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Abstract

In the later years game engines, such as Unreal Engine, have been more and more utilized
for their ability to render realistic environments, and thereby generate synthetic datasets
to use in visual navigation. However, connecting these to various simulation software and
hardware setups can be challenging. The problem of connecting different devices has led to
the development of many types of middleware, defining standard terms of communication.
While most of these are quite flexible in terms of integrability, this flexibility can, in many
cases, induce unnecessary overhead and latency.

This master thesis will present the early development of a type of client software aimed
towards the creation of easily interchangeable node based simulation setups in C++, with
user-defined messages for inter-node communication while being as platform-independent
as possible. The client differs from most other middleware in the sense that the node
setup is decided at compile-time, allowing for extra optimizations and removing the need
to connect the nodes via a network connection. This decision enables optimization for
performance and latency. The client is presented with a real-world use case, connecting
the simulation environment found in Microsoft’s AirSim plugin for the Unreal Engine
game engine, with ROS, in order to create simulation data for ROS-compatible visual
navigation setups.

Sammendrag

I de senere åra har spillmotorer, som Unreal Engine, blitt brukt mer og mer grunnet deres
evne til å gengi realistiske miljøer, og dermed kunne generere syntetiske dataset for bruk
i visuell navigering. Å koble sammen disse forskjellige simuleringprogrammene med vari-
erende maskinvare kan derimot være problematisk. Dette har ledet til mye nyutvikling
av forskjellige typer mellomvare, som definerer standarder for kommikasjon mellom en-
heter. Selv om de fleste av disse er fleksible når det gjelder integrerbarhet, kan denne
fleksibiliteten i mange tilfeller forårsake unødvendig treghet i systemet.

Denne masteroppgaven presenterer en tidlig utgave av en klient-programvare, som er
rettet mot å kunne sette opp lett utskiftbare, nodebaserte, simuleringsoppsett i C++,
sammen med brukerdefinerte meldinger for kommunikasjon mellom noder, samtidig som
den holder seg så platformuavhengig som mulig. Klienten skiller seg ut fra annen mellom-
vare ved at hele simuleringsoppsettet er bestemt før kompilering. Dette åpner for ekstra
optimaliseringer og fjerner behovet for nettverkskommunikasjon mellom nodene. Dette
gjør det mulig å optimalisere bort forsinkelser og øke ytelsen. Klienten blir presentert med
et konkret bruksområde, ved å koble den sammen med Microsoft sin simuleringsplatform,
AirSim, for spillmotoren Unreal Engine, og generere simuleringdata for ROS-kompatible
oppsett for visuell navigering.
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1 | Introduction

In simulation environments for visual navigation, there are many interconnections. The
images may come from a camera, from a dataset or synthetically generated in a simu-
lated environment. In addition to this, a simulation can contain various sensor setups
to use in conjunction with the camera. All these different components require a way to
communicate with the controller and estimation software.

Splitting different processes into modules or separate pieces of code is a fundamental prin-
ciple within software development. Not only does this promote code reusability but also
simplifies the development and maintenance of the code. Modularizing code is, however,
quite challenging, as many processes not only share common parts but often have many
dependencies.

One of the main ways to improve the reusability of code and better create independent
modules is through abstractions. These abstractions allow for parts of the implementation
details to change, while the user side of the program can remain the same. In distributed
systems such as simulation systems, the modules need to exchange information. The
low-level implementation details can, however, be abstracted away.

Messaging systems such as ROS[1] are popular examples of so called middleware, which
is a type of software with the purpose of providing abstraction to the operating system.
Usually in order to connect different operating system processes or applications through
a common messaging system. Here the message distribution is handled through the
message system itself. This lets each process focus on its own task, with the only external
involvement being which messages to listen to, and what messages to send.

Most types of middleware are implemented through the use of a network connection,
which allows the software to break programming language barriers, and communicate
across different applications or programs. However, since messages sent over a network
needs to be packaged for transport, distributed and reassembled by the receiver, this does
induce latency. Besides, the compiler has no way of knowing what messages may be sent
to it, which again disables the possibility of compile-time optimizations.

This thesis will present a modular, lightweight, node-based, heavily customizable client
program, in order to make the process of setting up simulations and connecting different
interfaces easier. It is not made to compete with middleware like ROS, but rather provide
a performant way of connecting interfaces at a lower level, highly similar to the module
interconnection found in game engines, compiling the code and producing a single binary.
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To achieve this, the core client framework is written using modern C++17 in order to
attain relatively high-level code abstraction, while utilizing the compile-time optimizations
and move semantics added after C++11. The client includes a complete event system with
the possibility of adding custom event types for semantically meaningful communication
across modules and an extendable node class for the module-specific code. The node class
implements a simplified interface to define the runtime operations a simulation, as well
as a keyboard interface and logging system.

The thesis will also present an application for the client framework, showing how it can
incorporate the API for the multirotor simulator AirSim[2] made for Epic Games’ game
engine Unreal Engine 4[3], together with a ROS[1] interface for publishing Image, IMU
and transform data. Using this implementation, ground truth map and transform data
from the AirSim simulation, will be visually compared to the estimated data gained
through ORB-SLAM2[4, 5], and SVO[6] using RViz[7]. In addition to the simulations,
benchmarking results will be shown for both the core client and the full AirSim client
implementation.

2



1.1 Report Outline

The thesis is divided into four main parts: The first part consists of theoretical back-
ground on software interfaces and the application of middleware in addition to a some
theory on 3D geometry and camera projection. The second part presents a small liter-
ature review on existing middleware and their application. The third part contains the
implementation details of the framework and the specific extension towards ROS and Un-
real Engine through AirSim. Lastly, benchmarks and simulation results will be presented
and discussed.

• Chapter 2: Theoretical background on software development, 3D geometry and
camera projection.

• Chapter 3: Short litterature study on existing middleware used for robotics appli-
cations.

• Chapter 4: Implementation of the core client framework.

• Chapter 5: Implementation of an Unreal Engine simulation setup towards ROS
and Airsim using the client framework.

• Chapter 6: Benchmarks and simulation results.

• Chapter 7: Discussion on the client’s strengths and weaknesses, as well as the
simulation results.

• Chapter 8: Conclusion and Further work, presenting limitations as well as possi-
bilities for extension and uses.

3
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2 | Theory

In order to modularize software and simplify its use for a programmer or end-user, ab-
stractions are used. Not only does this increase development speed, but well thought out
abstractions also help others who use the code to better understand and reason about
its functionality. This abstraction is usually defined through interfaces into the under-
lying program, whether this is a graphical user interface, bit patterns in terms of bus
communication or function definitions in programming. However, some abstractions can
come at the cost of performance, and there is usually a tradeoff between performance and
usability.

The first part of this chapter will look into the different kinds of interfaces and abstractions
found in software, as well as different types of optimizations the compilers and processors
can do. The second part will cover some basic transformations used in 3D geometry as
well as a short introduction to camera projection and modeling, which is used in the
simulation specific part of the thesis.

2.1 Interfaces

An interface is the set of available tools the user has to use or interact with a system
or program. Interfaces directed at end-users usually consist of a graphical user inter-
face(GUI) and are made to be used without any knowledge of the underlying software.
On the other hand, developer interfaces, often denoted as application program interfaces
or APIs, consist of a set of functions and tools to programmatically use a library, without
concerning the developer with the implementation details.

2.1.1 Library Interfaces

Figure 2.1 shows a simplified version of an application, depending on a Graphics library
and a Keyboard Input library. The abstraction provided by the two libraries can then
enable the programmer to create a window, set a layout, check for key presses and print to
screen, with relatively few function calls, while the actual interaction with the operating
system and peripherals happen in the two libraries.

5



Application

Graphics Library
Interface

Keyboard Input Library
Interface

Operating System
Interface

Graphics Card
Interface

Keyboard
Interface

Application

Library

Operating System

Hardware

Figure 2.1: Example of connected interfaces.

The Key input library may, for example, implement the function; isKeyPressed(), checking
the status of a keyboard key. This function may take a keycode, which is just a number
but has the semantical meaning of a character. Internally this number can refer to the
specific keycode enumeration the operating system uses for the same thing. What number
this is may change for different operating systems. The function itself may also change
behavior depending on the operating system(OS), as the OS may define specific locations
to store the status of its peripherals. In order to update this status, the electrical signal
of the button press is translated into a code. This code is then transmitted over USB or
a similar standard, which again requires driver software to interpret.

The isKeyPressed() function is a part of the libraries interface, and the full interface of
the library will be the types and functions available to the user. The important part is
that the programmer does not need to know the details in the previous paragraph, as long
as the function provides information on whether the key is pressed.

2.1.2 Object Oriented Interfaces

In languages that support object-oriented programming, functions are often tied to spe-
cific classes, structs or objects. This relationship allows different classes to implement
methods with the same name, which operate differently. However, one can argue that
these functions or methods should perform the same general operation. For example, a
printName() method should print the name of the entity, independent of whether this is
a Dog, an Employee or Student. This sort of behavior is called polymorphism.

In languages such as Java, C++, and C#, this is done through inheritance. Here, a
generic category class is implemented as a polymorphic interface, and other more specific
instances of that class are defined to be of that type. An example of this is shown in
Figure 2.2. Here the Shape class encapsulates all of the underlying classes, saying that a
2DShape is a Shape as well as a 2DShape, and a Sphere is both a Sphere, 3DShape and
a Shape. Utilizing the knowledge of the underlying type, a function can take in a Shape
and call the function Shape::Area(), which is then mapped to the correct Area() function
call of the underlying type.
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<<interface>>
Shape

+ Area() : float
+ Position(), Vec3
+ Orientation(), Quaternion

<<interface>>
2DShape

+ Area() : float
+ Position() : Vec3
+ Orientation() : Quaternion

Rectangle

- height : float
- width : float
- position : Vec3
- orientation : Quaternion

+ Area() : float
+ Position() : Vec3
+ Orientation() : Quaternion

Circle
- radius : float
- position : Vec3
- orientation : Quaternion

+ Area() : float
+ Position() : Vec3
+ Orientation() : Quaternion

<<interface>>
3DShape

+ Area() : float
+ Volume() : float
+ Position() : Vec3
+ Orientation() : Quaternion

Sphere

- radius : float
- position : Vec3
- orientation : Quaternion

+ Area() : float
+ Volume() : float
+ Position() : Vec3
+ Orientation() : Quaternion

Figure 2.2: Example of a polymorphic interface for geometric shapes.

Another way of implementing functional interfaces is through the interface type, which
is seen in the Go programming language. Here an interface type is defined in the core
language as all types which implement a specific named function.

The areaPrinter function shown in Figure 2.3 will accept any type as long as the type
implements the three methods shown in the Shape interface definition. This means that
any of the geometric types described in Figure 2.2 would be accepted since they all
implement their version of the interface.

Figure 2.3: Example of a Shape interface definition in the Go programming language along
with how it can be used.

While this approach is similar in many ways, there is a key difference. In the polymorphic
example, all of the Geometric types are defined as shapes in addition to their other types,
while in the example shown in Figure 2.3 the type is not necessarily a shape, but has the
same interface as a shape, and can be treated as a shape for that specific function call.
Any type could therefore be sent to the function, as long as the three functions Area(),
Position() and Orientation() are implemented for the Screen type.

Both of these design approaches are incredibly powerful when it comes to operations

7



that have the same semantical meaning, but where the implementation differs. It also
provides a way to implement common operations for different types, without writing
function overloads for each type, and therefore replicating much of the code.

2.1.3 Inter-process relations

Large scale systems are often highly modularized, and may even be run across different
machines and applications. In such systems, there are bound to be interprocess depen-
dencies. An example of such a dependency is a controller waiting for new sensor data or
estimation results, or a base station needing the position of an aircraft to coordinate flight
traffic. Programs that formalize this kind of communication and provide abstractions that
can be used across different units are called middleware.

Middleware has its name from being an abstraction of operating system functionality.
This can refer to everything from hardware abstraction, simplifying communication over
a CAN-bus or packaging messages for transmission over a network. The goal of the
middleware is to provide a common platform or language where different types of processes
can communicate the same information in the same way.

Order Manager

Middleware

Network InterfaceNetwork Interface Network Interface

Network

Middleware Middleware

Elevator Driver Elevator Driver

Hardware Hardware

Figure 2.4: Distributed elevator system, utilizing network communication through middleware.

