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A B S T R A C T

In oil spill models, vertical mixing due to turbulence is commonly modelled by random walk. If the eddy dif-
fusivity varies with depth, failing to take the derivative of the diffusivity into account in the random walk
scheme will lead to incorrect results. Depending on the diffusivity profile, the result may be either over- or
underprediction of the amount of surfaced oil. The importance of using consistent random walk schemes has
been known for decades in, e.g., the plankton modelling community. However, it appears not to be common
knowledge in the oil spill community, with inconsistent random walk schemes appearing even in recent pub-
lications. We demonstrate and quantify the error due to inconsistent random walk, using a simplified oil spill
model, and two different diffusivity profiles. In the two cases considered, a commonly used inconsistent scheme
predicts respectively 54% and 202% the amount of surface oil, compared to a consistent scheme.

1. Introduction

Oil spill modelling is commonly used during response operations
and contingency planning. In both cases, the aim is to predict the
destination of the oil, the amount at the surface, viable response op-
tions, etc. Modelling of the vertical distribution and surfacing of oil is a
key aspect: Not only is the amount of oil at the surface in itself an
important parameter that affects transport, stranding and response, but
also the vertical distribution of submerged oil is important as this de-
termines horizontal transport, due to current shear (Elliott, 1986).

Oil spill models commonly use a Lagrangian formulation, where the
oil is represented by numerical particles (see, e.g., Reed et al., 2000;
French-McCay, 2004; Zelenke et al., 2012; De Dominicis et al., 2013;
Röhrs et al., 2018). These particles are transported with wind, waves,
and currents, and rise (or sink) due to buoyancy. Additionally, the
particles are subject to a random walk process to model turbulent dif-
fusion. The purpose of adding turbulent diffusion is to compensate for
unresolved eddies in the current data; if included, these eddies would
cause additional mixing. Horizontal and vertical diffusivity are com-
monly treated separately, due to the large difference in the scales in-
volved. In this paper, we focus on the vertical direction, but the nu-
merical scheme we discuss is equally applicable in the horizontal.

In the vertical direction, diffusivity can change by orders of mag-
nitude across just a few meters. In wind-driven ocean surface boundary
layers, vertical eddy diffusivity is largest in the interior of the mixing

layer. Approaching the surface, the vertical turbulent diffusion is lim-
ited because the surface confines the size of turbulent eddies, and
mixing efficiency is related to eddy size (Mellor and Yamada, 1982).
This is commonly referred to as the law-of-the-wall, and for a flat in-
terface the eddy diffusivity goes to zero at the surface. In the presence
of surface waves, the law-of-the-wall does not apply exactly, however
turbulent diffusion remains strongest at some depth away from the
boundary (Craig and Banner, 1994).

Stable density gradients can also cause large changes in the eddy
diffusivity. A strong pycnocline can act as a barrier, due to the energy
required to lift the dense underlying water. Hence, the law-of-the-wall
may hold approximately also at the base of the mixed layer, causing a
large drop in eddy diffusivity over a distance of just a few meters or less
(Gräwe et al., 2012).

An important principle in the modelling of diffusion is that a passive
tracer which is initially well mixed should remain well mixed, regard-
less of the diffusivity profile (Lynch et al., 2014; Rodean, 1996;
Thygesen and Ådlandsvik, 2007). This is known as the well-mixed
condition (Thomson, 1987). The use of a consistent random walk
scheme satisfying the well-mixed condition is essential. In the vertical
direction, where persistent diffusivity gradients are present, an incon-
sistent random walk scheme can give large systematic errors. In the
context of plankton modelling, Visser (1997) gives a particularly clear
presentation of this issue. In the context of oil spill modelling, con-
sistent random walk schemes have not received much attention in the
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literature. North et al. (2011) cite Visser (1997) for their vertical
random walk scheme, but do not go into detail. Recent papers have
pointed out the importance of using a consistent scheme, but do not
quantify the error from using an inconsistent one (Boufadel et al., 2018;
Röhrs et al., 2018).

In this paper, we demonstrate and quantify the errors that a com-
monly used inconsistent vertical random walk scheme can produce,
compared to a consistent scheme. We describe the relevant theory of
the random walk, and introduce a simple, one-dimensional oil spill
model to investigate the effect of the random walk schemes. We si-
mulate two example cases demonstrating that the choice of random
walk scheme can have significant impact on the results.

