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Abstract

The signature of a coherent system has been studied extensively in the recent

literature. Signatures are particularly useful in the comparison of coherent or

mixed systems under a variety of stochastic orderings. Also, certain signature-

based closure and preservation theorems have been established. For example,

it is now well known that certain stochastic orderings are preserved from

signatures to system lifetimes when components have i.i.d. distributions. This

applies to the likelihood ratio order, the hazard rate order and the stochastic

order. The point of departure of the present paper is the question of whether

or not a similar preservation result will hold for the mean residual life order. A

counter example is provided which shows that the answer is negative. Classes

of distributions for the component lifetimes for which the latter implication

holds are then derived. Connections to the theory of order statistics are also

considered.
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1. Introduction

Consider a coherent system with n binary components as studied, for example, in

the monograph by Barlow and Proschan [3]. Suppose that the component lifetimes

X1, . . . , Xn are independent and identically distributed (i.i.d.) with cumulative distri-

bution function F . Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be their ordered values and let T be

the lifetime of the system. Samaniego [24] introduced the signature, s = (s1, . . . , sn),

of the system which, when F is continuous, is given as

si = P (T = Xi:n) for i = 1, . . . , n. (1)

A key property of system signatures is that s depends only on the system structure and

does not depend on the distribution F of component lifetimes. Moreover (Samaniego

[25, Theorem 3.1]), the survival function of the lifetime T of the system can be

represented as a function of s and F as follows:

P (T > t) =

n
∑

i=1

siP (Xi:n > t) =

n
∑

i=1

si

i−1
∑

k=0

(

n

k

)

(F (t))k(F̄ (t))n−k. (2)

By changing the order of summation and changing the summation variable k to j =

n− k in (2), one may write

P (T > t) =

n
∑

j=1





n
∑

i=n−j+1

si





(

n

j

)

F̄ (t)jF (t)n−j

=

n
∑

j=1

aj

(

n

j

)

F̄ (t)jF (t)n−j , (3)

where

aj =

n
∑

i=n−j+1

si for j = 1, . . . , n. (4)

As shown by Boland [5],

aj =
# path sets of size j

(

n
j

) .
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It follows that the aj can be interpreted as the probability that the system functions

when j components function. Hence in particular we have an = 1. Coolen and Coolen-

Maturi [7] introduced the term survival signature for the vector a = (a1, . . . , an). Note

that there is a 1-1 correspondence between the signature vector and the vector defining

the survival signature. As will become clear, the representation (3) for the survival

function of a system lifetime will be basic in the approach of the present paper. Note

that (2) and (3) are valid for both discrete and continuous distributions F . In the

discrete case we will no longer have (1), but as noted by Kochar et al. [14], we may

write

sk =
# of orderings of components for which the kth failure causes system failure

n!
.

The considerations so far are restricted to coherent systems. It is, however, useful

to extend the class of systems to include so-called mixed systems; see Samaniego [25,

page 28-31]. In the following, we shall refer to a system with n components as an n-

system. A mixed n-system is a stochastic mixture of a number of coherent n-systems.

It is easily verified that the results (2) and (3) continue to hold for mixed systems; see

Samaniego [25, page 30]. Note that any probability vector s = (s1, . . . , sn) can serve as

the signature of a mixed system. One possible representation of such a mixed system

is the one which gives weight si to an i-out-of-n system for i = 1, . . . , n.

Samaniego [25, Chapters 4-5] demonstrates the utility of signatures in various reli-

ability contexts. For example, signatures have been shown to be useful in establishing

certain closure and preservation theorems in reliability, and they can play a useful

role in the comparison of coherent or mixed systems. One example of the former

is the IFR closure problem that was first considered by Samaniego [24]. Samaniego

[25] also presents a collection of preservation theorems, showing that certain types

of orderings of signatures imply like orderings of the corresponding system lifetime

distributions. Since the calculation of the lifetime distributions of complex systems is

often challenging, the utility of comparing the much simpler indices for system designs

in the form of signature vectors should be evident. To be more specific, Samaniego

[25, Chapter 4] presents preservation results of this kind for stochastic comparisons

with respect to likelihood ratio, hazard rate and stochastic ordering. For example,

the preservation result for stochastic ordering states that if a system has a signature
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s which is stochastically smaller than the signature t of another system, the former

system will have a stochastically smaller lifetime, whatever be the distribution F of

the component lifetimes. Samaniego [25] shows that similar results hold for the other

two orderings mentioned above.

The point of departure of the present paper is the question whether or not a

similar preservation result will hold for the mean residual life order, i.e., whether

system lifetimes will be ordered with respect to the mean residual life order if this

ordering holds for the system signatures. As we shall see, the answer to this question

is negative. A simple counterexample, essentially involving easy hand calculations, is

given in Section 2. The example shows that there are indeed systems with signatures

which are ordered according to the mean residual life order, but where the system

lifetimes are not similarly ordered for some specific component distribution. Sections 3

and 4 are devoted to the description of nested classes of component distributions,

depending on the system size n, for which the preservation of the mean residual life

order takes place. For example, one finds that any DFR distribution is contained in

each of these classes. Further, it is shown that these classes can be characterized by

properties of spacings of order statistics.

The importance of the mean residual life order as a way of comparing components’

or systems’ performance has been highlighted in the recent reliability literature. It

is well known that the hazard rate order implies the mean residual life order, but as

illustrated by Belzunce et al. [4], in practical applications it is often seen that the

hazard rate order does not hold, while the mean residual life order does obtain. They

demonstrate this by considering Weibull-distributions with different shape parameters,

as well as by an empirical study of daily return data from two Spanish companies, an

electric utility company and a banking company. In a recent paper, Navarro and Gomis

[21] obtain comparison results for the performance of coherent systems with respect

to the mean residual life order, while Mirjalili et al. [18] consider the mean residual

life of a coherent system with a cold standby component. Ghitany et al. [11] treat an

application to finance which shows how the mean residual life function is used in risk

measurements appropriate for the evaluation of market risk or credit risk of a portfolio.

This paper is organized as follows. In Section 2, we define the different orders to be

considered in the paper, with emphasis on the mean residual life order. In addition,
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the definitions of the orders in terms of signature vectors are given. Finally, a necessary

and sufficient condition for the mean residual life ordering of system lifetimes is given,

together with an example where two systems have signatures that are ordered with

respect to the mean residual life order, while the system lifetimes are not. In Section 3

we study the classes of component lifetime distributions F for which the mean residual

life ordering is preserved. In particular, the sufficiency of their defining property is

proven. Section 4 treats the case where the distributions F are absolutely continuous

and Section 5 considers the connection between our results on the mean residual life

ordering of system lifetimes and the theory of order statistics. Sections 6 and 7 provide

additional examples and some concluding remarks.

2. Ordering of lifetimes and signatures. A counterexample.

The likelihod ratio order, the hazard rate order, and the stochastic order, are the

most studied orderings among random variables. Of these, the two last mentioned will

be the most relevant in the present paper. Their definitions, given below, apply both

for discrete and continuous pairs of random variables (X,Y ).

