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Abstract—This paper investigates a method for reducing the
reality gap that occurs when applying simulated data in train-
ing for vision-based operations in a subsea environment. The
distinction in knowledge in the simulated and real domains is
denoted the reality gap. The objective of the presented work is
to adapt and test a method for transferring knowledge obtained
in a simulated environment into the real environment. The main
method in focus is the machine learning framework CycleGAN,
mapping desired features in order to recreate environments. The
overall goal is to enable a framework trained in a simulated
environment to recognize the desired features when applied in
the real world. The performance of the learning transfer is
measured by the ability to recreate the different environments
from new test data. The obtained results demonstrates that the
CycleGAN framework is able to map features characteristic
for an underwater environment presented with the unlabeled
datasets. Evaluation metrics, such as Average precision (AP) or
FCN-score can be used to further evaluate the results. Moreover,
this requires labeled data, which provides additional development
of the current datasets.

Index Terms—Underwater robotics, transfer learning, auton-
omy, CycleGAN

I. INTRODUCTION

Today, underwater operations experience a shift towards
use of more autonomous systems, where machine learning
is believed to play a central role. Especially, regarding the
ability to transfer knowledge between operator and system.
Human brains are experts at knowledge transfer. This might
be perceived as a basic trait of the human intelligence, but is
in fact extremely complicated to establish as a computational
ability. The main idea is to enable machines to transfer
knowledge between different domains and execute different
related tasks. An overall goal is be able to to train in a
simulated domain and then execute the same tasks in the real
world. Regarding underwater operations the latter one is of
particular interest as the deep sea is less accessible, operations
are costly and challenging.

Training machines in an underwater environment is ex-
tremely time consuming and error-prone due to the harsh
environment. Moreover, if machines are trained exclusively
in simulations the transfer of knowledge to the real world
could also generate failure. This is referred to as the reality
gap [1]. Generating robust techniques for transferring the
knowledge between domains is therefore of immediate interest
for operators in this market. There exist several published
methods dealing with this problem, however only for specific

domains. This paper will investigate one such method for
the use in the underwater domain. One of the most promis-
ing frameworks, CycleGAN, will be tested on two different
datasets considering underwater environments. The datasets
include real and rendered vision based pictures of subsea
panels.

A. Motivation

The underwater robotic market size is claimed to reach USD
6.74 Billion by 2025 [2]. This corresponds to a Compound An-
nual Growth Rate (CAGR) of 13.5%. By comparison, Apple
Inc.’s 5 year CAGR is, per April 2019, 9.2% [3]. The same
report predicts that autonomous underwater vehicles (AUV)
will account for USD 1.48 billion by 2025. The Norwegian
Government is investing in the ocean space when designing
the concept Ocean Space Center. The concept has a planned
investment of 4.7 billion NOK [4].

Activity, interest and economic growth within the ocean
space is in other words unquestionable, and with growth
advancement in the technology is forthcoming. In the last
years, machine learning has experienced a substantial growth
in both media coverage and technological applications. One
specific area is within vision-based navigation for autonomous
systems. The wide interest and willingness to achieve progress
that is shown today generates motivation for further invest-
ments in the field. Machine learning is believed to play a
significant role in the shift towards autonomy.

B. Background

Underwater operations today are highly dependant on hu-
man operators. Operations previously executed by human
divers are now mostly transferred to remotely operated ve-
hicles (ROVs). Moreover, the industry is today experiencing a
new shift towards more autonomous operations where ROVs
becomes more independent of human operators. Increasing
the level of autonomy and optimize the human-robot inter-
action in these operations can potentially reduce costs and
increase safety [5]. A higher level of autonomy leads to
new requirements and increasing the autonomous complexity.
Moreover, autonomous underwater vehicles (AUVs) require
higher level of autonomy than ROVs. Since global navigation
satellite system (GNSS) measurements are not applicable
underwater, vehicle operation in this domain lacks localization
measurements and are prone to accumulation of error. Today,



the most common measurements and signal data arrives from
acoustic sensors. Such signals are prone to data loss due
to transmission losses, acoustic noise in thrusters, signal
reflections on different surfaces, absorption loss and more.
Feature extraction using camera vision are rarely used, but
improvements within artificial neural networks (ANN), espe-
cially convolutional neural networks (CNN), shows promising
results. In the presented work, systems using visual aided
navigation will be investigated. This is mostly motivated by
the rapid advance withing CNN and other computer vision
frameworks building on CNN.