2. Theory

As our starting point, we consider a one-dimensional system, where
oil droplets submerged in the water column will rise due to buoyancy,
and be randomly mixed due to eddy diffusivity. The oil droplets may
reach the surface and form a slick, and surface oil may be re-submerged
due to breaking waves. We assume that the concentration of oil droplets
in the water column can be described by the advection-diffusion-reac-
tion equation, with properly formulated boundary conditions and
source terms.

In oil spill modelling, the standard approach is to model the ad-
vection-diffusion equation by a particle method, where numerical
particles rise due to buoyancy, and diffusion is modelled as a random
walk. This amounts to solving a stochastic differential equation (SDE),
with a drift term representing buoyancy, and a noise term representing
diffusion. Two different random walk schemes, corresponding to two
different SDEs, are commonly seen in the literature. The first SDE is
given by

= +z w t K z W td d 2 ( ) d ( ). (1)

Following Visser (1997), we refer to this as the naïve random walk.
The second SDE, which we call the corrected random walk, is given by

= + +z w K z t K z W td ( ( ))d 2 ( ) d ( ). (2)

In both cases, W(t) is a standard Wiener process (Kloeden and
Platen, 1992, p. 40), K(z) is the diffusivity as a function of depth, K′(z)
is its derivative with respect to z, and w is the rise speed due to buoy-
ancy, which we here assume to be constant for a given particle.

As has been pointed out by numerous authors (see, e.g., Hunter
et al., 1993; Visser, 1997; Lynch et al., 2014; van Sebille et al., 2018),
the naïve random walk is not equivalent to the advection-diffusion
equation, except in the special case of constant diffusivity (i.e., when
K′(z)= 0 for all z). While this has been known in the plankton mod-
elling community for two decades, it appears to be less well known in
the oil spill modelling community. The mathematical and numerical
details of random walk schemes have received limited attention in this
field, and among those studies that do provide details, the naïve
random walk scheme is still found in recent publications (see, e.g.,
Wang et al., 2008; Lončar et al., 2012; Li et al., 2013; Liu and Sheng,
2014; Chen et al., 2015; De Dominicis et al., 2016; Yang et al., 2017).

2.1. Pseudovelocity

It can be shown (Hunter et al., 1993; Visser, 1997) that the naïve
random walk described by Eq. (1) is equivalent to the Partial Differ-
ential Equation (PDE)

=C
t z

K z C
z

wC( ( ) ) ( ).
2

2 (3a)

= +
z

K z C
z z

wC
z

K
z

C( ) ( ) .
(3b)

while the corrected random walk (Eq. (2)) is equivalent to the advec-
tion-diffusion equation in one dimension, which is:

=C
t z

K z C
z z

wC( ) ( ).
(4)

where C(z,t) is the concentration. The link between Eqs. (1) and (3), and
between Eqs. (2) and (4), is that C, when normalised, may be inter-
preted as the probability distribution for an ensemble of particles,
whose trajectories are described by the SDE. Conversely, the con-
centration, C, may be found from the local density of particles (see, e.g.,
Lynch et al., 2014, Chapter 8).

Comparing Eqs. (3b) and (4), we see that the additional last term in
Eq. (3b) has the form of a drift term, −∂z(vC), with v =−K′(z), thus
representing a transport away from regions of high diffusivity. Conse-
quently, modelling a diffusion problem with the naïve random walk
(Eq. (1)) does not solve the advection-diffusion equation, and will not
obey the well-mixed condition (Hunter et al., 1993; Visser, 1997). The
extra drift term K′(z) dt in Eq. (2) is called the pseudovelocity term
(Lynch et al., 2014, p. 125), and compensates for the down-gradient
diffusion bias which is present in Eq. (1). For details of how to arrive at
Eq. (1) from Eq. (3), and at Eq. (2) from Eq. (4), see Appendix A.