Figure 2.4 shows an example of an Elevator system depending on middleware in order for
a centralized order manager to distribute orders between the different elevators. Not only
does this enable the system to be easily scalable, in order to add more elevators in the
future, but it also provides an abstraction to the specific elevator hardware, enabling the
system to be used with different elevators.
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2.2 Optimizations

A programming language is very different from the machine code, which is run by the
operating system. In some form or another, the written code has to be interpreted or
compiled into machine code. While interpreted languages like Python and Javascript
usually are very readable and easy to write, they do lack some of the performance benefits
of a compiled language. The reason is that each line of code has to be parsed and
interpreted into machine code for each execution. While this makes the code very easy
to follow, as it is executed one line at a time, it also removes the possibility to remove
unnecessary operations or precalculate results. This is called compile-time optimization.

2.2.1 Compile Time Optimization

In compiled languages like C++ or Go, the code compiles into a single machine-readable
executable. Code indirections, like function calls, can be interpreted once, and in many
cases also omitted if all the needed information is available at compile-time.

Using Matt Godbolt’s compiler explorer1, one can compare the Assembly generated by
many different C++ compilers, for different CPU architectures. Figure 2.5 shows an
example of how the nth Fibonacci number can be found during compile time. The result
shown in the figure is compiled using the clang compiler for the x86-64 architecture, which
is found in most modern computers, but similar results can be found using other compilers
and architectures.

This means that everywhere in the code where the Fibonacci function is used, the compiler
can switch the function call with this number, and thereby reducing the execution time
of the program. Comparing Figure 2.5a and 2.5b. It can also be seen that the variable
fib in the main() function is also completely optimized away, as there is no real need to
store it.

(a) Fibonacci C++14/17 code (b) Assembly of compiled fibonacci code

Figure 2.5: Comparison of C++ code and the generated assembly.

1https://godbolt.org/z/J8vVOW
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2.2.2 Threaded Programming and Asynchronous Operations

In modern GPUs and most modern CPUs, there are multiple processor cores, which
enable simultaneous execution of different instructions. These cores have a fixed number
of hardware threads available, where each thread can hold a set of instructions to compute.
While only one thread can be run on each core simultaneously, thread execution can be
halted in order for other threads to execute. This can, for example, be beneficial when a
thread relies on reading from or writing to slow memory.

Multithreaded programs are usually not limited to the number of CPU threads. While
the software threads apply the same principle of out of order execution, they do not
tie directly to parallel processing. They instead propose concurrent behavior. Applying
concurrency means that the programmer does not care in which order the CPU executes
the instructions, and it is therefore left to the scheduler in the operating system to decide
the order. The instructions are processed in parallel if there are available resources, but
there are no guarantees.

main Renderer Fetching thread Remote Server

Update()

RenderFrame()

Update()
fetchData()

request

receive

process()

RenderFrame()

Update()

RenderFrame()

Update()

newData

Figure 2.6: Example of asynchronous operation.

In cases where a program relies on a steady flow of updates, for example, game applica-
tions, this can be hugely beneficial, which means that slowly executing or unreliable code,
can be run in a separate thread. This way, the frame rate can be held stable while still
getting the remote data. Figure 2.6 shows an asynchronous operation, where the data
fetching is run at its own pace, while the rest of the program executes as usual.
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2.2.3 Runtime Optimization

Runtime optimizations are usually highly hardware-specific, where everything from the
amount of short term memory, like cache and RAM, to the number of processor cores or
process threads play a role. Most modern CPUs also perform branch prediction. Branch
prediction refers to looking at the trends of conditional statements, which are comparable
to if statements, and beginning a partial execution of the most likely branch. This can lead
to significant performance benefits for checks that take multiple CPU cycles to execute.
However, if the prediction is wrong, the processing has to start over.

Another way of improving execution time can be through instruction pipelining and by
applying out of order execution. Pipelining refers to queuing instructions in such an
order that the CPU utilizes most of its available resources each clock cycle. This queuing
operation can be improved further by changing the order of instructions, where the result
is independent of the execution order.

2.3 Transforms and quaternion rotations

It is often beneficial to define multiple coordinate systems in a control application in order
to simplify computations and better reason about the parts of a system. The IMU, for
example, is placed in a fixed position on a vehicle, even though the vehicle moves. This
knowledge is what makes it possible to calculate the vehicle accelerations and velocities,
even though the measurements of the IMU are done in a different coordinate frame.

2.3.1 Transforms

Xa Y a

Za

Xb

Y b

Zb

~paab

•
P

~pa

~pb

Figure 2.7: Two rotated coordinate frames set at a positional offset of ~paab.

Two such coordinate frames are shown in Figure 2.7. Here the vectors ~pa and ~pb refer to
the position of point P in the coordinate frames of •a and •b respectively. Using the vector
~paab, the relationship between the vectors can be described as in Equation (2.1), where Ra

b

refers to the rotation matrix that maps the vector ~pb to the coordinates of frame •a.
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~pa =

xaya
za

 = Ra
b~p

b + ~paab = Ra
b

xbyb
zb

+ ~paab (2.1)

Rotations can be split into a product of intermediate, and often simpler rotations. It is
often beneficial to decompose the rotation into single axis rotations. This is shown in
Equation (2.2). Note however that rotation matrices are not commutative, which means
that R1R2 is not equal to R2R1 in general.

Ra
b = Ra

1R
1
2R

2
b = Rx(θ)Ry(φ)Rz(ψ) =

Ra
b =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2.2)

The relationship shown in Equation (2.1) can also be described by a single matrix trans-
form. This requires the vectors ~p to be extended to a homogeneous coordinate, [x, y, z, 1]>,
in order to incorporate the translational offset, ~paab. The matrix transform from ~pb to ~pa is
shown in Equation (2.3), with Ta

b being the transform matrix, representing the transform
from frame •b to •a.

[
~pa

1

]
= Ta

b

[
~pb

1

]
= Ta

b


xb

yb

zb

1

 (2.3a)

Ta
b =

[
Ra
b ~paab

~0> 1

]
=


R1,1 R1,2 R1,3 px
R2,1 R2,2 R2,3 py
R3,1 R3,2 R3,3 pz

0 0 0 1

 (2.3b)

2.3.2 Inverse Transforms

Since a rotation maps coordiantes from one frame to another, there should exist an inverse
operation which does the inverse mapping. This mapping is the inverse Rotation matrix,
Rb
a = Ra

b
−1. Since all rotation matrices are in the SO3 group, all rotations are orthogonal

and with determinant of 1. This means that the inverse is the matrix transpose, as shown
in Equation (2.4).

Rb
a = Ra

b
−1 = Ra

b
> , for Ra

b ∈ SO3 (2.4)
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This does however not hold for the SE3 group, which the transform matrix Ta
b is part of.

Hovever, using the relationship shown in Equation (2.5), in addition to the definition of
Tb
a = Ta

b , we get the result shown in Equation (2.6).

~paba = −~paab (2.5a)

~pbba = Rb
a~p

a
ba = Ra

b
>~paba = −Ra

b
>~paab (2.5b)

Ta
b
−1 = Tb

a =

[
Rb
a ~pbba

~0> 1

]
=

[
Ra
b
> −Ra

b
>~paab

~0> 1

]
(2.6)

2.3.3 Quaternion Rotations

Another powerful technique used to compute rotations is quaternions. These are four-
dimentional complex values on the form:

~qa,b = qw + qx ·~i+ qy ·~j + qz · ~k =
[
qw qx qy qz

]>
, (2.7)

where ~i2 = ~j2 = ~k2 = ~i~j~k = −1. Here, the subscripts •a and •b refers to two coordinate
frames, and ~qa,b is the rotation from •b to •a.

On another form, the quaternion can describe a rotation θ around an axis unit vector ~u.
This relation is shown in Equation (2.8).

~qa,b = e
θ
2
(ux~i+uy~j+uz~k) =


cos( θ

2
)

ux · sin( θ
2
)

uy · sin( θ
2
)

uz · sin( θ
2
)

 , for ~u =

uxuy
uz

 =
~pb × ~pa

||~pb × ~pa||
(2.8)

Similarilly, the inverse quaternion can be computed as in Equation (2.9), using the same
unit vector ~u.

~q−1a,b = e−
θ
2
(ux~i+uy~j+uz~k) =


cos( θ

2
)

−ux · sin( θ
2
)

−uy · sin( θ
2
)

−uz · sin( θ
2
)

 =


qw
−qx
−qy
−qz

 (2.9)

Equation (2.8) and (2.9) can be used in tandem to rotate any vector in R3. This is done
by defining an intermediate quaternion ~q′b =

[
0, ~pb>

]>, and then apply the operation
shown in Equation (2.10).
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[
0
~pa

]
= ~q′a = ~qa,b~q′b~q

−1
a,b = ~qa,b

[
0
~pb

]
~q−1a,b (2.10)

2.4 Modeling of cameras

Section 2.4 is more or less copied directly from my project thesis[8], providing only minor
alterations in order to fit the setup of this master thesis.

All cameras project a 3D scene onto a 2D plane. This projection causes information to
be lost about the depth of the image. It is therefore not possible to calculate the exact
placement of an object from a single picture unless there is extra information about the
objects in the picture. For this reason, a projection can easily be created from a 3D scene,
but it is hard to re-create a scene from a projection. Additionally, the number of pixels
and the field of view(FoV) also affect the information and detail in the captured image.
The most basic camera model is called the pinhole model, and it is applicable for most
cameras without high distortion lenses.

2.4.1 Pinhole projection

The pinhole model replicates the capturing of a scene by projecting straight light rays
through a common focal point, and a plane. The projection itself is made from where the
light rays intersect the projection plane. The focal length, f , and the image plane size
will decide the field of view(FoV), ΘH and Θ, as shown in Figure 2.8.

X

Y

z, Z

x

y

f

Θ

ΘH

Figure 2.8: Pinhole projection with the image plane between the focal point and the object.

Using the properties of similar triangles, the relationship between the world coordinates,
X, Y, Z, and the image coordinates x, y becomes:
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tan(φx) =
x

f
=
X

Z
tan(φy) =

y

f
=
Y

Z
(2.11)

x = f
X

Z
y = f

Y

Z
(2.12)

As seen in Equation (2.12), the relationship between the sizes is nonlinear. In order to
present this in matrix form, the homogeneous coordinates, po = [x, y, 1]>, and Po =
[X, Y, Z, 1]> are used. The matrix transformation is shown in Equation (2.13), with the
intermediate step p̃0 being po scaled by Z. The •o superscript refers to the optical frame
of the camera.

p̃o =

x̃ỹ
z̃

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 po =
1

z̃
p̃o (2.13)

Since the light rays need to pass through the pinhole and onto the image plane, it is not
possible to have a FoV larger than 180◦. As seen in Equation (2.13), the projected object
is also scaled by the distance, causing the points where the vertical FoV is 180◦ to be
singular.

x

y

u

v

u0

W

v0

H

Figure 2.9: Relationship between pixel and image coordinates.

In a digital camera, the image plane consists of a small chip with a discrete number of
light sensitive elements, or pixels. A new pixel coordinate frame is defined to consist of the
image pixels, with the origin in the upper left corner, as shown in Figure 2.9. UsingW and
H as the image width and height in pixels, respectively, the transformation from image
coordinates to pixel coordinates will be as shown in Equation (2.14), with •p referring to
the pixel coordinate frame, with its origin at the camera center.
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pp =

uv
1

 =

 W
2xmax

0 u0
0 H

2ymax
v0

0 0 1

po =

 W
2xmax

0 W
2

0 H
2ymax

H
2

0 0 1

xy
1

 (2.14)
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3 | Middleware and tools for VO and
SLAM applications

As computing power continues to grow, more and more applications of visual odometry
and SLAM become available. Today even pre-trained deep neural networks(DNN) can
be run on small aerial vehicles, as were done in [9] using DNN for object detection along
with direct sparse odometry[10] on an NVIDIA Jetson TX1 graphics processing unit. It is
especially the availablity of on-board graphics capabilities which have enabled this, where
the team behind SVO managed to get framerates as high as 55 frames per second(fps)
using an embedded Odroid U2, along with greyscale images of 752× 480 pixels[6].

As eluded to in [8], there is also an increasing number of simulation tools[2, 11–13] able
to create synthetic images and sensor data with more and more realistic properties, using
modern game engines. According to [14], Kongsberg Digital has also integrated AirSim
into their own rendering engine, COGS, to generate machine learning training data.

These game engines can replicate real-world effects such as multiple light sources in a
room, and casting realistic shadows, for dataset generation. The simulation tools men-
tioned here have also expanded the physics capabilities of the engines in order to provide
complete simulation environments.

