from the HincII/PstI cleavage pattern. As control, we used
a substrate with C/G in the same position as U/G. No repair
incorporation in the 8 nt fragments was observed with the C/G
substrate, and the general HMW background was low, thus the
incorporation is damage specific (lanes 2, 4 and 6). We did not
succeed in preparing BER-proficient complexes using the
other UNG-specific antibodies described in Materials and
Methods, or the APE1-specific antibodies (data not shown).

We then examined BER carried out by UNG2-ARC as
function of time and amount of UNG2-ARC present in the

incubation. We found an essentially linear dependency of BER
with time, and also near-linear dependency on input of beads,
except at the highest input of UNG2-ARC. Figure 2B shows
results from single experiments, and Figure 2C shows
the results calculated from four independent experiments.
These results demonstrate that the substrate concentration

Figure 2. BER carried out by UNG2-ARC. UNG2-ARC was prepared from
whole HeLa cell extract and used in BER assays. (A) BER was carried out using
U/G substrate or C/G as control and [a-32P]dCTP as radioactive isotope. After
incubation, DNA was purified and digested with restriction enzymes to release
short- (SP-BER) and long-patch (LP-BER) repair products as well as total
repair products (ligated/unligated products, BamHI/PstI). HMW, high
molecular weight band. (B) BER as function of time and input of UNG2-
ARC. The indicated amount of beads carrying UNG2-ARC was incubated
for specified time periods in BER assay. Short-patch BER products were
then analyzed and quantified. (B) Results from a single experiment. (C)
Results calculated from four independent experiments with error bars
showing SD. Gels were analyzed by phosphorimaging.
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used is not a limiting factor and that the BER capacity of the
complexes is relatively stable under the incubation conditions
used. We found that IgG-binding approached saturation when
using 400 mg protein extract per 5 ml beads (data not shown),
and therefore used these relative amounts of beads and extract
routinely for preparation of UNG2-ARC. We also routinely
used UNG2-ARC complexes remaining attached to the beads.

We wanted to analyze the proteins captured by PU1sub. For
this purpose, we resolved immunoprecipitates by SDS–PAGE
and silver-stained the gel (Figure 3A). The lower panel shows
BER capacity of the immunoprecipitates. Western analysis
demonstrated that PU1sub specifically immunoprecipitated
UNG2, POLd, PCNA and XRCC1 (Figure 3B). We estimated
that <0.05% of the total protein in the extracts were attached to
the beads (data not shown). In contrast, total UDG activity was
clearly reduced by PU1sub from the same extract (Figure 3C,
upper panel). The UDG assay measures activities of UNG1
and UNG2, and the two forms are essentially equally active.
By western analysis, we found that approximately 50% of total
UNG2, but no appreciable UNG1, were captured with the
standard input of PU1sub beads (1·). When bead input was
doubled (2·), over 80% of total UNG2 were captured. There-
fore, the decreased UDG activity is solely due to extraction of
UNG2 by the PU1sub beads (Figure 3C, lower panel). The
broad UNG2 band in western analysis (lower panel) is due to
different phosphorylated forms of the protein. We also demon-
strated that UDG activity is associated with these PU1sub
beads (Figure 3D). The weak bands representing repair pro-
ducts seen when using control IgGs (Figure 3A, lower panel)
are likely to result from unspecific binding of UNG protein

(Figure 3D), and other repair proteins like POLd (Figure 3B)
to these IgGs. Control experiments demonstrated that essen-
tially equal amounts of UNG2-specific and control IgG were
equally efficiently coupled to beads (data not shown). These
experiments demonstrate that PU1sub-beads partially deplete
extract of UNG2 and associated BER proteins, without
measurable reduction in total protein in the extracts.
Identification of specific BER factors in the complex by silver
staining is complicated by the presence of many proteins in the
immunoprecipitate, and the insufficient sensitivity of silver
staining relative to the amount extract used in our experiments.

Functional UNG2-ARC isolated using UNG2-specific
antibodies contains proteins required for BER of
uracil in DNA

Using whole cell extracts of HeLa cells and PU1sub-beads, we
isolated UNG2-ARC that repaired U/G substrate, but such a
complex could not be prepared using IgGs from pre-immune
and non-immunized animals. Neither was repair of AP/G or
nicked AP/G substrates observed when using unspecific IgGs
for preparing complexes (Figure 4A). This demonstrates the
requirement for specific antibodies and supports the view that
UNG2-ARC is captured via UNG2. Furthermore, DNase I
treatment of the extract did not reduce the yield of functional
UNG2-ARC. Thus, the components of UNG2-ARC are not
co-precipitated via common DNA molecules (Figure 4A).

In general, results from western analysis supported the
functional assays. We detected UNG2, APE1, PCNA,
POLd, POLb and XRCC1 in the UNG2-ARC (Figure 4B).

Figure 3. Characterization of UNG2-ARC. (A) UNG2-ARC was immunoprecipitated using PU1sub antibodies and non-immunized IgGs as control. Proteins were
resolved on a 12% SDS–polyacrylamide gel and silver-stained (upper panel). The lower panel shows BER capacity of the corresponding immunoprecipitates using U/
A- and AP/A substrates. (B) Western analysis of UNG2, PCNA, POLd and XRCC1 in immunoprecipitates. (C) Reduction of UDG-activity in cell extracts by
immunoprecipitation. ‘Pre-IP’ indicates UDG-activity prior to immunoprecipitation. The lower panel displays the corresponding western analysis of UNG proteins
in cell extracts pre-IP and post-IP. (D) UDG activity of PU1sub- and non-immunized IgG beads. 1·, 7.5 ml input of beads; 2·, 15 ml input of beads.
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We did not detect DNA ligase I possibly because of the proper-
ties of the antibody, since we only detected a weak band
corresponding to DNA ligase I in whole cell extract using
the same antibody. We did not investigate the possible pre-
sence of DNA ligase III. We also did not detect APE2,
SMUG1, POLg , POLi, TDG or UNG1 in the UNG2-ARC,
although they were all detectable in whole cell extracts (data
not shown). The different intensities of the bands do not
necessarily reflect the molar ratio of the proteins in the com-
plex, but may merely indicate different properties of the anti-
bodies used for western analysis. As control, we carried out
similar experiments using pre-immune IgG linked to beads.
No UNG2 was precipitated non-specifically (Figure 3B). The
absence of detectable PCNA in the control suggests that

PCNA is captured via interaction with immobilized UNG2,
with which it is known to interact directly (22). Precipitation of
POLd was strongly reduced, but not completely absent with
pre-immune IgG (Figure 4B). Pre-treatment of the extract with
DNase I did not affect the capture of UNG2, PCNA or POLd
significantly, in agreement with the functional BER assays
(Figure 4A).

We also found that proficient UNG2-ARC could not be
prepared from an UNG�/� human lymphoblastoid cell line
(36), strongly supporting the view that the BER complex is
attached via UNG2 (Figure 5A). As an additional control, we
successfully prepared proficient UNG2-ARC from peripheral
blood lymphocytes, as well as cultured myeloma cells (data
not shown). Using whole cell extract from hUNG�/� cells
instead of UNG2-ARC, we detected repair of all three
DNA lesions, indicating UNG2-independent BER in the
extracts (Figure 5A). In agreement with this result, we
could not detect any of the BER factors attached to beads
coated with PU1sub when we attempted to isolate UNG2-
ARC from UNG�/� lymphoblastoid cells (Figure 5B).
Furthermore, UNG2 was not detectable in whole cell extracts
from these cells, while PCNA, POLd, POLb and XRCC1 were
all identified (Figure 5B).

These experiments demonstrate that isolation of functional
UNG2-ARC requires interaction between UNG2 and UNG2-
specific antibodies and that complex formation is dependent
on protein–protein interactions rather than protein–DNA
interactions.

Figure 5. BER and western analysis with UNG�/� human lymphoblastoid cells.
(A) Whole cell extract was prepared from UNG�/� human lymphoblastoid
cells. Whole cell extract (50 mg protein) was used in BER assays with
[a-32P]dCTP and substrates as indicated (lanes 4–6), or ‘UNG2-ARC’ was
attempted to be prepared from whole cell extracts using PU1sub antibody,
and used for BER assays with substrates as indicated (lanes 1–3). (B)
Protein in whole cell extract (lane 2) or from immunoprecipitated ‘UNG2-
ARC’ (IP) attempted to be prepared from whole cell extract using PU1sub
(lane 1) were subjected to western blot analysis as in Figure 4B.

Figure 4. Specificity in isolation of functional UNG2-ARC and western
analysis of proteins present. (A) UNG2-ARC was prepared/attempted to be
prepared using PU1sub coated beads, beads coated with non-immune IgG, or
pre-immune IgG, which were all incubated with 400 mg HeLa whole cell
extracts. The beads were incubated with BER assay mixture containing
[a-32P]dCTP, and U/G, AP/G or AP-nick/G substrate, as indicated. In lane
2, extract was pretreated with 3 U DNase I at 30�C for 30 min prior to UNG2-
ARC isolation. Purified DNA was digested for short-patch analysis. (B)
Proteins from beads prepared as in (A) were mixed with denaturing loading
buffer, heated at 70�C, separated by electrophoresis, blotted and visualized as
described in Materials and Methods.
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BER activity for uracil-containing DNA in
UNG2-ARC and whole cell extracts has
preference for U/G over U/A

To further examine the BER process in UNG2-ARC, we used
a cccDNA substrate containing uracil opposite adenine (U/A)
at the same position as in the U/G substrate. This eliminates
possible differences related to sequence dependency of the
repair process. As demonstrated in Figure 6, we consistently
found that repair of U/G was better than repair of U/A, and
was not a result of different quality of the substrate as such.
Repair of U/A (upper panel) and U/G (lower panel) by
UNG2-ARC was abolished by PU101, while a neutralizing
anti-SMUG1 antibody (7) had no detectable inhibitory effect.
This is consistent with our failure to detect SMUG1 in the
complexes. Furthermore, in the presence of PU101, repair of
U/A by whole cell extract after 60 min incubation was essen-
tially undetectable (Figure 6, upper panel), and repair of U/G
after 10 min was approximately 80% reduced (Figure 6,
lower panel). This suggests that UNG2 is the major glyco-
sylase responsible for repair of uracil-containing DNA in

U/A pairs and U/G mispairs. However, whole cell extracts
carried out a delayed, but significant repair of U/G after
prolonged incubation in the presence of PU101 antibodies
(Figure 6, lower panel). In whole cell extracts anti-SMUG1
antibodies alone had no significant effect on BER (Figure 5,
lane 6), but in the presence of PU101, a small but further
increase in inhibition by anti-SMUG1 antibodies was
observed, when compared with PU101 alone (Figure 6,
lane 8). These results indicate that UNG2 is the main, if
not sole, enzyme for repair of U incorporated opposite of
A, and the major enzyme for repair of U/G mispairs resulting
from deamination of C. Furthermore, SMUG1 may have a
back-up function, but is not the primary enzyme responsible
for repair of U/G mispairs in this in vitro system. The failure
of PU101 antibodies and anti-SMUG1 antibodies to comple-
tely inhibit BER when added together may indicate that the
two other uracil-DNA glycosylases known, TDG and MBD4,
as well as the newly identified DNA glycosylases NEIL1 and
NEIL2 (40) may also be considered as potential candidates
for the ‘delayed’ U/G repair. Although TDG has very low
turnover of substrate alone, the rate is enhanced by APE1
(41), which is certainly present and active both in whole cell
extract and in the complexes. Although unlikely because of
the small patch size, we could not formally exclude DNA
repair mechanisms other than BER in the whole cell extracts;
e.g. nucleotide excision repair (NER) or mismatch repair
(MMR). However, MMR repair was excluded as a significant
source of repair in this system by using nuclear extracts
prepared from MMR-deficient HCT-116 colorectal cancer
cells (ATCC CCL-247) in the presence of both neutralizing
antibodies, which again did not abolish repair completely
(data not shown). Finally, these results indicate that
UNG2 is the only uracil-DNA glycosylase present in
UNG2-ARC.

