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Abstract

Phase precessing place cells encode spatial information on fine timescales via the

timing of their spikes. This phase code has been extensively studied on linear tracks

and for short runs in the open field. However, less is known about the phase code on

unconstrained trajectories lasting tens of minutes, typical of open field foraging. In

previous work (Monsalve-Mercado and Leibold, Physical Review Letters, 119, 38101

(2017)), an analytic expression was derived for the spike-time cross-correlation

between phase precessing place cells during natural foraging in the open field. This

expression makes two predictions on how this phase code differs from the linear

track case: cross-correlations are symmetric with respect to time, and they represent

the distance between pairs of place fields in that the theta-filtered cross-correlations

around zero time lag are positive for cells with nearby fields while they are negative

for those with fields further apart. Here we analyze several available open field

recordings and show that these predictions hold for pairs of CA1 place cells. We also

show that the relationship remains during remapping in CA1, and it is also present in

place cells in area CA3. For CA1 place cells of Fmr1-null mice, which exhibit normal

place fields but somewhat weaker temporal coordination with respect to theta com-

pared to wild type, the cross-correlations still remain symmetric but the relationship

to place field overlap is largely lost. The relationship discussed here describes how

spatial information is communicated by place cells to downstream areas in a finer

theta-timescale, relevant for learning and memory formation in behavioral tasks last-

ing tens of minutes in the open field.
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1 | INTRODUCTION

A place cell in the hippocampus exhibits higher firing rates during tra-

versals of specific regions of the environment, namely its place field

(O'Keefe & Dostrovsky, 1971). Together as a population, these place

cells form a neural representation of space from which the position of

the animal can be accurately decoded (Wilson & McNaughton, 1993).

In addition to this rate code, place cells convey spatial information at

a finer timescale through the relative timing of their action potentials:

the spiking activity of the cell population is organized with respect to

an ongoing oscillation in the extracellular potential within the theta

range (4–12 Hz) (Colgin, 2013; O'Keefe & Recce, 1993; Schmidt et al.,
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2009; Skaggs, McNaughton, Wilson, & Barnes, 1996). More precisely,

a cell starts firing at a late phase of the reference theta oscillation

when the animal enters the corresponding place field, progressively

moving to earlier phases in each new theta cycle as the animal tra-

verses the entire place field. The phase of the spike relative to the

ongoing theta oscillation thus signals the position of the animal within

the place field.

In a one-dimensional (1D) track, phase precession causes the

spikes of neurons within a theta cycle to be ordered in the same order

as the place fields would be visited (Skaggs et al., 1996), thus provid-

ing a time compressed representation of place cell activity (Dragoi &

Buzsaki, 2006; Melamed, Gerstner, Maass, Tsodyks, & Markram,

2004); see also Figure 1 in Jaramillo and Kempter (2017) and Figure 2

of Lenck-Santini and Holmes (2008) for schematic drawings explaining

this phenomena. In fact, in recordings on a linear track, phase preces-

sion of two cells with overlapping fields can be used to directly read

out how far apart the fields are from each other. This is because a cell

firing early in the theta cycle signals the end of its place field and a cell

firing late in the cycle signals the start, and therefore, spikes from the

cells whose place fields come near the end happen earlier than the

ones from a cell whose field is just being entered. The distance

between two place field centers is thus proportional to the average

theta phase difference of the respective cells among the several

cycles where the fields overlap (Feng, Silva, & Foster, 2015; Schmidt

et al., 2009). Equivalently, the average phase difference corresponds

to the time lag of the nearest peak to zero in the cross-correlation of

their spike times within theta timescales. Phase precession then

encodes spatial relational information between place cells, evident

only over the timescale of seconds that takes for the animal to get

from one field to another, into a temporal code available in the scale

of tens of milliseconds, namely in the temporal order of the spikes

that the cells emit. Since plasticity mechanisms such as spike-timing-

(a)

(d) (e)

(b) (c)

F IGURE 1 Spike-time cross-correlations are symmetric in the theta band. (a) An example illustrating the theoretical predictions. Two
simultaneously recorded cell pairs are shown to have place fields close together (top row, up-triangle mark) and further apart (bottom row, down-
triangle mark). The peak firing rate is shown on the corner of each rate map recorded on a 60 cm square enclosure. The Kolmogorov–Smirnov
distance d between the distributions of spike locations for each pair is shown above and below their firing rate maps. (b) The corresponding cross-
correlations of their spike trains are shown to the right of each pair. The theory predicts that for the top pair, whose place fields are close
together, the instantaneous phase γ at zero lag of the theta-filtered cross-correlation (blue trace) is close to 0�. For the bottom pair, whose place
fields are further apart but substantially overlapping, the phase is close to 180�. (c) The normalized theta-filtered cross-correlations (blue traces in
a) for all 5,652 cell pairs present a high degree of symmetry on theta timescales. Both the up- and down-phase groups (phases in the intervals
from −90 to 90� and 90 to −90� counterclockwise, respectively) independently present a high proportion of cell pairs with a symmetry index

(SI) higher than 0.9 (68 and 64%, respectively). (d) The SI measures the degree of symmetry of the theta-filtered cross-correlations in an interval
around zero lag. The histogram of SI values (top) shows that most cell pairs have highly symmetric correlations on an interval of 20 ms centered at
zero lag, with 66% of cell pairs belonging to the upper 10% (SI > 0.9) range of SI values. A great majority of cell pairs retain a high degree of
symmetry in their correlations for time lag intervals relevant for synaptic plasticity (bottom: the green trace is the average of SI values for all cell
pairs, and the yellow trace is the fraction of cell pairs with an SI higher than 0.9). (e) The circular kernel density estimation of the distribution of
phases shows a distinctive tendency toward a bimodal distribution oriented on the 0–180� axis, although it contains a higher proportion of
phases (55%) in the up-phase group [Color figure can be viewed at wileyonlinelibrary.com]
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dependent plasticity operate at milliseconds timescale, this encoding

of the distances in the milliseconds timescale may play a major role in

learning and memory consolidation (Bi et al., 1998; Gerstner, Kempter,

van Hemmen, & Wagner, 1996; Markram, Lubke, Frotscher, & Sak-

mann, 1997; Melamed et al., 2004).

