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Abstract

Finding high-value locations for in-situ data collection is of substantial importance in ocean science, where diverse bio-

physical processes interact to create dynamically evolving phenomena. These cover a variable spatial extent, and are

sparse and difficult to predict. Autonomous robotic platforms can sustain themselves in harsh conditions with persistent

presence, but require deployment at the right place and time. To that end, we consider the use of remote sensing data for

building compact models that can improve skill in predicting sub-mesoscale features and inform onboard sampling. The

model enables prediction of regional patterns based on sparse in-situ data, a capability that is essential in regions where

use of satellite remote sensing in real time is often limited by cloud cover. Our model is based on classification of sea-

surface temperature (SST) images, but the technique is general across any remotely sensed parameter. Images having

similar magnitude and spatial patterns are grouped into a compact set of conditional means representing the dominant

states. The classification is unsupervised and uses a combination of dictionary learning and hierarchical clustering.

The method is demonstrated using SST images from Monterey Bay, California. The consistency of the classification

result is verified and compared with oceanographic forcing using historical wind measurements. The established model

is then shown to work in a real application using measurements from an autonomous surface vehicle (ASV), together

with forecast and sampling strategies. Finally an analysis of the model prediction error is presented and compared

across different paths and survey duration.
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1 Introduction

Effective and informative sampling of the ocean requires

data gathering strategies that can resolve the spatial and

temporal variations of phenomena. This is a formidable

challenge due to the dynamic and unstructured nature of the

ocean, with spatio-temporal scales spanning many orders of

magnitude, making it unrealistic to observe the dynamics in

detail. Additionally, coastal waters are often heterogeneous

in nature due to interactions between bathymetry, river

discharge, oceanic circulation, as well as endogenous

processes (e.g. biology). Methodologically this drives a

requirement for using compact spatial models to inform more

effective sampling strategies, capable of running on robotic

platforms, utilizing prior and current in-situ observations.

There are numerous ways to build spatial models. The

essential goal is to exploit the underlying spatial correlation

structures and try to reconstruct the environment, so that

future sensing locations can be determined accordingly.

Earth observing satellites offer the possibility to observe

a large spatial extent for a range of ocean parameters, such

as sea-surface temperature (SST), sea-surface height (SSH),

salinity, and ocean color. From such data, a number of ocean

processes can be discerned and characterized, including algal

blooms, fronts, eddies, internal waves, and numerous water

quality parameters (Johannessen et al. 2000). Consequently,

there is enormous potential for using such information to

perform automated analysis of the spatial patterns in the

ocean. However, a major challenge using modern machine

learning techniques is the reliance on labeled data sets

(Gonalves et al. 2008). In remote sensing applications, this

challenge is further exacerbated in having to work with a

limited number of training samples (Mountrakis et al. 2011),

especially when concentrating on a specific area of scientific

interest. It is therefore valuable to use unsupervised methods

that provide the ability to learn the inherent structure of the

data without using explicitly provided labels.
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Figure 1. The main concept for integration of the compact model into a robotic sensing framework, following the sense-plan-act

paradigm; details are explained in Section 6.

Given the challenge with undersampling in oceanography

(Munk 2002) and the limited availability of accurate real

time information, it is essential to call for capabilities that

can estimate spatial and temporal variations in the ocean

environment on the fly. Building compact spatial models

using prior data sources such as remote sensing and ocean

model output is therefore one such possibility. We present

a method for building such a model using remotely sensed

SST data, as well as examples of how this model can be used

in a robotic sampling framework. Remote sensing images

are chosen specifically due to their synoptic properties

providing repeated large-scale surface observations with

reasonably high resolution. The model aims at predicting

the current state of the environment using a superposition

of states, referred to as classes or scenarios, where each

state is established from a similar set of SST images that

represent recurring states of oceanographic conditions. The

environment is therefore, assumed to be equal to such a

superposition and is found by evaluating the likelihood of

these states against observations. A conceptual view of this

approach is presented in Fig. 1, showing how the model can

inform sampling in a sense-plan-act structure.

It is important that this type of data reduction

(unsupervised clustering) cover the common dominant

spatial patterns seen in the images, i.e. in the form of several

distinct classes of conditional means, that is comparable

to the variation in the underlying environment. Using a

combination of dictionary learning (Aharon et al. 2006),

sparse coding (Mairal et al. 2009), and (agglomerative)

hierarchical clustering (Everitt et al. 2011) we propose an

unsupervised classifier that can group images with similar

oceanographic characteristics, using spatial patterns and the

magnitude of temperature from SST images. The idea is not

only to automate this process, but also to provide new insight

into the underlying processes themselves. Subsequently, the

classified SST images are used to distill a compact model

of the dominant features by computing conditional means

within these classes. One potential drawback to this approach

is the lack of uniformity in data acquisition due to cloud

cover and lack of satellite coverage. These factors limit

the ability to do repeated and systematic observations of a

region of interest, which in the worst case can impede the

construction of such spatial models. As a mitigation, data

from a three year period in spring is used (see Fig. 2),

such that we obtain a relatively continuous data coverage

for a season. Combining this approach with other synoptic

sources of data such as numerical ocean models can also be

investigated and is discussed further in Section 7.

The applicability of such compact models is an effective

characterization of key ocean states, especially when SST

data from satellites is not available. In this work we show an

example of this, determining regional conditions for a given

day, using data gathered from a WaveGlider ASV (shown in

the corner of Fig. 3b). We also examine the model prediction

error, by computing the expected mis-classification rates for

different sampling design strategies.

The structure of this paper is as follows: in Section 2 we

introduce related work, along with some of the challenges

that underpin the motivation for this paper. Section 3 presents

some background on both the data sources and methods used.

Section 4 presents the proposed classification methodology,

with the results shown in Section 5. Section 6 presents

model implementation and usage towards adaptive sampling.

We conclude in Section 7 with a summary, followed by a

discussion of future work.

2 Related Work

Much of the work on automated analysis of remote

sensing data is focused on thematic mapping for terrestrial

applications, with numerous applications such as in

agriculture (Mulla 2013), mapping of urban environments

(Saritha and Kumar 2017) and vegetation (Xie et al. 2008),

and is usually geared towards change detection (Walter

2004). Typically, the general objective is to categorize

regions of an image into one of various land cover

classes or themes. Dictionary based classification has been

explored for terrestrial hyper-spectral thematic mapping in

Chen et al. (2011). Similar approaches such as sparse

reconstruction-based classification have been applied to high

resolution images of the sea floor, taken with synthetic

aperture sonar McKay et al. (2016). Despite an abundance

of approaches, Wilkinson (2005) demonstrates through

evaluation of fifteen-years of remote sensing research related

to classification, that no technique displays any significant

advantage over another, showing no trend in improvement

of the classification results, including results from artificial

neural networks. Limited contexts, increasing complexity of

data sets, lack of embodiment in best practices, the difference

between low-level features and high-level user requirements,

and imperfect human processes (such as labeling and ground

truthing) are some explanations proposed for this lack of

progress.
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Figure 2. The dates of usable SST images from Monterey Bay for the period March to July 2015, 2016, and 2017. Each image is

marked as a vertical line, colored according to the initial classification results (class 1, 2, 3, and 4) in Section 5.1.

