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Background 
 

Inflammation 
Bacterial invasion is usually met by an inflammatory response with increased secretion 

of a number of mediators, such as cytokines and acute phase proteins, and accumulation 

of leukocytes in affected tissue [1]. 

 

Cytokines [1,2] 

Cytokines are small hormone-like polypeptides or glycoproteins with a molecular 

weight less than 30 kD. They are synthesised and secreted from a variety of immune 

cells (e.g. monocytes, lymphocytes) and non-immune cells (e.g. endothelial cells), and 

after stimulation by microbes or other cytokines. They act at low concentrations by 

binding to specific cellular receptors. Binding transmits signals through intracellular 

messenger systems that activate transcription factors, and changes gene expression. 

Different intracellular signalling pathways are activated by different cytokine-receptor 

interactions. The receptors may also exist in soluble isoforms that have the ability to 

bind cytokines and modulate their activity. Most cytokines have multiple biologic 

effects, often overlapping the effects of others. The majority acts locally, but cytokines 

may also have systemic effects. Cytokines are important in host defence, but in high 

amounts cytokines may be detrimental to the host [2,3].  

 

TNF and soluble TNF receptors 

TNF-α belongs to a group of cytokines called the TNF superfamily [4]. It is a central 

inflammatory mediator in autoimmune disorders, cancer, and infection [5]. TNF exists 

as a transmembrane molecule, that can be cleaved, and circulates in a trimeric form [6]. 

Monocytes, tissue macrophages and many other cells produce TNF in response to a 

variety of stimuli, such as bacterial toxins (i.e. LPS), parasites, viruses, complement 

factor C5a, IL-1, IL-6, and TNF itself [6,7]. TNF binds to two receptors, p55 and p75, 

which are expressed on virtually all cells [8,9]. Both receptors can be shed from the cell 

membrane and exist as soluble isoforms, either constitutively [10], or in response to 

bacterial products (LPS), TNF or IL-6 [8,10]. It has been shown that different cell types 
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may release the receptors to different extent [11]. Soluble receptors interact with TNF 

and modulate its local and systemic effects [8]. TNF may increase transiently during the 

very early stage of the infection, whereas sTNFR likely remains elevated much longer 

[12,13]. In vivo, high levels of TNF and soluble receptors have been detected in adult 

sepsis [12,13], and high TNF-levels correlate with increased lethality from 

meningoccocaemia [3]. 

 

IL-1 and IL1-RA [1] 

IL-1β and IL-1RA are synthesised by a wide range of cells, including monocytes and 

macrophages, in response to many of the same stimuli that activate TNF production. 

Together with TNF, IL-1β is a central mediator in inflammation and sepsis. The binding 

of IL-1β to its receptor can be blocked by high concentrations of IL-1RA, which is 

produced and released by nearly the same stimuli as IL-1β. Opposite to IL-1β, IL1-RA 

is produced constitutively. 

 

IL-6 [1] 

IL-6 is produced in at least five different forms with different molecular weights, by a 

variety of cells, e.g. B-lymfocytes, T-lymfocytes, and macrophages. IL-6 has important 

roles in immune regulation at the B and T cell level, and it stimulates proliferation and 

maturation at different levels in haematopoiesis. IL-6 also stimulates the acute phase 

reaction [14], and in vivo, high levels have been detected in sepsis, and other infectious 

and autoimmune diseases. 

 

IL-8 [1] 

IL-8 is a pro-inflammatory cytokine mainly with chemotactic actions, and belongs to a 

large group of cytokines called chemokines. IL-8 exists in several active forms, and it is 

synthesised by monocytes, macrophages, and endothelial cells, in response to 

endotoxins (LPS), TNF, and IL-1.  

 

Soluble adhesion molecules [1,15] 

Leukocyte adhesion to endothelium, and subsequent migration into the tissue is 

mediated through interactions between molecules on leukocytes and vascular endothe-

lium. There are three classes of adhesion molecules: selectins, integrins, and various 

 12   



 Background 

members of the immunoglobulin gene superfamily. L-selectin is expressed 

constitutively on leukocytes, and E-selectin and P-selectin are expressed on activated 

endothelial cells in response to TNF and IL-1. The integrins, composed of an α and a β 

chain, are expressed on leukocytes. Neutrophils constitutively express those with a β2 

chain (CD18), but expression and avidity for endothelial ligands may increase in 

response to chemotactic factors such as IL-8. Integrins bind endothelial ligands of the 

immunoglobulin-like family, including intercellular adhesion molecule-1 (ICAM-1), 

and vascular cell adhesion molecule-1 (VCAM-1). These molecules are also markedly 

expressed after exposure to LPS, TNF and IL-1. Adhesion molecules (L-selectin, E-

selectin, ICAM-1, VCAM-1) may be shed from cell surfaces, and exist as soluble 

isoforms [15]. In adults, high serum concentrations of soluble adhesion molecules have 

been detected in sepsis and various immunologic diseases. It has been suggested that 

soluble isoforms may bind to ligand bearing cells and modulate leukocyte adhesion 

[15]. It is also possible that high concentrations simply may reflect leukocyte adhesion 

and activation [15]. 

 

Acute phase proteins  
Acute phase proteins are mainly produced in the liver, and they serve important 

functions during inflammation, and in restoring homeostasis after inflammation [16]. 

Several factors regulate the production of acute phase proteins among which the most 

important are cytokines (IL-6, IL-1, TNF), growth factors (e.g. insulin, hepatocyte 

growth factor), and corticosteroids [17].  

CRP was originally named for its ability to bind the C-polysaccharide of 

Streptococcus pneumoniae. CRP may have several functions; i.e. it binds cell-wall 

components, and opsonises bacteria, parasites and immune complexes. CRP may also 

activate the classical complement pathway [18]. In clinical medicine, CRP is widely 

used to diagnose inflammatory diseases and infections, and to monitor the efficacy of 

treatment. 

 

The inflammatory response 

Local effects [1] 

The inflammatory response is characterised by accumulation and activation of 

leukocytes in affected tissues. The process is initiated at the site of invasion when tissue 
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macrophages produce TNF and IL-1 in response to bacterial exposure or trauma. These 

cytokines in turn activate a complex cytokine cascade with generation of other pro-

inflammatory cytokines (e.g. IL-6), and chemokines (e.g. IL-8). IL-1 and IL-6 

stimulates hematopoiesis and release of neutrophils from the bone marrow, acting 

synergistically with colony stimulating factors (G-CSF, GM-CSF). The accumulation of 

leukocytes results from a series of events: (1) increased expression of adhesion 

molecules on endothelial cells and leukocytes; (2) establishment of leukocyte-

endothelial cell adhesion; (3) leukocyte migration through the endothelium; and (4) 

leukocyte migration along a chemotactic gradient. At the site of inflammation, 

leukocytes are activated (5) and invading pathogens are phagocytosed and killed by 

release of a variety of microbicidal products. Cytokines are involved at each step of this 

process (Table 1). As inflammation progresses, TNF and IL-1 may also increase local 

production of vasodilators (e.g. nitric oxide, platelet activating factor, prostaglandins), 

and vasoconstrictors such as endothelins. In addition, TNF and IL-1 may stimulate the 

extrinsic coagulation pathway and inhibit fibrinolysis leading to local clot formation 

(Table 1). 