Inhibition of UNG2 does not impair subsequent
BER steps and recombinant SMUG1 partially
restores BER of U/G by UNG2-ARC, but
not U/A repair

To test whether inhibition of UNG2 affects subsequent BER
steps carried out by UNG2-ARC, we assayed repair of U/G,
AP/G and nicked-AP/G DNA substrates in the presence of
neutralizing PU101 antibody. The antibodies completely
inhibited repair of U/G, whereas AP/G and nicked AP/G
substrates were effectively repaired (Figure 7A). Addition
of 2 ng of recombinant SMUG1 enzyme (7) to PU101-inhib-
ited UNG2-ARC, partially restored BER capacity for U/G
and this restoration was inhibited by neutralizing SMUG1
antibodies, as expected. Next, we tested repair of U/A sub-
strate under similar assay conditions. Neutralizing PU101-
antibodies also inhibited repair of U/A completely, while
repair of AP/A and nicked AP/A was not affected
(Figure 7B). Contrary to experiments with U/G substrate,
2 ng recombinant SMUG1 enzyme did not restore BER of
U/A. SMUG1 was previously shown to remove U from U/A
pairs, although kcat/Km is 3.2-fold higher for U/G than for
U/A in uracil release assays (7). These findings may in part
explain the inability of SMUG1 to complement UNG2 in
repair of U/A pairs.

Figure 6. Roles of UNG2 and SMUG1 in short-patch repair of U/A pairs and U/
G mispairs. UNG2-ARC or whole cell extract of HeLa cells was incubated with
BER assay mixture for 60 min with [a-32P]dTTP and U/A (upper panel), or with
[a-32P]dCTP and U/G substrate (lower panel) in the absence or presence of anti-
UNG antibody (PU101) or anti-SMUG1antibody (PSM1) or both, as indicated.
The diagram represents results from four independent experiments where bars
indicate SD.
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APE1 is indispensable for BER activity and
immunodepletion of XRCC1 reduces BER capacity of
UNG2-ARC and the yield of ligated repair product

Mammalian cells have two AP-endonucleases, APE1 and
APE2, that share homology with Escherichia coli exonuclease
III (ExoIII). To test the relative contribution of these to the AP-
endonuclease activity of UNG2-ARC, we conducted BER
assays in the absence or presence of polyclonal anti-APE1
antibodies. We found that APE1 antibodies completely inhib-
ited BER activity of UNG2-ARC (Figure 8A), indicating that
APE1 is the only functional AP-endonuclease in UNG2-ARC.
Further, we tested the functional role of XRCC1 in UNG2-
ARC, and found that polyclonal antibodies to XRCC1 had no
direct inhibitory effect in BER (Figure 8A). However,
immunodepletion of XRCC1 resulted in markedly reduced

BER, and a significant fraction of repaired products remained
unligated after XRCC1 depletion (Figure 8B). These results
are consistent with the presumed role of XRCC1 as scaffolding
protein that interacts with other BER proteins, including
POLb, DNA ligase III, and the fact that XRCC1 itself has
no known catalytic activity.

UNG2-ARC isolated from growth-arrested HaCaT cells
display lower BER activity than UNG2-ARC isolated
from exponentially growing cells

To examine BER activity of UNG2-ARC in relation to
proliferative status of the cells, we isolated complexes from
cell extracts prepared from exponentially growing cells (EC)
and growth-arrested (AC) HaCaT cells. The cell cycle status of
the cells was determined by FACS analysis (Figure 9A). Using
the BER assay, we found a markedly lower BER activity
(short- and long-patch) after 15 min in UNG2-ARC isolated
from growth-arrested HaCaT cells compared with those pre-
pared from exponentially growing cells (Figure 9B and C,
lanes1 and 2, and diagram E). However, after 60 min incuba-
tion the BER process had reached equal levels of short-patch
repair in the complexes (Figure 9B, lane 4 and 5, and diagram
E), whereas long-patch repair of UNG2-ARC isolated from
arrested cells was only 30% of that from growing cells
(Figure 9C, lane5 and 6, and diagram E). This is consistent
with the roles of several DNA replication factors in long-patch

Figure 8. Roles of APE1 and XRCC1 in BER. (A) UNG2-ARC was incubated
with BER assay mixture in the absence or presence of APE1 and XRCC1
polyclonal antibodies as indicated. (B) Whole HeLa extracts were incubated
with XRCC1-antibody linked beads (lanes 2 and 4) or non-immunized serum
IgG-linked beads (lanes 1 and 3) for 4 h at 4�C. The beads were removed and the
extracts were further incubated with PU1sub-linked beads. The UNG2-ARC
thus captured was subsequently used in BER assay.

Figure 7. Lack of functional coupling between the glycosylase step and the
subsequent steps in short-patch repair. (A) UNG2-ARC was incubated with
BER assay mixture with [a-32P]dCTP and U/G, AP/G or AP-nick/G as
indicated, in the absence or presence of anti-UNG antibody (PU101) and/or
anti-SMUG1 antibody (PSM1), and absence or presence of 2 ng recombinant
SMUG1 (rec. SMUG1). (B) UNG2-ARC was incubated as in (A), but with
[a-32P]dTTP and U/A, AP/A or AP-nick/A substrate.
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BER, implying close association of these DNA metabolizing
systems. Furthermore, using the BER assay, we found similar
patterns of repair in the corresponding whole cell extracts (data
not shown). Addition of neutralizing anti-POLb antibodies to
the BER mixture resulted in stronger inhibition of repair activ-
ity of UNG2-ARC prepared from the growth-arrested cells
compared with that from growing cells (Figure 9B and C,
compare lanes 4 and 5 with lanes 7 and 8, respectively, and
diagram E). This indicates that POLb is the predominant repair
DNA polymerase in the UNG2-ARC isolated from arrested
cells. Adding 3-fold higher amounts of neutralizing anti-POLb
antibodies to the repair reaction had no additional inhibitory
effects (data not shown). In a previous study, inhibition of
POLb was found to reduce long-patch by nearly 75% in
cell extract, indicating involvement of POLb in this pathway
(42). This agrees well with our results demonstrating reduction
of long-patch BER when POLb activity was inhibited by
neutralizing antibodies (Figure 9C, lanes 7 and 8). This
indicates that either a fraction of long-patch repair in
UNG2-ARC is initiated by POLb (10,43) or that POLb
may synthesize repair patches longer than one nucleotide (11).

The capacity of BER activity of cell extracts and
UNG2-ARC is rate-limited not solely by the
cellular content of UNG2

Base excision repair proteins has been suggested to be
sequentially recruited to the site of repair, implying that repair
complexes are generated in proportion with damage to DNA
(44). Alternatively, the buildup of repair complexes such as
UNG2-ARC could depend on the concentration of repair fac-
tors. For this purpose, we prepared extracts from ordinary
HeLa cells and stably transfected HeLa cells overexpressing
UNG2 (HTO-UNG2-45). We found 15-fold higher level of
UDG enzymatic activity in induced cells compared with non-
induced cells (data not shown). To examine uracil BER capa-
city in extracts and UNG2-ARC, we used U/A substrate
because repair of this lesion is completely dependent on func-
tional UNG, in contrast with U/G repair (Figure 6). The rate of
uracil repair was increased 4-fold in cell extract prepared from
induced cells compared with non-induced cells at 5 and 10 min
incubation (Figure 10, lanes 1–6 and the panel below). The
increase in BER capacity of UNG2-ARC isolated from UNG2-
overexpressing cells was smaller (1.5- to 2.5-fold, lanes 7–10

Figure 9. BER activity in proliferating and non-proliferating cells. UNG2-ARC
was isolated from whole extract of exponentially growing HaCaT cells (EC) as
well as from whole extract of high-density and growth-arrested HaCaT cells
(AC) that did not replicate DNA. (A) Comparison of DNA content distributions
as analyzed by flow cytofluorometry analysis of propidium iodide stained
HaCaT cells. Grey histogram; exponentially growing proliferating cells,
white histogram; growth-arrested non-proliferating cells. Fluorescence
intensity is on the linear axis, while the vertical axis indicates the relative
number of stained cells. UNG2-ARC was isolated from the extracts and
used in BER assays with U/A substrate and [a-32P]dTTP isotope and
incubated for indicated time periods in the absence (lanes 1–6), or presence
(lanes 7–8) of neutralizing POLb antibodies. The repair products were purified
and digested with restriction enzymes to release short-patch (B) and long-patch
(C) repair products as well as total repair products (ligated/unligated products,
BamHI/PstI) (D). Results calculated from two independent experiments, each
in duplicate, for BER kinetics analysis of exponentially growing cells relative to
growth-arrested HaCaT cells after 15 min incubation and in the presence and
absence of anti-POLb antibodies after 60 min BER incubation (E).
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and the panel below). The data from crude extracts indicate
that UNG2 may be a rate-limiting factor, but since the BER
rate increases 4-fold when UNG2 increases15-fold, it does not
seem to be the sole rate-limiting factor. The results of BER
analysis of UNG2-ARC indicate that formation of repair
complexes could be independent of the presence of damage
in DNA.

DISCUSSION

Our work demonstrates the existence of a BER complex that is
proficient in repair of uracil-containing DNA and western
analysis confirmed that the factors known to be required for
the process were present in the complex. Furthermore, the
buildup of the complex is not dependent on the presence of
uracil-damaged DNA. This indicates that at least one form of
BER for uracil-containing DNA takes place in a preassembled
multi-protein complex. Alternative models assuming sequen-
tial recruitment of enzymes to the site of repair have been
suggested (45). Several observations, particularly the pattern
of protein–protein interactions, support this model in which an
incoming protein is recruited by one or more proteins present
at the site of repair. After release of the base in the initial step,
the DNA glycosylase may remain bound to the product DNA
(AP-site) for which it has high affinity, and may shield it from
damage (45). In some cases, DNA glycosylases have virtually
no turnover (TDG), or low turnover (SMUG1), when present
alone, but the turnover is enhanced several-fold by AP-endo-
nuclease (7,41). The structure of APE1 bound to abasic DNA
showed that APE1 uses a rigid, pre-formed surface to bend
the DNA helix by �35� and retains its kinked DNA product

efficiently (46). The kinked APE1–DNA complex is proposed
to recruit POLb to sites of damage (46,47), where it binds to
the nicked DNA, and induces a further bend to �90� (47).
DNA kinking could also provide an effective means of pro-
moting the directional and sequential exchange of factors at
each step of the BER pathway (46). This recruitment model
does not require the formation of a more stable BER complex,
but is not incompatible with the preassembled BER complex
model, where the substrate may be handed from one compo-
nent of the complex to the other. One possibility is that these
mechanisms operate in different contexts. Some components
may be recruited as single proteins and others as small com-
plexes, forming larger complexes with limited lifetime.
Another possibility, in agreement with our results, is that
the biochemistry of the individual steps operates just as sug-
gested for the sequential recruitment model, but that this pro-
cess simply takes place in a complex.