Although it is in the last few years CNN has been given
recognition for its good results, it can be traced back to 1980
and Neocognitron [6]. He proposed a hierarchical multilayered
neural network performing robust visual pattern recognition.
Such networks can be defined as

”Convolutional networks are simply neural net-
works that use convolution in place of general matrix
multiplication in at least one of their layers.” [7]

A neural network can be defined as a computer program that
is inspired by the natural neural networks in the human brain
[8]. Such artificial neural networks are designed to perform
cognitive functions as problem solving and machine learning.
Neural networks have successfully been implemented in games
[9], handwriting recognition [10] and even explosive detection
[11]. Neural networks provides a method for defining a system
too complex to be defined by a simple model, e.g. image
recognition and other systems influenced by uncertainty.

A really important parameter concerning the overall capa-
bility of the neural network is it’s architecture. The architec-
ture concerns number of layers, number of neurons in each
layer, connections between neurons etc. A nematode worm
possesses only 302 neurons in total [12]. Still this presumably
unintelligent worm is capable of performing complex tasks
super computers today have troubles with. This is due to
the complexity of the yet unknown inner mechanisms and
architecture of a worm’s biological neural network. As stated
before, ANNs are inspired from the biological networks in
human brains. However, the extremely complex brain is still
not fully understood even by scientists who have devoted large
part of their professional life investigating the human brain.
ANNs architecture are therefore just a mere sketch of the
complex biological version. Still, through the 4th industrial
revolution we are experiencing today, new methods, algorithms
and frameworks emerge rapidly [13].

Machine learning applications have achieved state-of-the-
art performances in multiple disciplines using ANN. Google’s
AlphaGo has beaten the worlds best human Go player, and is
arguably the strongest Go player in history [9]. InnerEye by
Microsoft uses machine learning to develop image diagnostic
tools in order to detect tumors etc. [14]. Machine learning
approaches are also believed to have a dramatic impact in the
fields of economics [15] in the short future. Thus, it is safe
to say that machine learning will, at some extent, impact the
majority of the modern generation.

C. Contributions

This paper investigates a method for transfer learning in
underwater domains. Existing methods have not to a large
extent been tested for use in underwater domains. In the
presented work, experiments are conducted for two different
datasets obtained in an underwater environment. Large datasets
required for machine learning applications can be expensive
and difficult to acquire. Applying transfer learning methods for
underwater environments can provide an alternative method
for cost-effective and simple dataset generation. This paper
provides a collective overview of state-of-the-art frameworks
targeting transfer learning topics. Moreover, suggests solutions
for reduction of the reality gap in the learning process of
machines. The main contribution of the work is the application
of a transfer learning framework to vision-based underwater
operations.

The outline of the paper follows with Sec. II describing
investigated methods involving transfer learning. Sec. III de-
scribes the experiment setup and datasets as well as conducted
simulations, before the results are presented and discussed in
Sec. IV. Lastly conclusions and recommendations regarding
further work are presented in Sec. V.

II. RELATED WORK

Transfer learning is a substantial problem in machine learn-
ing. A robotic arm can be trained to sort red and yellow cubes.
However, such training algorithms often run into problems
if the color of the cubes change to blue and green. Or, if
the shape changes to triangles, or simply the lightning setting
changes. Algorithms trained in a simulated environment often
experience a problem when they are applied to real world data.
This is referred to as the reality gap. Different approaches
have been developed to reduce this gap between a simulated
environment and the real world. A suggested solution is to
train on a variation of simulated environment data. [16] devel-
oped an object detector that trained using only simulated data.
The paper focused on a robotic arm that would grasp desired
objects in a cluttered environment. They found it possible
to train the detector to 1.5cm accuracy. The simulator they
utilized consisted of randomly rendered images with variation
in camera position, lighting conditions, object positions and
non-realistic-textures. The objective was to perceive the real
environment as just another variation. They demonstrated how
their object detector could achieve high enough accuracy when
tested in real life even though it only had been trained on in
a simulated environment.

