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Abstract 

Seismic response to the fluid substitution of oil with water and CO2 in a reservoir is 

analysed. A model consisting of horizontal layers based on the upscaling of well log 

data is studied. An interval of the model is selected as the reservoir background and 

then it is horizontally cracked. The model of alternating solid and fluid layers is 

employed. And the method of propagator matrix is applied to derive the slowness 

surfaces. 

It has been found that there are 3 propagating modes in the horizontally cracked 

reservoir with fluid saturation, namely fast-P-, slow-P- and S-wave. Under seismic 

frequency (0-100 Hz), only fast-P-wave is weakly dispersive. The travel time analysis 

suggests that the overall P/fast-P-wave travel time is more sensitive to fluid substitution 

compared to that of S/slow-P-wave. And it is possible to identify fluid substitution from 

oil to CO2 through P/fast-P travel time when the fracture relative thickness φ  = 0.001. 

Changing the period of the alternating layers H  from 1 m to 5 m has no significant 

impact on the travel time. And it is almost impossible to detect fluid substitution 

through the travel time with such a low φ  = 0.0001. Gradual replacement from oil to 

water results in an apparent ‘linear change’ to the P/fast-P travel time as a function of 

oil saturation.  

To obtain P-fast-P-wave reflectivity from overburden to the reservoir, the reservoir is 

regarded as an effective VTI layer. For φ  = 0.001, the reflectivity varies much from oil 

to CO2 saturation and the reflectivity change from oil to water is noticeable. H  has 

only a tiny impact on the reflectivity. For lower φ  = 0.0001 only the substitution from 

oil to CO2 is visible on R0 – R2 cross plot. The mixed-phase saturation for oil replaced 

by CO2 behaves like a linear effect to R0 – R2 as a function of oil saturation. 

The seismic modelling of the acoustic wave equation by frequency-domain finite-

difference method for the model with φ  = 0.0001 yields the synthetic seismograms. 

And the result is consistent with the phenomenon mentioned above. The simulation for 

φ  = 0.001 is suffered from high noise, thus, not displayed. 

For comparison to the theory for porous media, Biot-Squirt poroelastic mechanism is 

also applied to the model background to make the reservoir background porous. The 
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reservoir background with porosity φ  = 0.001 is studied as an example. The result 

indicates that there is only a moderate reflectivity variation for the fluid substitution 

from oil to water/CO2. The travel time is almost the same with oil, water and CO2 

saturation. 

 

Keywords: Fluid substitution, cracked reservoir, propagator matrix, travel time, 

reflectivity, seismic modelling, acoustic wave equation
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1. Introduction 

The fluid substitution from oil to water or CO2 always happens in reservoir stimulation. 

The analysis of fluid substitution is an important part to assess the reservoir stimulation 

in cracked or porous reservoirs. And this is always related to 4D or time-lapse seismics. 

However, the wave propagation in a fractured or porous media is much more 

complicated than rocks without any voids. 

As proposed by Schoenberg and Sayers (1995), ‘the effective compliance tensor of the 

fractured rock (can be written) as the sum of the compliance tensor of the unfractured 

background rock and the compliance tensors for each set of parallel fractures or aligned 

fractures’. And there are a lot of studies about fluid substitution based on compliance 

matrix (Schoenberg & Douma, 1988; Schoenberg & Muirt, 1989). For instance, Zhou, 

Wang, and Feng (2014) simulated elastic wave propagation in TTI media (VTI media 

containing tilt fractures) based on Hudson theory, Bond transform and Backus-

weighted-average. However, this method is restricted to dry fractures. To extend this, 

Gassmann’s equation (Gassmann, 1951) is a way to saturate the dry media. Sil, Sen, 

and Gurevich (2011) analysed porous and horizontal transversely isotropic (HTI) media 

based on Gassmann’s anisotropic fluid substitution equation. In this kind of operation, 

one background media is firstly inserted vertically aligned fractures with compliance 

matrix, which is still dry fracture system. And then Gassmann’s theory is used to 

convert dry fractured stiffness to fluid-saturated stiffness. This method is easy to 

implement, however, it fails to explain the high seismic dispersion under high 

frequency in such a media. 

Dvorkin and Nur (1993) proposed Biot-squirt flow mechanism to simulate the 

poroelasticity in a porous media. The VTI poroelastic wave equation with BISQ theory 

was originally proposed by Parra (1997). And he combined Biot and squirt mechanisms 

to describe 2D VTI porous media. This theory considers the fluid flow parallel and 

perpendicular to P-wave propagation and it succeeds to reveal the high attenuation and 

dispersion in porous media. It contains 3 wave modes: fast-P-, slow-P- and S-wave. D. 

Yang and Zhang (2002) then extended the Biot-Squirt poroelastic wave equation to 

include 2D PTL (periodic thin layers) and EDA (extensive dilatancy anisotropy), which 

is a porous media containing vertical aligned fractures. 

Another genre of the study on fractured media is the linear slip theory applied to 



1. Introduction 

2 

 

alternating solid and fluid layers (Schoenberg, 1984), which is called an elastoacoustic 

media. This theory assumes the horizontal displacement does not need to be continuous 

for the interface between solid and fluid and the shear stress vanishes in fluid. And he 

uses the method of propagator matrix (Gilbert & Backus, 1966) to investigate the wave 

propagation in alternating solid and fluid layers. There are 2 modes in his study, one 

fast-P-mode and one slow-P-mode under long-wavelength approximation. 

In this article, the author mainly uses the model of alternating solid and fluid layers to 

perform some simulations to see how fluid substitution affects the travel time and 

reflectivity based on a case study with well log data. This includes both analytical 

method and seismic modelling based on frequency-domain finite difference method, 

which is inspired by Masson, Pride, and Nihei (2006), Hongjuan and Guangming 

(2012), Jamali Hondori, Mikada, Goto, and Takekawa (2013) and Souza et al. (2013). 

We start in Chapter 2 by introducing vertical transverse isotropy (VTI) and its related 

properties. Chapter 3 gives the derivation from the basic laws (equation of motion and 

generalized Hooke’s law) to propagator matrix and then the phase velocity can be 

calculated from the propagator matrix. Slightly different from the original work by 

Schoenberg (1984), the author finds 3 modes, fast-P, slow-P and S, which corresponds 

to Biot theory. And this is identical to the work by Stovas and Roganov (2017). But 

they use different notations on the 3 waves, P-wave, fast-S-wave and slow-S-wave. 

In Chapter 4, a set of well log data is provided. It is firstly divided into 4 Blocks and 

Backus averaging is applied to obtain the effective parameters of each block. Then 

Block 3 is set isotropic and selected as the background as our reservoir. Based on the 

reservoir background, the following sections illustrate the model structure and different 

input parameters to the reservoir to be used later. 

Chapter 5 analyzes the travel time behaviour for different models for both single 

reservoir and the reservoir with overburden included based on the slowness formula 

from Chapter 3, including the single phase saturated and mixed phase saturated 

reservoir. Chapter 6 uses VTI slowness equation to approximate Thomsen parameter 

δ , with which the reflectivity between the reservoir and the overburden can be 

computed. The reflectivity under different saturations is studied.  

The finite-difference method is used in Chapter 7 to simulate the wave propagation in 
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our models, where the acoustic VTI wave equation and the acoustic wave equation for 

alternating solid and fluid layers are combined. 

In order to compare the difference of linear slip theory and BISQ theory, the author 

performed both analytical and numerical simulation for an example model with BISQ 

theory in Chapter 8. 
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2. Anisotropy 

This chapter gives some fundamentals of VTI media, including the definition, stiffness 

and Thomsen parameters. 

2.1. VTI media 

The non-reservoir layers in this study will be regarded as VTI media. So, it is necessary 

to illustrate the properties of VTI media. 

Isotropic homogenous media means elastic velocities are the same along with all 

possible directions. However, it is not always the case for subsurface rocks as their 

vertical stress is much larger than the horizontal ones. As a result, the rock materials in 

the vertical direction z is usually more compacted, i.e., the rock is harder in the vertical 

direction compared to the horizontal direction. Thus, P-wave travels faster vertically 

and slower horizontally. This is how the seismic anisotropy comes to rocks. 

 

Figure 2-1.  A sketch of VTI media (Oh & Brunskog, 2014). 

Let us assume that one 3D material has property along with 3 orthogonal directions (x, 

y, z) with z being the vertical direction. For a VTI media (Figure 2-1), all the elastic 

properties in the x-y plane do not vary with the azimuth angle while they change with 

z. 

Now consider the stress-strain relations for a cube in Figure 2-2 (Later, the direction 1 

is equivalent to x, 2 to y and 3 to z). 

According to generalized Hook’s law in Voigt notation, stress can be expressed as a 

function of a linear combination of strains: 

 =σ Cε  (2.1) 
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 ( )11 22 33 23 13 12

Tε ε ε ε ε ε=ε  (2.3) 

where C  is namely the stiffness matrix. And C  is a symmetric matrix. 

 

Figure 2-2.  Stress on a cube (Burnley, 2019).  

For isotropic media (Thomsen, 2002), the stiffness is given by 

 

M

M

M

G

G

G

λ λ
λ

 
 
 
 

=  
 
 
  
 

C  

2M Gλ = −  

(2.4) 

where M  is the P-wave modulus and G  is the shear wave modulus. 

For VTI media, there are 5 independent stiffness parameters, 
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and it is clear that an isotropic media is a special case of VTI. 

2.2. Thomsen parameters 

Proposed by Thomsen (1986), the Thomsen parameters now have become the most 

popular stencil to describe the anisotropy of VTI. 

In VTI media, there are 5 independent elastic parameters, which can be described either 

by (2.5) or 3 Thomsen parameters with 0pv  and 
0sv , which is 
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3. Waves in alternating solid and fluid layers 

This chapter depicts a rock physics model of alternating solid and fluid layers and its 

related elastic properties. 