 

Systemic effects [1] 

A number of physiologic, behavioural, biochemical, and nutritional changes involving 

many organ systems may accompany inflammation [16]. Pro-inflammatory cytokines 

may induce fever, anorexia, somnolence, and increased secretion of corticosteroids and 

acute phase proteins [16]. The local and systemic inflammatory responses are 

maintained until regulatory mechanisms are activated and cytokine synthesis and 

biologic activities are attenuated [1]. Anti-inflammatory mediators are synthesised, 

including IL-4, IL-10, IL-13 and Transforming Growth Factor-β, and naturally 

occurring inhibitors such as soluble TNF receptors and IL-1RA may be secreted in large 

amounts [1]. In most cases, the inflammatory response is successfully resolved. 

However, vigorous production of pro-inflammatory cytokines can lead to increasing 

systemic cytokine concentrations, and the development of a systemic inflammatory 

response syndrome (SIRS) [19]. This syndrome is characterised by increased vascular 

permeability, and may be complicated by hypotension, hypoxia, and intravascular 

thrombosis and haemorrhage. SIRS may occur in association with severe infections 

(sepsis), in trauma, severe burns, and haemorrhagic shock [19]. 
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Table 1 Summary of local and systemic effects of pro-inflammatory cytokines during inflammation.* 

 TNF IL-1 IL-6 IL-8

Local effects     

  Expression of adhesion molecules + + − + 

  Leukocyte chemotaxis − − − ++ 

  Activation of leukocytes + ± ± ++ 

  Release of endogenous mediators (PG, PAF, NO) + + ± ± 

  Procoagulant activity + + − − 

  Synthesis of TNF, IL-1, IL-6, chemokines + + − − 

Systemic effects     

  Fever ++ ++ + − 

  Acute phase reaction + + ++ − 

  B- and T-cell activation + + ++ − 

  Systemic inflammatory response syndrome ++ + − − 

PG, prostaglandin; PAF; platelet activation factor; NO, nitric oxide. 

*adapted from Kilpatrick [1]. 
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Intrauterine infection  
Intrauterine infection may present with fever, uterine tenderness, maternal or fetal 

tachycardia, or foul smelling vaginal discharge (clinical chorioamnionitis) [20]. 

Clinically, intrauterine infection occurs in 1-2% of all deliveries [20]. In a large 

retrospective study of nearly 9600 deliveries, Seo et al. found that a clinical chorio-

amnionitis was present in 1.7% of term, and 5.7% of preterm deliveries [21]. 

Intrauterine infection may also cause preterm PROM, and preterm labor (subclinical 

chorioamnionitis) [22-24]. Intrauterine infection occurs when vaginal bacteria ascend 

through the cervix, or more seldom, when blood-borne bacteria settle in utero [25]. 

Most commonly, when infection appears after membrane rupture [21], high-virulent 

organisms such as β-hemolytic streptococci group B (GBS), and E Coli easily invade 

the amniotic cavity [20]. Bacteria may also cross intact membranes. Such cases most 

often occur early in pregnancy, and with relatively low virulent bacteria (e.g. 

Ureaplasma urealyticum, Mycoplasma hominis, peptostreptococci, bacteroides species) 

[23,26]. There are indications that vaginal bacteria initially invade decidua and the 

chorio-decidual space in the lower part of the uterine cavity, then spread into the 

chorion and amnion, and possibly cross into the amniotic cavity [23]. Ultimately, the 

umbilical cord, and the foetus itself may be invaded (Figure 1) [23,24].  

 

Histologic findings 
It has long been assumed that maternal leukocytes constitute the majority of 

inflammatory cells that infiltrate intrauterine tissues in response to bacterial invasion 

[25]. Indeed, in 1997 McNamara et al. confirmed that approximately 90% of leukocytes 

are maternal, using flourescent in situ hybridization [27]. When the bacterial focus is in 

the amniotic cavity, maternal leukocytes are believed to migrate through blood vessels 

in decidua toward the cavity, giving rise to deciduitis and chorioamnionitis [25]. In the 

placenta, maternal leukocytes may accumulate in the subchorionic fibrin of the 

intervillous space, before infiltrating the chorionic plate, and migrating toward the 

amniotic cavity [25]. It has also been assumed that maternal cells constitute the majority 

in amniotic fluid. However, in a recent small case series with amniotic fluid infection 

almost all leukocytes were fetal [28]. Usually, the fetal immune system has been 

assumed to be involved late during an intrauterine infection, and activated fetal 

leukocytes are believed to migrate through chorionic and umbilical blood vessels 
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toward the amnion cavity, giving rise to chorionic and umbilical vasculitis, and funisitis 

[25,29]. 

 

 

Figure 1 Possible sites of infection within the uterus (Goldenberg [23]). 

 

Various histopathologic criteria have been used to define an intrauterine 

infection. Blanc defined three grades of chorioamnionitis based on the degree of 

leukocyte infiltration in the chorionic plate [25]. Salafia used a more detailed 

classification with four degrees of infiltration in the chorionic plate, membranes, and 

umbilical cord [30]. Regardless of the classification used, high-grade infiltration in 

placenta and the membranes is associated with the presence of bacteria in amniotic fluid 

[31], and in the membranes [32]. It has also been shown that histologic chorioamnionitis 

occurs in nearly all cases with clinically evident infection [21,33,34]. On the other hand, 

leukocyte infiltration may be present in non-infected deliveries [20,33,35]. In a one-year 
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cohort of 2774 deliveries, Guzick et al. found that chorioamnionitis including all three 

grades in the Blanc classification occurred 5-10 times more frequently than clinically 

evident infection [33]. In normal deliveries, Salafia reported that high-grade infiltration 

is seldom, but a low-grade infiltration in decidua and in the subchorionic fibrin of the 

chorionic plate appeared in nearly half [30]. Hence, it seems that histologic 

chorioamnionitis with high-grade leukocyte infiltration is a sensitive indicator of 

clinically and microbiologically evident infection, whereas a low-grade infiltration often 

may be present in normal pregnancies. 

 

Intrauterine infection and cytokines 
Human gestational tissues may secrete cytokines. Inflammatory cytokine mRNA have 

been detected in placenta and membranes from infected and non-infected deliveries 

[36]. It has been shown that cytokines can be secreted both from local cells in decidua, 

chorion, and amnion [37-41], and from infiltrating macrophages [37,42]. During 

infection the majority may be produced from infiltrating inflammatory cells [42]. 