In a previous paper, a multi-protein BER complex from
bovine testis containing POLb, DNA ligase I and uracil-
DNA glycosylase was isolated by a POLb affinity method,
and if proteins were present in equimolar concentrations, the
complex had a cumulative mass of 196 kDa (20). This com-
plex was captured in the absence of DNA by POLb-affinity
chromatography. This argues against damage recognition by
the glycosylase being a trigger for complex assembly. The fact
that BER complexes can be isolated by two different methods
supports the existence of such complexes in the cell. However,
our work indicates that PCNA, POLd, XRCC1, a DNA ligase
and APE1 are also part of a BER complex, which must then be
significantly larger than the complex reported previously. Pos-
sibly, these differences may be explained by the fact that we
used lower concentrations of monovalent salt during isolation

Figure 10. Increased cellular UNG2 protein enhances BER activity in whole cell extract and UNG2-ARC. Exponentially growing HeLa cells carrying a UNG2
expressing construct were either induced with 2 mg/ml of doxycycline for 48 h (+) or mock-induced (�) as control. UNG2-ARC was prepared by incubating 40 ml of
PU1sub-linked beads with 100mg of whole cell extract for each reaction. BER assays with 500 ng of U/A DNA substrate and [a-32P]dTTP as isotope were carried out
using whole cell extracts (40 mg) (lanes 1–6) or UNG2-ARC (lanes 7–18) for the indicated incubation times. The panels below show the results calculated from two
independent experiments.
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and washing of the complex. Since we did not detach the BER
complex(es) from the beads, and did not examine them as
complexes in solution, it is possible that UNG2 is present
in complexes with different compositions. In NER, at least
some repair factors are recruited sequentially to the site of
damage after localized subnuclear exposure to ultraviolet
light. Here the damage recognition complex XPC-hHR23B
appears to be essential for the recruitment of all subsequent
NER factors (48). Thus, at best a fraction of NER proteins is
present in preassembled repair complexes.

Based on experiments using isolated nuclei (22) and
Ung-deficient mice (49), a role for UNG2 in removal of mis-
incorporated uracil in U/A pairs has been established. How-
ever, the roles of UNG2, SMUG1 or other enzymes, in
removal of uracil from U/G mispairs have remained unsettled
(7,49). We find that UNG2-ARC and whole cell extracts are at
least as effective in repair of U/G mispairs, as with U/A pairs.
Previously, we defined kinetic properties of homogenous
recombinant SMUG1 and UNG2 using U/A or U/G substrates
in oligonucleotide cleavage assays. We concluded that these
properties were consistent with a major role for UNG2 in
repair of U/G mispairs, as well as U/A pairs. Complete
BER in crude extracts of HeLa cells supported this view, in
agreement with results presented here (7). However, a differ-
ent paper concluded that murine SMUG1 has the major uracil-
DNA glycosylase activity initiating repair on U/G mispairs,
with UNG2 as a back-up (50). In these studies, the glycosylase
step was examined using nuclear extracts in oligonucleotide
cleavage studies, and low substrate concentrations were used
to mimic the in vivo situation. The different conclusions
reached in the latter study and the present study are not due
to differences in the concentration of DNA-uracil, which are
fairly equal in the two studies. It could, however, possibly be
due to a much higher total DNA concentration but much lower
relative lesion density used in our study as compared with
study on murine extracts (50). The different results are, how-
ever, more probably explained by the use of different methods
for preparation of extract, and by different kinetics due to
assay conditions. It should also be noted that activities and
kinetic properties of human UNG2 (7) and human and mouse
SMUG1 (7,49) are dependent on concentrations of monova-
lent salts and Mg2+, as well as the presence or absence of
APE1. Contrary to the kinetic properties originally reported
for Xenopus SMUG1, and the erroneous entries of kinetic
parameters for hUNG in this paper (51), kinetic parameters
for human SMUG1 and UNG2 would be consistent with a
major role for UNG2 and a backup function for SMUG1 in
removal of uracil from DNA both in U/G mispairs and U/A
pairs (7,52). Thus, the Km values of SMUG1 and UNG2 are 1.3
mM and 0.4 mM, respectively, whereas Kcat for UNG2 is 100-
fold higher than that of SMUG1 and Kcat/Km some 300-fold
higher than that of SMUG1 (7). Even if different assay con-
ditions may modify the picture several-fold, the properties of
SMUG1 does not make it a likely primary candidate in per-
forming the important first step in BER of uracil-containing
DNA. Our present data, both with BER complexes and whole
cell extracts, supports this view. Furthermore, murine (53) and
human UNG2 (36) have been demonstrated to be required for
removal of uracil in U/G pairs resulting from deamination by
AID in somatic hypermutation and class switch recombination
in B-cells. The major role of SMUG1 is more likely to be in

repair of oxidative base lesions, such as 5-hydroxymethylur-
acil (7,52,54) 5-hydroxyuracil and 5-formyluracil (52), where
alternative repair enzymes are not identified, or are less effi-
cient. Thus, we conclude that UNG2 is the major enzyme
initiating BER of uracil-containing DNA both in a U/G and
a U/A context. UNG2-ARC also proficiently repair abasic
sites, but whether this type of complex represents the major
type, completing repair initiated by glycosylases other than
UNG2 remains to be examined.

Components of short- and long-patch BER have been iden-
tified and their roles studied both in vitro and in vivo as well as
in reconstitution systems. However, mechanisms that deter-
mine the branching of BER pathway into short-patch and long-
patch repair are not completely understood. The type of DNA
damage was found to determine the mode of pathway (55).
Thus, repair of hypoxantine (HX) and 1,N6-ethenoadenine
(eA) by the monofunctional alkyl-N-purine glycosylase
(ANPG/MPG) was via both short- and long-patch BER,
whereas repair of 8-oxo-G by the bifunctional hOOG1 protein
was mainly via short-patch pathway (55). However, in a recent
study on repair of 8-oxo-G, 55–80% repair patches were >1 nt
in an in vivo system (56). However, the biochemistry of the
repair pathway was not analyzed in this study, nor was pos-
sible impact of cell cycle status on the mode of repair. Mod-
ified 50-dRp residues are refractory to the dRPase activity of
POLb (57). Thus, repair DNA synthesis of such lesions could
be initiated by POLb (58), but further removal of the 50-dRp
and completion of repair is thought to require a ‘switchover’ to
a PCNA and POLd/e dependent long-patch pathway (59).
Although single nucleotide insertion is a dominant function
of POLb, this DNA polymerase is able to replace several
nucleotides containing a modified 50-dRp, resulting in the
generation of a flap oligonucleotide structure (11,60). The
flap is cleaved by FEN1 (11), resulting in a nick in DNA
which is subsequently sealed by a DNA ligase. A direct
involvement of PCNA in BER outside sites of replication
has not so far been demonstrated. However, a PCNA-indepen-
dent long-patch BER outside sites of replication consisting of a
core of four proteins; APE1, POLb, FEN1 and DNA ligase III
may occur. Such long-patch repair might be the main mode of
BER of modified AP-sites in resting cells. This model may be
consistent with previous reports (11,42) as well as our data.
The rate-limiting step in BER has previously been studied and
suggested to be the removal of 2-deoxyribose 5-phosphate
(dRp) when BER is initiated by a monofunctional glycosylase
(e.g. UNG) (61), or the removal of 30-blocking deoxyribose
residue when a base damage is removed by a bifunctional
DNA glycosylase (e.g. hOGG1) (62). Moreover, in a separate
study, the joining of repair ends by a DNA ligase was sug-
gested to be a rate-limiting step in BER (63,64). Although the
rate of excision of uracil from DNA by UNG-proteins is highly
sequence dependent (35), UNG2 and other UNG-proteins have
very high catalytic turnover numbers (7,65). This suggests that
glycosylase step is not the most likely rate-limiting step in
UNG2-ARC and probably not in extracts. Previously, the
excision of certain base lesions was also found to be a rate-
limiting step in BER when a DNA glycosylase with low turn-
over activity removed the lesions (66). Apparently, the type
and the position of a damaged base are additional factors in the
kinetics of BER. In fact, we found that placing uracil opposite
adenine at the neighboring nucleotide at the 50-side of the U/A
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substrate used in our experiments (Figure 1) resulted in a
significant reduction of rate of repair (data not shown).

In conclusion, we immunoprecipitated BER complexes
that carry out short-patch and long-patch BER for uracil-
containing DNA, using antibodies specific for the N-terminal
non-catalytic part of UNG2. Short-patch repair is the predo-
minant mode both in extracts and in BER complexes. Further-
more, UNG2 appears to be the major glycosylase responsible
for repair of U/G mispairs and possibly sole enzyme for repair
of U/A pairs in human cells. On the basis of the results pre-
sented here, we suggest that at least a significant fraction of
BER proteins for repair of uracil-containing DNA, and pos-
sibly for other BER substrates as well, are present in preas-
sembled repairosome multiprotein BER complexes. These
may be dynamic of nature.
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ABSTRACT 

 

Nuclei and mitochondria efficiently carry out base excision repair (BER) of uracil in DNA. To examine the 

overall organization of these processes, we constructed cell lines expressing mitochondrial UNG1 or nuclear 

uracil-DNA glycosylase UNG2, both fused to enhanced yellow fluorescent protein (EYFP) placed C-terminally. 

UNG1 and UNG2 have identical catalytic domains, but different N-terminal regions. Complete BER of uracil in 

crude mitochondrial or nuclear extracts required the respective UNG-proteins. Although APE1 is highly 

enriched in nuclei relative to mitochondria, it was apparently the major AP-endonuclease required for BER in 

both organelles. APE2 is enriched in mitochondria, but its possible role remains uncertain. UNG1-EYFP and 

UNG2-EYFP from mitochondrial or nuclear extracts had essentially similar uracil-DNA glycosylase activities. 

Immunoprecipitation experiments demonstrated that a fraction of UNG2-EYFP was present as a multiprotein-

complex that carried out complete BER. In contrast, UNG1-EYFP and mitochondrial proteins were not 

physically associated in a complex competent in BER. However, APE1 was apparently localized in proximity of 

UNG1-EYFP, as demonstrated by formaldehyde-crosslinking of these proteins in intact mitochondria. These 

results demonstrate that nuclear and mitochondrial BER processes are differently organized, with nuclear BER 

proteins in part being present in a complex, while mitochondrial BER proteins do not form stable complexes. 

Keywords: Base excision repair; uracil-DNA glycosylase, repair complexes, mitochondria 
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INTRODUCTION 

 

Base excision repair (BER) of DNA is the major mechanism for repair of minor base lesions that do not cause 

helix distortions (1). A DNA glycosylase initiates BER by releasing the damaged base, leaving an abasic site 

(AP-site) that is cleaved by an AP-endonuclease. In nuclei the subsequent steps follow two different paths; either 

short patch repair in which a single nucleotide gap is filled and ligated, or long patch repair in which a gap of 2-8 

nucleotides is filled and sealed (2). In mitochondria short patch is the dominant BER pathway (3). Nuclei and 

mitochondria are both competent in BER, but use largely different proteins (4,5). However, nuclear and 

mitochondrial isoforms of DNA glycosylases are frequently encoded by the same gene and have common 

catalytic domains, but different N-terminal or C-terminal regions that may be involved in subcellular sorting and 

macromolecular interactions (6-9). Uracil in DNA results from misincorporation of dUMP during replication, 

chemical deamination of cytosine, and in B-cells deamination by activation induced deaminase (10). Nuclear and 

mitochondrial forms of human uracil-DNA glycosylase (UNG) are encoded by the UNG-gene and have a 

common catalytic domain (6,8). These forms are generated by alternative splicing and use of different promoters 

(6). The mitochondrial preform UNG1 contains 35 unique N-terminal amino acids, approximately 29 of which 

are removed upon mitochondrial import to give the mature UNG1 (11). Nuclear UNG2 has 44 unique N-terminal 

amino acids, all of which are retained after nuclear import (12). 