The reservoir in our study is considered as an isotropic background plus horizontally 

layered fractures filled with fluid and the thickness of each solid and fluid layers is the 

same (Figure 3-1). This model and its associated elastic theory were proposed by 

Schoenberg (1984). Inspired by Kennett (2009) and Gilbert and Backus (1966), the 

author repeated the derivation of the kinematic properties of the elastic wave in this 

model. 

 

Figure 3-1.  A sketch of the reservoir consisting of alternating solid and fluid layers. 	 is the fracture relative 

thickness, which is the proportion of the thickness of the fracture relative to the whole thickness. 

3.1. Displacement and stress field 

In this section, the author derived the displacement and stress field for the alternating 

isotropic solid and ideal fluid. 

Firstly, let us define slowness, the horizontal slowness p  and vertical slowness q: 

 

p
sin

v

θ=  

 q
cos

v

θ=   

(3.1) 

where v  is the phase velocity and θ  is the phase angle relative to the z-axis. 

The symmetric engineering strain ε  can be formulated as a function of displacements: 
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where u  is the displacement. 

The source-free equation of motion is given by 

 

2

2

iji

j

u

t x

σ
ρ

∂∂ =
∂ ∂

 (3.3) 

Combining generalized Hook’s law ((2.1), (2.5), (3.2) and (3.3)) gives the system of 

equations describing the displacement and stress field in a solid VTI material: 

 

2

3311
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xu
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(3.4) 

Now, consider Fourier transform for u  and σ  in x and z dimension, which is 

 

( ) ( ), , , ,xx z t k z ω→u U  

( ) ( ), , , ,xx z t k z ω→σ σ  

(3.5) 

where 
xk  is the wavenumber in the x-direction, which equals to pω ; ω  is the angular 

frequency; ( ), ,xk z tU  and ( ), ,xk z tσ is displacement and stress in ( , , )xk z t  domain 

respectively. 

Also, the derivative of a function in the time and spatial domain can be transformed as 

below in the frequency and wavenumber domain, i.e., 
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(3.7) 

where ijC  is the stiffness of solid. For isotropic media, ijC  is degenerated to 
33C  and 

44C , which can be related to P-wave velocity pv  and 
sv  of the solid according to (2.6). 

(3.7) can be written in the form 

 
z

∂ =
∂ s s s
b A b  (3.8) 

(3.7) is not able to handle ideal fluid as 
44C  in fluid vanishes thus 

44

1

C
 approaches 

infinity. 

Again from (3.4) for the fluid case and eliminate xU , one can obtain 
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(3.9) 

where ijfC is the stiffness of fluid. For fluid, ijC  can be reduced to only 33C , which is 

2

f pfvρ  based on the first equation of (2.6). 

(3.9) can be written as 

 
z

∂ =
∂ f f f
b A b  (3.10) 

It is clear that both (3.8) and (3.10) are ordinary differential equations and can be solved 

with regard to so-called propagator matrix. 

3.2. Propagator matrix 

According to Kennett (2009), for a homogeneous media, the propagator matrices link 

the displacement and stress field from one location to another: 

 

( ) ( ) ( )0 0,z z z z=
s s s
b P b  

( ) ( )( )0 0,z z exp z z= −
s s
P A  

( ) ( ) ( )0 0,z z z z=
f f f
b P b  

( ) ( )( )0 0,z z exp z z= −
f f
P A  

(3.11) 

s
P  and 

f
P  are named propagator matrices, later on, namely P  for both cases, and the 

corresponding letters without subscript indicate the general case for both solid and fluid. 

For instance, as long as the wavefield vector b  at one location 
0z  is known, then P  

can easily give the solution of wavefield at the location z. 

The expression of P  is complicated. Here, we consider the decomposition of A  into 

diagonal matrix Λ  of eigenvalues and matrix D whose columns are the corresponding 

right eigenvectors so that 
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 =AD DΛ  
(3.12) 

And then P  can be related to Λ  and D in such a way 

 
1

0 0 0( , (( ) (( )) ) )z z exp z z exp z z −− = −=P A D Λ D  (3.13) 

where Λ  and D are given below: 
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(3.14) 

and 



3. Waves in alternating solid and fluid layers 

12 

 

 

( )( )

( )( )

v 1 v 1
0

v

v 1 v 1
0

v

pf pf

pf

pf pf

pf

p p

p p

ω

ω

 − +
 
 
 =
 − +
 − 
 

f
Λ  

 

( )( ) ( )( )v 1 v 1 v 1 v 1

v f v

1 1

pf pf pf pf

f pf f pf

p p p p

ωρ ω ρ

 − + − +
 −
 
  
 

=
f
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(3.15) 

However, it is inhomogenous for the model in Figure 3-1. But it can be noticed that the 

model consists of 2 homogenous layers. So, by defining the boundary condition, it is 

possible to use one overall propagator matrix to describe the elastic wave propagation. 

And this method was proposed by Schoenberg (1984). 

 

Figure 3-2.  Boundary condition of a solid layer. The thickness of one period measures H. 

Figure 3-2 sketches a solid layer bounded by 2 fluid layers. As fluid does not possess 

shear stress, 
13σ  must vanish at the boundaries 0z =  and ( )1z Hφ= − . As a result, in 

one solid layer, 

 

( )

( )( )

33 331 0

0, 1
0 0

x x

z z

z H z

U U

U U
H

φ

φ

σ σ
= − =

   
   
   = −
   
   
   

s
P  (3.16) 

As xU  does not need to be continuous crossing the boundaries, we can eliminate the 
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first and third equations in (3.16), 
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s
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 (3.17) 

where ,si jP  indicates the element at i -th row and j -th column of 
s
P . 

Now, the propagator crossing one period H  from solid to fluid can be expressed by 

 ( ) ( )( )1 ,H H Hφ= −
f s

M P Q  (3.18) 

Based on Schoenberg (1984),  ( )cos q Hω  equals to half of the trace of M, i.e., 

 ) 0.5 ( )cos( qH traceω = M  (3.19) 

For propagation from fluid to solid, M  is different to that from solid to fluid. However, 

( )trace M  remains the same and (3.19) is still valid. 

Solve (3.19) for q and the formula for q is given in (11.1) in appendix. Here, ( )q p  is 

dependent on pv , 
sv , ρ , pfv , fρ , H , φ  and ω , 8 parameters in total. 

Even though the background solid is isotropic, (11.1) is complicated enough to express. 

When it comes to alternating VTI solid and fluid, then the propagator matrix becomes 

much more complicated to solve. In order to decrease the computation complexity, the 

background solid is constrained to isotropic background media. 

3.3. Numerical test 

(3.19) is checked if it can generate the same result with Stovas and Roganov (2017). 

And the test input parameters are given in Table 3-1. The result computed by (3.19) is 

shown in Figure 3-3. It is found that the result is identical to Stovas and Roganov (2017). 

Therefore, the derivation for the wave propagation in such a model given by Figure 3-1 

is robust. There are 3 waves in Figure 3-1, based on the convention of Schoenberg 
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(1984), we name fast-P-, slow-P- and S-wave in the order of velocities from fast to slow. 

Please note that they are not exact P- or S-wave but qP- qS-wave as the wave in this 

media is a phenomenon of interference. 

Table 3-1.  Physical parameters for the test of (3.19). 

pv  4000 /m s  fρ  
31000 /kg m  

sv  2200 /m s  H  1m  

ρ  32700 /kg m  φ 0.001  

pfv  1500 /m s  ω 20 /rad sπ  

 

Figure 3-3.  Test result for (3.19) with the physical parameters given in Table 3-1.
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4. Model construction 

This chapter explains the rock physics model to be used later. 

4.1. Upscaling of well log data 

This section displays the well log data and then applies upscaling to get 4 blocks, in 

which Block 3 is inferred reservoir background. After that, Block 3 is modified to 

isotropic in order to adopt (11.1). 

The target of upscaling of well log data is to increase the scale which matches the 

magnitude of seismic wavelength (Kumar, 2013). For instance, the transmitter of sonic 

logs usually emits sound wave at a frequency of 20 - 40 kHz while seismic exploration 

usually employs a source with a frequency lower than 100 Hz. As a result, the 

subsurface details detected by well log are invisible in seismic data. Upscaling is a 

method to get an equivalent effective media for a selected interval from well log profile. 

 

Figure 4-1.  Modified well log data after noise removal and blocking. GR: Gamma-ray log.  v�
: vertical P-wave 

velocity. v�
: vertical S-wave velocity. ρ: bulk density. ϵ, δ and γ are Thomsen anisotropy parameters of VTI 

media. 

Due to some measurement errors, there exist some anomalies of the well log data. 

Therefore, those abnormal data (such as minus velocity or extraordinarily high 

anisotropy parameters) should be removed. The corrected and blocked well log panel 

is shown in Figure 4-1. The well log data is firstly divided into 4 blocks. There are 2 

potential blocks, Block 1 and Block 3 that can be selected as the background of the 

reservoir since the GR of them which indicates the clay content is generally relatively 
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smaller than the other blocks. And the author selected Block 3 as the reservoir 

background as it is buried under overburden sediment, which is always the case to our 

common knowledge. 

 

Figure 4-2.  Stiffness profile from the modified well log data.  

In addition, the stiffness profile can be easily obtained through (2.6) at each depth point. 

Backus averaging (Backus, 1962; Bos, Dalton, Slawinski, & Stanoev, 2016) is a 

convenient way to upscale the log data for VTI media: 

 

1
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33 33C C
−−=  
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−−=   
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13 33
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C
C C

C
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2

1
113 13

11 11 33

33 33

C C
C C C

C C

−−= − +  

(4.1) 

where 11C ,  33C , 13C , 33C , 44C  and 66C  are the effective stiffness parameters for the 

4 blocks.  

The original and upscaled stiffness are both given in Figure 4-2. Then 0pv , 
0sv  and the 

Thomsen parameters can be converted from effective C  with (2.6) and those effective 

kinematic parameters are labelled with the red lines in Figure 4-1. The detailed 
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information of the 4 blocks is listed in Table 11-1. 