Cytokine levels may increase to some extent in amniotic fluid toward term in a normal 

pregnancy [35], but in intrauterine infection several studies have detected very high 

levels of pro-inflammatory cytokines (TNF, IL-1, IL-6, IL-8, G-CSF) [23,42,43], and 

natural cytokine inhibitors (p55, p75 and IL1-RA) [44,45]. Cytokine levels (TNF, IL-6, 

G-CSF) and CRP may also be elevated in maternal serum [23,46-49]. 

Until recently, only a few investigators had studied fetal/neonatal cytokine levels 

and intrauterine infection (Table 2). Most used histological criteria, and found elevated 

umbilical cord blood IL-6 [37,50-52]. IL-1, IL-8 and IL-1RA may also be elevated 

[37,44,50,53]. In three recent studies, it has been shown that funisitis is associated with 

elevated IL-6 [52,54,55], and neonatal sepsis [52,54]. 
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Table 2 Summary of studies reporting umbilical cytokine levels in intrauterine infection. 

Author year[reference] Population Neonatal
outcome  

Evidence of intrauterine infection Cytokine levels in umbilical cord 
blood 

Shimoya 1992[53] 72 preterm deliveries  - Histologic CAH grade 1–3 (n=38) ↑ IL-8 in CAH grade 1-3  

Romero 1994[44] 102 preterm and 102 
term deliveries 

- Positive amniotic fluid culture: 
preterm (n=45), term (n=31) 

↑ IL1-RA in preterm, but not in 
term infection 

Stallmach 1995[37] 64 preterm and term 
cesarian sections 

- Histologic CAH (n=18) ↑ IL-6, ↑ IL-8, ↑ G-CSF, → TNF, 
→ IL-1 

Singh 1996[56] 32 term deliveries Healthy (n=32) Clinical CAH (n=6) ↑ IL-6 

Salafia 1997[50] 32 preterm deliveries  - Amnionitis (n=16) 
Umbilical vasculitis (n=17) 

↑ IL-6 in amnionitis grade 3-4 
↑ IL-1, ↑ IL-6 

Miyano 1998[51] 215 preterm and term 
deliveries 

- Histologic acute CAH (n=37) and 
subacute CAH (n=30)  

↑ IL-6  
↑ IL-6     

Kashlan 2000[52] 43 preterm deliveries Sepsis (n=21) Histologic CAH grade 1-3 (n=20)  
Funisitis (n=11) 

↑ IL-6 in CAH grade 2-3.               
↑ IL-6. Funisitis associated with 
neonatal sepsis  

Yoon 2000[54] 315 preterm deliveries Sepsis (n=11) Funisitis (n=78) ↑ IL-6. Funisitis associated with 
neonatal sepsis  

Naccasha 2001[55] 94 preterm deliveries - Funisitis (n=15) ↑ IL-6 

CAH = Chorioamnionitis; ↑ higher than controls; → not higher than controls. 
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Neonatal sepsis 
Sepsis in neonates is a life threatening condition with an incidence of 1-8 per 1000 

newborn infants (culture proven infection) [57]. The occurrence is inversely related to 

gestational age; Seo et al. found that among 9600 neonates the incidence increased from 

0.6% in neonates at term to 16.6% among those with a gestational age less than 28 

weeks [21]. Despite the advances in life support therapy, and development of broad-

spectrum antibiotic treatment, the mortality is still considerable, in particular among 

preterms [58].  

Sepsis, defined as a systemic response to infection, usually implies isolation of a 

known pathogenic micro-organism in a normally sterile tissue fluid (blood, 

cerebrospinal fluid) [57]. However, this diagnostic criterion may have a low sensitivity 

when it is applied to neonates [59,60]. Squire et al., and Pierce et al. compared blood 

culture results with post-mortem findings in neonates who died from sepsis, and found 

that only about 70-80% of cases with reliable post-mortem findings of a septic infection 

had a positive blood culture before they died [61,62]. Bacterial isolation may be 

hindered by antenatal antibiotic therapy [63], small blood volumes [64], or because 

standard microbial techniques may be unable to detect possible pathogens [65]. Thus, 

most recent studies have defined neonatal sepsis as an ill neonate with either a positive 

culture (blood/CSF), or an ill neonate with sterile cultures, but a significant 

inflammatory response.  

Early-onset sepsis appears less than 4-7 days after delivery, often after 

premature rupture of the membranes, or after intrauterine infection [21,57]. In the study 

of Seo et al., early-onset sepsis (culture proven or clinical) appeared after clinical 

chorio-amnionitis in 34.7% of preterms with a gestational age less than 28 weeks, 

among 22.2% with gestational age 31-33 weeks, and among 9.1% of term neonates 

[21]. Compared to non-infected deliveries, clinical chorioamnionitis increased the risk 

of early-onset neonatal sepsis 8 to 10 times [21]. Infants with late-onset sepsis (≥ 4-7 

days of age) are less likely to have a history of obstetric complications, and may be 

infected mainly with nosocomially acquired organisms [57].  

 

Pathogenesis 
The foetus is protected from bacterial exposure by the membranes and placenta [59]. It 

has also been shown that the amniotic fluid has inhibitory properties against bacterial 
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growth [66,67]. However, foetal bacteremia may occur in preterm labor [68], and term 

neonates may have bacteremia or present symptoms at birth [69], suggesting that 

bacterial colonisation may take place before birth. Some bacteria (e.g. Listeria 

monocytogenes) cause transplacental infections via the mother’s bloodstream. More 

commonly, however, bacterial exposure takes place in the amniotic cavity, or during the 

passage through the birth canal (Figure 1) [57,59]. Pyati et al. studied neonatal GBS 

sepsis among 30000 newborn infants [69]. Nearly all with sepsis and a birth weight less 

than 2000 gram presented with symptoms less than one hour after birth, whereas more 

than two-thirds of those with a higher birth weight developed symptoms later than four 

hours [69]. These findings suggest that preterm neonates may be exposed to GBS in 

utero, whereas term neonates often may be exposed during the passage through the birth 

canal. Foetal colonisation is likely to take place by aspiration of contaminated amniotic 

fluid [61,62], or by bacteria penetrating through injured skin or natural body openings 

[59]. In most cases this colonisation proceeds without causing disease [59]. The 

mechanism by which bacterial colonisation converts to invasive disease is not fully 

understood, but it is likely to reflect bacterial virulence, maternal immunological 

factors, and the competence of the neonatal immune system [59].  

