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Abstract

Statistical tests for trend in recurrent event data not following a Poisson process are
generally constructed for event censored data. However, time censored data are more
frequently encountered in practice. In this paper we contribute to filling an important
gap in the literature on trend testing by presenting a class of statistical tests for trend in
time censored recurrent event data, based on the null hypothesis of a renewal process.
The class of tests is constructed by an adaption of a functional central limit theorem
for renewal processes. By this approach a number of tests for time censored recurrent
event data can be constructed, including among others a version of the classical Lewis-
Robinson trend test and an Anderson-Darling type test. The latter test turns out to
have attractive properties for general use by having good power properties against both
monotonic and non-monotonic trends. Extensions to situations with several processes
are considered. Properties of the tests are studied by simulations and some asymptotic
calculations, and the approach is illustrated in data examples.

Keywords: Trend testing; Time truncation; Renewal process; Trend-renewal process; Brow-
nian bridge.
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1 Introduction

Analyzing recurrent event data is a challenge encountered in many fields, for instance en-

gineering, medicine and economics to mention some. Generally, recurrent event data arise

when the phenomenon studied can occur repeatedly. Some examples are the occurrence of a

failure in a repairable system or the outbreak of a recurrent disease. One aspect of the data

which typically is of interest is to examine whether there are any systematic alterations, i.e.,

trends, in the pattern of events. For example, does a repairable system have a tendency

to fail more often as it gets older? Or is there any improvement in how often a recurrent

disease occurs for a particular patient? Visual inspections of the data can be very useful and

give important information on systematic tendencies in the data, but generally, in order to

distinguish actual systematic alterations from random fluctuations, statistical methods are

needed.

There is a rich literature on trend testing, see for instance the overviews in Cox and Lewis

(1966), Ascher and Feingold (1984), Kvaløy and Lindqvist (1998), Lawless, Çiğşar and Cook

(2012) and Cook and Lawless (2013). Trend tests are based on different assumptions for

the data collection process and different definitions of trend. Many of the existing tests for

trend are based on Poisson process theory and constructed for testing the null hypothesis of

a homogeneous Poisson process (HPP), see for instance Cox and Lewis (1966), Ascher and

Feingold (1984), Cohen and Sackrowitz (1993), Kvaløy and Lindqvist (1998), Lawless et al.

(2012) and references therein. Such tests are, however, generally sensitive to departures

from the Poisson process assumption. This fact was noted in the classical reference Lewis

and Robinson (1974), who observed that the commonly used Laplace trend test often led

to rejection of the null hypothesis of no trend, even in cases where a trend could not exist.

More specifically, the authors observed that false rejections were particularly occurring in

cases of overdispersion of the interevent times with respect to the exponential distribution.

Their idea was to modify the Laplace test statistic to account for this overdispersion, which

led to the test known under the name of Lewis-Robinson test, to be further considered later

in this paper.

The immediate conclusion to draw from this seems to be that, unless the Poisson as-

sumption can be verified, trend tests need to be based on more general null hypotheses than
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the one of HPP. So how could one formalize a more useful null hypothesis? Lawless et al.

(2012) concluded that there is no single definition which covers all cases that can naturally

be thought of. Lewis and Robinson (1974) argued that a definition of no trend should state

that the event process is stationary in some sense, possibly allowing some amount of serial

correlation. On the other hand, because of analytical possibilities they found that the re-

newal process (RP) assumption would be the best choice for further investigations. Under

this assumption they were able to repair the Laplace test and introduce the Lewis-Robinson

test.

In this paper we shall consider trend tests assuming the null hypothesis of RP. In addition

to the Lewis-Robinson test, there exist several trend tests in the literature based on this null

hypothesis. We would like to mention first the nonparametric test by Mann (1945). Other

tests are found in Ascher and Feingold (1984), Kvaløy and Lindqvist (2003), Viertävä and

Vaurio (2009), Lawless et al. (2012) and references therein.

RP based tests for trend, including the classical Lewis-Robinson test are, however, usually

constructed for event censored data, which means that the recurrent event process is censored

when it has completed a fixed number of renewal events. On the other hand, time censored

data, where the event process is censored after a predetermined observation period, are far

more naturally occurring in practice. As pointed out by Lawless et al. (2012), there is still

an unfortunate lack of available trend tests constructed for time censored data. Important

issues when going from event censoring to time censoring are the fact that the number of

events is now random, and that one needs to involve in a consistent manner the time interval

from the last event to the censoring time. Lawless et al. (2012) argued that ignoring this

interval may lead to considerable bias, see also the most interesting discussion of this and

related issues in Aalen and Husebye (1991). The latter authors, furthermore, pointed out

that it is far less critical to ignore an incomplete time at the start of the observation, which

will not introduce bias although it might incur a certain loss of efficiency.

With the above as our motivation and point of departure, we demonstrate in this paper

how a flexible class of trend tests for time censored data can be constructed under the RP

null hypothesis. We thereby complement the above mentioned literature on trend tests for

event censored data, in particular the paper by Lawless et al. (2012). Our construction is

based on an adaption of Donsker’s theorem (Donsker, 1952) to renewal processes following
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the lines of Billingsley (1999). Among other tests, the class turns out to include a time

censored version of the Lewis-Robinson test, an Anderson-Darling type test with power

against both monotonic and non-monotonic trends and an extension of the Lewis-Robinson

test with power against non-monotonic trend. After having studied tests for trend in single

processes, we consider extensions to trend tests based on the joint observation of several

processes.

The paper is organized as follows. In Section 2 we define the necessary notation and

give some key results for renewal processes. The general construction of tests is presented

in Section 3 and several specific tests are derived. Section 4 discusses extensions to cases

where several similar processes are observed. Two other tests are described in Section 5 and

are included in the simulation study presented in Section 6. Section 7 presents asymptotic

power calculations for the main tests of the paper, considering a certain class of alternatives

to no trend. Two case studies are considered in Section 8, while some concluding remarks

are given in Section 9. The paper is ended by Appendices 1-3, providing details on the

derivation of parameter estimators and a specific trend test, as well as a functional central

limit theorem used in the power calculations.

2 The Basic Convergence Results for Renewal Pro-

cesses

2.1 Setup and Notation

Consider a renewal process observed from time t = 0. The successive event times are denoted

T1, T2, . . . , and the corresponding interevent times, or gap times, are denoted X1, X2, . . .

where Xi = Ti − Ti−1, i = 1, 2, . . . (with the convention T0 = 0). The Xi are independent

and identically distributed, with E(Xi) = µ and Var(Xi) = σ2, where it will be assumed

throughout the paper that σ2 <∞.

We use the standard notation where N(t) is the number of events in (0, t] for all t > 0.

For the theory of renewal processes we refer to, e.g., Ross (1983) and Gallager (2013).
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2.2 A Functional Central Limit Theorem for Renewal Processes

The key result in our approach is a functional central limit theorem given in Billingsley

(1999). With notation as above, define

Vt,µ,σ(s) = µ3/2N(st)− st/µ
σ
√
t

for 0 ≤ s ≤ 1, t > 0.

Then (Billingsley, 1999, thm. 14.6),

Vt,µ,σ ⇒ W as t→∞, (1)

where ⇒ denotes weak convergence and W is the Wiener measure (Billingsley, 1999, chap.

8).

Now define W 0(s) = W (s) − sW (1) for 0 ≤ s ≤ 1, so that W 0 is a Brownian bridge

(Billingsley, 1999, chap. 8). It is straightforward to verify that (1) implies the following

result which together with the succeeding corollary is the basis of our construction of trend

tests.

Theorem 1 Define

V 0
t,µ,σ(s) = Vt,µ,σ(s)− sVt,µ,σ(1) = µ3/2N(st)− sN(t)

σ
√
t

for 0 ≤ s ≤ 1. (2)

Then V 0
t,µ,σ ⇒ W 0.