Although initially discovered in 1D environments, phase preces-

sion was later shown to be present also in open field two-dimensional

(2D) recordings (Huxter, Senior, Allen, & Csicsvari, 2008; Jeewajee

et al., 2014; Skaggs et al., 1996). Phase precession in these studies is

similar to the recordings on linear tracks. For instance, as in the 1D

case, spikes precess over the whole range of the theta cycle (approxi-

mately 360�) also in 2D (Jeewajee et al., 2014). In addition, the firing

phase of a cell correlates with different measures of the distance tra-

versed within the field. And more importantly, for cells with over-

lapping fields, the shift in the peak of their cross-correlation

negatively correlates with the amount of field overlap, although this

depends on the direction of running, it is weaker for runs near the

periphery of the fields and for runs at low speed (Huxter et al., 2008).

To analyze phase precession in open field trajectories, past work

often focuses on seconds-long high-speed short segments of the

whole trajectory as independent single runs through a cell's place

field, usually defined from the moment of entry to the field until the

next exit. However, natural foraging behavior in open field environ-

ments usually involves exploration in the order of tens of minutes and

on unconstrained trajectories away from stereotypical straight runs.

Spatial learning and memory tasks in the open field typically require

several learning trials, lasting several minutes each, to obtain satisfac-

tory performance levels (Vorhees & Williams, 2014). Similarly,

although place cells usually form rapidly upon exploring a novel envi-

ronment (Hill, 1978), it takes several minutes of exposure to reach a

new independent and stable place field code, over which slowly

developing plastic changes improve spatial tuning, field stability over

trials, and spatial information content (Frank, Stanley, & Brown, 2004;

Wilson & McNaughton, 1993). All these warrant a better understand-

ing of the properties of the phase code during natural foraging.

In previous theoretical work (Monsalve-Mercado & Leibold,

2017), we make predictions about the correlations between phase

precessing place cells during natural foraging of open field environ-

ments and how these correlations may encode spatial information.

This is done by modeling a single cell's firing pattern as a Gaussian

(a) (b) (c)

(d)

F IGURE 2 The binary phase of the correlation tells apart high- from low-overlapping fields. (a) The circular-linear kernel density estimation
(CLKDE) for the joint distribution of phases and distances shows a clear separation of the data into two distinct groups in phase-distance space.
The two triangular marks denote the two cell pair examples shown in Figure 1a. The theory predicts the data should follow a step function with
values at 0 and 180�. The fit minimizing circular distance shows the data are best separated at a critical distance of dc = 0.6(1). The marginal
distribution of phases (on top) is conceptually divided into up-phases (blue) for the interval between −90 and 90� counterclockwise and into
down phases (orange) otherwise. The marginal distributions of distances restricted to the up- and down-phase groups are shown to the left (blue)
and right (orange), respectively. (b) The marginal distributions of phases restricted to distances above (top) and below (bottom) the critical
distance show the majority of phases belonging to the down- and up-phase groups, respectively. (c) The cumulative probability functions of the
marginal distributions of place field distances reveal differences on their horizontal concentration of mass, measured by the total area between
the curves (Wasserstein distance w). (d) The introduction of Gaussian spike jitter to a single recording session reveals that the phase-distance
relationship is robust for small jitter amplitudes but it breaks down for higher amplitudes falling within theta timescales that still leave place field
distances invariant. The jitter amplitude is the SD σ of Gaussian noise. Phase distributions for different noise levels (top circular plots, made with
30 iterations of noise each) suggest a tendency for phases to become uniformly distributed with increasing noise, which is confirmed by their
decreasing circular Wasserstein distances from uniformity ΔU (blue trace). Even though place field distances remain invariant, they become
disorganized with respect to their associated phase values, resulting in decreasing w with noise and the loss of the phase-distance relationship.
The values of w and ΔU are normalized to the case without jitter [Color figure can be viewed at wileyonlinelibrary.com]
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spatial envelope modulated by an oscillatory component with a fre-

quency slightly higher than theta, and averaging the correlation

between such pairs of place cells over all straight paths crossing the

area of overlap between the place fields. The analysis shows that

place cells with high field overlap present no average phase difference

with respect to theta, while cells with less but substantially over-

lapping fields have an average half a cycle phase difference. In other

words, minutes-long cross-correlations filtered at theta frequency are

positive around zero time lag for cells with nearby fields while they

are negative for those with fields further apart. In the following, we

refer to this effect as the phase-distance relationship. In the same

study, it was shown that this relationship could be instrumental in the

emergence of grid fields in the entorhinal cortex. Briefly, this phase-

distance relationship in the cross-correlations, combined with spike-

timing-dependent plasticity in projections from place cells to a model

grid cell, was shown to induce effective Mexican-hat like interactions

between the projections from place cells which then leads to a hexag-

onal pattern.