In order to employ (11.1) which is dedicated for isotropic background media, the 

reservoir Block 3 is, therefore, necessary to be modified to isotropic. Here, Block 3 is 

converted to isotropic media by simply set all Thomsen parameters to ‘0’. Then with 

0pv , 0sv  and ρ , the stiffness can be recovered for the isotropic Block 3 as below: 

  

2.4381 0.9316 0.9316 0 0 0

0 2.4381 0.9316 0 0

0.7532

0.7532 0

0 7

0 0

. 532

 
 
 
 =
 
 
 
 

3
C  

(4.2) 

4.2. Model structure 

As both alternating solid and fluid layers and VTI media are classified as polar 

anisotropy, it is enough to study the 2D property of the 3D model since all the 

phenomenon in the symmetry plane is the same. Thus, a 2D model with horizontal 

layers (4 blocks mentioned above) is considered. Figure 4-3 gives an overview of the 

model structure. As a result, the complex geology is out of the scope of this study.  

 

Figure 4-3.  Elastic model (4 blocks) obtained from the upscaling of well log data. In this figure, C�� is displayed 

to indicate different blocks. 

A source and some receivers are assumed to be placed on the top of Block 1. The later 
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simulations will follow this structure. 

4.3. Modification to Block 3 

It is essential to point out that all the blocks now are still non-porous and non-cracked. 

The slowness surface of isotropic Block 3 is given in Figure 4-4. As long as isotropic 

Block 3 is inserted fractures or pores, it can have some voids to be a true reservoir. That 

is why Block 3 is previously named the background of the reservoir.  

 

Figure 4-4.  Slowness surface of isotropic Block 3. P- and S-wave slowness surfaces are labelled. 

The modification of isotropic Block 3 to be a reservoir is covered in later chapters with 

different methods. For instance, alternating solid and fluid layers theory and BISQ are 

both methods to make Block 3 have voids in later chapters. As a result, the fluid 

properties can only affect the elastic behaviours of Block 3. And those specific 

behaviours from the fluid can propagate to the surface of Block 3 and then to the surface 

of Block 1 eventually. 

As mentioned before, there are 8 independent parameters affecting the model consisting 

of alternating solid and fluid. In order to test the relationship between fluid substitution 

and the travel time change, 3 models of Block 3 are developed for tests (Table 4-1). 

Also, the fluid property is another input for simulation. Thus, here is given the fluid 
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properties for oil, water and gas (Table 4-2). 

Table 4-1.  The 3 testing models for Block 3. 

Model [ ]H m  φ 

1 1 0.001 

2 1 0.0001 

3 5 0.001 

 

Table 4-2.  Physical parameters of fluids. 

Fluid [ / ]fv m s  
3/f kg mρ     

Oil 1200 600 

Water 1500 1000 

CO2 400 600 
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5. Travel time 

This chapter utilizes the alternating solid and fluid layers theory as derived in Chapter 

3 to compute the travel time. Firstly, the velocity dispersion is studied to check how 

much the seismic frequency affects the velocities in Block 3. And then the travel time 

as a function of offset is computed for both surfaces of Block 1 and Block 3. It is 

forecasted that the effect of fluid substitution on the travel time on the top of Block 1 is 

much smaller than that on the Block 3’s surface. This is because there are 2 overburden 

layers lessen this influence. 

5.1. Dispersion 

In this section, the dispersion of vertical fast-P-wave, horizontal fast-P-wave, horizontal 

slow-P-wave and horizontal S-wave (phase velocity) are analyzed. The 3 models are 

tested separately. 

5.1.1. Model 1 

 

Figure 5-1.  Slowness surface of oil-saturated Model 1 (5 Hz). P� for fast-P-wave and P� for slow-P-wave. 

In this case, the fracture relative thickness φ  is set 0.001 and the length of one 

solid/fluid period H  is 1 m (Model 1). Let us consider oil-saturated Model 1 under 5 

Hz for an example. (11.1) is used to calculate the slowness to get phase velocities 

(Figure 5-1). It can be noted that for vertical slow-P-wave, the slowness is infinity, 

which means the vertical velocity of slow-P-wave is ‘0’. And the same for vertical S-

wave. That’s why only vertical fast-P-wave, horizontal fast-P-wave, horizontal slow-
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P-wave and horizontal S-wave are studied in this section. And those velocities as a 

function of seismic frequency are displayed in Figure 5-2. 

 

a) Oil saturated 

 

b) Water saturated 

 

c) CO2 saturated 

 

Figure 5-2.  Velocity dispersion of Model 1. 

For the 3 cases, horizontal slow-P-wave and horizontal S-wave are apparently 

dispersive. There is a swap of their dispersion: Before a certain frequency, the 

horizontal S-wave is dispersive while horizontal slow-P-wave is not, but after it, they 

exchanged their property of dispersion. The others are weakly dispersive. Vertical and 

horizontal fast-P-waves are much faster than horizontal slow-P- and S-wave. The 

vertical and horizontal fast-P-wave of oil and CO2 cases are almost the same. The fluid 

substitution from oil to gas results in a slight variation of vertical fast-P-wave (300 m/s 

slower in the CO2 saturated case than the oil saturation). And the fluid substitution from 

oil to water leads to little change of vertical fast-P-wave.  

5.1.2. Model 2 

Now the fracture relative thickness φ of Block 3 is changed to 0.0001 to represent the 
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media with a smaller void and the other parameters remain unchanged with regards to 

Model 1. Figure 5-3 gives an overview of the dispersion of Model 2. 

 

a) Oil saturated 

 

b) Water saturated 

 

c) CO2 saturated 

 

Figure 5-3.  Velocity dispersion of Model 2. 

With smaller fracture relative thickness, the dispersion swap point between horizontal 

fast-P-wave and horizontal S wave is invisible. And the vertical and horizontal fast-P-

wave velocities are very close in each fluid saturation. 

5.1.3. Model 3 

Here, the length of one period H  of Block 3 is shifted from 1 m of Model 1 to 5 m to 

form Model 3. 
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a) Oil saturated 

 

b) Water saturated 

 

c) CO2 saturated 

 

Figure 5-4.  Velocity dispersion of Model 3. 

Figure 5-4 shows that all the features are similar to that of Model 1 except that the 

horizontal slow-P wave is slightly more faster at a higher frequency than that in Model 

1. 

5.2. Single phase fluid saturation 

In this section, both single layer of Block 3 (Model 1) and Block 3 (Model 1) with 

overburden are analysed. And the cracked Block 3 is considered only filled with one 

single fluid. For Model 2 and Model 3, only the travel time of Block 3 with overburden 

is studied. When it comes to the overall travel time with overburden included, 2 

scenarios are considered: P down in Block 1, P down in Block 2, fast-P down in Block3, 

and fast-P up in Block 3, P up in Block 2, P up in Block 1, and this is called P/fast-P 

case later; SV down in Block 1, SV down in Block 2, slow P down in Block 3, slow P 

up in Block 3, SV up in Block 2, SV up in Block 1, and this situation is named SV/slow-

P. 



5. Travel time 

24 

 

5.2.1. Model 1 

Single layer 

Firstly, it is essential to illustrate how to calculate phase velocity, group velocity and 

travel time for cracked Block 3. 

Let us take oil-saturated Model 1 under 5 Hz frequency as an example. The phase 

velocity as a function of phase angle is given 

 

 2 2

2

1
p q

v
= +  

( )
p

arctan
q

θ =  

(5.1) 

where θ  is the phase angle. 

An example of the phase velocity of oil-saturated Model 1 under 5 Hz frequency is 

shown in Figure 5-5. 

 

Figure 5-5.  Polar plot of phase velocities as a function of angle (oil-saturated Model 1 under 5 Hz frequency). 

Then group velocity can be calculated (Tsvankin, 2012), 
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where xV  and zV  is the horizontal and vertical group velocity respectively and ψ  is 

the group angle relative to the z-axis. 

And finally, the travel time of a single block can be obtained 

 

2x ztanψ=  

2z
t

Vcosψ
=  

(5.3) 

where x is offset; z is the layer thickness and V is group velocity. 

The reservoir group velocity and single layer two-way travel time are computed for fast 

P-, slow P- and S-wave (Figure 5-6 - Figure 5-11). 

 

a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-6.  Fast-P-wave Group velocity of Block 3 (Model 1). 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-7.  Fast-P-wave Two-way travel time of Block 3 (Model 1). 

Figure 5-6 shows that the fast-P-wave group velocity varies slightly from oil/water to 

CO2 case, except that in the horizontal direction it is not that sensitive to fluid 

substitution. As a result, the travel time of fast-P-wave in Figure 5-7 changes a little 

from oil/water to CO2 saturation (for vertical travel time, approximately 0.2 s more for 

CO2 case compared to oil/water case). However, the difference for both group velocity 

and travel time between oil- and water-saturated cases in the reservoir is too small. 

Frequency alteration does not affect the fast-P-wave group velocity much.  

It can be noticed that slow-P-wave does not travel vertically in group domain in Figure 

5-8. Thus, on the travel time recordings (Figure 5-9), slow-P-wave signal emerges after 

a certain amount of offset. A piece of bad news comes here, that is both the group 

velocity and travel time of slow-P-wave are not promising to observe fluid substitution. 

There is only a noticeable difference between oil and water/CO2 saturation in the travel 

time of slow-P wave under 5 Hz with larger offset (more than 200 m). 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-8.  Slow-P-wave Group velocity of Block 3 (Model 1). 

Analogous to the group velocity of slow-P-wave, S-wave does not travel vertically 

(Figure 5-10). The S-wave group velocity is generally lower compared to fast- and 

slow-P-wave. One of the most characteristics is the strong dispersion. As a result, the 

travel time is very sensitive to seismic dominant frequency (Figure 5-11). For instance, 

S-wave group velocity decreases from 5 Hz to 15 Hz and 30 Hz. Therefore, the 

corresponding travel time declines with higher frequency. S-wave emerges with 

shortest offset with water saturation under 5 Hz seismic frequency. However, the travel 

time difference only becomes visible with more than 300 m offset. With higher 

frequency (15 Hz and 30 Hz), the emerging point of the offset can indicate different 

fluids. For instance, under 15 Hz seismic frequency, the travel time of oil-saturated case 

emerges at about 280 m offset, followed by 330 m offset of CO2 and 340 m offset of 

water. However, the long offset appearance poses a disadvantage of S-wave exploration 

as long offset seismic data is not always available. As a result, S-wave is not taken into 

consideration later in the travel time analysis with overburden included. 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-9.  Slow-P-wave two-way travel time of Block 3 (Model 1). 