Let the coefficient of variation of the interevent times Xi be denoted γ ≡ σ/µ. As will

become clear, γ plays a special role in our construction of tests. First, define

Ṽ 0
t,γ(s) =

1

γ

N(st)− sN(t)√
N(t)

for 0 ≤ s ≤ 1. (3)

Then Theorem 1 implies the following corollary:

Corollary 1 With notation as above we have

Ṽ 0
t,γ ⇒ W 0 as t→∞.

Proof: We can write

Ṽ 0
t,γ(s) =

√
1/µ√

N(t)/t
V 0
t,µ,σ(s).
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From standard renewal process theory (Ross, 1983) it is well known that N(t)/t → 1/µ

a.s. The result then follows by use of Billingsley (1999, thm. 3.1), sometimes called ’the

converging together lemma’. The argument, using the uniform norm, is as follows:

sup
0≤s≤1

|Ṽ 0
t,γ(s)− V 0

t,µ,σ(s)| ≤

∣∣∣∣∣
√

1/µ√
N(t)/t

− 1

∣∣∣∣∣ sup
0≤s≤1

|V 0
t,µ,σ(s)| p→ 0,

where the convergence to 0 follows since the first factor tends to 0 a.s. and hence in prob-

ability, and the last factor converges in distribution to sup0≤s≤1 |W 0(s)| which has the Kol-

mogorov distribution (and will be considered below).

3 The Class of Tests for Trend

In the present section we consider event data from a single counting process N(t) observed

from time t = 0 until time censoring at the given time τ > 0. With notation as in Section 2,

we thus observe a random number N(τ) of events, at times T1, T2, . . . , TN(τ), and with fully

observed interevent times X1, X2, . . . , XN(τ) and a censored interevent time τ − TN(τ).

From Theorem 1 and Corollary 1 it follows that, under the null hypothesis of RP, V 0
τ,µ,σ

and Ṽ 0
τ,γ will approximately be Brownian bridges. However, if there is a trend in the data,

these processes are likely to deviate from a Brownian bridge. Tests for trend can therefore be

based on measures of deviation from a Brownian bridge of the two asymptotically equivalent

processes V 0
τ,µ,σ and Ṽ 0

τ,γ.

Since the parameters µ, σ, γ are generally unknown, they must be estimated. It is clear

that the results of Theorem 1 and Corollary 1 continue to hold under the RP assumption if

µ, σ and γ are replaced by consistent estimators, µ̂,σ̂ and γ̂.

Below we first derive test statistics based on four different ways of measuring devia-

tions from a Brownian bridge. This leads to test statistics of, respectively, Lewis-Robinson,

Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling types. In addition we pro-

pose an extension of the Lewis-Robinson test which can be used to construct tests for non-

monotonic trend. The test constructions are based on applications of Corollary 1. Finally

we discuss how to estimate the parameters µ, σ and γ.
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3.1 Lewis-Robinson Type Test

A classical measure of deviation from a Brownian bridge is the signed area under the path of

the process. Using Corollary 1 this gives rise to the statistic
∫ 1

0
Ṽ 0
τ,γ̂(s)ds, which converges in

distribution to
∫ 1

0
W 0(s)ds, which is normally distributed with expectation 0 and variance

1/12.

In order to obtain the test statistic on the form that is most common for this test, we

use instead the negative of the above suggested statistic, which will have the same limiting

distribution. By scaling we obtain an asymptotically standard normally distributed test

statistic given by

LR = −
√

12

∫ 1

0

Ṽ 0
τ,γ̂(s)ds =

1

γ̂
·
√

12

τ
√
N(τ)

N(τ)∑
i=1

Ti −
N(τ)

2
τ

 . (4)

If the factor 1/γ̂ is ignored, we actually get the well known Laplace test statistic for the

null hypothesis of HPP for the time censored case, which can be derived from properties of

Poisson-processes. The division by γ̂ corresponds to the correction obtained by Lewis and

Robinson (1974), who considered the event censored case.

The resulting test will primarily have power against deviations from an RP caused by

monotonic trends. It is seen that positive (negative) values of the test statistic will correspond

to an increasing (decreasing) trend. Although one-sided tests for increasing (decreasing)

trend thus can be constructed, the typical application would be to construct a two-sided

test which rejects when |LR| > zα/2, where zα/2 is the α/2 quantile of the standard normal

distribution and α is the level of the test.

3.2 Kolmogorov-Smirnov Type Test

Another classical measure of deviation from a Brownian bridge is the maximum deviation,

giving rise to the statistic sups∈[0,1] |Ṽ 0
τ,γ̂(s)|. By Corollary 1, this statistic converges in

distribution to sups∈[0,1] |W 0(s)|, which has the Kolmogorov distribution (Kolmogorov, 1933;

Smirnov, 1948). A Kolmogorov-Smirnov type test for trend in the time censored case is

7



hence given by the test statistic

KS = sup
s∈[0,1]

|Ṽ 0
τ,γ̂(s)| =

1

γ̂

1√
N(τ)

sup
s∈[0,1]

|N(sτ)− sN(τ)| (5)

=
1

γ̂

1√
N(τ)

max
i=1,...,N(τ)

{
max

[ ∣∣∣∣i− N(τ)

τ
Ti

∣∣∣∣ , ∣∣∣∣i− 1− N(τ)

τ
Ti

∣∣∣∣ ]} .
The asymptotic cumulative distribution function and a corresponding table of critical values

are given in Kolmogorov (1933), see also Billingsley (1999, p. 151). For α = 0.05 the null

hypothesis is rejected when KS > 1.358.

3.3 Cramér-von Mises Type Test

Using the Cramér-von Mises type measure we obtain

CvM =

∫ 1

0

Ṽ 0
τ,γ̂(s)

2ds
d→
∫ 1

0

W 0(s)2ds,

where the right hand side has the commonly known limit distribution of the Cramér-von

Mises statistic (Anderson and Darling, 1952). Due to the squaring of Ṽ 0
τ,γ̂(s) it is clear that

a test which rejects the null hypothesis of RP for large values of CvM will have sensitivity

against both monotonic and non-monotonic trends. Straightforward calculations give the

statistic

CvM =
1

γ̂2
1

N(τ)


N(τ)−1∑
i=0

[
i2
Xi+1

τ
− iN(τ)

T 2
i+1 − T 2

i

τ

]

+N(τ)2

[
T 2
N(τ)

τ 2
−
TN(τ)

τ
+

1

3

]}
. (6)

The asymptotic cumulative distribution function and a table of critical values are given in

Anderson and Darling (1952). For α = 0.05 the null hypothesis is rejected when CvM >

0.461.

3.4 Anderson-Darling Type Test

The Anderson-Darling type measure leads to

AD =

∫ 1

0

V 0
τ,γ̂(s)

2

s(1− s)
ds

d→
∫ 1

0

W 0(s)2

s(1− s)
ds,
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which has the limit distribution of the Anderson-Darling statistic (Anderson and Darling,

1952; Anderson and Darling, 1954). As for the Cramér-von Mises type test it is clear

that this test will have sensitivity against both monotonic and non-monotonic trends. The

difference between the Cramér-von Mises and the Anderson-Darling statistics is that the

latter puts more weight on the information at the beginning and the end of the observation

interval. Straightforward but somewhat tedious calculations give that

AD =
1

γ̂2
1

N(τ)


N(τ)−1∑
i=1

[
(N(τ)− i)2 ln(

τ − Ti
τ − Ti+1

) + i2 ln(
Ti+1

Ti
)

]

+N(τ)2
[
ln(

τ

τ − T1
) + ln(

τ

TN(τ)

)− 1

]}
. (7)

The asymptotic cumulative distribution function is given in Anderson and Darling (1952)

and a table of critical values is given in Anderson and Darling (1954). For α = 0.05 the null

hypothesis is rejected when AD > 2.492.