An interresting use case for these systems are Hardware in the loop(HIL) simulations,
where sensor data can be simulated and provided to a real world controller, which again
can control the simulated system. Examples of this can be seen in [2, 15, 16], simulated
using AirSim, VEHIL[17] and CARLA[13] respectively.

The process of connecting hardware, or other software to these simulations is however
not trivial. For this reason there exists many types of middleware, which incorporates
the task of creating a common communication pattern between the different parts of a
system.

3.1 Existing Middleware

A survey made by Mohamed et. al.[18] compared fifteen different middleware solutions,
looking at their design goals and trying to categorize them in terms of reusability, simpli-
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fication of development, whether they offered real-time guarantees, how extendable they
are in terms of functionality, and whether they support direct communication with a
robot’s periferals.

Seing that the applications of middleware vary as much as they do, and that the de-
velopers clearly interpret the problems differently, they conclude that the best solution
probably would be some sort of component based middleware, which includes the needed
functionality.

lastly, the survey also summarized some of the open issues still to be addressed in terms
of robotics development. These include:

1. Lack of standardization between middleware

2. Limited self-adaptation and self-configuration possibilities

3. Investigation of security for data storage and transmission

4. Coordination and colaboration of robots

It should be noted that these were open issues as of 2008, and much have happened in
the later years. Already in 2012, Elkady et.al. addressed some of these issues in their
survey[19]. For example MRDS[20, 21] include frameworks for robot coordination and
behaviour execution, which addresses point 4 to some extent.

Table 2 in the survey by Elkady et.al[19] also list multiple middleware solutions which
adds data access security guarantees. Whether this issue has been adequately addressed
can however be discussed, as this is a huge topic and they are quite brief in their ex-
planation. However, they explicitly state that Common Object Request Broker Archi-
tecture(CORBA)[22], which is a standard used by some middleware, supports encryption
through Secure Sockets Layer(SSL) for their network transfers. Among the around twenty
types of middleware examined by the survey, many of them overlapped with [18]. However,
they examined some extra categories such as fault tolerance, platform independability and
configuration at runtime.

According to a thesis written in 2018[23], the eight most used types of the middleware
solutions for multi-robot environments are:

• Carnegie Mellon Robot Navigation Toolkit(Carmen)[24]

• Miro[25, 26]

• Mobile and Autonomous Robotics Integration Environment(MARIE)[27]

• Microsoft Robotics Developer Studio(MRDS)[20, 21]

• Orca[28]

• Player/Stage[29]
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• Python Robotics(Pyro)[30, 31]

• Robot Operating System(ROS)[1]

The application of these systems vary quite a bit, both in terms of design goals, aims, in-
corporated tooling and simulation capabilities. For example Pyro, is created for teaching
robotics to students without much experience in the field[31] and is therefore implemented
for a handful of specific robots, while Carmen implements a system for dynamic intercon-
nection between context aware services on a wireless network.

MRDS, Carmen, ROS and also Player/Stage imeplements their own simulation platform
with their respective messaging protocol integrated. In addition Player and Miro also
supports the Gazebo[32] simulator for the ROS platform. It should, however, be noted
that these simulators are implemented towards physics simulations, and not realistic 3D-
rendering, making them less powerful in terms of visual odometry and SLAM.

Most of these modules provide hardware abstraction through a common messaging sys-
tem, usually over a network connection, enabling high-level features such as managing
behaviour and movement patterns through predefined modules. However, as described
in[18], there is a lack of standardization between the different middleware solutions. Here
MARIE and ROS stand out, as they are made with the ability of easilly wrapping the
other standards in their own module framework, and therefore providing a common com-
munication platform.

This is highly valuable for systems where the setup changes regularilly, which it usually
does in research and production environments. They also provide great flexibility both in
terms of programming language support and supported platforms, relying on a network
connection. As discussed in Section 2.2, splitting programs into different communicating
applications can have significant performance implications. This is also the reason why
many of these cannot be used in embedded systems.

3.1.1 Embedded middleware

Miro, mentioned in the previous section is an example of such middleware, which is made
to run on a network of microcontrollers, connected by a bus. Using a small virtual machine
run on each microprocessor, it provides high level communication abstraction for com-
mon bus technologies such as CAN or I2C. Another such middleware is Aseba[33], which
provides hardware abstraction through their own scripting language and programming
platform, which can be interfaced through TCP/IP.

In addition to these, the PX4 framework[34] should be mentioned. This framework is
for example used for the popular Pixhawk PX4 flight controller. The PX4 is a Unix-
based form of middleware, which provides a publish/subscribe type messaging protocol.
It incorporates many bus technology standards, to provide low level data tranfer of sensor
and control messages. It also provides an interface to MAVLink[35], which is a message
library designed for communication between a ground station and drones. The module
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is also made to be wrapped into a ROS node if a network connection or other modules
featuring ROS APIs are needed.

Common for the embedded platform is that they need to be built for specific hardware,
which is why they are used for on board flight controllers or similar systems. This does
however mean that there are currently only specific embedded platforms where they can
be used. Many of them can however be interfaced towards general purpose computers and
are therefor useful for hardware in the loop simulations. The PX4 also has an advantage
in that it can be compiled to Rapberry Pi, which is highly versatile in its usage.

3.1.2 Summary

There are lots of types of middleware avalable for robotics applications, whether it is made
to be run as a message platform on a general purpose computer, or embedded into specific
hardware. Most commonly, general purpose middleware incorporate messages through a
network connection. This adds lots of flexibilities, but has some implications when it
comes to performance. On the other hand, the appications of embedded middleware can
be quite limited, as they are targeted towards specific hardware. This does however mean
that many of them can be interfaced towards a computer to do hardware in the loop
simulations.

The numerous middlewares are mostly made to work independently. While systems like
MARIE and ROS are made to incorporate other robotics interfaces, there are few or no
platforms which let the developer use a common messaging system, to combine different
APIs within one single application on a general purpose computer, meaning that there
is a possible use case for the client described in Chapter 1, as long as it does not create
significant overhead to the simulation.
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4 | Core Client Design

The client framework described in this section is not made to be a competitor to other
middleware, as there would be no way to compete with the number of features, flexibility
and tooling these have, in the short timeframe of the project.

The goal of this client is, therefore, to build a lightweight and modular framework, with
minimal execution overhead, seeking to be as platform-independent as possible. At the
same time, it should force the programmer to think about modularity, and thereby pro-
moting reusable code, while only paying for the latency of functionality which is needed.

It will also be made with other middleware applications in mind so that the client can
be extended with their APIs in order to incorporate additional features. However, the
requirement for this is that it has a C or C++ API.

4.1 Initial Design Choices

As previously mentioned, creating a single executable for the application has its benefits
in the fact that the compiler can optimize the code better, most likely increasing the
performance in comparison to distributed systems. The drawback, however, is that the
client itself needs a resource manager, deciding when a module can operate, as the operat-
ing system cannot break the sequence of code execution within single-threaded programs.
This function can, however, be replicated to some extent through multi-threaded pro-
gramming, but the client would still need some sort of manager which creates and keeps
track of the asynchronous operations.

Due to the nature of the application, where each module can require a different amount of
data processing time, a multi-threaded approach would most likely be preferable. Espe-
cially if some modules perform heavy calculations, or slow, blocking, API calls. Delving
into multi-threaded programming does however open up a whole new range of problems,
such as race conditions, where multiple threads try to write to the same memory, and
deadlocks, where threads are stuck waiting for each other. Delving into multi-threaded
programming was seen as too big of a task to take within the short amount of time
available for this project. Taking the single-threaded approach does, however, not hin-
der multi-threaded or asynchronous behavior of third party libraries. Redesigning the
core resource manager around a multi-threaded approach would however be a reasonable
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extension for later projects.

Keeping the resource manager single-threaded means that there will be some update loop,
where control is given to one module at the time, iterating through them. This does create
some extra work for the module developers, as they need to make sure that the operation
it does is not blocking the other modules.

The language choice for the client ended up as C++. In order to be performant, it had
to be a compiled language. This decision ruled out popular interpreted languages like
Python. The fact that C++ is highly optimizable, while still incorporating many high-
level features, has made it widespread and much used. Its ability to compile C code also
allows for extensions that use C, which is the case for many embedded programs. The
main contributor towards this choice is, however, that Unreal Engine, AirSim, and ROS
are all written in C++ and have C++ APIs. These are all systems that will be used in
the use case example shown in Chapter 5.

The following sections will present the core implementation and design choices of the
client, including resource management, module design patterns, and the messaging plat-
form. The last two will be referred to as nodes and events for the rest of the thesis, as
this reflects the naming in the actual code.

4.2 Core Structure

The core design of the client is split into four main classes: The client, nodes, events
and the event dispatcher. The client is the resource manager, keeping track of the active
nodes, distributing events, and runnning the main program loop. Problem specific work
is handled by the nodes, and messages between nodes are handled through dispatched
events. Nodes and events are designed to be defined by the user according to a specific
task. The nodes are also made to be the link to external dependencies, like external
libraries or other program interfaces. In addition to this, the client also features support
classes for window and Keyboard input handling through GLFW and logging with the
spdlog logging library.

Figure 4.1 shows the relationship between the core classes and how the client interacts
with the user-defined classes. As shown in the figure, both the node class and the event
class has a pure virtual interface that must be defined for each specific node or event. The
overridden functions are then called through virtual function calls in the base node and
event class. In the case of this class diagram, only two user-defined nodes and one event
are shown. In a realistic implementation there would most likely be multiple different
user-defined events, and possibly also more nodes, where each node would interact and
handle with multiple events each, while the classes shown inside the "Client core" section
will stay unchanged.
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Client core

Client
- all_nodes_ : vector<Node>
- active_nodes_ : vector<Node>

+ AddNode( node : Node )
+ Run()
+ OnEvent( event : Event )
- StartNode( node : Node )
- StopNode( node : Node )
- OnShutdownEvent()

<<interface>>
Node

+ OnStartup()
+ OnShutdown()
+ OnUpdate( dt : nanoseconds )
+ OnEvent( event : Event )
+ SetEventCallbackFn( cb : function )

EventDispatcher

- event_ : Event

+ Dispatch ( func : function )

<<interface>>
Event

+ handled : bool
+ GetEventType() : EventType
+ GetName() : string
+ GetCategoryFlags() : int
+ ToString() : string
+ IsInCategory() : bool

ShutdownEvent

+ GetEventType() : Event-
Type
+ GetName() : string
+ GetCategoryFlags() : int
+ ToString() : string
+ IsInCategory() : bool

Node 1
- EventCallback : function
+ OnStartup()
+ OnShutdown()
+ OnUpdate( dt : nanoseconds )
+ OnEvent( event : Event )
+ SetEventCallbackFn( cb : function )

Node 2
- EventCallback : function
+ OnStartup()
+ OnShutdown()
+ OnUpdate( dt : nanoseconds )
+ OnEvent( event : Event )
+ SetEventCallbackFn( cb : function )
- OnEvent1(event : Event1)

Event 1
- data : Data
+ GetEventType() : Event-
Type
+ GetName() : string
+ GetCategoryFlags() : int
+ ToString() : string
+ IsInCategory() : bool
+ GetData() : Data

Figure 4.1: Core structure of the client

4.2.1 Use Case Client Specific Setup

As the client should be completely modular in the sense of which nodes to compile, an
intuitive way to add nodes to compile is needed. This problem was solved through the
function AddNode, which adds the node to the client’s active nodes list as well as some
initial setup. This is however the only setup needed before starting the client’s run loop.
The setup in the main function of the program therefore boils down to:

1. Create client.

2. Construct and add nodes via the Client::AddNode function.

3. Call Client::Run

4.2.2 Node Interface and Design

The nodes should operate independently of each other. However, there needs to be some
standard interface towards the resource manager so it can decide upon the runtime oper-
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ation. Through this interface, the client should be able to initialize, pass events, perform
the main run loop, and stop the operation of a node. While this is possible to imple-
ment through templates, the most descriptive and easily extendable way is through a
polymorphic interface. In C++, this is called virtual functions.

As shown in the class diagram in Figure 4.1, the node interface includes five virtual
functions:

• SetEventCallbackFn()

• OnStartup()

• OnShutdown()

• OnUpdate()

• OnEvent()

Since the nodes are initialized after the client’s construction, and that the client itself is
dependent on the Node header file, the nodes need a way to set where to send created
events, or rather which function to call when an event is created. The SetEventCall-
backFn() is there for this reason. This function is called automatically by the client when
a node is added to it through the Client::AddNode() function. The function overload is
required to store the event function locally so that events can be sent and distributed by
the client.