2.2. Particle model

In order to investigate the effect of using the naïve random walk
scheme in oil spill modelling, we formulate a simplified one-dimen-
sional Lagrangian oil spill model. In this model, oil is represented by
numerical particles, also called Lagrangian elements. Each particle re-
presents a given mass of oil, and a single droplet size. Hence, a nu-
merical particle with a small droplet size will represent a larger number
of droplets (but the same mass) as a particle with a larger droplet size.
In order to accurately represent a realistic droplet size distribution, a
large number of particles is used.

The physics of the particle model is formulated as a series of steps.
When repeatedly applied to a collection of particles, these steps de-
scribe the time evolution of the system under turbulent mixing, buoyant
rise, surfacing and re-entrainment of oil droplets:

1 Randomly displace all submerged particles.
2 Any particles that were randomly displaced to a point above the
surface (or below the sea bed) are reflected to an equal distance
below the surface (or above the sea bed).

3 Move particles upwards due to buoyancy.
4 Any particles that were displaced to a point above the surface due to
buoyancy are removed from the water column, and considered
surfaced.

5 A surfaced particle may be resuspended into the water column with
some probability, in which case it is placed at some random depth,
and assigned a random droplet size.

As described in steps 1 and 3, we separate the random diffusion and
the rise due to buoyancy into two different steps, with different hand-
ling of the boundary (steps 2 and 4). This is equivalent to solving the
advection-diffusion equation with a reflecting boundary condition in
diffusion, and an absorbing boundary condition in the buoyancy step
(Nordam et al., 2019a).

The random displacement (step 1) is implemented by using the
Euler-Maruyama scheme (Maruyama, 1955; Kloeden and Platen, 1992,
page 305) to discretise the diffusion terms in Eqs. (1) and (2), yielding
the following expression for the naïve scheme

+z z K z W2 ( ) . (5)

and for the corrected scheme:

+ +z z K z t K z W( ) 2 ( ) . (6)
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In both cases, ΔW is a Gaussian random variable with expectation value
⟨ΔW⟩=0 and variance ⟨ΔW2⟩=Δt. For an overview of other relevant
SDE discretisation schemes in the context of marine particle transport,
the interested reader is referred to Gräwe (2011).

For both schemes, the rise due to buoyancy (step 3) is given by

z z w t. (7)

where depth is positive downwards, and the rise speed, w, is found from
Stokes' law at small Reynolds numbers, with a harmonic transition to a
constant drag coefficient at higher Reynolds numbers (Johansen, 2000;
Rye et al., 2008, p. 196):

= +w
w w
1 1 .

1 2

1

(8a)

= =w d g w K d g g
18

, | | sign( ).
w

r1
2

2 (8b)

where d is the particle diameter, g′ = g(ρo − ρw)/ρw is the reduced
gravity, Kr =1.054 is an empirical constant, and the other variables are
given in Table 1.

2.3. Entrainment

Oil droplets may be produced from a surface slick by breaking
waves, and entrained into the water column (Delvigne and Sweeney,
1988; Johansen et al., 2015; Zeinstra-Helfrich et al., 2015). In step 5 of
the model, we need to calculate the entrainment rate, the intrusion
depth and the resulting droplet size distribution. These are all found
from the sea state, and properties of the oil and seawater.

To predict the distribution of droplet sizes, we use the modified
Weber number scaling developed by Johansen et al. (2015), which
relates the ratio of characteristic droplet size to slick thickness, D/h, to
the Reynolds and Weber numbers:

= +D
h

A BWe 1 We
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.
(9)
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2
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The constants A, B′, and α in Eq. (9) are determined by fitting to
experimental data; the values found by Johansen et al. (2015) are
A =2.251, B′ = 0.027 and α =0.6. See Table 1 for definitions of the
other parameters appearing here.

While the characteristic droplet size, D, can be predicted from Eq.
(9), we additionally need to prescribe a droplet size distribution around
this value. We differentiate between the number distribution, giving the
number of droplets in a particular size interval, and the volume dis-
tribution, giving the volume of oil contained in a size interval.