Compared to terrestrial or seafloor applications, some

additional challenges exist in the upper ocean domain,

namely: i) the non-static boundaries and surface features

present in the environment (Blondeau-Patissier et al. 2014),

ii) the lower signal-to-noise ratio for signals arising from

water masses, and iii) the presence of surface effects such

as sun, and sky glint (Emberton et al. 2016). Studying

ocean surface features for analysis of surface slicks, currents,

fronts, waves, and wind interactions are discussed in Ryan

et al. (2010) and Chen (2012), with an emphasis on synthetic

aperture radar images. High frequency (HF) radar is also

combined with remote sensing in Das et al. (2010), where

the sampling and hotspot prediction of harmful algal blooms

is examined. This is also studied in Bernstein et al. (2013),

where a shore-based recognition pipeline is suggested,

building on remote sensing data for event detection, feature

localization, and trajectory prediction. Frolov et al. (2013)

analyzes the spatial and temporal decorrelation scales seen in

marine algal blooms using fluorescence line height imagery,

to strategize monitoring of such episodic events. Frolov

et al. (2012) investigates short-term prediction of surface

currents using HF-radar observations to develop a linear

autoregression model, where the climatology of conditional

mean flow-fields for upwelling, downwelling, and relaxation

in Monterey Bay is presented. Optical water types were

found using fuzzy clustering analysis on spectral information

in Eleveld et al. (2017), aimed towards identifying different

types of lakes, e.g. clear versus turbid waters. At large spatial

scales, Oliver and Irwin (2008) uses remote sensing data to

automatically resolve different oceanic regions with certain

spatiotemporal characteristics, to monitor the effect of El

Niño events.

A number of approaches have been explored combining

onboard models and remote sensing to guide sampling

in the ocean. Smith et al. (2010) utilizes forecasts from

a high resolution ocean model combined with remote

sensing to pre-plan missions with multiple autonomous

underwater vehicles (AUVs). Areas with high concentration

of Chlorophyll a (a proxy for phytoplankton abundance) are

identified from the satellite imagery and simulated forward

in time using an ocean model. Presenting only simulated

results, the paper shows the potential and also the challenges

of leveraging prior data. Issues related to small scale

discrepancy between model simulation (used for planning)

and the actual conditions, aligns with the assumptions in

our work, and the fact that we are focusing on predicting

and planning based on large-scale (regional) features. Chao

et al. (2017), provides a discussion and preliminary results

in closing the loop between numerical ocean models,

robotic platform sampling, and data assimilation. Multiple

information streams are proposed to update and improve

sampling strategies without human intervention. However,

the robotic assets depend on human involvement and

robust communications using shore-based assimilation and

planning methods. Consequently, this drives the need

towards elevated levels of autonomy and onboard sampling

strategies for situational awareness, such as presented in our

work.

This paper describes a novel way of building compact

ocean models using remote sensing products for use in

robotic sampling. As our work uses pre-processed data (1

day average SST), some of the raw information (e.g. quality

flags) is forsaken for practical purposes of obtaining and

working with the data. The proposed method provides the

ability to work directly with both temperature and spatial

patterns, as this information is carried along throughout

the analysis using a combined feature vector. Contrary to

other work, the classification results are confirmed and

verified by an independent marine data source (preceding

wind history), allowing oceanographic processes to be tied

to the subsequent analysis and use of the data. Wind

drives horizontal and vertical circulations, which in turn

determines magnitudes, gradients, and spatial patterns in

SST (Rosenfeld et al. 1994). The method is unsupervised and

can be used with a very small number of images (≤ 100).

3 Preliminaries

3.1 Satellite Data Sources

The SST remote sensing images used as a basis for this

model are provided from a high resolution radiometer

onboard the Polar-orbiting Operational Environmental

spacecraft (POEs) NOAA-17 and NOAA-18. The data are

processed and mapped to an equal angle grid (0.0125

degrees latitude by 0.0125 degrees longitude) using a simple

arithmetic mean, producing both individual and composite

images from 1 to 14 days duration. This may provide some

averaging artifacts, see Fig. 15a. The nominal accuracy is

about 0.7 degrees Celsius (C), covering the west coast of

North America.*

∗The data are publicly available through the National Oceanic and

Atmospheric Administration (NOAA) NWS Monterey Regional Forecast

Office and the CoastWatch program, from their ERDDAP server https:

//bit.ly/2ngyP6c.

Prepared using sagej.cls



4 Journal Title XX(X)

(a) Example of a SST image that was used to make the compact model.
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(b) Map of California and Monterey Bay with the SST region marked.

Figure 3. 3a A SST image from NOAA NWS Monterey

Regional Forecast Office showing Monterey Bay (between

36.65 and 37◦N). 3b Map of California and Monterey Bay with

the SST region marked. The WaveGlider ASV is shown in the

inset. Image courtesy: Chris Wahl, MBARI.

We used one-day average SST images, similar to Fig.

3a, from 2015, 2016, and 2017 in this work covering

Monterey Bay, California (marked in Fig. 3b), for a 100 day

period from March until the start of August, yielding 300

images in total. This period of the year was chosen in large

part because wind-driven coastal upwelling and associated

thermal signatures are strongest. Due to cloud cover, only

about 25% of the images had a quality that was useful for

our application, giving us a total of 74 images to work with.

Local cloud and fog cover can limit the data availability;

henceforth longer time periods should be considered for

inclusion in the data sources if images are influenced by

these factors. Equally, too much exposure can create data

gaps that introduce bias into the final model, as images and

their spatial patterns are left out of the analysis. Cloud and

fog cover is further a motivating factor for actually deploying

autonomous vehicles that can aid in estimating ocean

conditions. Although the SST images in this analysis are

limited to spring and summer, coastal upwelling circulation

in this region continues into the fall season and is closely

linked to coastal land features (Rosenfeld et al. 1994).

Therefore, the interpretation of structural information by

these methods should be similarly applicable during fall.

However, the magnitude of SST shifts during fall due to

seasonal warming throughout the region. This aspect of the

environment motivates a seasonally dependent method, using

images that are consistent seasonally.

The time stamp of images in Fig. 2, shows availability

over sequential days, and therefore the likelihood of having

a similar mean temperature. However, SST patterns can be

vastly different in sequential days because energetic currents

change water mass distributions rapidly, motivating the case

for looking at spatial similarities.

3.2 Unsupervised learning and classification

of SST images

In order to quantify different spatial patterns in SST

images, we use an unsupervised classification method

based on sparse image representation. The compressed

representations are obtained from employing dictionary

learning techniques, before hierarchical clustering (Everitt

et al. 2011) is performed in several steps to classify the

images. The approach aims at classifying images with

the same SST pattern into dominant/archetypical classes,

having distinct oceanographic significance. Clustering the

raw image data (pixels) is not effective, due to their

high dimensionality. Using bulk characteristics, such as the

mean, min, and max temperature, is also possible. This

approach can get good results, but leads to unnecessary

smoothing/blur (in the conditional mean) as classes are

combined without spatial information. To demonstrate this,

a comparison of the classification variability is presented in

Section 4.2. Consequently, clustering a compressed/sparse

representation is more viable, as both temperature magnitude

and spatial information can be combined together. Moreover,

the dimensionality can be kept low, making it easier to

cluster and hence identify and differentiate between the

characteristics of each image.