 

The neonatal host response  
Many components of the innate and adaptive immune system may not be fully 

developed at birth, and neonates may be susceptible to infection because they have an 

immature host response [70]. Secretory IgA may be undetectable in mucosal secretions 

at birth and may not appear until several weeks, making neonates susceptible to 

colonisation [71]. The most critical is, however, limited capacity to produce and deliver 

adequate numbers of well functioning phagocytes (neutrophils and monocytes) at the 

site of bacterial invasion [70,72]. In animal studies, it has been shown that fetal and 

neonatal bone marrow contain expanded stem cell populations that proliferate at nearly 

maximal rates already during basal conditions [73-75]. Nevertheless, the neutrophile 

storage pool that serves as a reservoir of functionally mature neutrophils, is 

considerably smaller in neonates than in adults [76]. Recently, it has also been shown 

that human preterm liver and bone marrow contain a considerably smaller neutrophile 

storage pool than liver and bone marrow from term neonates and adults [77]. The 

frequent finding of neutropenia in association with neonatal sepsis is likely to reflect the 
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limited neutrophile stores, and diminished capacity to accelerate proliferation in 

response to bacterial invasion [78]. There are also indications that foetal bone marrow, 

liver, and blood cells secrete less G-CSF and express less G-CSF mRNA than cells of 

adults [77]. Neonatal neutrophils may function less efficiently than adult cells [70]. 

Their adherence to endothelial surfaces may be looser [70], probably because they 

express less L-selectin [79], and have an impaired up-regulation of integrins (Mac-1, 

LFA-1) in response to inflammatory cytokines and chemotactic agents [70,80]. 

Moreover, neonatal neutrophils and monocytes migrate slower into affected tissues [70]. 

Once at the site of infection, they may bind, ingest, and kill bacteria as efficiently as 

adult cells under optimal in vitro conditions [70]. However, under suboptimal 

conditions, such as a limiting opsonin concentration (complement, immunoglobulin), or 

a high bacteria/polymorphonuclear leukocyte ratio, neonatal neutrophils likely ingest 

and kill bacteria less efficiently [70]. 

 

Neonatal sepsis and cytokines  
Inflammatory cytokines stimulate leukocyte migration and activation (Table 1), and one 

may speculate whether immature cytokine secretion could impair neonatal resistance to 

bacteria. In vitro, it has been shown that cord blood monocytes from term neonates 

produce equal amounts, or somewhat less TNF [81-87], IL-6 [85,88,89], and IL-8 

[81,90-92] than adult monocytes (Table 3). However, it seems that monocytes from 

preterm neonates produce less TNF [82], IL-6 [88,93,94], and IL-8 [91] than term 

neonatal monocytes (Table 3). Several studies have shown that monocytes from adults, 

and preterm and term neonates produce equal amounts of IL-1 (Table 3) 

[82,84,85,95,96]. It has also been shown that cord blood monocytes express receptors 

for TNF (p55, p75), IL-1 and IL-6 [97]. 

At the time we planned the present investigations, only a few and small in vivo 

studies had been reported on the relation between neonatal sepsis and cytokine levels. 

Recently, several papers have been published. Table 4 summarises the main findings. It 

seems that cord blood and peripheral blood levels of TNF, IL-6, and IL-8 are elevated in 

early-onset sepsis (Table 4). There are also some indications that IL-1, p55, p75, and 

ICAM-1 may be high (Table 4). None of the studies have investigated preterm neonates 

separately. Based on experimental and clinical data, it seems that neonates have 

capacity to produce inflammatory cytokines in response to bacterial exposure. However, 
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some cytokines may be produced less efficiently compared to adults, in particular 

among preterm neonates. 

 

 

Table 3 In vitro cytokine production by cord blood monocytes.** 

TNF Adult ≥ term > preterm [81]*[82-84,86,87]  

IL-1 Adult = term = preterm [82,84,85,95,96]  

IL-6 Adult ≥ term > preterm [85,88,89,93,94]  

IL-8 Adult ≥ term > preterm [81,90-92]  

*reference.  

**adapted from Kilpatrick [1]. 

 

 

Table 4 Summary of studies reporting cytokine levels in neonatal sepsis. 

Early-onset sepsis 
 

 

Cord blood Peripheral blood 

 Late-onset sepsis 

TNF  ↑ [98]* ↑ [98-103]; →[52,104]  ↑ [105,106] 

IL-1  ↑ [98] ↑ [100,107]; → [99,103]; 
↓ [108] 

  

IL-6  ↑ [52,98,109] ↑ [98-100,103,110-112]   ↑ [105,113,114] 

IL-8  ↑ [98,109] ↑ [98,115,116]  ↑ [113] 

p55/p75  ↑ [112] ↑ [112]   

IL1-RA   ↑ [107]  ↑ [114] 

E-selectin     ↑ [105] 

ICAM-1  ↑ [98,109] ↑ [117]  ↑ [113] 

*reference. 

↑ higher than controls; → not higher than controls; ↓ lower than controls. 
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 Background 

Neonatal sepsis: some clinical aspects  
Infected neonates should be recognised as quickly as possible, in order to initiate 

antibiotic therapy. However, quite often the clinical manifestations are similar to those 

of other neonatal conditions, and in the early stages of infection may be subtle [57,59]. 

Numerous studies have evaluated whether a diagnostic test could assist in early 

identification. Total white blood cell count (WBC) and differential have a low 

sensitivity and specificity [57]. Some studies have shown that neutropenia, or a total 

WBC less than 5000 per µl has moderate to high negative predictive values [60,118]. 

The ratio between immature and total neutrophil cell counts (I/T-ratio) is a quite 

sensitive, but not very specific diagnostic method [57,60]. In clinical medicine it is a 

disadvantage that the ratio must be determined by microscopy, and the inter-observer 

variability is substantial [60,119]. CRP is rather specific for bacterial infection in 

neonates, but CRP has a low sensitivity during the first 12-24 hours of infection [120]. 

Although the relative CRP increase may be similar in infected preterm and term 

neonates, it is furthermore a disadvantage that CRP may never rise to detectable levels 

in infected preterms [119]. Hence, in the absence of sensitive and clinically applicable 

diagnostic tests, it has been recommended to initiate treatment with broad-spectrum 

antibiotics in every neonate that is suspected to suffer from infection [57,59]. This 

liberal antibiotic policy may have contributed to lower mortality [57], but it has also led 

to a disturbing overuse of antibiotics [121]. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 24 



   

 

Objectives 
 

Bacterial invasion of intrauterine tissues is met by an inflammatory response with 

leukocyte infiltration in placenta, membranes, and umbilical cord, and high levels of 

inflammatory cytokines in amniotic fluid. The infection increases the risk of 

fetal/neonatal sepsis. 

 

1. The first objective was to examine whether leukocyte infiltration in placenta, 

membranes or umbilical cord is reflected by elevated levels of pro-inflammatory 

cytokines (TNFα, IL-1β, IL-6, IL-8), cytokine inhibitors (p55, p75, IL1-RA), and CRP 

in the fetal/neonatal circulation (umbilical cord blood). 

