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1. INTRODUCTION 

Glioblastomas, also called glioblastoma multiform or primary brain tumors, are the most 

malignant brain tumors defined as grade IV (most aggressive) in the WHO classification 

system (1). It is the most frequent, accounting for approximately 12-15% of all brain tumors. 

In a study of the Swiss population occurring between 1980 and 1994, the incidence rate per 

100000 population/year was 3.32 in males and 2.24 in females (2). The survival rates in the 

same study describe the aggressive behavior of the glioma as 42.4% survived the six first 

months, 17.7% for one year and 3.3% at the second year after diagnosis. Despite progress in 

surgery, radiotherapy and chemotherapy, the overall survival of patients with glioblastoma 

remains extremely poor. Very few therapeutic substances have made their way into phase III 

trials, and the results are in general disappointing. One new concept is the grafting of alginate 

encapsulated cells, which produce molecules with anti-tumor activities, into the resection 

cavity in patients operated for glioma. The concept is to arrange a multi tumor attack by 

inserting alginate bioreactors containing therapeutic cells secreting different proteins with 

anti-tumor effects, both targeting the blood-vessels supply (anti-angiogenic) and more specific 

targeting of receptors or growth factors involved in tumor expansion. The alginate 

microcapsules provide a barrier between the cells and the host immune factors as well as 

ensuring a mild environment for the therapeutic cells. The encapsulation is also a way of 

keeping the cells in a closed compartment and thus controlling the distribution of the 

therapeutic cells in the host. Encouraging results has been achieved based on this concept 

using bioreactors secreting endostatin (3-5), angiostatin (6, 7) and IL-2 (8). The continuous 

delivery and local supply of proteins preserved by the bioreactors may potentate therapeutic 

effects (9) and also may reduce side-effects affected by systemic delivery (10). By using 

encapsulated cells for protein delivery, problems related to the shelf life of a protein, stability 

and biological activity may be overcome. The success for cell encapsulated cancer treatment 

will in addition to defining efficient targets of receptors and factors involved in tumor growth 

and migration, rely on the appropriate choice of alginate material and selection of 

encapsulation methods as well as the cell-source. The use of non-autologues cells engineered 

to produce therapeutic proteins may extend the targets for treatment as well as the availability. 

To succeed, this system has to be thoroughly explored and optimized according to cell-

compatibility and immunocompatibility issues, which has been the focus of this work. A 

functional system can also be used for the treatment of various diseases different from cancer.  
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1.1 The concept of immunoisolation 

The central concept of an immunoisolation membrane is to separate the implanted cells from 

the body where this membrane ideally prevents components of both the cellular and humoral 

immune response from entering into the encapsulated cells, but permits passage of the 

secreted therapeutic proteins. At the same time, the transport properties of the membrane and 

surrounding tissue must permit sufficient access of nutrients, as glucose, transferring, albumin 

and oxygen, and the removal of the secreted metabolic waste products. A simple illustration 

of the concept is given in figure 1. 

Figure 1. The concept of immunoisolation 

A conflict regarding the permeability of the immunoisolating membrane may evolve as the 

membrane must allow proteins important for cell functions (transferring, albumin) to pass into 

the cells, while smaller proteins like TNF and other cytokines ideally should be kept out. 

Whether an immunoisolating barrier may be enough to protect the encapsulated cells will rely 

on different aspects as the permeability of the membrane, the cell-source (iso-, allo-, xeno-, 

auto-grafts), and whether a host response is initiated against the encapsulated material.  
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1.2 Mechanisms involved in the host response to bioreactors 

The immune mechanisms involved in the host response to the cell-containing device are 

diverse, involving cellular and humoral immune responses mediated against the encapsulated 

cells as well as inflammatory responses (foreign body reaction) against the material itself. An 

overview of the mechanisms involved is given in figure 2.  

Figure 2. Possible immune mechanisms involved against the encapsulated cells (simplified). 

Adapted and modified after Colton (11) and Mikos (12). 

The foreign body response (inflammation) against implants can be divided into phagocyte 

transmigration, chemotaxis and adhesion to the implant surface. Immediately upon 

implantation many proteins adsorb to the surface in native to denatured conformations, and 

this process is suggested to initiate the foreign body reaction. The denatured proteins may 

express epitopes that are recognized by receptors (including FcR, complement receptors, 
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integrins) expressed on the inflammatory cells. Fibrinogen seems to be especially important 

for the initiation of the inflammation process as it denaturizes after adsorption to the surface 

of the biomaterial and exposes epitopes that are recognized by the integrin CD11b/CD18 

receptor on the phagocytes (13, 14). Hydrophobic surfaces are suggested to initiate 

denaturizing of proteins, and thus mediate an increased inflammatory reaction. Factors like 

chemical composition, surface charge, porosity, roughness and wettability (ability to bind 

water) is important for the protein adherence (15).

The recruitment of inflammatory cells seems to be mediated by mast cells (that constitutes 2-

5% of the peritoneal cells) secreting histamine (16). Neutrophils are the first cells to occur at 

the implantation site and the surgical intervention itself seems to initiate their appearance  (17, 

18). Within hours monocytes appear at the implantation site, adhere to the surface and 

differentiate into macrophages. The macrophages will recruit leukocytes and platelets, cells 

that are key players in a normal wound healing. Adherence to the surface initiates an 

upregulation of the cytokine secretion and subsequently proinflammation. Cytokines that have 

been found after exposure to biomaterials at various sites are  IL-1, IL-6, IL-8, TNF, MCP-1, 

TGF  (17, 19-22).

The inflammatory process is comparable to a normal wound healing process, except that the 

inflammatory cells are unable to remove the biomaterial (18). As the implants are 

significantly larger than the adhered macrophages they can not phagocytose the foreign body 

and the frustrated macrophages fuse together to form multinucleated foreign body giant cells 

that often persist for the lifetime of the implant (18). These processes lead to a chronic 

inflammation and subsequently to the formation of an avascular collageneous fibrous tissue 

typically 50-200μm thick. The process involves proliferation of fibroblasts and synthesis of 

collagen. The formation of an avascular collagenous layer around the device will move the 

oxygen and nutrition away from the surface of the device, thus leading to an impaired cell 

functioning of the encapsulated cells. The intensity of the responses is dependent on the extent 

of injury created by the implantation, the site of implantation, the size and shape of the 

implant and the biomaterial itself.  

Angiogenesis may also be initiated during the inflammation, and the membrane surface 

architecture may contribute to the initiation of vascularization of the device. Factors like pore 

size (holes large enough for cells to enter) and the structure that surrounds the pores are 
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shown to be important for the vascularization. Structures that hinder the cells spreading on the 

surface initiate the vascularization process (23). The vascularization may be beneficial giving 

a better supply of oxygen and nutrients to the encapsulated cells, thus allowing a higher cell 

number within the device.  

In the cases of minor foreign reactions few cells adheres to the implant and no blood vessel 

formation occur. In those cases the oxygenation and nutritional supply will rely on diffusion, 

which may require a lower encapsulation cell-number for proper functioning.

The cellular responses include the specific recognition of foreign material, cytolytic 

responses and the onset of inflammatory reactions through the antigen recognition pathway. 

Graft rejection is caused primarily to Class I major histocompatibility complex (MHC) 

expressed on the grafted cells mediated through direct contact with the host T-lymphocytes. 

The Class I MHC molecules on the grafted cells are recognized directly or in association with 

peptides (derived from the grafted cells through endocytic pathways) by the T-cell receptor 

(TcR) on the host CD8+ (cytotoxic) T-cells (or in cases with organ transplantation CD4+ cells 

may recognize Class II MHC molecules on donor APC). Recognition of MHC I antigens from 

grafted cells by the host CD8+ cells can lead to cytolytic killing of the cells. By encapsulation 

of the grafted cells this direct contact to the host T-lymphocytes can be prevented, and thus 

killing of the grafted cells are hindered. The direct pathway seems to be most important for 

allo-rejections  and less important as the phylogenetic disparity between the species increases 

(24).

The indirect way of antigen recognition is mediated through antigens associated with Class II 

MHC on antigen presenting cells (macrophages, monocytes, dendritic cells, B-cells) to host 

CD4+ cells. The subsequent activation of T helper cells will promote and regulate the 

humoral- and cell-mediated immune responses and the onset of the inflammation process. 

Immunogenic antigens crossing the immunoisolating barrier may initiate this pathway.  

Proteins secreted by live cells, cell surface antigens, cytoplamic proteins, phospholipids and 

DNA liberated from dead cells may function as the antigens. As the phylogenic discrepancy 

between the species increases, more cell products may be recognized as different and thus 

presented by the indirect pathway. Geller et al. has demonstrated that by restricting the release 

of xeno-antigens through minimizing the pores in the immunoprotecting membranes, it has 
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been possible to protect the xenografted cells from host destruction (23). Figure 3 gives an 

overview of the involvement of the indirect and direct pathways to encapsulated cells.  

While the effector cells are easy to keep out from the encapsulated cells, the ingress of 

humoral factors including cytokines, antibodies and complement may be more difficult to 

prevent. With transplantation of xenogeneic tissue without immunosuppressant or a protective 

membrane, a hyperacute rejection response will occur within hours. This is mediated through 

naturally occurring antibodies (IgM, IgG) to host proteins that induce a complement attack. 

Xenografts may therefore require membranes preventing the passage of humoral components 

of the immune system. If the required immunocellular and complement components are 

excluded, antibodies alone generally will not destroy the targeted cells. An exception would 

be the binding to ligands essential for cell survival. 

Figure 3. Overview of the interaction of the direct and indirect pathways of antigen 

presentation with immunoisolated cells. Adapted from Gill (24) and Kuby (25) . 
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Complement mediated lysis of encapsulated cells would be possible if the C1q component 

(410kDa) of the C1 molecule (900kDa) could bind to an aggregate of IgG or an individual 

IgM molecule on the surface of the cell (12). This would initiate the classical complement 

cascade involving molecules of lower molecular weights. The alternative pathway may be 

activated if the C3 molecule (195kD) penetrates, as it is the component of highest molecular 

weight in the pathway and a key component in forming the C3 convertase. Macrophages and 

fibroblasts may be local suppliers of the components in the C1 macromolecule. An additional 

effect could be the opsonifying of the capsule membrane with IgG, C3b and iC3b which may 

attract macrophages through complement receptors and the FC  receptor.  

The last danger evolved from the host immune system for the encapsulated cells may be the 

highly reactive oxygen species, nitrogen intermediates and free radicals secreted by the 

macrophages that have non specific toxic effects on the cells. These molecules have a short 

lifetime and act locally. The harmful effect of these will depend on how far they diffuse 

before they disappear as a result of chemical reactions.  

CNS (Central Nerve System) has been considered as an immune privileged site as it contains 

the blood-brain barrier preventing uncontrolled influx of proteins and cells, lack of antigen 

presenting cells, rare expression of MHC molecules, prolonged survival of allogeneic grafts 

and the lack of classical lymphatic drainage (26). However, the CNS is not immunological 

inert. Activated T-cells are able to cross the blood-brain barrier and there are pathways for 

lymphatic drainage from the brain interstitial fluid affecting antibody production (26). 

Activated T-cells also seems to have the ability of activating microglia (monocytic origin) and 

astrocytes to act as antigen-presenting cells (27). Brain cells (astrocytes, glial cells and 

neurons) can produce almost all the complement proteins and experiments indicates that the 

complement is involved in both pro- and anti-inflammatory reactions within the brain (28). 

Macrophages and lymphocytes are commonly found within malignant gliomas (85-100% and 

88% in the investigated cases respectively), whereas NK cells are more rarely found (9% of 

the cases) (29). Brain injury activates the formation of gliosis, a process involving activation 

of astrocytes and invading cells of the peripheral immune system leading to upregulation of 

surface molecules and secretion of cytokines as IL-1,  IL-6, INF- , TNF  , TGF   and MCP-1 

(30, 31). Inflammatory reactions involving microglial proliferation, gliosis and leukocyte 

infiltration has been found after implantation of different materials in the brain (32, 33). 
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Active immune mechanisms are therefore expected in the implantation area in the tumor 

resection cavity. 

1.3 Devices used for cell transplantation 

Devices used as protection for transplanted cells exist in different shapes and sizes like 

vascular chamber types, hollow fibers, flat sheets, and microcapsules as illustrated in figure 4. 

Figure 4. Different devices for cell encapsulation. Adapted from Nastruzzi et al. (34) with 

addition from Li et al. (35). 

Vascular chambers are intravascular devices consisting of a tube through which blood 

flows, on the outside the implanted cells is contained within a housing. The device is 

implanted as a shunt in the cardiovascular system. These types of devices have been used 

successfully within islet transplantations in dogs (36), but in humans only partially 

hyperglycemia was achieved (37). A high blood flow is suggested to prevent blood cells from 
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attachment. Drawbacks as major surgery producing a permanent break in the cardiovascular 

system and thrombosis that may require permanent addition of anticoagulants, make 

extravascular devices more attractive.  

Extravascular devices are implanted in tissue subcutaneously or in a body space such as the 

peritoneal cavity. Hollow fibers have been used within the brain for site specific delivery of 

neuroactive molecules in animal models of Parkinson disease (38, 39), Huntington’s disease 

(40) and chronic pain syndrome (41). Clinical trials for treatment of chronic pain (42), 

amyotrophic lateral sclerosis (ALS) (43) and Huntington’s disease (44) using these devices 

have been performed. The implants have been placed either in subarachnoid space or in the 

brain parenchyma depending on the nature of the disease.  In 2003, a clinical trial to treat 

retinitis pigmentosa was initiated (http://clinicaltrials.gov). Hollow fibers are typically 0.5-

2.5cm long and have inner space of 600-900μm where the cells are embedded. The devices 

provide a defined molecular cut off of typically 50kDa or 280kDa  (38, 39, 45). Within the 

hollow devices, the cells are usually enclosed in a supportive matrix of collagen or alginate, or 

adhered to fiber yarn scaffolds which give support and better survival of the cells (35). The 

limitations are however low cell survival due to restricted nutrient supply and low loading 

capacity thus a high implantation volume might be required for delivery of insulin. As only 

small amounts of neural factors are required for treatment of neuronal disorders, the loading 

capacity has not posed a problem for delivery to brain disorders. Another problem posed by 

hollow fibers implanted outside the CNS has been fibroblast overgrowth which restrict the 

nutritional supply to the encapsulated cells (34, 45, 46). 

Flat sheet immunoisolating membranes such as TheraCyte are constructed with a porous 

surface that initiates vascularisation of the device (23). This ensures a high supply of nutrients 

allowing a high cell density. The devices are 1x4cm and holds up to 40μl of cells or tissue. 

The outer membrane contains pores of 5μm that initiates the vascularisation, while the inner 

immunoisolating membrane have pore size of 0.4μm. Experimental models have shown that 

this device delivered human growth hormone for six months in juvenile nude rats (47), and it 

has also been used for cancer treatment in mice (23). TheraCyte protect allogeneic tissue but 

not xenogenic tissue. The allogeneic protection is achieved by preventing entry of host cells. 

TheraCyte has been used for transplantation of allogeneic parathyroid tissue in humans (48). 

The tissue quality was however affected by the device which resulted in extensive fibrotic 

reactions.
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Microcapsules and microbeads are spherical devices with a diameter usually between 400-

800μm. The pore sizes vary according to the materials used and the encapsulation protocols. 