Note that we will use increasing to mean non-decreasing and decreasing to mean

non-increasing. In the paper, we will also let a/0 = ∞ for a > 0, while 0/0 is

indeterminate, but, when occuring, will correspond to cases without relevance.

Definition 1. Let X and Y be nonnegative random variables with corresponding

survival functions F̄ and Ḡ. Then X is smaller than Y in the stochastic order ,

denoted X ≤st Y , if and only if F̄ (x) ≤ Ḡ(x) for all x; in the hazard rate order,

denoted X ≤hr Y , if and only if Ḡ(x)/F̄ (x) is increasing in x.

In the present paper, our main concern is with a different order, the mean residual

life order ; see Shaked and Shanthikumar [27, Chapter 2.A]. Recall that ifX is a positive

random variable with a survival function F̄ and a finite mean, then the mean residual

life function of X at t ≥ 0 is defined as

m(t) = E(X − t|X > t); for t ≥ 0. (5)

The definition of the mean residual life ordering of two random variables is given below.
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Definition 2. Let X and Y be nonnegative random variables with corresponding

survival functions F̄ and Ḡ and corresponding mean residual life functions m(t) and

l(t). Then X is smaller than Y in the mean residual life order, denoted X ≤mrl Y ,

if and only if

m(t) ≤ l(t); for all t > 0,

or, equivalently, X ≤mrl Y if and only if

∫

∞

t

Ḡ(u)du/

∫

∞

t

F̄ (u)du is increasing in t > 0.

It is well known (Shaked and Shanthikumar [27, Chapters 1,2]) that

X ≤hr Y ⇒ X ≤st Y,

X ≤hr Y ⇒ X ≤mrl Y. (6)

However, neither of the orders ≤st and ≤mrl implies the other.

Let s and t be the signature vectors of two systems. Following common notation,

we shall let s ≤order t in a specific order (st, hr or mrl) mean that the corresponding

discrete random variables are ordered in this way. Although Definitions 1 and 2 cover

both discrete and continuous distributions, we find it convenient to have separate

definitions for orderings of signature vectors, which will be given in terms of properties

of the corresponding survival signatures.

Definition 3. Let s and t be signature vectors for two n-systems with corresponding

survival signatures given by, respectively, a and b as defined in equation (4) of Section 1.

Then s is smaller than t in the:

stochastic order, s ≤st t, if and only if bi/ai ≥ 1 for all i;

hazard rate order, s ≤hr t, if and only if bi/ai is decreasing in i;

mean residual life order, s ≤mrl t, if and only if (
∑k

i=1 bi)/(
∑k

i=1 ai) is decreasing

in k.

Theorems 4.3 and 4.4 in Samaniego [25] state that if s and t are the signatures of two

mixed n-systems having components with i.i.d. lifetimes and common distribution F ,
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and if S and T are the respective system lifetimes, then we have

s ≤st t ⇒ S ≤st T, (7)

s ≤hr t ⇒ S ≤hr T. (8)

The present paper is concerned with the question of whether, or possibly under what

conditions, the following implication can be added to those in (7) and (8) above:

s ≤mrl t ⇒ S ≤mrl T. (9)

Throughout the paper, the component lifetime distributions F are assumed to

have support in [0,∞) and to have finite expectation. Letting F denote cumulative

distribution functions, we let F̄ = 1 − F be the corresponding survival function. We

have also found it convenient to allow discrete distributions F to have a positive point

mass at 0. In the absolutely continuous case, the corresponding probability density

function will be denoted by f , and will be assumed to have a support set which is a

closed subinterval of [0,∞). This ensures that the distribution function F is strictly

increasing in this subinterval. For later reference, the resulting subclass of absolutely

continuous distributions will be denoted by C.

By combining Definition 2 and the expression (3) for the survival function of a system

lifetime, we obtain the following result giving a necessary and sufficient condition for

S ≤mrl T .

Proposition 1. Let s and t be the signatures of two mixed n-systems, and assume

that s ≤mrl t. Suppose the systems have components with i.i.d. lifetimes with common

distribution F . Let S and T be the respective lifetimes of the systems. Then S ≤mrl T

if and only if

∑n
i=1 bi

(

n
i

) ∫

∞

t
F̄ (u)iF (u)n−idu

∑n
i=1 ai

(

n
i

) ∫

∞

t F̄ (u)iF (u)n−idu
is increasing in t ≥ 0, (10)

where a and b are the respective survival signatures corresponding to s and t, as defined

in (4).

Suppose s ≤mrl t and that also s ≤hr t. By (8), we then have S ≤hr T , which by

(6) implies S ≤mrl T . Thus, the conclusion in (9) holds for any component lifetime

distribution F if s, t satisfy both s ≤mrl t and s ≤hr t. The remaining case of interest
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is therefore when s ≤mrl t and s 6≤hr t. Since the orders st, hr and mrl are equivalent

for signatures of 2-systems (see Definition 3), we need only consider n ≥ 3.

The following simple example shows that (9) does not hold in general, in the sense

that, for some n, there are signatures s and t with s ≤mrl t for which (10) does not

hold for all distributions F . In view of this somewhat surprising and disappointing

result, we turn our attention to the characterization of classes of component lifetime

distributions F for which (10) holds, for given n, for any pair of systems with signatures

satisfying s ≤mrl t.

Example 1. A counterexample.

Let n = 3 and consider signature vectors

s = (1/4, 1/4, 1/2), t = (3/8, 0 , 5/8), (11)

with corresponding survival signatures

a = (1/2, 3/4, 1), b = (5/8, 5/8, 1).

From Definition 3, we note that s ≤mrl t, while neither of the orderings hr and st hold

between s and t.

Let the component lifetime distribution F be a discrete distribution giving mass p

at time 0 and q = 1 − p at time 1, where 0 < p < 1. Let S, T be the lifetimes of the

systems with signature s and t, respectively. Then also S and T have only two possible

values, 0 and 1.

For this simple F , we get directly from the definition of mean residual life (5) that

S ≤mrl T if and only if P (S = 1) ≤ P (T = 1). (12)

It also follows from (3) that, for n-systems with the component lifetime distribution F

above,

P (S = 1) =

n
∑

j=1

aj

(

n

j

)

qjpn−j = pn
n−1
∑

j=1

aj

(

n

j

)

(q/p)j + qn.

A corresponding result holds for P (T = 1) if the aj are replaced by bj . Hence by (12)

we have S ≤mrl T if and only if

n−1
∑

j=1

aj

(

n

j

)

(q/p)j ≤

n−1
∑

j=1

bj

(

n

j

)

(q/p)j . (13)
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Now let n = 3 and let the survival signatures be given as in (11). Calculating each

side of (13), with c = q/p (> 0), we see that S ≤mrl T if and only if

(1/2) · 3 · c+ (3/4) · 3 · c2 ≤ (5/8) · 3 · c+ (5/8) · 3 · c2,

which after simplification is equivalent to c2 ≤ c or c ≤ 1. Hence S ≤mrl T does not

hold if c > 1, i.e., if p < 1/2. (In this case, we have that T ≤mrl S.)