Mitochondrial DNA (mtDNA) is associated with the inner membrane (13). In several organisms 

mtDNA binds to distinct proteins, forming so-called nucleoids probably helping to anchor DNA to the inner 

membrane. Mitochondrial transcription factor A (mtTFA) was among proteins in nucleoids (14,15). The 

mitochondrial inner membrane has high protein content. Among others, subunits of oxidative phosphorylation 

are anchored there, forming large protein complexes (16). Recently, several mitochondrial BER proteins were 

reported to associate with the inner membrane (17). Direct interaction between several mammalian nuclear BER 

proteins has been reported for a large number of proteins (18). A fraction of BER proteins apparently forms 

relatively stable complexes that can be isolated by biochemical fractionation or immunoprecipitation (19,20) 

Thus, antibodies to the non-catalytic part of UNG2 allowed isolation of functional uracil-BER complexes 

carrying out complete repair (19). 

 Here, we present results indicating different organization of BER in nuclei and mitochondria. We used 

organelle extracts of HeLa cells stably expressing UNG2-EYFP or UNG1-EYFP and anti-EYFP-antibodies 

linked to paramagnetic beads to isolate the glycosylases and proteins associated with them. A fraction of UNG2-
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EYFP was present in a complex competent in complete repair of uracil-containing DNA, supporting previous 

results using a different method (19). However, we could not detect significant BER activity associated with 

immunoprecipitated UNG1-EYFP from mitochondrial extracts, although crude extracts efficiently repaired 

uracil-containing DNA. UNG1 may interact functionally with downstream BER proteins, but such interactions 

do not result in the buildup of stable repair complexes.  

 

 

MATERIALS AND METHODS 

 

Chemicals and antibodies 

Synthetic oligonucleotides were purchased from MedProbe (Oslo, Norway). [α−32P] dTTP (3000 Ci/mmol), and 

[γ−33P] ATP (3000 Ci/mmol) were from Amersham Biosciences. Primary antibodies against APE1 (mouse 

monoclonal, ab194), APE2 (rabbit polyclonal, ab13691), and serum anti-GFP antibody (rabbit polyclonal, 

ab290), were from Abcam Ltd, UK. The GFP antibody recognizes and binds to EYFP and is hereafter referred to 

as anti-EYFP-Ab. IgG from non-immunized rabbits was from Santa Cruz Biotechnology, Inc. USA. Anti-UNG-

antibody (PU101) against the catalytic domain has been described previously (21). The Proteosilver™ silver 

stain kit was from Sigma-Aldrich, USA. 

 

Cell culture and cell lines  

We prepared UNG1-EYFP and UNG2-EYFP fusion proteins under control of a cytomegalovirus (CMV) 

promoter by transfecting HeLa cells with pUNG1-EYFP and pUNG2-EYFP (6). The cells were then cultured 

under selection with 0.4 mg/ml genetecin (G418) in Dulbecco's modified Eagle's medium with 10% fetal calf 

serum, 0.03% glutamine, and 0.1 mg/ml gentamicin in 5% CO2. The UNG1 / UNG2-EYFP positive cells were 

sorted out from G418 resistant cells by flowcytometry. The levels of expression of UNG1-EYFP and UNG2-

EYFP were lower than the levels of endogenous UNG1 and UNG2 (Figure 1D).  

 

Confocal microscopy 

A Zeiss LSM 510 Meta laser scanning microscope equipped with a Plan-Apochromate 63x/1.4 oil immersion 

objective was used to examine images of 1 μm thick slices of cycling living cells. EYFP was detected with 

excitation at λ = 514 detection at λ > 530 nm. 



 5

 

Isolation of mitochondria 

We harvested the cells by trypsination and washed the cells once with cold PBS and once with an isotonic buffer 

(20 mM HEPES-KOH pH 7.8, 5 mM MgCl2, 5 mM DTT, and 0.25 M sucrose). The cells were resuspended in a 

hypotonic buffer (20 mM HEPES-KOH pH 7.8, 5 mM MgCl2, 5 mM DTT) and incubated on ice for 15 min 

before disruption of the cells by a Dounce homogenizer (15-20 strokes). We immediately added (1:1 v/v) 2× 

MSH buffer (20 mM HEPES-KOH pH 7.8, 2 mM EDTA, 2 mM EGTA, 0.42 M manitol, 0.14 M sucrose, 0.3 

mM spermine, and 1.5 mM spermidine) to the mixture as described previously (22). We then centrifuged the cell 

lysate at 600 g for 12 min to separate cell debris and nuclei (the pellet) from mitochondria (supernatant), and 

pelleted the crude mitochondria at 10,000 g for 20 min. The pellet was then resuspended in 1 ml 1× MSH/50% 

Percoll (Sigma), the suspension loaded on top of a 1× MSH/50% Percol gradient (9 ml) and centrifuged at 

50,000 g for 1h at 4oC. The mitochondria were removed from the gradient and washed with 1× MSH buffer and 

resuspended in 2 ml buffer B (10 mM HEPES-KOH pH 7.4, 0.25 M sucrose, 1 mM EDTA, 1 mM EGTA, and 1 

mM DTT). We divided the mixture in two parts and treated one part with 0.04 mg trypsin at room temperature 

for 20 min, while keeping the other half on ice. We inactivated trypsin by adding 0.120 ml Complete® protease 

inhibitor (1 tablet in 1 ml water) to the mixture, and washed the mitochondria three times in 2 ml buffer B 

containing protease inhibitor.    

 

Isolation of nuclei 

We cultured and harvested stably expressing UNG2-EYFP HeLa cells as above, except omission of MSH buffer 

to the mixture after disruption of the cells with the Dounce homogenizer. The cell homogenate was centrifuged 

at 600 g for 12 min and the pellet used for preparation of nuclear extract. 

 

Preparation of nuclear and mitochondrial extract 

We used a modification of the procedure described before (23). Briefly, mitochondria or nuclei were 

resuspended at 1× packed cell volume (PCV) in buffer I (10 mM Tris-HCl pH 8.0, and 100 mM KCl) and 1× 

PCV of buffer II  (10 mM Tris-HCl pH 8.0, 100 mM KCl, 2 mM EDTA, 2 mM DTT, 40% glycerol, 1% Nonidet 

P-40, Complete® protease inhibitor, and Phosphatase Inhibitor cocktails). The mixtures were then rotated at 4oC 

for 1 h, nuclear or mitochondrial debris were pelleted at 22, 000 g at 4oC for 15 min, and the supernatants 

recovered. 



 6

 

Immunoprecipitation  

We covalently linked 0.01 ml anti-EYFP-Ab, or non-immunized rabbit IgG to 0.1 ml paramagnetic Dynabeads® 

protein A according to the manufacturer’s instructions (Dynal, Norway). For immunoprecipitation we incubated 

mitochondrial or nuclear extracts with the antibody coated beads (anti-EYFP-Ab-beads or IgG-Ab-beads as 

control) under gentle rotation for 4 h at 4oC. We washed the beads 4 times with 0.2 ml washing buffer (10 mM 

Tris-HCl, pH 7.5, 100 mM KCl) and used the beads directly in BER assay or uracil-DNA glycosylase (UDG) 

assay, or resuspended the beads in SDS buffer, heated at 80oC (unless otherwise indicated) and separated 

proteins by SDS-polyacrylamide gel electrophoresis.   

 

Formaldehyde crosslinking of mitochondrial proteins 

We resuspended intact mitochondria (after trypsin treatment) in PBS with 0.5% formaldehyde and incubated the 

mixture at 37oC for 20 min. We stopped the reaction by adding 0.125 M glycine and further incubation at room 

temperature for 5 min. Mitochondria were washed twice with PBS and resuspended in buffer I and II as above 

and sonicated. The mitochondrial debris was pelleted at 22, 000 g for 15 min at 4oC, and the supernatant 

recovered.    

 

DNA substrate, BER assay, and uracil-DNA glycosylase (UDG) activity assay 

We prepared DNA substrates containing uracil at a single position (Figure 2B) as described before (19,24). BER 

assays using nuclear or mitochondrial extracts, and their respective immunoprecipitates were carried out as 

described before (19). UDG activity assay was performed as described earlier (12). 

 

Western analysis  

We separated proteins in 10% denaturing SDS-polyacrylamide gels, and transferred them to PVDF membranes 

(ImmobilonTM, Millipore). We incubated the membranes with the primary antibodies for 1 h at room 

temperature, followed by incubation for 1 h with either peroxidase-labeled Polyclonal Rabbit Anti-mouse 

IgG/HRP or peroxidase-labeled Polyclonal Swine Anti-Rabbit IgG (DakoCytomation, Denmark). We treated the 

membranes with chemiluminescence reagent (SuperSignal® West Femto Maximum, PIERCE, USA), and 

visualized the bands in Image Station 2000R (Eastmann Kodak Company, USA).  
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RESULTS  

In the present study, we wanted to compare the overall organization of nuclear and mitochondrial BER. For this 

purpose we constructed cell lines expressing either UNG1 or UNG2 with a fluorescent tag (enhanced yellow 

fluorescent protein, EYFP). This allowed immunoprecipitation of the glycosylases from each of the subcellular 

compartments using anti-EYFP antibodies. This made possible studies on how these DNA glycosylases interact 

with other proteins in nuclei and mitochondria. The HeLa cell lines used expressed either UNG2-EYFP or 

UNG1-EYFP from a CMV promoter, which is usually considered a strong promoter. However, as shown below 

the expression of the fusion proteins was significantly lower than that of the endogenous proteins, thus a general 

perturbation of the balance of the repair proteins was unlikely.  

 

Subcellular localization of UNG-EYFP fusion proteins 

We found that UNG2-EYFP proteins expressed in the UNG2-EYFP HeLa cell line were exclusively localized in 

nuclei (Figure 1A), similar to UNG2-EYFP under the regulation of the UNG2 promoter (PA) (12). In the UNG1-

EYFP HeLa cell line UNG1-EYFP co-localized with mitochondria, and was entirely absent from nuclei, in 

agreement with previous results (6) (Figure 1B). To ensure that UNG1-EYFP molecules (Figure 1B) were not 

merely attached to the outer membrane of mitochondria, we treated intact mitochondria with trypsin before lysis 

of the mitochondria (25). This treatment cleared contaminating nuclear UNG2 from the mitochondrial extract, 

whereas UNG1 and UNG1-EYFP fusion proteins remained unaffected (Figure 1C) and was routinely used for 

preparation of mitochondrial extracts. It is noticeable that also APE1 is strongly reduced, indicating that it is 

mainly, but not exclusively, a nuclear protein. In contrast, APE2 was not significantly reduced by trypsin-

treatment, indicating that it is a genuine mitochondrial protein (Figure 1C). Figure 1D shows western analysis of 

nuclear and mitochondrial extracts from UNG2-EYFP and UNG1-EYFP expressing HeLa cells, respectively. 

The EYFP-tagged UNG proteins and the endogenous forms were all detected using the same antibodies 

(PU101), and the endogenous forms of UNG were significantly more abundant than the tagged forms.    

