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A GIS-based green supply chain model for assessing the effects of 

carbon price uncertainty on plastic recycling 

 

Abstract 

Recycling plastic can abate the environmental pollution as well as CO2 emissions by saving the 

carbon-intensive feedstock input. The uncertain carbon price places significant effects on the 

establishment and operation of the whole supply chain.  This study develops a green supply chain 

model combined with geographic information system (GIS) to account for carbon price uncertainty 

and evaluate its effects on the closed-loop supply chain (CLSC) of plastic recycling. A two-stage 

stochastic programming model is constructed, in which the stochastic variable, CO2 price is modeled 

as a geometric Brownian motion process. Six scenarios are designed with respect to price 

expectation and volatility. A case study is performed with the GIS information of the plastic supply 

chain in Zhejiang province, China. The results illustrate that triggering the establishment of reverse 

logistics requires a carbon price threshold significantly beyond current level. Lower price volatility 

would facilitate the decision-making of investment into the reverse logistics. Mechanisms to 

alleviate the market variation shall be introduced. A sound market condition is desired to obtain the 

optimal balance that encourages the CLSC without creating extra pressure on the firms. The 

proposed modeling framework can be easily applied to other sectors with similar characteristics. 
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1. Introduction 

Plastic pollution has been drawing increasing attention worldwide. Global plastic increased to as 

high as 348 million tons in 2017, approximately 30% of which was produced in China, the largest 

producer, followed by Europe and North America (PlasticsEurope, 2018). A significant portion of 

plastic waste is mismanaged or inadequately disposed of. Globally, 1.5% to 4% of plastics production 

ends up in the oceans every year (Jambeck et al., 2015).  Moreover, plastics are a major contributor 

to greenhouse gas (GHG) emissions. Extraction and processing of fossil fuel for plastics feedstocks is 

carbon-intensive, and incineration of waste plastics releases GHG and many other toxic gases such as 

dioxins, furans, mercury, and polychlorinated biphenyls into the atmosphere (Verma et al., 2016). 

Therefore, it is of significant importance to investigate the green supply chain management (GSCM) 
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of plastic, particularly the inclusion of the recycling process, in the concept of circular economy (CE), 

which aims to alter the current linear economy model by extracting the maximum value from 

resources while in use and to recover and regenerate products and materials at the end of their 

service life (Barra and Leonard, 2018). An integration of CE principles with sustainable supply chain 

management can provide advantages from an environmental perspective (Genovese et al., 2017). 

Synergies between decarbonization measures and resource efficiency in the CE context have been 

assessed for some energy-intensive industries such as cement and steel (Zhang et al., 2018; Zhou et 

al., 2016), yet the measures of recycling have not been explicitly taken into account in these studies. 

From the life cycle perspective, recycling can also create significant co-benefits of carbon 

emissions mitigation through reducing the use of fossil fuels as raw materials. The decision problem 

regarding the plastic supply chain is distinctively different from other types of problems because the 

life cycle carbon emissions associated with feedstock supply, such as polyethylene (PE), are 

significantly higher than in other processes such as manufacturing and transportation etc. Hence the 

supply chain is more significantly affected by the upstream PE production process in an indirect way 

when exposed to carbon trading market,  which is regarded as an effective mechanism to stimulate 

low-carbon investment (Zhou et al., 2014). Nonetheless, how the uncertainty of carbon price 

variation affects the closed-loop supply chain (CLSC) design and operation remains an open question 

which is far from well-understood. The CLSC models enable modeling of the recycling process of 

plastic products, reducing consumption of the virgin feedstock and saving the associated cost, which 

conceptually resemble the advancement of the circular economy paradigm shifting from the 

conventional linear economy, and management of CLSC is considered a strategic response to the call 

for corporate sustainability while further expanding the scope of value creation to include product 

reconstruction (Gaur et al., 2017). This study aims to address this decision-making problem by 

developing a new analytical framework that integrates modeling carbon price uncertainty with a 

geographic information system (GIS)-based stochastic CLSC modeling and factors in the life cycle 

emissions of PE feedstock. The GIS-based modeling provides a visualized platform to observe the 

alteration of the configurations, the choices of facility locations, and the product flows within the 

supply chain across scenarios. A geometric Brownian motion (GBM) model is constructed for 

simulating variation of CO2 trading prices. Historical data of carbon prices in eight China’s pilot 

carbon trading markets is compiled and employed for estimating the key parameters in the GBM 

model. Six scenarios are designed regarding different levels of price drift rate and volatility to cover a 

wide-range of possible carbon market conditions. This modeling of carbon price uncertainty is then 

incorporated into a two-stage stochastic mixed integer programming (MIP) model for the targeted 
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plastic CLSC. A case study in Zhejiang province, China, is performed to quantitively evaluate these 

effects.  

The remainder of this paper is organized as follows: Section 2 summarizes the literature with 

regards to accounting for climate policies in green supply chain management. Section 3 elaborates 

on the problem definition, formulation of the two-stage stochastic model and construction of the 

GBM model for carbon price. Section 4 introduces the scenario settings regarding carbon price 

uncertainty and describes the processes of parameter estimation for the GBM model based on 

historical information. Section 5 presents the results and conducts analysis of the case study, and 

Section 6 concludes with key policy insights and discussions on further research directions. 

 

2. Literature review 

In the past decade, there has been an exponential growth of studies on the integration of 

environmental concerns into supply chain management practices (Tseng et al., 2019). Models and 

methodologies that explicitly include a variety of climate policies, for example, carbon tax, cap-and-

trade, and carbon offset, have been developed and applied to the GSCM problems (Waltho et al., 

2018).  

A number of studies assessed the impacts of carbon policies on GSCM, but they varied in the 

aspects of, for example, supply chain type, regulatory scheme, carbon tax rate/price level, 

uncertainty factors and the way to treat uncertainty in the model. Table 1 summaries examples of 

these studies. Among these studies, carbon tax and cap-and-trade are the two most widely adopted 

mechanisms in climate change regulations that have been incorporated into GSCM. In the way of 

accounting for carbon price uncertainty, some studies assume carbon price in the trading market as 

a stochastic variable (Rezaee et al., 2017), and many others use scenario analysis or sensitivity 

analysis, which simply assumes different levels of carbon price to assess the performance and 

configuration of the supply chain, particularly for the carbon tax cases  (Yang et al., 2016; Zakeri et 

al., 2015). On top of carbon price, many other factors such as capacities in different echelons, or 

demand side variation have also been treated as uncertain (Ghelichi et al., 2018; Shaw et al., 2016). 

 

Table 1 Summary of literature review of incorporating climate policies into GSCM 

Reference Supply chain type Climate policies Uncertainty factors 

Rezaee et al. (2017) Forward logistics Carbon trading Carbon price (stochastic); 
product demand (stochastic) 

Yang et al. (2016) Forward logistics Carbon tax Carbon tax rate (scenario) 
Shaw et al. (2016) Forward logistics Carbon trading Capacities of suppliers, 

plants and warehouses 
(stochastic), carbon price 
(scenario) 
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Guo et al. (2017) Forward and 
reverse logistics 

Carbon tax - 

Fahimnia et al. 
(2015) 

Forward logistics Carbon tax - 

Ghelichi et al. 
(2018) 

Forward logistics - Biofuel supply and demand 
(stochastic) 

Paksoy and 
Ö zceylan (2014) 

Forward logistics Carbon tax - 

Zakeri et al. (2015) Forward logistics Carbon tax/ 
Carbon trading 

Carbon price (scenario) 

Fahimnia et al. 
(2013) 

Forward and 
reverse logistics 

Carbon tax Carbon tax rate (scenario) 

Peng et al. (2016) Forward logistics Carbon tax/ 
Carbon trading 

Carbon price (scenario) 

Martí et al. (2015) Forward logistics Emissions 
cap/carbon tax 

Product demand (stochastic) 

Han et al. (2017) Forward and 
reverse logistics 

- Demand, recovery rate, 
discarding rate etc. (scenario) 

Diabat et al. (2013) Forward and 
reverse logistics 

Carbon trading Carbon price (scenario) 

 

Some models, although not incorporating uncertainty of carbon price, have been developed in a 

multi-objective way to assess the impacts from climate policy on the supply chain emissions from 

the supply chain. Typical example includes bi-objective tactical planning models that integrate 

economic and carbon emission objectives under a carbon tax policy scheme (Fahimnia et al., 2015; 

Han et al., 2017).  