One interesting observation here is that, for the group domain of slow-P- and S-waves 

(Figure 5-8 and Figure 5-10), Vz of both is duplicated for a certain range of Vx. That is 

why the travel time is also duplicated for some offset (Figure 5-9 and Figure 5-11). 

 

 

 



5. Travel time 

29 

 

 

a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-10.  S-wave Group velocity of Block 3 (Model 1). 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-11.  S-wave Two-way travel time of Block 3 (Model 1). 

Fast-P-wave in the effective model with overburden included 

Now we study what happens to P/fast-P case if the overburden Blocks (Block 1 and 2) 

are included. 

To calculate the travel time for a source located on the top of Block 1, the effective 

group velocity is supposed to be used. To do that, the effective phase velocity is 

required. Firstly, we calculate effective slowness of the 3 blocks (Block 1, Block 2 and 

cracked Block 3), 

 ˆ i i

i

q z
q

z
= ∑
∑

 (5.4) 

An example of the effective slowness, as well as the separate slowness of the 3 blocks, 

can be seen in Figure 5-12. Though P/fast-P- waves in the 3 blocks travel horizontally 

in each block, the effective phase velocity of them does not travel horizontally anymore. 
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Figure 5-12.  Slowness of 3 blocks and the effective slowness of P/fast-P-wave of Model 1 with overburden 

included (oil-saturated, 5 Hz). 

And the effective phase velocity for Figure 5-12 is displayed in Figure 5-13. 

 

Figure 5-13.  Polar plot of effective P/fast-P-wave phase velocity of the effective media consisting of Model 1 with 

overburden included (oil-saturated, 5 Hz). 

Then (5.2) is used to compute effective group velocity from Figure 5-13. And the 

corresponding two-way travel time can be easily obtained through (5.3). 

An overview of the effective P/fast-P-wave group velocity and two-way travel time is 

given in Figure 5-14 and Figure 5-15. 



5. Travel time 

32 

 

 

a) 5Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-14.  Effective P/fast-P-wave group velocity of the effective media (Block 3:  Model 1). 

Now with overburden included, the difference of group velocity for the 3 fluid 

saturation cases is much smaller than the single layer case. Still, the oil and water cases 

are hard to be discriminated in the group velocity in the 3 frequencies (Figure 5-14). 

And a slight deviation (about 100 m/s for the vertical group velocity) of CO2 case can 

be observed compared to oil/water saturation. In the travel time with overburden 

included, only the fluid substitution from oil/water to CO2 leads to a visible difference, 

whose travel time has 0.02 s increase for the vertical travel time. And the travel time is 

not obviously affected by frequency variation. 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-15.  Effective two-way travel time of P/fast-P-wave of the effective media (Block 3: Model 1). 

SV/slow-P-wave in the effective model with overburden included 

Figure 5-16 and Figure 5-17 shows the effective group velocity and travel time with 

overburden included of SV/slow-P case, respectively. 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-16.  Effective SV/slow-P-wave group velocity of the effective media (Block 3: Model 1). 

It is not very easy to distinguish if it is the oil, water or CO2 saturated case through 

travel time feature of SV/slow-P-wave as the 3 cases are too close in both effective 

group velocity and effective travel time, though the travel time of CO2 case is a little 

longer than that of oil/water but this difference is too insignificant. 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-17.  Overall SV/slow-P-wave two-way travel time of of the effective media (Block 3: Model 1). 

5.2.2. Model 2 

In this section, only the effective travel time with overburden included for P/fast-P-

wave and SV/slow-P-wave is shown (Figure 5-18 and Figure 5-19). And φ  is shifted 

to 0.0001 to form Model 2 and the other parameters remain the same with Model 1. 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-18.  Overall travel time of P/fast-P-wave of the effective media (Block 3: Model 2). 

The outcome for this model is disappointing. The difference for the 3 fluid saturations 

is much smaller than that in Model 1, and now it is almost impossible to distinguish any 

fluid from the travel time of both P/fast-P-wave and SV/slow-P-wave under the 3 

frequencies. 

 

 



5. Travel time 

37 

 

 

a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-19.  Overall travel time of SV/slow-P-wave of the effective media (Block 3: Model 2). 

5.2.3. Model 3 

The period of one solid and one fluid layer H  in model 3 is set 5 m and the other 

properties are the same with Model 1. Figure 5-20 and Figure 5-21 give the travel time 

of P/fast-P-wave and SV/slow-P-wave in the whole model. The travel time in this 

model is almost the same as that in Model 1. Only the substitution from oil/water to 

CO2 can be discriminated by the travel time of P/fast-P-wave while the travel time of 

SV/slow-P-wave for oil/water and CO2 cases is too similar to each other. 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-20.  Overall travel time of P/fast-P-wave of the effective media (Block 3: Model 3). 
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a) 5 Hz 

 

b) 15 Hz 

 

c) 30 Hz 

 

Figure 5-21.  Overall travel time of SV/slow-P-wave of the effective media (Block 3: Model 3). 

5.3. Mixed phase case 

Before, the study of fluid substitution is constrained to single phase saturation. In reality, 

this is not always the case and is taken over by mixed-saturation. As fast-P- and slow-

P- wave is not very sensitive to the frequency in the seismic range, it is, therefore, 

enough to analyse the seismic response under a certain frequency. In this section, 5 Hz 

is applied. In addition, the fluid substitution from oil to water does not make so much 

difference in the travel time with overburden included, so only the substitution for 

P/fast-P-wave from oil to CO2 is investigated. In addition, the travel time of SV/slow-

P with overburden included is not displayed here as it is not very much affected by the 

fluid substitution from oil to CO2 as mentioned before. 

To calculate the travel time and reflectivity of the mixed phase saturation, the effective 

P-wave velocity for the mixed phase is required. Firstly, the effective bulk modulus of 

mixed oil-gas phase is given (Stovas & Landrø, 2004), 
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K K K

−= +  (5.5) 

where fK  is the effective bulk modulus; oK  and gK  is the bulk modulus of oil and 

water respectively; oS  is the oil saturation. And the density fρ  of the mixed phase is 

just the volume-weighted average. Then the P-wave velocity for the mixed fluid can be 

obtained with the fluid modulus fK  and density fρ . The slowness and P/fast-P-wave 

travel time with overburden included are shown in Figure 5-22 and Figure 5-23 for 

different saturation of oil for oil-CO2 mixed phase system. 

 

Figure 5-22.  Slowness of cracked Block 3 (ϕ = 0.001) filled with oil-CO2 mixed phase (5 Hz). The number in the 

legend indicates the oil saturation. 
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Figure 5-23.  P/fast-P-wave travel time of cracked Block 3 (ϕ = 0.001) filled with oil-CO2 mixed phase with 

overburden included (5 Hz). The number in the legend is the oil saturation. 

From Figure 5-22, it can be observed that as the oil saturates more, q  of fast-P- and 

slow-P-wave is climbing for the same p , while that of S-wave drops. 

The travel time of P/fast-P-wave with overburden included shows that it changes 

gradually to a longer time if the oil is replaced by CO2. The difference of different 

saturation cases vary the most at the vertical travel time and then lessens with larger 

offset. However, the vertical travel time change is very small for every ‘0.2’ oil-

saturation change. 
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6. Reflectivity 

Amplitude versus angle (AVA) is an effective tool for fluid identification. In this 

chapter, P/fast-P (P/fast-P-wave incident and P/fast-P-wave reflection) reflectivity on 

the interface between Block 2 and Block 3 is studied. 

Firstly, let us recall the 2-term acoustic approximation to the Zoeppritz equations 

 

( ) ( )2

0 2ppR R R sinθ θ≈ +  

0

02 p

Z
R

Z

∆=  

2

0 0 0
2

0 0 0

21

2

p s

p p

v v
R

v v

µ δ
µ

  ∆ ∆ = − + ∆     

 

(6.1) 

where 0p
Z  is the vertical acoustic impedance 0p

vρ ;  
0µ  is the vertical shear modulus 

2

0svρ . 

In case pp
R  is plotted as a function of 

2sin θ , then 0R  and 2R  can be interpreted 

intercept and gradient respectively. 

 

a) 5 common patterns of negative gradients 

 

b) Additional AVO classes for responses with 

positive gradients (such as base of sands 

and hydrocarbon contacts) 

Figure 6-1.  AVO patterns (Simm & Bacon, 2014). 

According to Simm and Bacon (2014), there are 6 patterns of AVO. And they stated 

that Positive AVO with a positive intercept is generally characteristic of modelled 

hydrocarbon contacts, while lithological changes with positive intercept usually have a 
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negative gradient. 

Firstly, the parameters of Block 2 are all known for (6.1) from the result of up-scaling 

of  Section 4.1. Now, some approximations should be made to formulate the parameters 

in (6.1) for Block 3. 

A model of alternating solid/fluid layers can be regarded as polar anisotropy, which is 

analogous to VTI media. Here, the reflectivity of VTI is applied to approximate the 

reflectivity between Block 2 (VTI) and cracked Block 3 (analogue VTI). To do so, the 

Thomsen parameter δ  of cracked Block 3 is required, which is obtained by fitting the 

( )q p  of Block 3 with ( )q p  of VTI media. 

6.1. Taylor series of q(p) for VTI 

Firstly, we show how to approximate Thomsen parameter δ  for cracked Block 3.  