The aim of this article is to see whether the main theoretical pre-

dictions about the pair-wise cross-correlations, in particular their rela-

tionship to the spatial overlap between the fields holds in real data

during natural foraging. To do this, we analyzed several electrophysio-

logical recordings of hippocampal place cells. We found that the quali-

tative features predicted about the cross-correlation holds in the CA1

datasets that we analyzed. The relationship also persists during

remapping experiments in CA1 as well as in data analyzed from CA3.

To further look into the relationship between the phase-distance

effect and the timing of spikes with respect to theta, we also analyzed

data from Fmr1-null knockout mice in which place fields appear to be

normal but their activities appear to be less organized with respect to

theta. We found that in these cells, the cross-correlations remain sym-

metric, but the relationship between the cross-correlations and the

spatial overlap of place fields is largely lost.

2 | METHODS

2.1 | Predictions of the model

We model the activity of a population of CA1 place cells for an animal

engaged in an open field exploratory task. A place cell is strongly mod-

ulated both in space and time, firing within a localized area of the

environment (its place field), and only periodically in time in accor-

dance with phase precession. We model this as a Gaussian envelope

modulated by an oscillatory component. Mathematically, this is done

by writing the firing rate, Hn(t) of neuron n at time t and when the ani-

mal is at position x(t) as

Hn tð Þ= ae− x tð Þ−xnð Þ2
2σ2 cos ωt+φnð Þ+1½ �=2, ð1Þ

where ω/(2π) is the single neuron oscillatory frequency, xn is the cen-

ter of the place field of neuron n, ϕn is the oscillation phase, σ controls

the size of the place field, while a determines the maximum firing rate.

Theta phase precession naturally arises by taking the oscillation fre-

quency ω/(2π) in Equation (1) to be slightly higher than the theta oscil-

lation frequency of 8 Hz.

The cross-correlation function of the activity of two cells n and n0

is defined as

Cnn0 sð Þ≔
ð∞
−∞

dtHn tð ÞHn0 t−sð Þ: ð2Þ

The cells' activities contribute the most to the correlation for paths

crossing a region of high place field overlap. To compute the cross-correla-

tions, Cnn0 , (Monsalve-Mercado & Leibold, 2017) assumed that the

time integral in Equation (2) could be rewritten as an average over

straight paths of all possible orientations traversing the midpoint

between the centers of the place fields of neurons n and n0. They

showed that for cells with equal peak firing rate and place field size,

and for constant speed and small time lags s, the cross-correlation can

be approximated as

Cnn0 sð Þ= a
ffiffiffi
π

p
e− r2 + v2 s2

4σ2

4v= aσð Þ 1+
1
2
J0

πr
R

� �
cos ωsð Þ

� �
, ð3Þ

where r = xn−xn0j j is the distance between the place field centers, v is

the speed of the animal, R is the distance from the place field center

at which the firing rate has decreased to 10%, and J0 is the Bessel

function of the first kind.

Two important predictions can be inferred from the expression

for the correlation function in Equation (3) that is a direct conse-

quence of the 2D symmetry of open field exploration:

2.1.1 | The correlation is symmetric in the time
domain

This can be easily seen by the fact that changing s to −s in Equa-

tion (3) does not change anything. An important implication is that

the oscillatory component of the correlation around time lag zero

must be in either a peak or a valley. In other words, when filtered in

the theta range, cells can be strongly positively or negatively corre-

lated. This organization is not arbitrary, but results in the second

prediction.

2.1.2 | Distance is reflected in the phase of the
correlation at time lag zero

Cells whose place fields are close together (have high overlap) are

positively correlated in the theta range (their correlation is near a

peak), while cells whose fields are further away from each other (little

overlap, but still significant) are negatively correlated in the theta

range (their correlation is near a valley).

4 MONSALVE-MERCADO AND ROUDI



2.2 | Analysis

For each recording session, we computed spike train correlations

between all cell pairs for the entire duration of the recording. Only

cells with more than a 100 spikes were included in the analysis. Spike

trains were considered isolated events with a 1 ms accuracy, for

which the correlation measures the number of coincident spikes for

each time lag with a resolution of 1 ms within a 300 ms range. The

correlation is filtered in the theta band (5–12 Hz) and the analytical

signal is obtained from its Hilbert transform. We identify each cell pair

with the instantaneous phase γ of its analytical signal at zero time lag.

Only cell pairs were included in the analysis for which the instanta-

neous envelope of its analytical signal (not the value of the oscillation)

at zero time lag was above a 0.2 threshold in absolute value.

We define a measure to evaluate the symmetry of the filtered

cross-correlation Ĉ sð Þ. The symmetry index (SI) is defined as the nor-

malized square integral of the symmetric part of Ĉ sð Þ for a specific

interval ±τ around zero time lag:

SI =
1
4

ðτ
−τ

Ĉ sð Þ+Ĉ −sð Þ
� �2

ds=
ðτ
−τ
Ĉ
2
sð Þds ð4Þ

With this definition, the SI ranges from 0 reflecting total anti-

symmetry to 1, representing total symmetry, thus quantifying the

degree of symmetry in the filtered cross-correlation.

The distance d between two place fields was computed using the

2D Kolmogorov–Smirnov probability distance directly from the distri-

butions of spike locations (Peacock, 1983). The Wasserstein distance

w is used to compare the marginal distance distributions, it corre-

sponds to the area between the cumulative probability distributions.

The circular Wasserstein distance Δ is used to compare the distribu-

tion of phases to another distribution with circular symmetry, it corre-

sponds to the minimal distance from all linear Wasserstein distances

on an unfolded circle for all possible starting points on the circle

(Rabin et al., 2011). Circular and circular-linear kernel density estima-

tions (CLKDEs) use von Mises and Gaussian kernels with adaptive

concentration and smoothing parameters (Garcıa-Portugues,

Crujeiras, & Gonzalez-Manteiga, 2013).