3. The main result

Theorem 1 defines, for given n, a class Fn of distributions F such that (9) holds

for all n-systems whenever F is in Fn. The theorem is the main result of the present

paper and will be proven through a series of lemmas. Although the case n = 2 already

has been settled in Section 2, where it is concluded that in this case, (9) holds for

any distribution F , we shall find it convenient to include n = 2 in the definition and

treatment of the classes Fn.

Theorem 1. For n ≥ 2, let

Fn =

{

F :

(

n

i

)∫

∞

0

F̄ (u)iF (u)n−idu is decreasing in i = 1, 2, . . . , n

}

. (14)

Then for any two n-systems with signatures s and t satisfying s ≤mrl t, and with

i.i.d. component lifetimes with common distribution F ∈ Fn, the corresponding system

lifetimes are ordered as S ≤mrl T .

The classes Fn are strictly nested, Fn ⊂ Fn−1 for all n ≥ 3, and have a non-empty

intersection.

Lemma 1. For any distribution F and n ≥ 2, we have that F ∈ Fn if and only if

(

n

i

)∫

∞

t

F̄ (u)iF (u)n−idu is decreasing in i = 1, . . . , n for all t ≥ 0. (15)

Proof: Define gi(t) as the difference between the expression (15) for i + 1 and i, i.e.,

let

gi(t) =

(

n

i+ 1

)∫

∞

t

F̄ (u)i+1F (u)n−i−1du−

(

n

i

)∫

∞

t

F̄ (u)iF (u)n−idu.
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Thus (15) is equivalent to gi(t) ≤ 0 for i = 1, . . . , n − 1 and all t ≥ 0. It is

straightforward to obtain

gi(t) =
n!

i!(n− i− 1)!

{∫

∞

t

F̄ (u)iF (u)n−i−1

[

F̄ (u)

i+ 1
−

F (u)

n− i

]

du

}

. (16)

Observe first that limt→∞ gi(t) = 0 for all i. This follows by considering (15) and

showing that

lim
t→∞

∫

∞

t

F̄ (u)iF (u)n−idu = 0 for all i = 1, 2, . . . , n.

This is a consequence of the fact that
∫

∞

t F̄ (u)iF (u)n−idu ≤
∫

∞

t F̄ (u)du for i =

1, . . . , n, where the right hand side tends to 0 because F has a finite expectation.

Now consider the derivative g′i(t) for t ≥ 0. This is found by putting t = u in the

integrand of (16) and changing the sign. Using that F̄ = 1 − F in the expression

in square brackets in (16) it follows that g′i(t) > 0 when F (t) > (n − i)/(n + 1) and

g′i(t) < 0 when F (t) < (n − i)/(n + 1). Since limt→∞ gi(t) = 0, it is apparent that

gi(t) ≤ 0 for all t ≥ 0 if and only if gi(0) ≤ 0. But this is equivalent to the statement

of the lemma, and thus the proof is complete. �

Lemma 2. For any distribution F and for n ≥ 2, we have that
∫

∞

t F̄ (u)iF (u)n−idu
∫

∞

s F̄ (u)iF (u)n−idu
(17)

is decreasing in i = 1, 2 . . . , n for any fixed s and t such that 0 ≤ s < t.

Proof: Considering the difference between expressions for (17) for i + 1 and i we find

that the difference is negative if and only if

(∫

∞

t

F̄ (u)i+1F (u)n−i−1du

)(∫

∞

s

F̄ (u)iF (u)n−idu

)

≤

(∫

∞

t

F̄ (u)iF (u)n−idu

)(∫

∞

s

F̄ (u)i+1F (u)n−i−1du

)

.

Utilizing the fact that
∫

∞

s =
∫ t

s +
∫

∞

t , and cancelling terms, we see that the above is

equivalent to

(∫

∞

t

F̄ (u)i+1F (u)n−i−1du

)(∫ t

s

F̄ (u)iF (u)n−idu

)

≤

(∫

∞

t

F̄ (u)iF (u)n−idu

)(∫ t

s

F̄ (u)i+1F (u)n−i−1du

)

. (18)
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Fix t > 0 and define hi(s) for 0 ≤ s ≤ t to be the difference obtained by subtracting

the right hand side from the left hand side of (18). We need to show that hi(s) ≤ 0

for 0 ≤ s ≤ t. Clearly hi(t) = 0. Further, by differentiation of hi(s) with respect to s,

we get that for all 0 ≤ s ≤ t,

h′

i(s) = F̄ (s)iF (s)n−i−1

∫

∞

t

F̄ (u)iF (u)n−i−1[F (u)F̄ (s)− F̄ (u)F (s)]du. (19)

The expression in square brackets in (19) equals F (u)−F (s), which is nonnegative for

all u ≥ t since s < t. But then h′

i(s) ≥ 0 for 0 ≤ s ≤ t. Since hi(t) = 0, this implies

that hi(s) ≤ 0 for all 0 ≤ s ≤ t, and the lemma follows. �

In the proof of Theorem 1, we will make use of a result given in Caperaa [6]. For

distributions F and G on R, Caperaa [6] defines the order F >(+) G (F is uniformly

stochastically larger than G) if and only if (1 − G)/(1 − F ) is decreasing. Caperaa

shows the following result as a corollary of his main result.

Lemma 3. (Caperaa, 1988.) Let F and G be two distributions on R. Then F >(+) G

is a necessary and sufficient condition for

∫

∞

−∞
α(x)dF (x)

∫

∞

−∞
β(x)dF (x)

≥

∫

∞

−∞
α(x)dG(x)

∫

∞

−∞
β(x)dG(x)

(20)

to hold for all functions α and β, integrable with respect to F and G, such that β is

nonnegative, α/β and β are nondecreasing.

For distributions on [0,∞), the ordering (+) is the same as the hazard-rate ordering

hr (see Definition 1). Note that Joag-dev et al. [13] cite Caperaa’s theorem and sketch

a proof. We will use the following version of Lemma 3 which applies to discrete positive

distributions.