Inserting the last 3 equations into the first 2 in (3.4) leads to the 2D elastic wave 

equation for VTI media, 

 

( )
2 2 22

11 13 55 552 2 2

x x xz
u u uu

C C C C
t x x z z

ρ ∂ ∂ ∂∂= + + +
∂ ∂ ∂ ∂ ∂

( )
22 2 2

33 13 55 552 2 2

xz z z
uu u u

C C C C
t z x z x

ρ ∂∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ ∂

 

(6.2) 

And then applying Fourier transform in both spatial and temporal domain yields 

Christoffel wave equation: 

 

 

( )
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(6.3) 

As there is supposed to be a non-zero solution of 
x

z

U

U

 
 
 

, it is necessary to have 
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(6.4) 

Then the relation of q and p  is formulated as below 
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(6.5) 

Substitute all stiffness to the combination of 0p
v , 

0sv , ρ  and Thomsen parameters, 

apply Taylor expansion to ( )q p  at 0p =  and retain until 4th order to formulate a much 

simpler formula as below 

  
2

0

0

1 1

2
p

p

q v p
v

δ ≈ − + 
 

  (6.6) 

6.2. Fitting q(p) for cracked Block 3 

(6.6) can be used to approximate pseudo δ  of Block 3 by fitting ( )q p . It should be 

noted that (6.6) is only an approximation to small phase angles or p . With larger p , 

the equation will lead to large errors. So, fitting can be only performed within small p . 

Figure 6-2 is an example to estimate δ  of Block 3 using (6.6). And the same procedure 

is carried out for different fluids of cracked Block 3 for all the 3 models. It has been 

found that vertical fast-P-wave is weakly dispersive before. So, it is enough to analyze 

under a certain low frequency. 

 

Figure 6-2.  Fitting q(p) for fast-P-wave for cracked and oil saturated Block 3, 5Hz, Model 1. Fitting is operated on 

P-wave phase angle from 0 to 
�

��
. Estimation results: v�
 = 1773m/s; δ = −0.4217, r� = 0.9996.  r� is the 

coefficient of determination (ranging from ‘0’ to ‘1’, ‘1’  means perfect fitting). 
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δ  computed from this method is effective δ  if the cracked Block 3 is treated as a 

homogenous VTI media. They are summarized in Table 6-1. 

Table 6-1.  δ for cracked block 3 approximated from VTI equivalence. 

Model Saturation δ r2 

1 

Oil -0.4217 0.9996 

Water -0.4225 0.9996 

CO2 -0.4242 1.0000 

2 

Oil -0.4233 0.9996 

Water -0.4266 0.9996 

CO2 -0.4090 1.0000 

3 

Oil -0.4219 0.9994 

Water -0.4227 0.9997 

CO2 -0.4245 0.9977 

6.3. Single phase case 

Let us recall the P-fast-P reflectivity computation formula (6.1), which requires the 

input of 0p
v , 

0sv , ρ  and δ  for both up and down half-spaces. 

0sv  is set 0 for cracked Block 3 as there is no vertical S-wave velocity at all. And due 

to the fluid effect, ρ  is not the density of the matrix, but the effective density averaged 

from solid and fluid, which is computed by 

 (1 )
f s

ρ φρ φ ρ= + −  (6.7) 

where 
sρ  is the solid density.  

Now, all the parameters are ready for (6.1) and the P/fast-P-wave reflectivity of 

between the overburden and the 3 models (5 Hz) can be calculated (Figure 6-3). 

Now, we can classify R0 - R2 pattern according to Figure 6-1 and they are listed in Table 

6-2. As mentioned in Simm and Bacon (2014), ‘There is nothing about these responses 

that allow us to generalise about their significance’, which means those AVO patterns 

are restricted to our current model to identify fluids. 
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Figure 6-3.  R� as a function of R
 for a wave going from Block 2 to the interface between Block 2 and cracked 

Block 3. This is computed with seismic frequency 5 Hz. The red ‘O’ and the green ‘O’, the red ‘+’ and the red ‘+’ 

and the green ‘*’ and the green ‘*’  almost overlap, i.e. the cross plot of Model 1 and Model 3 is overlapped. 

Table 6-2.  AVO pattern classification of the 3 models with different fluid saturation. 

Model Saturation AVO pattern 

Model 1 

Oil VI 

Water VI 

CO2 V 

Model 2 

Oil VI 

Water VI 

CO2 VI 

Model 3 

Oil VI 

Water VI 

CO2 V 

 

One interesting phenomenon in Figure 6-3 is that all events have positive intercept with 

a positive gradient, which is not very common in the seismic AVO analysis. It arises 

from the considerably high anisotropy of the cracked Block 3. 

Another apparent observation is that Model 1 and Model 3 almost have the same 

behaviours. The reason is that through fitting q(p) of the cracked Block 3 with VTI 

theory, we are considering cracked Block 3 as an effective media, and this is a long-

wavelength approximation. So, the difference of parameter H  does not affect much to 

the result of reflectivity. Thus, Model 1 and Model 3 are equivalent in long-wavelength 

approximation and can be regarded as the same case. 

As for the fluid substitution in Model 1 and Model 3, both R0 and R2 are slightly shifted 
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to the higher values (both increase about 0.03) when the oil is replaced by water while 

they decline a lot (R0 drops 0.05 and R2 decreases 0.033 approximately) when the oil is 

substituted by CO2. 

For Model 2, the fluid effect is considerably smaller than Model 1 and Model 3 as the 

void is much less. There is no much difference for R0 - R2 for fluid changing from oil 

to water and only a small change (both R0 and R2 decrease 0.05) from oil to CO2. 

6.4. Mixed phase case 

In the previous section, only the substitution from oil saturation to CO2 saturation for 

Model 1 and Model 3 has a big difference in R0 - R2  crossplot. Thus, it is interesting to 

study the partially saturated case by both fluids and see how the gradual displacement 

from one fluid to another affects the reflectivity. As Model 1 and Model 3 have very 

similar reflectivity feature, it is reasonable to use the reflectivity response of Model 1 

to represent Model 3. In this section, Model 1 is used and R0 - R2  cross plot is given in 

Figure 6-4. 

 

Figure 6-4.  R� as a function of R
 for a wave going from Block 2 to the interface of Block 2 and cracked Block 3 

(Model 1, ϕ = 0.001, H = 1 m). The value in the legend is the oil saturation for oil-CO2 mixed phase system. 

The reflectivity change is very like the linear change with the saturation variation. For 

every 0.2 oil saturation decreasing, R0 drops about 0.01 and R2 declines about 0.0064. 
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7. Numerical simulation 

This chapter elaborates the procedure of using the finite-difference method in Matlab 

to simulate the wave propagation in the model constructed from the well log data, in 

which Block 3 is cracked. As a result, there are 2 types of media, VTI media without 

any void and fractured Block 3 filled with fluid. 

As there is currently no unified wave equations to describe both of them, the author 

used the combination of 2 kinds of wave equations to simulate the wave in each of them, 

acoustic wave equation for alternating solid and fluid layers under long-wavelength 

approximation (Schoenberg, 1984) and acoustic wave equation for VTI media 

(Alkhalifah, 2000). And both of them can be solved by the finite-difference method. 

Here the finite-difference method in the frequency domain (x, z, ω) is applied. And the 

perfectly matched layer (PML) is employed to attenuate the energy going to the 

boundary to avoid unwanted reflection. The boundary condition is absorbing boundary 

condition (ABC). 

7.1. Wave equation for VTI 

Alkhalifah (2000) proposed an acoustic equation for VTI media in ( , , )x z t  domain 

consisting of 2 partial differential equations given below 
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(7.1) 

where 
1 2

δη
δ

−=
+
ε

 and 
vv  is the NMO velocity given as 0 1 2v pv v δ+= .  

(7.1) can compute the P-wave pressure field P . However, there are 2 fields in (7.1), P  

and F . Considering the computation burden, it is always better to simplify the system 

of equations. If we substitute F  with P  in (7.1), then only one field P  left but the 

integral of P  comes out. 

Here is a better solution, which is to transform (7.1) into ( , , )P x z ω  analogous to (3.6). 

And (7.1) will be converted to a very simple form subject to P  
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7.2. Wave equation for alternating solid and fluid layers 

Schoenberg (1984) formulated the slowness relation under long-wavelength condition 

( 0ω → ): 
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where p
v  and 

sv  is the P- and S-wave velocity of the solid respectively; ρ  is the solid 

density;  the operator ‘ 〈〉 ’ means thickness-weighted average; pl
v  is the long 

wavelength speed of the extensional wave. 

Recall inverse Fourier transform, 
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(7.4) 

where the second and the third terms are in the frequency domain. 

Apply theorem (7.4) to (7.3), and then multiply pressure ( , , )P x z ω  on both sides to 

form the non-dissipative acoustic wave equation in ( , , )x z ω  
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 (7.5) 

(7.5) is a 4th order partial differential equation can be applied to the cracked reservoir. 

7.3. Results of wavefield 

The detail of finite-difference implementation is listed in Appendix 11.3 and the source 

code is given in Appendix 11.6. 
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As (7.5) is under long-wavelength approximation, the wavelength is assumed much 

larger than H . Thus, there is no H  input in (7.5) and Model 1 and Model 3 in Table 

4-1 are considered to have the same wave behaviour. The 3 models in Table 4-1 are 

tested but only Model 2 yields an ingressive result with a moderate signal to noise ratio. 

As a result, only the result of Model 2 is shown in this section. 

There are 2 cases to be simulated, the first one is that the source is placed in Block 2 

very close to the top of the cracked Block 3 to see the propagation of fast P- and slow 

P- wave and the transmission from P-wave in Block 2 to the 2 waves in Block 3; the 

second one is Figure 4-3, our whole model. 

7.3.1. Wavefield in cracked Block 3 

Firstly, we place the 20 Hz dominant frequency source 20 m above the interface 

between Block 2 and Block 3. With all the information above, the finite-difference 

method is executed. Some examples of the wavefield in the frequency domain for oil-

saturated Block 3 are given in Figure 7-1. 

 

Figure 7-1.  Wavefield in frequency domain of cracked Block 3 (oil saturated, ϕ = 0.0001) where the source is 

located 20 m above the top of Block 3. Block 2 and Block 3 is bounded by the yellow line. 
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a) Cracked Block 3: ϕ = 0.1, oil-saturated. The 

source is 20 m above the interface 

 

b) Cracked Block 3: ϕ = 0.0001, oil-saturated. 