A breakthrough within the transfer learning topic arguably
came in 2014 when Generative Adversarial Networks (GAN)
was introduced [7]. The network consist of a combination of
two networks, a generator and a discriminator. The generator
aims to produce content, while the discriminator determines
the level of authenticity of the content. They learn simultane-
ously and compete against each other, in what can be described
as a zero-sum game. The generator produces samples x = G(z),
and the discriminator attempts to determine if the samples are
produced by the generator or if they come directly from the



training set. The discriminator produces a probability given
by D(x), indicating the probability that x is a real sample
rather than a fake sample produced by the generator. The
end-goal of GAN is that the discriminator will be unable
to distinguish the real samples from the fake and produce a
constant probability of 0.5. The discriminator will focus on
learning to correctly classify samples as real or fake, while the
generator will simultaneously try to generate as real looking
samples as possible to fool the discriminator. This model can
be highly under-constrained, but there exist several published
methods and frameworks solving this.

Coupled Generative Adversarial Network (CoGAN) is a
framework for learning joint distributions between individual
domains [17]. The model aims to obtain a learning based on
the joint distributions between domains rather than learning
from corresponding images in different domains. This simpli-
fies the requirements of the datasets, because CoGAN doesn’t
require corresponding images in the different domains. The
framework discovers the joint distribution instead. CoGAN has
been applied for color and depth images, as well as on face
images with different attributes and demonstrated successfully
image transformations between domains.

Based on the CoGAN framework, [18] illustrates a method
for unsupervised image-to-image translation. The method
learns a joint distribution between individual domains, by
assuming there exists a shared-latent space. The shared-latent
space assumption assumes a pair of corresponding images in
different domains can be mapped in the same latent domain.
The authors demonstrated image-to-image translation between
two domains without any corresponding images in the training
datasets. Moreover, a limitation of the presented translation is
a unimodal model due to the Gaussian latent space assumption.
A unimodal model means there exist only one peak, i.e. one
right answer. Another limitation is possible unstable training
due to the saddle point searching problem.

pix2pix uses conditional GAN (cGAN) to learn the transla-
tion between domains [19]. Since the release of the framework,
a large number of different experiments has been conducted by
different people. The framework shows promising results. The
downside of pix2pix is the need for correlating image pairs
in the source and target domain. A modified version of GAN,
CycleGAN, is a method to perform image-to-image translation
between domains without paired images in each domain [20].
The independence from paired images as well as wide range of
domains CycleGAN has been applied to, are the main reasons
why CycleGAN is the contemplated framework for this paper.

A. CycleGAN

A thorough description of the CycleGAN framework can
be found in [20]. Moreover, an overall description of the
framework and how the cycle consistency is implemented
in the framework is summarized here. The image-to-image
translation is achieved by adding an additional generator and
discriminator. The framework attempts to learn the mapping
y = G(x) and x ≈ F (G(x)), where G and F are two different
generators. CycleGAN is one of the recent most successful

approaches to the image domain transformation topic. Intro-
ducing x ≈ F (G(x)) provides an additional loss function, the
cycle consistency loss, in addition to the adversarial loss. The
adversarial loss is defined with

LGAN (G,DY , X, Y ) = Ey∼pdata
logDY (y)

+Ex∼pdata
log

(
1−DY

(
G(x)

))
,

(1)

where G is the mapping function attempting to generate
images G(x) similar to images in domain Y . DY attempts
to distinguish between the generated images, G(x), and the
real images y.

In order to implement a desired cycle consistent mapping,
the cycle consistency loss is added, (2). This loss ensures that
for each image, x or y, the original image is reconstructed
after the image translation cycle, i.e. X ≈ F (G(X)) and Y ≈
G(F (Y )), as previously mentioned.