Following Johansen et al. (2015), we take the characteristic droplet size
to signify the median droplet diameter of the number distribution,

=D d n
50, and use a log-normal distribution. As each numerical particle

represents the same volume of oil, we need the volume droplet size
distribution (for diameter d),

=v d d d µ µ( ) 1
2

exp ( ln ) 9 6
2

.2
2 4 2

2 (11)

where we use a logarithmic standard deviation of σ =0.4 (Johansen
et al., 2015). The logarithmic mean μ is given by =d ev µ

50 , and the re-
lationship between the volume and number median diameters is
(Johansen et al., 2015)

= +d d 3 .v n
50 50

2 (12)

In step 5 in our model, the probability of a surface particle being
entrained during an interval Δt is given by

=p 1 e .Q t (13)

where Q is the entrainment rate. For calculation of entrainment rate, we
use a model proposed by Li et al. (2017):

=Q
F

aWe Oh .
bw

b c
(14)

Here, Fbw is the white-capping fraction per unit time, and

= =
gH d µ

d
We , Oh .s w o

ow

o

o ow o (15)

Note that this definition of the Weber number is different from the one
in Eq. (10). The length scale, do, is the Rayleigh-Taylor instability
maximum droplet diameter, given by

=d
g

4
( )

.o
ow

w o

1/2

(16)

The values of the empirical parameters appearing in Eq. (14) are
a =4.604 ⋅ 10−10, b =1.805, and c =−1.023 (Li et al., 2017).

When submerged in step 5, a particle is assigned a droplet size
drawn from the distribution described by Eq. (11), and new depth,
drawn from a uniform distribution on the interval Hs(1.5± 0.35)
(Delvigne and Sweeney, 1988).

A complete Python implementation of the simplified, one-dimen-
sional oil spill model described above is available as open source1

(Nordam et al., 2019b).

3. Example cases

To illustrate and quantify the importance of using a consistent
random walk scheme in oil spill modelling, we consider a simplified,
but realistic case. We have assumed a set of oil parameters corre-
sponding to Troll crude, with an initial surface thickness of h0= 3mm,
and initially no submerged oil. We model the fraction of oil at the
surface, as a function of time, and the concentration of submerged oil,
as a function of depth and time. During the simulation, the remaining
surface thickness, h(t), is found by scaling h0 with the fraction of oil at
the surface. We assume a wind speed of 12m/s, and from this we cal-
culate the entrainment rate, intrusion depth, droplet size distribution
and vertical diffusivity. A summary of the scenario parameters is given
in Table 1.

3.1. Vertical diffusivity

We have used two different vertical eddy diffusivity profiles, which
are shown in Fig. 1. Both diffusivity profiles describe conditions during

Table 1
Parameters used in the simulations.

Acceleration of gravity g =9.81m/s2

Seawater density ρw =1025 kg/m3

Seawater kinematic viscosity νw =1.36 ⋅ 10−6m2/s
Oil density ρo =992 kg/m3

Oil dynamic viscosity μo =1.51 kg/m/s
Oil-water interfacial tension σow =13N/m
Initial oil film thickness h0= 3mm
Wind speed u =12m/s
Wave height (from wind speed) Hs =3.57m
Wave period (from wind speed) Tp =9.95 s
White-cap fraction (from wind speed) Fbw =0.0225 s−1

Number of particles Np =1,000,000
Timestep Δt =0.1 s
Simulation duration Tmax =6h

1 github.com/nordam/Random-walk-in-oil-spill-modelling.

T. Nordam, et al. Marine Pollution Bulletin 146 (2019) 631–638

633

https://github.com/nordam/Random-walk-in-oil-spill-modelling


forcing at a wind speed of 12m/s, however they represent different
degrees of approximation for the ocean surface layer dynamics.

Profile A assumes an exponentially decaying diffusivity, as applic-
able to the interior and lower base of the mixed layer. It has been used
in oil spill and plankton modelling (see, e.g., Skognes and Johansen,
2004; Tanaka and Franks, 2008; Li et al., 2013; Nordam et al., 2018),
and is given by the empirical relationship (Ichiye, 1967):

=K z H
T

( ) 0.028 e .A
s

p

kz
2

2

(17)

where z is depth (positive downwards), Hs and Tp are the significant
wave height and the peak wave period, and k is the wave number. Hs

and Tp can for example be derived from the wind speed using the
JONSWAP spectrum and associated empirical relations (Carter, 1982),
with the assumption of fully developed sea. Assuming deep water (kL ≫
1, where L is the water depth), the wave number can be found from the
peak period by the dispersion relation ω2= gk (see, e.g., Gill, 1982, p.
106). Note that the profile given by Eq. (17) does not reproduce the
well-known behaviour of decreasing diffusivity towards the boundary
at the surface. Still, the use of Eq. (17) may be a pragmatic choice in
operational oil spill modelling, given that the input parameters can be
derived from the wind speed.