The next decision concerns node-specific initialization and shutdown. While most of the
initialization usually can, and should, be done in the class constructor and destructor
respectively. There may also be cases that require the client to be in operation. This
could, for example, be important initialization, which should cause a shutdown if it fails.
In this case, it might be beneficial to delay that initialization step until the client is
guaranteed to respond to a shutdown event. This resulted in Two additional overloadable
functions called OnStartup() and OnShutdown().

OnStartup() is called once for each node, just before the update loop starts, as shown in
the startup sequence in Figure 4.2a. This function has access to all events handled by
the client, meaning that all initialization that could need to interact with the window,
or initialization which could fail, but still require cleanup, should be handled here. The
OnStartup() function also marks the point in which the node is assumed ready to handle
events.

OnShutdown() has a similar role. It allows event creation as a part of the shutdown
routine, creating an opportunity to handle disconnection to external dependencies or tell
other nodes that it is no longer available. In terms of node state, OnShutdown() represents
the point in which the node stops handling events.

The last part of the node interface concerns the normal runtime operations of the node.
These functions decide what the node does when it gets to run and how it will respond
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main Client Node 1 Node 2

AddNode(Node1)
SetEventCallbackFn(...)

AddNode(Node1)
SetEventCallbackFn(...)

Run()
StartNode(Node1)

OnStartup()

StartNode(Node2)
OnStartup()

OnUpdate(dt)

OnUpdate(dt)

Update LoopUpdate Loop

(a) Startup sequence

main Client Node 1 Node 2

Run()

OnUpdate(dt)

OnEvent(shutdown)
Dispatch<shutdown>
OnShutdownEvent(shutdown)

true
true

Event LoopEvent Loop

Update LoopUpdate Loop

StopNode(Node 1)
OnShutdown()

StopNode(Node 2)
OnShutdown()

(b) Shutdown triggered by Node 1.

Figure 4.2: Startup and Shutdown Sequence example of the client.

to events. Since the node update is repeating in nature, while the events can occur at
varying intervals these are split into two functions: OnUpdate() and OnEvent().

The client calls OnUpdate() as a part of the update loop. Here the client loops through
all nodes repeatedly, calling their OnUpdate() function until shutdown. The design of this
function should, therefore, contain most of the runtime operations of the node, polling
for updates from external interfaces and updating local state. In the case of a ROS node,
this would, for example, mean calling ros::SpinOnce() in order to run its update loop for
handling publishing and subscription callbacks. The update loop is also where most events
should be created in order to communicate with the other nodes. OnEvent() function is
the interface a node has to receive and handle events. This function and how it ties into
the event system will be discussed in detail in the following sections.

4.2.3 Event Handling

In order to break the program sequence, and send data between nodes, the client im-
plements a centralized event system, using the EventDispatcher class and the OnEvent()
functions. The two main parts of the event system are differentiating between event types
and choosing which event types a node should handle.

To solve the problems with the event handling, the event system was designed directly
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based on that of the Hazel game engine1, which is currently being developed by Yan
Chernikov. The event system is only changed slightly to fit the application.

This approach defines a couple of macros to define the type and category of an event,
which will be used by the Event dispatcher class to type check and call the correct event
handling function defined within the specific node class. This design is quite robust and
makes no assumptions on the layout of the event. However, there is some setup needed
to be done by the developer in order to use it.

Part of the definition must include the EVENT_CLASS_TYPE macro with the specific
event type enumeration as an argument. This event type must be defined within the
EventType enumeration in the Event.hpp file. This is also where user-defined event types
would be added as they are needed. There is also a macro called EVENT_CLASS_CATEGORY,
which is optional. This macro adds the event to a specific category, which may be used
for filtering out specific events for logging or similar operations, using the IsInCategory()
function. Filtering on a category could also be used if the user wants to ignore certain
categories of events.

There is, however, an unfortunate drawback of the single-threaded approach when it
comes to events. As shown in Figure 4.5, the event loop is started when a node calls its
event callback function. While this forces the client to handle the event right away, as
it is supposed to do, it also blocks the update loop until the event the client or a node
handles the event.

Another approach could be to implement an event queueing mechanism, where all events
are handled after the update loop. However, this would only delay the problem. It would
also remove some of the semantic meaning of an event, where it is supposed to be sudden
and force the nodes to react.

Event Distribution and Dispatching

Since the event handling functions are defined as a part of the node definition, the event
dispatcher, which chooses the correct event handling function, also needs to be defined
locally. This specific implementation of the EventDispatcher class also needs to be created
for each event and should be the first thing to happen in the OnEvent() function of a
node. As the event dispatcher only holds a reference to the actual event, this should not
amount to any performance loss.

The magic of calling the correct event handling function comes from subsequent calls
to the event dispatcher’s Dispatch() function, as shown in Figure 4.3. This templated
function takes in a specific event class type as a template and an event handling function
as an argument. The dispatch call then type-checks the templated type to the type of
the event. If the types match, the dispatcher calls the function. In this way, the node
developer can list all Event types to handle, and how to handle them by adding Dispatch()
calls.

1https://github.com/TheCherno/Hazel
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Figure 4.3: Event Dispatching for ShutDownEvents and WindowCloseEvents in the core client

An advantage to the dispatch interface is that it is easy for a developer to see which
events a node responds to, which also makes it easier to reason about the code. The
clever type-checking mechanism and smart redirection of events were the main reason for
adopting this event system.

Event Handling Function Design

As explained previously the event system type checks the event in each call to Dispatch().
This means that at the time of dispatching the event to the event handling function, the
type is known. Using this fact, two overloads of the dispatch call have been added, where
the difference is the requirement on the event handling function, the actual implementation
is shown in Figure 4.4.

The first overload is the one used for events containing data. This type of event could, for
example, be an image or a sensor update. In this case, the event handling function to be
called needs a reference to the actual event, which is why the dispatch method requires
binding to a std::function<bool(const T&)>.

The second overload is a special version where the event handling function does not take
an argument. This overload should be used for events that carry meaning, but no actual
data. An example of this is the WindowCloseEvent handled by the client. This event
tells the client that somebody closed the window, which in itself is sufficient to describe
everything that happened.

The return value of both overloads is a boolean. As seen in the function body of Dispatch()
in Figure 4.4, this sets the handled flag of the event. What this does is that it gives a
node the possibility to tell the client that the event needs no more handling and that the
event loop should terminate. This is a way to reduce the amount of time spent in the
event loop, resuming the update loop. Using this should, however, be done with caution,
as lower prioritized nodes will not get the event.

Choosing whether an event is blocked or let through is therefore for the designer of the
node to decide. A logging node could, for example, want to handle all events in the sense
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Figure 4.4: Implementation of the EventDispatcher class

of adding a log entry. However, it should not block further event handling and hinder the
normal operation of the system. However, a node taking control inputs specific for that
node would want to block further event handling, reducing the amount of time outside
the update loop.

Figure 4.5 shows typical event handling. In both cases the event loop is started by a
node creating an event and calling Client::OnEvent() through its event callback function.
In Figure 4.5a the event is handled and blocked by Node 1, stopping the loop, while in
Figure 4.5b the event is first handled in Node 1. However, it is handled as an unblocked
event, by returning false from the event handling function, meaning that it is also passed
to Node 2. After the last node has finished, the event loop finishes.

The client handles three types of events. These include ShutdownEvent,WindowCloseEvent
and WindowResizeEvent. As of now both ShutdownEvent and WindowCloseEvent causes
shutdown process to start. If other behavior is wanted this can be changed in the
Client.cpp file. As of the current design, none of these events will be blocked. This
means that they are all available to the nodes. Even though there should not be any real
reasons to handle a ShutdownEvent in a node, because of the OnShutdown() function call
being called as a part of Client shutdown, the decision was made to remove any surprises
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(b) Handled and passed on by Node 1

Figure 4.5: Runtime loop showing Node 2 creating an event, which is handled by Node 1.

from the node developer side, as well as removing a possible reason for needing to change
the core code.

Window and Keyboard Interface

One missing element during the early work with the project thesis was a way to control
the multirotor in Unreal Engine using the keyboard. While the API comes with multiple
API calls that can be used to control the drone programmatically, it is much easier to
do quick tests with keyboard control. The main requirement for this is that polling for
input cannot be blocking. In other words, a check if a key is pressed must return at once,
independent of the key status. This means that the standard iostream C++ key interface,
cin is out of the question, as it requires the user to confirm a keypress.

The easiest way to get key input from the operating system is by tieing it to a specific
window. The implementation of this is highly operating system specific and would be
hard to do correctly. There are, however, many libraries which help with this. Most
notable for Ubuntu are Ncurses, Qt, GLFW, and SFML. NCurses is the most lightweight
library, with its sole purpose being granting access to terminal input. Both Qt and SFML
are quite large libraries providing a ton of functionality, most notably being graphical user
interfaces, where keyboard input is only a small part of the libraries. Finally, GLFW is
a cross-platform window context library made as a base for common graphics APIs like
OpenGL or Vulkan. One can, however, create windows and get access to the keyboard
interface.
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Early versions of the client were implemented with NCurses, as it takes its input directly
from the terminal, meaning that there is no need for an additional window. However, the
implementation did not work correctly with multiple keys held down at the same time.
This criterion is, however, a necessity for comfortable drone control. For this reason,
GLFW was chosen. This choice also enables extending the client to include a debugging
GUI in the future.

In addition to the polling-based approach, GLFW also allows for easy coupling of the
keyboard inputs to the client’s event system. The drawback adding GLFW is that the
program now has an additional window to which the keyboard inputs are tied.

The client is currently set up with a window class, separate from the node system, which
is a wrapper around the GLFW window API. The window class couples the window
functions to the close, resize, and key events of the client. The key events are divided into
keypresses- and releases, which are propagated in the same manner as all other events.
This means that the key events are available to all nodes at all times.

Logging

String formating and printouts are very useful in order to debug. However, the standard
cout can be quite slow if not used correctly. In addition to this, string-formatting can
be tedious, time-consuming, and provide much clutter in the code. For this reason, it
was decided to use a logging library, specifically spdlog[36]. Spdlog provides a simple
interface for log formatting, differentiating in log levels and messages, file logging as well
as both single-threaded and multithreaded loggers. The Hazel game engine referenced
in Section 4.2.3 also provided a simple wrapper for spdlog, which supplied useful macros
for creating different log statements split into different log levels. This logger was also
invaluable when while doing benchmarks.

The possible log-levels implemented are:

• Trace

• Info

• Warning

• Error

• Fatal Error

• Debug Event

The only difference between the top four is the output color. Fatal errors are special error
level messages which also throw a runtime exception. Lastly, the debug event level is a
warning level log entry, which is only shown if the client is compiled in debug mode. This
gives the user some choice in where to add messages and what they represent. All macros
support the string formatting options provided by spdlog.
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5 | AirSim Client Implementation

This chapter will present a concrete example of how to use the client and how to implement
problem specific nodes to use with external interfaces. Specifically, this implementation
will include a node for interfacing towards ROS, one node for receiving sensor data and
control a drone in AirSim and a simple node for calculating mean square error based on
data received through events. The implementation will also be extended to show how this
implementation can access data produced by SVO and ORB SLAM, through their ROS
interfaces, as well as visualization of the data through RViz.

5.1 AirSim Client Design

The goal of the AirSim Client is mainly to provide a ROS interface to the AirSim API,
which in turn grants access to camera output, sensor data and ground truth measurements
related to the AirSim drone run inside an Unreal Engine environment. In addition to this,
a simple node for comparing ground truth positional data to the estimated position given
by SLAM and VO-algorithms were added, as well as client-side keyboard control of the
AirSim drone.

Figure 5.1 shows a simplified view of how the different parts of the AirSim client commu-
nicate and how it is connected to ROS and AirSim. Here, the blue nodes represent the
core client presented in Chapter 4, while the green nodes represent unmodified external
code.

Currently, the ROS interface only supports the different image types described in the
"ImageCaptureBase.hpp" file in the source code of AirSim as well as IMU data. The
AirSim API itself, however, supports a barometer, GPS, magnetometer, distance sensor,
and Lidar. These can be added to the client at a later date, through adding events and
ROS publishers with associated topics.

The AirSim client is split into two nodes which run simultaneously: The AirSim node
which handles all communication with the AirSim client API and the ROS node which
handles all of the ROS publishing and subscriptions. With this project, two different
versions of the AirSim node is used. One is targeting the Computer vision(CV) mode,
and the other is targeting the Multirotor mode of AirSim. The following sections will get
into the details of the design of each node and custom events, showing how it ties into
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AirSim APIROS

Unreal Engine

Figure 5.1: Simplified overview of the information flow of the AirSim client. Red bubbles refer
to application specific code, blue bubbles represent core client functions and the green bubbles
are external dependencies. black arows represent information flow through normal function calls,
while red arrows represent event based communication.

the core client runtime operation.