3.3 Dictionary Learning

Sparse dictionary learning (Aharon et al. 2006; Mairal

et al. 2009) is a method that can be used to build sparse

representations of data. The resulting format is a set of

coefficients, collected as a sparse code. Dictionary learning

is similar to Principal Component Analysis (PCA) (Jolliffe

2011) (also known as Empirical Orthogonal Functions) in

that the coefficients form a linear combination of certain

basic elements, referred here as atoms. The atoms can be

considered as instances of “characteristic patterns” that can

be combined to reconstruct the input. The combined matrix

of atoms is called a dictionary, usually denoted as D,

while the sparse codes are usually noted as α, having the

relationship

xk = Dαk, (1)

Prepared using sagej.cls
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where xk is the raw image k, with D as the dictionary,

and αk as the unique coding for that specific image. We

use MiniBatchDictionaryLearning or MBDL from

(Pedregosa et al. 2011) to find the dictionary using the least

angle regression method (LARS) Mairal et al. (2009), while

the sparse codes are found using an orthogonal matching

pursuit (OMP) algorithm (Tropp and Gilbert 2007) that

greedily selects the dictionary atoms sequentially, through

computation of the inner products between the image

and dictionary columns. The loss function used in this

optimization can be formulated as

l(x,D) = min
α

1

2
‖x−Dα‖22 + λ‖α‖1 (2)

where λ is a regularization parameter (set to 1 in our

implementation), ‖ · ‖22 denotes the squared Euclidean norm,

and ‖ · ‖1 denotes the ℓ1 norm. This loss function, also

known as basis pursuit (Chen et al. 2001), encodes two

essential optimization criteria. The first term seeks to

minimize the reconstruction error (depending on D and α),

while the second seeks to attain a sparse solution for α. As

we also have to find D, to solve for the function above, this is

usually rewritten as a joint optimization problem with respect

to the dictionary D and α = [α1, ...,αn] as

min
D,α

1

n

n
∑

k=1

(
1

2
‖xk −Dαk‖

2
2 + λ‖αk‖1) (3)

where n is the total number of images. To obtain the

best dictionary D and sparse code α the optimization

alternates between optimizing one parameter while keeping

one parameter fixed (see Mairal et al. (2009) for details). The

images are decomposed into patches with a specific size, and

fed into the algorithm in batches, to improve convergence

performance. The number of patches is non-random and

determined by the patch size, following a left to right, top

to bottom extraction pattern. For the specific SST images

used here, the patches also include a land/cloud mask. The

size of these patches will influence the quality of the result

and needs to be selected based on the small- and large-scale

similarities in the input images; sensitivity analysis should

therefore be used to identify this parameter (see Section 4.1).

In the implementation used here, finding the dictionary D

using the MBDL library involves an iterative process that

uses a random state to initiate the model, hence reproducible

results require using the same pre-defined random seed.

4 Methods

4.1 Proposed Classification Methodology

In separating and collecting dominant spatial patterns from

SST images an important aspect that we emphasize in

this work is that images sharing a common oceanographic

evolution need to be identified. This implies finding

images that share a mutual historic progression of, for

example, wind and currents, that contribute to shaping a

particular environmental condition. Involvement of local

oceanographic expertise and knowledge is therefore essential

in finding a separation scheme that is justifiable. This is

especially true since the images are snapshots of a continuous

process and separation into classes will imply some form of

discretization.

The classification method builds off of the idea of

classifying images based on a sparse representation (sparse

code), instead of their high dimensional pixel space. The

classification is also conducted in two steps, illustrated in

Fig. 4 as a branching graph with a new dictionary and sparse

coding generated after each step (i.e. “initial classification”

and “secondary classification”).

Initial 

classification

Secondary 

classification

D
j
,αk

j

D
1
,αk

1

D
2
,αk

2

D
3
,αk

3

D
m
,αk

m

Figure 4. Based on the dictionary D a sparse code α is found.

These codes are used to classify images into distinct classes.

After an initial classification this step is repeated, with a new

dictionary and codes generated from the images within a class;

branching into smaller sub-classes with higher levels of

similarity.

This two-step classification increases the performance of

the method, as the larger variability (magnitude) is handled

in the first classification, followed by a more fine scale

separation (spatial patterns) in the second. The detailed steps

involved can be described as follows, for image k and each

class j = 1, . . . ,m:

1. Normalize all images with the global mean and

standard deviation.

2. Extract a fixed number of patches from the SST image

(e.g. 260 patches of size 40× 40 pixels), and stack

these in a 1 dimensional (1D) vector.

3. The 1D vectors are collected in the data matrix and

fed into the MBDL subroutine to retrieve the initial

dictionary Dj .

4. Each SST image is then compressed using the

dictionary Dj to form a unique sparse coding for the

image αk
j .

5. These first αk
j coefficients are then classified using

hierarchical clustering.

6. Steps 2 & 3 are then repeated for the images within

the derived classes to retrieve a new sub-class specific

dictionary D̃j .

7. Step 4 is repeated using the sub-class specific

dictionary D̃j to obtain the final sparse codes α̃k
j .

8. The final sparse coding α̃k
j is now further classified

into sub-groups with a higher level of similarity using

another step of hierarchical clustering. This is the

secondary classification as shown in Fig. 4. This final

classification is subject to a criteria where the mean

number of images across the final classes should be at
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Parameter Value Comment

Input data set 74 images, size: 52× 59 pixels Type: 1 km, 1 day average SST

Patch size [xpa] 40× 40 The patch pixel size

Sample count 260 The number of sample patches from each image

Dict. size [xds] (initial) 4 Number of atoms in the initial dictionary

Dict. size [xds] (secondary) 8 Number of atoms in the secondary dictionary

Distance metric Ward The distance metric used by the hierarchical clustering

Table 1. Overview of raw data, as well as parameters used in dictionary learning and hierarchical clustering.

least 3.0 (see below); if not the images are flagged as

being too distinct.

It is important to ensure that the final classification result

is not too distinct, e.g. having only one image in a class,

resulting in loss of effectiveness towards building a compact

model. It is therefore important to consider the separation

distance (SD) in hierarchical clustering as a measure of

similarity of classified images. A practical aspect of using

hierarchical clustering is that compared to other algorithms

such as k-means (MacQueen 1967), where the number of

clusters must be pre-specified, hierarchical clustering can use

the dendrogram to generate the clustering structure. Consider

therefore the dendrogram in Fig. 5 used for finding SD in

the initial step. Lowering the SD yields more classes with

fewer images and vice-versa. The distance metric used for

clustering is the Ward sum-of-squares minimization metric

(Ward Jr 1963), chosen since it is more permissive of

cluster shape/size assumptions (Anderberg 1973), and which

performed better on the sparse codes. In using this distance

measure it is important that the data vectors we are operating

on are normalized by the mean and standard deviation

(Wilks 2011), hence Step 1 above. The SD therefore, for

the initial clustering is found based on the dendrogram

and evaluation of the separation results. As noted in Wilks

(2011), setting the SD usually requires a subjective choice

that depends on the goal of the classification. There exist

various statistical machine learning tools that consider the

bias versus variance trade-offs (e.g. James et al. (2013)), but

there is no single ”best” approach. Since this initial grouping

is followed by a secondary classification, this choice is not

as decisive a factor, as the secondary clustering, as only

the major features are to be identified. Nevertheless, local

oceanographic expertise and knowledge should be involved

to find a justifiable separation scheme. For the first step of

the classification, a general rule of thumb would be to avoid

a SD that yields too sparse a set of classes.

For the secondary clustering step, finding a SD that does

not result in an imbalance in variance (i.e. too big/small

classes), becomes important. The goal here is to find similar

images that can be used in a conditional mean, while also

excluding images that are too distinct. Similarity is, as noted,

controlled by the SD. To achieve an adequate final result we

iteratively change the SD until we reach a classification result

where the mean number of images across the sub-classes

is above or equal to a certain threshold, set to 3.0. This

threshold is chosen such that the generated classes must span

several images and avoid creating classes with dissimilar

magnitude and spatial structure. For example, if a secondary

classification with 12 images starts with a SD= 500 and

yields the sub-classes [1, 2, 3, 4, 5] with associated image

counts of [5, 4, 1, 1, 1], the mean number of images in each

class equals 2.4, and three classes have only one image. This

does not satisfy our criterion, and the SD can therefore be

increased, relaxing the measure of how similar the images

need to be. The SD is then relaxed (increased) until one of

the classes containing only one image is combined into one

of the other five, as this reaches our criterion.
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Figure 5. The dendrogram for the initial clustering step. Four

classes are being separated using a distance measure set to

700. The numbers on the x-axis are either image index or

cluster size (in parentheses).