3 | RESULTS

We examined several published datasets of extracellular recordings in

hippocampal areas CA1 and CA3 during open field exploratory forag-

ing. The following datasets were included in the analysis: two CA1 ses-

sions from a teleportation experiment reported in Jezek, Henriksen,

Treves, Moser, and Moser (2011), five CA1 sessions recorded in

the Buzsaki lab (Mizuseki et al., 2013; Mizuseki et al., 2014; Mizuseki,

Sirota, Pastalkova, & Buzsaki, 2009) (specifically session ec14.215,

ec14.277, ec14.333, ec14.260, and ec15.047 from the openly available

hc-3 dataset), 16 CA1 sessions from wild-type mice, and 16 CA1 ses-

sions from Fmr1-null mice recorded from Sparks, Talbot, Dvorak, and

Fenton (2017), Talbot et al. (2018), and Dvorak, Radwan, Sparks,

Talbot, and Fenton (2018), also taken from the openly available hc-16

dataset, 28 CA1 sessions in three rats from a remapping experiment

reported in Schlesiger et al. (2015) and Schlesiger et al. (2018)

and, finally, 178 CA3 sessions from seven rats in 11 rooms reported in

Alme et al. (2014). Details about the recordings and the experimental

settings can be found in the respective references.

Figure 1a,b shows an example illustrating the two theoretical pre-

dictions. Figure 1a shows the firing rate map of 3 simultaneously

recorded CA1 place cells from Jezek et al. (2011). Two possible pairs

are shown in the top and bottom rows for comparison, and to the

right of each row, we show the respective cross-correlations of their

spike times (Figure 1b). The distributions of spike locations for the top

pair are significantly closer than those of their bottom counterpart

(Kolmogorov–Smirnov distance d = 0.3 and d = 0.6, respectively). The

corresponding cross-correlations, averaged over approximately

10 min of free foraging, exhibit a high degree of symmetry around

zero time lag, with symmetry indices SI = 0.95 and 0.98, respectively;

see Equation (4) for the definition of SI which ranges from 0 (total

antisymmetry) and 1 (total symmetry). In addition, the filtered correla-

tions in the theta band (blue traces) show that the top neurons are

positively correlated in theta with the phase of the peak γ = −9�, while

the bottom neurons are negatively correlated with γ = 179�. In the fol-

lowing sections, we explore these properties for different cells and

experiments from CA1 and CA3.

3.1 | CA1 spike-time correlations present a high
degree of symmetry

At the population level, we found that 5,652 cell pairs (about 47% of

total pairs) passed the criteria to be included in the analysis of CA1

datasets. Overall, we observe a qualitative high degree of symmetry in

the filtered cross-correlations in the theta band, even for ranges of a

whole theta cycle (Figure 1c,d). For each cell pair, we computed the SI

for intervals between 2 and 60 ms centered at zero time lag, which are

relevant timescales to trigger spike-timing dependent plasticity rules

(Markram et al., 1997). We observe that a majority of cell pairs present a

high degree of symmetry in their correlations (Figure 1d), especially for

ranges close to zero time lag. Both the average of SI values and the frac-

tion of cell pairs with an SI higher than 0.9 decrease when the SI is com-

puted for increasingly larger time lag intervals, with the average SI

leveling off to 0.6 for intervals up to 600 ms. We additionally computed

a circular kernel density estimation (CKDE) for the distribution of phases

from all cell pairs. Since identity reversal of cell pairs is equivalent to a

mirror transformation in the correlation function, to avoid ambiguity in

the choice of cell-pair phase, we include both possible phases for each

cell pair in the computation of the CKDE. This is justified by the high

degree of symmetry of a majority of correlations, and randomly choosing

one of the two phases produces qualitatively similar results (not shown).

As a result, the CKDE displays a mirror symmetry with respect to the

horizontal axis (Figure 1e).

We found the distribution of phases to be significantly different

from uniform (Hermans–Rasson, Ajne, and Watson tests: p < .001 by
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bootstrapping with replacement). Next, we wanted to characterize

how the distribution of phases concentrate around 0 and 180�. For

this, we computed the circular Wasserstein distance between the dis-

tribution of phases and a family of biased bimodal delta distributions

oriented on the 0–180� axis, αδ(γ) + (1 − α)δ(γ − 180�), where the bias

parameter α, taking values from 0 to 1, measures how strongly the

distribution is inclined toward 0�. We select from the family the distri-

bution that minimizes the distance, corresponding to a specific value

of α. For the CA1 dataset, we obtained a bias value of α = .54, consis-

tent with a 55% of the population of phases tending toward 0� (up-

phase group), that is the proportion of phases in the interval from −90

to 90� counterclockwise. The circular Wasserstein distance from the

biased bimodal distribution ΔB = 0.08 is a useful measure to compare

the bimodality of the distribution of phases across sessions, animals,

brain regions, and experiments.

3.2 | The binary phase of the correlation tells apart
high- from low-overlapping fields

The second prediction of the model is concerned with the relationship

between the phase associated to a cell pair and the corresponding dis-

tance of their place fields, that is, a phase-distance relationship. As a

measure of place field distance, we compute the Kolmogorov–Smirnov

distance between the distributions of spike locations of both fields. This

measure takes values between 0 and 1, and for a pair of 2D Gaussians

of equal size increases linearly with the distance between their peaks

and saturates quickly after the overlap is minimal. The KS distance has

the advantage of highlighting regions of substantial overlap while being a

more robust measure of distance than the spatial correlation, distance

between the firing rate peaks, and amount of field overlap, all of which

result in qualitatively similar results at the population level (not shown).