  

UNG2-EYFP, but not UNG1-EYFP, is present in uracil-BER competent complexes 

Recently, we used antibodies against the non-catalytic N-terminal domain of UNG2 and isolated BER complexes 

(UNG2-ARC) that repaired uracil in DNA (19). In this study, we used nuclear and mitochondrial extracts from 

UNG2-EYFP and UNG1-EYFP expressing cells, respectively, for immunprecipitations with anti-EYFP-

antibody-beads. Figure 2A shows western analysis of immunoprecipitates from UNG2-EYFP (lane 1) and 
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UNG1-EYFP (lane2) cell extracts. We detected UNG2-EYFP (lane 1, upper panel) and UNG1-EYFP (lane 2, 

upper panel) proteins, but not their respective endogenous proteins (lower panel), indicating that only the fusion 

proteins were immunoprecipitated. Next, we used a uracil-containing circular plasmid to test BER activity of the 

immunoprecipitates (Figure 2B). We  succeeded in isolating BER-competent complexes from nuclear extracts 

using this approach (Figure 2C, lane 3), consistent with our recent report were we used a different procedure to 

isolate complexes (19). However, we did not find detectable BER activity associated with the 

immunoprecipitated material from mitochondrial UNG1-EYFP extract (Figure 2C, lane 4). Importantly, equal 

amounts of protein (0.5 mg) were used for preparing immunoprecipitates from nuclear and mitochondrial 

extracts, excluding trivial explanations for the differences observed. This indicates that no, or insignificant 

amounts of uracil-BER protein complexes were present in the mitochondrial extract. However, the extracts as 

such repaired uracil in DNA in the same BER assay (Figure 2C, lanes 5-10). We did not find detectable 

differences between BER activity of pre-immunoprecipitated and post-immunoprecipitated UNG2-EYFP (Figure 

2C, lanes 5 and 7) indicating that a small fraction of uracil-BER proteins in the nuclear extract associated with 

UNG2-EYFP. To test if immunoprecipitated UNG1-EYFP protein had UDG activity comparable to the UNG2-

EYFP immunoprecipitates, we incubated the immunoprecipitates from nuclear and mitochondrial extracts with 

5´-end labeled uracil-containing double-stranded oligonucleotides. We found that UNG2-EYFP and UNG1-

EYFP immunoprecipitates had roughly similar UDG activities (Figure 3A, lanes 3, 4, 12-mer bands), and this 

activity was completely inhibited by neutralizing anti-UNG-antibodies (PU101) (Figure 3A, lanes 7, 8). In 

conclusion; when equal amounts of protein from either nuclear or mitochondrial extracts are immunoprecipitated 

using EYFP-antibodies, similar amounts of UDG-activity are detected, but only UNG2-EYFP is present in a 

complex that carries out complete BER of uracil in DNA.  

 

Supplementing UNG1-depleted mitochondrial extract with recombinant UNG protein restores uracil-BER 

in the extract  

Next, we tested if our failure to immunoprecipitate putative UNG1-EYFP BER-complexes was due to 

preferential interaction of BER factors with endogenous UNG1. For this analysis, we immuno-depleted (IP-

depleted) UNG proteins (both UNG1-EYFP and UNG1) from the UNG1-EYFP mitochondrial extract using 

PU101 antibodies attached to beads, and used the depleted extract in the BER assay. Repair of uracil was 

strongly reduced after the immuno-depletion (Figure 3B, lane 2). However, the level of the repair was restored to 

the level of the untreated extract (lane 3, control) when the reaction mixture was supplemented with recombinant 
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UNG protein (21) (rec.UNG) (lane 4). This demonstrates that sufficient amounts of free BER proteins acting 

downstream to UNG1 were present in the extract, and supports the conclusion that BER proteins do not interact 

stably with UNG1.   

 

APE1 is the major AP endonuclease in mitochondrial uracil-BER in HeLa cells 

To test the role of APE1 in the nuclear and mitochondrial uracil-BER, we incubated nuclear UNG2-EYFP as 

well as mitochondrial UNG1-EYFP extracts on ice with or without anti-APE1-antibodies. Then uracil-DNA 

substrate was added to the extracts and the samples were incubated at 32oC for 60 min. Recently, we showed that 

these antibodies inhibited uracil-BER in immunoprecipitated UNG2-BER complexes (19). We found that anti-

APE1-antibodies moderately inhibited nuclear uracil-BER (Figure 4, lane2). However, uracil-BER of the 

mitochondrial extract was strongly inhibited by these antibodies (Figure 4, lane 4), indicating that APE1 is the 

major AP-endonuclease in HeLa cell mitochondria. 

The inner membrane of mitochondria harbors a large number of proteins including mitochondrial DNA 

glycosylases (17). Therefore, it would seem possible that UNG1 may be located in close vicinity to other BER 

proteins in the inner membrane, thus facilitating functional interactions, although without forming stable 

complexes. To test this, we carried out formaldehyde crosslinking of intact mitochondria. Formaldehyde is 

useful for the detection of protein-protein interactions. The formaldehyde crosslinking requires a short distance 

(~2Å) between the molecules, such that proteins must be in close physical proximity at least for a limited time 

period (26). Moreover, the crosslinks are reversible, enabling subsequent identification the proteins. We 

incubated extract prepared from crosslinked mitochondria with anti-EYFP-Ab-beads in the presence of DNase. 

After washing, we resuspended the beads in SDS buffer and heated at 65oC for 15 min to release proteins from 

the beads. Then one half of the eluted fraction was heated at 95oC for 30 min to reverse crosslinking reactions, 

and proteins in the both eluted fractions were separated on an SDS gel, and visualized by silver-staining (Figure 

5A, lanes 2, 3). We used normal IgG as control (Figure 5A, lanes 4, 5).We detected several bands and smeared 

protein in the gel after reversing the crosslinking reactions as compared with not reversed (Figure 5A, lanes 2, 3), 

suggesting that UNG1 is located close enough to other proteins for crosslinking to occur. We also carried out 

western analysis of the eluted proteins after reversing crosslinking reactions at 95oC for 30 min (Figure 5B, lanes 

1, 2). We detected UNG1-EYFP, and APE1, but not APE2 in the eluted material (Figure 5B, lanes 1, 2). 

Furthermore, using western analysis we detected APE1 in the immunoprecipitates from the UNG2-EYFP 

nuclear extract (Figure 5B, lane 3), but not in the immunoprecipitates from the non-crosslinked UNG1-EYFP 
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mitochondrial extract (Figure 5B, lane 4). These results suggest that UNG1 and the downstream BER protein 

APE1 may be transiently located in close vicinity. However, despite the presence of DNAse during the 

immunoprecipitation, we cannot rule out the possibility that this interaction may take place through a common 

mtDNA substrate, as DNA may theoretically be protected from digestion by proteins crosslinked to DNA.  

Recently, several mitochondrial DNA glycosylases as well as DNA polymerase and DNA ligase, but 

not AP endonuclease, were demonstrated to tightly associate with the inner membrane (17). Therefore, it was 

possible that all uracil-BER enzymes except for AP endonuclease were present in the UNG1-EYFP 

immunoprecipitates, resulting in the isolation of inactive complexes. To test this we carried out BER assay 

analysis of UNG1-EYFP immunoprecipitates supplemented with recombinant APE1. We could not reconstitute 

detectable repair activity by adding APE1 (not shown), indicating that the inability of UNG1-EYFP 

immunoprecipitates to repair uracil in DNA (Figure 2, lane 4) was not solely due to the lack of AP endonuclease 

in the immunoprecipitates.  
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DISCUSSION 

 

Nuclear UNG2 and the mitochondrial preform UNG1 differ in the N-terminal sequences required for targeting 

(6) (Figure 1A and B). The entire UNG2 protein is imported to nuclei, but a large fraction of the N-terminal 

region of UNG1 is proteolytically removed upon mitochondrial import (Figure 1B) (11). The 6 amino acids 

remaining in UNG1 are all different from the 44 amino acids in the N-terminal region of UNG2. The successful 

isolation of UNG2-specific uracil-BER complexes by two different methods (19) (and Figure 2C, lane 3), 

suggests that the presence of UNG2-BER complexes in nuclei may be biologically relevant. We found no 

evidence for formation of similar BER complexes in mitochondrial extract.  

In mitochondria, most BER proteins including UNG1 are not freely soluble in the matrix, but associate 

tightly with the inner membrane independently of mtDNA (17). However, such sub-organelle localizations 

apparently do not mediate formation of stable BER complexes, since we were unable to isolate sufficient 

amounts of uracil-BER complexes for detectable BER using our assay system (Figure 2C, lane 4). In the more 

complex nuclear environment the presence of the essential BER proteins in complexes may aid binding of 

different repair proteins to the relevant repair intermediate. Our results are compatible with a model in which the 

BER proteins are not stably interacting with each other, but close enough (17) to “pass the baton” (27), thus 

avoiding exposure of  damage-sensitive repair intermediates such as highly reactive abasic sites.   

As shown in Figure 1C, treatment of intact mitochondria with trypsin removed a considerable fraction 

of contaminating nuclear APE1, while APE2 remained unchanged. However, our formaldehyde crosslinking 

experiments suggest that the small amounts of APE1 remaining in mitochondria may be located in the proximity 

of UNG1, while we were unable to detect APE2 in the eluted immunoprecipitate from crosslinked material. 

Moreover, mitochondrial uracil-BER was completely inhibited in the presence of anti-APE1-antibodies. These 

results suggest that APE1, rather than APE2, may be the main AP endonuclease in mitochondrial uracil-BER in 

HeLa cells. APE2 was reported to display very weak AP endonuclease activity compared with APE1 (28,29). 

Previously, a fraction of APE2 was shown to localize in mitochondria (30). Our results (Figure 1C) support the 

view that APE2 is a genuine mitochondrial protein, but its role remains elusive. 

In recent years, identification and analysis of BER protein complexes have attracted attention (19,31-

33). The differences between mitochondrial and nuclear uracil-BER may reflect the higher complexity of nuclear 

organization and consequently a higher requirement for formation of macromolecular compartments. Repair foci 

and replication foci are examples of one level of subnuclear compartmentalization. Complexes of repair proteins 
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within such foci would represent yet another level of organization, and like replication and repair foci they are 

likely to be highly dynamic.  

Generation of suitable antibodies for immunoprecipitation of the many proteins is usually a time 

consuming process requiring careful characterization of each new antibody. The use of fusion proteins where 

EYFP or similar proteins form a separate domain may be a useful alternative for isolation of putative BER 

protein complexes for biochemical and structural analysis. 
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LEGENDS TO FIGURES 

 

Figure 1. UNG2- and UNG1-EYFP fusion proteins. (A) Left; schematic illustration of nuclear UNG2 and, right; 

confocal image showing HeLa cells stably expressing UNG2-EYFP. (B) Left; schematic illustration of 

mitochondrial UNG1 preform and the processed, mature form of mitochondrial UNG1 and, right; confocal 

image of UNG1-EYFP. The UNG1 preform is thought to be processed by mitochondrial processing peptidase 

(MPP). Both fusion proteins were expressed from the CMV promoter. The unique N-terminal ends are required 

for subcellular sorting, but not for uracil-DNA glycosylase (UDG) activity. The catalytic domain alone is a fully 

active UDG enzyme. (C) Western analysis of mitochondrial extract before trypsin treatment (lane1) and after 

trypsin treatment of intact mitochondria prior to lysis of the mitochondria (lane 2). (D) Western analysis of 

nuclear extract (lane 1), and mitochondrial extract (lane 2) from UNG2-EYFP and UNG1-EYFP expressing 

HeLa cells, respectively, showing the fusion proteins (upper panel) and the corresponding endogenous proteins 

(lower panel). Anti-UNG-antibody (PU101) was used to detect all UNG proteins. Broken line (---) indicates that 

a part of the gel has been deleted to shorten the image. 

 

Figure 2.  Functional analysis of the immunoprecipitates and extracts. (A) Western analysis of 

immunoprecipitated UNG2-EYFP and UNG1-EYFP proteins. We prepared immunoprecipitates from 0.25 mg of 

each extract using 0.01 ml anti-EYFP-Ab-beads (lanes 1, 2) or IgG-Ab-beads for control (lanes 3, 4) and 

separated the eluted proteins in a SDS gel as described in materials and methods and subjected to western 

analysis with anti-UNG-antibody (PU101). Symbol × shows IgG contamination. Broken line (---) indicates that a 

part of the gel has been deleted to shorten the image. (B) Schematic illustration of plasmid in BER assay with a 

single U at defined position. (C) BER assay of different immunoprecipitates or crude extracts. We prepared 

immunoprecipitates by incubating 0.05 ml anti-EYFP-Ab-beads with 0.5 mg UNG2-EYFP nuclear extract (lane 

3) or UNG2-EYFP mitochondrial extract (lane 4) as well as 0.05 ml IgG-Ab-beads with the same amounts of 

each extract for control (lanes 1, 2), and used the beads directly in the BER assay. For BER assay of the extracts 
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we used 0.05 mg of each extract in each reaction. DNA substrate containing T instead of U was used as control 

in the BER assay (lanes 11-12). The repair reactions were carried out at 32oC for 60 min. High molecular weight 

bands (HMW) represent repair products longer than ten nucleotides, as well as unspecific repair products at other 

parts of the DNA substrate, as demonstrated in experiments not shown here. 