The advantage with small sized devices is the low diffusion distance that ensures easy 

nutritional and oxygen access, thus vascularization is not required. As the cells are delivered 

within multiple spheres, the functioning of the device will not cease by the rupture of some 

microcapsules. The implantation requires only a small surgical procedure were the capsules 

are injected. One disadvantage is however the retrieval of the devices, which have proven to 

be difficult. Different types of microcapsules can be fabricated. Natural polymeric material as 

alginate, agarose or cellulose sulphate may be used. Alternatively, synthetic polymeric 

material as poly-ethylene glycol (PEG) and hydroxyethyl-methacrylate-methyl-methacralate 

(HEMA-MMA) or a complexation of different polymers as in the alginate-cellulose sulphate-

poly(methylene-co-guanidine) capsule can be used.  

Agarose capsules are formed by thermally reversible gelling and forms a hard and rather 

brittle gel (49). They are compatible with islets and possess a satisfactory immunobarrier 

competence to allogeneic grafts. A potential technical problem is the capsule polydispersity.

Cellulose sulphate capsules have been used in delivering ifosfamide to tumor bearing mice  

(50, 51) and in phase I/II clinical trials of patients with advanced stage pancreatic carcinomas 

(52). In the clinical trial the cellulose sulphate bioreactors doubled the median survival time 

and the one-year survival rate was three times better than historical controls. The capsules are 

formed from 2-5% cellulose sulphate and 5% FCS (fetal calf serum) and precipitates within a 

bath of 3% polydiallyldimethyl ammonium, forming capsules within seconds (50). Both in 

nude mice and immunocompetent mice the capsules has generated a slight foreign-body 

reaction consisting of macrophages and granulocytes after implantation in pancreas (50). 

PEG has been used to create conformational coating that tightly envelops each islets, thus 

reducing the encapsulation volume (53). The fabrication procedure of PEG involved laser-

induced photopolymerization and eosin that may present a limitation. No process of safety has 

been performed and limited information exists on immunobarriers competence and immuno-

compatibility issues (34). This technique is most likely not suitable for encapsulation of cell 

lines. However, PEG microcapsules have the capability of forming protein-repellent surfaces 

and may potentially be used as an outer coating on other spherical capsules to reduce 

overgrowth reactions. 
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HEMA-MMA is a polyacrylate copolymer prepared by solution polymerization (54). It 

possesses mechanical strength, elasticity and durability over time which is consistent with the 

poly(MMA) component and has some hydrophility as it possesses 25-30% water uptake 

consistent with the poly(HEMA). The technical steps during the encapsulation process may 

however be harmful to cells as they are exposed to shear forces and organic solvents. HEMA-

MMA capsules has been used in rat brains for the delivery of dopamine for treatment of 

Parkinson’s disease (55). The capsules evoked a moderate inflammatory response as reactive 

astrocytes were found adjacent to the implant. Severe inflammatory reactions were found after 

intraperitoneal implantation of allografts encapsulated within HEMA-MMA capsules using a 

rat model (56). 

The complexation with different polymers as in the alginate-cellulose sulphate-

poly(methylene-co-guanidine) capsule has the advantage of combining features from the 

different polymers, and this makes it possible to vary the capsule permeability (57). However, 

the most efficient way to control the permeability has been by coating with a secondary 

polycation like poly-L-lysine. In vivo studies in diabetic mice resulted in a normalized blood 

glucose level for 6 months (58).  

Other microcapsules based on complexation with different polymers are Alginate-chitosan-

polyethylene glycol capsules (59), Carrageenan-oligochitosan capsules (60) and Alginate-

oligochitosan capsules (61). These capsules are less characterized according to cell viability 

and immunocompatibility. 

Alginate is most the frequent used material for microencapsulation due to its gentle 

entrapment process and high immunocompatibility. Alginate gel has a high wettability (62) 

and surfaces coated with alginic acid has a low ability to adsorb proteins with no adhesion of 

fibrinogen (63), which may be advantageous for its immunocompatibility. A disadvantage of 

the alginate capsules has been the stability, but the properties can be varied according to 

encapsulation protocol and alginate material and alginate capsules with high stability are 

possible to achieve (discussed in section 2.1.3 and 2.2.1). Alginate capsules have been used in 

a range of experimental animal models (presented in section 3) also comprehending delivery 

within brain (64-66) and is the only microcapsules that have been used within experimental 

glioma models (3, 5). Clinical trials are restricted to some few implantations into diabetic 

patients. The first trial was performed in a diabetic patient with a functioning kidney graft 
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which remained normoglycemic for 9 months on low-dose maintenance immunosuppression 

(67). Phase I/II studies are presently ongoing to determine the safety and effectiveness of 

alginate microcapsules containing pancreatic islets (http://www.amcyte.com). 
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2. ALGINATE CAPSULES 

Alginate capsules are formed by dripping an alginate solution (~1.8%) into a bath with CaCl2

or BaCl2. The alginate will form spherical droplets as it moves towards the gelling solution, 

and within minutes (<5min for ~500μm beads) in the gelling solution, the droplets form 

ionothropic gel beads as the divalent cations (Ca2+, Ba2+) and alginate complexes. The 

procedure is simple and gentle for the cells. Droplet formations can be performed by crushing 

the alginate solution through a syringe, but methods that better controls the distribution of size 

are preferred. This includes laminar airflow devices, vibration devices (68), cutting devices 

(69) and the electrostatic voltage system (70) that is used by our labarotory. After gelling, the 

beads can be stabilized by complexing the alginate (polyanion) with a polycation, at the same 

time reducing the pore size. The polycation poly-L-lysine (PLL) is most commonly used; it is 

estimated that around 90% of the rapports on alginate capsules use PLL (71). Other 

polycations  may be chitosan (72, 73), poly(methylene-co-guanidine) (74) or poly-L-ornithine 

(75). Since the PLL is positively charged, an outer neutralizing shielding is needed and 

alginate is most commonly used. Some variations of alginate microcapsules within larger 

spheres of alginate (Micmac) (http://www.amcyte.com), or with several layers of 

polycations/polyanions (76) has been used. An overview of the encapsulation procedure and 

the products are given in figure 5. Alginate beads refer to the capsules consisting of the 

alginate core only, while alginate microcapsules refer to alginate-PLL-alginate capsules. The 

properties (strength, size, porosity, and biocompatibility) of the alginate beads and the 

microcapsules can be manipulated by the choice of alginate source and encapsulation 

procedure. These factors are dealt with in section 2.2, 6.1 and 6.2, while section 2.1 describes 

the alginate and the factors contributing to its variability. 
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Figure 5. Encapsulation procedure for the formation of gel-beads and alginate 

microcapsules. Homogeneous beads are formed by using Na-ions in the gelling solution, 

while inhomogeneous beads are formed by use of mannitol as the osmolyte. By treatment with 

citrate, the core can be liquefied.
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2.1 Alginate 

2.1.1 Source 

Alginate was first described in 1881, by the British chemist E.E.E. Standford (77). It is 

synthesized in large quantities by marine brown algae (Phaeophyceae) (78),  and it can also 

be synthesized by bacteria belonging to the genera Azotobacter and Pseudomonas (79, 80). In 

the brown algae the alginate is located in the intercellular matrix as a gel containing sodium, 

calcium, magnesium, strontium and barium ions (81). Its main function is skeletal, giving 

both strength and flexibility to the algal tissue. In the bacteria, Azotobacter vinelandii,

alginates are major constituents of the vegetative capsule and of the rigid and desiccation-

resistant walls of metabolically dormant cysts (82). In Pseudomonas aeroguinosa, alginate 

biofilms are produced during chronic lung infections of cystic fibrosis patients, which serve a 

protective function for the bacteria (83). The product from brown algae is the basis for 

numerous applications of alginate in biotechnology and biomedicine, due to its water-binding, 

viscosity, and gel-forming properties (84). Commercial alginates are produced mainly from 

Laminaria hyperborea, Macrocystis pyriferea, Laminaria digitata, Aschophyllum nodosum, 

Laminaria japonica, Eclonia maxima, Lesonia nigrescens and Sargassum spp.

2.1.2 Composition and sequence 

In molecular terms, alginate is an unbranched polysaccharide consisting of the two sugar 

residues 1-4 linked -D-mannuronic acid (M) and -L-guluronic acid (G). The monomers are 

arranged in a pattern of blocks along the chain, with homopolymeric regions (M and G-

blocks) interspersed with regions of alternating structure (MG-blocks) (85-87). The 

distribution and sequence of the two sugar units varies widely depending of the source it is 

taken from (78, 88). In brown algae, differences in alginate sequence distribution varies 

between different species and within different tissues within one plant (78). Typically, newly 

formed tissue and softer parts like leafs are rich in M, while stipes and older tissue are rich in 

G (78, 89). The M/G ratio varies also with seasons and with environmental factors (89). 

Bacterial alginates differ from their seaweed counterparts by always being acetylated at the O-

2 and/or O-3 positions (88). Any G residue in Pseudomonas alginates are always flanked by 

two M residues, while alginates produced by A. vinelandii also contain G-blocks. Regular 
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repeating units are not found in alginate, and the sequential arrangements of M and G can not 

be described by a Bernoullian distribution (occasional distribution) (90), except in some 

fractionated alginates from Ascophyllum nodosum (91). This is because the sequential 

structure of the alginate is generated in a post-polymerizing step involving polymer modifying 

enzymes, the mannuronan C-5 epimerases converting M to G. This is described in section 

2.1.4.

Figure 6. Chemical structure of alginate: 1-4 linked -D-mannuronic acid (M) and -L-

guluronic acid (G). A) The monomers in alginate, B) The alginate chain, C) The alginate 

chain sequence. Adapted from (84). 
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The sequential structure of alginate is determined by the monad, diad, triad and higher order 

sequences (92). The four diad frequencies FGG, FGM, FMG, and FMM and the eight possible triad 

frequencies FGGG, FGGM, FMGG, FMGM, FMMM, FMMG, FGMM and FGMG can be measured by 

NMR spectroscopy (90, 93). 

2.1.3 Functional properties 

A strong correlation between structural and functional properties exists in alginate. The 

intrinsic flexibility of alginate in solution increases in the order MG > MM > GG (94), but the 

viscosity depends mainly on the molecular size (95). By contrast, the selectivity for binding of 

cations and the gel forming properties varies strongly with the composition (94) and sequence 

(85, 86). It has been stated that divalent cations like Ca2+, Sr2+ and Ba2+ bind preferentially to 

G-blocks in a highly cooperative manner (96, 97). It is this selective binding to alginate witch 

accounts for its gel forming properties. The high selectivity for G-blocks has been explained 

by the “egg-box” model by Grant (98), based upon the linkage conformations of the guluronic 

residues. The di-axially linked G-residues will form cavities which functions as binding sites 

for ions, and sequences of such sites form bonds to similar sequences in other polymer chains 

giving rise to the junction zones in the gel network. This is illustrated in Figure 7.  

Figure 7.  A) Probable Ca-binding site in a GG-sequence and B) ionic cross-linking of two 

homopolymeric blocks of G-residues by the egg-box model (98). Adapted from Strand (99). 
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Recently, it has been suggested by Donati, Skjåk-Bræk and co-workers that G-blocks are not 

the only sequences involved in junction formation (100). Based on experiments with 

polyalternating alginate (MG sequences, FMG/GM = 0.45), mannuronan (FM=1) and alginate 

rich in G-blocks (FGG = 0.77), it could be extrapolated that junction zones in the gel network 

could occur between MG/MG-blocks and between GG/MG-blocks. A description of the three 

possible junctions in alginate gels are given in Figure 8. 

Figure 8. The three possible junctions in alginate gels. A) GG/GG junctions, B) MG/MG 

junctions, and C) mixed GG/MG junctions. Adapted from Donati et al. (100) 

2.1.4 Mannuronan C 5-epimerases 

Both in brown algae and in alginate producing bacteria, alginate is initially synthesized as 
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strand of mannuronic acid is acetylated and epimerized (AlgG) in the periplasmic space, 

introducing single G units into the chain. In Azotobacter vinelandii further C-5 epimerisation 

steps takes place on the cell surface or after the release of the polymer into the extracellular 

environment. The A. vinelandii genome encodes seven different extracellular Ca2+-dependent

epimerases (AlgE1-AlgE7) and these have been sequenced, cloned and produced 

recombinantly in Escherichia coli (105-107). Each of these recombinant enzymes generates 

specific non-random epimerization patterns when acting upon mannuronan or alginate as 

substrate. The epimerization pattern of these enzymes can be divided into two major groups; 

those which exclusively generate MG-blocks, and those which forms G-blocks (101). The 

AlgE4 epimerase catalyses an alternating residue sequence (100, 108) and is the only enzyme 

that fits into the first group. AlgE4 is suggested to act processively (109, 110), with on 

average 10 residues epimerized for each enzyme-substrate encounter (111). The G-block 

forming enzymes generate different patterns, varying both in the relative amount of 

alternating structures and G-block length. The AlgE6 is capable of generating very long 

stretches of G with an average length of G-block of NG>1 15 (106). The average content of G 

in the AlgE6-treated alginate can reach 78%, or even more than 90% G has been reported 

(101, 112). AlgE2 and AlgE5 generate shorter G-blocks than AlgE6 (101). The mode of 

action of AlgE2 has been elucidated, and is interpreted to be in accordance with a preferred 

attack model (109). The AlgE1 and AlgE3 are bifunctional epimerases with two catalytically 

active sites, one introducing G-blocks and the other alternating sequences of MG-blocks, thus 

producing a mixture of both block types (101, 113). AlgE7 is different from the others since it 

displays both an epimerase and an alginase having Ca2+-dependent lyase activity (114). 

Structurally, the AlgE epimerases are composites of two distinct modules, designated A and R 

(101). The A modulus are presented in one or two copies in each enzyme and contains the 

alginate binding site, whereas the R modules are present in one to seven copies, and modulate 

the enzyme-alginate binding strength (110, 115). The amino-terminal ends of each R module 

contain four to seven copies of a nine-amino-acid motif putatively involved in the binding of 

Ca2+. Hybrid epimerases has recently been constructed by changing the A modulus between 

AlgE2 (G-block) and AlgE4 (MG-block), resulting in catalytically active epimerases, many 

generating alginates different from their parent enzymes (116). This shows that new active 

epimerases with new properties can be formed, enlarging the spectra of engineered alginate.
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Table 1. The modular structures of the secreted mannuronan C-5 epimerases and the 
epimerisation patterns. Adapted from (110) 

2.1.5 Purity 

Industrial grade alginate contains traces of contaminants such as endotoxins (LPS), 

polyphenols, proteins and complex carbohydrates (117). The presence of polyphenols may be 
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The hydrophilicity and the wettability of the alginate seems to be reduced when containing 

contaminants while the polyphenol and protein content correlate with the hydrophobicity 

although the latter in a smaller degree (118). These factors are considered important for the 

biocompatibility of the alginate as they will influence on the ability to adsorb proteins and 

thus the adhesion of cells. The viscosity of the alginate is increased after purification (119). 

Only highly purified alginate seems to give perfectly spherical and smooth capsules (120) and 
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also mechanical properties seems to be improved (121). Polyphenolic compounds are located 

in cellular vesicles in brown algae in various amounts depending on the source (122). The 

presence of phenolic compounds leads to discoloring of the polymeric material. To minimize 

contamination in alginate, the algal tissue is pretreated with formaldehyde, making the 

phenols insoluble by converting them into phenol-formaldehyde resin. Different purification 

steps has been developed to reduce the phenol and protein content in alginate, including 

filtration, H2O2 and NaClO2 oxidation, extractions by ethanol and  acetone and adsorption on 

polyamide, activated carbon and polyvinyl-pyrrolidone (122). These treatments has made it 

possible to reduce the polyphenol content of untreated L.hyperborea tissue from 0.87% W/W 

to 0.006% W/W for treated tissue, and the protein content from 1.15% W/W to 0.15% W/W.  

