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Abstract. Multi-rotor wind turbine systems are proposed as an additional technology to
the future of wind energy, and a way of achieving wind turbines generating 20 MW or more.
Research regarding the electrical connections of such a system is lacking, and this is key parts
of the system. The controllability and power losses are important factors in the different
topology options. In this study, three different electrical topologies are proposed and their
controllers are implemented respectively. The systems are fairly simplified. Further, ways to
measure the power losses within the power converters are researched, and a way of doing so is
implemented on the three systems. The simulations performed on the system show the validity
of the controllers as well as the power loss calculation method. In this study, the power losses
found in the different topologies in total are quite similar to each other, right above 1%, so it
is hard to prefer on of the topologies based on this. However, this serves as a tool that can be
adjusted and used on more complex systems, and in this way contribute to finding an optimal
electrical collector topology for a multi-rotor wind turbine system.
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1. Introduction

Wind power is one of the most important energy resources worldwide. In 2017, 55 % of the new
installed power capacity was wind power, and the offshore wind energy increased with 101 % [1].
Moreover, it is likely that the cumulative installed wind power will exceed 200 GW by the end
of 2020 and, that of this, offshore wind will account for 25% [2].

Together with this increasing cumulative installed capacity, also the turbine sizes are
increasing. In 2017, the average installed turbine rating was 2.7 MW for onshore applications,
and 5.8 for offshore applications [1], the latter an increase of 39% from the year before [2]. Based
on this, the development is expected to continue, which can turn out to be challenging for several
reasons [3, 4]. The mechanical stress on the structure will increase with increasing blade size.
Mechanical problems are anticipated and installation and maintenance may be more challenging.
In addition, the high amount of material needed for the whole structure with these dimensions
may be challenging to obtain. The raw materials and rare earth minerals used for production are
getting more and more scarce due to the increasing demand [5]. It will also increase the costs,
making it difficult to keep reducing the levelized cost of energy (LCOE).

As a suggested solution to this challenge, P. Jamieson proposed the Multi-Rotor Wind
Turbine-system as a part of the FP7 INNWIND.EU project [6, 7], which consists of several
rotors connected all together at the same platform. Such a system can be visualized in Fig. 1.
The multi-rotor concept is stated to be beneficial in many ways, in terms of reduced weight in
the nacelle and blade, easier installation, transport and maintenance due to smaller components,
as well as higher reliability in case of faults, because a fault does not require the whole device to
shut down [8]. However, the complexity of the whole system may be extensive and challenging.

In this study, three possible electrical topologies are presented. These are implemented in
Simulink, together with a loss calculation method which is also presented here. Further, the
results from the simulations are presented and briefly discussed.

Fig. 1: Model of a multi-rotor wind turbine system, consisting of 45 rotors [6].

2. Proposed Topologies

A theory review of electrical configurations was performed. The published literature regarding
offshore wind farm collector systems [9, 10, 11] were used, as this can be considered as similar
to a multi-rotor system. Some key differences are however present, such as much shorter inter-
connected cables and the needlessness for subsea cables.

Some qualitative analysis regarding collector systems for multi-rotor systems were also
performed in [3] and [4], confirming the possibility to draw clear parallels between the two
offshore and multi-rotor collector systems. [3] and [4], as well as [12], discussed the benefits of
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collecting the rotors in clusters, which is are also regarded as beneficial in this study. Three
topologies were then selected and are further presented here.

Fig. 2: AC cluster Fig. 3: DC cluster Fig. 4: Hybrid cluster

2.1. AC cluster

The cluster consisting of a back-to-back converter for each turbine is here called the AC cluster.
This can be seen in Fig. 2. The back-to-back converters allow individual control of each turbine,
making it possible for each of them to operate in the optimal point of operation. Therefore,
the machine side converter is controlling the active and reactive power of the turbine, while
the grid-side converter is controlling the reactive power and the voltage of the DC link. The
implementation and control are based on the model used in [4]. The three turbines present
in this specific configuration are connected together in parallel, while in AC, and is meant to
represent one cluster of a larger system. The collection is performed at a voltage level of 690 V,
so a transformer is needed to further step up the voltage before connecting to other cluster and
transmission.