 

Early-onset sepsis in neonates may be caused by bacterial exposure in utero or at 

delivery. Clinical manifestations may be present at birth or develop during the first days 

of life. Although the neonatal host response to bacterial exposure may not be fully 

developed, previous studies have suggested that neonatal blood cells may have capacity 

to secrete cytokines in vitro.  

 

2. The second objective was to examine whether early-onset neonatal sepsis is 

associated with a) a prenatal immune response with elevated levels of pro-inflammatory 

cytokines, cytokine inhibitors, and CRP in umbilical cord blood, and b) elevated levels 

of IL-6, p55, p75, soluble adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and 

CRP in peripheral serum when clinical symptoms develops. 

 

Neonatal sepsis is associated with high morbidity and mortality. Infected neonates 

should be identified as early as possible, but clinical examination and existing 

laboratory tests do not provide accurate diagnostic tools. 

 

3. The third objective of the study was to evaluate the accuracy of the various 

mediators (TNFα, IL-1β, IL-6, IL-8, p55, p75, IL1-RA, E-selectin, ICAM-1, CRP) in 

diagnosing early-onset neonatal sepsis. 
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Materials and methods 
 

The work is based on three study populations. Population I (paper I) consists of 221 

women who delivered at the University Hospital of Trondheim, Norway, in 1998. This 

population was included prospectively in order to establish a sample with varying 

degree of placenta tissue inflammation, and included 139 deliveries complicated by 

premature rupture of the membranes, clinical signs of intrauterine infection or preterm 

labour, and 82 normal deliveries.  

Population II (paper II) was recruited among 7073 neonates born at the 

Rogaland Central Hospital, Stavanger, Norway, from May 1994 to the end of December 

1995. In all, 335 neonates were admitted to the NICU suspected to suffer from 

infection. We used a case-control design and included 52 neonates with infection, and 

99 healthy controls. In addition, we included a group of sick controls, i.e. neonates who 

were suspected to suffer from infection but in whom infection was not confirmed 

(n=33).  

Population III (paper III-VI) was recruited among 2881 neonates born at the 

University Hospital of Trondheim, Norway from February to the end of December 

1993. We included prospectively 241 neonates who were admitted to the NICU due to a 

suspected infection (n=166), or other neonatal diseases.  

 

Classification  
All clinical information was abstracted from medical records. In the classification, we 

used a combination of clinical information, culture results, and evidence of an 

inflammatory response. Neonates were classified retrospectively, blinded to cytokine 

levels and I/T-ratio, but not to CRP and total WBC. Signs and symptoms associable 

with neonatal sepsis were divided into six categories: 1) pallor or icterus; 2) lethargy, 

apnoea, bradycardia, irritability or seizures; 3) tachypnea, retractions or respiratory 

distress; 4) poor peripheral perfusion, tachycardia or hypotension; 5) abdominal 

distension or vomitus and 6) fever or temperature instability. Neonatal sepsis (called 

probable sepsis in paper III) was defined as a combination of at least one clinical sign or 

symptom from each of at least three categories of clinical signs and symptoms, and a 
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positive blood culture. The criteria used to classify clinical sepsis and pneumonia 

differed somewhat in the papers, due to practical possibilities and the demands of 

various reviewers. Besides negative cultures, neonates with clinical sepsis had at least 

one clinical sign or symptom from each of at least three categories of clinical signs and

 symptoms. Neonates with pneumonia had sterile blood culture, respiratory signs or 

symptoms, and radiographic evidence of lung infection. In addition, both diagnoses 

demanded some evidence of an inflammatory response. In paper I, we used a maximum 

CRP >30 mg/l as a criterion. In paper III and IV we used an abnormal white blood cell 

count (elevated I/T-ratio >0.20 or white blood cell count <5.0 x 103/mm3 or >25.0 x 

103/mm3), and a maximum CRP value >10 mg/l. In paper V and VI abnormal white 

blood cell counts were used alone. Probable/possible infection was diagnosed when 

some but not all criteria for being infected were fulfilled.  

 

Samples 
Umbilical cord blood was collected from all deliveries in population I and II using tubes 

without additives (population I), and heparin treated tubes (population II). We are not 

aware that cytokine measurements should differ between serum and plasma. Samples 

were kept on refrigerator until next morning, centrifuged, and frozen at -80° C until 

assayed. In population III, a peripheral blood sample was collected by heel-stick from 

all neonates on admission or the next morning (S1), and after three to four days (S2). 

Using tubes without additives, samples were centrifuged earlier than two hours after 

collection, and the serum stored at –20° C until assayed. 

 

Histologic examination  
We used histologic chorioamnionitis as an indicator of intrauterine infection. In 

population I, the placenta, including foetal membranes and umbilical cord was collected 

immediately after delivery and immersed in 4% formaldehyde. Sections from eight 

blocks of placenta tissues (two from the periphery and two from the central placenta, 

one membrane roll, and three transverse sections of the umbilical cord) were prepared 

routinely, and examined by light microscopy. The degree of polymorphonuclear 

leukocyte infiltration was evaluated separately in the chorionic plate, in the membranes 

(amnion and chorion-decidua), and in the umbilical cord, according to criteria given by 
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Salafia et al. with some modifications [30]. One medical doctor and three bioengineer 

students who were blinded to mediator levels and clinical information made the  

examinations. The inter-observer agreement was good, as evaluated by a mean weighted 

kappa score = 0.74 (95% CI: 0.64-0.83) in 20 examinations.  

 

Measurements 
 
IL-6 bioassay 

IL-6 was determined by a bioassay (paper III and VI) and by ELISA (paper I and II). 

The bioassay measures activity, whereas the ELISA measures concentration, and the 

results cannot be compared directly. The bioassay utilises that growth in a mouse 

hybridoma cell line (B 13.29, clone B9) is IL-6 dependent [122]. Heat-inactivated (56o C, 

30 min) serum samples were added in duplicate, and cell viability was measured in a 

colorimetric assay with a tetrazolium salt after 72 hours of incubation (Sigma Chemical 

Co., St.Louis, MO) [123]. The IL-6 concentration was calculated by comparing growth in 

samples with growth induced by a recombinant IL-6 standard (kindly provided by L. 

Arden, University of Amsterdam, NL). The specificity of detected activity was tested by a 

monoclonal antibody (mAb) against IL-6 (Genzyme, Cambridge, MA). Inter- and intra-

assay variability was below 10%. 

 

ELISA 
Double sandwich enzyme linked immunoassays were used to measure the 

concentrations of IL-1β, IL-6, IL-8, IL-1RA (Quantikine, R&D Systems Europe Ltd., 

Abingdon, UK), TNFα (TNFα EASIA, Medgenix Diagnostics SA, Nivelles, Belgia), E-

selectin, ICAM-1 and VCAM-1 (Parameter, British Bio-technology, Abingdon, UK). 