Parameters that are associated with the above procedure,

are shown in Table 1. The patch and dictionary size can be

adjusted to yield different results. The relationship between

the patch size xpa, dictionary size xds, and code length

xcl is given, using the fixed dimensions 52× 59 for the

images, as xcl = ((52− xpa + 1)× (59− xpa + 1))× xds

and therefore, the code length depends on the square of the

patch size, while increasing linearly with dictionary size.

This code length is important as clustering becomes more

complex and may lead to degraded classification accuracy

for higher dimensional vectors, as can be seen in Fig. 6a.

Parameter selection was done by comparing the intra-class

variability (ICV) for each class j = 1, . . . ,m measuring how

different the images within a class are by comparing the

temperature variability at each location across the images,

given as:
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ICVj =
∑

i

σ2
ij ,

σ2
ij =

1

nj

∑

k∈⊗j

(xik − µij)
2 (4)

µij =
1

nj

∑

k∈⊗j

xik,

where xik is the temperature at location i in image k, ⊗j

is the set of images belonging to class j, and nj is the

number of images in this set. Moreover, µij and σ2
ij are

the sample mean and variance in temperature at location i
for class j. Using ICV as a metric, the patch and dictionary

size is chosen based on the settings that give the lowest ICV

after several iterations for each setting with a non-constant

random seed. The patch size sensitivity (Fig. 6a), shows

a drop in ICV with increasing patch size, that gradually

flattens as the patch size increases. The variability is slightly

increasing for patch sizes above 30× 30, without any gain

in accuracy. Based on this analysis we use a patch size of

40× 40 pixels. Fig. 6b shows that a dictionary size of 4 is

sufficient to achieve both low ICV spread and value. For

secondary classification, the dictionary size is increased to

8 as the number of images being classified are fewer and

their similarity is higher (filtered by the initial classification),

hence a more descriptive code can be applied.

40x4050x50 30x30 20x20 10x10
Patch Size

0.05

0.10
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0.20

0.25
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(a) ICV sensitivity to patch size.
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[C2]

(b) ICV sensitivity to dictionary

size.

Figure 6. Intra-Class Variability (ICV) sensitivity using different

patch size xpa and dictionary size xds. Fig. 6a shows a box plot

of the ICV spread for different patch sizes; larger xpa tend to

yield lower ICV values. Fig. 6b shows the ICV variation for

different dictionary sizes. A dictionary size of 4 is a good choice,

with low ICV spread and value.

4.2 Comparative Analysis

As the proposed method provides enhancement of classifi-

cation by including structural information, the performance

of the methodology is compared by using i) hierarchical

clustering of temperature metrics only (minimum, maxi-

mum, min-max range, and mean temperature [i.e. no sparse

codes]), and ii) directly classifying the raw images using

a k-means approach. To deal with an unknown number of

clusters, we use X-means (Pelleg and Moore 2000), while

for the hierarchical approach we use the dendrogram. As the

temperature magnitudes from the SST can contain several

strong separating factors some initial categorization can be

achieved; however, neglecting spatial information leads to

unnecessary variability. By comparing the ICV given in Eq.

(4) between the proposed, temperature-only, and X-means

approach derived classes, the effect of using spatial structure

can be demonstrated. This is shown in Fig. 7 where a

histogram presents the ICV for the derived classes, where

each unit block is a class with a corresponding ICV.
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Figure 7. Histogram of the ICV for the derived classes using

the proposed-, temperature only-, and X-means approaches.

The figure shows that classifying using only temperature

metrics or raw data leads to higher variance. As the sparse

codes are able to compress information about temperature

and spatial patterns into one vector (with lower dimension),

the resulting evaluation in the downstream classification

task is simplified; this, in turn, leads to a more accurate

classification with lower variance. Not surprisingly, X-

means clustering has the worst performance, as the method

only splits the data into two classes (cold and warm).

Classifying the data further using X-means results in no

further separation.

5 Classification Results

The final classification groups are used to make different

conditional means that together constitute a compact model.

An important aspect of the approach is to verify that

images which are classified together share a common

formation history, i.e. having been influenced by the same

sequence of physical processes. Having a shared evolution

of oceanographic conditions also implies that there exists

a common and distinct spatial pattern that can be clustered

together to make what we choose to call a condition.

Wind observations are effective for this purpose as it is

the dominant driver of circulation, SST variability, and

environmental structure in this region of study. The use of

other sources of data, rather than wind, is also possible and

will vary depending on the study region. The comparison

and verification is shown in Fig. 8 together with the initial

clustering result.

5.1 Initial Classification

The initial classification is dominated by the temperature

magnitude, as this is a stronger separating factor than spatial

patterns. The SD used in hierarchical clustering was found

using the dendrogram in Fig. 5, producing four classes. Fig.
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Figure 8. The four classes derived from initial classification results shown with the associated wind history during the 4 days

preceding each image within a class. The wind rose plots represent a summary of wind speeds and the directions from which it was

blowing. Wind speeds are defined by color (legend) and percentage of speeds in a given range are shown by occupancy of each

color. Cold upwelled class 1 has stronger north-westerly winds, while warm relaxation class 4 has weaker magnitude and greater

spread in direction. The temperature images are all using the same temperature scale from 10
◦
C to 16

◦
C.

8 shows these together with the aggregated 4 day preceding

wind history. The images appear in arrangement going

from cold to warm, or in the oceanographic context, from

upwelled to relaxation dominated waters. The associated

winds confirm this by showing a correspondence between

the upwelled (class 1 – cold) SST images with strong north-

westerly winds, and weaker more spread wind pattern for the

relaxation (class 4 – warm) SST images. The intermediate

classes comprise images covering the transition between

these two oceanographic conditions. The initial classification

has two classes of mainly cold water ([class 1 and 2] 10 + 27

= 37 images), and two classes of warmer waters ([class 3 and

4] 15 + 22 = 37 images), with the same number of images.

This suggests a balance between upwelling and relaxation

events.
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Figure 9. The average 4 day wind history for each class given

in terms of u- and v-components also show a significant

difference between the classes. Note the strong 2 day

amplitude for class 1.

Fig. 9 shows the average u- and v-components† of the

wind history for each class. Similar to Fig. 8, the average

trend shows class 1 has the strongest average winds, and

class 4 the weakest. A strongly negative v component of the

wind is equivalent to north-westerly, i.e. blowing from the

northwest and upwelling favorable. There is also a strong

diurnal signal in the winds, evident in all classes in the u

component. This predominantly east-west ”sea-breeze” is

driven by differential heating of land and ocean through

day/night.

The initial classification shows that some structure follows

from the temperature, but as seen in Section 4.2, using

temperature alone will not achieve the best clustering

result. Magnitude information helps us avoid a pitfall

where images that have a similar pattern but different

temperature magnitude are clustered together, disrupting

the conditional means by averaging images that represent

different oceanographic states.

To understand this initial classification further Fig. 11

shows the projection of the sparse codes using principal

component analysis (PCA) projected into a 2D plane,

visualizing the information contained in the vectors. As

previously noted, as the SST images are covering a

continuous process some images are overlapping and could

potentially be associated with more than one class. It is also

possible to identify certain images that can be deemed as

outliers. The colors in Fig. 11a show where the hierarchical

clustering distance, SD, is making the distinction.

†The u signifies the zonal velocity component of the wind, while v the

meridional component.
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(a) Sub-Class 1 (b) Sub-Class 2 (c) Sub-Class 3 (d) Sub-Class 4

Figure 10. The results from the secondary classification with 19 sub-classes. Four initial classes have been further sub-divided

into sub-classes based on their class j dependent D̃j and α̃
k
j dictionary and code. Note the number of groups represent only valid

sub-classes, as some of the images are left out from the compact model which are deemed to be distinct.