Comparing the impacts and effectiveness of different policy instruments on the performance of 

GSCM has also been conducted in these studies.  Some conclusions drawn from these study include 

that a carbon trading mechanism, despite limitations, results in improved supply chain performance 

in terms of emissions generation, cost, and service levels (Choudhary et al., 2015; Zakeri et al., 

2015) , although a carbon tax may be favorable from an uncertainty perspective and the right level 

of tax can be a priori computed to achieve a given emission reduction (Martí et al., 2015).  

Transportation in supply chains has been drawn much interest from researchers in this field, as in 

many supply chains, transportation is the most carbon-intensive process (Yang et al., 2016). 

Optimization models are built to choose optimal routes or transportation modes, such as freight 

(Liotta et al., 2015) or truck (Allevi et al., 2018).  Some studies provide detailed information on the 

trade-offs between various parameters such as vehicle speed, fuel, time, emissions, noise, and their 

total cost, and offers managerial insights on economies of environmentally conscious supply chain 

optimization (Paksoy and Ö zceylan, Taylor & Francis, 2014).   

It is noteworthy that although transportation is the most carbon-intensive process of many 

supply chains, it is not necessarily true in other cases. For instance, many production processes such 
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as plastic production or fuel production, can emit significantly higher CO2 compared to the 

transportation process of these products (Ghelichi et al., 2018). Therefore, modeling those supply 

chains should place a distinct focus on the life cycle emissions of the upstream sectors (Ren et al., 

2019). One typical example is whether to consider the reversed logistics. Recycling some carbon-

intensive products, such as plastic, is one of the most effective measures for abating CO2 emissions, 

and is also a common practice in the real world. Hence, the closed-loop supply chain model provides 

a useful means for evaluating the effectiveness of climate policy on this issue. To our knowledge, 

only a few studies have incorporated the effect of climate policy in designing and planning CLSC. 

Moreover, the studies have been surprisingly scarce regarding accounting for climate policy in the 

decision-making problems of the plastics CLSC.  

This study attempts to fill the knowledge gap by conducting a deep investigation into how 

fluctuating carbon price impacts the CLSC network planning and operations for the plastic industry. 

Considering China is the world’s largest plastic producer, and is also launching the world’s largest 

nation-wide carbon market, such an analysis within this background is urgently necessary to inform 

the involved decision-makers managing these challenges.  

 

3. Problem definition and model formulation 

3.1 Problem background 

This study considers a decision-making problem, that is, in an environment of an uncertain 

carbon market, a company that produces, distributes, and sells plastic products decides whether and 

how it should establish a CLSC by designing recycling-related facilities and integrating them into the 

existing infrastructure of forward logistics.  Fig. 1 represents the network of the proposed supply 

chain. As the diagram shows, the facilities of the forward supply chain are connected by solid lines, 

and the dashed lines represent the potential reverse logistics under planning. The feedstocks 

required for the manufacturing process are provided by the suppliers at certain price levels. The 

production processes of the feedstocks are carbon-intensive. As a result, the fluctuation of the 

carbon market leads to the variation of the feedstocks’ costs and, consequently, the feedstock 

prices. In the forward supply chain, the manufacturers produce and sell two types of plastic 

products, namely, A and B, with different quality grades. Product A is a higher quality grade and 

made from the virgin feedstocks, whereas product B with is a lower quality grade that can be 

produced either from the virgin feedstocks or from recycled feedstocks. These two types of products 

are shipped from the manufacturing plants to the distribution centers (DC) and then delivered to 

various markets to meet their demands. In a linear forward supply chain without the reverse 

logistics, the manufacturers can either purchase virgin feedstocks or recycled feedstocks to produce 
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product B.  Because using the virgin feedstocks is not cost-efficient in this case, the company can 

either buy the recycled feedstocks from external suppliers (e.g., plastic waste importers) or establish 

its own CLSC for supply these feedstocks. 

The recycled feedstock market is also subject to the carbon market, indicating that a higher 

carbon price will increase the price of the recycled feedstock and increase the cost of manufacturing 

recycled plastic product B.  To address this uncertainty, the company may reduce the costs by 

establishing its own reverse logistics, comprising collection centers (CC), recycling centers (RC), and 

disposal centers (SC). The CCs gather the waste of plastic products from the markets and separate 

the waste that can be further processed and treated through waste-sorting, detection, and pre-

treatment. The RCs process those wastes to make plastic feedstocks and send them back to the 

manufacturers. The remaining waste without recycling value is sent to the disposal centers for final 

treatment.  

 

Fig. 1 Diagram of the proposed CLSC network 

To illustrate the decision-making process, this study applies a case study of the plastic supply 

chain in Zhejiang province, China.  The main feedstock is low-density polyethylene (LDPE), one of the 

most widely-used PE raw materials in the plastic market. In China, PE is mostly produced from oil-

based route. The CO2 emissions factor of oil-based PE is approximately 2.50 tons CO2/ton (China 

Chemical Industry Information Center, 2016; Liu et al., 2013; Zhu et al., 2010), which is higher than 

the natural gas route but much lower than the coal-based route (Zhou et al., 2011; Zhu et al., 2010). 

The company purchase oil-based LDPE to produces two types of plastic packaging materials. 

 

3.2 Model formulation 

3.2.1 Deterministic MILP model 

The objective of this model is to minimize the total cost, discuss the change in the supply chain 

structure under a certain carbon price, and discuss the choice of supply and demand and 

Suppliers Manufacturers Distribution centers Markets

Feedstock New product

Recycled product

Collection centers

New product

Recycled product

Recycled 
feedstock Recycling centers

Disposal centers

Plastic wasteRecycled waste

Disposed waste
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transportation mode in each link. The general form of the mixed-integer linear programming model 

is as follows: 

 
min 𝑧 = 𝑐𝑇𝑥
s. t. 𝐴𝑥 = 𝑏

𝑑1 ≤ 𝑥 ≤ 𝑑2

 (1) 

Where x represents the variables, c is the vector of the cost coefficients, A is the matrix of the 

coefficients in the constraints, b denotes the right-hand side column vector of the constraints, 

and d1 and 𝑑2 represent the vectors of lower and upper bounds on the variables, respectively. 

The objective function z in Eq. (2) specifies the total SCND cost, which comprises the 

corresponding cost components associated with each part of the supply chain, namely, the 

purchasing cost of feedstock (FDC), the manufacturing cost (MFC), the transportation cost 

(TRC), the distribution cost (DTC), the collection cost (CLC), the recycling cost (RCC), and the 

disposal cost (DPC). 

 𝑚𝑖𝑛 𝑧 = 𝐹𝐷𝐶 + 𝑀𝐹𝐶 + 𝑇𝑅𝐶 + 𝐷𝑇𝐶 + 𝐶𝐿𝐶 + 𝑅𝐶𝐶 + 𝐷𝑃𝐶 (2) 

The complete specification of the implemented model is summarized as follows. 

