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In order to understand how organisms cope with ongoing changes in
environmental variability, it is necessary to consider multiple adaptations to
environmental uncertainty on different time scales. Conservative bet-hedging
(CBH) represents a long-term genotype-level strategy maximizing lineage
geometric mean fitness in stochastic environments by decreasing individual
fitness variance, despite also lowering arithmetic mean fitness. Meanwhile,
variance-prone (aka risk-prone) strategies produce greater variance in short-
term payoffs, because this increases expected arithmetic mean fitness if the
relationship between payoffs and fitness is accelerating. Using evolutionary
simulation models, we investigate whether selection for such variance-prone
strategies is counteracted by selection for bet-hedging that works to adaptively
reduce fitness variance. In our model, variance proneness evolves in fine-
grained environments (lower correlations among individuals in energetic
state and/or payoffs), and with larger numbers of independent decision
events over which resources accumulate prior to selection. Conversely, multi-
plicative fitness accumulation, caused by coarser environmental grain and
fewer decision events selection, favours CBH via greater variance aversion.
We discuss examples of variance-sensitive strategies in optimal foraging,
migration, life histories and cooperative breeding using this bet-hedging
perspective. By linking disparate fields of research studying adaptations to
variable environments, we should be better able to understand effects of
human-induced rapid environmental change.
1. Introduction
The world is a stochastic place and evolution favours organisms that are able to
persist in the face of such random variation within and among lifetimes in
resource availability, predation risk or environmental conditions [1–3]. While
various adaptations to stochasticity have been the topic of intense research
interest in many different scientific fields, including behavioural ecology,
physiology and evolutionary ecology, much of this research unfortunately
remains rather disparate with little unifying work being done (but see [4,5]).

Ever since the work of Caraco and colleagues in the 1980s, it has been
widely accepted in behavioural ecology that animals should exhibit variance-
sensitive behaviour [6–8] (aka ‘risk sensitivity’ [9]). Arriving at a time when
optimality models were gaining traction in evolutionary and behavioural ecol-
ogy, this important theoretical development highlighted the crucial point that
the optimal strategy can also depend upon the variation in payoffs around
the mean. This is because the payoffs from a specific behaviour (e.g. obtaining
successive food items) do not necessarily relate linearly to fitness (i.e. utility
functions are in most cases expected to be nonlinear [6,10]). For example, the
fitness benefits of a food resource are expected to increase exponentially early
on when there is a real danger of starvation, and they will flatten out towards
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an asymptote due to diminishing returns of additional
resource gains when the animal becomes satiated (see fig. 1
in [11]). This is a general property of some threshold level
of resources being needed to complete a certain task, be it
surviving a cold night, undergoing migration, achieving a
certain social dominance rank, attracting a mate or success-
fully raising offspring [8,12–15]. Importantly, when the
relationship between resources gained and fitness is accelerat-
ing (i.e. the utility function is convex), a variance-prone
strategy resulting in variable resource gain provides higher
expected fitness. Conversely, if the organism’s utility function
is concave (decelerating), being variance-averse and prefer-
ring less variable sources of resource gain provides higher
expected fitness (see fig. 1 in [11]). These predictions from
the energy budget rule [7,10,13] have largely been supported
in experimental studies of foraging decisions in a range of
animal species [16] and recently even plants [17], but results
are inconsistent, indicating that there are still unresolved
issues in this paradigm [18].

In a parallel field of study in evolutionary ecology,
bet-hedging has been defined as a strategy increasing its prob-
ability of fixation in the population through decreasing the
variation in fitness across generations despite also decreasing
mean fitness [19–21]. The success of a bet-hedging strategy lies
in reproduction across generations being an inherently
multiplicative process, so the success of a lineage over time
is best estimated by geometric mean fitness across generations
rather than the arithmetic mean [1,22,23]. Geometric means
are much more sensitive to variation than are arithmetic
means, and thus, a genotype experiencing less variation in fit-
ness across generations can spread despite having a lower
expected fitness in any one generation [20,24]. This concept
was first used to explain seed dormancy of desert annuals
[1,25,26], but has received an upsurge of attention in recent
years as it provides a tantalizing explanation for a range of
seemingly ‘suboptimal’ strategies observed in bacteria,
animals, plants and fungi [2–4,27–32]. Theory has shown
that bet-hedging is most important when environmental
fluctuations between generations are larger than those
within generations (i.e. in ‘coarse-grained’ environments),
and more generally when temporal environmental fluctu-
ations become more important than spatial environmental
fluctuations [4,20,33,34].