3.5 The Extended Lewis-Robinson Test for Non-Monotonic Trend

Recall that the Lewis-Robinson type test for the time censored case was based on the integral∫ 1

0
Ṽ 0
τ,γ̂(s)ds. This test is suited for alternatives of monotonic trend. Consider instead the

expression ∫ a

0

Ṽ 0
τ,γ̂(s)ds−

∫ 1

a

Ṽ 0
τ,γ̂(s)ds, (8)

where 0 ≤ a ≤ 1. It is seen that a = 0 in fact leads to the preferred test statistic (4) for the

Lewis-Robinson test (of course, a = 1 gives the negative of the LR statistic (4)).

A test based on (8) will obviously have power to detect non-monotonic trends where the

trend in [0, aτ ] and [aτ, τ ] are in opposite directions. Clearly, (8) converges in distribution

to
∫ a
0
W 0(s)ds−

∫ 1

a
W 0(s)ds, which is normally distributed with expectation 0 and variance

1/12−a2(1−a)2 (see Appendix 2). It follows from a calculation in Appendix 2 that (8), after

a scaling to give an asymptotically standard normal distribution under the null hypothesis,

can be written

ELR =
1

γ̂
· 1

τ
√
N(τ)

√
(1/12)− a2(1− a)2


N(τ)∑
i=1

|Ti − aτ | −
(

1

2
− a(1− a)

)
τN(τ)

 . (9)
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A disadvantage of the above test is that the value of a has to be given. This choice of a

should be made prior to looking at the data. In some applications a reasonable choice could

be made based on e.g. knowledge about operational or seasonal changes. Another possibility

would of course be to allow an adaptive choice of a. This will, however, destroy the above

distributional properties, and we will therefore not pursue this approach here. The impact

of the choice of a will be illustrated in the simulation study. If no specific prior knowledge

of a natural turning point for the trend is available, a = 1/2 is a natural default choice.

Viertävä and Vaurio (2009) suggested on an ad hoc basis, and for the event censored

case, a test statistic similar to (9) with a = 1/2.

3.6 Parameter Estimation

If one assumes the null hypothesis of HPP, then γ = 1 is known, and hence no estimation

is needed in the use of Corollary 1. If we more generally assume specific parametric models

for the event process, then the parameters µ, σ, γ may be estimated by maximum likelihood

methods since they are functions of the model parameters. In the case study of Section 8.1

we illustrate the parametric estimation by fitting Weibull RPs to the interevent times, tak-

ing into account also the censored time at the end of the observation. Since the Weibull

distribution is a rather flexible distribution, the corresponding estimates of µ, σ and γ may

be satisfactory also under the null hypothesis of RP when no parametric assumptions are

made. But strictly, when fitting Weibull distributions under H0, we test the null hypothesis

that the events follow a Weibull RP.

When no distributional assumptions are made on the process, obvious choices for estima-

tors of µ and σ are the sample mean µ̂ and sample standard deviation σ̂ of the completely

observed interevent times. These estimators are consistent as τ → ∞ (see Appendix 1),

but have the disadvantage of not utilizing the censored times τ − TN(τ) at the end of the

observation period. The corresponding estimator of γ is γ̂ = σ̂/µ̂.

Alternative estimators which involve the censored time τ − TN(τ) may be derived from

standard renewal process theory. Again we refer to Appendix 1 for justification of the
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following estimators,

µ̃ =
τ

N(τ)
, σ̃2 =

1

N(τ)


N(τ)∑
i=1

X2
i + (τ − TN(τ))

2

− µ̃2, γ̃ = σ̃/µ̃. (10)

Another variance estimator (see Appendix 1 for its verification) is

σ∗2 =
1

2(N(τ)− 1)

N(τ)−1∑
i=1

(Xi+1 −Xi)
2. (11)

The potential advantage of this estimator is that it tends to be smaller than σ̂2 and σ̃2 under

alternatives with positive dependence between subsequent interevent times. This makes the

estimated γ become smaller, which leads to larger (absolute) values of the test statistics and

hence higher rejection probability under alternatives of monotonic trend, see for example

Viertävä and Vaurio (2009). We will, however, in our simulation and data examples use σ̂ or

σ̃ and not σ∗, due to apparent less satisfactory significance level properties, as experienced

in simulations.

4 Tests for Trend in Multiple Processes

Suppose now that m > 1 similar processes are observed. Under the assumption that the

processes are stochastically independent it may be of interest to test the null hypothesis that

they all have no trend. One possible formulation of the null hypothesis is to let H0 state

that all the m processes are independent RPs, but that they are not necessarily identically

distributed. A stronger null hypothesis would be to state that the m processes are inde-

pendent RPs with the same distribution of the interevent times. We will below stick to the

former interpretation. The latter interpretation may lead to false conclusions of trend. A

discussion and illustration of these issues in a Poisson process setting is found in Kvaløy and

Lindqvist (1998).

Cook and Lawless (2013) considered a type of modulated renewal model and showed

that heterogeneities between processes, when not accounted for, may lead to an apparent

trend in the gap time distribution. That is, even if each individual process has no trend,

not accounting for the heterogeneity creates an apparent trend. While Cook and Lawless

(2013) account for the heterogeneity by introducing a random effect, our approach can be
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considered a fixed effects type approach where we make individual parameter estimates in

each process.

Construction of the test statistics is based on the following fact, which we state as a

lemma:

Lemma 1 Let W 0
1 ,W

0
2 , . . . ,W

0
m be independent Brownian bridges and let a1, a2, . . . , am be

real numbers with
∑m

j=1 a
2
j = 1. Then

W 0 =
m∑
j=1

ajW
0
j

is a Brownian bridge.

Proof: By linearity it is clear that W 0 is a Gaussian process with expectation 0. The result

follows by a straightforward calculation of the covariance function.

Let τj, µj, σj and γj be, respectively, the censoring time, mean, standard deviation and

coefficient of variation corresponding to process j, j = 1, . . . ,m. Let further A1, . . . , Am

be random variables where Aj depends on the data from process j only, and assume that

Aj
p→ aj, j = 1, . . . ,m, where the aj are constants with

∑m
j=1 a

2
j = 1. Then from Lemma 1,

Corollary 1 and the already cited ’converging together lemma’ it follows that

m∑
j=1

AjṼ
0
τj ,γj

(s) =
m∑
j=1

Aj
1

γj

Nj(sτj)− sNj(τj)√
Nj(τj)

⇒ W 0 as τj →∞, j = 1, . . . ,m (12)

under the null hypothesis that the m processes are independent RPs.

4.1 Lewis-Robinson Type Test for m Processes

By the same arguments as in Section 3.1, and with the assumption on the weights given

above, the following statistic will be asymptotically standard normally distributed under

H0,

LRm = −
√

12

∫ 1

0

m∑
j=1

AjṼ
0
τj ,γj

(s)ds =
m∑
j=1

Aj
1

γ̂j
·
√

12√
Nj(τj)

Nj(τj)∑
i=1

Tij
τj
− Nj(τj)

2

 . (13)

Here Tij denotes the time until failure number i in process j, i = 1, . . . , Nj(τj), j = 1, . . . ,m.
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Different choices of the weights Aj will lead to different tests. For instance, Aj = 1/
√
m,

j = 1, . . . ,m will mean equal weighting of the information from each process. This might,

however, not be an optimal choice in cases where there is a large variation in the number

of events per process, or where the coefficient of variation of interevent times differs much

between processes.

We will show that the choice

Aj ∝
√
Nj(τj)/γ̂2j (14)

is optimal in terms of power against certain alternatives, using results from Section 7.1.2.

These weights are, moreover, reasonable in that they give higher weight to systems with

many failures, and with lower coefficient of variation of interevent times.

Suppose now that the τj tend to infinity in such a manner that, for a τ tending to

infinity, τj/τ → cj for positive constants cj, j = 1, . . . ,m. Since the Nj(τj)/τj → 1/µj a.s.

and assuming γ̂j
p→ γj, we have

Aj =

√
Nj(τj)/γ̂2j√∑m
k=1Nk(τk)/γ̂2k

=

√
τj/τ

√
Nj(τj)/τj γ̂2j√∑m

k=1(τk/τ)Nk(τk)/(τkγ̂2k)

p→
√
cj/(γj

√
µj)√∑m

k=1 ck/(γ
2
kµk)

≡ aj. (15)

Clearly,
∑m

j=1 a
2
j = 1, so the statistic (13) will converge to a standard normal distribution

under the null hypothesis H0. Moreover, the aj ∝
√
cj/(γj

√
µj), which by Section 7.1.2 are

optimal choices for alternatives with power law type trend, tb, as b→ 1.