 

Figure 3. UDG-activity of UNG2-EYFP and UNG1-EYFP immunoprecipitates and BER assay analysis of 

reconstituted mitochondrial extract. (A) We tested UDG activity of the immunoprecipitates by oligonucleotide 

cleavage assay. We prepared immunoprecipitates from 0.25 mg nuclear extract of UNG2-EYFP expressing cells 

(Nuc. ext.) and from 0.25 mg mitochondrial extracts (Mito. ext.) from UNG1-EYFP expressing cells, using 0.01 

ml anti-EYFP-Ab-beads, or normal IgG-Ab-beads as control. Immunoprecipitates were incubated for 30 min at 

32oC with a uracil-containing 22-mer oligonucleotide, labelled at the 5´-end with 33P, and cleaved products 

separated (12-mer) from the intact 22-mer in a denaturing polyacrylamide gel as described before (12). Lane 1, 

untreated oligonucleotide; lane 2, oligonucleotide incubated with recombinant UNG; lane 3, oligonucleotide 

incubated with immunoprecipitate from nuclear extracts prepared with anti-EYFP-Ab-beads; lane 4, 

oligonucleotide incubated with immunoprecipitate from mitochondrial extract prepared with anti-EYFP-Ab-

beads; lanes 5-6, oligonucleotide after “mock”-immunoprecipitation of extracts with control IgG-Ab-beads; 

lanes 7-8 oligonucleotide after incubation in the presence of neutralizing anti-UNG-antibody (PU101) of 

immunoprecipitates prepared with anti-EYFP-Ab beads. (B) BER assay of reconstituted mitochondrial extract. 

We immuno-depleted mitochondrial extract (IP-depleted) for UNG1-EYFP and endogenous UNG1 using beads 

carrying anti-UNG-Ab (PU101). We then used the depleted extract for BER assays. Lane 1, BER of 

mitochondrial extract before IP-depletion; lane 2, immunodepleted mitochondrial extract; lanes 3 and 4, similar 

to lanes 1 and 2, but reconstituted with recombinant UNG (21).  

 

Figure 4. Role of APE1 in uracil-BER of mitochondrial and nuclear extracts. We incubated UNG2-EYFP 

nuclear extract (lanes 1, 2) and UNG1-EYFP mitochondrial extract (lanes 3, 4), with or without anti-APE1-

antibodies as indicated, on ice for 30 min. The repair reactions were initiated by adding DNA substrate and were 

carried out at 32oC for 60 min.  

 

Figure 5. Silver-staining and western analysis of immunoprecipitates after formaldehyde crosslinking and 

reversal. (A) We prepared immunoprecipitates from 0.5% formaldehyde-treated mitochondria, using anti-EYFP-
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Ab-beads. For control we used IgG-Ab-beads. The immunoprecipitates were eluted at 65oC (elute, 65oC), and 

one half of the eluates were heated at 95oC to reverse crosslinking (elute, 95oC). The two fractions were analyzed 

in SDS gel combined with silver-staining (lanes 2-5). Arrows show the bands seen after reversal of crosslinking. 

Symbol × shows IgG contamination. (B) We prepared immunoprecipitates from 0.5% formaldehyde-treated 

mitochondria, using anti-EYFP-Ab-beads. For control we used IgG-Ab-beads. We heated the 

immunoprecipitates at 95oC for 30 min to elute proteins and to reverse crosslinking reactions and carried out 

western analysis of eluates for UNG, APE1, and APE2 (lanes 1, 2). Lanes 3 and 4 show western analysis of 

immunoprecipitates from nuclear UNG2-EYFP extract and mitochondrial UNG1-EYFP extract (not crosslinked) 

respectively, for APE1 and APE2.  
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Abstract

Spontaneous deamination of cytosine results in a premutagenic G:U mismatch that may result in a GC→ AT transition
during replication. The humanUNG-gene encodes the major uracil-DNA glycosylase (UDG or UNG) which releases uracil
from DNA, thus, initiating base excision repair to restore the correct DNA sequence. Bacterial and yeast mutants lacking
the homologous UDG exhibit elevated spontaneous mutation frequencies. Hence, mutations in the humanUNG gene could
presumably result in a mutator phenotype. We screened all seven exons including exon–intron boundaries, both promoters,
and one intron of theUNG gene and identified considerable sequence variation in cell lines derived from normal fibroblasts
and tumour tissue. None of the sequence variants was accompanied by significantly reduced UDG activity. In theUNGgene
from 62 sources, we identified 12 different variant alleles, with allele frequencies ranging from 0.01 to 0.23. We identified
one variant allele per 3.8 kb in non-coding regions, but none in the coding region of the gene. In promoter B we identified four
different variants. A substitution within an AP2 element was observed in tumour cell lines only and had an allele frequency of
0.10. Introduction of this substitution into chimaeric promoter–luciferase constructs affected transcription from the promoter.
UDG-activity varied little in fibroblasts, but widely between tumour cell lines. This variation did not however correlate with
the presence of any of the variant alleles. In conclusion, mutations affecting the function of humanUNGgene are seemingly
infrequent in human tumour cell lines. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Human uracil-DNA glycosylase; Genetic variation; Cancer cell lines

1. Introduction

Spontaneous base-loss, deamination and oxidation
of DNA bases are frequent events and the resulting
lesions are repaired predominantly by BER. It has

∗ Corresponding author. Tel.:+47-73-59-86-60;
fax: +47-73- 59-88-01.
E-mail address:hans.krokan@medisin.ntnu.no (H.E. Krokan).

1 Present address: Norwegian Institute for Nature Research
(NINA), Tungasletta 2, N-7485 Trondheim, Norway.

been estimated that at least 10 000 lesions are formed
spontaneously in every human cell every day [1].
BER is therefore considered quantitatively as the most
important means of DNA repair of spontaneously
arising damage and impaired repair capacity towards
these lesions could add substantially to the mutation
load. Damage specific DNA glycosylases hydrolyse
the N-glycosylic bond between the target base and
deoxyribose, releasing the damaged base and leaving
an apurinic/apyrimidinic (AP) site in DNA (reviewed
in [2]). Uracil-DNA glycosylase (UDG) initiates the

0921-8777/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0921-8777(00)00063-X
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BER pathway for the removal of uracil. Uracil in DNA
results from incorporation of dUMP instead of dTMP
during replication [3–5], or from cytosine deamina-
tion [6] that gives rise to G:U mismatches resulting in
transition mutations (G:C→ A:T) during replication.
U:A pairs are not mutagenic but may alter binding of
transcription factors to their response elements [7],
thus influencing gene-expression. The major UDG
from prokaryotes, eukaryotes and eukaryote viruses
are highly conserved [2] and UDG-deficient yeast
[8,9] andEscherichia coli[10,11] exhibit several-fold
increases in spontaneous mutation frequencies due to
C → T transitions. In addition to loss of BER activity,
altered expression levels of BER proteins have been
shown to cause mutator phenotypes in yeast [12], in
E. coli [13] and in human cells [14].

The humanUNGgene spans 13.8 kb and comprises
two promoters and seven exons [15–17]. The gene
encodes both nuclear (UNG2) and mitochondrial
(UNG1) forms that differ in their N-terminal amino
acid sequences. They are generated by transcription
from two different promoters, promoter A (PA) and
promoter B (PB), respectively, and the use of alterna-
tive splicing [17]. The level of UDG activity varies
between organs [18] and between individuals [19,20].
However, this variation has not been correlated to
mutations in theUNG gene.

Germline mutations in genes thought to maintain the
integrity of the genome, caretaker genes, may cause
inherited predisposition to cancer [21]. Rare germline
mutations in nucleotide-excision repair genes result
in recessive human syndromes like xeroderma pig-
mentosum where severely affected individuals have
1000-fold increased risk for UV-induced skin cancer
[22]. Interestingly, sequence polymorfisms resulting
in reduced repair capacity exist in the human popula-
tion [23,24]. Mutations in mismatch-repair genes are
found in at least 70% of patients with the cancer-prone
syndrome HNPCC (hereditary non-polyposis colorec-
tal cancer) [21]. In contrast, no human cancer prone
syndrome is clearly known to originate from BER de-
ficiency. Mutations in caretaker genes are thought to
result in earlier presentation of cancer. We set out to
screen theUNG gene for mutations in mismatch re-
pair proficient colon cancer cell lines derived from rel-
atively young patients. Furthermore, since genetic in-
stability has been observed in the region of theUNG
locus (12q24.1) in gastric cancers [25] we included

gastric cancer cell lines in the analysis in addition to a
selection of other cancer cell lines. By sequencing re-
gions of theUNGgene from 62 sources, we identified
12 different substitution variants in non-coding regions
of the gene whereas no sequence variation was found
in coding regions. Four sequence variants were identi-
fied in promoter B, one of which affected transcription
from chimaeric promoter–luciferase constructs. How-
ever, the variations in measured UDG activity could
not be correlated to the presence of sequence variants.

2. Materials and methods

2.1. Samples

Cell lines are listed in Table 1. All cell lines, ex-
cept HaCaT 72 PS were purchased from American
Type Culture Collection (ATCC). HaCaT 72 PS was
kindly provided by Dr. Norbert E. Fusenig (German
Cancer Research Centre, Heidelberg, Germany). Cell
lines derived from human foreskin fibroblasts with
an initial passage number of 1–9 are denoted nor-
mal cell lines. DNA from healthy, normal individuals
was isolated from blood with the QiaAmp Blood kit
(Qiagen). DNA from Noonan syndrome patients was
kindly provided by Dr. Anette Bakken (Ullevål hospi-
tal, Department of Medical Genetics, Oslo, Norway).
P1-DNA was isolated from a P1-phage clone con-
taining theUNG gene (Genome Systems). Jx fibrob-
lasts were normal cells taken from a male individual
suffering from multiple basal cell carcinomas of un-
known aetiology. High molecular weight DNA from
cell lines was prepared by phenol/chloroform extrac-
tion and isopropanol precipitation using a model 340A
Nucleic Acid Extractor (PE Applied Biosystems) or
by using the High Pure PCR Template Preparation Kit
(Boehringer Mannheim). DNA from the P1-clone and
plasmid constructs for in vitro mutagenesis was iso-
lated using the Qiagen Plasmid Midi Kit (Qiagen) with
additional phenol/chloroform to remove any endotoxin
from the plasmid constructs before transfection.