Profile B is based on a prognostic model for turbulent kinetic energy
(TKE) and a turbulent length scale, using the GOTM turbulence model
(Umlauf et al., 2005), forced with a stress corresponding to wind speed
of 12m/s (Gill, 1982, p. 29). This profile is applicable in the near-
surface, as well as the interior and base of the mixed layer. In this case,
a k-ω turbulence closure with flux condition for TKE at the surface has
been used, wherein the TKE flux at the surface accounts for wave
breaking (Craig and Banner, 1994). This boundary condition is con-
sistent with the idea that surface oil is entrained by breaking waves. The
GOTM model setup and results are available online2.

An analytical function has been fitted to the model results for easy
vertical differentiation of the profile:

= + +K z z z( ) ( ) e .B
z z

0
( ( ))0 (18)

where β =0.029 m/s, γ =0.306 1/m, δ=0.62, z0= 0.5 m. Note that
if a discrete diffusivity profile is to be used, it must be interpolated and
differentiated in a consistent manner, to avoid numerical artifacts (see
Appendix A and, e.g., Ross and Sharples, 2004).

3.2. Results

In Fig. 2, we show the mass fraction of oil at the surface, as a
function of time, for the naïve and the corrected random walk schemes,
and for both diffusivity profiles (see Fig. 1). The results for Profile A are
shown as continuous lines, and for Profile B as dashed lines. Fig. 3
shows the concentration of oil as a function of depth, after 6 hours,
again for both schemes and both profiles. The concentration has been
calculated by particle count in 100 bins, from 0 to 50m depth. The
surfaced fraction, along with the average depth, d v

50, and d v
90 of the

submerged oil (all after 6 hours), is given in Table 2.

Fig. 1. The two diffusivity profiles used in the simulations. Profile A is found
from Eq. (17), while profile B (Eq. (18)) is found by fitting an analytical ex-
pression to results from GOTM. The entrainment depth is indicated by the
horizontal dotted lines.

Fig. 2. Surfaced mass fraction of oil, as a function of time, for the two different
random walk schemes. The results for Profile A are shown as continuous lines,
and for Profile B as dashed lines.

Fig. 3. Concentration of submerged oil after 6 hours, as a function of depth, for
the two different random walk schemes. The results for Profile A are shown as
continuous lines, and for Profile B as dashed lines. The entrainment depth is
indicated by the horizontal dotted lines.

Table 2
Surfaced fraction, average depth, d v

50, and d v
90 of the submerged oil, all after

6 hours.

Surfaced Depth d v
50 d v

90

Profile A, naïve 0.107 11.5m 355 μm 579 μm
Profile A, corrected 0.198 8.3m 390 μm 679 μm
Profile B, naïve 0.267 15.3m 434 μm 780 μm
Profile B, corrected 0.132 13.2m 372 μm 627 μm

2 github.com/nordam/Random-walk-in-oil-spill-modelling.
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4. Discussion

Correctly modelling turbulent mixing in the ocean is a highly non-
trivial task. Describing mixing due to unresolved eddies as a diffusion
process is in itself an approximation, and any chosen eddy diffusivity
profile will be associated with considerable uncertainty. Nevertheless, if
diffusion is to be modelled as a random walk with variable diffusivity, it
should be done in a consistent manner to avoid systematic errors.

From the description of the pseudovelocity in Section 2.1, we con-
clude that the naïve random walk scheme can give incorrect results in
oil spill modelling, as the spurious drift away from regions of high
diffusivity interferes with the buoyant rise and surfacing of oil droplets.
From the results presented above, we can quantify this effect by com-
paring the results of the naïve and corrected schemes.

For Profile A, the naïve scheme predicts about half as much oil at
the surface after 6 hours as the corrected scheme, while for Profile B,
the naïve scheme predicts about twice as much surfaced oil (see Fig. 2
and Table 2). The reason for these differences can be understood from
the diffusivity profiles, shown in Fig. 1 together with the intrusion
depth. In the interval where the entrained oil is distributed, the diffu-
sivity given by Profile A decreases with depth, giving rise to a down-
wards drift in the naïve scheme, while Profile B is increasing with
depth, giving an upwards drift.