Lemma 4. Let n ≥ 2 be given and let K and L be two probability distributions on

{1, 2, . . . , n} satisfying K ≤hr L. Let k(i), l(i) denote the point mass functions of the

distributions K and L, respectively. Further, let α(i), β(i) for i = 1, . . . , n be numbers

such that β(i) is positive, and α(i)/β(i) and β(i) are increasing in i = 1, 2, . . . , n. Then

∑n
i=1 α(i) l(i)

∑n
i=1 β(i) l(i)

≥

∑n
i=1 α(i) k(i)

∑n
i=1 β(i) k(i)

. (21)
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Now, let a be the survival signature for a mixed n-system. Let ãi = ai/
∑n

i=1 ai for

i = 1, . . . , n. Thus we have normalized the ai so that the ãi sum to 1. Now define the

cumulative distribution function K on {0, 1, . . . , n} by K(0) = 0 and

K(i) = ãn + ãn−1 + . . .+ ãn−i+1; i = 1, . . . , n, (22)

so that K(n) = 1. Let the survival function corresponding to K be K̄ = 1−K. Thus

K̄(n) = 0 and

K̄(i) = ã1 + ã2 + . . .+ ãn−i; i = 0, 1, . . . , n− 1. (23)

For another survival signature b, let b̃i = bi/
∑n

i=1 bi for i = 1, . . . , n, and define the

cumulative distribution function L and survival function L̄ similarly, with b̃i replacing

ãi for i = 1, . . . , n in (22) and (23). Thus

L(i) = b̃n + b̃n−1 + . . .+ b̃n−i+1; i = 1, . . . , n, (24)

We now prove the following lemma:

Lemma 5. Suppose that a,b are the respective survival signatures of systems with

signatures s, t, and let the distributions K and L be defined by (22) and (24). Then

s ≤mrl t if and only if K ≤hr L.

Proof: As found in Shaked and Shanthikumar [27, Chapter 1.B], K ≤hr L if and only

if L̄(i)/K̄(i) is increasing in i, i.e., if and only if

b̃1 + b̃2 + . . .+ b̃n
ã1 + ã2 + . . .+ ãn

≤
b̃1 + b̃2 + . . .+ b̃n−1

ã1 + ã2 + . . .+ ãn−1
≤ . . . ≤

b̃1
ã1

.

The latter inequalities will of course hold if the ãi are replaced by ai and the b̃i are

replaced by bi. Then this is exactly the definition of s ≤mrl t as given in Definition 3.

This proves the lemma. �

Proof of Theorem 1: Let s and t be signatures of n-systems satisfying s ≤mrl t. We

will show that (10) holds when it is assumed that F ∈ Fn (see (14)). Given the survival

signatures a and b corresponding to s and t, let the cumulative distribution functions

K and L be defined as before Lemma 5. The corresponding point masses are

k(i) = an−i+1, l(i) = bn−i+1; i = 1, . . . , n.
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For 0 ≤ s < t and i = 1, . . . , n, let

α(i) =

(

n

n− i+ 1

)∫

∞

t

F̄ (u)n−i+1F (u)i−1du, (25)

β(i) =

(

n

n− i+ 1

)∫

∞

s

F̄ (u)n−i+1F (u)i−1du. (26)

Then by Lemma 1 we have that β(i) is increasing in i, and by Lemma 2 we have

that α(i)/β(i) is increasing in i. (It should here be noted that we have reversed the

order of the terms in (15) and (17) in defining α(·) and β(·).) Since K ≤hr L by

Lemma 5, it follows that the conditions of Lemma 4 are satisfied. Substitution in (21)

and reversing the order of the terms in the sums gives
∑n

i=1 bi
(

n
i

) ∫

∞

t
F̄ (u)iF (u)n−idu

∑n
i=1 bi

(

n
i

) ∫

∞

s
F̄ (u)iF (u)n−idu

≥

∑n
i=1 ai

(

n
i

) ∫

∞

t
F̄ (u)iF (u)n−idu

∑n
i=1 ai

(

n
i

) ∫

∞

s
F̄ (u)iF (u)n−idu

.

This implies (10) since s and t were arbitrarily chosen, subject only to the restriction

0 ≤ s < t. The first part of Theorem 1 thus follows.

The inclusion statement at the end of Theorem 1 is proven as follows. Let

cn,i =

(

n

i

)∫

∞

0

F̄ (u)iF (u)n−idu (27)

for i = 1, . . . , n. Then suppose F ∈ Fn. By using the identity 1 = F̄ (u) + F (u) and

multiplying the integrand of cn−1,i by this sum, it is seen that for i = 1, 2, . . . , n− 1,

cn−1,i =

(

n− 1

i

)∫

∞

0

F̄ (u)i+1F (u)n−i−1du +

(

n− 1

i

)∫

∞

0

F̄ (u)iF (u)n−idu

=
i+ 1

n
cn,i+1 +

n− i

n
cn,i. (28)

In order to prove that F ∈ Fn−1 we need to show that cn−1,i+1 − cn−1,i ≤ 0 for

i = 1, . . . , n− 2. From (28), we get

cn−1,i+1 − cn−1,i =
i+ 2

n
cn,i+2 +

n− i− 1

n
cn,i+1

−
i+ 1

n
cn,i+1 −

n− i

n
cn,i

=
i+ 2

n
(cn,i+2 − cn,i+1) +

n− i

n
(cn,i+1 − cn,i)

which is ≤ 0 by the assumption that F ∈ Fn. Hence F ∈ Fn−1 as well, so Fn ⊂ Fn−1.

To see that these inclusions are strict, we consider Example 1. For the discrete

distribution F of that example, we have by (27) that cn,i =
(

n
i

)

qipn−i. From this,

cn,i+1 − cn,i =

(

n

i

)

(i+ 1)−1qipn−i−1[n− i− (n+ 1)p], (29)
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which implies that cn,i+1 − cn,i ≤ 0 for all i = 1, . . . , n− 1, and hence that F ∈ Fn, if

and only if p ≥ (n− 1)/(n+ 1). Hence, if p is chosen so that

(n− 2)/n ≤ p < (n− 1)/(n+ 1), (30)

we have F ∈ Fn−1 while F 6∈ Fn. Thus Fn ⊂ Fn−1.

In order to prove that the intersection of the classes Fn is non-empty, we show that

the standard exponential distribution, for which F (t) = 1− e−t, is contained in Fn for

all n. Now, for i = 1, . . . , n,

(

n

i

)∫

∞

0

F̄ (u)iF (u)n−idu =

(

n

i

)∫

∞

0

e−iu(1− e−u)n−idu =
1

i
,

where we substituted z = e−u in the second integral and used the well-known formula

for the beta integral. The result is clearly decreasing in i, so F ∈ Fn by (14). The proof

of Theorem 1 is hence complete. (Note that we show more generally, in Theorem 3,

that F ∈ Fn for all n whenever F has a decreasing density). �

4. Absolutely continuous F

Let C denote the set of absolutely continuous F as defined in Section 2. The following

proposition is a corollary to Proposition 1 for the case when the component lifetime

distribution F is in C.

Proposition 2. Let s and t be the signatures of two mixed n-systems, for which s ≤mrl

t. Suppose the systems have components with i.i.d. lifetimes with common absolutely

continuous distribution F ∈ C and density f . Let S and T be the respective lifetimes

of the systems. Then S ≤mrl T if and only if

∑n
i=1 bi

(

n
i

) ∫ u

0
zi(1−z)n−i

f(F̄−1(z))
dz

∑n
i=1 ai

(

n
i

) ∫ u

0
zi(1−z)n−i

f(F̄−1(z))
dz

is decreasing in u for 0 < u < 1, (31)

where a and b are the respective survival signatures corresponding to s and t.