Classification Classes Image Count Mean Class Size ICV

1st [1 2 3 4] [22 10 27 15] 18.5 0.30

2nd - Class 1 [1 2 3] [3 2 5] 3.33 0.12

2nd - Class 2 [1 2 3 4 5 6 7*] [2 3 5 2 2 7 1*] 3.14 0.09

2nd - Class 3 [1 2 3 4] [2 2 2 9] 3.75 0.13

2nd - Class 4 [1 2* 3* 4 5 6 7 8] [2 1* 1* 4 4 2 8 5] 3.37 0.13

Table 2. Classification Results. The ICV , given in Eq. (4), measures the mean sub-class variability. (*) marks groups with only 1

image which are considered too distinct and hence removed.

SST Classes 1-4

Warm

Cold

2

1

4

3

(a) PCA projection.

*

*

*

*

(b) PCA projection - image

scatter

Figure 11. The initial classification shown as projected into 2D

using PCA, shown with the classified label color and class

membership. It is evident that the images represent a

continuous process which can be expressed as progress from

cold to warm conditions. Note the outlier images (marked *).

5.2 Secondary Classification Refinement

The images in each class are to be further distinguished in

the secondary classification. The images in this step are now

already sorted according to matching temperature, which we

have shown, by comparing the wind history, can be traced

to distinct evolution of oceanographic conditions. Within

each class, a new dictionary D̃j can now be found, that can

specialize in finding a final sparse code α̃k
j , that factors in

more spatial information, as shown in Fig. 7. The parameters

for the secondary classification, found in Table 1, are similar

to the initial classification apart from a larger dictionary

size. As noted, the dictionary size has increased because

the number of images being classified are fewer and their

similarity is higher in this step, hence a more descriptive code

can be applied.

Fig. 10 shows the resulting secondary classification, with

a total of 19 sub-classes (see Table 2). The classes containing

only one image are deemed too distinct for further inclusion

into the compact model. As expected the mean class size is

above 3.0 as specified from the criteria in Step 8, with ICV
values from 0.09− 0.13. It is also apparent that images are

now sorted both by temperature as well as spatial features

(see e.g. the upper left corner of Fig. 10c). However, cloud

cover can pose challenges. In some cases, this “false” pattern

match can be such a dominating feature that images with a

similar false feature are classified together, (e.g. the lower

group in Fig. 10a) as shown in Fig. 12.

Figure 12. The misclassification of images due to cloud cover.

The last image should be in the first group in Fig. 10a, rather

than the lower group.

Taking the average across each sub-class in Fig. 10, yields

the different conditional means and the final compact model,

shown in Fig. 13b. Rather than relying on the means from the

initial classification in Fig. 13a, these representations hold

more spatial information that is advantageous when trying

to predict the current state of the environment. From these

conditional means one can observe not only the transition

from cold to warm conditions, but also the varying spatial

structure that develops within and outside Monterey Bay.
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Figure 13. The conditional means derived from the initial and

secondary classification.

6 Forecast and Sampling Policies

We now use these conditional means as a compact model

from which a prediction of the environment, specifically the

SST field, can be made. Having the capability to compare

in-situ data with the model provides a way to determine

which types of historical conditions that best fit these

data. On this basis an estimate of the current state can be

formed, usually taken as a weighted combination of the

“best” class candidates. A common method for verifying

the reliability of the prediction is to compare the root-mean-

square error (RMSE) of the class mean to the average class

spread, as suggested in Fortin et al. (2014); the idea is

that the standard deviation of the class spread should be

approximately equal to the RMSE. We further study how the

prediction probabilities of different states depend on the data,

and how this can be used in designing sampling strategies.

6.1 Predicting the Environment

From Fig. 1, an intuitive way to predicting the environment

is by combining one or several classes using a weighted

average. During robotic deployments, as with a WaveGlider

ASV, the prediction is done conditional on data y =
(y1, . . . , ynp

), where np is the number of measurements

made during the survey. Based on satellite data, the

probability P (class = j) is estimated as the fraction of

images in each class over the total number of images,

P (class = j) = nj/n. Conditional on data y the probability

of class j becomes:

P (class = j|y) =
p(y|j)P (class = j)

p(y)
(5)

p(y) =
∑

j

p(y|j)P (class = j).

The class likelihood, in Eq. (5) above, is approximated as

a multivariate normal distribution:

p(y|j) =
1

√

(2π)np |Σj |
e(−

1

2
(y−µj)

T
Σ

−1

j
(y−µj)), (6)

where µj = (µ1j , . . . , µnpj) is the class-j vector of

mean values along the survey trajectory, and Σj is

the associated covariance matrix at these np sampling

locations. This covariance is defined by elements Σj(i, i
′) =

diag(σij)R diag(σi′j), where R is a distance based

correlation matrix (Matérn 2013), i.e. R(i, i′) = (1 +
φhii′)e

−φhii′ , where hii′ is the Euclidean distance between

sampling locations i and i′, and φ is indicative of the

correlation range. In this paper we use ∼15 km, based on

Frolov et al. (2014, Fig. 4b) showing decorrelation scales for

Monterey Bay.

Prediction is done using class probabilities as a function

of the data gathering window. This means that we integrate

one more observation at every step, and re-calculate the

probability over the classes, given this growing subset of

data. Because of the spatial correlation in the model, induced

via R, the assimilation of one more observation will not

have the same effect as it would for independent data. The

final prediction at location i, based on available data y, is a

weighted average according to the conditional distribution in

Eq. (5),

ˆSST i =
m
∑

j=1

P (class = j|y)µij . (7)

where µij is the conditional mean in class j. A brief

example using this approach is presented using data from a

WaveGlider ASV. This vehicle records the temperature at 0.4

m depth using a Seabird CTD (conductivity, temperature, and

depth) sensor, which we will use to predict the SST.
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Figure 14. The in-situ temperature profile superimposed on the

temperature profile for class 0, 8, 10, and 13.

We use data from the 17th of May, 2018 in Monterey

Bay, during the CANON‡ field experiment. The prediction,

using Eq. (7), is compared to the actual 1 day average SST

for that day. Fig. 14 shows the recorded temperature profile

across the survey locations (the survey path is shown in Fig.

15a) together with the corresponding profile from class 0,

8, 10, and 13. Clearly, some classes match the data better

‡https://bit.ly/2KHpfCH
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(a) True SST 2018-05-17. (b) Estimated SST.
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(c) Likelihood and RMSE. (d) Estimation error.

Figure 15. The results from evaluating the classes by using the likelihood and the RMSE. The true SST (15a), estimated SST

(15b), the likelihood (in red) and RMSE (in black) for each class (15c), and the spatial temperature difference (15d) are shown. The

track of the WaveGlider is shown in 15a with the observed temperatures overlaid. There are some averaging artifacts in the true

SST that show up in the estimation error (15d).

than others. Class 8 and 10 follow closely throughout, while

class 0 and 13 have poor correspondence. We use this data to

predict the environment using P (class = j|y) as the weights.

Thus, the likelihood is therefore expected to be high around

class 8 and 10, and low for the others. The prediction is

shown in Fig. 15b, together with the actual SST image in

Fig. 15a. The accuracy of the prediction is, as expected,

better on a larger scale, with some smaller spatial features

that are not captured by the model. Fig. 15d shows this

temperature difference spatially. Note that the the nominal

accuracy of the SST images is about 0.7 degrees Celsius. As

the original daily composite SST image is not without error,

e.g. noise from daily averaging, some regions will show

exaggerated difference. It is also reasonable to assume that

there is a discrepancy between the WaveGlider data and the

daily average SST, which also contributes towards estimation

error. This can be seen with closer inspection of Fig. 15a,

as the track and overlaid temperature are colder than the

average SST. Fig. 15c shows the RMSE and together with

the likelihood P (class = j|y). The RMSE is calculated as:

RMSE(j,y) =

√

∑np

i=1(yi − µij)2

np

. (8)

There is a correspondence between the likelihood

P (class = j|y) and the RMSE. As expected the maximum

likelihood and the lowest RMSE occur around class 10.