2.2. DC cluster

The cluster consisting of just one AC-to-DC converter for each turbine is here called the DC
cluster. This can be seen in Fig. 3. Also here, these converters allow individual control of each
turbine, making it possible for each of them to operate in the optimal point of operation, thus
it is controlling the active and reactive power. The control implementation of this converter is
the same as used for the machine converter in the AC cluster. Further, the three turbines are
connected together in parallel, while in DC. This keeps the voltage constant at 690 V. Also a
series connection, or a combination could be used. This makes it possible to step up the voltage
without the use of a transformer but increases the complexity and requires the use of by-passing
techniques.

Further, a DC-to-DC converter is used to step up the voltage. This converter consists of a
DC-to-AC converter, a medium-frequency transformer, and an AC-to-DC converter. The first
converter uses the same control as the grid side controller in the AC cluster, while the latter
is designed with other objectives. An aim is to reduce the size of the needed transformer, so
a medium-frequency transformer is desired. Thus, the converter is controlling the frequency as
well as the AC voltage, a so-called island mode. The control scheme of this controller can be seen
in Fig. 5 After this, other clusters can be connected and further the power can be transmitted.
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Fig. 5: Overall scheme for AC voltage control

2.3. Hybrid cluster

The cluster consisting of connecting in AC without any individual converters is here called the
hybrid cluster. This can be seen in Fig. 4. This is proposed in order to investigate how the
reduced number of converters trades off with the reduced control abilities. The first converter,
controlling the active and reactive power as in the AC and DC cluster, now needs to control
three turbines. Further, the same DC-to-DC converter as in the DC cluster is used, with its
same control. The idea is that the wind conditions may not vary too much within the distances
these rotors are apart. Then it could be possible to have all the three turbines operate equal,
reducing the efficiency, but also the size and weight of the system.

If this can be beneficial may be questionable, but this topology is still included for
investigation. As this study is limited to quite simplified systems and stationary conditions,
the challenges in this topology will probably not be that visible but will be further analysed in
future studies.

3. Power loss calculation

The power converters used in wind power application, consist mostly of IGBTs and diodes, so-
called freewheeling diodes, in pairs. Therefore, the total losses are the sum of the losses in the
IGBTs and in the diodes are according to

Ploss = PIGBT + Pdiode (1)

where PIGBT is the power losses in the IGBT and Pdiode the power losses in the diode. The
semiconductor can either be conducting or blocking and has two possible transition states, the
turn-on and turn-off. All of these cause power losses which can be found based on the derivations
done in [13, 14].

3.1. Conduction losses

The voltage-current characteristics can be linearly approximated, obtaining the on state voltage
of the device using the threshold voltage Vsw,o, and iC , the instantaneous current through the
on state resistance RC for the IGBT, yielding

vsw(iC) = Vsw,o, +RC · iC (2)
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The same yields for the freewheeling diode, giving

vD(iD) = VD,o, +RD · iD (3)

These values can normally be found in the datasheet of a device. As can be seen from
typical datasheets for IGBTs and diodes, the on-state diode and collector-emitter voltages, as
well as the on-state resistors are dependent on the junction temperature. Normally, datasheets
include data for different temperatures, so also these parameters can be found by the help of
linear approximations

Vsw,0(Tj) = Vsw,00 · (1 + αV sw0 · (Tj − Tj0)) (4)

RC(Tj) = RC0 · (1 + αRC
· (Tj − Tj0)) (5)

where αV sw0 and αRC
are the temperature coefficients of the threshold voltage and on-state

resistance, Vsw,00 and RC0 are the threshold voltage and on state resistance at a fixed reference
junction temperature Tj0. Further, the instantaneous values of the power losses for an IGBT
can be found to be

pcond,igbt(t) = vsw(t) · iC(t) = Vsw,o,(Tj) · iC(t) +RC(Tj) · i2C(t) (6)

which can further can be expressed to find the average losses as

Pcond,igbt =
1

Tsw

∫ Tsw

0

pcond,igbt(t)dt = Vswo,0(Tj) · IC,avg +RC(Tj) · I2C,rms (7)

where IC,avg and IC,rms are the average and RMS currents in the IGBT and Tsw the time
of a switching period. In the diode, the same can be found, hence

pcond,D(t) = uD(t) · iD(t) = uD,o,(Tj) · iD(t) +RD(Tj) · i2D(t) (8)

Pcond,D =
1

Tsw

∫ Tsw

0

pcond,D(t)dt = uD,o,(Tj) · ID,avg +RD(Tj) · I2D,rms (9)

where the IGBT parameters are replaced with the diode parameters.