Proof: The result follows by substituting z = F̄ (u) in the integral in (10), which gives

∫

∞

t

F̄ (u)iF (u)n−idu =

∫ F̄ (t)

0

zi(1− z)n−i

f(F̄−1(z))
dz.

�
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We now state the version of Theorem 1 that is valid for the absolutely continuous

case.

Theorem 2. For n ≥ 2, let

F̃n =

{

F ∈ C :

(

n

i

)∫ 1

0

zi(1− z)n−i

f(F̄−1(z))
dz is decreasing in i = 1, 2, . . . , n

}

. (32)

Then for any two n-systems with signatures s and t satisfying s ≤mrl t, and with

i.i.d. component lifetimes with common distribution F ∈ F̃n, the corresponding system

lifetimes satisfy S ≤mrl T .

The classes F̃n are strictly nested, F̃n ⊂ F̃n−1 for all n ≥ 3, and have a non-empty

intersection.

Proof: The conclusion of the mean residual life ordering of S and T follows by

substituting z = F̄ (u) in (14), as in the proof of Proposition 2.

The proof of inclusions F̃n ⊆ F̃n−1 is identical to the one of the the corresponding

property in Theorem 1, now restricting to absolutely continuous F .

To prove that the inclusions are also strict in the absolutely continuous case, we

consider the corresponding part of the proof of Theorem 1. Thus, let F be the discrete

distribution that assigns probability p to t = 0 and q = 1−p to t = 1, where 0 < p < 1.

Now for any ǫ > 0, we can find an absolutely continuous distribution Fǫ ∈ C, with

support in [0, 1], such that

lim
ǫ→0

Fǫ(t) = F (t) for all 0 < t < 1.

One possible choice is to let

Fǫ(t) =







(p/ǫ)t for 0 ≤ t ≤ ǫ

max {p+ ǫ(t− ǫ), 1 + (t− 1)/ǫ} for ǫ ≤ t ≤ 1

Following (27), define

cǫn,i =

(

n

i

)∫ 1

0

F̄ǫ(u)
iFǫ(u)

n−idu.

It follows by the bounded convergence theorem that

lim
ǫ→0

cǫn,i = cn,i =

(

n

i

)

qipn−i
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for each fixed n and i. Hence by fixing n and choosing a p with strict inequality to the

left in (30), we see from (29) that by choosing ǫ > 0 small enough we have

cǫn−1,i+1 − cǫn−1,i < 0 for i = 1, . . . , n− 2,

while

cǫn,2 − cǫn,1 > 0.

For such an ǫ, Fǫ ∈ F̃n−1, but Fǫ 6∈ F̃n, so Fn ⊂ Fn−1.

That the intersection of the F̃n is non-empty, follows from the proof of Theorem 1,

where it was shown that the standard exponential distribution is contained in all

the Fn, or from the more general result Theorem 3 to be given below. This completes

the proof of Theorem 2. �

The proof of Theorem 3 below uses the following lemma:

Lemma 6. Let g(x) be a function defined on [0, 1] such that, for some 0 < c < 1,

g(x) ≤ 0 for x ∈ [0, c), g(x) ≥ 0 for x ∈ [c, 1] and such that
∫ 1

0 g(x)dx = 0. If h(x) is

a nonnegative decreasing function defined on (0, 1], then
∫ 1

0 g(x)h(x)dx ≤ 0.

Proof: Note first that since g(x) ≤ 0 on [0, c), and h(x) is decreasing, we have

g(x)h(x) ≤ g(x)h(c) when x ∈ (0, c). Further, since g(x) ≥ 0 on [c, 1], and h(x) is

decreasing, we have g(x)h(x) ≤ g(x)h(c) also when x ∈ [c, 1]. But then
∫ 1

0

g(x)h(x)dx ≤ h(c)

∫ 1

0

g(x) = 0.

�

Theorem 3. If F ∈ C has density f(t) which is decreasing in t, a property that is

implied by the condition that F is DFR (decreasing failure rate), then F ∈ F̃n for all

n ≥ 2.

Proof: Let F ∈ C have a decreasing density f . For given n, let di be the difference

between the integral expression in (32) for i + 1 and i. Then a straightforward

calculation gives

di =
n!

i!(n− i − 1)!

∫ 1

0

zi(1− z)n−i−1

f(F̄−1(z))
·
(n+ 1)z − (i+ 1)

(i+ 1)(n− i)
dz

=
n!

i!(n− i − 1)!

∫ 1

0

vi(z)w(z)dz (33)
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for i = 1, 2, . . . , n− 1, where

vi(z) = zi(1− z)n−i−1[(n+ 1)z − (i + 1)]/[(i+ 1)(n− i)]; w(z) = 1/f(F̄−1(z)).

Using the beta integral we get

(

n

i

)∫ 1

0

zi(1− z)n−idz = 1/(n+ 1)

which does not depend on i. Hence it is seen from (32) that di, by its definition as

a difference, would equal 0 if w(z) ≡ 1 in (33). Consequently,
∫ 1

0 vi(z)dz = 0, and it

is furthermore seen that vi(z) < 0 if and only if z < (i + 1)/(n + 1). Since f(t) is

decreasing in t, we have that f(F̄−1(z)) is increasing in z. Thus w(z) is a decreasing

function of z. Lemma 6 with g = vi and h = w hence implies that di is non-positive

for all i. This proves that F ∈ F̃n by (32).

Although it is well known that a DFR distribution has a decreasing density, we

give the following simple argument for the sake of completeness. Let F be DFR with

density f(t) and hazard rate λ(t). Then f(t) = λ(t)F̄ (t), which is decreasing in t since

both λ and F̄ are decreasing. This completes the proof of Theorem 3. �

5. Connections to results on order statistics

The representation (3) for the survival function of a system lifetime may alterna-

tively be given in terms of order statistics as follows. Let X1, . . . , Xn be an i.i.d.

sample from the component lifetime distribution F and let X1:n, X2:n, . . . , Xn:n be the

corresponding order statistics. Note that in (3),
(

n
i

)

F̄ (t)iF (t)n−i can be interpreted as

the probability that exactly i components are working at time t. If this is expressed

by the order statistics of the component lifetimes, we have the identity

(

n

i

)

F̄ (t)iF (t)n−i = P (X(n−i):n ≤ t < X(n−i+1):n) (34)

for any fixed n and i = 1, . . . , n. From this, we obtain a characterization of the class

Fn in terms of order statistics as given in the following proposition. Let

Di,n = Xi:n −X(i−1):n for i = 1, . . . , n

define the sample spacings between the order statistics, with X0:n ≡ 0.
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Proposition 3. Let n ≥ 2 and let Fn be the class of distributions defined in Theo-

rem 1. Then F ∈ Fn if and only if E[Di,n] is increasing in i = 1, 2, . . . , n.