Lcyc(G,F ) = Ex∼pdata
||F

(
G(x)

)
− x||1

+Ey∼pdata
||G

(
F (y)

)
− y||1 (2)

The objective in CycleGAN will concequently be a sum of
the adversiaral loss and the cycle consistency loss, represented
with the final loss function

LCycleGAN (G,F,Dx, Dy) = LGAN (G,DY , X, Y )

+ LGAN (G,DX , Y,X)

+λLcyc(G,F ). (3)

λ determines the relative importance of the two objectives.
Notice that the final loss function is represented with two
functions for adversarial loss. This is to ensure the losses for
mapping between both domains are accounted for. Considering
the loss function given by (3), the objective of CycleGAN will
be to solve

G∗, F ∗ = argmin
G,F

max
DX ,DY

LCycleGAN (G,F,Dx, Dy). (4)

As mentioned, CycleGAN offers unpaired image-to-image
translation. Regarding datasets, this provide a great advantage,
because datasets can be extracted from already existing data in
the industry. The framework can also provide the translation
with unlabeled dataset, which means time spent on labeling
each element in vast amounts of data can then be avoided.

III. EXPERIMENTAL SETUP

In this section the two contemplated datasets will be in-
troduced. Parameters regarding the training and testing of the
CycleGAN framework will also be presented.
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Fig. 1: Dataset 1.

A. Dataset

The datasets that will be used for simulations are two sets
containing real and rendered images of a subsea panel. Subsea
panels are installed on oil and gas templates on the Norwegian
Continental Shelf. The panels are accessed by ROVs for e.g.
valve operations and the ROVs operators are totally dependent
of good images. In case of autonomous valve operations,
automatic systems based on machine learning techniques and
the CycleGAN framework is one solution for image character-
ization. The datasets contains no corresponding images in the
training sets, meaning there exist no specific image for one
domain corresponding to another image in the other domain.
The datasets are also unlabeled. The framework is therefore
required to map the features between the domains without be-
ing told the correspondence between them. Dataset 1 contains
images of a subsea panel placed in the marine cybernetics
laboratory (MC-lab) at NTNU [21], as well as rendered images
of the same environment. This dataset contains four different
directories.

• trainA: Containing 4868 rendered .jpg images of the
subsea panel at the bottom of the MC-lab.

• trainB: Containing 2947 .jpg real images of the subsea
panel at the bottom of the MC-lab

• testA: Containing 132 rendered .jpg images of the subsea
panel at the bottom of the MC-lab

• testB: Containing 118 .jpg real images of the subsea
panel at the bottom of the MC-lab

The images are taken from a videostream filming the subsea
panel at different angles, while the rendered images are
rendered using the software blender. Fig. 1 represents image
examples taken from the dataset.

Dataset 2 contains real and rendered images of a subsea
panel placed in the the fjord outside Trondheim. These are im-
ages taken at a more realistic setting, which naturally contains
more noise than the images from the laboratory. The rendered
images are taken from a computer aided design (CAD) model

Rendered

Real

Fig. 2: Dataset 2.

where angles, distance and different noise patterns are altered
to ensure the dataset contains variance. The images can be
seen in Fig. 2. The dataset is split into 4 directories with

• trainA: Containing 1786 rendered .jpg images of the
subsea panel.

• trainB: Containing 406 .jpg real images of the subsea
panel at the bottom the fjord.

• testA: Containing 200 rendered .jpg images of the subsea
panel.

• testB: Containing 46 .jpg real images of the subsea panel
at the bottom of the fjord.

Both datasets represents an underwater environment, how-
ever at different extent. Dataset 1 is from a laboratory and the
images are characterized by clear water and light conditions,
not unlike a surface environment. Dataset 2 are more charac-
terized by a typical underwater environment. The environment
is dark, reflection from light source occurs and fouling are
present at a representative amount of the images. Another
reoccurring issue in underwater environments is marine snow
which leads to occluded images. Moreover, the images in this
dataset are taken from inside a fjord, which results in marine
snow being almost non-existent with relative clear images due
to calm water.

B. Framework

Dataset 1 discussed above includes images with size
256x256. When training on this network, both load size and
crop size of the framework are set to 256x256 in order
to maintain the resolution of the input images. Dataset 2
includes images with different image sizes. The rendered
images includes images in sizes 1080x980 and 1080x800. The
real images varies between 1920x1080 and 720x576. When
training on this dataset, the load size is set to 286x286 and
crop size 256x256. The different sizes of input images are
therefore coped with by loading all images into the framework
with equal size before they are cropped.