3.2. Switching losses

The switching losses are found on the dissipated energy due to the commutation for both turn-on
and turn-off. For diodes, the turn-on energy mostly consists of the reverse recovery energy, while
the turn-off energy is mostly neglected. However, the IGBTs have significant energy dissipation
in both the turn-on and turn-off phases. In general, the switching energy in turn-on can be
written as

Esw,on = Esw0,on · (1 + αEon · (Tj − Tj0)) (10)

where αEon is the temperature coefficient of commutation energy loss at turn on and the term
Esw0,on can be found as

Esw0,on = vswb · (KEon0 +KEon1 · iswa +KEon2 · i2swa) (11)

where Esw0,on is the commutation energy loss at turn on, vswb is the voltage in the device right
before turn on, iswa is the current in the device right after the turn on and KEon0,KEon1,KEon2

are polynomial regression coefficients, which can be found from the datasheet of the device. This



16th Deep Sea Offshore Wind R&D conference

IOP Conf. Series: Journal of Physics: Conf. Series 1356 (2019) 012032

IOP Publishing

doi:10.1088/1742-6596/1356/1/012032

6

energy related to the switching can be turned to power by multiplying the number of switching
per second, the switching frequency fsw. The same procedure is followed to find the turn-off
losses, and this results in the two equations

Psw,on = fsw · Esw,on = fswEsw0,on · (1 + αEon · (Tj − Tj0)) (12)

Psw,off = fsw · Esw,off = fswEsw0,off · (1 + αEoff · (Tj − Tj0)) (13)

where Esw,on and Esw,off are found from equation 11 and the equivalent equation for the
turn off for the IGBT respectively. For the diode, Esw,off is neglected, and Esw,on is claimed to
consist of mostly the reverse-recovery energy, which is found by

Esw,on,D =
1

4
QrrUDrr (14)

where Qrr represents the recovered charge and UDrr is the voltage across the diode during reverse
recovery.

3.3. Total power electronic losses

In total, equations can be set up to show the total losses in both the IGBTs and the diodes. To
get the losses for the whole converter, the equations must be multiplied with the number N of
IGBTs and diodes in the actual converter. Then the total losses will be

PIGBT = N(Vsw0(Tj) · IC,av +RC(Tj)I
2
C,rms + (Esw,on + Esw,off )fsw) (15)

PD = N(VD,0(Tj) · ID,av +RD(Tj)I
2
D,rms + Esw,onfsw) (16)

3.4. Implemented loss calculation method

In order to quantify the power losses inside of the converters, the models from [15] were used
and modified to fit a two-level converter. This model obtains the signal measurements of both
IGBT and diode pair in one half-bridge. These signals are used to specify the voltage and the
current in the IGBTs and in the diodes. Further, these signals are divided into loss calculations
blocks for the IGBT and diode respectively. A simplification done is using just one IGBT and
diode module for each part of the half bridge. Normally in these types of devices, there are
several modules connected in series, in order to increase the possible voltage level. The tests are
therefore kept within limits where they can operate with just one module.

The IGBT losses are separated into switching and conduction losses. The different losses
are found, based on the parameters presented in their respective equations. These values are
used to find the dissipated turn-on energy by interpolation with the help of look-up tables. The
look-up tables is linked with datasheet of a specified IGBT module, defined in Matlab. From
this, the dissipated energy from the switching is found and is transformed into power. For the
conduction losses, the loop-up table finds the saturation voltage, which is multiplied with the
current to obtain the power losses. The power is further injected into the thermal model which
obtains the IGBT temperature.

The same yields for the diode losses. They are separated into conduction and reverse recovery
losses. Interpolations based on the parameters presented in the equations are used together with
look-up tables. These are linked with the diode specifications from a Matlab file. The reverse
recovery energy loss found is converted into power. For the conduction losses, the loop-up table
finds the on-state voltage, which is multiplied with the current to obtain the power losses. The
power is further injected into the thermal model which obtains the diode temperature
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4. Simulation results

Simulations for the different topologies were carried out. Due to the different voltage and current
level in the different topologies as well as also within one topology, different IGBT and diode
modules needed to be defined in Matlab. From the loss calculation blocks [15], three IGBT
and diode-modules had been implemented in Matlab, based on their available datasheets. These
were a 600V/150A module [16] from Fuji Electric, a 1700V/800A module [17] from ABB and
a 3300V/250A module [18], also from ABB. A combination of these was sufficient to deal with
the currents of the different systems but problematic for the voltage level after the step-up
transformers. Therefore, another IGBT and diode module was implemented in Matlab, with the
help of the datasheet of the module. This was a 6500V/600A module [19] from ABB, their single
module with the highest voltage capability.
An important simplification in order to calculate these losses is that just one single IGBT and
diode module is used for each switch. Hence in the three-phase bridge with 6 pulses, there are
only six of these modules. In reality, multiple modules may be connected in series to increase
the voltage level instead of using modules with a very high rating. This may influence the result,
but was a necessity for limiting the complexity of the scope of this study.