As the likelihood adjusts for spatial correlation and prior

probability P (class = j), there is some difference between

the two measures of similarity (e.g. class 9). Comparing the

mean RMSE of the estimated SST against the class spread

(0.45 vs. 0.77), indicate that we are in accordance with the

reliability measure discussed in the beginning of this section.

6.2 Evaluation of Model Prediction Error

For discrete models, such as the one developed here or

Lilleborge et al. (2016), the intent of data collection is to

pull the predictive probabilities closer to 0 or 1 (Eidsvik

et al. 2015). The a priori prediction error (before any data

are recorded) is given via the most likely ocean state class as

j∗ = argmaxj{P (class = j)} as:

PE = 1− P (class = j∗). (9)

Conditional on data y the prediction error is PE(y) =
1− P (class = j∗(y)|y), where now the most likely ocean

state is given as j∗(y) = argmaxj{P (class = j|y)}, with

probabilities defined in Eqn. (5).

To evaluate the model and different sampling strategies

before any data y is collected, we can look at the average

posterior prediction error obtained by integrating over all

possible data as:

PE(y) = E{1− P (class = j|y)} (10)

=

∫

(1− P (class = j∗(y)|y)p(y))dy,

where j∗(y) is the class with the largest probabilities

conditional on y. The improvement made by data collection

can now be compared over various experimental designs

(i.e. survey paths) using the Monte Carlo approach outlined

in Eidsvik et al. (2015, Ch. 5.6). To analyze the effect of

data gathering we start by generating synthetic data from

the model. This entails drawing a random class jb from

probabilities P (class = j), j = 1, . . . ,m, and drawing data

yb conditional on this class based on the likelihood model in

Eq. (6). We set:

yb = µjb +Ljbz. (11)

This approach uses the Cholesky factorization (Nash

1990) of the covariance matrix Σj = LjL
T
j along with

a length np vector z of independent N(0, 1) variables.

Examples of generated data can be seen in Fig. 16. The final

error prediction can now be computed using the generated

data in a Monte Carlo approximation.

PE(y) ∼
1

B

B
∑

b=1

(1− p(j∗(yb)|yb)), (12)

where B is the number of iterations (we used B = 500).

It is now possible for a practical comparison of the

reduction of prediction error for different survey times (the

effect of gathering more data) and survey locations (survey

trajectories). The results are shown in Fig. 17, as a function

over the survey duration, and for three different survey paths,

using the WaveGlider and assuming a platform speed of

approximately 2.2 kts. Using this, different survey lengths

can be correlated to mission time.

Fig. 17a shows the prediction error for a given

mission duration. Naturally, longer missions result in more
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Figure 16. An example of 50 synthetic survey lines data for

class j = 12 and j = 3, with missions lasting 16 hours.

observations and less error, reflecting the amount of data that

are available. The effect of different survey paths is shown

by using three different routes, shown together in Fig. 17b,

with their evolution and final PE(y), as shown in Fig. 17a.

Path 1, which crosses both the inner and outer bay, produces

the lowest prediction error (PE(y) ∼ 0.15).
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Figure 17. (17a) The effect of gathering more data (expressed

as mission duration) on the prediction error, calculated for each

of the three paths. The error drops (from close to the prior

probability PE ∼ 0.64) as more information is obtained. (17b)

By comparing different survey paths, one can observe that

some locations are more informative than others, showing

difference in PE-curves.

A possible reason for this is that path 1 crosses both

gradients inside the bay, as well as gradients that are

prominent further offshore, covering the usual band where up

welling fronts occur. The curve starts at the prior probability

PE ∼ 0.64, which arises from Eq. (9), estimated as the

fraction of images in each scenario over the total number

of images. This type of investigation is useful, since it

provides an estimate of both the value of mission duration

and location, which is often an unknown when planning

survey campaigns. Such an analysis can also be conducted

across multiple platforms; each platform can be evaluated

by simulating a different coverage (survey speed), spatial

correlation (φ), measurement noise, etc. Optimization of

coverage versus cost is also possible, finding effective

solutions that maximize the cost per observation. Such

methods of reasoning (“What is the value of the data and

how much data is enough?”) are often referred to as value of

information-analysis (Eidsvik et al. 2015).

7 Discussion

In the absence of remote sensing, description of regional

high resolution data may be unavailable. A compact model,

as the one developed in this work, and the supporting

statistical tools, can help provide contextual low resolution

information, by using in-situ observations. Reducing the

global uncertainty is necessary for enabling efficient

planning of vehicle surveys, that rely on evaluating the

conditions at unexplored locations, as well as variability and

associated correlation structures. With this in mind, some

aspects of the presented approach are discussed, in order to

shed light on potential benefits and pitfalls.

Assimilation using an onboard numerical ocean model

that accounts for time is currently not possible or practical

due to time and computational limitations, hence compact

or reduced order models are needed. The current compact

model is static, i.e. the classes themselves are not modified

during the mission. In practice, this means that small scale

features will not be well resolved. One could use Gaussian

Process Regression (Rasmussen and Williams 2006) to

assimilate the observations and correct this locally. However,

the primary capability here is to predict regional features,

hence updating each class locally is of limited value, as

it is the prediction at unobserved locations that are most

interesting towards future sampling. Prediction works by

taking a weighted average, using a likelihood function.

There exist several strategies for finding an alternative

weighting scheme. The current approach can be improved

by including co-variates (e.g. wind measurements) to further

determine some of the global conditions and find the weights

conditioned on this. The weightage can also be found using

optimization such as Sequential Least SQuares Programming

(SLSQP) (Nocedal and Wright 2000) to minimize the error

between the observations and a weighted combination of the

classes.

To create sparse feature vectors of the images that

is suited for subsequent classification we make use of

dictionary learning techniques, as discussed in Section 3.3.

Alternative methods using state-of-the-art deep learning

approaches such as Convolutional Auto-encoders (Song

et al. 2013; Aljalbout et al. 2018) can also be used to
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create similar sparse representations without labeled data.

However, given the limited size of the data set (74 images)

these approaches are not feasible to use, even with data

augmentation, as they require larger datasets, (e.g. LeCun

et al. (2010)) in order to effectively tune the large number

of parameters in the network; this is well-known issue for

neural network architectures (Liu et al. 2017). In remote

sensing applications, increasing the size of the data set is also

not straightforward (Mountrakis et al. 2011), as discussed

below in more detail.

There are inherent limitations in using SST satellite

images due to cloud cover, such as the lack of uniformity

in data acquisition (gaps in data), and the introduction of

artifacts (e.g. interpolation around missing pixels). Thus,

images have to be quality controlled before inclusion

into the data-set, which may end up becoming smaller

than expected. One question, in this regard, is whether

numerical ocean models could be used instead. Ocean

models can offer repeated and synoptic fields at different

scales and resolutions, including surface and subsurface

patterns. However, at the current skill level, coastal ocean

variability and structure cannot be estimated on scales and

accuracies sufficient for definite representation (Lermusiaux

2006), i.e. we cannot expect the models to tell us right

where a filament, eddy, or bloom will be located, as an

example. Assimilation of SST and high-frequency radar

current data (see e.g. Frolov et al. (2012)) can certainly help

the models move closer to ground-truth, but the nudging of

3-D fields with spotty 2-D data can create its own issues.

For instance, spotty coverage in observations strongly limits

how effectively a model can be corrected toward observed

patterns, and this data assimilation can create artifacts that

can be misinterpreted as “features of interest”. Ultimately,

effective observation of the ocean will require a joint effort

between a range of data sources operating at different scales,

where assimilation of in-situ data collected from autonomous

robotic platforms will be crucial. Methods, such as the one

suggested in this paper, will be an important tool to strategize

this sampling.