Inserting the weights Aj from (15) and rearranging we can write the test statistic (13) as

LRm =

√
12√∑m

k=1Nk(τk)/γ̂2k

m∑
j=1

1

γ̂2j

Nj(τj)∑
i=1

Tij
τj
− Nj(τj)

2

 . (16)

4.2 Further Tests for m Processes

For the other tests considered in Section 3 it is in principle possible to replace the Ṽ 0
τ,γ(s)

by
∑m

j=1AjṼ
0
τj ,γj

(s), using (12), and applying the same operations as for the case m = 1.

This corresponds to what we did for the Lewis-Robinson test in the previous subsection,

but there things are easy due to the linearity of integrals. This also applies to the extended

Lewis-Robinson test. For the remaining tests it is not straightforward, however, to derive

explicit expressions for the test statistics, and it is neither clear what would be the best
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weights to use. The problem associated with the Cramér-von Mises and Anderson-Darling

tests are of course that the integrand is a square, while for the Kolmogorov-Smirnov test

the various processes are mixed together before taking the absolute value, making tractable

expressions impossible.

Another possibility for these last mentioned tests would therefore be to use (weighted)

sums of the individual test statistics to define the new test statistics. Such an approach

requires, on the other hand, the distributions of sums or linear combinations of the limiting

distributions for the single process cases. These may be determined by simulations or,

for larger m, by normal approximations. Note also that Scholz and Stephens (1987) have

considered the distribution of sums of independent Anderson-Darling statistics.

For such linear combinations there are no obvious choices for the weights given to each

process. A reasonable choice under the assumption of the same interevent distribution in all

processes would be to let the weights be proportional to τj. Otherwise, it may be tempting

to use weights similar to (14), hence taking into account the the number of observed events

as well as the coefficient of variation of the interevent times. A problem would then of course

be that these weights are random, making exact simulation of the distribution under the

null hypothesis impossible.

In practice we have found that the normal approximation works fairly well for the Cramér-

von Mises test, but less well for the Anderson-Darling test due to the very skew distribution

of the Anderson-Darling statistic.

5 Other Tests

Below we present a couple of other tests for trend based on robust null hypotheses. Although

these tests are constructed for somewhat different conditions than our tests we will include

these tests for comparison in simulations and real data examples.

5.1 Linear rank test

A general presentation of linear rank tests can be found in Kalbfleisch and Prentice (2002,

chap. 7.2). We shall here consider the specific linear rank test with exponential ordered

scores introduced by Cox and Lewis (1966, chap. 3.4) and used in Lawless et al. (2012).
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This test is constructed for event censored processes, and we let nj denote the prespecified

number of failures in process j. Let Xij be interarrival time number i in process j and let

rij be the rank of Xij in process j. Then the exponential ordered scores for process j are

eij =
1

nj
+ · · ·+ 1

nj − rij + 1
, i = 1, . . . , nj.

The test is based on the statistic

Vj =

nj∑
i=1

eij(i− (nj + 1)/2)

which under the null hypothesis has mean zero and variance

Var(Vj) =

∑nj

i=1(i− (nj + 1)/2)∑nj

i=1(eij − ēj)/(nj − 1)
,

where ēj =
∑nj

i=1 eij/nj. A combined test based on m processes can then be based on

Rm =

∑m
j=1 Vj√∑m

j=1 Var(Vj)

which under the null hypothesis is asymptotically standard normal both when m→∞ and

when all nj →∞ and m is fixed (Lawless et al., 2012).

Although this test is constructed for event censored processes, Lawless et al. (2012)

showed that it is still suitable in a time censoring situation, conditioning on Nj(τj) = nj.

However, the test is not using the information in the time interval between TNj(τj)j and τj,

which is not satisfactory (Aalen and Husebye, 1991).

This version of the linear rank test will only have power against monotonic trend. Other

choices of scores eij or weights in the Vj-statistic can lead to tests with other properties.

5.2 Generalized Laplace Test

For situations with several processes Lawless et al. (2012) presented a score based test which

they call the generalized Laplace test since it is similar in form to the Laplace test for

Poisson process data. This is a test for time censored data, but under the slightly different

null hypothesis that all the m processes have constant rate functions, and with asymptotics

as m→∞. Let Uj =
∑Nj(τj)

i=1 Tij −Nj(τj)τj/2 for j = 1, . . . ,m. The test statistic is

GL =

∑m
j=1 Uj√∑m
j=1 U

2
j

, (17)
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which under the null hypothesis is asymptotically standard normal as m → ∞. Like the

Laplace and the Lewis-Robinson test this test will only have power against monotonic trend.

6 Simulation Study

We have done various simulations to study and compare the properties of the tests. When

we report results for single processes we do not include the Cramér-von Mises test as this

test had less power than the Anderson-Darling test, while for several processes we do not

include the Anderson-Darling test as the Cramér-von Mises test had better level properties

in this case as discussed in Section 4.2. For the extended Lewis-Robinson test we set a = 1/2

in (9) as default, but we also explore the impact of other choices in some simulations. We

report this test for non-monotonic trend only, as it has inferior power against monotonic

trends. For comparison, the linear rank test is included in single process simulations, while

the generalized Laplace test is considered in simulations of several processes.

In the reported simulations we estimated rejection probabilities by simulating 100 000

data sets for each choice of model and parameter values, and recorded the relative number of

rejections of each test. The standard errors of the simulated rejection probabilities are then

≤ 0.0016. The nominal significance level was set to α = 0.05. All simulations were done in

R.

To simulate data with trend, we used the trend-renewal processes (TRP) (Lindqvist,

Elvebakk and Heggland, 2003) which in short is defined as follows: Let λ(t) be a non-

negative function defined for t ≥ 0 and let Λ(t) =
∫ t
0
λ(u)du. Then the process T1, T2, . . .

is a TRP with trend function λ(t) and renewal distribution F , if Λ(T1),Λ(T2), . . . is an RP

with interevent times having the distribution F .

The RP, the non-homogeneous Poisson process (NHPP) and the HPP are all special cases

of the TRP. For example, if the trend function is constant, then the TRP is an RP, while

if the distribution F is the unit exponential distribution, then the TRP is an NHPP with

intensity function λ(t). The trend in a TRP is hence governed by the trend function λ(t),

and by letting the distribution F be any positive-valued distribution, we are left with a large

class of processes with trend. In our simulations we will use parameterizations of the TRP

where the renewal distribution F is a Weibull-distribution and the trend function is either
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of so called power law or bathtub type, see Section 6.2 below.

6.1 One Process - Level Properties

First the level properties of the tests were studied by generating data sets from Weibull RPs

with shape parameters respectively 0.75 and 1.5, corresponding respectively to a process

which is overdispersed and a process which is underdispersed relative to an HPP. In Figure 1

the simulated level of the tests for systems with the expected number of events ranging from

10 to 60 are reported.
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Figure 1: Simulated level properties as a function of expected number of events, with data

generated from Weibull RPs with shape parameters respectively 0.75 (overdispersed RP)

and 1.5 (underdispersed RP). A nominal significance level of 0.05 was used in all tests.

Abbreviations: LR = Lewis-Robinson, KS = Kolmogorov-Smirnov, AD = Anderson-Darling,

LinR = Linear rank test, ELR = Extended Lewis-Robinson test.

The tests mostly have adequate level properties, but being based on asymptotic distribu-

tions the achieved levels tend to deviate a bit from the nominal level for small sample sizes.