 

3.2.1.1 Indices 

𝑓 Index of plants, 𝑓 = 1, … , 𝐹 

𝑑 Index of distribution centers, 𝑑 = 1, … , 𝐷 

𝑚 Index of markets, 𝑚 = 1, … , 𝑀 

𝑐  Index of collection centers, 𝑐 = 1, … , 𝐶 

𝑟  Index of recycling centers, 𝑟 = 1, … , 𝑅 

𝑠 Index of disposal centers, 𝑠 = 1, … , 𝑆 

𝑝 Index of product types, 𝑝 = 1, … , 𝑃  

𝑓𝑑  Index of feedstock types, 𝑓𝑑 = 1, … , 𝐹𝐷 

𝑛 Index of the types of new products, subset of p , 𝑛 = 1, … , 𝑁  

𝑢 Index of the types of recycled products, subset of p , 𝑢 = 1, … , 𝑈 

𝑓𝑛 Index of the types of virgin feedstocks, subset of fd , 𝑓𝑛 = 1, … , 𝐹𝑁  

𝑓𝑟 Index of the types of recycled feedstocks, subset of fd , 𝑓𝑑 = 1, … , 𝐹𝐷 

𝑓𝑎 Index of the types of additives, subset of fd ,𝑓𝑎 = 1, … , 𝐹𝐴 

 

3.2.1.2 Parameters 

𝑝𝑟𝑐  carbon price, yuan/ton CO2 

𝑣𝑎𝑟𝑡𝑟 transportation cost for delivering 1 ton of production for 1 km, yuan/km*ton 
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𝑒𝑚𝑡𝑟  carbon intensity of transportation, ton/ton*km  

𝑐𝑟𝑚𝑓𝑑  conversion rate of feedstock fd in the manufacturing process 

𝑐𝑙𝑟  collection rate  

𝑐𝑟𝑟𝑛,𝑓𝑟 conversion rate of product waste n in the recycling process for making recycled 

feedstock fr 

𝑝𝑟𝑓𝑑𝑓𝑑  feedstock price, yuan/ton  

𝑒𝑚𝑓𝑑𝑓𝑑 carbon intensity of feedstock, ton CO2/ton  

𝑝𝑟𝑝𝑑𝑝  product price, yuan/ton  

𝑑𝑚𝑝,𝑚  demand for product p of market m, ton/yr 

𝑐𝑎𝑝𝑝𝑙𝑓,𝑝 capacity of plant f for producing product p, ton/yr 

𝑓𝑥𝑝𝑙𝑓  annualized capital cost of establishing plant f, yuan/yr 

𝑣𝑎𝑟𝑝𝑙𝑓,𝑝 annual variable cost of producing 1 ton of product p at plant f, yuan/ton 

𝑒𝑚𝑝𝑙𝑓,𝑝 CO2 emissions for producing 1 ton of product p in plant f, ton CO2/ton 

𝑐𝑎𝑝𝑑𝑐𝑑,𝑝 capacity of distribution center d for storing product p, ton/yr 

𝑓𝑥𝑑𝑐𝑑  annualized capital cost of establishing distribution center d, yuan/yr 

𝑣𝑎𝑟𝑑𝑐𝑑,𝑝 annual variable cost of distributing product p at distribution center d,  yuan/ton 

𝑒𝑚𝑑𝑐𝑑,𝑝 CO2 emissions of distributing 1 ton of product p at distribution center d, ton CO2/ton 

𝑐𝑎𝑝𝑐𝑙𝑐,𝑝 capacity of collection center c for collecting product waste p, ton/yr 

𝑓𝑥𝑐𝑙𝑐  annualized capital cost of establishing collection center c, yuan/yr 

𝑣𝑎𝑟𝑐𝑙𝑐,𝑝 annual variable cost of collecting product waste p at collection center c, yuan/ton 

𝑒𝑚𝑐𝑙𝑐,𝑝 CO2 emissions when collecting 1 ton of product waste p at collecting center c, ton 

CO2/ton 

𝑐𝑎𝑝𝑟𝑐𝑟,𝑝 capacity of recycling center r for recycling product waste p, ton/yr 

𝑓𝑥𝑟𝑐𝑟  annualized capital cost of establishing recycling center r, yuan/yr 

𝑣𝑎𝑟𝑟𝑐𝑟,𝑝 annual variable cost of recycling 1 ton of product waste p at recycling center r, 

yuan/ton 

𝑒𝑚𝑟𝑐𝑟,𝑝 CO2 emissions of recycling one ton waste at recycling center c, ton CO2/ton 

𝑐𝑎𝑝𝑑𝑝𝑠,𝑝 capacity of disposal center s for disposing product waste p, ton/yr 

𝑓𝑥𝑑𝑝𝑠  annualized capital cost of establishing disposal center s, yuan/yr 

𝑣𝑎𝑟𝑑𝑝𝑠,𝑝 annual variable cost of disposing of 1 ton of product waste p at disposal center s, 

yuan/ton 

𝑒𝑚𝑑𝑝𝑠,𝑝 CO2 emissions of disposing of 1 ton of product waste p at disposal center s, ton 

CO2/ton 
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𝑑𝑖𝑠𝑓𝑑𝑓,𝑑 distance from plant f to distribution center d, km 

𝑑𝑖𝑠𝑑𝑚𝑑,𝑚 distance from distribution center d to market m, km 

𝑑𝑖𝑠𝑚𝑐𝑚,𝑐 distance from market m to collection center c, km 

𝑑𝑖𝑠𝑐𝑟𝑐,𝑟  distance from collection center c to recycling center r, km 

𝑑𝑖𝑠𝑐𝑠𝑐,𝑠  distance from collection center c to disposal center s, km 

𝑑𝑖𝑠𝑟𝑓𝑟,𝑓 distance from recycling center r to plant f, km 

 

3.2.1.3 Decision variables 

𝑉𝑅𝑀𝑓,𝑓𝑑 ≥ 0 amount of feedstock fd purchased by plant f, ton/yr 

𝑉𝑃𝑓,𝑝 ≥ 0 output of product p from plant f, ton/yr 

𝑉𝐹𝐷𝑓,𝑑,𝑝 ≥ 0 amount of product p shipped from plant f to distribution center d, ton/yr 

𝑉𝐷𝑀𝑑,𝑚,𝑝 ≥ 0 amount of product p shipped from distribution center d to market m, ton/yr 

𝑉𝑀𝐶𝑚,𝑐,𝑝 ≥ 0 amount of product waste p shipped from market m to collection center c, ton/yr 

𝑉𝐶𝑅𝑐,𝑟,𝑝 ≥ 0 amount of product waste p shipped from collection center c to recycling center r, 

ton/yr 

𝑉𝐶𝑆𝑐,𝑠,𝑝 ≥ 0 amount of product waste p shipped from collection center c to disposal center s, 

ton/yr 

𝑉𝑅𝐹𝑟,𝑓,𝑓𝑟 ≥ 0 amount of recycled feedstock fr shipped from recycling center r to plant f, ton/yr 

𝑉𝐶𝐵𝑐  1 if collection center c is established, 0 otherwise 

𝑉𝑅𝐵𝑟  1 if recycling center r is established, 0 otherwise 

𝑉𝑆𝐵𝑠  1 if disposal center s is established, 0 otherwise 

𝑉𝑅𝑉𝐵  1 if the entire reverse flow is established, 0 otherwise 

 

The profit expression is shown in Eq. (3). The total profit is equal to the total revenue from selling 

all products subtracted by the total cost.  

 𝑝𝑟𝑜𝑓𝑖𝑡 = ∑ (𝑝𝑟𝑝𝑑𝑝 ∙ 𝑉𝑃𝑓,𝑝)𝑓,𝑝 − 𝑧  (3) 

Eqs. (4)–(6) formulate the seven cost components. The purchasing costs (FDC) defined in Eq. (5) 

include the purchasing costs of raw materials in each plant f and the additional cost for the CO2 

emissions embodied in the supply of raw materials. Notably, such a cost is included in the feedstock 

price in the real market, whereas in this study, we separate it from the feedstock price and express it 

explicitly to better illustrate the impact from the carbon price uncertainty.  