We obtained the KS distance for all cell pairs in the CA1 datasets

and computed a CLKDE for the distribution of phases and distances

(Figure 2a). The CLKDE shows a qualitative preference for small and large

distances to be clustered around phases of 0 and 180�, respectively. To

quantify how well the theoretical prediction explains the observed distri-

bution, we fit a step function with values at 0 and 180� to determine the

critical distance dc that minimizes the circular distance from the data to

the step function. We found that a critical distance of dc = 0.6(1) explains

best the distribution. The marginal phase distributions for small (d < dc)

and large (d > dc) distances (Figure 2b) show a preference for 0 and 180�,

with bias parameters of α = .60 (59% of up-phases) and α = .44 (44% of

up-phases), respectively. In addition, the marginal phase distributions

show similar circular Wasserstein distances from a bimodal distribution

(ΔB = 0.08 for both) as the complete CA1 dataset.

We can gain a different perspective on the separation of dis-

tances by their corresponding phases by examining the marginal distri-

butions of distances for up- and down-phases (blue and orange

distance distributions in Figure 2a,c). We compute the Wasserstein

distance between the marginal distributions of distances, which mea-

sures the area between the corresponding cumulative probability dis-

tributions (Figure 2c). It highlights differences in the concentration of

horizontal mass, setting apart distributions mostly representing differ-

ent regions in the horizontal axis (distances). We found the two mar-

ginal distributions to be significantly different from each other

(p < .001), with a Wasserstein distance of w = 0.11.

To test the robustness of the phase-distance relationship we

introduce Gaussian noise with SD σ into the spike times of a single

recording session with 30 place cells (from Jezek et al. (2011)). Cell

pairs range from 212 to 100 depending on the noise level, since the

theta amplitude of correlations are typically reduced with the jitter,

and the threshold for inclusion of a pair is fixed. In Figure 2d, we show

examples of phase distributions for different noise levels. Except for

the case without jitter (σ = 0), each distribution is obtained by averag-

ing 30 iterations of noise with the specified σ value. Because we

expect the bimodality to be lost with noise, in this panel, we only

show the phase distributions without symmetrization with respect to

the horizontal axis. For increasing level of the jitter, σ, we also com-

puted the Wasserstein distances between the marginal distributions

of place field distances w, and the circular Wasserstein distance of

phase distributions from uniformity ΔU. They are computed for σ

between 0 and 100 ms in steps of 1 ms, and traces are smoothed

afterward with a Gaussian kernel of 5 ms SD. w and ΔU are normal-

ized to the case where no jitter is present. The relationship is robust

to spike jitter up to standard deviations of around a quarter of a theta

cycle. For this range, cell pairs still present strong phase bimodality

and high w. For higher noise amplitudes, phases tend to become more

uniformly distributed as measured by decreasing ΔU. More impor-

tantly, phases become disentangled from place field distance as the

difference w between the marginal distribution of distances drops

below significant levels. For this jitter amplitudes, the firing rate maps

and thus place field distances remain mostly unchanged, implying that

the drop in w is a result of phases and place field distances becoming

disentangled. Since high w values could in principle be present for uni-

form phase distributions, this result suggests that bimodal phase dis-

tributions are required at the mechanistic level for the organization of

place field distances into two independent clusters.

We examined several individual examples from the CA1 dataset

to probe the consistency of the phase-distance relationship among

datasets (Figure 3). We found the relationship to be present in individ-

ual recording sessions. As an example we present the ec14.215 ses-

sion of the hc-3 dataset, which has the most cells simultaneously

recorded (60) and yielded the highest number of cell pairs (1239) (top

row in Figure 3). Data from two of the rats from the hc-13 dataset,

namely ec16 (1,061 cell pairs) and ec13 (865 cell pairs), were some-

how outliers, which is why they were left out of the collection of CA1

datasets reported in Section 3.1. They presented a strong bias in the

distribution of phases toward 0�, with 72% (α = .72) and 76% (α = .75)

of phases belonging to the up-phase group respectively. To see the

effects more clearly in Section 3.1, we therefore did not include them.

However, we checked that in these two datasets the phases were still

well represented by a bimodal distribution (ΔB = 0.09 and 0.10) and

the phase-distance relationship was present, although weaker than

the rest of the CA1 dataset (w = 0.06 and 0.08, p < .001). The relation-

ship was present as well for individual sessions of the data from Jezek
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et al. (2011) (middle row in Figure 3). Pooled data over the two sessions

in two independent rooms show a clear tendency for phases to cluster

around 180� (α = .47, 47% of up-phases, ΔB = 0.09). The corresponding

separation of distances by their phases was strongest for the entire

dataset (w = 0.17). In addition, we found the relationship present as well

for mice, for which place cells are less spatially specific and phase preces-

sion and modulation by theta rhythms is slightly weaker than in rats

(Mou, Cheng, Yu, Kee, & Ji, 2018); see the bottom row in Figure 3.

Pooled over four sessions in circular and rectangular arenas we found

the summary statistics to be in good agreement with the other CA1

datasets (α = .64, ΔB = 0.09, w = 0.15).

3.3 | The phase-distance relationship is present in
independent environments under global remapping

Under global remapping, place cells typically change the location of their

place fields when changing environments. For two environments with

independent place cell representations it is possible that cell pairs with

highly overlapping fields in one environment might have low overlapping

fields in the other one, for which the theory predicts a change in the

phase of the cross-correlation between and up- and down-phase. We

found eight such pairs recorded from different tetrodes with an SI higher

than 0.8 (an example pair is shown in Figure 4a).