In these cases most of the tests are a bit non-conservative, except the linear rank which

is a bit too conservative for small samples and the Kolmogorov-Smirnov test which is too

conservative in the overdispersed case.
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6.2 One Process - Power Properties

Data sets with a monotonic trend were generated by simulating data from TRPs with the

renewal distribution being Weibull and the trend function λ(t) being of the power law form

λ(t) = btb−1. The rejection probability as a function of b was simulated, where b < 1 cor-

responds to a decreasing trend, b = 1 corresponds to no trend and b > 1 corresponds to

an increasing trend. Two different values of the shape parameter β of the Weibull renewal
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Figure 2: Simulated power properties as a function of trend parameter b, with data sim-

ulated from TRPs with trend function btb−1 and Weibull renewal distribution with shape

parameters respectively β = 0.75 (overdispersed TRP) and β = 1.5 (underdispersed TRP).

A nominal significance level of 0.05 was used in all tests. The censoring time was adjusted

such that the expected number of failures was 30. Abbreviations: LR = Lewis-Robinson,

KS = Kolmogorov-Smirnov, AD = Anderson-Darling, LinR = Linear rank test.

distribution were considered, β = 0.75 and β = 1.5. The censoring times were adjusted such

that the expected number of failures was 30. The results are displayed in Figure 2. We see

in this figure that the Anderson-Darling test is the most powerful test against decreasing

trend, but is a bit less powerful than the Lewis-Robinson test for increasing trend. The

Kolmogorov-Smirnov and linear rank tests have substantially lower power than the other

tests.
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Data sets with a bathtub trend were generated by simulating data from TRPs with trend

function λ(t) on the form displayed in Figure 3. Here e is the average of λ(t) over [0, τ ].

-
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c τ − c τ t

Figure 3: Bathtub-shaped trend function.

The degree of bathtub shape can be expressed by the parameter d, with d = 0 corresponding

to a horizontal line (no trend).

The rejection probability as a function of d was simulated with c and τ in each case set

to values such that the expected number of failures in each phase (decreasing, no, increasing

trend) were equal to 20. The shape parameter of the Weibull renewal distribution was set

to respectively β = 0.75 and β = 1.5. The results are displayed in Figure 4.

We see in Figure 4 that the extended Lewis-Robinson test and the Anderson-Darling test

have the ability to detect this non-monotonic trend, while the other tests have no power

in such cases. Not surprisingly, the trend is easier to detect in the underdispersed case.

The extended Lewis-Robinson test with a = 1/2 (9) is by its construction particularly well

suited for picking up non-monotonic trends which are symmetric around the mid-point of

the observation interval, τ/2, as we have in this case. We see that the performance of this

test drops when a less optimal choice of a is made. The Anderson-Darling test is in many

cases better than the extended Lewis-Robinson test when a = 1/3.

6.3 Several Processes

When considering several processes, the number of processes is one of the important factors

for the behavior of the tests. We show here some simulations which illustrate power and
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Figure 4: Simulated power properties as a function of trend parameter d, with data simulated

from TRPs with bathtub trend function (Figure 3), Weibull renewal distribution with shape

parameter β = 0.75 (overdispersed TRP) and β = 1.5 (underdispersed TRP), and expected

number of failures in each phase equal to 20. A nominal significance level of 0.05 was

used in all tests. Abbreviations: LR = Lewis-Robinson, KS = Kolmogorov-Smirnov, AD

= Anderson-Darling, LinR = Linear rank test, ELR = Extended Lewis-Robinson test. For

ELR results for two choices of a, a = 1/2 and a = 1/3, are reported.

level properties for the test with different numbers of processes. In this setting with several

processes the generalized Laplace test also applies. For the Lewis-Robinson test the weights

in (15) were used, and for the Cramér-von Mises weights proportional to τj for each process

and a normal distribution approximation as discussed in Section 4.2 were used.

Figures 5 and 6 show power properties for cases with respectively 5 and 25 processes and

with censoring time chosen such that the expected number of events in each process is 20.

Simulations with other expected number of failures showed similar behavior, just with lower

or higher power depending on whether the expected number of failures was lower or higher.

These simulations show that the Lewis-Robinson type test has the best power properties

in these monotonic trend cases. For the generalized Laplace test which has asymptotics as

m→∞ we observe that the achieved significance level using the asymptotic critical value is

far too low in the case with 5 processes. For a more fair comparison we have added a version
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of the test which achieves the significance level 0.05, obtained by adjusting the critical value

empirically. In the case with 25 processes the Lewis-Robinson and the Laplace tests are very

similar.
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Figure 5: Simulated power properties as a function of trend parameter b, with data simu-

lated from 5 TRPs with trend function btb−1 and Weibull renewal distribution with shape

parameters respectively β = 0.75 (overdispersed TRP) and β = 1.5 (underdispersed TRP).

A nominal significance level of 0.05 was used in all tests. The censoring time was adjusted

such that the expected number of failures in each process was 20. Abbreviations: LR =

Lewis-Robinson, CvM = Cramér-von Mises, GLap = Generalized Laplace, GLap adj =

Generalized Laplace test with adjusted critical value.

7 Asymptotic properties of trend tests under alterna-

tives

In this section we shall complement the simulation study with some asymptotic considera-

tions of the tests studied in this paper. As in the simulation study, we shall assume that data

come from trend-renewal processes (TRP) with a power law trend function, λ(t) = btb−1,

and hence a cumulative trend function Λ(t) = tb, where b > 0.
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Figure 6: Simulated power properties as a function of trend parameter b, with data simu-

lated from 25 TRPs with trend function btb−1 and Weibull renewal distribution with shape

parameters respectively β = 0.75 (overdispersed TRP) and β = 1.5 (underdispersed TRP).

A nominal significance level of 0.05 was used in all tests. The censoring time was adjusted

such that the expected number of failures in each process was 20. Abbreviations: LR =

Lewis-Robinson, CvM = Cramér-von Mises, GLap = Generalized Laplace Test.

Suppose first that T1, T2, . . . follow a TRP with general trend function λ(t) and renewal

distribution F , as defined in Chapter 6. Let N(t) = #{events in (0, t]} for the TRP. By

definition of the TRP, Λ(T1),Λ(T2), . . . is an RP with interevent distribution F . Let the

corresponding counting process be N∗(u) = #{events in (0, u]}. Then

N∗(u) = N(Λ−1(u)). (18)

In Appendix 3 a functional central limit theorem for TRPs is proved, and used to show that

for TRPs with the power law trend function as given above, we have

Ṽ 0
t,γ(s)−

sb − s
γ

√
N(t)⇒ W 0(sb) as t→∞, (19)

where the left and right hand sides are seen as random functions on [0, 1] and W 0 is the

Brownian bridge.

We shall in the following also make use of the weak convergence result

W 0(sb)⇒ W 0(s) as b→ 1,
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which can be proven by noting that all finite dimensional distributions converge, and that

the family of W 0(sb) is tight (see, e.g., Billingsley, 1999, Chapter 2).

7.1 The Lewis-Robinson test

7.1.1 The Lewis-Robinson test for single processes

From the definition of the Lewis-Robinson statistic (4) and integration from 0 to 1 in (19),

it follows that for τ →∞ we have

LR −
√
N(τ)

γ̂

√
3(b− 1)

b+ 1

d→ −
√

12

∫ 1

0

W 0(sb)ds. (20)

Note now that N(τ) tends to infinity as τ → ∞, which is a consequence of N∗(u) tending

to infinity as u → ∞ for the RP underlying the TRP. Since the right hand side of (20) is

a finite (normally distributed) random variable, this shows that LR tends to +∞ or −∞

according to whether b > 1 or b < 1 when these are fixed values and τ → ∞. This shows

that the LR test is consistent for these kinds of alternatives.