Similar observations can be made from the concentration profiles
shown in Fig. 3 and the depths given in Table 2. For Profile A, the naïve
scheme predicts a larger amount of submerged oil, and the spurious
downwards drift gives rise to larger predicted concentrations at greater
depths, when compared to the corrected scheme. For Profile B, the
results for the naïve scheme show less submerged oil in total, and the oil
in the water column is pushed away from the region of high diffusivity,
leading to larger concentrations both at the surface and at greater
depth, compared to the corrected scheme. See also Appendix B for
further discussion of the well-mixed condition.

We note also the difference in the d v
50 and d v

90 of the submerged
droplets (Table 2). For Profile A, the distribution is shifted towards
smaller droplets with the naïve scheme, as the spurious downwards
drift is larger relative to the buoyancy for small droplets. For Profile B,
the distribution is shifted towards larger droplets, as the smaller dro-
plets are pushed towards the surface, reducing the amount of time they
are kept in suspension by diffusion.

4.1. Choice of timestep

In order to verify that the results are independent of the timestep
used, a convergence test was carried out. For both random walk

schemes and both diffusivity profiles, the simulations were repeated
with timesteps ranging from 100 s to 0.1 s. For each value of the
timestep, we calculated the surfaced fraction after 6 hours. The results
are shown in Fig. 4.

We first note that at a timestep of 0.1 s, the results all appear to have
converged to stable values, and in particular the corrected scheme ap-
pears more or less converged at much longer timesteps. Visser (1997)
proposed the following limit on the timestep:

t
K z

min 1
( )

.
(19)

where the minimum is to be taken over the entire water column. If we
calculate the limiting timestep from Eq. (19), we find 4219 s and 85.3 s
for Profiles A and B respectively. It is generally agreed that the timestep
should be kept at least an order of magnitude below this limit (Gräwe
et al., 2012, Section 3.4), which seems to match our results for the
corrected scheme. Note however that this did not have to be the case,
due to an anomaly in the concentration field that may develop at the
surface due to the reflecting boundary condition in diffusion (see, e.g.,
Ross and Sharples, 2004; Nordam et al., 2019a). Furthermore, it is
worth pointing out that the Visser timestep condition (Eq. (19)) can
never be met if K(z) is, e.g., a step function, or otherwise has a dis-
continuous first derivative (see also Appendix A).

Finally, note that the results from the naïve scheme do not converge
to those of the corrected scheme. This is as expected, and serves to
demonstrate that the difference between the two schemes is not one of
accuracy, but rather of consistency.

5. Conclusion

A recent paper by Boufadel et al. (2018) mentions that the use of a
consistent random walk formulation may be important to correctly
predict surfacing of small oil droplets. We have here quantified this
effect, demonstrating that the naïve scheme can both over- and un-
derpredict the amount of surfaced oil, depending on the vertical dif-
fusivity profile. The reason is that the naïve scheme contains a drift
away from regions of high diffusivity. Depending on the diffusivity
profile, this spurious drift can be directed either upwards or down-
wards.

The error from using the naïve scheme is larger for small droplets, as
their slow buoyant rise may be partially or completely dominated by
the downgradient diffusion bias. Hence, the use of a consistent random
walk scheme is even more important when dispersant application is
considered. Using the naïve scheme, in particular in combination with
an Ichiye-type diffusivity profile (see Eq. (17)), can lead to severe un-
derprediction of the amount of re-surfacing in a surface dispersion
operation.