Proof: Using (34) we have

∫

∞

0

(

n

i

)

F̄ (u)iF (u)n−idu =

∫

∞

0

P (X(n−i):n ≤ u < X(n−i+1):n)du (35)

=

∫

∞

0

P (X(n−i+1):n > u)du−

∫

∞

0

P (X(n−i):n > u)du

= E[X(n−i+1):n −X(n−i):n] = E[Dn−i+1,n].

It is interesting to note that David [8, p. 50] attributes this identity to a classic paper

by Francis Galton [10]. Now, by Theorem 1, F ∈ Fn if and only if the term on the left

hand side of (35) is decreasing in i. This is as claimed in the proposition. �

A careful examination of the arguments above shows that the proposition is also

valid for discrete distributions F . For example, if t is a value to which F assigns a

positive probability, then the event {exactly i components are functioning at time t}

means {X(n−i):n ≤ t < X(n−i+1):n} (cf. (34)). Expressed differently, this is the

event where exactly i components are “at risk” immediately after time t. If, on the

other hand, we restrict attention to absolutely continuous F , then it is clear that

Proposition 3 holds if Fn, as defined in (14), is replaced by F̃n, defined in (32).

There is an extensive literature on the properties of sample spacings and their usage,

particularly in goodness-of-fit testing and in reliability applications (see, for example,

Misra and van der Meulen [19] and Yao et al. [28] and references in these articles).

Barlow and Proschan [2] proved that if F is DFR, then the corresponding successive

normalized spacings (n − i + 1)Di,n are stochastically ordered. Kochar and Kirmani

[15] strengthened this result by proving the similar result for the hazard rate order.

Later, Misra and van der Meulen [19] showed that a corresponding result holds for the

non-normalized spacings {Di:n, i = 1, . . . , n}. The following result is a special case of

their Theorem 4.2:

Proposition 4. (Misra and van der Meulen, 2003.) Suppose that F is absolutely

continuous and DFR. Then for n ≥ 2,

Di,n ≤hr Di+1,n for i = 1, 2, . . . , n− 1. (36)
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Thus, under the condition of Proposition 4, the inequality E[Di,n] ≤ E[Di+1,n]

holds for i = 1, . . . , n − 1. By Proposition 3, this implies that any DFR distribution

F is in Fn for all n. This is of course in accordance with Theorem 2. Under a weaker

condition than that in Proposition 4, Theorem 2 also implies:

Proposition 5. Suppose that F is absolutely continuous with a decreasing density f .

Then for given n ≥ 2,

E[Di,n] ≤ E[Di+1,n] for i = 1, 2, . . . , n− 1.

6. Examples

Example 2. The power function distribution

This distribution has cumulative distribution function given by F (t) = (t/θ)α for

0 ≤ t ≤ θ, where α, θ > 0. In the following, we consider the case θ = 1 in illustrating

some aspects of the theoretical results obtained in preceding sections.

Let Fα(t) = tα for 0 ≤ t ≤ 1, where α > 0. The density of Fα is fα(t) = αtα−1

0 ≤ t ≤ 1 which is decreasing if and only if α ≤ 1. It follows that Fα ∈ Fn for all n if

α ≤ 1.

Since the property of decreasing density is only a sufficient condition for F ∈ F̃n, one

may want to check the condition in (32) directly. Note then that F̄−1(z) = (1− z)1/α,

so that f(F̄−1(z)) = α(1 − z)1−1/α. The integral in (32) thus becomes

yi = α−1

(

n

i

)∫ 1

0

zi(1− z)n−i−1+1/αdz = α−1

(

n

i

)

Γ(i + 1)Γ(n− i+ 1/α)

Γ(n+ 1 + 1/α)
, (37)

where we used the beta integral. Noting that Γ(i + 1) = i!, and using the identity

Γ(k + 1) = kΓ(k), we obtain

yi+1 − yi =
α− 1

α2
·

n!

(n− i)!
·
Γ(n− i− 1 + 1/α)

Γ(n+ 1 + 1/α)
.

This difference is non-positive if and only if α ≤ 1, and hence for each n we have

Fα ∈ F̃n if and only if α ≤ 1.

Recall now that F ∈ F̃n is only a sufficient condition for S ≤mrl T . Thus the case

α > 1 is still undecided. A computer study has, however, indicated that even for α > 1

very close to 1 there are s and t with s ≤mrl t for which S 6≤mrl T .
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For illustration, we use the necessary and sufficient condition for S ≤mrl T given

in Proposition 2. When adapted to the power function distribution, one finds that for

given n, s and t with s ≤mrl t, we have S ≤mrl T if and only if

∑n
i=1 bi

(

n
i

)

B(u; i+ 1, n− i+ 1/α)
∑n

i=1 ai
(

n
i

)

B(u; i+ 1, n− i+ 1/α)
(38)

is decreasing in u for 0 < u ≤ 1, where B(u; c, d) =
∫ u

0
zc−1(1 − z)d−1dz for c, d > 0 is

the incomplete beta function.

In Figure 1, the ratio in (38) is plotted as a function of u for two examples of s and

t with n = 3 where s ≤mrl t. . The curves for α ≤ 1 are, as guaranteed by Theorem 2,

seen to be monotonically decreasing. This is not the case, however, for the plotted

curves for α > 1. Thus, by Proposition 2, we do not have S ≤mrl T in the latter cases.

Example 3. The Weibull distribution

The Weibull distribution with scale parameter 1 and shape parameter α > 0 has

density function fα(t) = αtα−1e−tα , which is decreasing if and only if α ≤ 1. Hence

F ∈ F̃n for all n if α ≤ 1.

In a study of the case α > 1, we will use the representation of Fn given in

Proposition 3 in terms of expected sample spacings. If X1:n, . . . , Xn:n is an ordered

sample from Fα, it is well known that Xα
1:n, . . . , X

α
n:n is an ordered sample from the

standard exponential distribution. Thus, for i = 1, . . . , n we have,

E[Xα
i ]− E[Xα

i−1] =
1

n− i+ 1
. (39)

For a distribution to be contained in F̃n, Proposition 3 requires that E[Di,n] = E[Xi]−

E[Xi−1] is increasing in i. By (39), this holds for the Weibull case if α = 1, with strict

inequalities. Thus, for a fixed n, by continuity with respect to α of the left hand side

in (39), we conclude that the increasing property of the E[Di:n] will hold also for some

α > 1, sufficiently close to 1. Hence each set F̃n will contain Weibull-distributions

with shape parameter strictly larger than 1, and hence include densities which are not

everywhere decreasing.

To pursue a more formal study of the above phenomenon, we apply the formula for

expected values of order statistics of the Weibull distribution given by Lieblein [16].
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Figure 1: The figures show the function (38) when n = 3, survival signatures are a =

(0.03, 0.58, 1) and b = (0.22, 0.39, 1.00) (which satisfy the mrl -order), for component lifetime

distributions given by F (t) = tα for different values of α.