The losses in the three topologies are presented below.

4.1. AC cluster

Since the turbines are operating equally and ideally, without any dynamic differences, the power
losses in the different corresponding converters are equal. Therefore only one of each, the machine
side and grid side converter are presented here. The machine side converter losses are presented
in Fig. 6 and the grid side converter in Fig. 7.

Fig. 6: Machine side losses Fig. 7: Grid side converter

The power losses for one machine side converter are found to be stabilising at 1.6 kW, giving
the percentage losses of

Ploss[%] =
Ploss

Pin
· 100% ≈ 1.6kW

300kW
· 100% = 0.53% (17)

The total losses for one grid side converter are stabilising at 1.9 kW. This gives the percentage
losses of

Ploss[%] =
Ploss

Pin
· 100% ≈ 1.9kW

300kW
· 100% = 0.64% (18)



16th Deep Sea Offshore Wind R&D conference

IOP Conf. Series: Journal of Physics: Conf. Series 1356 (2019) 012032

IOP Publishing

doi:10.1088/1742-6596/1356/1/012032

8

4.2. DC cluster

In the three machine side converters, the losses are equal due to their equality. Therefore, only
one of the converter losses is presented here, in Fig. 8. The losses in the DC-to-AC and AC-to-DC
converters are presented in Fig. 9 and Fig. 10 respectively.

Fig. 8: Machine side converter Fig. 9: DC-to-AC converter Fig. 10: DC-to-AC converter

The total power losses in one machine side converter are found to be stable at 1.6 kW, giving
a percentage of losses of

Ploss[%] =
Ploss

Pin
· 100% ≈ 1.6kW

300kW
· 100% = 0.53% (19)

The losses for the DC to AC side are found to be stable at around 4.5 kW, giving the percentage
losses of

Ploss[%] =
Ploss

Pin
· 100% ≈ 4.5kW

900kW
· 100% = 0.50% (20)

The module information in the 6500V/600A module used in the AC to DC side was implemented
without the same precision level as the other three. Therefore, the curve showing the power losses
are not as smooth. However, the losses are found to be stable at around 1.8 kW, giving the losses
in percentage as

Ploss[%] =
Ploss

Pin
· 100% ≈ 1.8kW

900kW
· 100% = 0.20% (21)

The last converter is experiencing very low current due to the step-up transformer. This, as it
can be seen, has a big impact on the losses.

4.3. Hybrid cluster

Only one machine side converter is present, consisting of the power from three turbines. Thus
the losses for this converter is presented in Fig. 11. The losses in the DC-to-AC and AC-to-
DC converters are presented in Fig. 12 and Fig. 13 respectively. The total summarised losses
stabilise at about 4.0 kW. This gives the percentage losses of

Ploss[%] =
Ploss

Pin
· 100% ≈ 4.0kW

900kW
· 100% = 0.44% (22)

From the first part, the losses are found to be stable at a value of about 4.5 kW, giving the
percentage losses of

Ploss[%] =
Ploss

Pin
· 100% ≈ 4.5kW

900kW
· 100% = 0.50% (23)
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Fig. 11: Machine side converter Fig. 12: DC-to-AC converter Fig. 13: AC-to-DC converter

The module information in the 6500V/600A module used in the AC to DC side is implemented
without the same precision level as the other three. Therefore, also in the curve shown here, the
power losses are not as smooth. However, the losses are found to be stable at around 1.9 kW,
giving the losses in percentage as

Ploss[%] =
Ploss

Pin
· 100% ≈ 1.9kW

900kW
· 100% = 0.21% (24)

Also here, as in the DC cluster, the converter losses are low due to the much lower current after
the transformer.

5. Conclusion

From the results, it is observed that the power losses are at a low, and expected level.
Summarised, they are also quite similar to each other. The machine and converter losses are
similar in each topology, due to their similar output. The high voltage side in the DC-to-DC
converter experiences low losses and can be because of low current.