Before purification, the endotoxin levels may be high in bacteria derived alginate. In raw algal 

extracts an endotoxin value of 30ng/mg alginate is reported (123). Purification steps to 

remove LPS involves ethanol precipitation, repeated cycles of chloroform and ethanol 

extractions, and in the end inactivation of trace amounts of endotoxin with base hydrolysis, 

ethanol precipitation and HCl treatment (124). Since the chemical properties of endotoxin and 

alginate are similar it is challenging to remove residual LPS, but still purified alginate with a 

specific endotoxin content below 100EU/gram are commercial available (117). Safety profiles 

of alginates used in biomedical applications now exists as “Drug Master File for cGMP 

(current Good Manufacturing Practice) alginates”, and characterization parameters for 

alginate used in biomedical tissue engineered products are now thoroughly described in the 

ASTM guide F 2064 (The American Society for Testing of Materials) of the ASTM Book of 

Standards. Alginate purity is measured as endotoxin content, microbial contamination and 

protein content and needs to be specifically high for use in the human body. Commercially 

alginate with high purification grade are produced and manufactured according to cGMP 

guidelines and ISO 13485:2003 (Medical Device Directive) standards 

(http://www.novamatrix.biz/). Recently, it is reported that traces of impurities still exists in 

high purification grade alginate (118).

2.1.6 Immunologic properties 

Extracts containing alginates with a high M/G ratio has been shown to possess antitumor 

activity in experimental tumor models in mice (125). Alginates rich in mannuronic acid (high-

M) stimulate haematopoiesis in lethally irradiated mice (126) and protect mice from lethal 

E.coli infection (127). In fish, high-M alginate increase the protection against pathogenic 



INTRODUCTION

22

bacteria (128, 129), induce higher growth rate (130) and induce macrophages to increased 

superoxide secretion [Rokstad, unpublished]  and increased phagocytosis (131). 

Studies in human monocytes has demonstrated that M-rich alginate stimulates the production 

of TNF, IL-1 and IL-6, whereas G-rich alginate show minor stimulatory properties (132). The 

cytokine activity of purified blocks of GG, MG or MM of equal sizes has been found related 

to the M- and the alternating MG-blocks, whereas G-blocks gives no cytokine activity (132). 

In gels, both M-rich and G-rich alginate have cytokine stimulating abilities, still M-rich 

alginate is the most cytokine stimulating (132). These findings are mostly explained by an 

enrichment of M- in the non-gelling fractions (97, 133), as more leakage is detected for M-

rich alginate compared to high-G alginate, and the leakage from high-G alginate is enriched in 

M-alginate. The stimulatory properties of gels made of high-G alginate may therefore be 

caused of leakage of fractions containing M-rich polymers. However, it is rather unclear if the 

leakage of M-rich alginate fragments from alginate beads can affect the in vivo stimulation of 

inflammatory cells.  

Bacterial alginates from P.aeroguinosa constituting more than 90% M (poly M) are the most 

potent cytokine inducers among the alginates (134). On a weight basis this mannuron rich 

polymer is a four times more potent cytokine inducer than LPS from P.aeroguinosa (134). 

The molecular weight is important for the cytokine inducing abilities ; the optimal molecular 

weight for poly M is from 50000 and higher, whereas high-M alginate (FM=0.85) has an 

optimum around 200000 (134). Small molecular weight polymers of poly M (MW 5500) 

reduces the TNF stimulating ability by a factor of 10-100, whereas coupling the small 

fragments of poly M to particles potentates the stimulation up to 60000 times (135). Since no 

potentiation of TNF activation was observed with G-blocks, it has been suggested that the 1-

4 glycosidic linkage between the M-units is important for the stimulatory ability of the uronic 

acid, and that the supramolecular configuration may be vital for its presentation to the 

receptors at the surface of the immune cells. The presentation state of the polymer has later 

been demonstrated to be important since soluble poly M engaged the CD14 receptor on 

monocytes, while poly M coupled to particles also engaged the 2-integrin receptor CR3 

(CD11b/CD18) (124). It is now well established that innate immune cells express pattern 

recognition receptors as CD14 (136) and Toll-like receptors (TLRs) (137) that recognizes 

microbial components with no apparent structural similarity, and  Poly M was the first CD14 

ligand different from LPS to be described (134). Both TLR2 and TLR4 seems to be involved 



INTRODUCTION

23

in poly M activation, while LPS solely activates through TLR4 (138). TLR4 induced 

activation of poly M requires the addition of MD2, thus the mechanisms of action of poly M 

and LPS are different although they share some pattern recognition receptors (138).  

According to the importance of LPS contamination of alginate in relation to its immune 

activating properties, several data obtained in the present and in the past confirm that the 

results obtained are not due to LPS contamination (124, 132, 134, 135, 138). These data can 

be summarized as follows. First, cells transfected with CD14 are sensitive to low doses of 

LPS (less than 0.1ng/ml), but inert to poly-M; Secondly,  Polymyxin B, which binds lipid A 

of LPS and blocks LPS responses do not influence activation of human monocytes with poly 

M;  Thirdly, TNF inducing abilities of poly-M is greatly reduced by enzymatic break-down, 

but restored or even enhanced when low molecular chains are attached to particles; Fourth 

and finally, lack of response of poly M to TLR4 -/- cells rule out possible contamination with 

lipoproteins or lipopeptides. Ongoing studies using alginate engineered with strictly defined 

epimerization protocols point to the cytokine induced stimulation related to specific patterns 

of M/G (Espevik, personal communication).  
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2.2 Variables affecting alginate capsule properties 

Alginate capsules properties can be widely varied by the choice of alginate and encapsulation 

procedure. Variables that have impact on the immunoprotection and therefore the graft 

function are stability, porosity, size and biocompatibility. Biocompatibility includes the 

compatibility of the capsule material to the encapsulated cells and to the host immune system. 

The stability, porosity and size issues are presented in the following sections, while factors 

important for biocompatibility are adressed in section 6 (discussion).

2.2.1 Stability  

Stability is considered both as resistance against swelling and as the mechanical strength of 

the capsules. An alginate gel can be viewed as an osmotic pressure system where the gel 

surface function as a semipermeable membrane through which the polymer molecules can not 

diffuse out (139). The osmotic pressure depends on differences in ion between the inside and 

outside of the capsules, valence on the counter ions and the effective charge density of the 

polymer.  

The stability of the alginate beads are influenced by the alginate composition and sequential 

structure (140). Generally, high G-content and long length of G-blocks increase the 

mechanical strength and decrease the swelling of the gel beads. The highest stability is 

achieved with G content over 70% and an average length of the G-blocks higher than 15 

(140). The shortest length of G-blocks necessary for cooperative binding of strontium has 

been calculated to 3 subsequent G-residues, while 6-10 contiguous G residues was required 

for calcium (97). Alginate fractions of short molecular weight or enriched in mannuronic acid 

has lower capacity to bind within the gel beads, thus using alginates with these properties will 

give capsules with low stability (97, 133). Lately, alginate rich in MG-blocks has been shown 

to possess high stability, measured as increased resistance to osmotic swelling and reduced 

bead size (141). An explanation for this may be the compact packing of the polymer due to 

high flexibility of the MG-residues and the formation of junctions of MG/MG and GG/MG 

(100) as described in section 2.1.3.

The molecular weight is only important for gel strength when beads are made with alginate 

with intrinsic viscosity below 4.8 dl/g (molecular weight below 2.4x105), while for higher 

viscosity solutions  the gel strength is independent on further increase in the molecular weight 

(140).
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The strength of gel beads is affected by the ion binding properties of the alginate. Smidsrød 

(85) has presented the following order of affinity  with directly impact on the gel formation;  

GG-blocks   Ba2+ >  Sr2+  > Ca2+  Mg2+

MM-blocks   Ba2+>  Sr2+  ~ Ca2+ ~  Mg2+

MG-blocks   Ba2+ ~ Sr2+  ~ Ca2+ ~  Mg2+

Important modifications of the above affinity orders are recently demonstrated by Mørch et 

al. using alginate of pure block structures (142). These modifications are;  

 MM-blocks  Ba2+>  Sr2+  Ca2+~0

 MG-blocks  Ca2+>  Sr2+  > Ba2+~0

This implies that alginate rich in MG-blocks will not give stronger gel when barium is used 

instead of calcium and demonstrates the importance of choosing gelling ions according to the 

alginate structure. In the study of Mørch et al., it was also demonstrated that the ion 

concentration was important for the swelling stability (142). For the high-G bead a 

concentration of 20mM BaCl2 gave beads with highest stability. 

Inhomogeneous alginate bead has a high concentration of the alginate at the surface while 

lower concentration in the center of the core. The homogeneous alginate bead has an 

approximately constant distribution of alginate through the core. The inhomogeneous 

distribution of the alginate contributes to more junction formations between the polymers and 

thus likely increases the stability. The inhomogeneity is essentially a result of an irreversible 

gelling mechanism characterized by a strong binding of cross-linking ions and the relative 

diffusion rate between calcium ions and the polymer molecules (143). Generally, the 

inhomogeneity of a gel depends on the polymer concentration, molecular size and the 

concentration of gel inducing ions in the outer reservoir (increased inhomogeneity with higher 

polymer concentration, lower polymer size and lower ion concentration). The inhomogeneity 

can be suppressed by allowing gel formation in presence of non-gelling ions (Na+, Mg2+)

(143). X-ray fluorescens analysis has shown that steeper differences in the alginate 

distribution within gel beads is achieved by use of high-G alginate and in absent of saline 

(144). Differences in alginate gradients are likewise demonstrated with confocal images, with 

steeper gradients achieved using mannitol in the gelling solutions instead of saline, while 

barium ions in the gelling solution further increased the inhomogeneity of the gel beads (145). 



INTRODUCTION

26

Coating with PLL further strengthens the alginate beads (146). The strength of the alginate 

microcapsules increase with the incubation time with PLL, as well as the molecular weight of 

the polycation (120, 146). Mannuronic acid seems to have higher affinity for PLL, as more 

PLL binds to M-rich beads (146). This is explained by the electrostatic interaction that 

governs this binding. As the G-blocks bind calcium stronger, these ions are more difficult to 

exchange than calcium ions bond to the M-residues or short residues of G. This is supported 

by the findings that strontium beads of high-G bind less PLL, since strontium has higher 

affinity for high-G alginate (146). However, the higher binding of PLL to high-M capsules 

does not compensate for the increased strength given by G-rich alginate, thus microcapsules 

containing high-G alginate in the core possess highest stability (147). Inhomogeneous alginate 

microcapsules (with PLL) are more stabile than homogenous alginate microcapsules (147). 

This is probably because the high alginate concentration at the surface increase the charge 

density and consequently the binding capacity for the polycation (146). However, the alginate 

distribution within the capsules are affected by the exposure to PLL and saline, resulting in 

alginate-PLL-alginate capsules with a more homogeneous core (145). Still, the initial 

inhomogeneous formation of the beads gives a higher stability probably due to higher binding 

of the polycation. The liquefying of the alginate microcapsules performed by many groups 

(see table 2), destabilizes the capsules substantially (147), and should therefore be avoided.

2.2.2 Porosity 

The porosity of alginate beads increases with increasing numbers of guluronic acid units. This 

may be related to the lower shrinkage of gels made of high-G alginate upon gel formation 

(140, 148-150). An increase in the content of alternating sequences (MG) reduces the 

porosity, which probably is related to a more compact packing of the MG rich polymers 

(141). Further on, increased concentration of alginate decreases protein diffusion (148) and it 

is likely that inhomogeneous beads  reduces the diffusion. The concentration of the gelling 

ions is recently demonstrated to have impact upon the diffusion rate of IgG. For a high-G 

alginate a high barium concentration (20mM) was shown to give the lowest diffusion of IgG 

(142).

Coating with a polycation as PLL is the most effective way of reducing the porosity of 

alginate capsules. The molecular weight cut off values of the capsule membrane can be 
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controlled with the alginate-PLL reaction time, the polymer concentration and the molecular 

weight of PLL (120). It can also be controlled by creating multi-layers of PLL and polyanion, 

were PLL has different molecular weights (151). The permeability of different proteins 

relevant in transplantation, have been assessed for high-M or high-G capsules coated with 

PLL or PDL (poly-D-lysine) (70, 149). All microcapsules with a solid core were impermeable 

to IgG (150 kDa), whereas beads were permeable. On the other hand, permeability studies of 

alginate microcapsules with a liquefied core suggests that these may be permeable to IgG  

(152). In the study by Kulseng et al., the PLL capsules were permeable to transferrin (81kDa) 

while impermeable to TNF (51kDa) (149). The discrepancy between the size of the proteins 

and the diffusion properties in this case may be evolved by the radius of gyration (RG) of the 

respective proteins. RG of a proteins is a direct measure of the spatial requirement of the 

protein in solution, and it depends on the molecular weight, shape and solvation (153). In a 

study by Strand et al., TNF penetrated the PLL-coated capsules (70). The discrepancy 

between the studies of Kulseng and Strand according to TNF permeability may be due to 

differences in washing procedures and size of the capsules, which were 700μm and 500μm, 

respectively.  The use of PDL decrease the permeability of the proteins (70, 149). All the 

capsules examined were permeable to the small sized proteins IL-1  (17.5kDa) and insulin 

(5.8kDa). Since transferrin is an important molecule in the iron transport, the accessibility for 

the encapsulated cells is important for long time functioning. Hence, the permeability needs to 

be controlled. In a study by Morikawa et al., it was shown that agarose/poly(styrenesulfonic

acid) microcapsules are permeable to IgG, but they still protected the encapsulated cells from 

cytolytic attack by complement (154). These results show that the gel itself may prevent the 

functioning of the complement proteins, thus exclusion is not necessary required.

2.2.3 Size 

The size of the capsules defines the final volume that is transplanted. The efficiency of the 

delivered proteins may rely on the implantation site (155, 156), it is therefore important to 

keep the volume of the capsules small. The site of implantation also have impact on the 

preferred capsular size, as intravascular implantation sites require smaller capsules than 

intraperitoneal sites (156). Additionally the exchange of oxygen, as well as nutrition and 

waste products also depend on the capsules size. Differences in the oxygen tension has been 

reported between outer and inner parts of a capsule and anoxia in the centre of capsules as 

small as 250μm has been calculated from pancreatic islets (11). Increased insulin responses 
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are reported from small size capsules (~350μm) (155). On the other hand, the alginate gel 

zone in a capsule system may serve as a “buffer-zone” entrapping harmful products from the 

host within the gel, thus a larger zone of alginate may protect the transplanted tissue (157).

The initial size of the capsules depend on the needle diameters, needle type, flow of the 

alginate solution, distance to the gel bath, alginate source and electrostatic voltage  (70), or 

air-flow for air-jet systems (158). In general the capsules will swell in the washing and 

coating steps (70). Factors such as alginate source, affinity of the gelling ions, concentration 

and coating time for PLL, will affect the swelling properties and thus the final capsule size in 

the same way as described for stability (section 2.2.1). By reducing the capsule size, a higher 

portion of the gel is exposed to the capsule surface, giving a higher surface-to-volume ratio. 