The analyses were performed according to the manufacture instructions. The TNF assay 

uses several monoclonal antibodies, and detects TNF bound to soluble TNF receptors, 

as well as free TNF. Soluble TNF receptors (p55 and p75) were analysed using ELISA 

assays as described by Liabakk et al. [124]. CRP levels were analysed by turbidimetric 

assays (Cobas Mira, Roche Diagnostic Systems, and Hitachi 917, Hitachi, Japan). 

Single samples were analysed in appropriate serial dilutions. In paper V, the inter-assay 

variability of p75 was < 12.5%, in all other analyses the inter- and intra-assay variability 
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was below 10%. All measurements were made without knowledge of clinical and 

histologic data. 

 

Statistics 
Descriptive statistics included mean and standard deviation for symmetrically 

distributed data, and median, range, and interquartile range for skewed distributions. 

Differences across several groups were tested by use of ANOVA, or Kruskall-Wallis 

test (skewed distributions), and differences between two groups were compared by 

Student’s test, and Mann-Whitney U-test (skewed distributions). Differences between 

categorical parameters were tested by the χ2 –test. Correlation between postnatal age 

and mediator levels was expressed by Spearman’s correlation coefficient r. Multivariate 

logistic regression analysis was used to evaluate possible confounding effects of several 

factors on the relation between leukocyte infiltration and mediator levels (paper I). A 

two-sided p-value less than 0.05 was considered statistically significant. All analyses 

were performed using the Statistical Package of Social Sciences (SPSS), version 8.0, 

9.0, or 10.0 (SPSS, Inc., Chicago, IL). 

 

Diagnostic accuracy 
Diagnostic accuracy was evaluated by comparing infected neonates with non-infected 

sick controls, i.e. neonates who initially were suspected to suffer from infection, but in 

whom infection was not verified [125]. In paper VI, two separate analyses were 

performed by including possibly infected neonates as either cases or controls. 

Fitted ROC curves with AUC were calculated by use of the ROCKIT software 

(Metz CE, Department of Radiology, Chicago Medical Centre, Chicago, IL, USA). A 

ROC curve describes the relation between true positive rate (sensitivity) and false 

positive rate (1 – specificity) for a range of threshold levels of a continuos parameter, 

and the AUC illustrates overall accuracy [126]. Sensitivity, specificity, and positive and 

negative predictive values were used to describe test performance at one mediator level. 

The positive likelihood ratio (true positive rate/false positive rate) and the negative 

likelihood ratio (false negative rate/true negative rate) were used to illustrate the weight 

that a given positive or negative test result could be assigned in predicting or excluding 

infection, respectively (paper VI) [127]. We used a stepwise multivariate logistic 

regression to analyse which of six inflammatory mediators independently predicted 
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infection, and thus might be used in combination with benefit (paper VI) [128]. In the 

logistic regression analyses, 24 infected and 18 probably infected neonates were 

available. We compared several models by entering various combinations of two to five 

variables. Mediators with a skewed distribution were logarithmic transformed in order 

to obtain nearby linearity. 
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Main results 
 

Histologic chorioamnionitis and inflammatory mediators 
 

Paper I 
Severe chorioamnionitis with high-grade leukocyte infiltration was associated with 

elevated umbilical serum levels of TNFα, IL-1β, IL-6, IL-8, p55, p75, IL-1RA and 

CRP. Mediator levels in mild chorioamnionitis were not higher than in non-inflamed 

placentas.  

Severe chorioamnionitis with subsequent neonatal disease had higher levels of 

all mediators except IL-1β and CRP, than severe chorioamnionitis without neonatal 

disease. However, severe chorioamnionitis was also accompanied by a more intense and 

widely distributed leukocyte infiltration, when neonatal disease developed. Umbilical 

vasculitis mainly appeared in severe chorioamnionitis, and had higher levels of all 

mediators except p75 and CRP than other cases with chorioamnionitis. Umbilical 

vasculitis frequently was followed by neonatal disease/neonatal sepsis.  

Severe chorioamnionitis that was followed by a normal neonatal progress had 

higher IL-1β, IL-6, IL-8, and IL-1RA than non-inflamed placentas. 

 

Early onset neonatal sepsis and inflammatory mediators 
 

Paper II 

Neonates with early-onset sepsis had higher umbilical serum levels of TNFα, IL–1β, 

IL-6, IL-8, p55, p75 and IL-1RA than healthy controls. Among preterm neonates, those 

with infection had higher levels of IL–1β, IL-6, IL-8, p55 and p75 than non-infected 

sick controls, whereas infected term neonates did not have higher mediator levels than 

term sick controls. Levels of all mediators, but not CRP, were very high among six 

preterm infected neonates who presented symptoms already at delivery.
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Paper III, IV and V 
Preterm neonates with early-onset sepsis had higher peripheral serum levels of IL-6, 

CRP, p55, and p75, than non-infected sick controls. Infected term neonates in addition 

had higher E-selectin, and ICAM-1. There were no differences in levels of VCAM-1 

between infected neonates and sick controls.  

Among infected neonates, levels of IL-6, CRP, and p55 decreased, whereas 

levels of p75, E-selectin, ICAM-1, and VCAM-1 did not change from admission and 

until three to four days after admission. Among non-infected neonates, no differences in 

IL-6, CRP, and p75 were detected during the same time period, whereas E-selectin and 

ICAM-1 increased, and p55 and VCAM-1 decreased. 

 

Diagnostic accuracy of inflammatory mediators  
 

Paper II 
Eleven preterm neonates had early-onset sepsis, and fourteen preterms were classified 

as non-infected sick controls. Receiver operator characteristic plots showed that 

umbilical IL–1β, IL-6 and IL-8 identified infected preterm neonates with a quite high 

accuracy (area under the ROC plots: 0.82-0.87).  