An interesting application of this work, once a model is

built, is to calculate a vehicle trajectory that results in the

greatest level of class separation, that is, a path that best

reduces the uncertainty in the model by fast convergence

to a ranking (a probable scenario); similar to the analysis

in Fig. 17a. Finding such a route can improve prediction

of the oceanographic state by gathering temperature data in

areas that will enhance discrimination, and can locate areas

where multidisciplinary sensing from platforms will be most

informative. Criteria such as expected reduction of variance,

mutual information, or entropy can be used to find these

locations.

Regional factors such as wind, bathymetry, and currents

contribute to shaping the spatial patterns used for

classification, which contribute to shaping SD and other

parameters. Local oceanographic expertise is therefore

necessary for validation. The method also involves some

work related to tuning of hyperparameters, that will need

supervision by oceanographers to ensure that a physically

sound separation is used for building the model. Once

configured, the method can operate on its own, and be

automatically set to ingest new SST images. We use different

settings for the dictionary size in the initial and secondary

classification. This increases the length of the sparse codes,

but allows for more spatial/pattern based information to be

used in classification; initially this might not be necessary as

the temperature dominates.

8 Conclusion

We have developed a new methodology for classifying

remote sensing products such as SST towards building

compact models that can be utilized by autonomous vehicles

to provide environmental estimates. The method allows

continuous processes to be segmented and compressed onto

a basis of classes/scenarios that can be used as a framework

for informing trajectory planning and sampling design. This

approach can enhance the effectiveness of ocean observing

campaigns and in the end help scientists understand the

influence of regional oceanographic variables. We show

examples using real data from Monterey Bay, California,

where the compact model is combined with in-situ data

to predict regional oceanographic states and bulk features.

The results show that local observations can be used to

yield information on a synoptic scale, but are limited to

only resolving regional details. We have also evaluated

the prediction error of the model and demonstrated the

sensitivity to data, from the perspective of an ASV.

References

Aharon M, Elad M and Bruckstein A (2006) k-SVD: an

algorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on signal processing

54(11): 4311–4322.

Aljalbout E, Golkov V, Siddiqui Y, Strobel M and Cremers D (2018)

Clustering with deep learning: Taxonomy and new methods.

arXiv preprint arXiv:1801.07648 .

Anderberg MR (1973) Cluster analysis for applications. Probability

and Mathematical Statistics, New York Academic Press, 1973 .

Bernstein M, Graham R, Cline D, Dolan JM and Rajan K (2013)

Learning-based event response for marine robotics. IEEE

International Conference on Intelligent Robots and Systems :

3362–3367DOI:10.1109/IROS.2013.6696835.

Blondeau-Patissier D, Gower JF, Dekker AG, Phinn SR and

Brando VE (2014) A review of ocean color remote

sensing methods and statistical techniques for the detection,

mapping and analysis of phytoplankton blooms in coastal

and open oceans. Progress in Oceanography 123: 123

– 144. DOI:https://doi.org/10.1016/j.pocean.2013.12.008.

URL http://www.sciencedirect.com/science/

article/pii/S0079661114000020.

Chao Y, Chien S, Kinsey J, Flexas MM, Erickson ZK, Farrara

J, Fratantoni D, Branch A, Chu S, Troesch M, Claus B

and Society TO (2017) Satellites to Seafloor: Towards fully

autonomous ocean sampling. Oceanography 30(2): 160–168.

Chen C (2012) Signal and Image Processing for Remote Sensing,

Second Edition. Electrical engineering / remote sensing. Taylor

& Francis. ISBN 9781439855966. URL https://books.

google.no/books?id=QQDHl3L867QC.

Chen SS, Donoho DL and Saunders MA (2001) Atomic

decomposition by basis pursuit. SIAM review 43(1): 129–159.

Prepared using sagej.cls



14 Journal Title XX(X)

Chen Y, Nasrabadi NM and Tran TD (2011) Hyperspectral image

classification using dictionary-based sparse representation.

IEEE Transactions on Geoscience and Remote Sensing 49(10):

3973–3985. DOI:10.1109/TGRS.2011.2129595.

Das J, Rajan K, Frolov S, Ryan JP, Py F, Caron DA, Sukhatme

GS, Ryan JP, Caron DA and Sukhatme GS (2010) Towards

marine bloom trajectory prediction for AUV mission planning.

Proceedings - IEEE International Conference on Robotics and

Automation : 4784–4790DOI:10.1109/ROBOT.2010.5509930.

Eidsvik J, Mukerji T and Bhattacharjya D (2015) Value of Informa-

tion in the Earth Sciences: Integrating Spatial Modeling and

Decision Analysis. Cambridge: Cambridge University Press.

ISBN 9781139628785. DOI:10.1017/CBO9781139628785.

URL https://www.cambridge.org/core/books/

value-of-information-in-the-earth-sciences/

61119AB2F707D557E49E00BF9FD6FE39.

Eleveld MA, Ruescas AB, Hommersom A, Moore TS, Peters SWM

and Brockmann C (2017) An optical classification tool for

global lake waters. Remote Sensing 9(5). DOI:10.3390/

rs9050420. URL http://www.mdpi.com/2072-4292/

9/5/420.

Emberton S, Chittka L, Cavallaro A and Wang M (2016) Sensor

capability and atmospheric correction in ocean colour remote

sensing. Remote Sensing 8(1). DOI:10.3390/rs8010001. URL

http://www.mdpi.com/2072-4292/8/1/1.

Everitt B, Landau S, Leese M and Stahl D (2011) Cluster Analysis.

Wiley Series in Probability and Statistics. Wiley. ISBN

9780470978443. URL https://books.google.no/

books?id=w3bE1kqd-48C.

Fortin V, Abaza M, Anctil F and Turcotte R (2014) Why should

ensemble spread match the rmse of the ensemble mean?

Journal of Hydrometeorology 15(4): 1708–1713.

Frolov S, Garau B and Bellingham J (2014) Can we do better

than the grid survey: Optimal synoptic surveys in presence

of variable uncertainty and decorrelation scales. Journal of

Geophysical Research: Oceans 119: 5071–5090. DOI:10.

1002/2013JC009521.Received.

Frolov S, Kudela RM and Bellingham JG (2013) Monitoring of

harmful algal blooms in the era of diminishing resources:

A case study of the u.s. west coast. Harmful Algae

21-22: 1 – 12. DOI:https://doi.org/10.1016/j.hal.2012.

11.001. URL http://www.sciencedirect.com/

science/article/pii/S1568988312001503.

Frolov S, Paduan J, Cook M and Bellingham J (2012) Improved

statistical prediction of surface currents based on historic HF-

radar observations. Ocean Dynamics 62(7): 1111–1122. DOI:

10.1007/s10236-012-0553-5.

Gonalves ML, Netto MLA, Costa JAF and Jnior JZ (2008)

An unsupervised method of classifying remotely sensed

images using kohonen selforganizing maps and agglomerative

hierarchical clustering methods. International Journal

of Remote Sensing 29(11): 3171–3207. DOI:10.1080/

01431160701442146. URL https://doi.org/10.

1080/01431160701442146.

James G, Witten D, Hastie T and Tibshirani R (2013) An

introduction to statistical learning, volume 112. Springer.

Johannessen OM, Sandven S, Jenkins AD, Durand D, Pettersson

LH, Espedal H, Evensen G and Hamre T (2000) Satellite earth

observation in operational oceanography. Coastal Engineering

41(1-3): 155–176. DOI:10.1016/S0378-3839(00)00030-2.

Jolliffe I (2011) Principal component analysis. In: International

encyclopedia of statistical science. Springer, pp. 1094–1096.