Next, suppose b→ 1 as τ →∞ in such a way that

b = 1 +
θ√
τ

(21)

for a given θ ∈ (−∞,+∞). Then

−
√

12

∫ 1

0

W 0(sb)ds
d→ −
√

12

∫ 1

0

W 0(s)ds ∼ N(0, 1),

while √
N(τ)

γ̂

√
3(b− 1)

b+ 1
=

√
N(τ)

τ

1

γ̂

√
3 θ

2 + θ/
√
τ

p→ 1

γ

√
1

µ

√
3

2
θ. (22)

Here we assume that γ̂ is a consistent estimator of γ, the coefficient of variation of the

underlying renewal distribution. We also use the fact that N(τ)/τ → 1/µ a.s. as τ → ∞,

where µ is the expected value corresponding to the renewal distribution of the TRP. The

argument is as follows, with notation as before,

N(τ)

τ
=
N∗(τ b)

τ b
· τ

b

τ
.

Here the first factor tends a.s. to 1/µ, since N∗(·) is a renewal process. In the second factor,

we use (21) to get

lim
τ→∞

τ b−1 = lim
τ→∞

τ θ/
√
τ = lim

τ→∞
eθτ

−1/2 ln τ = e0 = 1.
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It follows from the above that the LR-statistic converges in distribution as

LR
d→ N

(
1

γ

√
1

µ

√
3

2
θ, 1

)
. (23)

The asymptotic power of an α-level two-sided LR-test, considered as a function of θ defined

in (21), is hence

Φ

(
−zα/2 +

1

γ

√
1

µ

√
3

2
θ

)
+ Φ

(
−zα/2 −

1

γ

√
1

µ

√
3

2
θ

)
.

Note that the expression to the left (right) is dominant if θ > 0 (θ < 0). It is thus seen that

the power increases with decreasing γ and µ. Clearly, a low value of µ increases the number

of events, while a low γ implies less variation in the interevent times.

7.1.2 The Lewis-Robinson test with several processes

Another application of (23) is to derive optimal weights for the LR test in the case of several

processes. The following lemma is probably known, and is easy to prove by a geometric

argument.

Lemma 2 Let Xj ∼ N(δj, 1) for j = 1, . . . ,m be independent. Let

W =
m∑
j=1

ajXj, where
m∑
j=1

a2j = 1.

Then W ∼ N(
∑m

j=1 ajδj, 1), where the expected value
∑m

j=1 ajδj is maximized by choosing

aj =
δj√∑m
k=1 δ

2
k

.

Suppose now that we have m systems, each of which is governed by a TRP with cumu-

lative trend function Λj(t) = tbj for some bj > 0. Assume further that the jth system is

observed on the time interval τj, and has renewal distribution Fj with expected value µj and

coefficient of variation equal to γj. We now want to combine LR-test statistics for the m

systems as
∑m

j=1 aj LRj. Here LRj is the LR statistic for the jth system and aj are weights

satisfying
∑m

j=1 a
2
j = 1. In view of (23) and Lemma 2, in the limit as the τj tend to infinity,

we should choose the aj such that

aj ∝
θj
γj

√
1

µj
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in order to optimize the asymptotic power at a certain alternative corresponding to (θ1, . . . , θm),

with θj defined through bj = 1 + θj/
√
τj.

Suppose that under the alternative, the bj = b are the same for all systems, so that

θj = (b − 1)
√
τj for each j = 1, . . . ,m. Suppose further that the τj tend to infinity such

that τj = cjτ for constants cj and τ → ∞. Then clearly θj ∝
√
cj for j = 1, . . . ,m and the

optimal weights are hence aj ∝
√
cj/(γj

√
µj).

7.2 Kolmogorov-Smirnov test

The test statistic is

KS = sup
s∈[0,1]

|Ṽ 0
τ,γ̂(s)|. (24)

Consider now (19). If b < 1 (b > 1) is fixed, then (sb − s)
√
N(τ)/γ̂ tends to +∞ (−∞) as

τ → ∞. Since the supremum of the absolute value of the right hand side of (19) has the

(finite) Kolmogorov distribution, it follows that the Kolmogorov-Smirnov test is consistent

for the considered alternatives.

Now assume that b tends to 1 as τ →∞ in the way given by (21). Using that

lim
b→1

sb − s
(b− 1)s ln s

= 1 (25)

we obtain
sb − s
γ̂

√
N(t) =

sb − s
(b− 1)s ln s

θs ln s

γ̂

√
N(t)

τ

p→ s ln s

γ
θ

√
1

µ
.

as τ →∞. Thus by (19) we have that

Ṽ 0
τ,γ̂(s)⇒ W 0(s) +

s ln s

γ
θ

√
1

µ

and hence by (24) the Kolmogorov-Smirnov test statistic has asymptotically the same dis-

tribution as

sup
s∈[0,1]

∣∣∣∣W 0(s) +
s ln s

γ
θ

√
1

µ

∣∣∣∣,
where W 0 is a Brownian bridge.
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7.3 The Cramér-von Mises test

This test is based on the test statistic CvM =
∫ 1

0
(Ṽ 0

τ,γ̂(s))
2ds. Squaring each side of (19) and

integrating from 0 to 1 we get

CvM − 2

γ̂

√
N(τ)

∫ 1

0

(sb − s)Ṽ 0
τ,γ̂(s)ds+

N(τ)

γ̂2

∫ 1

0

(sb − s)2ds d→
∫ 1

0

(W 0(sb))2ds (26)

as τ →∞. Considering (19) we can write the expression on the left of the
d→ in (26) as

CvM − 2

γ̂

√
N(τ)

∫ 1

0

(sb − s)
(
Ṽ 0
τ,γ̂(s)−

sb − s
γ̂

√
N(τ)

)
ds− N(τ)

γ̂2

∫ 1

0

(sb − s)2ds. (27)

Let now τ tend to∞ in (27). For fixed b 6= 1, the rightmost term is given as N(τ) multiplied

by a positive constant. It hence converges to ∞ a.s. as τ → ∞. By (19), the middle term

of (27) equals
√
N(τ) times a random variable that converges to a normally distributed

random variable. Thus the last term on the left hand side of (27) dominates, making the

test statistic CvM converge to infinity as τ → ∞. This shows that the Cramér-von Mises

test is consistent for the given type of alternatives.

Assume next that b tends to 1 as τ → ∞ in the manner given by (21). The right hand

side of (26) then converges to the ordinary Cramér-von Mises distribution. For the last term

of (27) we can find the limit as follows:

N(τ)

γ̂2
2(b− 1)2

(2b+ 1)(b+ 2)
=

1

γ̂2
N(τ)

τ

2(b− 1)2τ

(2b+ 1)(b+ 2)

p→ 1

γ2
1

µ

2

9
θ2

which is a constant.

It remains to consider the middle term of (27). Using (25) we get

2

γ̂

√
N(τ)

∫ 1

0

(sb − s)Ṽ 0
τ,γ̂(s))ds =

2

γ̂

√
N(τ)

τ

∫ 1

0

√
τ(b− 1)s ln s W 0(sb)ds

=
2

γ̂

√
N(τ)

τ
θ

∫ 1

0

s ln s W 0(sb)ds

d→ 2

γ

√
1

µ
θ

∫ 1

0

s ln s W 0(s)ds

It finally follows from (26) and (27) that the statistic CvM under (19) converges in

distribution to the random variable∫ 1

0

(W 0(s))2ds+
2

γ

√
1

µ
θ

∫ 1

0

s ln s W 0(s)ds+
1

γ2
1

µ

2

9
θ2,
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as τ →∞, where W 0 is a Brownian bridge.

Since E[
∫ 1

0
s ln sW 0(s)ds]

.
= 0, it is seen that the expected value of the CvM statistic

under the aternative equals the expected value under the null hypothesis plus the positive

term
1

γ2
1

µ

2

9
θ2.

7.4 The Anderson-Darling test

The test statistic and the derivation of its asymptotic properties are similar to the ones for

the Cramer-von Mises test. We therefore omit a further treatment of this test.

8 Case Studies

8.1 Load-Haul-Dump Machine Data (Kumar et al., 1989)

Kumar, Klefsjö and Granholm (1989) reported failure data for a load-haul-dump machine

operating in a Swedish mine. For the purpose of this example we considered the data to be

time censored at τ = 2000 hours. The recorded failure times of the machine up to this time

are reported in Table 1, and a plot of the observed process N(t) for 0 ≤ t ≤ 2000 is given in

the left panel of Figure 7. The plot seems to indicate a non-monotonic trend, apparently in

the form of a bathtub trend.