This study excludes the transformer losses. These are expected to increase with frequency
[20], so the use of a medium-frequency transformer in the DC-to-DC converter will probably give
higher total power losses in the DC cluster and hybrid cluster topologies than the total power
losses in the AC cluster, which is using a grid-frequency transformer. However, the trade-off
between how much space and weight this may save and how much the losses are increased is
of interested and need further investigation. This will be performed in further studies, together
with increasing the complexity of the system in terms of the number of rotors, but also by
investigating dynamic conditions and varying wind profiles. Then it can be more visible the
challenges regarding the control of the different topologies. However, a way of obtaining the
power losses within the power converters are obtained and proved to provide meaningful results.
This can therefore also be used in future work on this topic, in order to find a suitable topology
for the electrical configurations of a multi-rotor wind turbine system.

References

[1] WindEurope, Wind in power 2017 Annual combined onshore and offshore wind energy statistics, 2018
[2] WindEurope, Wind energy in Europe: Outlook to 2020, 2017
[3] Givaki K Different Options for Multi-Rotor Wind Turbine Grid Connection, The 9th International

Conference on Power Electronics, Machines and Drives, 2018
[4] Pirrie P, Anaya-Lara O and Campos-Gaona D Electrical collector topologies for multi-rotor wind turbine

systems, 2018
[5] etipwind.eu, Strategic Research and Innovation Agenda, 2018



16th Deep Sea Offshore Wind R&D conference

IOP Conf. Series: Journal of Physics: Conf. Series 1356 (2019) 012032

IOP Publishing

doi:10.1088/1742-6596/1356/1/012032

10

[6] Jamieson P, et al Innovative Turbine Concepts Multi-Rotor System INNWIND.EU, 2015
[7] Jamieson P and Branney M Multi-Rotors; A Solution to 20 MW and Beyond?Energy Procedia, Volume 24,

2012, Pages 52-59
[8] Verma P Multi Rotor Wind Turbine Design And Cost Scaling, 2014
[9] Lakshmanan P, Liang J and Jenkins N S Assessment of collection systems for HVDC connected offshore

wind farms, Electric Power Systems Research Volume 129, 2015, Pages 75-82
[10] Quinonez-Varela G, Ault G W, Anaya-Lara O and McDonald J R Electrical collector system options for

large offshore wind farmsIET Renewable Power Generation Volume 1, Issue: 2, 2007, Pages 107 - 114
[11] Srikakulapu R and U V Electrical Collector Topologies for Offshore Wind Power Plants: A Survey 2015

IEEE 10th International Conference on Industrial and Information Systems (ICIIS), 2015, page 338-343.
[12] Gksu , Sakamuri J N, Rapp A C, Srensen P E, Sharifabadi K Cluster Control of Offshore Wind Power

Plants Connected to a Common HVDC Station, Energy Procedia Volume 94, 2016, Pages 232-240
[13] Barrera-Cardenas R A Meta-parametrised meta-modelling approach for optimal design of power electronics

conversion systems: Application to offshore wind energy Doctoral thesis, 2015
[14] Graovac D and Prschel M IGBT Power Losses Calculation Using the Data-Sheet Parameters, 2009
[15] Mathworks Loss Calculation in a 3-Phase 3-Level Inverter Using SimPower-

Systems and Simscape https://www.mathworks.com/help/physmod/sps/examples/

loss-calculation-in-a-three-phase-3-level-inverter.html

[16] Fuji Electric Datasheet:IGBT Module U-Series 600V/150A 2 in one-package 2MBI150U2A-060
[17] ABB Datasheet: ABB HiPak IGBT Module 1700V/800A 5SNE 0800M170100
[18] ABB Datasheet: ABB HiPak IGBT Module 3300V/250A 5SNG 0250P330305
[19] ABB Datasheet: ABB HiPak IGBT Module 6500V/600A 5SNG 0250P330305
[20] Meier S, Kjellqvist T, Norrga S and Nee H P Design Considerations for Medium-Frequency Power

Transformers in Offshore Wind Farms, 2009 13th European Conference on Power Electronics and
Applications, 2009, pages 1-12

https://www.mathworks.com/help/physmod/sps/examples/loss-calculation-in-a-three-phase-3-level-inverter.html
https://www.mathworks.com/help/physmod/sps/examples/loss-calculation-in-a-three-phase-3-level-inverter.html

	Introduction
	Proposed Topologies
	AC cluster
	DC cluster
	Hybrid cluster

	Power loss calculation
	Conduction losses
	Switching losses
	Total power electronic losses
	Implemented loss calculation method

	Simulation results
	AC cluster
	DC cluster
	Hybrid cluster

	Conclusion