 

Paper VI 
Among 166 consecutive neonates admitted with a suspected early-onset infection, 

twenty-four had an infection, eighteen had a possible infection, and 124 were classified 

as non-infected but sick controls. Receiver operator characteristic plots showed that 

CRP was the single best diagnostic test. Multivariate logistic regression modelling 

showed that IL-6, in addition to CRP, independently predicted sepsis. With infected and 

possibly infected neonates as the reference standard, a combined test of CRP ≥10 mg/l 

and/or IL-6 ≥20 pg/ml had a sensitivity of 85%, specificity of 62%; and a negative 

likelihood ratio of 0.24. Using infected neonates as the reference standard alone, and 

including possibly infected neonates as controls, sensitivity increased to 96%, whereas 

specificity decreased to 58%; a negative test result (CRP <10 mg/l and IL-6 <20 pg/ml) 

ruled out sepsis with high certainty (likelihood ratio = 0.07). 
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Discussion 
 

Histologic chorioamnionitis with high-grade leukocyte infiltration in placenta tissues 

was associated with elevated levels of pro-inflammatory cytokines (TNFα, IL-1β, IL-6, 

IL-8), natural cytokine inhibitors (p55, p75, IL1-RA), and CRP in umbilical serum. This 

finding is in accordance with the results from previous studies that reported elevated 

levels of IL-1β, IL-6, IL-8, and IL1-RA [37,44,50,51]. We have not documented a 

bacterial aetiology to the histologic findings, but a high-grade leukocyte infiltration is 

likely to indicate intrauterine infection with a high accuracy [31,32,34]. With a bacterial 

focus in the amniotic cavity, maternal leukocytes initially may infiltrate decidua and 

accumulate in the subchorionic fibrin of the intervillous space. We found that elevated 

IL-6 and IL-8 reflected high-grade infiltration in these locations. More advanced cases 

with infiltration in chorion, amnion, and umbilical cord were reflected by high levels of 

all pro-inflammatory cytokines, and cytokine inhibitors. Thus, a certain correlation may 

exist between the severity of tissue inflammation and the cytokine response. In the 

placenta study (paper I), neonatal sepsis preferentially developed after cases with severe 

chorioamnionitis/umbilical vasculitis, and with high mediator levels. The population 

based data in paper II confirmed that neonates with early-onset sepsis have higher 

mediator levels than healthy neonates at delivery. Recently, three other studies have 

described an association between funisitis, early-onset neonatal sepsis, and high 

umbilical IL-6 [52,54,55]. Our results demonstrate that a much more comprehensive 

cytokine response accompanies umbilical vasculitis/funisitis and neonatal sepsis.  

It is difficult to assess if high umbilical mediator levels were only caused by a 

marked placenta inflammation, or if a fetal immune activation was also present. 

Usually, funisitis/umbilical vasculitis may reflect a fetal inflammatory response [25,29]. 

The frequent finding of this manifestation in cases followed by neonatal sepsis suggest 

that high cytokine levels could be a result of a fetal immune response. Berner et al. 

found that early-onset neonatal sepsis had high levels of IL-8 in cord blood, and cells 

expressing mRNA for IL-8 at a high level [129], which may support this interpretation. 

On the other hand, we found that less marked chorioamnionitis had high 

umbilical levels of IL-1β, IL-6, IL-8 and IL1-RA in healthy neonates, i.e. in a situation 

where a fetal/neonatal contribution was unlikely. Singh et al. have reported a similar 
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observation. In a small study they found that clinical chorioamnionitis was associated 

with elevated IL-6 in umbilical serum, even in the absence of neonatal disease [56], and 

that cord blood cells were an unlikely source of IL-6 when neonates were clinically 

unaffected, because the cells did not express mRNA for IL-6. It is unknown whether 

cytokines can cross from inflamed placental tissues into the fetal circulation, but in 

general an increased vascular permeability is a central phenomenon in inflammation. 

Thus, there are indications that umbilical cytokine levels could be affected by a fetal 

immune response, although inflamed placenta tissues could also contribute. 

We found that infected preterm neonates with symptoms at birth had particularly 

high mediator levels (paper II). Further, we observed a certain relation between severe 

chorioamnionitis and prematurity, in accordance with the results from several previous 

studies (paper I). Thus, it may be suggested that preterm neonates frequently were 

exposed to bacteria in utero in relation to an intrauterine infection. In contrast, a 

majority of term neonates developed symptoms after delivery (paper II), as previously 

reported [69]. Term infected neonates only had moderately elevated mediator levels in 

umbilical serum not higher than sick controls (paper II). However, on admission to the 

NICU they had higher IL-6, CRP (paper III), ICAM-1, E-selectin (paper IV), p55 and 

p75 (paper V) than sick controls. These findings should be interpreted carefully, 

because mediators were measured in two different populations, and IL-6 was measured 

by different assays. However, it may be suggested that term neonates could be exposed 

later than preterms, possibly during the passage through the birth canal. The fact that 

term infected neonates only had moderately elevated umbilical IL-6, but high IL-6 later 

may also support that term neonates have the capacity to secrete IL-6. We detected p55 

and p75 in all umbilical and peripheral blood samples from healthy and ill neonates, and 

elevated levels were detected in both preterm and term infected neonates. Recently, 

other investigators have detected p55 and p75 in fetal blood [130]. We also found that 

p55 and p75 were elevated in severe chorioamnionitis, with a possible effect on 

fetal/neonatal serum levels. Nevertheless, these results suggest that shedding of soluble 

TNF receptors may be established in preterm and term neonates. Umbilical CRP was 

undetectable in nearly all neonates with infection. On admission to the NICU, CRP was 

elevated in the majority, and increased to maximum levels one to two days later (data 

not shown). These observations may suggest that increased secretion in the neonate was 

likely to cause high neonatal CRP levels.  
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Antibiotics should be used on wide indications in neonates, but it would be 

preferable if infection could be ruled out by use of a diagnostic test. We found that 

umbilical IL-1β, IL-6, and IL-8 were quite accurate in diagnosing early-onset sepsis in 

preterm neonates. Our results also suggest that measuring IL-6 and CRP in peripheral 

serum may be useful when clinical symptoms develop. If the history and clinical 

findings do not indicate high risk of infection, low levels of both markers may allow the 

physician to consider withholding antibiotics. On the other hand, high levels of one or 

both increased the probability of infection six-fold, and would strongly support the 

initiation of antibiotic treatment. Due to limited sample size, we have not validated 

these findings, but other investigators have also shown that CRP in combination with 

IL-6 or IL-8 is very sensitive [110,115]. Before clinical prediction rules can be 

developed, our findings should be confirmed and complemented in a larger study.  

There are a number of limitations of the studies in the thesis. In papers I, and III-

VI, patients were not selected randomly, and we only included a fraction of eligible 

individuals. Thus, the possibility of selection bias may limit the interpretation of the 

results. Paper II was population based and it may be safer to generalise the results from 

this study. In paper III-VI, antibiotic therapy was initiated before blood sampling in 

some of the neonates. It may be a source of error since antibiotics are likely to reduce 

cytokine secretion. However, other factors may also have affected cytokine 

measurements, because the treatment of the patients was not standardised. For instance, 

antibiotic therapy was likely to be initiated at various time during the infection in 

individual neonates, because time from bacterial exposure until clinical manifestations 

may have varied. Non-standardised clinical management may also lead to work-up bias 

[131]. Work-up bias means that physicians unconsciously may increase their efforts to 

diagnose certain individuals, for instance if a standardised protocol is missing. It may 

systematically increase the differences between cases and controls, leading to 

differential misclassification with erroneously high accuracy for negative prediction 

[131]. The fact that the physicians were not blinded to CRP may have increased the risk 

of this particular bias further. In the present studies, all neonates suspected to suffer 

from infection were treated with antibiotics. Some truly infected neonates therefore 

might have been classified as controls, because they benefited from treatment, and 

experienced an uncomplicated clinical course. This possible bias may have caused 

differential misclassification with affection of the control groups, reducing the accuracy 
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for positive prediction. The classification also implied various problems. In order to 

study a clinically credible spectrum of infected neonates, we included those with 

negative cultures if clinical evidence was strong, and a significant inflammatory 

response was present. However, inflammatory cytokines influence leukocytes and acute 

phase proteins, and the markers we used in the classification (I/T-ratio, WBC counts, 

peak CRP) may be related at some level to the mediators we examined. In a diagnostic 

study, this could give rise to some sort of incorporation bias [131]. Using culture results 

alone might have overcome this problem, but it would probably have caused a spectrum 

bias [131]. In paper II-VI, scientists who were not blinded to CRP classified neonates. 