 𝐹𝐷𝐶 = ∑ (𝑝𝑟𝑓𝑑𝑓𝑑 ∙ 𝑉𝑅𝑀𝑓,𝑓𝑑 + 𝑝𝑟𝑐 ∙ 𝑒𝑚𝑓𝑑𝑓𝑑 ∙ 𝑉𝑅𝑀𝑓,𝑓𝑑)𝑓,𝑓𝑑  (4) 
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The manufacturing costs (MFC) include the annualized capital costs of each plant f, the variable 

production costs in the manufacturing processes, and the associated costs for CO2 emissions, as 

shown in Eq. (5). 

  𝑀𝐹𝐶 = ∑ 𝑓𝑥𝑝𝑙𝑓𝑓 + ∑ (𝑣𝑎𝑟𝑝𝑙𝑓,𝑝 ∙ 𝑉𝑃𝑓,𝑝)𝑓,𝑝 + 𝑝𝑟𝑐 ∙ ∑ 𝑒𝑚𝑝𝑙𝑓,𝑝 ∙ 𝑉𝑃𝑓,𝑝𝑓,𝑝   (5) 

In Eq. (6), the TRC include all the shipping costs for delivering products, wastes, and the recycled 

feedstocks, and the associated cost of CO2 emissions resulted from fuel use.  In this study, we 

assume there is only one shipping mode, must truck transportation on the road, which is fueled by 

diesel. 

𝑇𝑅𝐶 = (𝑣𝑎𝑟𝑡𝑟 + 𝑝𝑟𝑐 ⋅ 𝑒𝑚𝑡𝑟) ⋅ {∑ (𝑑𝑖𝑠𝑓𝑑𝑓,𝑑 ⋅ 𝑉𝐹𝐷𝑓,𝑑,𝑝)𝑓,𝑑,𝑝 + ∑ (𝑑𝑖𝑠𝑑𝑚𝑑,𝑚 ⋅𝑑,𝑚,𝑝

𝑉𝐷𝑀𝑑,𝑚,𝑝) + ∑ (𝑑𝑖𝑠𝑚𝑐𝑚,𝑐 ⋅ 𝑉𝑀𝐶𝑚,𝑐,𝑝)𝑚,𝑐,𝑝 + ∑ (𝑑𝑖𝑠𝑐𝑟𝑐,𝑟 ⋅ 𝑉𝐶𝑅𝑐,𝑟,𝑝)𝑐,𝑟,𝑝 + ∑ (𝑑𝑖𝑠𝑐𝑠𝑐,𝑠 ⋅𝑐,𝑠,𝑝

𝑉𝐶𝑆𝑐,𝑠,𝑝) + ∑ (𝑑𝑖𝑠𝑟𝑓𝑟,𝑓 ⋅ 𝑉𝑅𝐹𝑟,𝑓,𝑓𝑟)𝑟,𝑓,𝑓𝑟 } (6) 

Eq. (7) represents the distribution costs (DTC), which have three parts: the annual fixed costs of 

establishing all the distribution centers, the variable costs of the distribution processes, and the 

costs for the corresponding CO2 emission. 

𝐷𝑇𝐶 = ∑ 𝑓𝑥𝑑𝑐𝑑𝑑 + ∑ (𝑣𝑎𝑟𝑑𝑐𝑑,p ⋅ 𝑉𝐷𝑀𝑑,𝑚,𝑝)𝑑,𝑚,𝑝 + 𝑝𝑟𝑐 ⋅ ∑ (𝑒𝑚𝑑𝑐𝑑,p ⋅ 𝑉𝐷𝑀𝑑,𝑚,𝑝)𝑑,𝑚,𝑝   

  (7) 

Eq. (8) formulates the collection costs (CLC). The relevant cost components include the annual 

fixed costs of all the CC, the variable costs of the collection processes, and the costs for the 

associated CO2 emissions.  

𝐶𝐿𝐶 = ∑ (𝑓𝑥𝑐𝑙𝑐 ⋅  𝑉𝐶𝐵𝑐)𝑐 + ∑ (𝑣𝑎𝑟𝑐𝑙𝑐,𝑝 ⋅ 𝑉𝑀𝐶m,c,p)𝑚,c,𝑝 + 𝑝𝑟𝑐 ⋅ ∑ (𝑒𝑚𝑐𝑙𝑐,𝑝 ⋅ 𝑉𝑀𝐶𝑚,𝑐,𝑝)𝑚,𝑐,𝑝

   (8) 

The recycling costs (RCC) are shown in Eq. (9). Likewise, these costs comprise the annualized 

capital costs of CC, the variable costs of the recycling processes, and the costs for the associated CO2 

emissions. 

𝑅𝐶𝐶 = ∑ (𝑓𝑥𝑟𝑐𝑟 ⋅  𝑉𝑅𝐵𝑟)𝑟 + ∑ (𝑣𝑎𝑟𝑟𝑐𝑟,𝑝 ⋅ 𝑉𝐶𝑅𝑐,𝑟,𝑝)𝑐,𝑟,𝑝 + 𝑝𝑟𝑐 ⋅ ∑ (𝑒𝑚𝑟𝑐𝑟,𝑝 ⋅ 𝑉𝐶𝑅𝑐,𝑟,𝑝)𝑐,𝑟,𝑝  

  (9) 

Eq. (10) defines disposal costs (DPC). These costs include the annualized capital costs of 

establishing all the disposal centers, the variable costs of the disposal processes, and the costs for 

the associated CO2 emissions. 

𝐷𝑃𝐶 = ∑ (𝑓𝑥𝑑𝑝𝑠 ⋅  𝑉𝑆𝐵𝑠)𝑠 + ∑ (𝑣𝑎𝑟𝑑𝑝𝑠,𝑝 ⋅ 𝑉𝐶𝑆𝑐,𝑠,𝑝)𝑐,𝑠,𝑝 + 𝑝𝑟𝑐 ⋅ ∑ (𝑒𝑚𝑑𝑝𝑠,𝑝 ⋅ 𝑉𝐶𝑆𝑐,𝑠,𝑝)𝑐,𝑠,𝑝  

  (10) 
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3.2.1.4 Model constraints 

The constraints on the objective function are explained as follows. Constraints Eqs. (11)–(15) 

represent capacity constraints. The constraint Eq. (11) ensures that the actual output of product p 

from plant f should not exceed the corresponding production capacity. The constraint Eq. (12) 

ensures that the amount of product p shipped from plant f to distribution center d is within the 

storage capacity of the distribution center. The constraint Eq. (13) enforces that the amount of 

collected waste in collection center c should be within its maximum capacity. Likewise, the 

constraints Eqs. (14) and (15) formulate the capacity limitation for the RC and the distribution 

centers.  