Therefore, the swelling ratio increases when the capsule size is reduced (70). Small sized 

capsules (~200μm) are more susceptible to collapse when coated by PLL, forming raisin like 

microcapsules (70). However, by changing the washing solution from saline to mannitol, it is 

possible to avoid the collapse, due to reduced exchange of calcium ions from the gel. This 

demonstrates clearly the importance of controlling the factors in the capsule formation 

thoroughly, even down to the washing steps. Permeability is also affected by the size, and the 

small sized capsules are more permeable to IgG (70). 
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3. ALGINATE BIOREACTORS FOR CELL THERAPY 
TREATMENT 

Alginate bioreactors, i.e.; the combination of therapeutic cells enclosed within alginate 

microcapsules, has been considered a way of treating diabetes since the first experiment of 

Lim and Sun in 1980  (159) and a range of different diseases has been suggested treated based 

on the encapsulation principles. The focus of this section is on the alginate bioreactor models 

studied in animals. In addition, factors that may be targeted in the treatment of brain tumors 

using the encapsulation concept are briefly presented. Table 2 gives an overview of selected 

references using different types of alginate bioreactors. 

3.1 Islets 

Lim and Sun demonstrated that fasting blood glucose of diabetic Wistar rats were normalized 

for almost three weeks using islet isografts enclosed within alginate microcapsules. The 

capsules consisted of a core of solubilized alginate covered with poly-L-lysine and an outer 

shielding of polyethyleneimine (159). Soon-Shiong and co-workers demonstrated 12 years 

later that alginate bioreactors can be a feasible way for the treatment of diabetes using islets of 

allo-origin (67, 160, 161). The experiments were performed with large animals (dogs) with 

and without immunosuppressant (160, 161). In a clinical trial with a diabetic patient on a low 

dose immunosuppressant, normoglycemic conditions was achieved for nine months using 

alginate bioreactors (67). The bioreactors were alginate-PLL-alginate capsules containing 

high-G alginate (>64%) with a solid core with islets of allo-origin. These modifications were 

results of work performed in the groups of Skjåk-Bræk and Espevik, involving stability and 

immunological considerations (section 2.2.1 and 2.2.4 (97, 132, 133)). Lanza and co-workers 

demonstrated the function of encapsulated xenografts using high-G beads (800-900μm) and a 

low-dose of immunosuppressant, showing reduced blood glucose levels in mice up to 700 

days post-transplantation. (157). High-M Ba beads have been functioning for more than 350 

days containing allo- and isografts without immunosuppressants (162) and further xenografts 

of neonatal pancreatic cells functioned for over 20 weeks without immunosuppressant using 

these beads (163). Ba beads entrapped with human serum and containing islets xenografts has 

lately been shown to function for  more than seven months in mice (164).  
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3.2 Non-autologues cell lines 

Use of non-autologues cell lines genetically engineered to produce therapeutic proteins can 

extend the use of encapsulation based cell treatment to a range of diseases. Chang and co-

workers demonstrated the feasibility of this concept for different diseases such as growth 

hormone deficiency, hemophilia A and B and lysosomal storage disease in mice models (64, 

65, 165-168). One of these studies was performed with growth hormone deficient mice, using 

allogeneic myoblasts secreting mouse growth hormone in alginate bioreactors transplanted 

into the peritoneal cavity (166). The treated mice attained significant increases in linear 

growth, body weight, peripheral organ weight, and tibial growth plate thickness. A secondary 

response was increased fatty acid metabolism. Systemic growth hormone was not detected, 

but bioreactor retrieval six months later showed viable cells secreting growth hormone. 

Growth enhancement has also been achieved in swine using primary fibroblasts encapsulated 

within APA capsules (169). In the studies of Chang and co-workers, the APA capsules were 

made with a dissolved core. When these bioreactors were administered to dogs, they 

disintegrated within short time (170), demonstrating the need for stronger capsules in larger 

animals. Other problems associated with the transplantation of alginate bioreactors with 

engineered cells is the generation of neutralizing antibodies against the delivered proteins by 

the host immune system (167, 171, 172), transient protein secretion from the engineered cells 

(172, 173) and overgrowth reactions (8, 66, 171).  

3.3 CNS disorders 

Disorders affecting the central nervous system (CNS) are suggested to be treated by local 

delivery of therapeutic proteins, because the blood-brain barrier hinders an effective systemic 

delivery to the CNS.  Transplantations of alginate bioreactors within the CNS of mice are 

reported by Chang and co-workers (64-66). Delivery of the marker protein human growth 

hormone (hGH) was detected in high levels at the implantation site and in the surroundings 

until the end of the study at day 112 post-transplantation (64). Transplantation of alginate 

bioreactors secreting -glucuronidase in the brain of mice deficient for this enzyme, gave 

behavioral improvements and reduction in previously elevated lysosomal levels (65). 

Distribution studies showed that -glucuronidase was found through most parts of the brain. 

Small sized APA capsules (~100μm) with dissolved core were used in these studies. It was 
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reported capsule breakage and antibody production to the delivered protein (mouse -

glucuronidase). In another study, APA capsules with a solid core (~500μm) containing canine 

MDCK cells secreting either hGH or –iduronidase were transplanted into the brain of dogs 

(66). The proteins were found in both cerebrospinal fluid and in plasma in small amounts. 

Extensive inflammatory reactions at the implantation site and in the vicinity of the bioreactors 

consisting of blood vessels cuffed by lymphocytes, epithelial macrophages and reactive 

astrocytes were described. These immune reactions were related to the surgical procedure in 

being much more invasive and less accurate compared to delivery in rodents. The study also 

revealed that the protein diffusion was restricted to areas around the implantation site, 

probably because of the animal size.  

3.4 Cancer treatment

Alginate bioreactors are lately suggested for cancer treatment. In 2001, two independent 

publications that aimed to block the blood vessel supply to the tumors by treatment with 

endostatin secreting alginate bioreactors were published (3, 5). In both studies a prolonged 

survival was achieved together with reduced vascularization to the tumors. In one of these 

studies, high-G Ca beads was used (3). It was demonstrated that the encapsulated human 293 

endo cells remained viable and maintain endostatin secretion for at least four months 

following intracerebral implantation to rats. In the second study high-G (>65%) APA capsules 

with BHK-endo (baby hamster kidney) cells were used in mice (5). A reduction in the tumor 

volume of 72.3% was described and retrieved bioreactors continued secreting endostatin. 

Cirone and co-workers has recently shown that treatment with recombinant IL-2 or 

angiostatin  secreting alginate bioreactors prolong the survival of mice and reduce the tumor 

growth (6, 8). APA capsules with a solid core containing C2C12 engineered myoblasts 

(allografts) were used and both proteins detected systemic. In the case of IL-2 secretion, 

inflammatory reactions against the implanted microcapsules were observed. This was related 

to the secreted cytokine and the xenogeneic fusion protein. By combining angiostatin and IL-

2 treatment an improved survival and delayed tumor growth was achieved in comparison to 

the single treatments (7).  

Another concept based on the production of nitric oxide (NO) was described lately (174). 

Macrophages kill tumor cells by releasing high levels of NO and related reactive nitrogen 

species such as nitroxyl and peroxynitrite, following upregulation of iNOS expression. In the 
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study, the human fetal kidney cell line (EcR293) was transfected with human iNOS and 

encapsulated into alginate microcapsules. The encapsulated cells were implanted near 

preformed xenograft tumors in nude mouse models and induced to generate sustainable high 

local concentrations of NO and reactive nitrogen species. These local concentrations killed 

100% of human ovarian cancer cells and 54% of human colon cancer cells.  

In glioblastoma, multiple attacks on different tumor cell targets may be needed for an 

effective treatment. Glioblastomas are characterized by high cellular density, high degree of 

polymorphism, mitosis, microvascular proliferation and necrosis (175). Tumor cells localized 

in the outer tumor rim show a highly migrating character (176, 177) and thus receptors and 

factors involved in glioma migration  (178-181) are potential targets for treatment. 

Glioblastomas are the most angiogenic of all tumors (182), with massive endothelial 

proliferation. The angiogenic pathways are therefore other targets for treatment. Angiogenic 

factors produced by the tumor cells (VEGF, TGF-  and – , EGF, HGF, IL-8, IGF, Ang-1 and 

-2) and factors involved in glioma migration (integrin 3, - 7B, - 8, matrix metallo 

proteinases as MMP-14, ECM components as fibronectin) may be targeted with antibodies.  

Naturally occurring inhibitors of angiogenesis represent another strategy for inhibition of 

tumor growth, implying the endogenous proteins angiostatin and endostatin that are utilized 

within encapsulation based experiments. Angiostatin, a 38kDA amino-terminal fragment of 

plasminogen, specifically inhibits growth of primary carcinomas (183). Endostatin, a 20kDa 

C-terminal fragment of collagen XVIII that specific inhibits endothelial proliferation has been 

shown to regress tumors to dormant microscopic lesions (184), whereas repeated cycles of 

endostatin resulted in permanent tumor reduction (185). The action of endostatin seems to be 

multiple (186-191), and tumor suppressor activity was recently reported (192).  

3.5 General aspects 

Table 2 gives an overview of selected references of in vivo experiments using alginate 

bioreactors. A variation in the outcome of different experiments is often seen, probably 

caused by variable use of different animal models, variable site of implantation, surgical 

procedure, cellular state and host-cell compatibility. The compositional information regarding 

the alginate (M/G ratio) is often scarcely described. Different encapsulation protocols are used 

and the alginate materials vary in composition. This further complicates comparison of data 
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between laboratories, since the encapsulation protocols have relevance for capsule strength, 

porosity, binding of polycations and biocompatibility, parameters directly affecting the 

protection of the grafted cells. 

There are different opinions whether to use high-M or high-G capsules. Some studies show 

that high-M capsules is to be preferred as they are reported to possess less host cell-

adherences (162, 193), whereas the high-G capsule gratifies the requirements of stability 

(147). Whereas only small differences of host cell-adherence are seen between different 

alginate beads, more pronounced differences are found using alginate microcapsules (162). 

Other groups have stressed the requirements for pure alginate to establish functional grafts 

(194). Whereas crude alginate has been demonstrated to give 100% overgrowth in the capsule 

population (APA), usually less than 10% of purified capsules are shown to have adherent cells 

after purification (195).

Limited duration of the graft function can be caused by other factors than inadequate 

immunoprotection and immunocompatibility. De Vos et al. demonstrated equally long 

functioning time of rats iso- and allografts where graft failure (42-200 days) was caused by 

insufficient supply of nutrients and deposition of metabolic waste (196). One problem of 

using engineered cells secreting therapeutic proteins of human origin in animal models is a 

pronounced antibody response to the xeno-protein two-three weeks post-implantation (table 

2). This may cause failing biologic response, despite proper function of the graft. However, 

use of xenografts is an experimental issue in animal models, because of ethical considerations 

and the risk of xenozoonoses (197).
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Table 2. An overview of animal experiments based on alginate bioreactors producing different therapeutic substances. 

Alginate Capsules Protein/Substance Cell source Recipient/site of 
implantation  

Outcome Reference/ 
year

APP, Liq Insulin Islets
Wistar (r)

Rats
Diabetic Wistar Lewis 
i.p.

Glucose lowered for 20 days  (159) 1980 

Ba bead Insulin Islets
Lewis (r) 

Mice 
NMRI

Glucose lowered for >28 days (198) 1992 

APA, Solid 

>64% G 

Insulin Islets (c) Dogs
Spontaneous diabetic 
i.p.

Free of exogenous insulin for 63-
172 days on low 
immunosuppressant

(160) 1992 

APA, Solid 

>64% G 

Insulin Islets (c) Dogs
Spontaneous diabetic 
i.p.

Graft survival  
228-726 days 
Day 110-600 without 
immunosuppressant

(161) 1993 

APA, Liq GH (h) Ltk- (m) Mouse
C57BL/6
i.p.

Circulating hGH for two weeks, 
 hHG Ab after three weeks 

Cells viable 78-111 days 

(165) 1993 

APA, Solid 

>64% G 

Insulin Islets (h) Man 
38-years 
i.p.

Insulin independence  
9 months low 
immunosuppressant

(67) 1994 

Ca bead 
800-900 μm 

High-G

Insulin Islets (b/p) Mouse
C57BL/6J
STZ induced diabetes 
i.p.

Lowered glucose levels 43-700 
days 

(157) 1995 

APA, Liq GH (m) C2C12 (m) Mice 
Snell Dwarf 
GH deficient 
i.p.

Increased growth 
Function  >100 days 

(166) 1995 

APA, Liq Factor IX (h) C2C12 (m) Mice 
C57BL/6
i.p.

Viable myoblasts  
213 days 
Ab to factor IX 

(167) 1996 

APA, Liq GH (h) Ltk- fibroblasts (m) Mice 
Balb-C
i.p.

Cells viable 150 days post- 
transplantation,  hGH secretion 
after explanting 

(173) 1996 

Ba bead PTH Parathyroide tissue 
(h)

Rats
Lewis
Parathyroide-
deictomized 
i.m. 

Normocalcemic for  
16 weeks 

(199) 1997 

APA, Liq GH (p) Primary 
Fibroblasts (p) 

Porcine 
i.p

Enhanced growth (169) 1998 

APA, Solid 

800-1200μm

Insulin Islets (p, b) Rats
Lewis
Diabetic 
i.p.

Glucose level restored for 29-
weeks 

(200) 1999 

Ba bead 

800-1200μm

Insulin Islets (c) Dogs
Diabetic 
i.p.

Glucose level restored in 160 
days 

(201) 1999 

APA, Liq GH (h) C2C12 (m) Mice 
Brain

hGH detected in high levels 
around implantation site, lower 
levels in surroundings day 112 
post-implantation 

(64) 1999 
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Alginate Capsules Protein/Substance Cell source Recipient/site of 
implantation  

Outcome Reference/ 
year

APA, Liq 

~100μm

-glucuronidase (m) 2A50 fibroblasts 
(m)

Mice 
MPS VII mutants 
deficient in -
glucuronidase 
Brain

Improved behavior abnormalities 
Reduced lysosomal enzymes 
level 
Capsule breakage 

(65) 2000 

Ca bead 

High G 

 Endostatin (h) HEK-293 cells 
(h)

Rats
BD-IX
Brain

84% longer survival. 
Endostatin secretion >4 months 
in CNS 

(3) 2001 

APA, Solid 

(>64% G) 

Endostatin (h) BHK-21 cells 
(ham)

Mice 
Swiss, Nude 
S.c. 

72.3% reduction in tumor weight (5) 2001 

APA NO HFK-293
(EcR293)
(h)

Mice 
Nude
S.c. 

46-86% inhibition of tumor 
growth
After 90 days no remaining 
tumor histology 

(174) 2001 

APA, Solid, Liq Factor IX (h) C2C12 (m) Mice 
C57BL/6 hemophilic 

Functional correction for 21 days 
Ab against Factor IX 
Overgrowth reactions 

(171) 2002 

APA, Liq Factor VIII (h) C2C12 (m) 
MDCK epithelial 
kidney cells (c) 

Mice 
C57BL/6
SCID
immunodeficient 
i.p.

Transient factor VIII 
secretion  
Ab against Factor VIII. 