2.2. PCR amplification

PCR primers directed to intronic or non-coding
sequences (Table 2) were designed using the Oligo
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Table 1
Cell lines and their UDG-activity

Type of cell line Source Name UDG-activity (U/mg total protein)a

Normal Human foreskin fibroblast CCD 32 0.07
CCD 34 0.09
CCD 39 0.10
CCD 43 0.07
CCD 1064 0.07
CCD 1070 0.07
CCD 1072 0.08
CCD 1077 0.09
CCD 1079 0.06

Various cancer Glioblastoma A172 0.42
Epidermoid carcinoma A253 0.62
Lung adenocarcinoma A427 0.39
Lung carcinoma A549 0.53
Spontaneous transformed keratinocyte HaCaT 72 PS 0.70
Cervical adenocarcinoma HeLa 0.21
Blooms syndrome lymphoblast Hg1525 0.26
Retinoblastoma RBWERI 0.41
Retinoblastoma RBY79 0.28
Glioblastoma U87 0.68
SV40 transformed fibroblast WI 38-VA13 0.46
Lung adenocarcinoma SkLu1 0.24

Colon cancer Colon adenocarcinoma, female 44 years CX-1 0.50
Colon adenocarcinoma, female 55 years Colo320 DN 0.43
Ileocecal adenocarcinoma, male 67 years HCT-8 0.28
Colon adenocarcinoma Hs 587. Int 0.08
Colon adenocarcinoma, female 44 years HT-29 0.23
Colon adenocarcinoma, male 56 years LOVO 0.10
Colorectal carcinoma, male 32 years LS411N 0.33
Colorectal carcinoma, male 63 years LS513 0.26
Colon adenocarcinoma, 58 years LS 180 0.23
Colon adenocarcinoma, male 51 years SW 480 0.29
Colon adenocarcinoma, male 51 years SW 620 0.19
Colorectal adenocarcinoma, male 53 years SW 837 0.26

Testis cancer Embryonal carcinoma, testis, male 22 years NTERA-2 c1.DM 0.26
Embryonal carcinoma, testis, male 34 years CATES-1B 0.03
Testis cancer, male 15 years HS444(B)T 0.04

Gastric cancer Gastric adenocarcinoma, female 54 years AGS 0.07
Gastric carcinoma, male 55 years KATOIII 0.16
Gastric adenocarcinoma, male 62 years RF-1 0.30
Gastric adenocarcinoma, male 62 years RF-48 0.30
Gastric carcinoma, male 74 years Hs 746T 0.08
Gastric carcinoma, male NCI-N87 0.30
Gastric carcinoma, male 44 years SNU-1 0.09
Gastric carcinoma, female 33 years SNU-5 0.10
Gastric carcinoma, female 54 years SNU-16 0.25
Gastric adenocarcinoma, male 72 years 23132/87 0.16

Breast cancer Breast, non-tumorigenic, female 27 years HBL-100 ndb

Breast carcinoma, female 54 years T-47D 0.33
Breast carcinoma, female 69 years MCF-7 0.28
Breast adenocarcinoma, female 51 years MDA-MB-231 0.08
Breast carcinoma, female 63 years ZR-75-1 0.17

a 1 unit of UDG is defined as the amount of enzyme that releases 1 nmol uracil from standard UDG-substrate per minute at 30◦C.
UDG activity was measured in triplicates and presented as arithmetic mean.

b Not determined.
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Primer analysis software, version 5.0. PCR amplifi-
cation of genomic DNA by denaturation for 2 min at
96◦C followed by 35 amplification cycles with 30 s
denaturation at 96◦C, annealing for 30 s at 60–65◦C
and 1 min extention at 72◦C were carried out us-
ing a MiniCyclerTM (MJ Research Inc.). Annealing
temperatures were optimised for each primer pair.
Reactions contained 100 ng high molecular weight
genomic template DNA, 0.2mM of each primer,
250mM dNTP, 1.7–2.5 mM Mg2+ and 1.7 U Taq
polymerase in a total volume of 50ml. The reactions
were set up according to the protocol provided for
ExpandTM High Fidelity PCR System (Boehringer
Mannheim). PCR products were purified using the
Qiagen QIAquick-spin PCR purification kit (Qiagen).
Purity and yields of PCR products before and after
purification were estimated performing agarose gel
electrophoresis.

2.3. DNA sequencing

Internal primers for sequencing (Table 2) of both
strands of the PCR products were designed as de-
scribed above. Purified PCR products were sequenced
using an Applied Biosystems 373 or 377 DNA se-
quencer (PE Applied Biosystems) with ABI Prism
BigDye Terminator Cycle Sequencing Ready reac-
tion kit as instructed by the manufacturer. Conditions
for sequencing of PCR products were 30 cycles
with 30 s at 96◦C, 15 s at 50–54◦C (optimised for
each primer) and 4 min at 60◦C. Residual dideoxy
terminators were removed by ethanol precipitation
largely according to the manufacturer (PE Applied
Biosystems).

2.4. DNA sequence analysis

Initial analysis of sequences were performed using
ABI Prism DNA sequence analysis software. Ambigu-
ously called bases in the chromatograms were iden-
tified using the ABI Prism Factura feature identifica-
tion software. Sequences were accepted if less than
3% ambiguities were observed in the clear data rage.
Sequences from both strands of the PCR products
were compared with the wild type sequence by vi-
sual inspection using the ABI Prism Auto Assembler
software.

2.5. UDG-assay

All cell lines were grown according to recommen-
dations and harvested by trypsination for isolation of
DNA and activity measurements. Cell-free extracts
for activity measurements were prepared by resus-
pending cell pellets in 800ml assay buffer (20 mM
Tris–HCl pH 7.5, 60 mM NaCl, 1 mM EDTA pH 8,
1 mM DTT) prior to sonication for 3 min on ice (out-
put control 2.5, 30% duty cycle). Supernatants for de-
termination of enzyme activity were collected after
centrifugation at 14 000× g for 10 min at 4◦C. UDG
activity was assayed from appropriate dilutions using
[3H]dUMP-containing DNA as described previously
[26]. Protein concentration was determined by the Bio-
Rad protein assay.

2.6. Site-directed mutagenesis

The plasmid constructs containing promoter B
in the pGL2-Basic vector (Promega) are described
elsewhere [27]. The pGL2-Basic vector carries
the coding region for firefly (Photinus pyralis) lu-
ciferase. Site-directed mutagenesis was performed
using the QuickChangeTM Site-directed Mutagen-
esis kit (Stratagene). Mutagenesis primers (altered
base in bold italic) were for variant number 1:
ProB (998 C→ T): 5′-GCC GCT GTC CTTT C CAT
GGG CCG-3′. Variants 2 and 3 were introduced
consecutively into the same construct using ProB
(1034 A → G): 5′-GGC CAG CCA ATG GGGGG
ACG CGT CTC GGG GCC-3′ and ProB (1082
T → A): 5′-GCC GCA GGC CCT CCAAA GGC TCG
GTG CGC TG-3′. All mutations were confirmed by
sequencing.

2.7. Transfection assay

Transfection of HeLa cells was performed using
3ml FuGENE 6 (Boehringer Mannheim) per trans-
fection reaction according to recommendations from
the manufacturer. DNA (1mg) of each reporter con-
struct was used per 2.5 × 105 cells plated in 60 mm
culture dishes 24 h prior to transfection. Aliquots of
150 ng pRL-TK vector encoding Renilla luciferase
were co-transfected as an internal control. Activities
expressed from the firefly luciferase reporter gene
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and the Renilla luciferase control in transfected cells
were detected using the Dual-LuciferaseTM Reporter
Assay system (Promega) as recommended by the
manufacturer in a Turner Design luminometer.
pGL2-Basic was used as negative control in each
transfection experiment.

3. Results

UDG-activity was measured in nine normal and 41
cancerous cell lines. Activity measurements (U/mg
protein) are shown in Table 1, right column. UDG
activities for individual cell lines within groups
are shown in Fig. 1. From this, we see that the
UDG-activity in normal fibroblasts is low and con-
sistent within the group. UDG activities in the cancer
cell lines are highly variable. With exception of the
testis cancer cells CATES-1B and Hs444(B)T, cancer
cell lines exhibited as high as or higher activity than
normal cells. Lowest activity (0.03 U/mg protein)
was found in the testis cancer cell line CATES-1B.
Highest activity was found in the spontaneously
transformed keratinocytt HaCaT 72 PS (0.70 U/mg
protein). The group called various cancer cell lines in
Table 1 is included in Fig. 1 even though it comprises
a non-uniform group since neither the mean UDG ac-

Fig. 2. Schematic organisation of the humanUNG gene. Exons are marked with roman numbers. Translated exons are shown as black
boxes and the non-translated region of exon VI is shown as a hatched box. Sequenced regions are indicated above the gene structure and
positions of nucleotide substitutions are indicated underneath. The substitutions are for simplicity called 1–12. The position and nature of
substitutions are in accordance with the sequence submitted to GenBank under Accession No. X89398.

Fig. 1. UDG-activity in normal fibroblast and cancer cell lines
based on data in Table 1. Groups of cell lines are abbreviated as
follows: No: normal, Ga: gastric, Co: colon, Va: various, Te: testis,
Br: breast. Average activity for each cell line (d); average activity
for each group of cell lines representing a common type (×).

tivity or the variance are significantly different from
the other uniform groups.

A sequencing strategy was set up to reveal variant
alleles within theUNG gene. All seven exons were
amplified by PCR using primers upstream and down-
stream of exon–intron boundaries. Both promoters (PA
andPB), intron IV (IntIV) and the untranslated part of
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Table 4
Nucleotide substitutions in theUNG gene

Type Sample 1 2 3 4 5 6 7 8 9 10 11 12

UNGa +b

Normal CCD32
CCD34 + + + +(h)c

CCD39 +(h) +(h) +(h)
CCD43 + + + +
CCD1064 +
CCD1070
CCD1O72 + + +
CCD1O77 +
CCD1O79
Jxd +

Noonane Noonan 1 +
Noonan 2 +
Noonan 3
Noonan 4
Noonan 5
Noonan 6 +
Noonan 7 + + + +
Noonan 8 + + +
Noonan 9
Noonan 10 +

Gastric AGS +
KATOIII +(h)
RF-1
RF-48
Hs746T +(h) +(h) +(h)
Nci-N87 + + +
Snu-1 + + +
Snu-5 +
Snu-16 + + +
23132/87 +(h) +(h) +(h) +(h)

Colon CXl + + + +
Colo320
HCT-8 + + + + +
Hs587 + + + + +
Ht-29 + + + +
LOVO
LS411N + + +
LS513 +
LS180 + + + +
SW480
SW620
SW837

Testis NTERA-2 +
CATES-1B +
HS444(B)T +

Breast HBL100
MCF-7
MDA-MB-231 + +
T47-D + + +(h)
ZR-75-1 +
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Table 4 (Continued)

Type Sample 1 2 3 4 5 6 7 8 9 10 11 12

Various A172 + + +
A253
A427 + +
A549
HaCaT
HeLa +(h)
Hg1525 + + +
RBWERI + +
RBY79 +
U87 +(h)
SKLU1
WI38

a P1-clone from a human genomic library containing the wholeUNG gene.
b + indicate presence of nucleotide substitution.
c (h) denotes homozygous state.
d Jx-patient, see M & M.
e These samples comprise five normal samples and five from patients with Noonan syndrome.

Fig. 3. Allelic frequencies of nucleotide substitutions in theUNG
gene. Numbering of substitutions are the same as in Fig. 2. The
presence of substitution number 1 is analysed in 42 cancer cell
lines and 40 non-cancerous sources. The other frequencies are
based on screening of 42 cancer cell lines and 20 non-cancerous
sources. Numbers of substitutions retrievedn, are indicated above
the bars.

exon VI (VI NTR) were included in the analysis to get
information on sequence variation within non-coding
regions. The amplified regions are illustrated in Fig. 2.
In addition to DNA from cell lines listed in Table 1,
we included DNA from 10 individuals of whom five
are diagnosed with Noonan syndrome and one patient

sample, Jx. TheUNGgene was screened for sequence
variation from a total of 62 sources.