Although most cell pairs did not show substantial overlap of their

activity in both environments, we found 54 cell pairs with strong overlap

and high SI (>.8) in both environments. Among these pairs, 42 remained

in the up-phase group, and four remained in the down-phase group.

Despite only a small number of cell pairs preserving their phase-distance

relationship in both environments, the relationship was strongly present

in both independently represented environments (Figure 4b,c), although

with differences in phase bias and distance separation (Room B: α = .64,

64% of up-phases, 57% of pairs with SI > 0.9, wB = 0.09, w = 0.11, Room

A: α = .59, 59% of up-phases, 61% of pairs with SI > 0.9, wB = 0.10,

w = 0.15). Moreover, we observe that the relationship is already in place

on the first exploration of the novel environment, with identical statistics

as reported for the more stable subsequent recordings in Room B.

3.4 | The phase-distance relationship is present in
area CA3

Place cells in area CA3 also show phase precession with respect to

the theta rhythm (O'Keefe & Recce, 1993). We next asked whether

the same phase-distance relationship exists as found in CA1. Overall,

pooled data over 178 sessions from 7 rats in 11 different rooms

resulted in 1,121 cell pairs included in the analysis. Because the CA3

representation of space is more sparse than in CA1 (Alme et al.,

2014), with only a fraction of recorded cells active in each individual

room, no single session had enough cell pairs for a standalone analysis.

Only 119 out of the 178 sessions had at least two active cells with more

than 100 spikes each to estimate meaningful correlations. The number

of cells in each session ranged from 2 up to 17 cells, with an average

number of 8.3 cells per session. Likewise, the number of cell pairs passing

the selection criteria ranged from 1 up to 34, with an average of 9.8 pairs

per session. We therefore had to resort to pooling the data over multiple

sessions to perform our statistical analysis. Over pooled data, we found

the distribution of phases to be significantly different from uniform

(p < .001, Figure 5a,b). More importantly, it was strongly biased toward

0�, with 68% of phases belonging to the up-phase group (α = .69), but

still reproducing a bimodal distribution (ΔB = 0.10) with a high degree of

symmetry (72% of pairs with an SI > .9). However, unlike most datasets

in area CA1 (see the comment on rats ec16 and ec13 from the hc-3

dataset in Section 3.2), the distribution of down-phases could not be

concluded to be significantly different from uniform (p = .5,

Kolmogorov–Smirnov test), while the up-phase group showed pro-

nounced differences (p < .001). Despite marked differences with the

CA1 dataset, the phase-distance relationship was robustly present in

area CA3 (Figure 5a,c). The marginal distance distributions were signifi-

cantly different from each other (p < .001, by bootstrapping with

replacement), and were similarly distributed as in the CA1 region

(w = 0.11, Figure 5c).

3.5 | The phase-distance relationship is impaired in
Fmr1-null mice

Fmr1-null mice are used as a model for fragile X syndrome, exhibiting

symptoms of intellectual disability such as cognitive inflexibility.

(a) (b)

F IGURE 3 Examples from the CA1 dataset. Each row shows a
different example highlighting the consistency of the phase-distance
relationship. The top row shows a single recording session from animal
ec14 of the hc-3 dataset. The CKDE of phases on the left panel shows
clear bimodality, while middle and right panels show how the restricted

marginal distance distributions differ. The middle row shows the results
for the teleportation experiment for data pooled from two sessions in
two independent environments and the bottom row shows the same
relation present for mice as well (wild-type control mice, to compare
with the results for knockout mice in Figure 6) [Color figure can be
viewed at wileyonlinelibrary.com]
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Talbot et al. (2018)) report that, although these mice place fields are

no different than wild-type, the timing of CA1 spikes are somewhat

less organized by the phase of theta in the knockout mice than the

wild type and also the phase-frequency discharge probabilities of the

place cells appear to be less coordinated in the knockout mice than

the wild type. This led us to ask whether the phase-distance relation-

ship is disrupted in Fmr1-null mice. We found that, as in the CA3 case,

the distribution of phases was strongly biased toward 0�, with 76% of

phases in the up-phase group (α = .77), and was still well-represented

by a bimodal distribution (ΔB = 0.09, Figure 6a,b), with a high degree

of symmetry (64% of pairs with an SI > .9). However, unlike in the

CA3 dataset, the marginal distance distributions could not be con-

cluded to be significantly different from each other (p = .07, by boo-

tstrapping with replacement, Figure 6a,c). Compared to wild-type

mice (bottom row in Figure 3), the Wasserstein distance between the

marginal distance distributions for Fmr1-null mice (w = 0.03) is much

smaller than its wild-type counterpart (w = 0.15), indicating a dimin-

ished ability to represent disjoint regions of field overlap.

4 | DISCUSSION

The precession of hippocampal place cells' spikes with respect to the

theta rhythm is believed to be an important part of the representation

of spatial information in the brain (Burgess & O'Keefe, 1996; Colgin,

2013; Moser, Kropff, & Moser, 2008; O'Keefe & Burgess, 2005;

O'Keefe & Recce, 1993), as it encodes the position of the animal

within a field and leads to the ordering of spikes of pairs of neurons in

the order the corresponding place fields are traversed (O'Keefe &

Recce, 1993; Skaggs et al., 1996).