The source is 20 m above the interface 

 

c) Cracked Block 3: ϕ = 0.0001, gas-saturated. 

The source is 20 m above the interface 

 

d) Cracked Block 3: ϕ = 0.0001, oil-saturated. 

Block 2 is set isotropic on purpose to avoid S-

wave artefact. The source is 20 m above the 

interface 

 

e) Cracked Block 3: ϕ = 0.0001, oil-saturated. 

The source is 100 m above the interface 

Figure 7-2.  Snapshots of wavefield in time domain. The source is placed in Block 2. And Block 2 and Block 3 are 

bounded by the yellow line. 
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And then the inverse Fourier transform is used to transfer the field back to the time 

domain in Figure 7-2 a), which includes some extra test for different input. It is the S-

wave artefact in Block 2 that raises a lot of noise in the time domain. But the signal can 

still be seen clearly. 

Now, some other scenarios are tested as shown in Figure 7-2. As predicted by 

Schoenberg (1984), two waves, the fast-P-wave and slow-P-wave can be observed in 

Figure 7-2 a), b), c) and d). The wavefield here does not contain the S-wave as this is 

acoustic wave equation but there is some S-wave artefact when the media is anisotropic. 

Figure 7-2 a) gives an example of higher crack relative thickness φ , and the complete 

shape of slow-P-wave can be observed. However, when the relative thickness of the 

fracture becomes much smaller, the inner part of slow-P-wave becomes much weaker 

in Figure 7-2 b) and c). It is necessary to emphasise that the slow-P-wave in the 2 figures 

could be easily misunderstood as S-wave artefacts like the S-wave artefact in acoustic 

VTI media. But it is not the S-wave artefact as the incomplete wavefront in Figure 7-2 

b) and c) conforms to the slow-P-wave group velocity. 

The wavefronts in Figure 7-2 b) and c) are very similar to each other (the velocities are 

so close). This supports what we concluded in section 5.1.2: There is no obvious change 

of travel time when the fluid in cracked Block 3 (Model 2) alters from oil to CO2. 

Another finding is that if we set Block 2 isotropic (Figure 7-2 d)), then there is no S-

wave artefact in Block 2 so that it does not propagate to cracked Block 3. In this case, 

the noise is much less than the anisotropic case of Block 2 (e.g., Figure 7-2 b)). 

Then, we try to place the source farther away from the interface of Block 2 and Block 

3 (Figure 7-2 e)). The distance between the source and the interface is set 100 m. The 

slow-P-wave is invisible. The explanation for this is that the transmission from P-wave 

in Block 2 to slow-P-wave in Block 3 is very small. When the source is very close to 

the interface, the energy going to Block 3 is strong enough to make slow-P-wave visible. 

When the source is farther, then the input energy to transmit slow-P-wave in Block 3 is 

much weaker due to the geometric spreading. 

7.3.2. Wavefield in the whole model 

In this subsection, the cracked Block 3 with ϕ = 0.0001  with overburden and 

underburden included is simulated. An example of snapshot is given in Figure 7-3. 
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A moderate degree of noise can be seen in the wavefield plot. But it is still possible to 

identify the signal. The whole wavefield only contains acoustic wave and S-wave is out 

of the scope of this simulation. There is a line of receivers placed on the top of Block 

1, which generates the recordings in Figure 7-4. To compare the consequence of fluid 

substitution, the difference of the recordings is followed. 

 

Figure 7-3.  Snapshot of the wavefield in time domain of the whole model with cracked Block 3 (ϕ = 0.0001),  

oil-saturated. 

In Figure 7-3, the slow-P-wave in cracked Block 3 is invisible so that in the 

seismograms, there is no reflection related to slow-P-wave. In the synthetic 

seismograms (Figure 7-4, a), b) and c)), 3 reflection events appear, PP1, PP2 and PP3. 

In Figure 7-4 d), the difference between the oil- and water-saturated cases are shown. 

The difference of PP3 emerges as there is a time shift in the oil and water saturation for 

PP3 event. However, the difference is very small and the noise is comparable to the 

intensity of the signals The difference of reflectivity of PP2 is too weak to be seen on 

the difference. When it comes to the difference between CO2 and oil saturation (Figure 

7-4 e)), the signal of PP2 difference is stronger to be visible. And the difference of PP3 

is also more obvious. Thus, in our simulation, the fluid substitution from oil to CO2 is 

more possible to be detected by seismics than that from oil to water for Model 2 with 

overburden and underburden included. 
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a) Oil saturated 

 

b) Water saturated 

 

c) CO2 saturated 

 

d) difference between water and oil saturation 

 

e) difference between CO2 and oil saturation 

Figure 7-4.  Synthetic seismograms of the whole model with cracked Block 3 (Model 2, ϕ = 0.0001) and the 

difference among them. Labels on the reflections have the meaning, for instance, PP1 for P-down-P-up from the 

first interface. 
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8. BISQ theory 

In order to compare with porous media modified from Block 3 background, this chapter 

gives both analytical calculation and numerical simulation based on Biot-squirt (BISQ) 

mechanism. 

BISQ is a mature theory to describe fluid-filled porous media. As mentioned by D. 

Yang and Zhang (2002), Biot theory is describing through macroscopic rock properties, 

and the corresponding Biot flow is the flow parallel to the P-wave propagation. Squirt 

flow is based on the microscopic scale, which is the flow perpendicular to the P-wave 

propagation. The poroelastic wave equation by D. Yang and Zhang (2002) can describe 

vertically aligned fractures with horizontally layered media. But it is a system of 5 

equations for the 3D case, which makes it highly computationally demanding. Here, a 

simpler poroelastic wave equation by Parra (1997) is employed, which is a system of 3 

equations for 2D VTI background. Though the fracture is not included in Parra’s theory, 

it gives us a fundamental understanding of the difference between Schoenberg (1984) 

and Biot (Cheng, 2016). In this theory, there are 3 waves travelling in a 2D media (SH-

wave is not included), fast-P- and slow-P- propagating in both solid and fluid, SV-wave 

(later named S-wave) only existing in solid. 

This chapter again uses modified isotropic Block 3 as the background. And the porosity 

for the porous media ϕ is set 0.001. 

The wave equation in frequency domain including Biot theory and squirt flow 

mechanism for VTI media is given by, 
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where fK  is the fluid bulk modulus; sK  is the grain bulk modulus; f
η  is the viscosity 

of the fluid; 
aρ  is the density caused by fluid (Biot, 1956); k  is the intrinsic 

permeability; 
sρ  is the grain density; xS  and zS  is the x- and z- component source 

respectively; p  is the pore fluid pressure. 

8.1. Dispersion 

Here, we study the dispersion of Block 3 saturated by oil and water. Before that, it is 

necessary to get the formula for phase velocity. 

Applying Fourier transform in x- and z- dimensions to the source-free version of (8.1) 

to get the Christoffel wave equation 
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The determinant of the first term must be zero as there is a non-zero solution of the 

second term in (8.3), 
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Convert xk  and zk  to the combination of v  and the incident angle to z-axis θ  to form 

the Christoffel wave equation given in (11.16) in appendix. Then the velocity as a 

function of incident angle can be computed. (11.16) normally has 3 different absolute 

velocity solutions, corresponding fast-P-, slow-P- and S-wave.  

With the solution k  of (11.16), the phase velocity and the attenuation 
1

Q
 can be given, 

 

 
( )Real k

v
ω=  

 
1 2 ( )

( )

Imag k

Q Real k
=  

(8.5) 

To utilize the above theory to isotropic Block 3, some additional parameters for Block 

3 are required. The extra physical parameters of Block 3 are given in (Table 8-1). 

Table 8-1.  Extra parameters of Block 3 for BISQ input. Note: 1-axis is the horizontal axis and 3-axis is the vertical 

one. 

Letter Value Description 

sK  938 *10 Pa  Solid bulk modulus 

sρ  32650 /kg m  Solid density 

oK  88.64 *10 Pa  Oil modulus 

oη  110 Pa s− ⋅  Oil viscosity 

wK  92.25 *10 Pa  Water modulus 

wη  310 Pa s− ⋅  Water viscosity 

gK  79.6 *10 Pa  2CO  bulk modulus 

gη  510 Pa s− ⋅  2CO  viscosity 

3k  15 210 m−  Intrinsic permeability along 1-axis 

3k  15 210 m−  Intrinsic permeability along 3-axis 

1R  310 m−  Average squirt flow length along  1-axis 

3R  310 m−  Average squirt flow length along  3-axis 

aρ  3550 /kg m  Additional density caused by fluid 

φ  0.001 Porosity 

As the background is isotropic, the effective media is also isotropic after the introducing 

of the pores. Figure 8-1 is an example of phase velocity and attenuation of oil-saturated 

Block 3 to show the isotropy of phase velocity and attenuation. So, it is reasonable only 

to analyze the dispersion vertical wave velocity. 
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Figure 8-1.  Polar plot of phase velocity (left) and attenuation (right) for oil-saturated Block 3 (BISQ theory). P� 

for fast-P-wave, S for S-wave and  P� for slow-P-wave. The phase velocity of P� is too small to be visible. 

 

Figure 8-2.  Dispersion of oil-, water- and CO2- saturated Block 3 ( ϕ = 0.001, BISQ). 

Figure 8-2 gives an overview of the dispersion of the 3 waves with porous Block 3 

saturated with 3 different fluids. 

Fast-P- and S-wave is weakly dispersive compared to slow-P-wave. And this dispersion 

is neglectable in the seismic frequency range. Thus, the dispersion of those waves is 
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out of our interest in this study. 

It can be noticed that for CO2 saturation, the velocity of slow-P-wave has a huge 

velocity with high attenuation under low frequency and the velocity declines rapidly 

when the frequency reaches to 103 Hz. As can be seen from the attenuation magnitude, 

slow-P-wave is not predicted to be seen on the seismic scale. However, this wave may 

be observed in Rock physics experiment under high frequency in small scales. 