 𝑉𝑃𝑓,𝑝 ≤ 𝑐𝑎𝑝𝑝𝑙𝑓,𝑝 ∀𝑓 ∈ 𝐹, 𝑝 ∈ 𝑃 (11) 

 ∑ 𝑉𝐹𝐷𝑓,𝑑,𝑝𝑓 ≤ 𝑐𝑎𝑝𝑑𝑐𝑑,𝑝 ∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃 (12) 

 ∑ 𝑉𝑀𝐶𝑚,𝑐,𝑝𝑚 ≤ 𝑐𝑎𝑝𝑐𝑙𝑐,𝑝 ⋅ 𝑉𝐶𝐵𝑐  ∀𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃 (13) 

 ∑ 𝑉𝐶𝑅𝑐,𝑟,𝑝𝑐 ≤ 𝑐𝑎𝑝𝑟𝑐𝑟,𝑝 ⋅ 𝑉𝑅𝐵𝑟 ∀𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃 (14) 

 ∑ 𝑉𝐶𝑆𝑐,𝑠,𝑝𝑐 ≤ 𝑐𝑎𝑝𝑑𝑝𝑠,𝑝 ⋅ 𝑉𝑆𝐵𝑠 ∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 (15) 

Material flow equilibriums are expressed by constraints Eqs. (16)–(24). Constraints Eqs. (16) and 

(17) formulate the mass balances of the conversion processes, making product p from feedstock fd 

and additive fa, respectively. Eq. (18) shows the same process for the recycled product u, which can 

be made from the recycled feedstock fr. There are two approaches to obtain fr, which can be either 

directly purchased from the market or collected from the reverse logistics.  The constraint Eq. (19) 

enforces that the outflow of product p from plant f equals the total inflow of the same product to all 

the distribution centers. The constraint Eq. (20) ensures that the demand for product p in market m 

should be satisfied by the total amount of this product delivered from all the distribution centers to 

the market. The constraint Eq. (21) balances the flow quantities of product p flowing in and out of 

any distribution center d. The constraint Eq. (22) enforces the mass balance of product waste n for 

each collection center c, that is, the inflow of n collected from all the markets to collection center c 

should be equal to the total outflows from this collection center either to recycling or disposal. The 

constraint Eq. (23) balances the material quantities in the conversion process of product waste n to 

recycled feedstock fr at recycling center r.  The constraint Eq. (24) defines the overall flow 

equilibrium of the whole reverse logistics, that is, the total quantities of product waste n collected 

from all the markets (as a portion of total demand) should be equal to the total amount of n flowing 

into all the CC. 
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 𝑐𝑟𝑚𝑓𝑛 ⋅ 𝑉𝑅𝑀𝑓,𝑓𝑛 = 𝑉𝑃𝑓,𝑛 ∀𝑓, 𝑛, 𝑓𝑛 (16) 

 𝑐𝑟𝑚𝑓𝑎 ⋅ 𝑉𝑅𝑀𝑓,𝑓𝑎 = ∑ 𝑉𝑃𝑓,𝑝𝑝  ∀𝑓, 𝑓𝑎 (17) 

 𝑐𝑟𝑚𝑓𝑟 ⋅ 𝑉𝑅𝑀𝑓,𝑓𝑎 + 𝑐𝑟𝑚𝑓𝑟 ⋅ ∑ 𝑉𝑅𝐹𝑟,𝑓,𝑓𝑟𝑟 = 𝑉𝑃𝑓,𝑢 ∀𝑓, 𝑢, 𝑓𝑎 (18) 

 𝑉𝑃𝑓,𝑝 = ∑ 𝑉𝐹𝐷𝑓,𝑑,𝑝𝑑  ∀𝑓, 𝑝 (19) 

 𝑑𝑚𝑚,𝑝 = ∑ 𝑉𝐷𝑀𝑑,𝑚,𝑝𝑑  ∀𝑚, 𝑝 (20) 

 ∑ 𝑉𝐹𝐷𝑓,𝑑,𝑝𝑓 = ∑ 𝑉𝐷𝑀𝑑,𝑚,𝑝𝑚  ∀𝑑, 𝑝 (21) 

 ∑ 𝑉𝑀𝐶𝑚,𝑐,𝑛𝑚 = ∑ 𝑉𝐶𝑅𝑐,𝑟,𝑛𝑟 + ∑ 𝑉𝐶𝑆𝑐,𝑠,𝑛𝑠  ∀𝑐, 𝑛 (22) 

 𝑐𝑟𝑟𝑛,𝑓𝑟 ⋅ ∑ 𝑉𝐶𝑅𝑐,𝑟,𝑛𝑐 = ∑ 𝑉𝑅𝐹𝑟,𝑓,𝑓𝑟𝑓  ∀𝑟, 𝑛, 𝑓𝑟 (23) 

 𝑐𝑙𝑟 ⋅ ∑ 𝑑𝑚𝑚,𝑛𝑚 ⋅ 𝑉𝑅𝑉𝐵 = ∑ 𝑉𝑀𝐶𝑚,𝑐,𝑛𝑚,𝑐  ∀𝑛 (24) 

 

3.2.1.5 Outcome variables 

Eqs. (25)–(33) express the calculation of CO2 emissions (TE) and the associated costs  (TEC) for 

different echelons, namely, feedstock purchase (FDE), manufacturing (MFE), distribution (DTE), 

transportation (TRE), waste collection (CLE), recycling (RCE), and disposal (DPE).  

 𝑇𝐸𝐶  =  𝑝𝑟𝑐  ⋅ 𝑇𝐸 (25) 

 𝑇𝐸  = 𝐹𝐷𝐸  +  𝑀𝐹𝐸  + 𝐷𝑇𝐸 + 𝑇𝑅𝐸 + 𝐶𝐿𝐸 + 𝑅𝐶𝐸 + 𝐷𝑃𝐸 (26) 

 𝐹𝐷𝐸 = ∑ 𝑒𝑚𝑓𝑑𝑓𝑑 ⋅ 𝑉𝑅𝑀𝑓,𝑓𝑑𝑓,𝑓𝑑  (27) 

 𝑀𝐹𝐸 = ∑ 𝑒𝑚𝑝𝑙𝑓,𝑝 ⋅ 𝑉𝑃𝑓,𝑝𝑓,𝑝  (28) 

 𝐷𝑇𝐸 = ∑ 𝑒𝑚𝑑𝑐𝑑,𝑝 ⋅ 𝑉𝐷𝑀𝑑,𝑚,𝑝𝑑,𝑚,𝑝  (29) 

𝑇𝑅𝐸 = 𝑒𝑚𝑡𝑟 ⋅ {∑ (𝑑𝑖𝑠𝑓𝑑𝑓,𝑑 ⋅ 𝑉𝐹𝐷𝑓,𝑑,𝑝)𝑓,𝑑,𝑝 + ∑ (𝑑𝑖𝑠𝑑𝑚𝑑,𝑚 ⋅ 𝑉𝐷𝑀𝑑,𝑚,𝑝)𝑑,𝑚,𝑝 +

∑ (𝑑𝑖𝑠𝑚𝑐𝑚,𝑐 ⋅ 𝑉𝑀𝐶𝑚,𝑐,𝑝)𝑚,𝑐,𝑝 + ∑ (𝑑𝑖𝑠𝑐𝑟𝑐,𝑟 ⋅ 𝑉𝐶𝑅𝑐,𝑟,𝑝)𝑐,𝑟,𝑝 + ∑ (𝑑𝑖𝑠𝑐𝑠𝑐,𝑠 ⋅ 𝑉𝐶𝑆𝑐,𝑠,𝑝)𝑐,𝑠,𝑝 +

∑ (𝑑𝑖𝑠𝑟𝑓𝑟,𝑓 ⋅ 𝑉𝑅𝐹𝑟,𝑓)𝑟,𝑓 }  (30) 

 𝐶𝐿𝐸 = ∑ (𝑒𝑚𝑐𝑙𝑐,𝑝 ⋅ 𝑉𝑀𝐶𝑚,𝑐,𝑝 ⋅ 𝑉𝐶𝐵𝑐)𝑚,𝑐,𝑝  (31) 

 𝑅𝐶𝐸 = ∑ (𝑒𝑚𝑟𝑐𝑟,𝑝 ⋅ 𝑉𝐶𝑅𝑐,𝑟,𝑝 ⋅ 𝑉𝑅𝐵𝑟)𝑐,𝑟,𝑝  (32) 