5.1.1 AirSim Client Events

The common factors between the nodes are that they both handle images, IMU data and
Transform messages in some form, and will form the base events for this implementation.
In addition to this, some extra info about the camera is transferred with the image event.
This information includes the type of image sent, the intrinsic parameters of the camera,
and the frame id and transform of the camera. Since this amount to very little extra data
compared to the image, as well as them being so tightly connected, there was no reason
to split them into separate events.

Core Client

AirSim
Node

ROS
Node

ShutdownEvent ShutdownEvent

ImageEvent
TransformEvent
SensorEvent

Figure 5.2: Overview of the event information flow with ascociated Event names.

As Figure 5.2 shows, the events are designed to follow the flow of:
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1. Fetch data from AirSim

2. Send data to RosNode

3. Publish data to Ros

4. Receive Transform estimates over ROS

5.1.2 AirSim Node

The AirSim plugin to Unreal Engine creates an RPC server, which runs alongside the
environment to allow external communication over TCP/IP networks. Alongside this
AirSim provides an API with a set of commands to read sensor data and control the
vehicle inside of the Unreal Engine environment. It is this client API the AirSim node is
connected to. This is true for both the ComputerVision node and the Multirotor node.
The differences come in the form of the available functionality of the simulation modes.

In order to select simulation mode, the SimMode variable needs to be set in the set-
tings.json file, as described by their own documentation[37]. The client is also made to
parse this settings file, and select the correct node to start based on this setting, with
the multirotor node being set as a default, if no simulation mode is supplied. A typical
settings file configuration file setup for AirSim is shown in Figure 5.3.

Figure 5.3: Partial setting.json file for AirSim configuration.

In ComputerVision mode AirSim does not simulate any vehicle, and there are therefore
no sensors associated with it except for a camera. The camera position is also controlled
through the keyboard inside of Unreal Engine, without any involvement from the client.
The API used for controlling the multirotor from the client is disabled for the CV mode,
which means that there is no way to enable remote control.

The node itself is set up to receive a single RGB image each update loop and create an
ImageEvent with the image. This means that the ComputerVision node operates as a
channel supplying a constant stream of images from AirSim.

From this, it can be seen that the Multirotor node supports more features than the CV
node. It supports multiple cameras, client-side multirotor control, Imu data, and fetching
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of ground truth kinematics of the multirotor. However, the CV node is not tied to the
physics engine of AirSim, meaning that it can, for example, be used for camera calibration
or gathering datasets quickly. Just like the multirotor node, this node also parses the full
settings.json document to find the specific vehicle setup in AirSim, to find which cameras
are available.

One significant problem encountered with the AirSim node is that the amount of time it
takes to get a picture is around 80ms. This low framerate hinders the regular operation
of the node. The fact that this call to AirSim is synchronous, also means that the control
loop for the multirotor is delayed, causing unresponsive controls. This is unfortunately
tied to the Unreal Engine side of the simulation, meaning that there is no easy fix.

5.1.3 ROS Node

The ROS node is designed around ROS-operations, with its node handle, subscribers and
publishers. It keeps track of the different publishers needed to send images, transforms
and camera info topics over ROS, in order to supply these to ORB-SLAM2 and SVO.

In order to create the correct publisher for publishing sensor data from AirSim, the ROS
node also parses the settings.json file and then creates separate publishers and topics
based on the vehicle setup. In the Event handling functions for sensor data, the correct
publisher is chosen based on sensor type, sensor name, and associated vehicle.

5.2 Static Simulation Setup

As discussed, the goal of the AirSim client setup provides images for VO and SLAM
algorithms through ROS messages, while also providing ground truth data for comparison.
Since RGB images, depth images and vehicle transforms are available directly through
the AirSim API, the only setup needed is to define the coordinate frames, and set their
relative transforms.

In order to reduce the number of slow calls to the AirSim API, we can store some trans-
forms that are stationary throughout the simulation. The map frame will be used as the
reference frame, and for simplicity, the multirotor will be set to spawn at the origin. This
means that the transform from the map frame to the multirotor spawn frame is equal to
the identity matrix. This is shown in Equation (5.1), with m referring to the map frame,
and s referring to the spawn frame.

Tm
s =

[
Rm
s ~pmms

~0> 1

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.1)
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Another stationary transform is the camera frames relative to the multirotor. Based
settings file described in Section 5.1.2, the camera is known to be positioned 46cm along
the north axis of the multirotor throughout the simulation. Using this information, two
frames relating the camera to the multirotor will be defined.

The camera body frame, •c, which will keep the NED convention, and a rotated optical
frame, •o, which follows the most common optical frame convention. This frame will have
its x-axis to the right in the picture, y-axis downwards and z-axis into the picture. The
optical frame rotation is shown in Equation (5.2), and the full transform from optical to
vehicle frame is shown in Equation (5.3).

Rc
o = Rx

(π
2

)
Ry

(π
2

)
=

1 0 0
0 0 −1
0 1 0

 0 0 1
0 1 0
−1 0 0

 =

0 0 1
1 0 0
0 1 0

 (5.2)

Tv
o = Tv

cT
c
o =

[
Rv
c ~pvvc

~0> 1

] [
Rc
o ~pcco

~0> 1

]
=


0 0 1 0.46
1 0 0 0
0 1 0 0
0 0 0 1

 , for ~pvvc =

0.46
0
0

 (5.3)

The last thing which is needed is the intrinsic parameters of the camera as these are needed
to calculate the projection matrix. While the AirSim API does provide a projection
matrix, it is the one used by Unreal Engine for its graphics processing, projecting a view
frustum into a known volume. While they are related, they are not directly convertible.
Seeing that the AirSim settings file gives the field of view, image resolution, and aspect
ratio, it is just as easy to calculate the projection matrix once and store it.

~pp =
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 =
1

Z
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1

Z

W2 0 W
2

0 H
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H
2
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0

0 0 1

 ~po

=
1

Z


W

2tan( θ2)
0 W

2

0 H

2tan( θ2)
H
2

0 0 1


︸ ︷︷ ︸

K

~po =
1

Z


W

2tan( θ2)
0 W

2

0 H

2tan( θ2)
H
2

0 0 1
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(5.4)

Equation (5.4) shows the intrinsic matrix K in relation to the projection from a point
~po given in the camera’s optical frame, to pixel coordinates, denoted ~pp. Here W and H
refer to the width and height of the image in pixels and θ begin the field of view. The
projection matrix P given by Equation (5.5). Note that the translation portion is the
zero vector. This is because ~po is given in the optical frame.
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P =
[
K ~0

]
=


W

2tan( θ2)
0 W

2
0

0 H

2tan( θ2)
H
2

0

0 0 1 0

 (5.5)

5.3 Visualization

There are four main elements of this simulation which is to be visualized:

• Ground truth map point cloud
• VO/SLAM estimated map point cloud
• Ground truth position in the simulated map
• Estimated position in the map coordinate frame

The client itself does not provide any visualization tools, so in order to show the live oper-
ation, RViz is used. RViz is a visualization tool for ROS topics. It supports visualization
for many of the common ROS messages, for data such as point clouds, transforms, and
images. In order to create a 3D visualization, it uses the frame id found in the standard
ROS message header to keep track of relative positions.

This section will focus on the setup related to the visualization of data, while the results
will be shown in Chapter 6 along with the client benchmarks.

5.3.1 Rviz Map Frame

RViz uses a north-west-up coordinate representation for its visualizations, while AirSim
uses a north-east-down representation. This means that the visualization will appear
flipped upside-down if the map frame from AirSim is tied directly to RViz. The easiest
way to solve this was through a static_transform_publisher provided by the tf2 library
to ROS. This can be launched as its own ROS node providing an additional rotated
coordinate frame to use as the map frame in RViz. Using Equation (2.8), with θ = π and
~u = [1, 0, 0]>, we get the rotation shown in Equation (5.6). Here R represents the Rviz
map frame, and A represents the AirSim map frame.

~qR,A =


qw
qx
qy
qz

 =


cos(π

2
)

ux · sin(π
2
)

uy · sin(π
2
)

uz · sin(π
2
)

 =


0
1
0
0

 (5.6)

The launch file for the static transform publisher is shown in Figure 5.4, where the argu-
ments are given in the order:
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Figure 5.4: ROS launch file for publishing transform between North-East-Down and North-
West-Up frames. Arguments in order: px, py, pz, qx, qy, qz, qw, parent frame id, child frame id,
republish period.

5.3.2 Ground Truth Map Visualization

While the ground truth pose of the simulated multirotor is directly available with the
AirSim API, the map itself is not. Ground truth depth images are however available.
This means that the distance from the simulated camera, to the objects in the map, is
known. Using this as well the transform to the camera frame, one can make a ground
truth point cloud for the map.

Through the package, depth_image_proc for ROS, a nodelet is defined to do just this. The
point_cloud_xyzrgb takes a depth, image, a point cloud, and a camera info ROS message,
and publishes a point cloud as a PointCloud2 ROS message, which can be shown directly
in RViz. The launch file for this nodelet is shown in Figure 5.5, with added remapping of
topics to match the ones published by the client.

Figure 5.5: ROS launch file for point cloud publisher.

5.3.3 Estimated Map and Transforms

Both SVO and ORB-SLAM2 have ROS interfaces that can be run through the ROS launch
file system. This means that most of the setup needed in order to run these with AirSim
is complete. The only needed is to match coordinate frames, set which cameras to use and
supply the camera’s intrinsic parameters. For this simulation, the intrinsic parameters in
the config files will be set to match the ground truth parameters of the camera. In this
case, that is equal to the undistorted pinhole model, with the image dimensions of 512 by
512.

Using the matrix K from Equation 5.4, with a FoV of 90◦ and image dimentions of
512× 512, we get:
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K =


W

2tan( θ2)
0 W

2

0 H

2tan( θ2)
W
2

0 0 1

 (5.7)
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6 | Results

The first two sections of this chapter will contain the benchmarks for the core client and
the AirSim client, respectively. Here the benchmarks are run more vigorously for the core
client, as that is the main topic of this thesis. For the AirSim implementation, only the
main update loop will be timed, together with bottleneck findings. The last section shows
the operation of the AirSim client while applying ORB-SLAM2 and SVO to the generated
image data.

6.1 Core Client Benchmarks

This section will present the benchmarks of the core client. For each category, they will
be qualitatively compared to a similar ROS implementation. Since the two systems do
not use the same messaging protocol or design approach, there are bound to be differences
in the implementation. However, the tests aim to apply semantically similar operations
in both systems, even though the underlying code is different.

ROS also provides a node type called nodelets, which provide about the same interface
but can be compiled together, in order to allow for some optimization. The comparisons
towards ROS will be made towards both ROS nodes and ROS nodelets, in order for the
benchmark comparisons to be realistic.

6.1.1 Common benchmark setup

All benchmarks have been done on a computer running Ubuntu 18.04, and the client code
has been compiled using the clang 6.0 compiler. In order to limit external factors, the PC
was not used for any other purposes while the benchmarks were running. Some relevant
computer specs are posted in Table 6.1.

The tests performed in this section will measure the time it takes for a node to generate
an event, send the event to another node and receive a confirmation from the other node,
in the form of a reply message or event.

Each test is run in groups of 1.000.000 events, where the test is rerun between two and
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Table 6.1: Hardware setup for benchmarks

Type Specification
Processor AMD Ryzen 5 1600X 6x3.6GHZ
RAM HyperX Fury DDR4 2666MHz
GPU Nvidia GeForce 1080Ti

five times to average out the runtime specific differences as best as possible. This is also
true for the ROS nodelets. However, the number of messages sent had to be reduced for
the ROS node data transfers with many nodes spawned, as some of the tests would have
taken multiple days for each run. The results which deviate from the setup described here
will be pointed out in the later sections.

One thing to note is that the timing results were significantly slower for the first 1-5000
cycles of the tests. Some were up to ten times as slow. Based on this observation, it was
decided to discard the first 10000 timing results for each run, as the relevant part is the
long-time operation of the system and not the start-up process.