In low-frequency range, fast-P- and S-wave velocities are not much affected by the 

fluid substitution. As a result, travel time analysis is not an effective tool for us to 

identify fluid. This is a piece of frustrating news. However, we can still try to explore 

the reflectivity at the top and bottom of Block 3. This can be seen in seismic simulation 

as followed. 

8.2. Numerical simulation 

To implement seismic simulation, some preparation work is needed, i.e., the finite-

difference stencil formulation. The finite-difference method in the frequency domain is 

applied to the poroelastic media (similar to the approach by Q. Yang and Mao (2017)).  

11.5 in the appendix gives the process of the finite-difference method. And the 

corresponding Matlab code is available in 11.6. 

As found in Section 8.1, the dispersion for fast-P- and S-wave in seismic frequency 

(lower than 100 Hz) is weak. As a result, it is sufficient to simulate with a source with 

a specific dominant frequency. And the source is set z-directional so that the source in 

x-component is ‘0’. Here, a Ricker wavelet with 10 Hz dominant frequency is selected. 

8.2.1. Test for the single reservoir 

Firstly, an example is given for the wave propagation in homogenous Block 3 saturated 

with oil (Figure 8-3). And the corresponding wavefield in time domain is shown in 

Figure 8-4. In this wavefield, only fast P- and S- wave can be observed. Slow-P-wave 

vanishes due to the strong attenuation as what is computed in Section 8.1. The wave in 

the pore pressure field is fast-P-wave, corresponding the fastest wave in solid 

displacements. 
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a)  ω ≈ 41.89 rad/s 

 

b) ω ≈ 94.25 rad/s 

Figure 8-3. Wavefield in frequency domain for oil-saturated Block 3 computed with BISQ theory. x-component ux 

and z- component uz and pore pressure p are all displayed, and so on for later figures. 
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a) t = 0.2 s 

 

b) t = 0.28 s 

Figure 8-4.  Wavefield in time domain for oil-saturated Block 3 computed with BISQ. 

8.2.2. Results for the whole model 

After the testing, the whole model constructed from well log data is then simulated by 

BISQ theory with porous Block 3 oil-saturated, water-saturated and CO2-saturated. The 

blocks other than Block 3 are VTI and can be also simulated with (8.1) by setting the 

pore effect ‘0’, then (8.1) is identical to VTI wave equation. Table 8-1 gives the input 

parameters for the simulation. Some other parameters that are not listed in the table are 

the same as that in previous chapters. There is a line of seismometer located on the top 

of Block 1. In the end, the recordings of the 3 cases are compared. 
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One example of time domain wavefield for the whole model with porous Block 3 oil-

saturated is shown in Figure 8-5. 

 

a)  t = 0.8 s 

 

b) t = 1.2 s 

Figure 8-5.  Wavefield in time domain for the whole model computed with BISQ. Porous Block 3 (ϕ = 0.001) is 

oil saturated. 

 



8. BISQ theory 

63 

 

a) Oil b) Water 

c) CO2 d) Difference between water and oil saturation 

e) Difference between CO2 and oil saturation 

 

Figure 8-6. Synthetic seismic recordings with the receivers on the top of Block 1 computed with BISQ. a) porous 

Block 3 is saturated with oil; b) porous Block 3 is saturated with water; c) porous Block 3 is saturated with CO2. 

And their difference d) and e). Labels on the reflections have the meaning, for instance, PS2 for P-down-S-up from 

the second interface.  

The wavefield in time domain (e.g., Figure 8-5) produces the seismic recordings (Figure 

8-6), where the seismometers are placed on the top of Block 1. And the differences of 

the seismograms are also displayed in the figure. Please note that there are also some 
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multiples or the reflection from the boundary, which are not labelled in the figure. PML 

is not as good as the name ‘perfectly’ that can absorb the energy in the PML region 

entirely. There are still some reflections from the boundary but the intensity much 

weaker. 

PS and SP reflection should have the same travel time, that is why they are labelled 

together in Figure 8-6. PP3 is almost superimposed with PS1-SP1 but becomes apparent 

in the recording differences as PS1-SP1 is cancelled. Similarly, SS1 is just slightly 

above PS2-SP2, which makes it hard to be discriminated from PS2-SP2 in the original 

recordings. And SS1 is clear in the recording differences. Figure 8-6 d) and e) contains 

some multiples or multiple conversions and they are hard to identify, as a result, those 

are not labelled. 

The seismogram difference Figure 8-6 d) and e) shows the reflectivity difference, there 

is no visible travel time difference under different fluid saturation as has been discussed 

in Section 8.1. The difference between oil and water saturation is very similar to that 

between oil and CO2 saturation. Only PP2 and PP3 events are recognizable on the 

difference of seismograms. And the amplitude of the difference is ranked moderate 

compared to the original seismograms. 

However, what we have discussed above is the pre-processing seismic sections and they 

have not gone through true amplitude recovery. The difference caused by the fluid 

substitution can become stronger if the seismic sections are well processed. Taking into 

the consideration of noise in the real seismic exploration, the difference of PP2 and PP3 

is probably hidden depending on the seismic acquisition and processing technology. 
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9. Conclusion 

The analysis of fluid substitution in alternating solid and fluid layers provides an insight 

into the possibility of detecting fluid substitution during the water/gas treatment in a 

horizontally cracked reservoir. Both analytical and numerical methods are applied to 

our model. 

For Model 1 and Model 3, the overall travel time of P/fast-P-wave for gas saturation 

case is delayed than that under oil/water saturation while it does not change visibly 

from oil to water saturation. The travel time of P/fast-P-wave for partially saturated oil-

CO2 case changes gradually to longer time as CO2 displacing oil. And the travel time 

of SV/slow-P-wave is not very sensitive to fluid substitution. S-wave in cracked Block 

3 can be only detected with a large offset, which poses it in the negative position for 

fluid substitution as normally large offset seismic data is not available. For Model 3 

with less void, it is not feasible to detect fluid substitution through travel time analysis. 

The P/fast-P reflectivity from Block 2 to Block 3 is studied. Block 2 with Model 1 and 

Model 3 have almost the same reflectivity features. The reflectivity change from oil 

saturation to water saturation for Block 2 with Model 1 and Model 3 is ranked moderate, 

which is still much less significant than that from oil to CO2 saturation. For Block 2 

with Model 2, the reflectivity has an intermediate alteration from oil to CO2 saturation 

but this change is so tiny from oil to water.  

A conclusion for the consequence of fluid substitution for cracked Block 3 (analytical 

method) is listed in Table 9-1. 

The numerical simulation is only implemented for Model 2 as the result of Model 1/3 

has a very low signal to noise ratio. The wavefield for Model 1/3 is much contaminated 

by the S-wave artefact from the VTI media. The result for Model 2 with overburden 

and underburden included is consistent with the analytical result. To get the noise-free 

wavefield, a uniform wave equation is required. And this wave equation should be 

capable to describe the waves in both VTI media and alternating solid and fluid layers. 

This wave equation can be obtained through extending the acoustic wave equation for 

alternating solid and fluid layers based on isotropic background by Schoenberg (1984) 

to that based on VTI background. And the author will keep on working on this in the 

future. 
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The porous Block 3 is also included in this article to see the difference between cracked 

Block 3 and porous Block 3. The analysis for porous Block 3 with overburden included 

by BISQ theory shows that there is no apparent travel time change for fluid substitution 

in Block 3 for such a media. Only the reflectivity on interface 2 and interface 3 alters 

from one fluid to another in Block 3. This reflectivity change is noticeable in our 

seismic modelling. And this is different from the model with cracked Block 3 (Model 

1), which has some travel time difference with the substitution from oil to CO2. In 

addition, horizontally cracked Block 3 is classified as polar anisotropy but porous Block 

3 is still isotropic. 

Table 9-1.  Sign of fluid substitution. Travel time refers to that with overburden included and reflectivity is for the 

interface between Block 2 and cracked Block 3. 

Model Event From oil to water From oil to CO2 

1 

P/fast-P travel 

time 
No obvious change Delay slightly 

SV/slow-P travel 

time 
No obvious change No obvious change 

P/fast-P 

reflectivity 

Both R0 and R2 increase 

moderately 

Both R0 and R2 decline 

dramatically 

2 

P/fast-P travel 

time 
No obvious change No obvious change 

SV/slow-P travel 

time 
No obvious change No obvious change 

P/fast-P 

reflectivity 
No obvious change 

Both R0 and R2 decline 

slightly 

3 

P/fast-P travel 

time 
No obvious change Delay slightly 

SV/slow-P travel 

time 
No obvious change No obvious change 

P/fast-P 

reflectivity 

Both R0 and R2 increase 

moderately 

Both R0 and R2 decline 

dramatically 
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11. Appendices 
   

11.1. Full expression of q for alternating layers 
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11.2. Information on the 4 blocks 

Table 11-1.  Information on the 4 blocks from well log data. ‘a’ of ‘3’ means the original Block 3 and ‘b’ stands 

for the isotropic Block 3. 

Block 1 2 
3 

4 
a b 

Start depth [ ]m  452.8 1000.0 1300.0 1300.0 1600.0 

End depth [ ]m  1000.0 1300.0 1600.0 1600.0 2199.3 

 3[ / ]kg mρ  2173.5 2408.5 2248.6 2248.6 2379.7 

10

11 *10 [ ]PaC  1.1873 2.1749 2.2826 2.4381 3.3636 

10

13 *10 [ ]PaC  0.6674 1.0960 0.8849 0.9316 1.2257 

10

33 *10 [ ]PaC  1.1676 1.7532 2.4381 2.4318 2.9456 

10

44 *10 [ ]PaC  0.2410 0.3517 0.7532 0.7532 0.8909 

10

66 *10 [ ]PaC  0.2554 0.4899 0.6886 0.7532 1.0629 

3

0 *10 [ / ]p m sv  2317.7 2698.0 3292.8 3292.8 3518.2 

3

0 *10 [ / ]s m sv  1053.1 1208.4 1830.2 1830.2 1934.9 

ε  0.0084 0.1202 -0.0319 0 0.071 

δ  -0.0154 0.0268 -0.0189 0 0.0214 

γ  0.0298 0.1965 -0.0429 0 0.0965 

11.3. Numerical simulation for cracked reservoir with overburden included 

11.3.1. Perfectly matched layer 

The conventional fixed boundary is simple to execute. However, to avoid the reflection 

coming to the effective model region, there is a demand to increase the computation 

region, which is costly in computation. 