 𝐷𝑃𝐸 = ∑ (𝑒𝑚𝑑𝑝𝑠,𝑝 ⋅ 𝑉𝐶𝑆𝑐,𝑠,𝑝 ⋅ 𝑉𝑆𝐵𝑠)𝑐,𝑠,𝑝  (33) 
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3.2.2 Two-stage stochastic programming model 

Incorporating the random variable of carbon price increases the computation complexity 

compared to the determinist model. Transforming the stochastic programming model into a two-

stage version therefore offers a more efficient approach. As carbon price is the only stochastic 

variable in this proposed model, we separate the objective function into two parts according to 

whether the cost terms (𝐶𝑇) contain the variable of CO2 price (prc), i.e., 𝐶𝑇𝑛𝑝𝑟𝑐 and 𝐶𝑇𝑝𝑟𝑐. As a 

result, the first-stage programming problem is dealing with the decision-making when CO2 price is 

absent, hence it becomes a deterministic model of the forward logistics in our case. The second 

stage then decides the investment and operation strategy pertaining to variables affected by CO2 

price uncertainty. Compared to the first-stage deterministic model, the second-stage stochastic 

programming model assigns a number of samples of 𝑝𝑟𝑐. Denote the kth (𝑘 ∈ 𝐾) sample of the 

stochastic variable 𝑝𝑟𝑐 of as 𝑝𝑟𝑐𝑘, the related cost terms become 𝐶𝑇𝑝𝑟𝑐,𝑘, therefore the total cost z 

of the kth sample can be reformulated as: 

 𝑧𝑘 = 𝐶𝑇𝑛𝑝𝑟𝑐 + 𝐶𝑇𝑝𝑟𝑐,𝑘 (34) 

Decision variables of the second-stage model include 𝑉𝑅𝑀𝑓,𝑓𝑑,𝑘, 𝑉𝑃𝑓,𝑝,𝑘, 𝑉𝐹𝐷𝑓,𝑑,𝑝,𝑘, 𝑉𝐷𝑀𝑚,𝑐,𝑝,𝑘, 

𝑉𝑀𝐶𝑑,𝑚,𝑝,𝑘, 𝑉𝐶𝑅𝑐,𝑟,𝑝,𝑘, 𝑉𝐶𝑆𝑐,𝑠,𝑝,𝑘, 𝑉𝑅𝐹𝑟,𝑓,𝑓𝑟,𝑘, 𝑉𝐶𝐵𝑐,𝑘, 𝑉𝑅𝐵𝑟,𝑘, 𝑉𝑆𝐵𝑠,𝑘, and 𝑉𝑅𝑉𝐵𝑘. The expected 

total cost 𝐸𝑘∈𝐾(z𝑘) is equivalent to the sum of the first-stage cost and the expectation of second 

stage costs of all the samples.   

 𝑚𝑖𝑛 𝐸𝑘∈𝐾(𝑧𝑘) = 𝐶𝑇𝑛𝑝𝑟𝑐 + ∑ (𝜋𝑘 ⋅ 𝐶𝑇𝑝𝑟𝑐,𝑘)𝑘∈𝐾  (35) 

where 𝜋𝑘 represents the probability of the 𝑘𝑡ℎ carbon price sample. 

 

3.3 Modeling CO2 price uncertainty 

We use the time-dependent geometric Brownian motion (GBM) to incorporate CO2 price 

fluctuation into the stochastic supply chain model. GBM has been widely used for modeling 

stochastic price movement, including carbon market prices (Zhou et al., 2014). According to the 

standard GBM formulation, carbon price variation can be calculated as Eq. (36): 

 𝑑𝑃𝑡 = 𝜇𝑃𝑡𝑑𝑡 + 𝜎𝑃𝑡𝑑𝑊𝑡 (36) 

where 𝑃𝑡 is the CO2 price at time t, coefficients 𝜇 and 𝜎 are both constant in this model which 

represent the drift and volatility respectively. 𝑊𝑡 is a Wiener process (Brownian Motion), and 

d𝑊𝑡 is normally distributed with variance d𝑡: 

 𝑑𝑊𝑡 = 𝜀√𝑑𝑡 (37) 
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where 𝜀 is a standard normal random number, so Eq. (1) can be reformulated as: 

 𝑑𝑃𝑡 𝑃𝑡⁄ = 𝜇𝑑𝑡 + 𝜎𝜀√𝑑𝑡 (38) 

According to the method of Euler-Maruyama Approximation, a discretized form for calculating 𝑃𝑡 

is given in Eq. (39): 

 𝑃𝑡 = 𝑃0 + 𝜇𝑃0𝑑𝑡 + 𝜎𝑃0𝜀√𝑑𝑡 (39) 

To simulate the price movement numerically, some important parameters need to be obtained, 

including the initial price level 𝑃0, the drift 𝜇 and the volatility 𝜎. We use the real historical data of 

carbon price in the eight carbon trading markets in China (China carbon trading, 2019) to estimate 

the parameters. Based on the historical information, we set different levels of these parameters to 

perform scenario analysis with regards to carbon price uncertainty. The scenario settings and 

parameter estimation are described in detail in Section 4. 

 

3.4 Data collection and parameter assumptions 

The supply chain background of this decision-making problem is in Zhejiang province, China. This 

province comprises 11 prefectural-level municipalities with different population sizes, economic 

development levels, and plastic demands. The forward logistics include three plants, five distribution 

centers, and 11 prefectural-level markets.  The assumptions on capacity and establishment costs for 

the plants and the distribution centers are made according to the plastic industry data in Zhejiang 

(China Plastic Processing Industry Association, 2018). Table 2 and Table 3 present these assumptions 

for the forward and reverse logistics respectively.  

 

Table 2 Assumptions on capacities and establishment costs of plants and distribution centers 

 Capacity (ton/yr) Establishment cost 
(yuan) 

 Product A Product B  

Plant 1 20,000 6,000 30,000,000 
Plant 2 30,000 10,000 40,000,000 
Plant 3 15,000 5,000 28,000,000 

Distribution center 1 15,000 4,500,000 
Distribution center 2 25,000 6,700,000 
Distribution center 3 25,000 6,700,000 
Distribution center 4 35,000 8,200,000 
Distribution center 5 15,000 4,500,000 

 

Table 3 Assumptions on capacities and establishment costs for the reverse logistics 

 Capacity (ton/yr) Establishment cost (ton) 
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Collection center 1 5,500 7,500,000 
Collection center 2 5,500 7,500,000 
Collection center 3 5,000 7,000,000 
Collection center 4 5,000 7,000,000 
Collection center 5 4,500 6,500,000 
Collection center 6 4,500 6,500,000 
Collection center 7 4,500 6,500,000 
Recycling  center 1 6,000 12,000,000 
Recycling  center 2 6,000 12,000,000 
Recycling  center 3 5,000 11,000,000 
Recycling  center 4 4,000 10,000,000 
Recycling  center 5 4,000 10,000,000 
Disposal center 1 12,000 21,000,000 
Disposal center 2 10,000 19,000,000 

 

The assumptions on the prices of feedstocks and products are made by estimation on averaged 

plastic price levels through the last five years (Wind Data Service, 2019). The price of the virgin 

feedstock is relatively higher than that of the recycled feedstock. As a result, product A made from 

the virgin feedstock also has higher costs than the recycled product B. Regarding CO2 price, a 

detailed explanation of setting scenarios to reflect the price uncertainty in the model is presented in 

Section 4, hence is not discussed here.  

 

Table 4 Price assumptions for feedstocks, products and CO2 emissions allowances 

 Price (yuan/ton) 

Virgin feedstock 8,500 
Recycled feedstock 6,000 
Additive 13,000 
Product A 12,000 
Product B 8,000 

 

The potential locations of all the facilities in the forward logistics (the red shapes) and the 

potential locations of the CC, RC, and disposal centers in the reverse logistics (the blue shapes) were 

obtained by communication with local industry experts (Fig. 2).  The purpose of the whole supply 

chain is to provide PE products for the 11 prefecture markets. We use Geocoder API and Direction 

API from Baidu Maps to obtain the road distance data and the latitude and longitude data for each 

facility in the geographic coordinate system of Zhejiang province.   