Awareness of the test result may affect a classifier systematically [131], and possibly 

such a diagnostic review bias may have caused some misclassification. However, it is 

difficult to evaluate whether it would be principally differential, or non-differential. It 

was also a problem that some neonates could not be clearly classified, because they did 

not fulfil the criteria for being infected. In paper VI, we included these probably 

infected neonates as cases or as controls, and examined the influence on test accuracy. 
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Conclusion 
 

Chorioamnionitis with high-grade leukocyte infiltration was reflected by elevated levels 

of pro-inflammatory cytokines (TNFα, IL-1β, IL-6, IL-8), natural cytokine inhibitors 

(p55, p75, IL1-RA), and CRP in umbilical serum. Chorioamnionitis with extensive 

leukocyte infiltration in placenta and the membranes had very high mediator levels, and 

often was followed by neonatal disease. Umbilical vasculitis appeared in the most 

severe cases, with high mediator levels, and frequently was followed by neonatal 

disease.  

Neonates with early-onset sepsis had higher umbilical serum levels of all pro-

inflammatory cytokines, and cytokine inhibitors than healthy controls. Infected preterms 

who were symptomatic at birth had particularly high mediator levels, whereas infected 

term neonates did not have higher levels than non-infected sick controls. On admission 

to the NICU, preterms with infection had higher peripheral serum levels of IL-6, p55, 

p75, and CRP than sick controls. Term infected neonates in addition had higher E-

selectin, and ICAM. 

Umbilical cord blood levels of IL-1β, IL-6, and IL-8 diagnosed early-onset 

sepsis in preterm neonates with a quite high accuracy. When clinical manifestations 

developed, peripheral serum levels of IL-6 and CRP independently predicted infection. 

A combined test of IL-6 and CRP was sensitive, and low levels of both mediators ruled 

out infection with a high likelihood. 
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Errata 
 
Thesis 
1) Page 27, line 7: “In paper I, we used a maximum CRP >30 mg/l as a criterion. In paper III 

and IV we used an abnormal white blood cell count (elevated I/T-ratio >0.20 or white blood cell 

count <5.0 x 103/mm3 or >25.0 x 103/mm3), and a maximum CRP value >10 mg/l. In paper V 

and VI abnormal white blood cell counts were used alone.” Replaced by: ”In paper II, we used a 

maximum CRP ≥30 mg/l as a criterion. In paper III and IV, we used I/T-ratio ≥0.20, and a 

maximum CRP ≥10 mg/l. In paper V and VI abnormal white blood cell counts (I/T-ratio >0.20 

or total white blood cell count <5.0 x 103/mm3 or >25.0 x 103/mm3) were used alone.” 

2) Page 31, in “Paper II”, line 1: ”Neonates with early-onset sepsis had higher umbilical serum 

levels of TNFα, IL–1β, IL-6, IL-8, p55, p75 and IL-1RA than healthy controls.” Replaced by 

“Neonates with early-onset sepsis had higher umbilical plasma levels of TNFα, IL–1β, IL-6, IL-

8, p55, p75 and IL-1RA than healthy controls.” 

3) Page 34, second paragraph, line 7: ”Term infected neonates only had moderately elevated 

mediator levels in umbilical serum not higher than sick controls (paper II).” Replaced by “Term 

infected neonates only had moderately elevated mediator levels in umbilical plasma not higher 

than sick controls (paper II).” 

4) Page 37, second paragraph, line 1: ”Neonates with early-onset sepsis had higher umbilical 

serum levels of all pro-inflammatory cytokines, and cytokine inhibitors than healthy controls.” 

Replaced by “Neonates with early-onset sepsis had higher umbilical plasma levels of all pro-

inflammatory cytokines, and cytokine inhibitors than healthy controls.” 

 

Paper IV 
5) Page 274, in the Abstract, line 17: “The use of ICAM-1 concentration (cut-off level: 250 µg l-

1) as a diagnostic test for infection in term neonates yielded a sensitivity of 80% and a 

specificity of 61%, whereas a sensitivity of 70% and a specificity of 61% were found when E-

selection concentration (cut-off level: 150 µg l-1), was used.” Replaced by: “The use of ICAM-1 

concentration (cut-off level: 250 µg l-1) as a diagnostic test for infection in term neonates 

yielded a sensitivity of 80% and a specificity of 61%, whereas a sensitivity of 79% and a 

specificity of 64% were found when E-selection concentration (cut-off level: 150 µg l-1), was 

used.”  

6) Page 276, in “Statistical analysis”, line 2: “Differences between groups were assessed by 

one-way analysis of variance (Kruskall-Wallis and Mann-Whitney U test).” Replaced by:  
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“Differences between groups were assessed by one-way analysis of variance (Kruskall-Wallis 

test), and Mann-Whitney U-test.” 

7) Page 278, in the second paragraph of Adhesion molecules in term infants with infection, line 

7: “These cut-off levels yielded a sensitivity of 80% and a specificity of 61% for ICAM-1, and a 

sensitivity of 70%, and a specificity of 79% for E-selectin in detection of infections in neonates 

delivered at term.” Replaced by: “These cut-off levels yielded a sensitivity of 80% and a 

specificity of 61% for ICAM-1, and a sensitivity of 79%, and a specificity of 64% for E-selectin 

in detection of infections in neonates delivered at term.” 

8) Page 278, in the Discussion, line 13: “Both ICAM-1 (cut-off level: 250 µg l-1) and E-selectin 

(cut-off level: 150 µg l-1) concentrations demonstrated a high sensitivity (80% and 79%, 

respectively) in the detection of infections in term neonates, whereas the corresponding 

specificity was moderate (both 61%).” Replaced by: “Both ICAM-1 (cut-off level: 250 µg l-1) 

and E-selectin (cut-off level: 150 µg l-1) concentrations demonstrated a high sensitivity (80% 

and 79%, respectively) in the detection of infections in term neonates, whereas the 

corresponding specificity was moderate (61% and 64%, respectively).” 
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