(172) 2002 

APA, Solid IL-2 (h) C2C12 (m) Mice 
C57BL/6

Prolonged survival 
Delayed tumor growth 

(8) 2002 

Ba bead 

61%M

Insulin (p) NPCC (porcine 
neonatal pancreatic 
cell clusters) 

Mice 
B6AF1
STZ induced diabetes 
i.p

Normalized blood-glucose levels 
for 20-weeks 

(163) 2003 

APA, Solid GH (h) 
-iduronidase (C) 

MDCK (c) Dog
Brain

hGH secretion from retrieved 
cells day 14 
Local -iduronidase secretion 
(CNS) and systemic Ab response 
Inflammatory reactions 

(66) 2003 

APA, Solid Angiostatin (m) C2C12 (m) Mouse
C57BL/6
i.p.

Improved survival 
Tumor growth reduced 

(6) 2003 

APA, Solid 
purified
60% M 

Insulin (r) Islets (r) 
AO
Lewis
i.p.

Rats
AO

Normoglycemic 42-200 days, no 
difference between  iso- and allo- 
grafts
Necrosis of islets 

(196) 2003 

APA, Solid 
600-700μm

IL-2 (h) 
Angiostatin (m) 

C2C12 (m) Mouse
C57BL/6
i.p.

Combined treatment 
Improved survival 
Inflammatory and vascular 
mimicry reduced versus single 
treatments 

(7) 2004 

Ba bead 
High viscosity 
HSA entrapped 

Insulin (h, r) Islets (h, r) Mice 
i.p.

Normoglycemia for >7 months (164) 2005 

APA, Solid 
High-G

EPO (m) C2C12 (m) Mouse
C3H
Balb/c   
i.p/s.c 

High hematocrit levels >100 
days 

(202) 2005 
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Abbreviations to table 2: 

Ab   antibody 
APA   alginate-PLL-alginate capsules 
APP   alginate-PLL-polyethyleneimine capsules 
Ba bead  barium alginate beads  
Ca bead  calsium alginate bead 
EPO   erythropoietin 
G   guluronic acid 
GH   growth hormone 
HSA   human serum albumin 
IL-2   interleukine-2 
Liq   liquified 
M   mannuronic acid 
NO   nitric oxide 
PTH   parathyroid hormone  

b   bovine 
c   canine 
h   human  
ham   hamster 
i.p.   intraperitoneal  
m   murine 
p   porcine 
r   rat 
s.c.   sub cutaneously  
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4. AIMS 

Several studies based on the principles of encapsulation cell therapy using alginate capsules or 

other devices have proved the feasibility of the system for locally and sustainable delivery of 

therapeutic proteins for the treatment of hormonal, neurodegenerative or cancerous diseases. 

However, different challenges remain to be solved before the technique can give a safe 

delivery of proteins. These challenges include the improvement of host immunocompatibility 

to the implant and to the cell-containing devices, as well as defining the optimal conditions 

according to cell-device interactions. For the alginate based encapsulation technology, it is 

also important to improve the capsule stability. Thus, the aims of this thesis were; 

Study the cell growth and protein secretion within different alginate capsules using 

293 endo cells (secreting endostatin) and JJN3 cells (secreting HGF) 

Optimize the alginate microcapsules for proliferating cells using epimerized alginate 

Develop highly stable covalently cross-linked alginate beads and evaluate functions of 

encapsulated cells in these beads 

Study the involvement of PLL in host inflammatory responses against the alginate 

microcapsules 

Evaluate the effect of epimerized alginate on host immune reactions 

Evaluate the immunocompatibility of alginate bioreactors producing endostatin and 

the graft functioning of 293 endo cells after implantation in mice 
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5. SUMMARY OF PAPERS 

Paper I.

In paper I we describe the growth, survival and secretion of therapeutic proteins from 293-

EBNA cells producing endostatin (293 endo cells) and JJN3 myeloma cells producing 

hepatocyte growth factor (HGF) that have been embedded in various types of alginate 

capsules. Parameters that affect capsule integrity such as homogeneous and inhomogeneous 

gel cores and addition of an outer poly-L-lysine–alginate coating were evaluated in relation to 

cell functions. When cells were encapsulated, the PLL layer was found to be absolutely 

required for the capsule integrity. The JJN3- and 293 endo cells displayed completely 

different growth- and distribution pattern of live and dead cells within the microcapsules as 

shown by 3D pictures re-constructed from images taken with confocal laser scanning 

microscopy (CLSM). Encapsulated JJN3 cells showed a bell-shaped growth- and HGF 

secretion-curve over a time period of five months. The 293 endo cells reached a plateau phase 

in growth after 23 days post encapsulation, however, after around 30 days a fraction of the 

microcapsules started to disintegrate. Microcapsule disintegration occurred with time 

irrespective of capsule- and cell type, showing that alginate microcapsules possessing 

relatively high gel-strength are not strong enough to keep proliferating cells within the 

microcapsules for prolonged time periods. Although this study shows that the stability of an 

alginate based cell factory can be increased by a PLL-alginate coating further improvement is 

necessary with regard to capsule integrity as well as controlling the cell growth before this 

technology can be used for therapy.

Paper II. 

Based on the findings in paper I, we sought to improve the alginate bioreactors by increasing 

the capsule strength based on strategies that lately had been developed in our group. We 

examined the growth and endostatin secretion of 293-EBNA (293 endo) cells encapsulated in 

six different alginate microcapsules made with native high-G alginate or enzymatically 

tailored alginate. Stability studies using an osmotic pressure test showed that alginate-PLL-

alginate microcapsules made with enzymatically tailored alginate was mechanically stronger 

than alginate capsules made with native high-G alginate. Growth studies showed that the 
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proliferation of 293 endo cells was diminished in microcapsules made with enzymatically 

tailored alginate and gelled in a barium solution. Secretion of endostatin was detected in lower 

amounts from the enzymatically tailored alginate microcapsules compared to the native 

alginate microcapsules. The stability of the alginate microcapsules diminished as the 293 endo 

cells grew inside the capsules, while empty alginate microcapsules remained stabile. By using 

microcapsules made of fluorescenamine labeled alginate it was clearly visualized that cells 

perforated the alginate microcapsules as they grew, destroying the alginate network. Soluble 

fluorescence labeled alginate was taken up by the 293 endo cells, while alginate was not 

detected in live spheroids within fluorescence labeled alginate microcapsules. Despite that 

increased stability was achieved by using enzymatically tailored alginate the cell proliferation 

destroyed the alginate microcapsules with time and the overall function time of the 

bioreactors were around 40 days. The overall conclusion from this work was therefore that 

cells with a lower post-encapsulation proliferating capacity should be used for increasing the 

functioning time of the bioreactors. 

Paper III. 

Covalent cross-linked alginate beads based on a chemoenzymatic strategy that proved to be 

compatible with cells are presented in this work. The advantage with such a strategy is to 

avoid the PLL layer completely and possibly make a strong barrier to highly proliferative 

cells. The chemoenzymatic strategy was based upon the following: Mannuronan was 

modified to contain methacrylate moieties as side-chains with a substitution of approximately 

6%. Two enzymatic epimerization reactions, catalyzed by mannuronan C-5 epimerases 

introduced both alternating sequences and G-blocks. Calcium beads from this alginate were 

treated with a photoinitating system that induced a polymerization of the methacrylic 

moieties, thus introducing covalent cross-links through the beads. By performing a selective 

modification starting with mannuronan, a notable regain of the physico-chemical properties of 

the gels was obtained with respect to those prepared from the sample randomly modified on 

both M- and G-residues. The CEPC (chemo enzymatic photo cross-linked) beads proved to be 

highly resistant against swelling measured in the dimensional stability assay. The beads also 

remained intact by EDTA treatment, confirming the covalent links of the beads. An 

optimization of the cross-linking reaction conditions allowed CEPC beads to be used for cell 

encapsulation, thus maintaining cell viability and guaranteeing at the same time a remarkable 

stability. However, differences in behavior among encapsulated cell types were noticed. In 
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particular, murine C2C12 myoblast cell-line survived for a prolonged time (day 119), while 

293 endo cells died within two-weeks post encapsulation. Human pancreatic islets of 

Langerhans survived the entrapment and preserved the insulin producing abilities, and 

encapsulated human islets continued to secrete insulin for at least 16 days. Low or non-

dividing cells were then better suited for encapsulation within the CEPC beads, demonstrating 

that the elucidation of the relationships between cell behavior and hydrogel stability/strength 

is of fundamental importance in the development of a functional bioreactor. These results 

present a step forward in alginate based encapsulation technology as the long-term stability 

was substantially achieved and the beads at the same time proved compatible for cells. 

Paper IV. 

In paper IV we wanted to study the relation between the PLL layer on the alginate capsules 

and the inflammatory reactions. Capsules were implanted in Balb/c mice and recovered after 

40 days. By reducing the PLL layer, less overgrowth of the capsules was obtained. By 

incubating different cell-types with PLL and afterwards measuring cell viability with MTT, 

we found massive cell death at concentrations of PLL higher than 10μg/ml. Staining with 

annexin V and propidium iodide showed that PLL induced necrosis but not apoptosis. The 

proinflammatory cytokine, TNF, was detected in supernatants from monocytes stimulated 

with PLL. The TNF response was partly inhibited with antibodies against CD14, which is a 

well-known receptor for LPS. Bactericicidal permeability increasing protein (BPI) and lipid A 

analogue (B-975), which both inhibit LPS, did not inhibit PLL from stimulating monocytes to 

TNF production. This indicates that PLL and LPS bind different sites on monocytes, but 

because they both are inhibited by a p38 MAP kinase inhibitor, they seem to have common 

element in the signal transduction pathway. These results suggest that PLL may provoke 

inflammatory responses either directly or indirectly through necrosis-inducing abilities. By 

combining soluble PLL and alginate both the toxic and TNF-inducing effects of PLL were 

reduced. The implications of these data are to use alginate microcapsules with low amounts of 

PLL for transplantation. 

Paper V. 

In this paper the immunocompatibility of AlgE4 epimerized alginate (epi) was studied. The 

aim of the study was to 1) investigate whether the use of epimerized alginate as a coating 
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could improve the immunocompatibility of alginate-PLL-alginate capsules and 2) study the 

immunocompatibility of simple alginate beads prepared with epimerized alginate. The core 

material was a high G alginate with G-blocks interspaced with alternating MG. The coating 

alginate was a strictly alternating alginate (Epi coat). Four different capsules, two which 

contained epimerized alginate, were investigated after implantation in C57BL/6 mice for one 

week. The immunocompatibility of alginate-PLL-alginate capsules, as measured by retrieval 

rates of the capsules and DNA contents and glucose oxidation rates of the cellular 

overgrowth, was improved when an epimerized coating alginate was used. There were, 

however, no statistically significant differences in the immunocompatibility of simple alginate 

beads made from epimerized alginate compared with non-epimerized alginate beads. In 

general, such beads produced without a PLL coating swelled to a higher extent than the 

conventional alginate-PLL-alginate capsules. In conclusion, the use of epimerized coating on 

alginate-PLL-alginate capsules can improve the immunocompatibility of such capsules but 

still cannot completely eliminate the detrimental effects of PLL on the immunocompatibility

of the capsules. 

Paper VI. 

In this paper we study the immunobiocompatibility of the alginate bioreactors as well as the 

graft function after implantation. Balb/c mice were implantated with alginate-PLL-alginate 

capsules with or without cells for two and seven days. The encapsulated cells were human 

293 endo cells producing endostatin and the mouse cell line CF-WEHI (originally derived 

from Balb/c). CLSM was used to visualize encapsulated live and dead cells and to identify 

some of the cells involved in the fibrotic reactions. Live cells were detected in both graft-

types (iso and xeno) seven days after encapsulation. Endostatin was detected in mice sera and 

from retrieved bioreactors two days but not seven days after implantation. Minor fibrotic 

reactions were found against isograft containing and empty microcapsules. An extensive 

fibrotic reaction was found against the xenograft seven days after implantation. Fibroblasts 

and macrophages were identified in the fibrotic reaction against the xenograft. The conclusion 

from this work was that encapsulated xenocells may provoke inflammatory reactions hence 

mice cells secreting endostatin would be better suited for transplantation studies.
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Paper VII. 

(Book Chapter) 

In this chapter we describe the general features of primary brain tumors (gliomas), the 

conventional treatment and the state of the microencapsulation technology as it appeared in 

the end of 2003. Patients with gliomas have a poor prognosis with median survival time less 

than one year. Glioma is regarded as a systemic brain disease almost impossible to remove 

surgically. Repeated surgery may be offered to patients with good performance, long 

progression-free period and a favorable location and irradiation post- operation may prolong 

the patients survival. The effect of chemotherapy is low due to a distribution problem caused 

by the blood-brain barrier or drug resistance.

Gliomas are highly vascularized tumors and as induction of angiogenesis occurs in an early 

stage of tumor development, anti-angiogenic therapy may present a rate limiting step. The 

new concept based on encapsulated cells delivering endostatin locally in the tumor resection 

cavity has been promising in a rat tumor model. The prolonged sustainable secretion of the 

angiogenic proteins provided by the encapsulated cells may prove more efficient than 

systemic delivery. To ensure a functional and secure delivery system, a proper encapsulation 

system has to be used and alginate microcapsules have been shown to function for such 

delivery. However, technical problems regarding capsule stability in relation to the 

proliferative ability of the encapsulated cells has to be solved. The tissue into which the 

bioreactors are inserted is different from a normal healthy brain, and gliosis, radiation necrosis 

and active immune mechanisms is expected in the implantation area. It is therefore important 

that the bioreactor to be inserted is immunocompatible.   
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6. DISCUSSION 

6.1 Optimizing the alginate bioreactors 

Alginate bioreactors delivering proteins with therapeutic potential represents an attractive way 

to treat a range of diseases. Several studies have demonstrated the potential as treatment of 

hormonal diseases, CNS disorders, as well as cancerous diseases (section 3). Since 

proliferating cells represents an almost unlimited cell source that can be genetically 

engineered to produce the therapeutic protein of interest, this may be an attractive and cost-

effective way of overcoming cell-shortage and extend the repertoire of diseases to be treated. 

However, the use of cell lines is also challenging, rising new requirements for the alginate 

microcapsule system. Despite of this, only a few groups (203-207) have put attention in 

describing the behavior of proliferating cells within different alginate capsules and tried to 

optimize the alginate microcapsules according to the new requirements.  

6.1.1 Cell growth related to gel strength 

Encapsulation may affect cell behavior such as growth and protein secretion patterns, and the 

cellular growth may affect the capsule properties, as was evaluated in paper I, II and III. Our 

results demonstrate that the growth and protein secretion is diminished by increased gel 

strength of the alginate capsules. Capsules made with AlgE4 epimerized alginate (rich in MG 

sequences), have higher swelling stability and  a reduced size compared to capsules made 

with native alginate (high G) (141), which possibly is a result of increased intrinsic flexibility 

(208) as well as junction formations involving MG and GG units within the alginate (100). 

The capsules derived from epimerized alginate gave reduced cellular growth and protein 

secretion, when gelled with barium ions and only reduced protein secretion when gelled with 

calcium (paper II). This indicates that the protein secretion may be more sensitive to external 

stress than the growth ability. Figure 9 give support for the relation between gel strength and 

cell growth, were gelling with 10mM BaCl2 resulted in further strengthening of the alginate 

microcapsules and a further reduction in cell growth and endostatin secretion (unpublished). 