Using our notation, it is known that

E[Xi:n] = n

(

n− 1

i− 1

)

Γ(1 + 1/α)
i−1
∑

j=0

(−1)j−i+1

(

i− 1

j

)

1

(n− j)1+1/α
. (40)

For our purpose, we used (40) to calculate the differences ∆i,n = E[Di+1,n]−E[Di,n],
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obtaining

∆i,n = E[Xi+1:n]− 2E[Xi:n] + E[Xi−1:n]

=

(

n

i

)

Γ(1 + 1/α)

n− i+ 1

i
∑

j=0

(−1)j−i

(

i

j

)

1

(n− j)1+1/α
[(n− i)(n− i+ 1)]

+

(

n

i

)

Γ(1 + 1/α)

n− i+ 1

i
∑

j=0

(−1)j−i

(

i

j

)

1

(n− j)1+1/α
[2(i− j)(n− i+ 1)]

+

(

n

i

)

Γ(1 + 1/α)

n− i+ 1

i
∑

j=0

(−1)j−i

(

i

j

)

1

(n− j)1+1/α
[(i− j)(i − j − 1)]

=

(

n

i

)

Γ(1 + 1/α)

n− i+ 1

i
∑

j=0

(−1)j−i

(

i

j

)

n− j + 1

(n− j)1/α
. (41)

Clearly, Fα ∈ F̃n if and only if ∆i,n ≥ 0 for i = 1, . . . , n− 1. We have used expression

(41) to generate the Weibull part of Table 1, which shows, for some values of α > 1,

the values of n for which we have Fα ∈ F̃n.

Numerical experience with the formula (41) clearly indicates that ∆i,n increases

with i = 1, . . . , n − 1 for fixed α. We do not have, however, a formal proof of this

monotonicity. Assuming that this property holds, it would follow that Fα ∈ F̃n if and

only if

α ≤
log(n/(n− 1))

log((n+ 1)/n)

which is approximately 1 + 1/(n− 1) for large n.

We also did a limited computer study to find Weibull distributions Fα with α >

1 such that for some n and signatures s and t with s ≤mrl t, we have S 6≤mrl

T . Considering for simplicity the s and t of Example 1, for which n = 3 and

a = (1/2, 3/4, 1), b = (5/8, 5/8, 1), we found that S 6≤mrl T when the component

distributions are Weibull with α ≥ 3.71. Considering n = 4 by adding a zero at the

beginning of the vectors a and b, we got S 6≤mrl T for Fα with α ≥ 2.17. Adding new

zeros to a and b, to have n = 5 and n = 6, we obtained S 6≤mrl T for α ≥ 1.77 and

1.59, respectively.

Example 4. The gamma distribution

The gamma distribution with scale parameter 1 and shape parameter α > 0 has

density fα(t) = (Γ(α))−1tα−1e−t, which is decreasing if and only if α ≤ 1. Hence
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Weibull Gamma

α Fα ∈ F̃n if n ≤ Fα ∈ F̃n if n ≤

1.1 10 13

1.2 5 6

1.3 3 5

1.4 3 4

1.5 2 3

1.6 2 3

1.7 2 2

1.8-2.6 − 2

≥ 2.7 − −

Table 1: Weibull and gamma distributions with shape parameter α > 1 contained in F̃n for

different values of α. “−” means that Fα 6∈ F̃n for all n ≥ 2.

Fα ∈ F̃n for all n if α ≤ 1. In the same way as for the Weibull distribution, it can

be shown by using Proposition 3 that the F̃n will include gamma distributions with

α > 1. While Nadarajah [20] presented expected values of order statistics for the

gamma distribution, because of the complexity of the formula, we decided to calculate

the expected values of order statistics from the gamma distribution by simulation

instead, using 100 000 iterations for each simulated value. The results are shown in

Table 1 and are much similar to what we obtained for the Weibull distribution.

Example 5. The relation to stochastically ordered signatures

In the counterexample in Example 1, as well as in the examples with S 6≤mrl T in

Examples 2 and 3, we considered signatures with s ≤mrl t and s 6≤hr t. By inspection,

is seen that, in all these cases, we had s 6≤st t. As noted in Section 2, the assumption

s ≤hr t would trivially imply S ≤mrl T . The question thus emerges whether the two

conditions s ≤st t and s ≤mrl t together would imply S ≤mrl T for all distributions

F .

First of all, no counterexample to such a claim can occur if F has support in two

points as in Example 1. This follows since (13) would hold for any values p if s ≤st t,

since then aj ≤ bj for all j. Thus to search for counterexamples, we need to consider

F with support in at least three points. The following is the result of a computer
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search. Let F give positive mass to the three time points {0, 50, 70}, with probabilities,

respectively, 0.35, 0.02, 0.63. Next, let n = 7 and let two mixed 7-systems have survival

signatures, respectively,

a = (0.03, 0.53, 0.57, 0.67, 0.69, 0.74, 1.00), (42)

b = (0.44, 0.61, 0.61, 0.86, 0.92, 0.99, 1.00). (43)

In order to check the presence of the various stochastic orders for these signatures we

use Definition 3. It is straightforward to show that s ≤mrl t and s ≤st t, but that

s 6≤hr t.

Let S and T , respectively, be the lifetimes of the two systems with the given F

above. In order to show that S 6≤mrl T , we use the necessary and sufficient condition

(10). This fraction, when calculated at t = 0 and t = 50, respectively, takes the values

1.2630 and 1.2621, and is not increasing. Thus we conclude that S 6≤mrl T .

The result might be even more convincing if we can find an absolutely continuous

F ∈ C which leads to the same conclusion. The above three point distribution F

suggests a bathtub shaped density for such a distribution. We therefore looked for

beta distributions with parameters α and β both being less than one. Our search

identified several possible candidates, two of which are described below.

In Figure 2, we plot the function (31) for the systems with survival signatures

(42)-(43), letting the component lifetime distribution F be beta distributions with

parameters, respectively, (0.58, 0.05) and (0.13, 0.07). The curves show a clear non-

monotonicity.

The conclusion to be drawn is that the conditions s ≤mrl t and s ≤st t are not

sufficient to ensure that S ≤mrl T holds for any component lifetime distribution F .

Thus the “problem” that S ≤mrl T does not hold for all F can not be resolved by

additionally requiring the stochastic ordering of the signatures.

7. Final remarks

Remark 1. The result of Lemma 5 was stated for the case of general distributions in

the final section of Joag-dev et al. [13]. As we did in our approach, they suggested

combining it with Caperaa’s result in order to have a tool for studies of the mean
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Figure 2: The figures show the function (31) when n = 7, survival signatures are a =

(0.03, 0.53, 0.57, 0.67, 0.69, 0.74, 1.00) and b = (0.44, 0.61, 0.61, 0.86, 0.92, 0.99, 1.00) (which

satisfy both the mrl -order and st-order), for two component lifetime distributions F , given

by beta distributions with different parameters.

residual life order.