For illustration we also show, in the right panel of Figure 7, a plot of the function Ṽ 0
τ,1(s)

for 0 ≤ s ≤ 1. This is the transformed and tied down version of N(t), and should, if the

null hypothesis holds, be close to a Brownian bridge. However, this plot too indicates a

non-monotonic trend with an upward deviation in the first part and a downward deviation

in the second part.

Table 1: Load-haul-dump data. Failure times in hours. The data are time censored at 2000

hours.

16 39 71 95 98 110 114 226 294 344 555 599

757 822 963 1077 1167 1202 1257 1317 1345 1372 1402 1536

1625 1643 1675 1726 1736 1772 1796 1799 1814 1868 1894 1970
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Table 2: Load-haul-dump data. Parameter estimates using methods of Section 3.6

.

Estimators µ σ γ

Sample estimators - not including censored time 54.72 48.61 0.888

Sample estimators - including censored time 55.56 47.23 0.850

Parametric: Weibull - including censored time 55.46 47.22 0.851

For estimation of the coefficient of variation under the null hypothesis, we estimated the

parameters µ, σ, γ using methods considered in Section 3.6. The results are given in Table 2.

It is seen that the estimates which use the censored time are very close, while the one that

disregard this time gives a slightly higher estimated coefficient of variation. This might be

a coincidence, however, and will not be generally valid.

In order to calculate the LR-test statistic (4), we first calculated the Laplace test statistic,

and then divided by the estimated coefficient of variation, to get 0.605/0.888 = 0.681 using

the estimates in the first row of Table 2. This gave the p-value 0.50 for a two-sided test.

We also calculated the estimator σ∗ of (11), which gave the result 42.77, which is lower

than the estimates of σ in Table 2, and would give an estimated coefficient of variation of

42.77/54.72 = 0.782 and a test statistic of 0.605/0.782 = 0.774 and a p-value of 0.44. This

illustrates the effect of using σ∗, as estimator of σ, as discussed in Section 3.6, namely to

possibly give a lower estimated coefficient of variation, and in turn a lower calculated p-value.

Two-sided p-values for all tests are reported in Table 3. In the extended Lewis-Robinson

test we used a = 1/2, and it is interesting to see that this test detected a significant trend

in the data while the tests for monotonic trend had fairly high p-values. The example thus

illustrates the need for trend tests with power against non-monotonic trend.

8.2 Hydraulic System of Load-Haul-Dump Machines (Kumar and

Klefsjö, 1992)

Kumar and Klefsjö (1992) reported and studied failure data for the hydraulic system of six

load-haul-dump machines operating in a Swedish mine. These data were also studied by

Lawless et al. (2012) and for the purpose of this example we will follow their analysis and
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Figure 7: Load-haul-dump data. Left: Plot of N(t) for 0 ≤ t ≤ 2000. Right: Plot of the

process Ṽ 0
τ,1(s) for 0 ≤ s ≤ 1.

Table 3: Load-haul-dump data. The table reports p-values for trend tests applied to the

load-haul-dump machine data in Table 1. Abbreviations: LR = Lewis-Robinson, KS =

Kolmogorov-Smirnov, CvM = Cramér-von Mises, AD = Anderson-Darling, ELR = Extended

Lewis-Robinson, LinR = Linear rank. In ELR a = 1/2 was used.

LR KS CvM AD ELR LinR

0.50 0.29 0.13 0.086 0.011 0.76

assume that for each machine the data are time censored at the last recorded event time.

Figure 8 shows the Nelson-Aalen estimate of the common mean function E[N(t)] for the

machines, see Nelson (1988) and Lawless and Nadeau (1995) for the motivation and validity

of the plot. As shown by Lawless and Nadeau (1995), the Nelson-Aalen estimator is unbiased

and consistent for E[N(t)] under fairly general conditions. Here we present the plot as an

illustration of a possible trend in the data.

The p-values obtained for different tests are reported in Table 4. We have here estimated

γ individually in each process. For the ordinary and extended Lewis-Robinson tests we

used the weights in (15). For the Cramér-von Mises and Anderson-Darling tests we used
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Figure 8: Hydraulic system of load-haul-dump machines data. Plot of the the cumulative

number of failures over time for the hydraulic system of six machines.

weights proportional to τj for each process and simulated the null distribution as discussed in

Section 4.2. For the extended Lewis-Robinson test, recall that for a given value of a ∈ (0, 1),

it is assumed that a process, observed on the time interval [0, τ ], changes the direction of a

trend at the point aτ . Since we do not have any prior information about a natural turning

point for a trend in the present case, we have chosen to let the turning point for all processes

be at time t0 = 4743/2 = 2371.5, where 4743 = maxk τk. Thus, for the jth system with end

of observation at τj, we choose the corresponding value aj of a such that ajτj = t0.

The two Lewis-Robinson tests identify a significant trend, and the other tests are border-

line significant. It should be noted that for the generalized Laplace test the small number of

processes (m = 6) might imply that the asymptotic normal distribution is not very accurate

in the tail in this case as observed in the simulation study. Lawless et al. (2012) report a

permutation p-value of 0.037 for this test.
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Table 4: Hydraulic system of load-haul-dump machines data. The table reports p-values for

trend tests applied to the hydraulic system of load-haul-dump machines data in Figure 8.

Abbreviations: LR = Lewis-Robinson, CvM = Cramér-von Mises, AD = Anderson-Darling,

ELR = Extended Lewis-Robinson, GL = Generalized Laplace.

LR CvM AD ELR GL

0.019 0.064 0.076 0.003 0.062

9 Conclusion

We have presented a novel class of tests for trend in time censored recurrent event processes,

based on the general null hypothesis of an RP. This class includes, among other tests, new

versions of the Lewis-Robinson test and the Anderson-Darling test, extending these tests to

time censored processes. For the single process case, the Anderson-Darling test turns out

to have attractive properties when used as a test for general alternatives, both monotonic

and non-monotonic trends. If power against monotonic trends is of main interest, the Lewis-

Robinson type test is on the other hand a safe choice, both for single and multiple processes.

The derived test statistics are based on asymptotic results for renewal processes. The

calculated critical values are hence only approximate when used in small and medium sized

samples. The simulation study shows, however, satisfactory performance of the tests, with

some exceptions in cases with very small samples. In such cases an alternative procedure

would be to simulate the null distribution of the test statistic by a permutation approach,

permuting the order of the completely observed interevent times. Lawless et al. (2012) showed

that this is a valid approach even for time censored processes, and we have confirmed this

in simulations not reported here.

It is clear that the basic result of Corollary 1 in principle may give rise to a very large

class of tests. We have in Section 3 considered four tests based on standard goodness-of-fit

statistics, and as an example of the variety of other possible tests we added and studied in

some detail a non-standard test, which led to a further extension of the Lewis-Robinson test.

An interesting fact of the constructed test statistics is that they may be viewed as test

statistics for the case of Poisson processes, with null hypothesis corresponding to HPP, that

are adjusted according to the coefficient of variation of the observed interevent times. This

31



is exactly the way Lewis and Robinson (1974) obtained their test statistic for the event

censored case, starting from the Laplace test.

R code for the tests is available at https://github.com/jtkgithub/trendtests.
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Appendix 1

Consistent Estimator of µ

It is clear from the strong law of large numbers for renewal processes (see, e.g., Ross (1983))

that, as τ →∞

µ̂ =

∑N(τ)
i=1 Xi

N(τ)
→ µ a.s.

since N(τ)→∞. Note that by standard renewal process theory we have as τ →∞

N(τ)

τ
→ 1

µ
a.s.

Thus another consistent estimator of µ is given by µ̃ = τ/N(τ). Note that we can write

µ̂ = TN(τ)/N(τ), so we have µ̃ > µ̂.