Our results are in agreement with studies by Constantinidis et al. which demonstrated growth 
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inhibition following increased gel-strength in alginate microcapsules with insulin producing 

TC3 cells  (209, 210). Encapsulation is also shown to hinder cells to undergo cytokinesis 

initially after encapsulation, resulting in double and triple nucleated cells within the first days 

(211). The gel-strengths may get at the sacrifice of the cell survival as demonstrated for 293 

endo cells encapsulated in covalently cross-linked alginate beads (paper III). Helmlinger et al.

demonstrated that solid stress inhibited growth of various multicellular tumor spheroids in 

agarose matrices (212). Solid stress resulted in decreased proliferation, reduced apoptosis and 

increased cellular density within the spheroids, while upon stress release quiescent cells 

resumed cell cycling. These patterns of cellular behavior are likely to take place within our 

capsule systems as the cell lines are of cancerous origin (JJN3) or transformed (293 cells, 

transformed with adenovirus 5 DNA) to give an unlimited proliferation.  

The effect of solid stress will vary with cell-type. Peirone et al., demonstrated different 

proliferation behavior between encapsulated cell lines in different alginate capsules (203). In 

paper III we demonstrated different growth and survival patterns of 293 endo cells and the 

C2C12 myoblasts within the covalent alginate (CEPC) beads. Contradictory to the 293 endo 

cells, the C2C12 myoblasts survived within the extreme beads for a prolonged time. The 

C2C12 cells are known to have a low dividing capacity post-encapsulation (203), while the 

encapsulated 293 endo cells are highly proliferating within alginate capsules formed by 

ionothropic gelling (paper I, II, III). Also human islets with an approximate stable cell number 

were able to survive and secrete insulin within the extreme beads. The difference in survival 

patterns in the CEPC beads may therefore be explained by the proliferation behaviors post-

encapsulation.  
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Figure 9.  The relationship between the cell growth (upper graph and confocal images), 

endostatin secretion (middle graph) and the gel strength (lower graph) evaluated by different 

alginate microcapsules. Growth of encapsulated 293 endo cells given 15 days post-

encapsulation, endostatin secretion at day 17 and stability at day 15. (A) Standard Capsule, 

(B) Standard Ca/Ba (50/1mM) Capsule, (C) Epi Ca/Ba (50/1mM) Capsule, (D) Standard 

10mM Ba  and (E) Epi 10mM Ba. Cell growth measured by MTT assay and live/dead 

staining, endostatin by ELISA and stability measured with explosion assay after protocols 

described in paper II. Note that the stability of the Standard Capsule is not comparable to the 

others since capsules gelled with only Ca2+ ions swells rather than burst. (n.d.= not detected) 

As seen in paper I and II, the growth of 293 endo cells could be divided into different stages 

of increased and reduced growth. Further on, variability of the cell concentration between 

different alginate microcapsules was reduced by time. The gel-strength seems to affect the 

initial proliferation abilities of the encapsulated cells, but with time an adaptation/selection of 

cells to the gel-environment and a reduction of the gel-strength may contribute to an increased 

growth rate in all capsule types as discussed below. 

An adaptation or selection of cells was demonstrated for the myelomic cell linage JJN3, 

where only few cells adapted to the alginate environment and formed multicellular spheroids 

(paper I). This resulted in an uneven distribution of spheroids within each capsule. An 

adaptation of C2C12 myoblast in alginate beads was observed approximately 100 days after 

encapsulation (paper III). This may have been caused of a selection of myoblasts with a 

higher proliferative capacity, as this previously is shown within alginate capsules (211).  

A destabilization of the gel may occur when divalent cations are displaced by competing 

monovalent ions within the alginate gel, during extensive media changes. This was shown for 

empty alginate capsules (60% M) submitted to several media changes (213) and as a 

decreased porosity of alginate beads (73% G) (214). Further on, decrease in calcium 

concentration level within media containing alginate bioreactors indicates that calcium is 

deprived with incubation time (210). The introduction of cells within the alginate network are 

also shown to contribute to a destabilization of the alginate capsules (74, 215). In paper II we 

showed a destabilization of the alginate capsules caused by the cellular growth. The growth-

induced destabilization was further demonstrated by comparing the swelling stability of 

barium beads containing low-dividing myoblasts and highly proliferative 293 endo cells 
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(paper III), where faster diameter increase was seen with the highly proliferating cells. 

Confocal images of fluorescenamine-labeled alginate (paper II) visualized the perforation of 

the alginate network by growing spheroids, suggesting a mechanical disruption of the gel-

structure. This is supported by findings of Read et al., who describes open holes in the 

alginate after dead cells have been expelled (216).

As proliferation, differentiation and cell death is considered controlled by an interplay 

between soluble growth factors and insoluble extracellular matrix molecules, increasing 

evidences suggest that mechanical forces may have impact on these features (217). In a recent 

review, Huang and Ingber describe how force-resistance promotes expression of 

undifferentiated malignant phenotypes (218). Rigid gels lead to disruption of the cell-cell 

junctions, disrupted spread, increased proliferation and lost acinar organization. On the 

molecular level, the increased stiffness is suggested to promote integrin clustering, Erk 

activation (force generation), and Rho-mediated contractility. The rise of cell tension will 

further increase ECM stiffness, thereby creating a self-sustained positive feedback loop, 

called the solid version of an autostimulatory loop (known for soluble signals). A physical cue 

devoid of chemical specificity may therefore switch cells between different phenotypes, even 

between normal and cancerous state. The reduced apoptosis observed in the study of 

Helmlinger, was suggested to be a possible result of the interfere with the cell-shape 

transduction mechanism (212). This pattern of action is therefore important to consider by the 

use of cell lines in the alginate bioreactor system. In fact, the alginate bioreactors may 

function as a feasible tool for studying the behavior of cancer cells, as they preserve a three-

dimensional structure of the tumor spheroids and yield rigidity which gives an external 

pressure to the tumor cells, thus mimicking many biological and microenvironmental 

conditions for the tumors in vivo.

6.1.2 Optimization for proliferating cells 

Since the properties of alginate capsules will vary according to alginate source and 

encapsulation procedure, optimizing of the capsules for cell lines is necessary to find an 

functional bioreactor. In the following, the different parameters that have been studied 

according to proliferating cells will be discussed. 
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As described in section 2.2.1, the stability of the capsules vary according to the alginate M/G 

ratio, gel-concentration and with molecular weights below a critical value (140). As the 

original encapsulation protocol involved solubilisation of the alginate core (hollow or 

liquefied capsules), many groups still follows this method (see table 2, section 3), even though 

liquefying is demonstrated to reduce the stability substantially (147), and liquefied capsules 

are destroyed within short time in larger animals (170). For in vitro growth experiments with 

encapsulated cells comparing parameters of stability (74, 203, 205, 209, 215), the main 

conclusion is that high-G capsules with a solid core are preferred when requiring a long-time 

duration of the bioreactors. 

The distribution of the alginate within the capsules may be varied depending on the presence 

or absence of non-gelling ions (section 2.2.1 (143, 144)). In paper I, growth was compared in 

alginate microcapsules formed after an inhomogeneous and homogenous formation protocol. 

Small but significant differences in cell growth using JJN3 cells were seen, while using the 

highly proliferating 293 endo cells no difference were found in the growth ability, and only 

small differences in the protein secreting ability. However, Visted et al. has  demonstrated 

increased endostatin secretion from 293 endo cells encapsulated in inhomogeneous alginate 

beads (219). These differences may be explained by the distribution of alginate that seems to 

be more expressed within alginate beads than microcapsules, as the covering with PLL has 

been shown to reduce the inhomogeneity (145). As the inhomogeneity induces increased 

stability of the microcapsules, due to an increased binding of PLL (147), inhomogeneous 

formation should be preferred for both alginate beads and microcapsules.  

In our protocol, mannitol is used as non-ionic osmolyte promoting the inhomogeneous 

formation. This protocol was harsher to the cells than the more common use of saline in the 

gelling solution (paper I). However, this was also dependent on the cell type, as the JJN3 cells 

were highly sensitive to the encapsulation protocol, while only minor differences were seen 

with the 293 endo cells. Coating with PLL also diminished the survival of the JJN3 cells, and 

a combination of PLL and mannitol rendered only few surviving cells within the capsules. 

Over time, the inhomogeneous microcapsules were still supporting a slightly better growth 

and secretion than the homogenous microcapsules for the JJN3 cells. 

In paper I we demonstrated that PLL functioned as a barrier that hindered the cells from 

protruding the alginate capsules. Cell protruding in alginate beads has also been  described by 
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others (211, 216, 220). We have therefore concluded that an outer coating as PLL is needed to 

maintain long-term stability, which also has been the conclusion of others (204). Escaping 

cells will probably be eliminated by the host immune system as long as they are of non-

autologues origin, but the host may also be exposed to harmful oncogenes, so this is a safety 

issue that can not be overlooked.

Even though PLL coating is essential for the long-time stability of the capsules (204), the 

cellular growth causes disruption of the PLL-coated capsules with time as demonstrated in 

paper I. This disruption is most likely related to the cellular growth which results in 

destabilization of the alginate gel-network as shown in paper II and an additional 

destabilization from calcium deprival, as discussed in section 6.1.1. In paper II we increased 

the strength of the alginate microcapsules by use of AlgE4 derived alginate and by addition of 

barium ions (1mM) in the gelling solution. This resulted in a diminished growth and 

endostatin secretion rate, but the total duration of the alginate bioreactors was only slightly 

increased. By using 10mM barium in the gelling solution, the proliferation was further 

reduced (figure 9) and the total duration of the bioreactors increased to around 50 days (not 

published). The overall conclusion is therefore that it is possible to reduce the cellular growth 

by increasing the gel strength for high-dividing cells, but for alginate capsules made of 

ionothropic gelling, the system will be destabilized with time, resulting in capsule disruption 

(paper I-III).  

An alginate capsule with extreme stability against swelling was developed, based on a 

strategy of chemical and enzymatic modifications (paper III). As the photo-crosslink reaction 

involved rather harsh conditions for the cells, the procedure had to be optimized for cell 

compatibility (paper III). As discussed in section 6.1.1, the CEPC beads were compatible for 

cells with a low- and non-dividing post-encapsulation feature, but not for highly proliferating 

cells. Human pancreatic islets survived and secreted insulin within the CEPC beads. The 

CEPC beads may therefore present a potential system for encapsulation of islets, giving a 

superior stability of the bioreactors. For the C2C12 myoblasts which have a low-dividing 

post-encapsulation feature, there was observed a low number of protruding cells through the 

beads, giving adherent colonies of cells. This shows that the cells had intact dividing capacity 

despite low proliferation after encapsulation, and demonstrates that even in capsules with an 

extreme stability a barrier in the form of a membrane has to be created to keep dividing cells 

away from escaping. 
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Since the bioreactors are dependent on diffusion of nutrients and oxygen, reduction in capsule 

size may enhance the mass transfer. A steep decline in oxygen values are reported for alginate 

beads of 700μm, resulting in necrotic tissue in the centre (221). Visted et al. showed that 

alginate beads with a size of 475μm supported higher cell-survival and angiostatin secretion 

rates than beads of 700-750μm. For capsules with a diameter around 700μm, most cellular 

spheroids was observed in the outer rim (205, 209). As seen in paper II, the initial diameter of 

our microcapsules varied among 470-560μm, depending on the capsule types. Sectioning 

through the capsules using confocal microscopy showed cellular spheroids in the centre of the 

capsules at early stages (day 1-20), while it was difficult to interpret the cellular status in the 

centre of the capsules at later stages using this technique.

Cell proliferation within the intracapsular environment may also potentate outstripping of the 

nutrient and oxygen supply, leading to cell death. Confocal images (paper II) showed that 

areas of dead 293 cells could be detected in late stages post-encapsulation, when cells filled 

the capsules. The variation in proliferation has impact upon the secretion profile, and it may 

be difficult to deliver a specific dose of the therapeutic protein, as seen on the secretion 

profiles in our studies. Another problem posed by dividing cells is the accumulation of cell 

debris due to cell-turnover. The functional time of the bioreactors may be compromised due to 

long-time debris buildup, which may function as antigenic material and potentially invoke a 

harmful host response against the implanted cells (discussed in section 6.2.2).

Generally, the in vitro experiments are performed with nutrition excess, ensuring optimal 

growth conditions for the cells. The in vivo growth conditions may give less nutrition or 

oxygen, thus lower the overall proliferation rate of the encapsulated cells. In paper VI 

however, it was demonstrated that CF-WEHI cells grew well within the capsules after isograft 

transplantation, while these cells were difficult to maintain in vitro. Overall, our results 

demonstrate that for therapeutic use of alginate bioreactors the choice of cells and 

proliferation control will be crucial to the final outcome. This is discussed in section 6.1.3. 
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6.1.3 Selection of cells for encapsulation 

In the previous sections (6.1.1 and 6.1.2) the drawbacks of using proliferating cells were 

discussed, and it is quite clear that the choice of cells is important to establish an optimal 

bioreactor. The optimal situation for encapsulated cells would be small spheroids getting 

easily access to nutrition and oxygen, while therapeutic proteins and waste products readily 

pass out of the capsules. An ideal situation may be as shown for the 293 endo cells 10 days 

after encapsulation as shown in paper VII (figure 3, day 10). This would ensure high viability 

and reduce the accumulation of dead cells. Proliferation control has been described using the 

TetSWITCH system, mainly developed for a large scale production of proteins (222). The system 

is based on a multicistronic expression unit encoding both the product gene and a cytostatic 

cell cycle arresting gene under control of a tetracycline repressible (tetOFF) promoter, giving a 

growth arrested production phase of the protein. However, the system suffers of having a 

functioning time of only seven days, and a tendency of a genetic shift towards proliferation 

competent mutant cells. TetON and TetOFF promoters has recently been evaluated within 

alginate encapsulated insulin producing cell lines (223). The system demonstrates several 

infirmities as the use of elevated concentrations of condition agents (antibiotics), unstable 

insulin secretion that increased with time and the growth of cell-colonies unresponsive to the 

treatment. 

Cells that proliferate well under regular cell culture conditions, but reduce their growth after 

encapsulation, may be suited for encapsulation. The C2C12 myoblasts divides 2-3 times after 

encapsulation (203) and remains viable for a long time post-encapsulation (167), which are 

features making this cell line especially interesting for applications requiring long-time 

duration. As seen from table 2, C2C12 myoblasts are engineered to produce different proteins 

and are widely used for encapsulation in alginate capsules. A specially interesting feature with 

myoblasts is their ability to terminally differentiate into a non-proliferative state by 

manipulation of the growth conditions where the cells undergo a fusing process forming 

multinucleated muscle fibers  (224, 225). A high cell number or the use of low concentration 

of horse serum are known factors to trigger differentiation of myoblasts (224, 226). The 

myoblasts differentiate scarcely within alginate capsules, but Li et al., improved the post-

encapsulation proliferation and differentiation by using a combination of collagen, basic 

fibroblast factor and insulin growth factor (227). Lately, it has also been demonstrated that 

surfaces supporting the selective binding of 5 1 integrin displayed enhanced differentiation 
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(228). In fact, differentiation of C2C12 myoblasts has been promoted in alginate gels with a 

high-G content modified with RGD peptide sequences that mimics the cell adhesion 

functionality of human fibronectin, but not in RGD alginate with high-M content (229). It 

seems therefore possible to control the behavior of myoblasts by choose of alginate and 

modulating by introducing chemical groups. Galactose-subsituted alginate is recently 

produced, as a way of supporting hepatocyte growth in alginate (230, 231). The strategies of 

using chemically modified and enzymatic tailored alginate as presented by Donati et al. (232) 

and in paper III, may be used for the introduction of myoblast differentiating molecules while 

presuming the stability requirements of the alginate. 