PML is a method to introduce complex part into the wave equation to attenuate the 

energy gradually layer by layer closing to the boundaries (Gao, Zhang, & Yao, 2015; 

Kim, 2019; Zhang & Shen, 2010). It was originally used for Maxwell’s equations. But 

the idea can be easily applied to any other wave equations. 

It is true that ABC can help to absorb the energy going to the boundary but it only works 

well for isotropic media. There is still a lot of reflection from boundaries if only ABC 

is applied without PML (e.g., Figure 11-1 a)). With the introducing of PML, not only 

the reflection from the boundaries can be suppressed, but the noise in the field can be 

also reduced (Figure 11-1 b)). 
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a) without PML 

 

b) with PML 

Figure 11-1.  Acoustic wavefield in time domain converted from the frequency domain finite-difference method. 

The snapshots in time domain were taken at 0.25 s for a source located in homogenous Block 2 a) without PML 

and b) with PML. The boundary condition is ABC. S-wave artefact emerges here. Apparent reflection can be seen 

from the top boundaries in a). 

Following the work by Komatitsch and Martin (2007), PML transform is given by 
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(11.2) 

where x and z is the distance to the inner boundary of PML; L  is the thickness of the 

PML layer; pv  is the estimated P-wave velocity; cR  is the theoretical reflection 

coefficient proposed by Collino and Tsogka (2001). 

To make PML applied in inhomogeneous media pv  is given in grid form for different 
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pv  at different locations. 

An illustration for distributions of 
xd  and 

zd  are given in Figure 11-2. 

 

Figure 11-2.  A sketch of PML layers explaining the value distribution of d- and d.. 

And now we apply PML transform to (7.2) and (7.5) according to (11.2), 
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(11.3) 

In order to simplify computation, (11.3) is formulated under weak variation 

approximation, e.g., 

  

2 2

2 2 2

1 1 1
( )

x x xx g x g x g x

∂ ∂ ∂ ∂→ ≈
∂ ∂ ∂ ∂

 (11.4) 

and same for z-dimension. Otherwise, the 4th order differentiation makes the equations 

too complex to discretize later. (11.4) is tested and the difference between the 2nd term 

and the 3rd term in our problem is no bigger than 0.1% when there are 40 layers of 

PML. 

11.3.2. Discretization 

To utilize the finite-difference method, we need to discretize (11.3). Firstly let us recall 

finite-difference stencil for first, second, fourth order for a function ( , )f x z  
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(11.5) 

where h is the step length in the spatial domain. 

If we consider x is the j-th column grid and z is the i-th row, then the grid in x- and z- 

directions can be expressed as 

 
 1x h j+ → +  

1z h i+ → +  

(11.6) 

and so on for x h− , 2x h+ , 2x h− , z h− ... 

where h is the spatial step length. 

Firstly, we apply the transform of (11.5) with weak variation approximation to wave 

equations after PML transform (11.3), 
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(11.7) 

where ( , , )S x z ω  is the source signal in the frequency domain, and the source can be 

only placed in the VTI layer. 
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After the arrangement of (11.7), the coefficient of P  for the first equation in (11.7) can 

be given 
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(11.8) 

the coefficient of P  for the second equation in (11.7) is given 
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(11.9) 

where the sum of them with the corresponding P  is the left part of (11.7). 

11.3.3. Absorbing boundary conditionPML 

It has been pointed out that PML is not a boundary condition, but a method to attenuate 

the energy when it approaches the boundary. So, it is still essential to define the 

boundary condition to have full ranked matrices in the finite-difference method. 

Proposed by (Engquist & Majda, 2010), absorbing boundary condition (ABC) is 

adopted here, given by 

  0
P i P

n v

ω∂ − =
∂

 (11.10) 
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where v  is the velocity of the wave that you want to absorb at the boundary, and n  is 

the direction perpendicular to the boundary line. Normally, we select the fastest wave 

velocity as v . 

Let us assume a model with m grids on x-direction and n grids on z-direction. For 

instance, the top boundary ( 1i = , 2 : 1j m= − ) ABC can be formed as 

  
1, , ,

0
i j i j i jP P i P

h v
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(11.11) 

As for the top left corner ( 1, 1i j= = ), n  is 45° away from x and z, (11.10) becomes 
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 (11.12) 

And the ABC of the other boundaries can be easily formed based on the above 

procedure. 

Then we apply discretization to (11.12) to form 
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(11.13) 

11.3.4. Source 

The minimum-phase Ricker wavelet function used in this study is given by 

  
2 2 2 21 1

, , ) (1 ( ) ) ) )( ( exp( (( ) )s s s s

s s

s z t t f t f
f

x
f

π π= − − − −  (11.14) 

where s  is the source signal in the time domain; sx  and sz  are the coordinate of the 

source; sf  is the dominant frequency of the source. 

A source wavelet with a dominant frequency of 20 Hz is shown in Figure 11-3. 
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Figure 11-3.  Source signals with a dominant frequency of 20 Hz. 

As we are going to utilize the finite-difference method in the frequency domain, the 

source signal is supposed to be converted into the frequency domain using the Fourier 

transform. In fact, there is a fast Fourier transform function in Matlab. By simply calling 

it, the source signal in the frequency domain of Figure 11-3 can be obtained in Figure 

11-4. 

 

Figure 11-4.  Absolute value of 20 Hz dominant source in the frequency domain. 

Now the source signal can be inserted to the wave equation solver directly. The wave 

equation is solved at each frequency sample and then the wavefield ( , , )P x z ω  is 

obtained. Then with the inverse Fourier transform, the understandable wavefield 

( , , )P x z t  is constructed. 

Now for each grid, at each one frequency, there is an equation for P  to be solved. 
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Write those equations in a matrix form to formulate 

  =GP S (11.15) 

where G  is the matrix of the coefficients of the equations; P  and S  are vectors 

consisting of the pressure field and the source signal. 

11.4. Christoffel wave equation of BISQ wave equation 

 

 

6 6

1 33 44 1 3 11 44 3 1

2 4 2 2 2 4

13 1 3 13 3 1

4 2 2 4

11 33 1 3 11 33 3 1

2 4 4 2

11 44 1 3 13 44 1 3

2 4 4 2

13 44 3 1 33 44 3 1

2cos

2

J

s

C s cos C C s sin

C s cos sin C s cos sin

C C s cos sin C C cos sin

C C s sin C C s cos sin

C C s cos sin C

C

C s cos sin

θ θ θ θ
θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ

+

− −

+

+ −

− +

=

+

� �

�

�

�

� � �

2 2
4 4

3 12 44 1 44 3

4 4

33 44 11 44

2
2 2 2 2 2

313 11 1

2
2 2 2 2

133 3 13 33

2 2 2 4

313 44 11 3 1

2 4 2 2
1 3144 3 1 13 1

2

s cos C s sin

C C cos C C sin

C cos sin C s cos sin

C s c

J

os sin C C cos sin

C C cos sin C s sin

C s sin C s cos si

C

n

α θ α θ
β θ β θ

β θ θ α θ θ

α θ θ β θ θ

β θ θ ρ ω θ θ

ρ ω θ θ α α θ

+

+ +

− +

−

=

+ +

−

− −
� � � �

� �

� �

� �

�

2 2 2 2
1 3 1 313 3 44 1

2 2 2 4
1 144 3 3 33 1 3

2 4 2 2 2

3 344 1 3 11 1 3

2 2 2 2 2 2

1 133 3 1 44 1 3

2 2 2

344 3 1

C s cos sin C s cos sin

C s cos sin C s cos

C s cos C s cos sin

C s cos sin C s cos sin

C s cos sin

θ

α α θ θ α α θ θ

α α θ θ ρ ω θ θ

ρ ω θ θ ρ ω θ θ θ

ρ ω θ θ θ ρ ω θ θ θ

ρ ω θ θ θ

− −

− −

− −

− −

−

 

� � �

� �

� � �

� � � �

2 2 2 2

1 3 13 1 3 33

2 2 2 2

3 344 11

2
2 2 2 2

31 144 1

2
2 2 4 2

1 3 1 33 3 1

coss cos C

C cos C sin

C sin s cos

s sin s s

J

in

ρ ρ ω θ θ ρ βω θ

ρ βω θ ρ βω θ

ρ βω θ α ρ ω θ

α ρ ω θ ρ ρ ω θ θ

−

− −

−

− +

=

−
 

� � 4

1 34
J ρ ρ βω=  

(11.16) 

11.5. PML transform and discretization of BISQ wave equation 

Similar to Section 11.3, the PML transform to BISQ wave equation  (8.1) is given by 
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(11.17) 

Following the similar procedure of Section 11.3.2, the discretization of (11.17) 

produces the coefficient of the field at each grid (under weak variation approximation). 

And the coefficient for the 3 equations in  (11.17) is given, 

the first equation: 
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the second equation: 
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the third equation: 
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(11.20) 

the sum of the coefficients times the corresponding field (
xu , 

zu  or p ) forms the left 

part of (11.17). The boundary condition is still ABC, as introduced in Section 11.3.3. 

11.6. Matlab code 

The Matlab code used in this article is available at my personal Github webpage: 

https://github.com/deconvolution. The acoustic wavefield simulation for VTI media 

and horizontally cracked layers is filed under the repository ‘Fractured-media’ and the 

BISQ poroelastic wavefield simulation can be found under ‘BISQ’. In addition, the 

derivation of the propagator matrix and slowness for alternating solid and fluid layers 

is given under ‘propagator-matrix’. 

 