We revealed 12 different nucleotide substitutions
(for simplicity called 1–12 in Fig. 2) in the sequence
compared to the sequence from clonedUNG gene
(GenBank Accession No. X89398). The individual se-
quence variants are described in Table 3. All cell lines
and which sequence variants they contain are shown
in Table 4. Nucleotide substitutions were found in
67% of the cell lines. As can be inferred from Fig. 2,
no nucleotide substitutions were found in any of the
translated exons. Four base pair substitutions were lo-
cated in promoter B. A transition (C→ T) was found
in a putative binding site for transcription factor AP2
in position 998 (number 1). Sequence variants in po-
sition 1034 (A → G, number 2) downstream of a
CCAAT-box and within a Yi element in position 1082
(T → A, number 3) always appeared together sug-
gesting they are genetically linked. The last variant
identified in promoter B resides downstream of a Yi
element in position 1089 (G→ A, number 4). Inter-
estingly, variants 1 and 4 were only identified in can-
cer cell lines with allele frequencies of 0.1 and 0.01,
respectively (Table 3). Variants 2 and 3 were common
both in normal and cancer cell lines with allele fre-
quencies 0.18 and 0.21, respectively. For verification
of PB variants 1, and 2 and 3 together restriction en-
zyme digests withBpmI andBsmFI were used, respec-
tively (data not shown). The other variant alleles were
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all identified in introns (numbers 5–10), and two vari-
ants (11 and 12) were identified in the non-translated
part of exon VI (Table 3).

Of the 12 nucleotide substitutions identified, 10
were transitions and two were transversions. These
were mostly found in a heterozygous state, al-
though in three of the samples, one normal fibroblast
(CCD39) and two gastric cancer cell lines (Hs746T
and 23132/87), all the observed substitutions appeared
in homozygous state (Table 4). Assuming homozy-
gosity when only one allele was found, the allelic
frequencies of the various nucleotide substitutions
within the cell line types are summarised in Table 3.
Allele frequencies for the different sequence variants
from normal and cancerous samples are shown in
Fig. 3. As seen in the figure, several of the substitu-
tions had similar frequencies in normal and cancerous
cell lines. Moreover, none of the allelic variants can
be correlated with UDG activity measurements in
extreme low or extreme high range.

We were intrigued by the existence of many vari-
ant alleles in promoter B compared to other regions
of the gene. To analyse whether any of the variants
could affect transcription from the promoter we pre-
pared and transfected chimaeric promoter–luciferase
constructs harbouring substitutions 1 and 2+ 3 into
HeLa cells. Previous work performed in our labora-
tory indicated functional interaction between the two
promoters [27]. We therefore analysed the effects of
the substitutions in constructs harbouring promoter B
only (pGL2-PB) and in constructs comprising both
promoters and the intervening exon IA (pGL2-PAB).
As can be seen from Table 5, variants 2 and 3 together
did not change transcription from either promoter
construct. Variant 1 altered expression of luciferase
significantly although the effect differed in the two
constructs. Transcription was up-regulated approxi-
mately 1.5-fold from promoter B alone (pGL2-PBm1),
but down-regulated 1.4-fold in pGL2-PABm1, har-
bouring both promoters and the intervening exon IA.
Substitution number 1 was present only in cancerous
samples and with high frequency (allele frequency
of 0.1). To ensure this was not an artefact from a
difference in sample sizes between normal and can-
cer cells, we screened 20 additional DNA samples
isolated from blood taken from normal individuals
for this particular sequence variant without detecting
it.

4. Discussion

In our material derived from 62 human sources, we
identified 12 different base pair substitutions in the
UNG gene. In total 110 variant alleles were identified
in 422 kb of non-coding DNA (3.4 kb non-coding
DNA sequenced× 2 alleles× 62 samples), corre-
sponding to one substitution per 3.8 kb of non-coding
sequence of theUNG gene. In contrast, no sequence
variation was found in the coding regions which
represented 129 kb in total (1.04 kb coding DNA
sequenced× 2 × 62). Thus, the allelic variation in
UNG in these samples is considerably lower than the
expected values of 0.5–2 variants per kb [28]. The
sequence variation within nucleotide excision repair
genes was recently found to be one variant allele in
every 2.3 kb in coding and 2.1 kb in non-coding re-
gions [23]. Thus, there is apparently less variation in
the UNG gene than in genes for nucleotide excision
repair. Of the 12 substitution variants observed, 10
(83%) were transitions and two (17%) transversions.
This is in good agreement with previous reports
showing 75 and 70% transitions [23,29]. Only one se-
quence variant (number 7 in intron IV) was a G→ A
transition at a CpG dinucleotide. This is lower than
expected since CpG dinucleotides are frequently mu-
tated in human cells [30]. This discrepancy could be
a consequence of genomic hypomethylation seen in
human cancer cells [31]. Substitution variants in pro-
moter B correspond to one substitution every 0.95 kb
(59 variants/(0.5 × 2 × 62) kb)), thus, conforming
with the expected occurrence of allelic variants [28].
Surprisingly, no sequence variation was observed
in promoter A, which represents 37 kb of sequence
(0.3 × 2 × 62). Several substitution variants were
found to be present in cancer cell lines, but absent in
normal cell lines. The frequencies of most of these
substitutions were low (1–2%), thus, the far lower
number of normal compared to cancerous cell lines
included in the study could account for this difference.
Taken together, the number of nucleotide substitutions
in normal cell lines was one substitution per 2.1 kb
whereas in cancer cell lines, one variant was found
per 3.5 kb. The opposite was observed in promoter B
where one substitution per 1.4 and 1 kb was found in
normal and cancerous samples, respectively.

In some cell lines, all identified sequence variants
appeared to be homozygous (Table 4). Substitutions
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Table 5
Relative activities of chimaeric promoter–luciferase constructs in HeLa cellsa

Promoter constructs Mutated element Luciferase activity (%)

pGL2-PB CCCATGGG(AP2: 998–1005) 100± 6
CCAATGGGAA (CCAAT: 1026–1035)
CCCTCCTGGCT(Yi: 1076–1086)

pGL2-PBm1 TTT CCATGGG (AP2: 998–1005) 146± 6

PGL2-PBm2 + 3 CCAATGGGGA (CCAAT: 1026–1035) 90± 6
CCCTCCAAAGGCT (Yi: 1076–1086)

PGL2-PAB CCCATGGG(AP2: 998–1005) 100± 6
CCAATGGGAA (CCAAT: 1026–1035)
CCCTCCGGGCT(Yi: 1076–1086)

pGL2-PABm1 TTT CCATGGG (AP2: 998–1005) 71± 2

PGL2-PABm2 + 3 CCAATGGGGA (CCAAT: 1026–1035) 93± 7
CCCTCCAAAGGCT (Yi: 1076–1086)

a HeLa cells were transiently transfected with promoter–luciferase constructs (1mg/2.5× 105 cells/60 mm dish). Luciferase activity was
measured after 24 h. Results are given as percent of luciferase activity expressed from PGL2-PB and PGL2-PAB alone. Transcription factor
binding motifs are underlined and position of sequence shown. Mutations are indicated in bold italic. Data are presented from two separate
experiments as the mean± S.E.M., each carried out in triplicate.

2 + 3 in promoter B are present with allelic frequen-
cies of 0.18 and 0.21 in normal and cancer cells, re-
spectively. Three cell lines showed homozygosity for
these substitutions (CCD39, Hs746T and 23132/87)
whereas 19 were heterozygous and 40 were wild type.
Thus, these variants might exist as polymorphisms
and identification of homozygous variants is not un-
expected. Variant 10 has allelic frequency of 0.23 and
0.19 in normal and cancer cell, respectively, and this
variant might similarly to 2+ 3 exist as a polymor-
phism. However, all homozygous 2+ 3 variants are
found in concert with homozygosity for substitution
number 10. This might be indicative of loss of het-
erozygosity (LOH) in these cell lines. The gastic can-
cer cell lines were analysed for LOH (data not shown).
Hs746T, which appeared homozygous for variants
2 + 3 and 10 was homozygous for highly poly-
morphic markers in exon II and intron V. This cell
line was also homozygous for markers centromeric
(D12S1583) and telomeric (D12S1605) [32] of the
UNG gene. Thus, the apparent homozygosity of vari-
ants in this cell line is probably a result of LOH.
Similarly, the gastric cancer cell line 23132/87 that
appeared to be homozygous for substitutions 2+ 3,
9 and 10, exhibited only one form of allUNG mark-
ers and could therefore have undergone LOH. The

normal fibroblast cell line CCD39, homozygous for
2 + 3 and 10 was heterozygous for the centromeric
marker and homozygous for the telomeric and intron
V markers (data not shown). Thus, some rearrange-
ments have occurred in the locus but since no marker
in the UNG promoter gene has been evaluated, we
cannot conclude LOH in this cell line. Two apparently
homozygous substitutions, numbers 12 and 5, were
identified in CCD34 and T47D, respectively. These
variants were not identified in other cell lines. Identi-
fication of a homozygous variant without identifying
any heterozygous variants is unlikely, but both cell
lines were heterozygous for other sequence variants
(see Table 4) and CCD34 was heterozygous for all
polymorphic markers. Another puzzling observation
is the appearance of substitution 1 in homozygous
form in three cell lines (KATOIII, HeLa and U87) and
in heterozygous form in only two cell lines (LS513
and Nci-N87). HeLa and U87 were heterozygous
for the centromeric and intron V markers and KA-
TOIII and Nci-N87 are heterozygous for the intron
V marker, suggesting that bothUNG alleles are at
least partly, intact in these cell lines. The existence
of local deletions in one allele might in principle,
explain these findings. However, since only one frag-
ment length of the PCR products were identified on
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agarose gels, the deletions must include binding sites
for at least one of the PCR primers used to amplify
the region.

In the present study, UDG activity was measured
in nine normal fibroblast and 41 cancer cell lines
of various types. No correlation could be found be-
tween the measured UDG activity and presence of
promoter variants even if one mutation in an AP2 el-
ement in promoter B affected transcription from the
promoter. We cannot conclude whether mutations in
promoter B have effect on UNG1 transcription specifi-
cally since the activity assay does not discriminate be-
tween UNG1 and UNG2. To measure UNG1 activity
specifically we would need to measure UDG activity
in mitochondrial fractions of all cell lines. This is la-
borious and beyond the scope of the present study. It
has previously been demonstrated that UDG activity
[33,34] and transcription from both promoters were
cell cycle regulated showing induction in late G1 to
early S-phase [27]. Moreover, UNG2 associates pref-
erentially with replicating SV40 DNA [35], is present
in replication foci [36] and is highly expressed in repli-
cating tissue [27]. Measures were not taken to relate
UDG activity to growth rate of the cell lines. This
hampers interpretation of correlation between UDG
activity and sequence variation in the promoter. The
main finding remains however, that mutations abol-
ishing UDG activity were not identified in these cell
lines.

From our data, it appears that theUNG locus is
highly conserved also within humans as it is be-
tween species [2,37]. If mutations inUNG result in
a slight reduction of fitness the mutants would ex-
perience negative selection and never proliferate to
dominate a rapidly dividing culture. This scenario
could provide an explanation for the absence of hu-
man cancer-predisposition syndromes caused by BER
deficiency. Mutated MMR (mismatch repair) genes
might in contrast provide a selective advantage to
the growing tumour cell to prevent it from being
eliminated. Indeed, it has been proposed that certain
MMR deficient cells escape elimination by the im-
mune system [38], which might explain why these
genes are frequently found to be mutated in tumours
whereas BER genes are not. Variant alleles have been
identified in tumour tissue for other BER proteins in-
cluding hOGG1 DNA glycosylases [39,40] and DNA
polymeraseb [41,42]. There is no evidence linking

those variant alleles to tumour initiation. However,
subtle mutations in single enzymes might have effect
when combined and a natural follow-up of the present
study would be to measure BER capacity from a
uracil-containing substrate.

5. Conclusion

TheUNGgene appears to contain less than expected
sequence variation both in coding and non-coding re-
gions. However, we have identified considerable se-
quence variation in non-coding regions of theUNG
gene in cell lines derived from normal fibroblasts and
tumour tissue. None of the sequence variants was ac-
companied by significantly reduced UDG activity. In
conclusion, mutations affecting the function of human
UNG gene are seemingly infrequent in human tumour
cell lines.
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