Established cell lines are beneficial as they are readily available, but they may possess a 

safety problem as they are immortalized. The C2C12 cell line has been reported to be safe in 

an immunocompetent host (167), but to cause tumors in immunodeficient mice (233). As 

shown in paper III, during a long encapsulation period (>100 days), some C2C12 cells 

adapted to the environment in Ba beads and formed large spheroids, despite the low post-

encapsulation dividing capability of the main population. Primary cells can be considered 

safer than established cell lines, but they possess additional challenges as availability and a 

limited dividing potential since they start senescence after 30-40 cell divisions in vitro (234). 

Screening for pathogens and genetic engineering to introduce the therapeutic protein may 

therefore be more time consuming using primary cells instead of cell lines. However, human 

primary myoblasts can be isolated from biopsy or autopsy material, enriched and grown to 

large numbers and genetically engineered without loosing their potentials to differentiate. It 

has also been shown that myofibers implanted in mice remained viable for at least six months 

with stable gene expression (235). Today, such cells are therefore probably a good choice for 

cell encapsulation therapy.  

Stem cells may represent a safe and valuable source of cells for application in cell therapy, as 

they possess extensive regeneration potential and functional lineage differentiation capacity 

(236). Many of these cell types could be useful as individual or groups of cells. Unlike the 

genetically engineering technology that aims to introduce genes that make the treated cells 

produce a protein of interest, this technology aims to take advantage of the natural cells and 

their products. This way it may be possible to generate insulin producing -cells for treatment 

of diabetes (237), or dopamine producing cells for treatment of Parkinson disease (238). 

While protection from the host immune system not will be required in some cases (239), 
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transplantation of -cells for treatment of type I diabetes still may require protection against 

the autoimmune disease. As differentiated cells derived from stem cells have the normal 

characteristics and immune activating potential of the particular differentiated cell type, a 

protective barrier may be required using these cells as well.  

Stem cells may become tumorogenic by the loss of division control after implantation. One 

sophisticated way of control a potential uncontrolled proliferation of stem cells is described 

by Vats et al in a resent review (240). By coupling a functional xenoantigen, galactosyl 

transferase 1,3 (gal 1,3) under the control of the telomerase promoter (which controls the 

cellular division capacity), the expression of gal 1,3 on cells becoming immortalized ensures 

immune recognition and destruction of cells by complement-mediated lysis.  

The delivery of genes by viral vectors is another safety issue that may be solved by use of 

non-viral vectors as cationic polymers and lipids (241). 

Many challenges in stem cell technology remains to be solved before these techniques give 

available cells for clinical transplantation (240). From a capsule point of view it is interesting 

that the cultivation of stem cells within a three-dimensional network may be a tool for 

developing particular differentiation qualities of the cells (242). The impact of mechanical 

stimuli is largely unexplored but considered important in the same way as chemical stimuli 

and matrix/substrate related factors.  
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6.2 Immunocompatibility 

The implantation of the biomaterial commonly leads to stronger or weaker inflammatory 

reactions which is chiefly manifested as overgrowth of the material by fibroblasts and 

macrophages (243). The immunocompatibility of alginate bioreactors depend on the source of 

the encapsulated cells, its host, site of implantation as well as the material itself (section 1.2). 

In a recent review of Wang et al. (15), chemical structures and surface properties of polymeric 

biomaterials influencing their biocompatibility are discussed. These effects include; the 

interfacial free energy (surface-liquid interactions), the balance between the hydrophilicity 

and the hydrophobicity on the surface, the chemical structure and the functional groups, the 

type and density of surface charges, the molecular weight and conformation flexibility of the 

polymer, and finally surface topography and roughness. In the following sections the 

immunocompatibility of the alginate microcapsules and bioreactors are discussed in relation 

to our experiments. 

6.2.1 Empty alginate capsules 

PLL is used as an outer coat of the alginate beads to increase mechanical strength and reduce 

porosity. Alginate microcapsules has been reported to activate macrophages IL-1 production 

(244) and to activate complement (245). More inflammatory cell adhere to the surfaces of 

alginate microcapsules than alginate beads (162, 193, 246, 247), and therefore the 

involvement of PLL in the inflammatory reaction were studied (paper IV). A clear 

correspondence of the severity of the inflammatory overgrowth reaction and the PLL-layer 

was found. The results indicate that PLL may be directly involved in the inflammatory 

process as soluble PLL induced the pro-inflammatory cytokine TNF in cultures of human 

monocytes and macrophages were identified among the adherent cell population in the in vivo

studies.

Release of bound PLL after microcapsule formation may contribute to cytokine release, as a 

slow release of bound PLL is demonstrated (146). The differences in binding properties of 

PLL within different beads may therefore account for differences in overgrowth reactions. 

Thu et al. have shown that the binding of PLL increases with the mannuronic acid content in 

alginate beads and more PLL binds to high-M beads than to high-G beads (146). One 

explanation to this finding may be that high-M beads contain higher electrostatic interactions 
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as the M-blocks easier exchange calcium ions than G-blocks hence more polymer is available 

for PLL binding. The leakage of PLL is also shown to be higher from high-M capsules, but it 

was not estimated whether the PLL was bound to alginate or existed in free form, which will 

be of importance for its stimulatory properties (146). High-G beads is shown to have fewer 

binding sites for PLL as compared to intermediate-G capsules (248). In contrast with Thu et

al. and despite fewer binding sites, De Vos et al. demonstrated that high-G capsules contained 

20% more PLL than intermediate-G capsules and this was explained by the porosity of the 

high-G beads allowing the PLL to penetrate deeper (249). These authors therefore suggest 

that more binding of PLL in combination with higher release causes increased overgrowth 

reactions in high-G microcapsules.  

Inflammatory reactions can be mediated through the release of cellular products from necrotic 

cells (250). As the soluble PLL trigger necrosis in various cell lines and monocytes (paper 

IV), this may be another pathway of PLL induced inflammatory reactions. Our results are 

consistent with the findings of Fischer et al. (251) demonstrating necrotic cell death after 

incubation with soluble PLL. Among several cationic macromolecules tested, PLL is shown 

to be the most toxic (251). The molecular weight, the cationic charge density and the 

flexibility of the polycations are suggested key parameters for the interaction with the cell 

membrane and consequently, the cell damage (252-254). Rigid polymers have more 

difficulties to attach to the cell membrane than flexible molecules and highly flexible 

polycations with a high charge density within the three-dimensional structure is suggested to 

give the highest toxicity. Poly-L-Ornithine may be an alternative to PLL as it is demonstrated 

to be less immunogenic and give higher mechanical strength of the microcapsules (255). 

Adsorption of proteins to the capsule surface may be a third way PLL contributes to the 

inflammatory reactions. Different host proteins has been found to adhere to alginate 

microcapsules and among these are fibrinogen, fibronectin, plasminogen, complement factors 

and immunoglobulins (256). These proteins may mediate the binding of inflammatory cells to 

the capsule surface. Fibrinogen seems to be specially important for host inflammatory 

reactions (14), both mediating binding of inflammatory cells through the integrin 

CD11b/CD18 (13) and activate macrophages through the pattern recognition receptor TLR 4 

(257).
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Strong inflammatory reactions are seen towards alginate-PLL capsules when the outer 

alginate coat is abolished (247). The positive surface charge evolved by the exposure of the 

polycation on the surface may increase the protein adsorption as most proteins bear a negative 

charge and protein adsorption tends to be higher to positively charged surfaces (15). Coating 

of the PLL by alginate is therefore performed, which reduces the amount of adherent cells 

compared to alginate-PLL capsules without an outer coat (247). Still, the alginate coat has not 

been effective enough to abolish the negative effect of PLL totally as demonstrated in paper 

IV and by others (193, 246, 247).

Strand et al., improved the alginate coating by use of an epimerized alginate containing 

alternating sequences of MG that resulted in a 40% higher amount of bound alginate (141). 

The effect of the MG-coat upon overgrowth reactions were therefore studied (paper V). The 

MG-coat improved the immunocompatibility of the microcapsules as the retrieval rate was 

significantly higher while the amount of overgrowth was reduced. These results may be 

explained by the following; Recently, Tam et al. demonstrated that exposed PLL interacts 

with the outer coating of alginate forming an alginate-PLL complex through ionic interactions 

were membrane PLL exist in both -helix and random conformation (258). The -helix 

conformation is suggested to reflect a strong interaction between the molecules, where PLL in  

-helix conformation is surrounded by a larger helix of the alginate molecule (258). A limited 

interaction with the alginate retains the PLL in its random coil conformation. As the MG-

blocks are more flexible than M- or G- blocks (section 2.1.3, (94)), the higher binding of the 

AlgE4 epimerized alginate (141) may reflect a stronger interaction of the PLL complex with 

the alginate, which further leads to reduced amounts of random coiled PLL and more 

neutralization of the positive charges. It is also possible that a better interaction between PLL 

and MG-alginate reduces the leakage of the PLL from the capsules.  

PLL seems to be exposed at the surface, as relatively high amounts are found within the 

outermost 100 Å (258). This was also indicated by morphologic observations with confocal 

microscopy, where the alginate layer appears to overlap with the PLL layer (145). Suggesting 

that PLL is exposed on the outermost surface of the capsules evaluated in paper V and that 

more of the alginate-PLL complexes are in an -helix conformation, the reduced overgrowth 

reactions by MG-coated capsules may indicate that a stronger interaction between alginate 

and PLL counteracts the negative effects of exposure of PLL at the surface. The MG-alginate 

used in paper V constituted a MG degree of 0.38, while a MG-degree of 0.47 has been 
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achieved in our laboratory (100). It should therefore be possible to achieve an alginate coat 

with higher flexibility than used in paper V, which may reduce the overgrowth reactions 

further. Another way of achieving flexibility in the alginate and thus possibly increasing the 

binding to PLL, may be through periodate oxidation of the alginate (259).

Other strategies that have improved the biocompatibility of the alginate-PLL capsules has 

involved the use of pentalayered alginate/PLL/alginate/PLL with an outer coat of 

Poly(ethylene oxide) which reduced the protein adsorption and complement binding (243), 

coating with a poly(ethylene glycol) based hydrogel (260) or with polyacrylic acid (261). 

Recently, Dusseault et al. has improved the binding strength of PLL to alginate by 

modifications involving covalently linking of the PLL to the alginate core and coating (262). 

This may be a feasible way of reducing leakage of PLL from the capsules, but as these 

modifications will affect surface charge as well as surface roughness, evaluations of the 

immunocompatibility has to be carried out.

Another strategy of reducing the inflammatory effects evolved by PLL is to eliminate the PLL 

layer completely. This implies that alginate beads with a high stability must be used. As 

described in section 2.2.1 this may be achieved by increasing the content and length of G-

blocks in the alginate, use barium as gelling-ions and by forming inhomogeneous beads. By 

using alginate with an increased amount of MG-sequences, it is also possible to reduce the 

swelling and size of the alginate beads, and these beads have higher stability than our standard 

high-G beads (141). In paper V we therefore compared the overgrowth reactions between 

these bead types. The most stabile bead type, the epimerized bead, gave a slightly higher 

adherence of host immune cells even though only significant differences were measured for 

the DNA content.  These differences may be caused by contaminations from the epimerases, 

differences in surface roughness or surface charges. Since the endotoxin content was 

measured as lower than 10ng/mg for all samples, the differences are probably not caused by 

variable purity. As the epimerized beads showed reduced swelling (141) and have more 

junction zones as recently demonstrated to occur in MG-blocks (100), there is a possibility 

that the epimerized beads have a rougher surface. It is also likely that these differences may 

affect the surface charge, probably a decreased charge density are seen if more junction zones 

are created. Although hypothetical for the moment, changes in surface properties may have 

contributed to an increased cell adherence to the epimerized beads as seen in paper V. 
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Surface roughness of different alginate capsules with high-M content are recently evaluated 

using atomic force imaging (261, 263). Polyacrylic covered alginate-PLL capsules have a 

smoother surface than the alginate-PLL-alginate capsules and gives an improved 

immunocompatibility (261). However, the polyacrylic covered alginate-PLL also have a more 

stabile covalent binding to PLL (261). Ba beads have stiffer and rougher surface compared to 

Ca beads (263). Covering Ca beads with PLL gives only slightly rougher surface compared to 

Ca beads, and smoother surfaces than Ba beads. Alginate-PLL capsules not covered with an 

outer alginate layer gives similar smooth surface as the polyacryl coated capsules (261), while 

still giving a severe overgrowth reaction (247). Surface roughness therefore seems to be less 

important for overgrowth reactions on alginate-PLL-alginate capsules than the other factors 

discussed for PLL. It should however be noted that high-M capsules were used in the 

described experiments, giving capsules with a high swelling capacity. As high-G capsules are 

more resistant to swelling, It is likely that an increased surface roughness is found on high-G. 

As described in paper III, alginate beads with an extreme high swelling stability is achieved 

using a chemoenzymatically strategy were covalently cross-links are introduced through the 

beads. Since these beads possibly are stiffer, the surface roughness may be increased. The 

surface charge may also be affected by the introduction of methacrylate as it introduces some 

hydrophobicity. However, the modification was low, thus only minor changes in surface 

charge is expected. The benefit of avoiding the PLL layer is probably larger than the effect of 

a possible rougher surface and a minor reduction in surface charge in the CEPC beads.  

6.2.2 Immunological responses to alginate bioreactors 

In paper VI it was shown that alginate bioreactors containing xenografts provoked an 

inflammatory response where macrophages and fibroblasts were identified among the 

adherent cells. In contrast, only minor immunereactions were seen against alginate bioreactors 

containing isografts. These results may be explained by a typical cell-mediated immune 

response involving the presentation of foreign proteins on MHC Class II molecules of APC to 

Th-cells through the indirect pathway as described in section 1.2. This leads to activation of 

the Th-cells that may initiate inflammatory and humoral responses against the presented 

antigens. As the xeno-cells may release more proteins that differ from the host, more proteins 

will be presented as foreign on the host APC.  
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A humoral response against the therapeutic protein endostatin is likely to be initiated as it will 

function as a xeno-protein, since antibody responses against xeno-proteins has been reported 

in several studies (66, 167, 171, 172). However, the lack of endostatin in the mice sera one 

week after implantation in our study was probably caused by other factors than neutralizing 

antibodies. Endostatin was not detected in culture media from explanted capsules one week 

after implantation and antibody production is usually detected two-three weeks after 

intraperitoneal implantation in mice. The lack of endostatin secretion could be due to cell 

death, but confocal images revealed a substantial amount of live cells within the capsules. 

Possibly the fibrotic reaction blocked the ingress of nutrients and oxygen, thus impairing 

functions of the encapsulated cells. Secreted mediators (TNF- , IL-1, IL-6, reactive oxygen 

and nitrogen mediators) from adherent macrophages and neutrophils may also have 

contributed to an impairment of the cell-functioning. While protection of iso- or allografts is 

achieved by preventing the access of immune cells, xenograft protection is achieved only by a 

membrane that restricts the release of shed xeno-antigens (23).  

The inflammatory responses could also have been evolved from dead cells and their products. 

The Danger Model postulated by Matzinger suggests that the immune system is more 

concerned with damage than with foreignness, and is called into action by damage signals 

from injured tissue or cells (264). This implies that transplantation rejection would be initiated 

by the surgical damage and may explain why MHC mismatched transplants from living 

donors often perform better than MHC compatible transplants from cadavers. Recently, 

studies have revealed that mechanisms of cell death in various tissues or tumors determine 

their immunogenicity. Dendritic cells can be activated by endogeneous signals received from 

cells that are stressed, virally infected or killed by necrosis (265). Furthermore, necrotic tumor 

cells, but not apoptotic cells, induce maturation and activation of dendritic cells (266). 