(a)

(b)

(c)

F IGURE 4 The phase-distance relation
remains unchanged during remapping.
(a) An example shows firing rate maps and
spike-time cross-correlations for the same
cell pair in two independently represented
rooms (as in Figure 1a, tetrode unit label is
shown on the top right corner of the maps).
It shows that a cell pair whose fields are
close together and whose spiking activity is
highly correlated in a given environment
can change to the reverse situation in a
different environment. The example
illustrates the possibility for a cell pair to
instantaneously change from one phase-
distance subgroup to another under global

remapping, while still being part of a stable
phase-distance relationship at the
population level (b,c). Triangular marks
denote the location of each cell pair in
(a) within their respective phase-distance
distributions in Panel (b) [Color figure can
be viewed at wileyonlinelibrary.com]
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A recent analytic estimation of the pairwise cross-correlation of

place cells shows, when filtered in the theta band, that phase preces-

sion endows these cross-correlations with two properties: that they

are symmetric in time lag, and that they encode the distance between

place fields in that zero time lag is positive for cells with nearby fields

while it is negative for those further apart. Analyzing short, high-speed

runs from one place field center to another, Huxter et al. (2008) show

results consistent with these properties, although the analytic calcula-

tions have been based on simplified assumptions such as equal size

and a perfectly circular shape. In this article, we showed that, despite

these simplifying assumptions, both properties of symmetry and

encoding spatial information in the cross-correlations are valid in CA1

during tens of minutes of natural foraging in the open field, in differ-

ent datasets, during remapping, and even in area CA3.

The theory predicts that the phase-distance distribution should

follow a step function with values at 0 and 180�. However, even

though the distribution of phases is highly symmetric, we observe a

high amount of variance in the circular dimension. One of the main

contributors to this variance, as predicted by theoretical consider-

ations, are biases in the animal's trajectory, which do not fully explore

every point of the environment from every possible direction in a uni-

form way. Besides this and other natural sources of noise, the other

main source of variance is predicted to come from the spread and

shape of the spatial distribution of spikes, which distort the 2D sym-

metry assumed by the theory. An important additional mathematical

prediction (unpublished), which could contribute to the observed vari-

ance, is a systematic shift in the peak of the cross-correlation of a cell

pair when their fields have largely different sizes. This shift depends

nonlinearly on the distance between their firing rate peaks and the

ratio of their field sizes, saturating at about an octave of a theta cycle

for infinite distance and size ratio. This shift could be relevant for

areas receiving inputs from place cells at different points in the hippo-

campal dorsoventral axis, which show a considerable increase in field

size along the axis.

We showed that the phase-distance relationship is robustly pre-

sent in area CA3. One possible caveat, also valid for the wild type

mice analysis, is that since CA3 activity is very sparse, the analysis

was only possible on data pooled over many recordings. It is still pos-

sible that the phase-distance distribution might show a different rela-

tionship for single session recordings with a high number of

simultaneously active cells. One important difference compared to

area CA1 is the presence of strong recurrent connectivity in area CA3,

which could have an effect in the network coordination and the

encoding of space at the population level, even if individual cells are

theta modulated and exhibit phase precession. Further theoretical and

experimental work should aim at better understanding the observed

biased distribution of phases, the apparent uniformity of the down-

phase group, and the possible implications these have for the

encoding of spatial relationships.

The analysis also revealed that, in contrast to what we observed

in wild-type mice, the phase-distance relationship was largely absent

for Fmr1-null mice. One possible reason could be that individual place

cells seem to be less organized by the phase of theta in the knockout

mice than the wild type and the phase-frequency discharge probabili-

ties of the place cells are also somewhat less coordinated in the

knockout than the wild type (Talbot et al., 2018). It is interesting to

compare the results that we found in Fmr1-null mice in Figure 6 with

that of the jittering analysis we performed in one of the rat datasets in

Figure 2d. In both the Fmr1-null mice and the rat data with suffi-

ciently large levels of jittering, the phase-distance relationship is lost.

However, in the jittering analysis, as the bimodality of the correlation

phase distribution disappears (at a σ value somewhere between

20 and 25 ms; see the polar plots at the top of Figure 2d), the rela-

tionship between phase and spatial distance is also lost, as testified by

the low value of w as σ increases. However, in the knockout mice

despite the disentanglement between the correlations' phases and the

place field distance, the distribution of correlations' phases is far from

(a)

(b) (c)

F IGURE 5 CA3 cells show the phase-distance relationship. The
phase-distance circular-linear kernel density estimation (CLKDE)
(a) shows a clear separation of the data into two subgroups, but it
differs from area CA1 in that phases are highly clustered around 0�

and the distribution of the down-phase group is close to uniform
(b) when pooled over 178 sessions. Yet, the restricted marginal
distance distributions show clear differences (c) [Color figure can be
viewed at wileyonlinelibrary.com]
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uniform. One possible explanation for this could be that although the

coordination of spikes between place cells are lowered in the knock-

out mice to a level that the phase-distance relationship is lost, there is

still a significant enough level of theta modulation of the neurons that

some structure in the distribution of phases remains. In any case, fur-

ther work should address whether this phase code, relevant at behav-

ioral timescales, is needed for long-term memory formation of

independent representations of spatially informed tasks, since knock-

out mice present deficiencies when required to perform discrimination

tasks of past events with a spatial component, as opposed to per-

forming as well as wild-type mice at learning and retaining unchanging

spatial information (Kooy et al., 1996; Krueger, Osterweil, Chen,

Tye, & Bear, 2011; Radwan, Dvorak, & Fenton, 2016).