LeCun Y, Cortes C and Burges C (2010) Mnist handwritten digit

database. AT&T Labs [Online]. Available: http://yann. lecun.

com/exdb/mnist 2: 18.

Lermusiaux PFJ (2006) Uncertainty estimation and prediction for

interdisciplinary ocean dynamics. Journal of Computational

Physics 217(1): 176–199. DOI:10.1016/j.jcp.2006.02.010.

URL https://doi.org/10.1016/j.jcp.2006.02.

010.

Lilleborge M, Hauge R and Eidsvik J (2016) Information gathering

in bayesian networks applied to petroleum prospecting.

Mathematical Geosciences 48(3): 233–257.

Liu W, Wang Z, Liu X, Zeng N, Liu Y and Alsaadi

FE (2017) A survey of deep neural network architec-

tures and their applications. Neurocomputing 234: 11

– 26. DOI:https://doi.org/10.1016/j.neucom.2016.12.038.

URL http://www.sciencedirect.com/science/

article/pii/S0925231216315533.

MacQueen J (1967) Some methods for classification and analysis

of multivariate observations. In: Proceedings of the

fifth Berkeley symposium on mathematical statistics and

probability, volume 1. pp. 281–297.

Mairal J, Bach F, Ponce J and Sapiro G (2009) Online dictionary

learning for sparse coding. In: Proceedings of the 26th annual

international conference on machine learning. ACM, pp. 689–

696.

Matérn B (2013) Spatial variation. Meddelanden från Statens

Skogsforskningsinstitut 36(5): 1–144.

McKay J, Monga V and Raj R (2016) Robust sonar atr with

pose corrected sparse reconstruction-based classification. In:

OCEANS 2016 MTS/IEEE Monterey. pp. 1–5. DOI:10.1109/

OCEANS.2016.7761189.

Mountrakis G, Im J and Ogole C (2011) Support vector

machines in remote sensing: A review. ISPRS Journal

of Photogrammetry and Remote Sensing 66(3): 247 –

259. DOI:https://doi.org/10.1016/j.isprsjprs.2010.11.001.

URL http://www.sciencedirect.com/science/

article/pii/S0924271610001140.

Mulla DJ (2013) Twenty five years of remote sensing in precision

agriculture: Key advances and remaining knowledge

gaps. Biosystems Engineering 114(4): 358 – 371. DOI:

https://doi.org/10.1016/j.biosystemseng.2012.08.009. URL

http://www.sciencedirect.com/science/

article/pii/S1537511012001419. Special Issue:

Sensing Technologies for Sustainable Agriculture.

Munk W (2002) Testimony to the U.S. Commission on Ocean

Policy. URL http://govinfo.library.unt.edu/

oceancommission/meetings/apr18_19_02/

munk_statement.pdf.

Nash J (1990) The cholesky decomposition. Compact

numerical methods for computers: Linear algebra and function

minimisation 2.

Nocedal J and Wright S (2000) Numerical Optimization. Springer

Series in Operations Research and Financial Engineering.

Springer New York. ISBN 9780387987934. URL https:

//books.google.no/books?id=epc5fX0lqRIC.

Oliver MJ and Irwin AJ (2008) Objective global ocean

biogeographic provinces. Geophysical Research

Letters 35(15). DOI:10.1029/2008GL034238. URL

Prepared using sagej.cls



15

https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/2008GL034238.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot

M and Duchesnay E (2011) Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research 12: 2825–

2830.

Pelleg D and Moore A (2000) X-means: Extending k-means

with efficient estimation of the number of clusters. In:

In Proceedings of the 17th International Conf. on Machine

Learning. Morgan Kaufmann, pp. 727–734.

Rasmussen EC and Williams CKI (2006) Gaussian Processes for

Machine Learning. 1 edition. MIT Press. ISBN 026218253X.

DOI:10.1142/S0129065704001899.

Rosenfeld LK, Schwing FB, Garfield N and Tracy DE (1994)

Bifurcated flow from an upwelling center: a cold water source

for monterey bay. Continental Shelf Research 14(9): 931–964.

Ryan JP, Fischer AM, Kudela RM, McManus MA, Myers JS,

Paduan JD, Ruhsam CM, Woodson CB and Zhang Y (2010)

Recurrent frontal slicks of a coastal ocean upwelling shadow.

Journal of Geophysical Research: Oceans 115(12): 1–15. DOI:

10.1029/2010JC006398.

Saritha S and Kumar GS (2017) Inter-spectral and intra-

spectral features for effective classification of remotely

sensed images. Procedia Computer Science 115: 549

– 555. DOI:https://doi.org/10.1016/j.procs.2017.09.113.

URL http://www.sciencedirect.com/science/

article/pii/S1877050917319415. 7th International

Conference on Advances in Computing & Communications,

ICACC-2017, 22-24 August 2017, Cochin, India.

Smith RN, Das J, Yi C, Caron DA, Jones BH and Sukhatme

GS (2010) Cooperative multi-AUV tracking of phytoplankton

blooms based on ocean model predictions. OCEANS’10 IEEE

Sydney, OCEANSSYD 2010 DOI:10.1109/OCEANSSYD.

2010.5603594.

Song C, Liu F, Huang Y, Wang L and Tan T (2013) Auto-encoder

based data clustering. In: Iberoamerican Congress on Pattern

Recognition. Springer, pp. 117–124.

Tropp JA and Gilbert AC (2007) Signal recovery from random

measurements via orthogonal matching pursuit. IEEE

Transactions on information theory 53(12): 4655–4666.

Walter V (2004) Object-based classification of remote sensing data

for change detection. ISPRS Journal of Photogrammetry and

Remote Sensing 58: 225–238.

Ward Jr JH (1963) Hierarchical grouping to optimize an objective

function. Journal of the American Statistical Association

58(301): 236–244.

Wilkinson GG (2005) Results and implications of a study of fifteen

years of satellite image classification experiments. IEEE

Transactions on Geoscience and Remote Sensing 43(3): 433–

440. DOI:10.1109/TGRS.2004.837325.

Wilks DS (2011) Cluster analysis. In: International geophysics,

volume 100. Elsevier, pp. 603–616.

Xie Y, Sha Z and Yu M (2008) Remote sensing imagery in

vegetation mapping: a review. Journal of Plant Ecology 1(1):

9–23. DOI:10.1093/jpe/rtm005. URL http://dx.doi.

org/10.1093/jpe/rtm005.

Acknowledgements

This work was part of the ENTiCE project § funded by the

Research Council of Norway Project # 255303/E40, the Nansen

Legacy Program, project number # 27272, and AMOS ¶, Center

of Excellence, project number # 223254. TM acknowledges

support from the Stanford Center for Earth Resources Forecasting

and from the Dean of the Stanford School of Earth, Energy,

and Environmental Sciences. MBARI authors are funded by a

block grant from the David and Lucile Packard Foundation.

The WaveGlider data was provided from the MBARI CANON

campaign with support from Christopher Wahl, Devon Northcott,

and Francisco Chavez. Finally, the authors are grateful for the

support from MBARI engineering, science, and marine operations.

The work was conducted when TOF was a visiting scholar at

MBARI.

§http://sintef.no/en/projects/entice/

¶https://www.ntnu.edu/amos

Prepared using sagej.cls


	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Satellite Data Sources
	3.2 Unsupervised learning and classification of SST images
	3.3 Dictionary Learning

	4 Methods
	4.1 Proposed Classification Methodology
	4.2 Comparative Analysis

	5 Classification Results
	5.1 Initial Classification
	5.2 Secondary Classification Refinement

	6 Forecast and Sampling Policies
	6.1 Predicting the Environment
	6.2 Evaluation of Model Prediction Error

	7 Discussion
	8 Conclusion