The model trains for 200 epochs, which represents going
through the entire dataset 200 times. The training is conducted
with a constant learning rate of 0.0002 for the first 100 epochs,
before decaying towards 0 for the last 100 epochs. For all



simulations, λ from equation 3 is set to λ = 10. The model
is saved every 3000 iterations. In order to keep track of the
progress during training, examples of the current state are
generated every time the model is saved. The discriminator
network architectures are 70x70 PatchGAN networks. The
regular GAN discriminator maps from a 256x256 input to a
scalar output to determine real or fake. In comparison, the
PatchGAN discriminator maps from a 256x256 input to a
NxN network of X outputs, where Xij signifies whether the
patch ij in the input image is real or fake. The architecture
of the generator networks contains two 2-stride convolutions,
nine residual blocks and two fractionally-strided convolutions
with stride 1/2. Further, the frameworks is trained with a batch
size of 3 with batch normalization. The batch normalization
ensures that the loss is calculated over the batch and not for
each instance. The framework is trained on a Nvidia GeForce
RTX 2080 Ti/PCIe/SSE2 graphics card.

IV. RESULTS AND DISCUSSION

In this section the results from the simulations will be
presented. Both datasets have been tested on transfer learning
between the two domains and the results vary. The varying
results will also be discussed and suggested improvements and
solutions will be presented.

A. Results

The results are obtained by testing the framework on the
test directories with the trained weights. A part of the obtained
results are depicted in Fig. 3. The figures includes six original
input images from the rendered domain and the corresponding
generated output. For both datasets. Testing has been con-
ducted between both domains, in order to see if the framework
has correctly mapped the relevant features in the two domains.
However, regarding the task of generating datasets for future
machine learning applications, the results presented in Fig. 3
would be the most interesting. Proper generation of images
in the real world domain enables generation of vast datasets
from rendered images. If large and decent datasets are hard
to obtain, this method can provide a more cost-effective
alternative.

The results are most satisfying for dataset 2. It can bee seen
from the figures that for dataset 2, the framework manages
to transfer the subsea panel into the other domain in a good
manner. The overall structure from the input is kept while the
domain changes towards the real domain. Regarding dataset 1
the results are not as satisfying. The output drastically deviates
from the input. The relative angle between the camera and
structure as well as the spatial features are changed in the
output relative to the input. The details on the subsea panel
also seems to be randomly placed on the panel. This suggests
that the mapping between the domains has been unsuccessful.
The domains possess some different features, e.g. QR-codes
are neglected in the rendered domain. The framework might
encounter issues mapping features that is simply non-existent
in one of the two domains.

Fig. 4 also illustrates an insufficient mapping between the
domains. For both datasets. This figure depicts the results
of applying the domain transfer on the real domain and
transferring the input images to the rendered domain. Dataset
1 demonstrates the same issues as for the opposite domain
transfer, where angles and spatial features of the input images
are changed in the domain transfer. This strengthen the theory
that the features of the domains has not been properly mapped
due to the low level of details in the rendered images. The
domain transfer for dataset 2 seems to encounter much of
the same issues. The input images includes parts of the
structure that are not included in the rendered domain. The
additional structure circumventing the subsea panel as well
as the robotic manipulator in the images are unknown to the
rendered domain. Consequently, the framework have problems
transferring theses features into the rendered domain where
they are completely absent.

As previously stated, CycleGAN compares the original
image to a reconstructed image in order to calculate the cycle
consistency loss. This is depicted in Fig. 5. The figure depicts
the input image fed to the framework and the output is the
corresponding image in the other domain. The reconstructed
image is generated by taking the output image as input and and
then transferred back to the first domain. The reconstructed
images represents the input very well. Notice that for the
second image line, the four orange dots are almost gone in
the reconstructed image. This demonstrates that the framework
perceives these features as non-important. The orange dots
are the only features on the rendered subsea panel with
information about where the QR-codes should be placed. If
these features are seen as non-important it could explain why
the generated subsea panels from Fig. 3a are often flipped.