Consistent Estimator of σ2

By the strong law of large numbers we have as τ →∞

1

N(τ)

N(τ)∑
i=1

(Xi − µ)2 → σ2 a.s.

Writing

1

N(τ)

N(τ)∑
i=1

(Xi − µ)2 =
1

N(τ)

N(τ)∑
i=1

(Xi − µ̂)2 + (µ̂− µ)2

32



it follows from Slutsky’s theorem that

σ̂2 =
1

N(τ)

N(τ)∑
i=1

(Xi − µ̂)2

is a consistent estimator of σ2.

A disadvantage of the estimator σ̂, as with µ̂, is that they do not take into account the

censored time τ − TN(τ). Gallager (2013, chap. 5) shows that

lim
τ→∞

∫ τ
0

(t− TN(t))dt

τ
=

E(X2)

2µ
a.s. (28)

Here the left hand side is the long run average length of time since the last previous event,

and the result says that this equals (µ/2)(1 + γ2) where γ is the coefficient of variation of

the distribution of X.

We use (28) in the following way. A straightforward calculation shows that

∫ τ

0

(t− TN(t))dt =
1

2


N(τ)∑
i=1

X2
i + (τ − TN(τ))

2

 ,

which after substitution in (28), noting that τ/N(τ) → µ, gives the following consistent

estimator for σ2,

σ̃2 =
1

N(τ)


N(τ)∑
i=1

X2
i + (τ − TN(τ))

2

− µ̃2.

An alternative variance estimator, σ∗2, was presented in Section 3.6, see equation (11).

To prove consistency of σ∗2 under the null hypothesis of RP, we can consider separately

the sum over odd i and even i and use the strong law of large numbers on each of the two

resulting sums, which are now sums of i.i.d. variables.
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Appendix 2

The Extended Lewis-Robinson Test

The test statistic (9) is obtained as follows. Note first that we can writeN(t) =
∑N(τ)

i=1 I[Ti,τ)(t),

where IA(t) is the indicator function of the set A. From (3) it follows that we can consider

τ

∫ a

0

(N(sτ)− sN(τ))ds =

∫ τa

0

(
N(t)− N(τ)

τ
t

)
dt

=

N(τ)∑
i=1

∫ aτ

0

I[Ti,τ)(t)dt−
∫ aτ

0

N(τ)

τ
t

 dt

=

N(τ)∑
i=1

(aτ −min {Ti, aτ})−
1

2
a2τN(τ) (29)

and similarly

τ

∫ 1

a

(N(sτ)− sN(τ))ds =

∫ τ

aτ

(
N(t)− N(τ)

τ
t

)
dt

=

N(τ)∑
i=1

∫ τ

aτ

I[Ti,τ)(t)dt−
∫ τ

aτ

N(τ)

τ
t

 dt

=

N(τ)∑
i=1

(τ −max {Ti, aτ})−
1

2
(1− a2)τN(τ). (30)

Subtracting (30) from (29), we get

N(τ)∑
i=1

[(aτ −min {Ti, aτ})− (τ −max {Ti, aτ})] +

(
1

2
− a2

)
τN(τ)

=

N(τ)∑
i=1

|Ti − aτ | −
(

1

2
− a(1− a)

)
τN(τ)

The statistic (9) is hence obtained from (3).

We finally prove that
∫ a
0
W 0(s)ds −

∫ 1

a
W 0(s)ds is normal with mean 0 and variance

(1/12) − a2(1 − a)2. For this we use the fact that, for a Gaussian process G(t) with mean

function E(G(t)) = m(t) and covariance function Cov(G(s), G(t)) = k(s, t), we have∫ b

a

G(t)dt ∼ N(

∫ b

a

m(t)dt,

∫ b

a

∫ b

a

k(s, t)dsdt).
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The covariance function of the Brownian bridge is k(s, t) = min(s, t) − st. Hence U =∫ a
0
W 0(s)ds is normal with mean 0 and variance∫ a

0

∫ a

0

(min(s, t)− st)dsdt =
a3(4− 3a)

12
. (31)

Similarly, V =
∫ 1

a
W 0(s)ds is normal with mean 0 and variance∫ 1

a

∫ 1

a

(min(s, t)− st)dsdt = (1/12)− a2(6− 8a+ 3a2)

12
. (32)

Now we want Var(U − V ) = Var(U) + Var(V ) − 2Cov(U, V ), and thus we seemingly

need also Cov(U, V ). We use, however, the following trick. Since U + V =
∫ 1

0
W 0(s)ds is

known to have variance 1/12, we can solve for Cov(U, V ) in the equation Var(U + V ) =

Var(U) + Var(V ) + 2Cov(U, V ) to get

Var(U − V ) = 2(Var(U) + Var(V ))− Var(U + V ) =
1

12
− a2(1− a)2

where we used (31-32) and the fact that Var(U + V ) = 1/12.

Appendix 3

A Functional Central Limit Theorem for Trend-Renewal Processes

Consider a trend-renewal process (TRP) with trend function λ(t) and renewal distribution F .

As in Section 7, let N(t) = #{events in (0, t]} for the TRP and N∗(u) = #{events in (0, u]}

for the RP corresponding to F . Then, see (18), N∗(u) = N(Λ−1(u)).

By Corollary 1,
1

γ
· N

∗(su)− sN∗(u)√
N∗(u)

⇒ W 0(s) as u→∞, (33)

where the left and right hand sides are seen as random functions of s ∈ [0, 1], and γ is the

coefficient of variation of F .

Applying (18) to (33) and substituting Λ−1(u) = t, we have

1

γ
· N(Λ−1(sΛ(t)))− sN(t)√

N(t)
⇒ W 0(s) as t→∞. (34)

This can be viewed as a functional central limit theorem for the TRP, thus generalizing

Corollary 1 to TRPs.
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Application to Power Law TRP

Consider now the special case where the cumulative trend function of the TRP is Λ(t) = tb

for b > 0. Then Λ−1(u) = u1/b and (34) becomes

1

γ
· N(s1/bt)− sN(t)√

N(t)
⇒ W 0(s) as t→∞,

or, by replacing s by sb,

1

γ
· N(st)− sbN(t)√

N(t)
⇒ W 0(sb) as t→∞, (35)

The right hand side is then a time-transformed Brownian bridge and is still a Gaussian

process.

The key result for the power law TRP is the following, which is a consequence of (35):

Ṽ 0
t,γ(s)−

sb − s
γ

√
N(t)⇒ W0(s

b) as t→∞,

valid for any TRP with cumulative trend function Λ(t) = tb and renewal distribution with

coefficient of variation γ, and any fixed b > 0.

References

Aalen, O. and Husebye, E. (1991). Statistical analysis of repeated events forming renewal

processes, Statistics in Medicine 10: 1227–1240.

Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain goodness of fit

criteria based on stochastic processes, Annals of Mathematical Statistics 23: 193–212.

Anderson, T. W. and Darling, D. A. (1954). A test of goodness of fit, Journal of the American

Statistical Association 49: 765–769.

Ascher, H. and Feingold, H. (1984). Repairable Systems Reliability. Modeling, Inference,

Misconceptions and Their Causes, Marcel Dekker, Inc., New York.

Billingsley, P. (1999). Convergence of Probability Measures., Wiley Series in Probability and

Statistics.

36



Cohen, A. and Sackrowitz, H. B. (1993). Evaluating tests for increasing intensity of a Poisson

process, Technometrics 35: 446–448.

Cook, R. J. and Lawless, J. F. (2013). Concepts and tests for trend in recurrent event

processes, Journal of The Iranian Statistical Society 12(1): 35–69.

Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events, Methuen,

London.

Donsker, M. D. (1952). Justification and extension of Doob’s heuristic approach to the

Kolmogorov–Smirnov theorems, Annals of Mathematical Statistics 23: 277–281.

Gallager, R. G. (2013). Stochastic Processes: Theory for Applications, Cambridge University

Press.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data,

2nd edn, Wiley, New York.

Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione, Giornale

dell’ Istituto Italiano degli Attuari 4: 83–91.
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