As the purchasing costs of feedstocks are influenced by the carbon price uncertainty, the 

strategic problem regarding whether the reverse logistics should be established is determined by the 

proposed model. Moreover, the model determines the optimum number and locations of the 

collection, recycling, and disposal centers, and the flow between each facility. The obstacle in 

modeling such a decision-making problem is representing carbon price uncertainty in the model. To 
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overcome this problem, a scenario-based model is developed considering seven scenarios of carbon 

price levels (Table 4). Scenario 1 is zero carbon price and represents the cases of the absence of such 

a carbon market or the exemption of the LDPE production from attending the carbon market. 

Scenarios 2–7 reflect the market conditions with ascending price levels.  

 

Fig. 2 Locations of the facilities in the whole supply chain. 

 

4. Scenario settings for carbon price uncertainty 

4.1 Carbon prices in the pilot markets  

For investigating carbon price uncertainty, we complied historical data of carbon prices from the 

eight pilot markets, namely, Shenzhen, Shanghai, Beijing, Guangdong, Tianjin, Hubei, Chongqing and 

Fujian, shown in Fig.3. The data source is from the online database of (China carbon trading, 2019). 

Zhejiang, where our case study is located, has no such market pilot. Nevertheless, the major carbon-

intensive industries in Zhejiang, and in other provinces as well, are expected to be subject to the 

nation-wide carbon market gradually in years.  

 Note that as each market started at different time, timespan of the data is not the same across 

these markets. Shenzhen is the first market pilot in China dating back to June, 2013, therefore it has 

relatively complete price data. Fujian, on the contrary, established in December of 2016, has the 

shortest history and the smallest number of the time-series data. For some months, the data is not 

available for some markets, thus each market may not necessarily have the fully continuous 
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historical data. Panel B of Fig. 3 displays the statistics of these data as boxplots, presenting 

information of minimum, median, maximum, interquartile range (IQR) from the 25th (Q1) to the 

75th percentile (Q3), and outliers (Q1-1.5IQR, and Q3+1.5IQR). From these statistics, it is observed 

that the eight markets show remarkably different patterns of price movement. Beijing and 

Chongqing have the highest and the lowest levels of carbon price, respectively.  

 

Fig. 3 Historical variation and statistics of CO2 prices in the eight pilot markets. 

 

4.2 Scenario settings and parameter estimation 

We estimated the key parameters for the GBM model of CO2 prices from historical data. To 

reflect a full picture of CO2 price movement in the future, we combined GBM simulations with 

scenario analysis. This part of work was conducted in the following steps: 

Step 1: Estimate the parameters for carbon prices in each market, from which we obtained eight 

sets of the drift parameter 𝜇  and the volatility parameter 𝜎. Unsurprisingly, these resulted 

parameters vary significantly among the eight markets. 

Step 2: Simulate future price movement for each market by the GBM model with the estimated 𝜇 

and 𝜎. The number of time steps is 50 months, or approximately 4 years, and the number of 

simulations is 1000 times.  

Step 3: Calculate the parameters of the price distribution obtained by simulations for each 

market, which include the expectation and standard deviation. 
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Step 4: Design six scenarios by identifying three levels of expectation (low, medium, high) and 

two levels of standard deviation (small and large). The different levels of price expectation and 

standard deviation reflect different speed rates of how fast the price increases and different 

magnitudes of the price volatility, respectively. A detailed description of these scenarios and the 

associated parameters are provided in Table 5. 

Step 5: The average price in the last entry of the historical data in the eight markets, which is 31.8 

yuan/ton, was taken as the uniform starting price level for our simulation of future price movement 

in the expected nation-wide carbon market. As such the distribution of prices in each scenario was 

obtained, shown in Fig. 4. 

Table 5 Scenario description and parameters 

Scenario Description Expectation Standard 
deviation 

LS-SV Low speed of price increase, small volatility 35.07 7.22 
LS-LV Low speed of price increase, large volatility 35.74 18.99 

MS-SV 
Medium speed of price increase, small 
volatility 134.09 29.12 

MS-LV 
Medium speed of price increase, large 
volatility 129.51 68.08 

HS-SV High speed of price increase, small volatility 328.80 68.53 
HS-LV High speed of price increase, large volatility 322.06 173.79 

 

 

Fig. 4 Simulations of CO2 prices in the six scenarios 

 

5. Results and analysis 

5.1 Comparison of outcome variable distribution across scenarios 

We selected four metrics from the outcome variables of the stochastic programing model, 

namely, total cost, profit, total emissions of CO2 and total cost of CO2 emissions, to make comparison 

across the six scenarios (see Fig. 5). In these violin graphs, the short lines on the top and bottom 
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represent the extreme values at the two ends, and the short lines in the middle show the mean 

values, or the expectation values of the metrics. The results illustrate that higher expected carbon 

price increases the total cost and the cost of CO2 emissions alike, which in turn, reduces the profit of 

the supply chain. For all the three metrics other than CO2 emissions, the expected value is equal in 

the two paired scenarios with the same expected value of CO2 price (e.g. LS-SV and LS-LV), but the 

variation (indicated by standard derivation) is much more significant in the scenarios with larger 

carbon price volatility (the ‘-LV’ group scenarios).  

 

Fig. 5 Distributions of selected outcome variables across the six scenarios. 

These scenarios display interesting results of CO2 emissions. CO2 emissions are the highest in LS-

SV and LS-LV, the two scenarios with the lowest carbon price expectation, as the expected prices are 

too low to trigger installation of the reverse logistics, regardless of the price volatility. However, in 

the other four scenarios where the carbon price reaches a relatively high level, there are divergent 

possibilities of the reverse logistics installation, depending on the price distribution. The probability 

varies greatly across these four scenarios (see Table 6). We draw an interesting finding here that, 

scenarios with smaller carbon price volatility (i.e. MS-SV and HS-SV) have higher certainty regarding 

the decision-making of whether to build the reverse logistics. That is, the reverse supply chain is 

more likely to be built in HS-SV than in HS-LV. Likewise, there is higher possibility to not build the 

reverse logistics in MS-SV than in MS-LV. This also explains the difference of the expected CO2 

emissions in the paired scenarios shown in Panel (c) of Fig.5. Speculation in financial market can 

increase liquidity to some degree, but excessive speculation somehow causes hesitation of long-
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term investments in the market. This is especially true in the carbon market. Our results illustrate 

that lowering uncertainty of CO2 price would facilitate the decision-making of low-carbon 

investment by delivering clearer message to industrial stakeholders.  Thus, managing market 

expectation and maintaining a relatively lower volatility is essential to the operations of industrial 

stakeholders, who are mainly the long-term players in carbon markets. 

Table 6 Probability of establishing the reversed logistics across the six scenarios 

Scenario Probability 

LS-SV 0 
LS-LV 0 
MS-SV 0.10 
MS-LV 0.29 
HS-SV 0.99 
HS-LV 0.82 

 

5.2 Impacts on the CLSC establishment  

Our results demonstrate the direct impacts of the carbon price variation on the decision-making 

of the CLSC.  Figs. 6 and 7 present the results of the two scenarios with low and high carbon price, 

respectively.  The reverse logistics are ruled out in the low price scenario (LS-SV), as shown in Fig. 6. 