Besides the implications that the phase-distance relationship

has on navigation (Moser et al., 2008; O'Keefe & Burgess, 2005)

and sequence coding and learning (Melamed et al., 2004; Skaggs

et al., 1996; Tsodyks, Skaggs, Sejnowski, & McNaughton, 1998),

one of us has previously shown that the relationship between

correlations-phase and place field distance plays a crucial role in a

model of the formation of grid cells (Monsalve-Mercado & Leibold,

2017). For phase coding to play this role, it needs to be valid during

natural open field foraging, and to have an effect at timescales that

are relevant for synaptic plasticity, which we have demonstrated in

this article. There are a number of ways downstream areas can be

tuned to listen to the information encoded in the correlations on

the theta channel. One possibility is that the architecture and

dynamic properties of the receiving network favors responses to

this frequency, as it is the case for some resonant circuits (Stark

et al., 2013). Another important way is for single cells to directly lis-

ten to this theta channel. A relevant example are stellate cells in

Layer II of entorhinal cortex (LIIS), which exhibit inherent resonant

behavior at theta frequencies that is able to amplify the theta com-

ponent of its input (Alonso & Klink, 1993; Giocomo, Zilli, Fransen, &

Hasselmo, 2007; Haas & White, 2002). Moreover, since subthresh-

old resonance is equivalent to a band-pass filter of theta frequen-

cies (Richardson, Brunel, & Hakim, 2003), stellate cells could

directly develop the hexagonal grid cell pattern through Hebbian

learning by listening to the phase-distance relationship present in

CA1. Principal cells in Layer II of medial entorhinal cortex (mECII)

do not receive direct input from hippocampal areas, but rather

receive relayed input from layer Vb pyramidal cells (LVP), which

likewise receive feedback input from LIIS cells (Buetfering, Allen, &

Monyer, 2014; Fuchs et al., 2016; Nilssen, Doan, Nigro, Ohara, &

Witter, 2019; Witter, Doan, Jacobsen, Nilssen, & Ohara, 2017). In

addition, pyramidal cells in mECII (LIIP) also exhibit triangular pat-

terns, and communicate with LIIS cells via intermediary cells. Filter-

ing could be implemented there at the circuit level, with the

entorhinal microcircuit LIIS–LVP possibly interacting with LIIP to

generate grid patterns in all or a subset of cells within the circuit.

The theory makes an additional prediction for grid cells in the

entorhinal cortex, which show strong phase precession in each of

their firing fields (Climer, Newman, & Hasselmo, 2013; Hafting,

Fyhn, Bonnevie, Moser, & Moser, 2008; Jeewajee et al., 2014). For

idealized grid cells within a module, similar calculations as those

reported in Monsalve-Mercado and Leibold (2017) predict that aver-

aging over all the firing fields of a grid cell pattern results in a

bimodal distribution of phases similar to that of place cells in the

hippocampus. This is because each field effectively acts as an addi-

tional recording session. For grid cells belonging to the same mod-

ule, a better measure of field overlap is provided by the spatial

offset between the grid patterns. Previous work has taken steps in

understanding the relationship between pairwise correlations

between grid cells and their spatial phase differences. For instance,

it has been shown that the absolute amount of spike-time noise

correlations decreases with the spatial phase difference between

pairs of grid cells (Dunn, Mørreaunet, & Roudi, 2015; Tocker,

Barak, & Derdikman, 2015), making pairs of grid cells with small

spatial phase difference exhibit positive functional connections while

(a)

(b) (c)

F IGURE 6 The phase-distance relationship is impaired in
Fmr1-null mice. Unlike in the CA1 and CA3 areas of control animals,
the phase-distance distribution for area CA1 in knockout mice
(a) shows no clear separation of the data into two subgroups
simultaneously both in phase and distance, but rather only a
pronounced bimodality of phases with a strong tendency toward the
up-phase group (b), without significant differences in the marginal
distribution of distances (c) [Color figure can be viewed at
wileyonlinelibrary.com]
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those with larger grid spatial phase difference show negative func-

tional connectivity (Dunn et al., 2015). More recently, it was shown

that this relationship between pairwise correlations and spatial

phase difference persists during sleep (Gardner, Lu, Wernle,

Moser, & Moser, 2019; Trettel, Trimper, Hwaun, Fiete, & Colgin,

2019). Although Dunn et al. (2015) did establish that the theta oscil-

lation plays an important role in explaining the correlated activity of

a population of grid cells, the relationship between spatial phase dif-

ference and functional connectivity did not qualitatively depend on

phase precession. While these studies do shed light on the relation-

ship between pairwise correlations and spatial phase difference in

grid cells, none of them have focused on correlations at the theta

timescale (theta band filtered correlations) to quantify the relation-

ship between those correlations—which are highly influenced by

phase precession—and the spatial relationship between grid cells' fir-

ing patterns which would be the key prediction of the analytical

results of Monsalve-Mercado & Leibold, 2017 extended to grid cells.

It would thus be a natural next step to analyze recordings from

mEC to see whether the phase coding demonstrated here for hippo-

campal place cells also exists for grid cells. This requires obtaining

enough simultaneously recorded cells from the same module.

On the theoretical side, it would be interesting to extend the

analysis reported in Monsalve-Mercado & Leibold, 2017 and relax

some of the assumptions in the calculations, perhaps by relying on

simulations. One may, for instance, study the relationship between

the phase code and the size of the place fields; in particular, in cases

where the two place fields are different in size, the cells precess to

different degrees, or where there are differences between the peak

firing rates of the place cells, as normally happens in real data. Study-

ing similar effects to this latter point would be particularly interest-

ing to evaluate in grid cells where the variability in the peak firing

rates across fields have been postulated to play a crucial role in the

representation of spatial information (Dunn, Wennberg, Huang, &

Roudi, 2017; Ismakov, Barak, Jeffery, & Derdikman, 2017; Kanter

et al., 2017).
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