Taking the derivative of the diffusivity profile into account is ne-
cessary to obey the well-mixed condition, and is a matter of using a
random walk scheme which is consistent with the advection-diffusion
equation. This is not related to the accuracy with which the “actual”
diffusivity profile (or its derivative) is known. Once a diffusivity profile
has been chosen for use in the model, its derivative has also been
chosen, and failing to take it into account will lead to systematic errors.
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Fig. 4. Surfaced fraction after 6 hours, calculated for different timesteps.
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Appendix A. Equivalence between SDE and PDE

Consider an Itô diffusion process described by the SDE

= +z a z t t b z t Wd ( , ) d ( , ) d . (A1)

where a(z,t) and b(z,t) are “moderately smooth functions” (Kloeden and Platen, 1992, p. 37) (further conditions also apply, for details see, e.g.,
Gihman and Skorohod (1972, pp. 96–102)). For this diffusion process, the Fokker-Planck equation for evolution of the transition probability density,
p(z0,t0,z,t), from an initial position z0 at time t0, to a position z at a later time t, is (Kloeden and Platen, 1992, p. 37):
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t z

b p
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2

( ) ( ).
2

2
2

(A2)

where we have dropped the arguments to a, b and p for brevity. Rewriting a bit, we get

=p
t z

b p
z z

a b
z

p1
2

1
2

.2
2

(A3)

We then compare Eq. (A3) to the advection-diffusion equation, with advection w(z,t) and diffusion K(z,t):

=C
t z

K C
z z

wC( ).
(A4)

By matching terms, and using that C is proportional to p, we find that = =K b b K/2 22 , and a = w+ ∂zK. Hence, the SDE whose probability
density is described by the advection-diffusion equation is the corrected random walk,

= + +z w K z t K z Wd ( ( )) d 2 ( ) d . (A5)

where K′(z)= ∂zK. Note that since a(z,t) and b(z,t) in Eq. (A1) must be continuous, the equivalence with the advection-diffusion equation does not
hold for, e.g., step-function diffusivity, or piecewise linear diffusivity profiles with discontinuous first derivatives.

If instead we compare the Fokker-Planck equation (Eq. (A3)) to

=

=
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t z
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z

wC

z
K C

z z
w K

z
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( ) ( )

.

2

2

(A6)

then by matching terms we find that =b K2 , and a = w. Hence, we see that the SDE whose probability density is described by Eq. (A6) is precisely
the naïve random walk:

= +z w t K z Wd d 2 ( ) d . (A7)

As previously noted, Eq. (A6) is not identical to the advection-diffusion equation (Eq. (A4)), except in the special case of spatially constant diffusivity.

Appendix B. The well-mixed condition

The well-mixed condition (Thomson, 1987) states that an initially well mixed passive tracer undergoing diffusion (in a finite domain with no-flux
boundary conditions), should remain well mixed, regardless of the diffusivity. That this must be so is immediately seen from the diffusion equation:

=C
t z

K C
z

.
(B1)

If ∂zC =0 everywhere (including at the boundaries), then we also have that ∂tC =0 everywhere, and no changes should occur.
To quantify the degree to which the naïve and corrected random walk schemes satisfy the well-mixed condition, we have simulated a passive

tracer, initially evenly distributed on a domain from z =0m to z =50 m. The simulations were carried out as described in Section 2.2, with zero rise
velocity (w =0), and the addition of a reflecting boundary at z =50 m. We used both the previously presented diffusivity profiles (see Fig. 1),
Np =1,000,000 particles, a timestep of Δt=0.1 s, and the simulations were run for 48 hours.

We present two different metrics of the performance. First, in Fig. B.5, we present the concentration at the end of the simulation, as a function of
depth, calculated by bin counts in 100 bins. Second, in Fig. B.6, we present the expectation value of the particle positions (i.e., the first moment of the
distribution, see, e.g., Kloeden and Platen, 1992, p. 16). For a collection of uniformly distributed particles, on the interval from z =0 m to z =50 m,
the expectation value of the particle positions is ⟨z⟩=25 m. By the well-mixed condition, we know that this expectation value should remain
unchanged. Hence, the error in the expectation value is a quantitative measure of the degree to which the well-mixed condition is satisfied. (Note,
though, that a correct value of the first moment is a necessary, but not sufficient, condition for correct results. Only if all moments have the correct
value is the modelled distribution equal to the true distribution.)

From the results in Fig. B.5, we observe that the naïve random walk gives a concentration profile with a minimum at the location of highest
diffusivity, while the corrected random walk obeys the well-mixed condition (up to random fluctuations). From Fig. B.6, we similarly see that the
corrected random walk gives ⟨z⟩= 25 m, as expected, while the naïve random walk causes the expectation value to change over time, as the
distribution of particles is shifted downwards.
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