The demands of the four markets in the west, that is, Huzhou, Hangzhou, Quzhou, and Jinhua, can 

be satisfied solely by Plant1 and DC2. The other seven markets are covered by the remaining DCs 

with the supply from Plants 2 and 3. Jiaxing, the northernmost market, receives products from DC4 

rather than DC1, which is much closer because the capacity of DC1 can satisfy the demands of only 

two neighboring markets, Ningbo and Zhoushan.  
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Fig. 6 Configuration and product flows of the supply chain in LS-SV. 

The configuration and product flows are completely changed in HS-SV with its high carbon price, 

shown in Fig. 7. This scenario, in which the expected carbon price reaches above 320 yuan/ton, 

features established reserves logistics, represented by the green shapes and lines in the figure. 

Among the facilities in the reverse flow, CC1, 3, 5, 6, and 7 are selected out of the seven potential 

collection center sites, and RC1, 2, 4, and 5 are determined from the five options as the recycling 

centers by the model. The displayed landscape indicates that by and large the more central the 

centers are located, the more likely they can be selected. This is because of the reduced 

transportation costs from shorter distances between these centers, plants and markets. By contrast, 

remote sites tend to be neglected by the model, such as CC4 and RC3, or selected only for waste 

disposal, such as CC7. The flows in the forward chains of the high carbon price scenario are also 

remarkably different from those in LS-SV. For example, the two markets in the north, Jiaxing and 

Huzhou, are enabled to diversify their supply from different distribution centers.   
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Fig. 7 Configuration and product flows of the CLSC in HS-SV. 

 

5.3 Impacts on emissions and costs  

The results indicate that carbon price variation places significant impacts on the costs and CO2 

emissions of the supply chain. Fig. 8 shows how the relation of the supply chain cost and CO2 

emissions change across the seven scenarios, in which the blue lines represent the total and the 

orange lines represent the costs and emissions associated with feedstock purchase.  Notably, the 

total emissions in this calculation consist of two components, that is, the life cycle emissions of 

feedstock, and the emissions from manufacturing, distribution, and transportation of the products.  

Therefore, the gap between the total emissions and the life cycle emissions of feedstock in each 

scenario denote the emissions associated with the processes of manufacturing, distribution, and 

transportation in the whole supply chain. 
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Fig. 8 Expected costs and CO2 emissions across the six scenarios. 

Note that the scenario LS-SV overlaps with LS-LV as these two scenarios have very close expected 

costs and emissions. These remain nearly unchanged because the establishment of reverse logistics 

is not triggered when the carbon price is too low; and the increased price volatility exerts no effect. 

The threshold of carbon price enabling the reverse supply chain is between 150 and 200 yuan/ton, 

observed from the simulation results of MS-SV and MS-LV.  

With the possibility of closing the loop increased, the total emissions decline by approximately 

15% from 207.4 thousand tons (kt) in LS-SV to 175.9 kt in HS-SV, and rise again to 181.2 kt in HS-LV. 

The life cycle emissions from PE feedstock production decrease from 188.4 kt in LS-SV to 150.5 kt in 

HS-SV, with a higher reduction rate of approximately 20%. The establishment of reverse logistics 

saves the feedstock associated emissions by reducing the purchased feedstock amount, which also 

decreases the purchase costs of feedstock remarkably. However, this cost reduction is offset by the 

establishment cost of the reverse supply chain, leading to a slight increase in the total cost. 

The breakdown of the total cost provides details regarding the contributions from each cost 

component to the overall change across these scenarios (Fig. 9). In the waterfall graph, the total 

costs of the whole supply chain are divided into four components, namely, feedstock purchase, 

production and distribution, transportation, and the costs associated with reverse logistics 

establishment. The increase in the total cost from LS-SV to MS-SV is mainly caused by the change in 

feedstock purchase cost, accounting for approximately 90% of the total increase, whereas the 

contributions from production and distribution are much smaller, and those from transportation are 

almost negligible. In the established closed-loop case, however, the TRCs increase because of the 

extra shipment incurred by the collection, recycling, and disposal processes of the reverse logistics.  

The most notable change, however, is the reduced costs of feedstock purchase, which largely offset 

the extra costs for the establishment and operation of the reverse supply chain.  
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Fig. 9 Contributions of cost components in the change of total costs between scenarios. 

 

6. Conclusions and discussion 

This study deals with the important decision-making problem regarding how the carbon price 

uncertainty affects establishment of the reverse logistics, the costs, emissions, choices of facility 

locations and the landscape of product flows in the targeted plastic supply chain. To do so, a two-

stage stochastic mixed integer programming model is constructed and coupled with a geometric 

Brownian motion model for simulating carbon price variation. A case study of the PE plastic supply 

chain in Zhejiang province is performed by integrating scenario analysis into this GIS-based CLSC 

modeling framework.  Key findings from this study are listed as follows: 

 Installation of reverse supply chain can be triggered in the scenarios with carbon price above 

approximately a level at 150-200 yuan/ton. In the scenarios with high CO2 price expectation, 

large price volatility tends to lower the probability of reverse logistics establishment, thus 

increases the expected emissions. At the same carbon price expectation, it is easier to decide 

whether or not to build the reverse logistics when the market volatility is low, which facilitates 

the decision-making of low-carbon investment by delivering clearer message to stakeholders.  

 The impacts of the carbon market on the PE plastic supply chain are mainly conveyed 

through an indirect manner, for example, the direct emissions from the manufacturing, 

distribution, and transportation process in the supply chain are significantly lower than those life 

cycle emissions in the PE feedstock production process. Thus, the change of feedstock cost 

caused by carbon price variation takes effect on the decisions of the supply chain design of the 

downstream sectors. 

 The establishment of the CLSC completely changes the configuration and flows of the entire 

supply chain. Regarding choices of the facility locations in the reverse logistics, the more central 
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the centers’ location, the more likely they can be selected. This phenomenon occurs because of 

the reduced transportation costs attributed to shorter distances from these centers to plants 

and markets. 

 In the scenarios where the reverse chain is absent, the increase in carbon price leads to a 

rigid increase of the total costs, mainly contributed by the additional costs for CO2 emissions 

embedded in a feedstock purchase. However, with the CLSC established, the reduced cost of 

feedstock purchase offsets to a large extent the extra costs incurred by the establishment and 

operation of the reverse logistics. In aggregation, the total costs increase modestly, but the total 

emissions decline significantly.  

Closing the loop of the plastic supply chain results in additional investments and extra operation 

costs for the reverse logistics. Without external financial stimulus, these increased costs may create 

barriers for the investors to conduct decarbonization strategies (Zhou et al., 2019). The carbon 

market provides the necessary stimulus that may prompt the investors to construct the CLSC. 

However, a sound market condition is desired to reach the optimal balance that can provide strong 

price signal but avoid excessive speculation.  

Our results show that maintaining a relatively lower volatility of carbon market is essential to the 

investment decision-making of industrial stakeholders, the main long-term participants in carbon 

markets, into low-carbon supply chains. Although many measures are currently available to manage 

the absolute level of carbon price, such as auctioning or floor price, the measures for stabilizing the 

price fluctuation shall also be emphasized. Lessons should be learnt from other carbon trading 

markets. For instance, market stability reserve (MSR) began operating in January 2019 in the 

European Union Emissions Trading Scheme (EU ETS). The reserve addresses the current surplus of 

allowances and improves the system's resilience to major shocks by adjusting the supply of 

allowances to be auctioned. The national carbon market being established in China is therefore 

recommended to introduce this kind of mechanisms as well. 

By developing this analytical framework, our study offers decision support for incorporating 

carbon price uncertainty into the CLSC design and management problems. The framework can be 

easily applied to other sectors with similar characteristics and is therefore useful for industrial 

stakeholders and policymakers. Additionally, other crucial elements could be further considered, for 

example, some critical factors, such as uncertainty on the demand side, the stochastic variation of 

product market, as well as the interactions between carbon market and feedstock market could be 

investigated in future research. 
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