Node setup

In each of the benchmarks, only one node will be created as an initial publisher. Since
the node which sends the message is also the one that receives the confirmation, it is also
the only node that does the actual logging. This was done to reduce the amount of effect
the actual logging has on the test itself. As an additional effort to assure as little external
impact on the tests as possible, the nodes are set up to do only one of three tasks:

1. Publish initial message and wait for repsonse

2. Listen for message, and not respond

3. Listen for message, and respond

Also, there is some difference in the types used for timestamps for ROS nodes and Client
events. For time handling, the client utilizes the Chrono library, while ROS uses its own
time library. While the implementation of these differs, it felt most natural to use the
time library, which would most likely be used for the different applications.

6.1.2 Transfer of simple message

In order to test how both systems handle the transfer of small messages, the first test is
using a ping-type message and a response-type message. Both messages consist of:

• sender id (int32)
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• receiver id (int32)

• message id (int32)

• timestamp (chrono time point / ros Time)

Figure 6.1 shows the average time to send the simple message and receive confirmation.
This can be seen to scale linearly with the number of nodes created. Compared to the
actual message transfer time, this effect is quite significant, as the transfer time is almost
doubled in the sixteen nodes test, as opposed to two. For the ROS node, this happens as
early as for ten nodes.

An interesting result is the fact that Figure 6.1b shows that the client has a significant
outlier at 50 created nodes, while an outlier at 32 nodes can be seen in Figure 6.1a for the
ROS node. These are not common across the different implementations but are consistent
in all five runs done for each type.
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Figure 6.1: Timing comparison of simple message mean time, between ROS and the client.

Figure 6.1a also show that the client implementation is significantly faster than the ROS
node implementation and that it scales better with the number of nodes. The nodelet
approach, while being much closer to the client in implementation and speed, also contains
significant overhead, and scales worse than the client.

6.1.3 Transfer of large data

To test the speed of large data transfers, a similar test to the simple message transfer
was used. However, the message was changed to also contain a 1080x1080 size vector, in
addition to the other information. This vector can, for example, represent a 1080x1080
greyscale image, or a 512x512 RGBA image, which would be a common task for the client
to transfer. The whole message contains:

• sender id (int32)
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• receiver id (int32)

• message id (int32)

• timestamp (chrono time point / ros Time)

• data (vector / variable size array)

Note the difference in the data container between the event and the ROS message. The
client uses a vector of floats, while ROS uses its variable size array type defined for the ROS
message system. These are the most comparable large containers, as they both support
an arbitrary amount of elements, decided at runtime. Note that the test only transfers
the vector one way and that the response is the same simple message type described in
the previous section.

Table 6.2: Amount of samples taken each run and amount of runs per implementation type.

Runs Amount of samples
Nodes 2 4 8 10 16

ROS node 2 1.000.000 500.000 200.000 200.000 100.000

As shown in Figure 6.2, this took significantly more time across all implementations. Due
to this, only the client tests were run for 128 nodes. As seen in Figure 6.2a the ROS nodes
scaled really poorly with this test. Seeing that the average transfer time of the message
for 16 nodes was close to 25µs. Since each run of a million samples for 16 nodes would
take around 7 hours, the number of samples had to be reduced. The number of samples
and the number of individual runs are shown in Table 6.2. The rest of the nodes were
run with one million samples each run.
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Figure 6.2: Timing comparison of large data transfer mean time, between ROS and the client.

In all cases, except for the ROS nodes, we see that the amount of nodes has little to
no impact on the performance. This behavior is more shows more easily in Figure 6.2b,
where the deviations are sporadic rather than dependent on the number of nodes created.
The scaling of the ROS nodelets also seems to be flattening out at around the 32 node
point, even decreasing a bit at 100 nodes created.
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6.1.4 Sample distributions for client benchmarks

Looking at the distribution in Figure 6.3, we see much of the same as in Figure 6.1b.
However, looking at the box plot in Figure 6.3b, an increase in slope can be seen. One
should also note that while the plot shows very consistent results, the consistency decreases
with the increased number of nodes. However, even in the worst case of 128 nodes, it can
be seen that the first and third quartile is within 250ns of each other. Another interesting
observation in Figure 6.3a is that the outliers of the benchmarks for 50 nodes are a lot
more spread than for the rest.
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Figure 6.3: Boxplot of the timing sample distribution for small message transfer.

For the large data benchmarks, in Figure 6.4b, it can be seen that there is no significant
increase in processing time based on the number of nodes. One should, however, note
that while the values deviate more in the large message tests, the relative deviation scaled
the median is smaller than for the small message tests. Another observation is that the
results are more inconsistent with each other, showing a significantly slower response with
32 nodes. However, one should take into account that this test was run only twice, as
opposed to 5 times, which was done for the small messages and the data-pointer messages.

In Figure 6.5 way more consistent results can be seen, both in terms of quartile placement,
median and outlier boundaries. As with the mean values shown in Figure 6.2b, it can
be seen that the performance of the data-pointer message is about four times faster than
that of the data copy.

An observation concerning all three tests is that there does not seem to be any correlation
between the outliers in the figures and the number of nodes created. However, for 32
nodes, we see a high median in both Figure 6.4b 6.5b, showing that there is a higher
spread in the lower 50% of the values.
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Figure 6.4: Boxplot of the timing sample distribution for large data transfer.
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Figure 6.5: Boxplot of the timing sample distribution for transfer of data by a shared pointer.

6.2 AirSim Client Timings

The Airsim client implementation is heavily reliant on the external operations of AirSim,
Unreal Engine, and ROS. Operations which are uncontrollable from the client’s perspec-
tive. The AirSim client implementation also needed to run at a very low framerate in
terms of images delivered to the ROS interface. For this reason, there was an incentive
to find the bottleneck or bottlenecks in the implementation.

For these tests, the framerate was set to five frames per second, while the update loop
was unconstrained. This means that the control loop, ROS publishing and subscription,
Transform calculation, and event system runs as fast and often as it is able.

For these tests, only 50000 samples were gathered, where the first 5000 were discarded,
for the same reasons as explained in Section 6.1.1. The mean, standard deviation, and
median for both measurements are shown in Table 6.3. Note that the measurements for
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Table 6.3: Comparinson of statistical data for the image fetch times, compared to the update
loop of the system.

Type Image Fetching Delay Update Loop
Mean 80, 12ms 2, 01ms
Standard deviation 5, 60ms 9, 39ms
Median 80, 39ms 0, 32ms

the update loop also contains fetching of two images every 200ms.

Image Fetching
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Figure 6.6: Timing data for the fetch time of two images through the RPC interface of AirSim.

The average delay in Table 6.3 show a considerable bottleneck in terms of the image-
fetching. As the time it takes from the RPC call starts to the RBG and depth image is
received is around 80ms on average. Looking at Figure 6.6, the fetch times also seem to
be normal-distributed around this mean, never going below 60ms. The rest of the update
loop is comparatively much faster.

Figure 6.7b shows that the first quartile and the median are very close to each other.
This result is to be expected, as based on the 200ms delay between each image fetch call
and the update loop median in Table 6.3, there should be about 250 samples of the fast
update loop per update loop with image fetching.

This does, however, mean that there are many samples of the fast loop which lie above the
third quartile. Comparing Figure 6.6 and 6.7a a significant potion of samples lie between
the 60ms mark of the fetch times, and the 1.2ms mark around the third quartile.

6.3 Simulations

Both Orb-SLAM and SVO were attempted to run in two different environments: The
Unreal Engine Temple example environment, seen in Figure 6.8, and on a full-size 3D
model of the Skarv FPSO[38], seen in Figure 6.9. As in-depth error metrics is outside the
scope of this thesis, only a visual comparison will be performed.
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Figure 6.7: Timing data for the whole update loop of the client, including image fetching.

All simulations were done in real-time, with AirSim connected to ROS through the client
setup described in Chapter 5, using the standard multirotor model and flight controller
API, provided by AirSim. SVO was run with one monocular camera pointing down-
wards, as they recommend on their wiki pages [39], and ORB-SLAM2 was run with both
monocular RGB and RGB + depth.

(a) Outside pavillion (b) Inside

Figure 6.8: Unreal Engine temple environment.

(a) Whole model in UE4. (b) Detail view

Figure 6.9: Live size 3D model of Skarv FPSO
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6.3.1 Unreal Engine Temple Simulations

The temple environment is shown in Figure 6.8 is a relatively small scene, providing
both an indoor environment, as well as a semi-outdoor environment. This allows for an
excellent basis to see how SLAM and VO algorithms perform in low-light conditions, as
well as direct or indirect sunlight.

In order to establish a visual comparison for the mapping of ORB-SLAM2, a point cloud
was created from the ground truth data gained from AirSim. Using a depth image and
the pose of the multirotor, an RGB image can be mapped to a dense point cloud, as
described in Section 5.3.2.

(a) Point cloud generated while staying still. (b) Point cloud generated through movement.

Figure 6.10: Point cloud generation from ground truth image and pose.

The technique does, however, not provide an accurate map, as can be seen in Figure 6.10.
On the left-hand side, in Figure 6.10a, the image can be seen projected onto a point
cloud while standing still in the air. This allows the depth image and pose measurements
to synchronize, providing an accurate result. In Figure 6.10b, however, one can observe
significant blur. Especially around the pillar on the bottom right. This effect is induced
whenever there is significant movement of the multirotor. Generating a dense point cloud
of this size also affected the performance of the flight controller. In order to counter this,
a decay time was set up, so that old points were deleted.

Using the same technique, one can generate a map for the whole scene. The parts of the
map used in these simulations are shown in Figure 6.11. As mentioned above, the point
cloud itself cannot be used as ground truth. It is, however, sufficient to use as a visual
comparison to the estimated data.

ORB-SLAM2 RGB

The map in Figure 6.12 is generated by the ORB-SLAM2, without any depth information.
Comparing it to Figure 6.11, it can be seen that the shape of the map is quite similar. The
relative sizes of the rooms and corridors are also quite correct. The only clear discrepancy
is the corridor just below the picture center.
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Figure 6.11: Map point cloud overview, generated directly from ground truth depth image and
pose

There are a couple of points to take note of in the map: These are the topmost circular
wall, the right-hand side wall and the corridors on the bottom half of the map. These are
all in which ORB-SLAM2 struggles to place map points. It shall, however, be said that
there was little to no problems when it came to feature tracking, as long as the multirotor
did not induce any quick rotations.

Figure 6.12: ORB-SLAM2 generated map, using a monocular RGB camera.

Figure 6.13 shows how the map and estimated pose compares to the ground truth data.
The multirotor is flying at the position shown in Figure 6.13b, while the estimate is shown
in Figure 6.13a. It can also be seen that the scale and rotation is off. However, it is not
possible to estimate this using monocular SLAM.
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(a) Estimated pose in generated map. (b) Multirotor placement in temple environment.

Figure 6.13: Comparison of estimated pose and actual pose.

ORB-SLAM2 RGBD

Adding a depth image as an input to ORB-SLAM2 made the initial mapping very close
to the ground truth measurements, as seen in Figure 6.14. Comparing these simulations
to the previous one, it is also seen that the rotation has been correctly estimated. This is
also shown in Figure 6.15b, where the corner is placed almost perfectly.

Figure 6.14: Comparison of the scale and placement of the estimated map.

However, during tracking, it was significantly easier to loose the tracked features in this
setup. Especially around the corridors on the bottom half of Figure 6.12. The results of
this were generation of smaller maps within the map, as seen in the left part of Figure 6.14
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and the right side of Figure 6.15a. The longer the simulations lasted, the more of these
nested maps were generated.

(a) North-western corner. (b) South-eastern corner.

Figure 6.15: Corner wall placement comparison on opposite sides of the room.

SVO

SVO had a lot more trouble with feature tracking in this environment, where the hardest
part was getting a proper initialization. Using the standard setup for the FAST feature
tracker, it was not able to track anything aside from the initial points. While decreasing
the search grid size helped a bit, applying the accurate preset setting provided the best
results. The FoV was also increased to 110◦, with corrected intrinsic parameters, and
setting the image to greyscale. The fps could, however, not be increased above ten fps
due to the limitations in the AirSim API. These changes allowed for decent tracking in
some areas.

In the indoor parts of the temple environment, the number of features it was able to
track was constantly around the minimum threshold of 100 features, which usually meant
that it went below the threshold as soon as the multirotor moved. Decent tracking was
achieved in the pavilion shown in Figure 6.8a, where the light conditions were better.
This produced the track shown in Figure 6.16 and 6.17.

Figure 6.16: SVO pose estimate close to the origin.
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Looking at Figure 6.16 it can be seen that there is very little drift in the pose estimation,
even after significant movement, and in Figure 6.17b we see that the estimated direction
is correct, even though the absolute scale is off. As mentioned earlier, it is not possible
to compute the actual scale with monocular SLAM, which means that this result is quite
good even at the reduced framerate.