Macrophages distinguish between necrotic and apoptotic tumor cell death by producing 

inflammatory cytokines in the former and suppressive cytokines in the latter case (267). 

Intracellular content from necrotic cells have been demonstrated to induce the NF- B, the 

master regulator involved in immune and inflammatory responses (268). Necrotic cells have 

also been demonstrated to induce the expression of neutrophil-specific chemokine genes 

(KC), macrophage-inflammatory protein (MIP-2), matalloproteinase 3 (MMP3) and VEGF in 

fibroblasts and macrophages (268). And further, this activation was dependent on TLR2 

(268). The heat-shock proteins (HSP) are among the most abundant soluble intracellular 

proteins in the cell, and these proteins are released upon necrotic cell death (269). HSP 
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stimulates macrophages to produce cytokines as TNF- , IL-1  and IL-12, and dendritic cells 

to express MHC class II molecules and co-receptors, thus these proteins mediates both 

unspecific and specific immune mechanisms (269).  We have detected HSP70 in the culture 

media from encapsulated 293 endo cells and the amount of HSP70 correlated with the cell-

load (unpublished).  In the view of this information, it is possible that the secretion of dead 

cell products have contributed to the inflammatory reactions observed in paper VI. The 

concentration of cells was highest in the bioreactors containing xeno-cells at the time of 

implantation. This may lead to more release of proteins like HSP from the bioreactors 

containing xeno-cells.

 One further prediction of the Danger Model is that the continual re-stimulation with the 

offending-antigen is required for effective immune activation against it (264, 270).  In the 

case of encapsulated cells, the polymer membrane will ensure a continuous secretion of 

damaged cell products persisting until the destruction and clearing of all implanted cells. 

There may therefore be a possibility that the bioreactors act as adjuvant to potentate the 

chronic inflammation process. Following these lines, having healthy cells exposed to a low 

stress level may be of significant importance for avoiding inflammatory reactions against the 

bioreactors. In this context, the influence of different alginate microcapsules upon the cell-

behavior may be crucial for the inflammatory reactions. Moreover, this distresses the 

importance of using cells with a controllable growing ability as discussed in section 6.2 and 

6.3.

The triggering of specific and unspecific immune pathways through secretion of encapsulated 

cell products has been used in an intricate way to provoke anti-tumor responses (23). The 

concept is based on encapsulation of irradiated cancerous cells and the continuous secretion of 

necrotic tumor cell products. The device is inserted adjacent to the tumor tissue were it 

secretes its products. In this way the encapsulation device may function as an adjuvant, 

contributing to an increased immunological response against the tumor cells.  
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6.3 How to make the ideal alginate bioreactor 

Many requirements must be fulfilled in making a functional long-lasting alginate bioreactor, 

implying both considerations regarding the therapeutic cells, capsule stability and host 

reactions. Even though the brain is considered an immune privileged site, immune 

mechanisms must be expected in the resection cavity as described in section 1.2 and paper 

VII, thus there is a need for a protection of the therapeutic cells. Based on different studies of 

our group and others, several features of a functional bioreactor are elucidated. These choices 

are based on the following; 

Capsule formation: To avoid cells in the outer rim of the capsules (shown in paper I, 

II) a 2-fluid nozzle may be used, as described by Prûsse et al. (271), where the core 

alginate is loaded with cells, whereas a cell-free alginate is used in the outer rim. This 

also makes it possible to use different alginate in the inner core and the outer rim, thus 

making it easier to meet both the cell- and host-compatibility requirements. 

Selection of cells: Cell proliferation should be avoided as this presents both a safety 

and stability problem (paper I, II, discussed in section 6.1.1 and 6.1.2). Mice 

myoblasts have a low dividing capacity post-encapsulation (paper III), and myoblasts 

have the ability to differentiate to a non-proliferative state (discussed in 6.1.3). 

Because allo-cells would be preferred and primary cells are considered safer than cell 

lines, human primary myoblasts would be a feasible choice. RGD grafted high-G 

alginate has been shown to induce both growth and differentiation of myoblasts, and 

could be a feasible matrix for the inner core containing the cells. Basic fibroblast 

growth factor in the presence of collagen has been shown to induce myoblast 

proliferation, and could be included (227). Alginate bearing galactose moieties has 

been achieved by the same strategy as we used in paper III (232), thus it may be 

possible in the future to substitute the alginate with different cell-supporting molecules 

and at the same time engineer it to contain the proper M/G ratio. One potential 

problem with using myoblasts within angiogenic therapy, may be their ability 

constitutively expresses the endothelial growth factor (VEGF), as shown in primary 

myoblasts from mice (272). Nevertheless, myoblasts secreting angiostatin have 

demonstrated tumor reduction in mice models (6, 7), thus they may still function for 

such treatment. 
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Stability without PLL: To ensure high stability without PLL, the outer rim could 

consist of a covalently cross-linked alginate as described in paper III. Other candidate 

would be epimerized alginate or high-G alginate stabilized with barium (paper II). As 

ionothropic gels will swell by time, also when using barium ions (as demonstrated in 

paper III), the best choice would be the covalent cross-linked alginate used in paper 

III.

Protection without PLL: As alginate capsules may insufficiently protect against 

humoral immune factors, an additional strategy to avoid these factors may be 

included. An protection against complement activity may be achieved by entrapping 

polyvinyl sulphate (PVS) within the alginate, as PVS is shown to inactivate 

complement after entrapment in gelatin (273). 

Shielding of PLL: In cases where the pore sizes has to be reduced to get a better 

protection against host factors a proper shielding of the PLL is needed (paper IV and 

V, section 6.2.1). A strategy for covalently-crosslink the PLL to the alginate has been 

presented by Dusseault  (262). Also shielding with a flexible alginate like epimerized 

alginate (paper V) could increase the immunocompatibility. An increased 

immunocompatibility within alginate-PLL-alginate capsules has also been achieved by 

co-encapsulation of steroids like dexamethasone, which have an immunomodulating 

effect on macrophages (274). By blocking the macrophage response in an early phase, 

it is suggested that the inflammatory response may be avoided or at least lowered  

(274).

Size: The size of the capsules may affect the encapsulated cell viability, where small 

sized capsules ensure better oxygenation and exchange of nutrients and waste product 

(section 2.2.3). On the other hand the alginate network may function as a buffer zone 

for host factors and cell-contact, preventing immune-destruction, thus a bigger capsule 

may be advantageous. The diameter on the capsules used in our experiments has 

mostly been in the range of 470-550μm. In paper III it is shown that the viability of 

the myoblasts in the centre of the beads was high, demonstrating that this capsule size 

is compatible with cell survival. A prerequisite is however that the capsules are not 

over-loaded with cells.
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Antibodies as therapeutics: Gliomas are a heterogeneous population of tumor cells 

and multiple factors are involved in the tumor growth and spreading (migration, tumor 

angiogenesis as well as host angiogenesis pathways) as described briefly in section 

3.4. Multiple attacks targeting key-proteins within these pathways are probably needed 

to succeed. Antibody producing cells may therefore present a way of increasing the 

attacker points. In such cases, a porous capsule will be required, that allows the 

antibodies to diffuse out of the capsules. Encapsulated hybridoma cells have been 

widely used for antibody production, and they possess a high growth potential within 

high-M solid capsules (275). The dual capsule with an outer rim of covalently bound 

alginate may be the best choice for increasing the stability and maintain host safety 

using hybridoma cells. 

Figure 10 summarizes the features that may be required for the ideal alginate bioreactor. The 

ideal alginate bioreactor may also vary depending on the type of disease and the delivery site. 

However, some general requirement of the microcapsule system as stability, cell 

compatibility, immunocompatibility and safety must be fulfilled. The alginate based 

encapsulation technology is moving forward and different groups have contributed to 

increased characterization of the alginate capsule system the latest years. Together with 

developing cell-technology it may be possible to make functional alginate capsules for 

therapeutic delivery treatment in the near future. 



DISCUSSION 

64

Differentiated
Cells
(myoblasts)

Cross-linked alginate

Tandem-layer

PVS entrapment
Anti-complement activity

PLL
(cross-linked)

Shielding 

MG-alginate
Cross-linked alginate

Supportive cell
Matrix
RGD alginate/high-G
Proteins enhancing 
differentiation

Differentiated
Cells
(myoblasts)

Cross-linked alginateCross-linked alginateCross-linked alginate

Tandem-layer

PVS entrapment
Anti-complement activity

PLL
(cross-linked)

Shielding 

MG-alginate
Cross-linked alginate

Supportive cell
Matrix
RGD alginate/high-G
Proteins enhancing 
differentiation

Figure 10. The ideal alginate bioreactor ?
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8. GLOSSARY IMPORTANT IN CELL ENCAPSULATION THERAPY 

Alginate 
Unbranched polysaccharide consisting of the two sugar residues 1-4 linked -D-mannuronic acid (M) 
and -L-guluronic acid (G) in various amounts. 

Alginate bead 
Alginate capsule concisting solely of a crosslinked alginate gel core. 

Alginate bioreactor
The combination of alginate microcapsules and therapeutic cells entrapped within the capsule core. 

Alginate microcapsule
Alginate bead coated with polyL-lysine and alginate 

Allograft  
The transplant of an organ or tissue from one individual to another of the same species with a different 
genotype. A transplant from one person to another, but not an identical twin, is an allograft also an 
allogeneic graft or a homograft. 

Antigen
Any foreign material that is specifically bound by specific antibody or specific lymphocytes; also used 
loosely to describe materials used for immunization.  

Antigen-presenting cell (APC)
A specialized type of cell, bearing cell surface class II MHC (major histocompatibility complex) 
molecules, involved in processing and presentation of antigen to inducer, or helper, T cells. Examples: 
macrophages, dendritic cells. 

ASTM  
Abbreviation for the American Society for Testing of Materials, who establish guidelines for tissue-
engineered products and microcapsules. 

Autologous cell  
Cultured cell lines derived from the same individual. 

Beta Cells  
Pancreatic cells that secrete insulin. 

Biocompatibility  
The ability of a material to perform with an appropriate host response in a specific application. Can also 
be used as the compatibility of a material to the encapsulated cells. 

Cell therapy  
Transplantation of human or animal cells to replace or repair damaged tissue and/or cells. 

Chitosan  
A cationic polysaccharide derived from the abundant natural polymer, chitin. Chitosan is often used as 
biocompatible cation in various microcapsules. Chemically, Chitosan is a copolymer composed of 2-
amino-2-deoxy-D-glucopyranose and 2-acetamino-2-deoxy-D-glucopyranose units. 

Class I and II MHC
Proteins encoded by genes in the major histocompatibility complex. Class I molecules are designated 
HLA-A, B, or C. Class II molecules are designated DP, DQ or DR. 

G-blocks
Homopolymeric regions of guluronic acid 
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Guluronic acid  
-L-Guluronic acid 

Helper T-cell  
A class of T-cells that help trigger B-cells to make antibody against thymus dependent antigens. Helper 
T-cells also help generate cytotoxic T-cells. 

High-G 
 Alginate containing approximately 60-70% guluronic acid 

High-M 
 Alginate containing approximately 60% mannuronic acid 

Humoral immunity 
Any immune reaction that can be transferred with immune serum. In general, this term refers to 
resistance resulting from the presence of specific antibody. 

Hybridoma 
A hybrid cell that results from the fusion of an antibody secreting cell with a malignant cell; the 
progeny secrete antibody without stimulation and proliferate continuously both in vivo and in vitro. 

Immunosuppressant 
An agent that can suppress or prevent the immune response. Immunosuppressants are used to prevent 
rejection of a transplanted organ and to treat autoimmune diseases such as psoriasis, rheumatoid 
arthritis, and Crohn's disease. Some treatments for cancer act as immunosuppressants. Also called an 
immunodepressant. 

Isograft
A graft between genetically identical individuals. Typically, syngrafts are grafts between identical 
twins, between animals of a single highly inbred strain, or between F1 hybrids produced by crossing 
inbred strains. Called also syngraft,  isogeneic, isologous, or syngeneic graft. 

Mannuronan 
 Alginate containing 100% mannuronic acid 

Mannuronic acid  
An uronic acid derivative of mannose by converting the primary alcohol group of mannose to carboxyl 
group 

Matrigel  
A synthetic material that closely resembles the basement membrane composition (types I-V collagens, 
glycoproteins, proteoglycans, hyauronic acid, and lamilin). Matrigel is effective for the attachment and 
differentiation of both normal and transformed anchorage-dependent cell types, such as neurons and 
hepatocytes. The biological response of cells in Matrigel can be improved. 

M-blocks  
Homopolymeric regions of mannuronic acid 

MG-blocks  
Alternating mannuronic acid and guluronic acid 

Microbeads and microcapsules
Submillimeter hydrogels formed with ionotropic gelation or polyelectrolyte complexiation. A 
microbead often has a uniform morphology, whereas a microcapsule often contains an inner core that 
can be liquefied postformation, and a permselective membrane. 

Mitogenic 
Substances that stimulate mitosis and lymphocyte transformation.  
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Non-autologues cell lines 
Cell lines established from another individual of the same species (allogeneic cell lines) or from another 
species (xenogeneic cell lines).

Normoglycemia (Synonym: Euglycemia)  
Blood glucose levels in the range of 80-120 mg/dl, as observed in non-diabetics.

Oncogene  
Modified gene that increases the malignancy of a tumor cell. Some oncogenes, usually involved in early 
stages of cancer development, increase the chance that a normal cell develops into a tumor cell, possibly 
resulting in cancer. New research indicates that small RNAs 21-25 nucleotides in length called miRNAs 
can control expression of these genes by upregulating them.

Polyanion (Synonym: Anionic Polyelectrolyte)  
A negatively charged polyelectrolyte that can either be a polysaccharide, such as alginate, or a synthetic 
material, such as polyacrylic acid. Can form complexes with polycations that are the membrane 
component of spherical microcapsules.

Polycation (Synonym: Cationic Polyelectrolyte)   
A positively charged polyelectrolyte, such as poly-L-lysine that complexes with a polyanion, such as 
alginate, to form a microcapsule. 

Poly-L-lysine
A polycation, generally with molar mass in the tens of kilodaltons, which is applied, with alginate, to 
microencapsulate cells for transplantation. 

Poly-M 
Alginate containing between 90-95% mannuronic acid

RGD peptide
Peptide containing the arginine-glycine-aspartate (RGD) sequence motif. Active modulators of cell 
adhesion. This tripeptide motif can be found in proteins of the extracellular matrix. Integrins link the 
intracellular cytoskeleton of cells with the extracellular matrix by recognizing this RGD motif. RGD 
peptides interact with the integrin receptor sites, which can initiate cell-signaling processes and 
influence many different diseases. Thus, the integrin RGD binding site is an attractive pharmaceutical 
target. 

Xenograft 
Tissue or organs from an individual of one species transplanted into or grafted onto an organism of 
another species, genus, or family. A common example is the use of pig heart valves in humans. 

Xenotransplantation 
Transplantation of tissue across a species barrier

Xenozoonoses
Infectious concerns of cross-species transplantation. Latent microbial agents that may be in animal 
tissue and hence are raised as a concern for xenotransplantation. An example is animal viruses similar to 
analogous human viruses that might gain access to human cells trough transplantation. Exogeneous 
retroviruses that can be reactivated or endogeneous retroviruses that are not detected upon screening is a 
major concern.  
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