B. Discussion

The results are promising and illustrates a decent mapping
between the domains, especially for dataset 2. However, less
satisfactory results were also obtained, which indicates that
the feature mapping may not be as robust as desired. It should
be noted that the level of details on the CAD models could
be a reason. The CAD model in dataset 1 illustrates a yellow
box with four orange dots. The different QR-codes that are
present on the real model are neglected in the CAD model.
This may confuse the framework when it attempts to map these
exact features between the two domains. This might also be a
reason why the generated images of the subsea panel often is
flipped for this dataset. The largest QR-code are placed in the
upper right corner of the real model. See Fig. 1. However, for
the constructed images, is seems randomly placed in either of
the upper corners. Placing QR-codes on the rendered model
could help ensure that the placement is perceived as a more
important feature to the framework. This dataset is obtained in
the MC-Lab at NTNU, and the images are not characterized
by the dark underwater environment. It is therefore believed
that the issues of mapping the features between the domains,
is due to the lack of details in the CAD model rather than
the fact that the domains are underwater. Moreover, we do
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(a) Dataset 1: Rendered → Real.
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(b) Dataset 2: Rendered → Real.

Fig. 3: Results from generating images in the real domain with rendered images as input.

not know exactly how the features are mapped in the neural
network, which makes it difficult to determine how much such
changes would improve the framework. It is also unknown if
they would improve the results at all.

The level of details are increased for dataset 2. However,
even though the CAD model is relatively detailed, it only
includes the panel itself. The real images shows a panel placed
on a larger subsea structure with a manipulator often occurring
in the images as well. The additional subsea structure around
the panel is non-existent in the CAD-model, which causes
some mapping issues. Constructing images of the panel from
a distance cause varying results due to this missing structure
in the CAD-model. When constructing close up images of the
panel on the other hand, the framework performs very well.
On the close up images, the level of details are quite similar
for the CAD-model and the real images. This provides good
circumstances for the framework to map the features between
the domains. This dataset is also much more characterized
by an underwater environment. When the panel is seen from
a distance it is perceived blurry, and the lighting becomes a
strong feature. Due to the dark environment, a source of light
is necessary in order to light up the subsea panel. Fouling on

the structure, distance of the camera, occluding of camera or
light source an other factors provides different reflections on
the structure and provides a challenging domain to map. Still,
the framework is able to represent this light reflection in a
good manner.

Overall, the framework performs well. Limitations that
occurs in the domain transfers are believed to arrive from
different features not being present in both domains, rather
than features characterized by underwater environments. Since
the framework is able to comprehend with such circumstantial
features, the obtained limitations should be possible to improve
similarly to surface limitations.

A limitation with the dataset is the absent of marine snow in
the images. The environments on the Norwegian Continental
Shelf are deeper, darker and more demanding than the datasets
presented in this paper. Another limitation is that the results
are hard to evaluate with a metric, due to the dataset being
unlabeled. A labeled dataset provides a ground truth, which
the results can be compared to. Two popular evaluation met-
rics for the results presented in this paper are the Average
precision (AP), which is often used when measuring accuracy
of classifiers [22], and the FCN-score used in [19].
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(a) Dataset 1: Real → Rendered.
Input Output Input Output Input Output

(b) Dataset 2: Real → Rendered.

Fig. 4: Results from generating images in the rendered domain with real images as input.

V. CONCLUSIONS AND FUTURE WORK

This paper investigate methods for reducing the reality gap
for vision based systems in the underwater segment. Simula-
tions have been conducted on two different underwater datasets
in order to apply existing methods at underwater environments.
CycleGAN has been used as the contemplated framework. The
datasets consist of rendered and real images of two different
subsea panels. The framework was trained for 200 epochs
on the two different datasets and the results demonstrated
a partially successful mapping between the domains. Some
results were satisfactory, but less satisfactory results revealed a
less robust feature mapping. The framework proved to be able
to map features characterized by underwater environments,
such as dark images and light reflection. It is therefore believed
that increasing the level of details on the CAD models could
provide a solution for increasing the robustness of the feature
mapping. Moreover, using labeled datasets can also provide
possibilities for using evaluation metrics. These issues should
be addressed in future work.
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