(a) In flight away from origin.
(b) Showing correct estimated direction.

Figure 6.17: SVO pose estimate away from the origin.

6.3.2 Skarv FPSO Simulations

There is one significant difference between the temple environment and the Skarv envi-
ronment: The temple environment is made in Unreal Engine and optimized in terms of
details and lighting calculations, while the Skarv model is not. It is directly imported into
the scene from a production-ready model. This turned out to be too computationally in-
tensive for both of the computers available for testing. The number of calculations needed
to render the scene slowed down the simulation drastically, causing severe stuttering and
even making the flight controller unstable at times. This made SVO fail the initialization
step altogether, as the image frame rates were not consistent enough. For this reason, all
attempts of SVO simulation on the Skarv FPSO model was discarded.

ORB-SLAM2 was actually able to find features and initialize, as seen in Figure 6.18.
However, the only way to keep track of the features was to move at very incremental
steps. In many cases, this led to the map points provided by ORB-SLAM to stacking on
top of each other.

51



(a) In flight view. (b) RViz view.

Figure 6.18: Attempt at running ORB-SLAM2 in the Skarv FPSO environment.
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7 | Discussion

As presented in Chapter 1 and 3 there are a lot of existing middleware, which incorpo-
rates modularization techniques and messaging protocols across modules, all the way from
small embedded applications to large scale distributed systems across multiple machines.
However, one small gap exists between the network-based middleware solutions, aimed
for general-purpose operating systems, and the embedded middleware. Namely a way to
connect the different interfaces found in the various simulation setups, in a way that pro-
motes modularization and code reuse, while still being compiled into a single application,
in order to enable compile-time optimizations.

7.1 Core Client design

The core client was made to be minimalistic by design, in itself only consisting of about a
thousand lines of code, trying to make it as small as possible, while making the possibilities
of expansion as simple as possible. The implementation provides minimal functionality at
its core, enabling the application to process what is needed for the specific use and little
else. For this reason, all the client does during the main parts of the runtime is: Keeping
track of the time between updates, deciding when a node is allowed to run its update loop,
distributing current events and updating the GLFW window for the keyboard interface.

These operations alone provide extremely little overhead, as seen in the benchmarks for
the simple message passing, Figure 6.1, where both the message overhead itself, and the
scaling of additional nodes is significantly better than the ROS equivalents. The fact that
the difference in processing time towards ROS is so large means that there is virtually no
implications in terms of latency when using the client together with ROS.

The strength of the client comes in the form of how the events and nodes work together.
Since the event system is the only way the nodes can pass information between each other,
the events can be created to have semantic meaning such as "image" and "transform."
This abstraction allows for modularization, where all nodes that know how to handle
images can handle them, regardless of which node sent it.

The downside of the event system does not protect the programmer in any way against
creating slow implementations. Since the user of the client is free to design the nodes and
events however they want, they may also design events inefficiently. The effect of this
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is shown quite well in Figure 6.2b, where the performance of managing the vector as a
shared resource, is about four times faster on average than creating and sending copies.
This drawback is, unfortunately, something that comes with using the C++ language,
where it trades high performance with an increased amount of pitfalls.

Something ROS messages do very neatly is that messages files define structures outside
of the code. The compiled message code is then shared to the nodes that need their
definition. This functionality is something the core client should have surrounding the
event system. At this point, to create readable events, it is easiest to define a struct and
include a header in each node that needs to know about it. While this is possible to define
in the event definition file, it would be most readable to do this behind the scene.

The nodes provide a clear interface for the programmer, with a set number of descrip-
tive functions that need to implement, reflecting the phases in operation: construc-
tion/destruction, startup/shutdown, during an update and on an event. This setup forces
the programmer to split the code up in smaller chunks of more readable code, instead
of long, convoluted initialization scripts ending in a while loop. A lacking feature in the
core client is, however, synchronization between nodes, in between startup and the first
update loop. The implications of this will be discussed further in Section 7.2.

The explicit shutdown mechanic creates a way to tell external APIs that the client will
no longer be available and therefore shut down cleanly. Note that there is no inherent
exception safety, meaning that unhandled exceptions thrown by the nodes or their con-
nected APIs will terminate the application. As the client should not assume that every
exception is a non-breaking exception, this is intentional.

C++ is also one of the more portable languages, as there exist compilers for C++ available
in most operating systems, and even for a wide range of microcontrollers. As of now, one
should note that the client relies on GLFW for input handling, as well as spdlog for
logging. GLFW is locked to Windows, macOS, and Linux, while spdlog also supports
Android and a couple more systems. However, these systems could be easily disabled to
port the client to other platforms.

An improvement to implement is a way of making GLFW windows behave more like
nodes, and change the input system accordingly. This way, windows could be added if
needed, reducing the overhead of the client further.

When it comes to the flexibility of the client, it is less flexible than many other types of
middleware. The decision to make it a single C++ application means that all connected
interfaces need a C or C++ API. The constraint of compiling a single binary also makes
the possibility of inherently supporting multiple programming languages a lot harder.
However, since interfacing towards ROS is easily done via the node system, there are
options to extend the flexibility. This approach where the middleware can work together,
rather than compete is a step in the right direction.

The main drawback of the client is its single-threaded, synchronous client design. Even
though asynchronous function calls are possible, there is no way of protecting the update
loop from slow, blocking, function calls. While this makes it easy to reason about the

54



execution order of both updates and events, it also means that a node that uses a long time
to update will block all other nodes from doing their task. This delay can be detrimental
to real-time applications, such as control loops. Future additions to the client should,
therefore, include a scheduler, which can set some execution on hold to allow execution
of time-critical code.

7.1.1 Performance

The performance goal of the core client is to impact the latency of the application in a
way that is of magnitudes lower than other types of middleware, so that they may be
used together with the client without applying any additional latency. Looking at the
resulting benchmarks in Figure 6.1 and 6.2, it can be seen that the results satisfy this
criterion, at least when it comes to ROS. According to this thesis [23], ROS also has
a small overhead compared to many other types of robotics middleware, which means
that comparing the client to other types of middleware would give similar results. This
statement does, however, not include embedded types of middleware, which are highly
optimized for the platforms they support.

The graphs plotted in Section 6.1 are based around the processing time scaling based
on the number of nodes. While scaling is an important factor, one should note that
creating multiple nodes, all subscribing to topics containing large data messages, is not
realistic in terms of applications for visual navigation. Large data structures like the
ones benchmarked here are in most cases images, which should only be processed for
VO/SLAM or AI purposes. In other words, very few nodes will listen to this kind of data
messages, which in turn makes the results for 2− 4 nodes most relevant.

The ROS nodelets scale considerably better than the ROS nodes, which most likely is
because the underlying message used for ROS nodelets only contain pointers to a shared
data resource, while the ROS nodes copy the message contents to each node. The reason
why the copy version of the large data event example in Figure 6.2b scales just as well
as the pointer-based approach, is because only event transfer only performs one extra
copy. While all the nodes receive the event, the event system itself is created so that only
one single instance of the event itself exists, and the nodes get a reference to this event
instance.

In the client timings for the simple message, there was one outlier in Figure 6.1b, where the
response time for 50 nodes was slower than expected when compared to the other results.
This result also shows in the distribution in Figure 6.3a, where a significant amount
of outliers lie way above the outliers for the other tests. These results were consistent
between all five timed runs, and the outlier samples were distributed sporadically in the
datasets. However, since the tests were run in quick succession, the most likely cause is
that the operating system was doing other work while running the tests. Since these tests
take such a small amount of time, any processes which delay the execution in the scale of
microseconds could have a significant effect on the timing.

Outliers are not uncommon in any of the plots. In fact all plots in Figure 6.3 , 6.4 and 6.5
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show a significant amount of outliers. These outliers are most likely caused by the operat-
ing system’s background tasks influencing the measurements. As eluded to in the previous
paragraph, many OS tasks are running in the background affecting the measurements. In
addition to this, memory access time differences between registers cache and RAM may
also show in these kinds of tests.

This fact does not mean that the outliers are discardable. While these numbers are
low enough for the simple messages to affect the overall operation, larger spikes could
be detrimental to control applications. In the case of large data transfers, seen in Fig-
ure 6.4a and 6.5a, as there are samples which reach the 2− 4ms range. One should note
that this is the case for about 0−2 samples per 5.000.000 for the shared-pointer approach,
and 0− 2 samples per 2.000.000 in the case of the vector copy approach. In other words,
it happens extremely rarely. More extensive benchmarks, accounting for varying amounts
of computation, should, however, be done if the system is extended to include real-time
guarantees.

It can also be seen that the box plots vary way more in Figure 6.4b than in Figure 6.5b.
This result is likely caused by the fact that each test was run only two times, as opposed
to five, which could mean that these benchmarks ran too few tests, for the large data
case.

All in all, the benchmarks for the core client turned out satisfactory, showing high per-
formance compared to the ROS equivalent. The box plot distributions also showed that
75% of the samples stayed within 100ns of each other, except for the case of 128 nodes,
which is not a practical use case of the client. For the large data timings, 75% of the
samples stayed within 60µs of each other. This results in a smaller relative variance than
for the smaller size data, which is good.

The fact that the barebones implementation is so fast also shows potential in terms of
embedded systems. There is at least potential for compiling it to work on a Raspberry
Pi or similar systems, where low-level external interfaces are available. This possibility
could create interesting applications to use the client for HIL purposes. Whether this
is possible would require further testing, and there is also a possibility that existing
embedded middleware is more suited to this kind of application.

7.2 Airsim Client Design

The AirSim Client was designed to show how one can incorporate the drone simulation
of AirSim, in Unreal Engine, together with ROS based VO/SLAM algorithms, using the
client framework. This operation was achieved by designing a ROS node and two AirSim
nodes, and a common set of events for transferring images, transforms and camera info
between the nodes. The two AirSim nodes were responsible for each of the simulation
modes of AirSim: Multirotor mode and Computer vision mode, and which one to run was
decided by reading the AirSim settings file during initialization.
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In terms of the initial design, it was easy to split the different roles. The ROS node,
would handle all communication, publishing and subscribing to topics, and keeping the
info needed for ROS local. The same was true for AirSim, where it could keep track of
the RPC connection to AirSim, and the information needed to access the cameras and
vehicle. This way the ROS node never kept any information about the state of AirSim,
and the other way around.

However, one problem arose when the setup in the AirSim node needed to change. In the
case of ORB-SLAM2, it has two modes of monocular SLAM. One requires a color image,
while the other also needs a depth image. Moreover, in the case of SVO, the setup needs
a downward pointing camera producing greyscale images.

For the AirSim node, the change was simple. After adding a downward pointing camera
to the AirSim simulation and API, this could be set active in the AirSim settings file,
discussed in Section 5.1.2. This setting meant that r the AirSim node could be made
general, by merely parsing the settings in this file, to find the current setup. This change
solved the problem without adding any new dependencies.

In the ROS node, however, the published topics were set initially to be static. This could,
however, no longer be the case, as the number of publishers needed to change to fit the
setup of ORB-SLAM and SVO. The way this was solved was through parsing the same
settings file, and setting up a variable amount of publishers based on this. Looking at
this in hindsight, it is a violation of the whole principle behind the client structure, as it
added a dependency between the ROS node and the AirSim node. It also shows that the
client lacks post initialization possibilities.

One could argue that one could pass these as ROS parameters in a launch file. However,
this would make the user need to keep the ROS parameters up to date with the change
in the AirSim settings file. While this would have solved the problem, a cleaner solution
would be to add an initialization event to the ROS node, which should hold the topics to
publish to, as well as the message types. However, due to the lack of post-initialization
possibilities, there is currently no good time to create this event. During startup, the only
available events are the client events, and in the update loop, one would have to create
extra logic to ensure a single event instance, and that the ROS node handles it before
anything is to be published.

A feature for which should for the future would, therefore, be a post initialization step,
and another type of events made for initialization between nodes. The client should run
this step after all the nodes have run the OnStartup() function, and before the first update.
This functionality would then create another layer to the node design, enabling dynamic
configuration based on which nodes are active. While it would add a small dependency
between the nodes, it would remove the need for the AirSim nodes to include ROS header
files or the other way around.
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7.2.1 Performance

In regards to performance, the single-threaded approach of the client showed negatively in
a couple of cases. As seen in Table 6.3, the image fetching from AirSim takes a considerable
amount of time, with a median of around 80ms. Since the update loops of the nodes are
run in succession, synchronously, the image fetching would hold the operation of the ROS
node, as well as the rest of the AirSim update execution. Because of this, the multirotor
controls became less responsive, and the transforms were updated and published at a
slower rate than they should. This problem was partially solved by setting using the
delta-time, or time since the last update, to only fetch an image every 100ms. However,
it did not solve the problem with the blocking function call.