Remark 2. In order to shed some light on the main idea of the proof of Theorem 1,

it is instructive to consider the proof of the implication s ≤hr t ⇒ S ≤hr T (see (8))

as given in Samaniego [25, Theorem 4.4]. While we use the representation (3) for the

survival function of a system lifetime T , the latter proof uses the representation (2),

which is given in terms of the signatures si themselves. The proof then considers s

and t with s ≤hr t and, in our notation, uses Lemma 4 with k(i) = si and l(i) =

ti. The corresponding cumulative distribution functions K(i) and L(i) will hence,

by assumption, satisfy K ≤hr L. Further, the proof of Samaniego [25] uses α(i) =

P (Xi:n > t), β(i) = P (Xi:n > s), with s < t. These are shown to have the desired

monotonicity properties using known results on order statistics. The implication (8)

then follows from Lemma 4.

The main difference in the proof of Theorem 1 of the present paper is that our proof

is based on cumulative signatures instead of the signatures themselves. The key of

our approach is the fact (established in Lemma 5) that s ≤mrl t implies K ≤hr L,

which allows the use of Lemma 4. Finally we note that the proof of the present paper
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involves more complex expressions for α(i) and β(i) than the ones displayed above for

the proof in Samaniego [25]. In terms of order statistics it is seen, following the proof

of Proposition 3, that α(i) in (25) may be written as

α(i) =

∫

∞

t

P (X(i−1):n ≤ u < Xi:n)du =

∫

∞

t

[

P (Xi:n > u)− P (X(i−1):n > u)
]

du.

while the expression for β(i) is similar with t replaced by s. Both proofs use, on the

other hand, the result of Lemma 4 to obtain the final conclusion.

Remark 3. Lemma 3, due to Caperaa, is formulated as a necessary and sufficient

condition for the given order between F and G. In Lemma 4, this would correspond to

having K ≤hr L if and only if (20) holds for all α(i), β(i) satisfying the monotonicity

requirements. Now, in our application, K ≤hr L if and only if s ≤mrl t by Lemma 5.

This might suggest that if (10) holds for all F ∈ Fn, then s ≤mrl t. This would indeed

be the case if all possible functions α(i) and β(i) with β(i) increasing and α(i)/β(i)

increasing can be represented as in (25)-(26) for some F, s, t. This is presumably not

the case, but since one may, by varying F , s and t, obtain a fairly rich class of functions

α(i), β(i), we can state the following result as a conjecture:

Let there be given two n-systems, with signatures s and t, i.i.d. component lifetimes

with common distribution F , and system lifetimes denoted S and T , respectively. If

S ≤mrl T whenever F ∈ Fn, then s ≤mrl t. Equivalently, if s 6≤mrl t, then there is an

F ∈ Fn such that S 6≤mrl T .

Remark 4. The comparison of systems considered in the paper has been restricted

to cases where two systems with signatures s and t have the same size. Now suppose

we are interested in comparing two systems that are not of the same size. Definition 3

can obviously not be used directly to determine ordering properties of signatures of

different sizes. The approach taken by Samaniego [25, Page 32] is to ‘convert’ the

smaller of two systems into an equivalent system of the same size as the larger one,

thus allowing the use of comparison results for systems of the same size. Equivalent

systems here means systems that have the same system lifetime distribution, for any

(common) component distribution F . Samaniego [25, Theorem 3.2] gives an explicit

formula for the signature of an (n+1)-system which is equivalent to a given n-system.

This formula may be applied several times in succession depending on the difference
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in size of the two systems. Lindqvist et al. [17] study properties of equivalent systems

and show, in particular, how to construct a system equivalent to a given system of a

different size.

Remark 5. Coolen and Coolen-Maturi [7] generalized formula (3) to the case where

there are K > 1 types of components. Let there be nk components of type k,

k = 1, 2, . . . ,K, with
∑K

k=1 nk = n. Assuming that all component lifetimes are

independent, where the lifetimes of components of type k have distribution Fk, they

obtained

P (T > t) =

n1
∑

j1=0

· · ·

nK
∑

jK=0

a(j1, . . . , jK)

K
∏

k=1

(

nk

jk

)

F̄k(t)
jkFk(t)

nk−jk . (44)

Here a(j1, . . . , jK) is the survival signature, which is the probability that the sys-

tem functions when jk of the nk components of type k function, while the product
∏K

k=1

(

nk

jk

)

F̄k(t)
jkFk(t)

nk−jk is the probability that exactly jk out of nk components of

type k function at time t, for k = 1, . . . ,K.

The concept of survival signature has in the recent literature been used in various

applications. For example, Aslett et al. [1] presented an application to networks;

Huang et al. [12] used the survival signature in an analysis of phased mission systems,

while Eryilmaz et al. [9] studied joint reliability importance measures for system

components. Samaniego and Navarro [26] investigated methods for comparison of

coherent systems with heterogeneous components. They gave in particular a sufficient

condition for stochastic ordering of the lifetimes of two such systems which generalizes

(7). Specifically, it is seen from (44) that, if two systems have the same component

types and corresponding component lifetime distributions, as well as the same number

of components of each type, then their lifetimes are stochastically ordered if the survival

signatures are ordered accordingly with respect to the componentwise ordering of

vectors. We are, however, not aware of similar generalizations of (8) and (9) that

would give sufficient conditions for the hazard rate and mean residual life ordering of

systems with heterogeneous components. Such conditions might possibly be found in

terms of suitable multivariate orders as considered, e.g., by Shaked and Shanthikumar

[27, Chapter 6].

Remark 6. We have throughout the paper considered the situation where the com-
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ponent lifetimes X1, X2, . . . , Xn are i.i.d. As is clear from the literature on sys-

tem signatures, many results for the i.i.d. case can be extended to the case where

X1, X2, . . . , Xn are exchangeable. For example, Navarro et al. [23] proved that the

implication (8) for the hazard rate order holds for exchangeable component lifetimes

X1, X2, . . . , Xn provided X1:n ≤hr X2:n ≤hr · · · ≤hr Xn:n. Navarro and Rubio [22]

showed that corresponding reverse implications hold for the st, hr and lr orders. More

precisely, they showed that the ordering of two system lifetimes for all exchangeable

component distributions, with similarly ordered order statistics, implies the ordering

of the respective signatures.

For the mean residual life order, it was proved in Navarro et al. [23] that for two

systems with signatures s and t satisfying s ≤hr t, and with exchangeable component

life times satisfying X1:n ≤mrl X2:n ≤mrl · · · ≤mrl Xn:n, the corresponding system

lifetimes S and T satisfy S ≤mrl T . Recall from the discussion in Section 2 that in the

i.i.d. case, s ≤hr t implies S ≤hr T and hence trivially implies S ≤mrl T .
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