While the image fetching is way too slow in general, this should not affect the rest of the
system in any significant way, and could be solved through asynchronous function calls,
where the fetching of images is run concurrently with the rest of the program, to allow
multiple updates to be run for each image fetched, and also allow updates while fetching
the image.

The reason behind the slow function call to fetch images was tracked down to be a specific
part of Unreal Engine, which reads the pixel values from the texture in the camera object’s
render target[40]. After trying Unreal Engine version 4.18, 4.20, 4.21, and 4.22, this issue
is still there. Changing the Unreal Engine source code would also complicate the usage
for others at a later time.

Another less obvious flaw of the single-threaded execution shows in the event handling
functions. Since the client gives the events to the nodes sequentially, their event handling
function can also halt the execution, as it interrupts the update loop. Here, one can
argue that the events should only be used to pass quick messages and data and that the
processing should happen during the update loop. However, multi-threading also solves
this problem.

7.3 Simulations

After solving the problems surrounding image publishing, adding point cloud generation
from the ground truth depth images and pose was quickly done through the depth im-
age processing package available to ROS. However, even though the simulation provides
ground truth data, there is still some error in the generated point cloud, as seen in Fig-
ure 6.10b. The cause of this is a mismatch in time. The multirotor pose update and the
image fetch, unfortunately, happens at different times. Since getting the image takes a
long time, the multirotor can move a significant distance, causing the difference.

In hindsight, this could have been solved in the client through timestamp matching. By
buffering the pose data instead of just storing the current one, and then matching the
timestamps, one would guarantee that the depth image and the camera info message for
the same ROS timestamp would contain the related pose and depth image.
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Another solution would be to create a map generation node, which creates the point
cloud, and ensures that it uses the correct pose. This addition would likely be a better
solution overall, as one could control the density of the created map, to tune for perfor-
mance. Adding a mapping node would, however, require the client to be adopted to a
multithreaded asynchronous approach, as point cloud generation is a demanding task.

For this simulation, it does provide a good enough estimate as it is just used to visually
compare it to the map generated by ORB-SLAM2, and not used in calculations as ground
truth data. The reason this was disabled in the SVO simulations, is that the depth
camera was disabled in order to increase performance. Since the SVO algorithm produces
a trajectory and not a map, it is also less applicable for the comparison.

7.3.1 Skarv FPSO simulations

The aspect of importing 3D models into Unreal Engine and then use it for image data
generation is interesting. Unfortunately, this did not turn out so well in these simulations.
Since the FPSO model was so detailed, the simulations could not run smoothly on the
available computers. This performance issue caused both the flight controller to become
unstable. It also made it impossible for either ORB-SLAM2 or SVO to keep track of the
features in the images collected. This issue does not rule out the possibility of importing
large-scale models for simulation. However, one has to do significant work to the model,
and the simulation to make it run smoothly.

One optimization to apply would be to reduce the amount of detail in the model. Looking
at Figure 6.9b, many details would be unnecessary to capture in terms of visual navigation.
However, some details are needed in order to keep the realism of the simulation. Another
technique that could be applied would be to reduce the number of triangles composing the
model. One can do this without reducing the visual quality while significantly reducing
the amount of calculation needed to compute the lighting. As the model itself is real
size, applying fog some distance away from the camera, or reduce the view distance all
together may also help. It is, however, uncertain how this would affect the depth camera.

7.3.2 Unreal Temple Simulation

As this scene is more optimized for real-time rendering, the simulations went smoothly.
In terms of scene variety, the temple environment was complex enough to provide a varied
test environment, containing both areas of varying light conditions as well a fair share of
varied textures. The realistic-looking design also made it pass as a location that could
exist in the real world.
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ORB-SLAM2

The ORB-SLAM simulations were done in two turns, once with a single RGB camera, and
once with an RGB-D camera, utilizing the new additions to the ORB-SLAM2 algorithm.

For the monocular SLAM example, the result shown in Figure 6.12 show a mapping
which has a relative size that is very close to the ground truth map shown in Figure 6.11.
however, some areas are of particular note:

The first to note is the top circular area of the estimated map. Here we see a much
lesser dense point cloud. This effect is caused by the large arcs placed here, as seen in
Figure 6.8a. For this reason, the resulting map is accurate in this regard.

Another thing to note is the adjacent corridor just below the main room. In regards to
the rest of the map, this area appears skewed. The loop closure of SLAM algorithms
typically corrects this problem. However, in this area, ORB-SLAM has not been able to
do this. The reason is most likely the poor lighting in the area, as well as the monotone
textures. In this corridor, there are no windows nearby, so the room is therefore only lit
by two torches, as well as indirect lights from the main room. In addition to this, the
corridor consists of brick walls with little to no additional details. This uniformity caused
problems for the feature tracking, and it was not uncommon that the algorithm had to
relocate after flying through this corridor. Since ORB-SLAM generally performed well
in other areas, both in terms of distance to features and rotation of features, it may also
have been a combination of poor lighting and bad framerate.

Comparing the estimated map position in Figure 6.13, we see that it estimates its pose
in the map correctly, relative to the position of the drone seen in the picture to the right.
An improvement the test setup would be to scale the estimated map point cloud to the
size of the actual map and feed it back to ORB-SLAM, with the correct rotation, for a
better localization test.

Adding depth images to ORB-SLAM2 improved both the rotation and the scale of the
map, as can be seen in Figure 6.14. Note here how the angle of the point cloud causes
the map placement to look worse than it is. As can be seen in Figure 6.15b, looking at
the image from above actually shows a very accurate corner placement.

One interesting observation in the RGBD tests, which did not happen in the RGB test
was the creation of duplicate maps with a smaller scale within the map. This can be seen
in both Figure 6.14 and 6.15a. This would appear quite frequently, across multiple runs,
and most often after having to relocate. Since the map is generated from the ground truth
depth image, one would think that this should not happen.

The ORB-SLAM2 paper[5] does state that the RBGD approach creates a simulated stereo
camera setup, by treating the RGB picture as the left picture, and projecting the features
found there to a right image, using the depth information. Further, it states that they
split the uncertainties of the depth estimates based on the baseline. Where the split
between close and far features is 40 times the baseline. The close features are assumed
accurate and used for triangulation, while the far features are mainly used to correct for
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rotation.

However, in the simulation setup, the camera capturing the depth and RGB image has
the same transform, which ultimately would cause the baseline to be zero. This would
mean that all depth estimates would be classified as far away, and therefore mainly used
to correct for rotation, and only used for triangulation if supported by multiple views.
This problem, in turn, removes a huge benefit of the RGBD approach and should be noted
by others who try to use similar setups.

SVO

For the SVO simulations, there was, unfortunately, a problem with the feature tracking.
This problem caused the simulation to be limited to run in the pavilion area shown in
Figure 6.8a, where the scene was well lit. The low light conditions are, however, not
believed to be the main cause of the problems. On the creator’s wiki pages[39] they state
that the framerates should be set as high as 70 frames per second. In these simulations,
only ten fps was achievable in order to assure a stable frame rate. Only having a seventh
of the recommended framerate can have significant implications for the tracking, as the
rotation of the multirotor can change the camera view significantly in 100ms.

In order to counteract the low framerate, the accurate feature tracking settings described
in the paper[6] was be applied. The problem, however, was first solved by increasing the
FoV to 110◦ in both directions. The last change was enough to track enough features
to get a suitable run. Flying at a higher altitude also seemed to help, which is to be
expected, as features will stay in the picture for a longer time.

Even though the tests were limited, one can extract some information. One interesting
observation is that SVO is extremely good at estimating the pose, with very little drift.
This observation can be seen in Figure 6.16, where the estimated position is accurate
near the origin, even after significant flying. This observation is in line with their results,
where they show that the drift in estimations, increases very little with time.
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8 | Conclusion and Further Work

8.1 Conclusion

The client is still in early development, and it therefore naturally lacks in features. How-
ever, in its core design it is not supposed to provide much flexibility, like other middle-
ware, but rather force the developer into creating modular code to use across changing
simulation setups, as well as being easily integrated with other middleware that provides
additional features, if those are needed.

Regarding integration, the core design works quite well. The node structure should be
integrable with all C++ interfaces, as long as they do not have operating system depen-
dencies. Looking at the setup with AirSim and ROS, both interfaces integrated without
much problem. However, the event system needs to be powerful enough to force the pro-
grammer to not work around it. At this point, the easiest way to use the event system
for data messages is through adding common dependencies between nodes. This created
dependency does remove some of the points of using this client in the first place.

That said, the code written for the master’s thesis is much cleaner than that of the project
thesis, and the AirSim node itself is independent enough to be combined with for example
an ORB-SLAM node, without any significant changes to it.

The client does also have significant drawbacks to address in order to be viable for visual
navigation, or other real-time critical tasks. As seen with the image fetching, the update
loop for the control inputs was blocked while waiting for the image to be received. This
delay made the multirotor controls unresponsive, which would not have been viable at all
if the flight controller itself had been implemented as a node.

Another feature that was lacking was the ability to do initialization between nodes. In
the case of the AirSim client, one should have been able to initialize the ROS publishers
based on the AirSim setup, without needing to rely on the parsed AirSim settings file in
the ROS node. For this to be possible, another initialization step is needed. This step
must come after node initialization towards external APIs, and before the first update
loop.

Even though the setup was not optimal, the AirSim client was shown to work with ORB-
SLAM, and to some extent SVO, managing to see the features these algorithms supply.
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The main issue was the reduced image update rate caused by the slow RPC call to AirSim
and Unreal Engine. While this does show that ORB-SLAM is more tolerant towards low
framerates than SVO, it did not give SVO a fair chance. Using real cameras, with this
resolution, one could have benefited from a substantially higher framerate.

In the case of ORB-SLAM, the simulation produced an interesting result: Based on how
it handles depth data for monocular RBGD SLAM, it depends on the fact that there is
a distance between the depth camera and RBG camera. This effect is something to note
for artificial camera setups in simulation environments, where one can place cameras on
top of each other.

All in all, one can conclude that the client shows potential, in terms of usability in
simulation setups for visual navigation. However, it is not usable in its current state.
Where the most significant problem to address is the synchronous and blocking behavior
of the update loop. This problem must be handled before anyone can use the client in a
real-time system.

In addition to this, if this is possible to fix the slow image fetching from Unreal Engine,
there are great possibilities when it comes to using it for real-time visual navigation
simulations.

8.2 Further Work

There are various areas where the client to improve, without adding any latency inducing
overhead. An important note to the following section is that none of the features here
should be added to the core unless they add performance benefits, or add much-needed
features to visual navigation simulations. Most additional features should also be on an
opt-out or opt-in basis, where they may be disabled or added to the compilation as a
choice for the developer.

The first, easily implementable addition should be to add a post initialization step be-
tween the startup routine and the first update loop. This addition would be beneficial in
order to support internode dependencies and dynamic setups, without adding unnecessary
dependencies between them.

Another feature that is sorely needed is multithreading and scheduling. Modern CPUs
have multiple cores available to use for processing. Utilizing these would be vital for the
performance-critical task visual navigation is. Providing a scheduler would also negate the
problem with one update loop blocking the others, which is a must for real-time critical
systems.

One feature which may improve performance and portability would be to redo the key-
board input and window system to behave more like nodes, where the developer can add
them to the client id needed. While converting the window system is simple, the keyboard
input system would need some more work.
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In addition to this, some restructuring of the event system could be beneficial. One
exciting approach to modular event systems is through the usage of std::variant1 instead
of a polymorphism based event system. This change could reduce the amount of virtual
function calls needed, and therefore improve performance. One must, however, benchmark
this to be sure. In addition to this, it is uncertain how to handle expansions of the system
for new events.

Another way to enforce performant events may be to provide base event types for different
data sizes, to expand as needed, but where the underlying data structure is optimized for
transport between nodes. This optimization is also integrable with a ROS message-like
system and might be the correct way to move forward.

Additional wanted features include:

• A customizeable debugging user interface.

• Provide a base package of events for developers to use.

• More example setups.

• Integration with other simulation environments and middleware.

One exciting aspect worth exploring would be compiling towards a Raspberry Pi as this
is a relatively general-purpose UNIX-based computer, while still having many low-level
interfaces. If it would be reasonable to integrate the client, this could open up a whole
new range of applications, especially in the form of hardware in the loop simulations.

1https://en.cppreference.com/w/cpp/utility/variant
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