Unfortunately, the term bet-hedging is often misused
and misunderstood, leading to considerable confusion in the
literature. For instance, the genotypic strategy of diversified
bet-hedging (DBH) which produces phenotypically different
individuals can be adaptive in unpredictably fluctuating
environments because it lowers fitness correlations among
individuals, leading to lower variance in fitness at the geno-
type level [19,20,35]. However, DBH is often invoked to
explain any observed phenotypic variation in a trait, without
checking whether this reduces genotype-level fitness variance
at the expense of arithmetic mean fitness [36,37]. Alternatively,
a genotype may lower its variation in fitness through lowering
each individual’s variation in fitness, which is a conservative
bet-hedging (CBH) strategy. Such strategies often manifest as
‘playing it safe’ in the face of uncertainty (e.g. due to predation
or starvation risk [4,24]), but in order for this to be termed
bet-hedging, a reduction in expected fitness at the individual
level is also required. Otherwise, playing it safe is simply the
optimal strategy from the point of view of the individual,
and bet-hedging is not required as an explanation. In this
respect, variance-averse decisions are superficially similar to
CBH strategies (such that they are actually often confused in
the literature), in that variability is adaptively avoided. This
link was mentioned almost 30 years ago by Frank & Slatkin
[38], but they only considered the choice of variance aversion
by foragers in the concave (decelerating) part of the utility
function. In such a situation, variance aversion not only
lowers an individual’s variance in fitness, but also increases
its average fitness, i.e. the strategy does not increase geometric
mean fitness at the cost of a lower arithmetic mean fitness,
and thus does not constitute bet-hedging [19,20]. However,
variance aversion might still be favoured as a CBH strategy
in the convex (accelerating) part of the utility function. This
is because although variance proneness here would cause
an increase in an individual’s average fitness, there may be
bet-hedging benefits to being variance-averse (i.e. achieving
lower fitness variation may be favoured in the long term at
the genotype level despite lowering average individual fitness
in the short term).

While variance sensitivity is well known in economics, its
applications in biology have typically been limited to foraging
behaviour. However, the choice between a safe option giving
predictably moderate rewards and a variable option giving
small or large rewards applies to any number of problems in
behavioural ecology and other realms of biology, including
group formation and optimal group sizes [39,40], the evol-
ution of cooperation [41,42] and reproductive decisions such
as alternative mating strategies [43,44], optimal litter sizes
[45,46] or biasing investment towards male versus female
offspring in species with high reproductive skew [47,48]. In
cases where the utility function is accelerating, choosing the
variable option will provide considerably higher mean fitness
[49], but it may also increase the variance in mean fitness,
which would then have bet-hedging consequences. Impor-
tantly, any fitness variance created by such variance-prone
decisions will decrease over the course of a greater number
of decision events within a lifetime, if payoffs accumulate
additively. Therefore, the potential for bet-hedging advan-
tages from lowering fitness variance will be reduced the
more variance-sensitive decisions are made prior to selection
(figure 1a). Furthermore, this reduction in fitness variance
at the individual level will be more important in terms of
genotype-level geometric mean fitness if the correlations in
payoffs among variance-prone individuals are high (coarse-
grained environment). As we show here, the adaptive
nature of short-term variance sensitivity (especially outside
of foraging behaviour) needs to be considered in the light of
long-term bet-hedging strategies and consequences [5].

Here, we present two individual-based simulation models
of individuals facing a decision between options providing
constant versus variable rewards. We explore evolutionary
outcomes in scenarios differing in their environmental grain
and in the number of decision events made within a lifetime
prior to selection. These different scenarios can be envisioned
as modelling traits related to different activities. For example,
simulations with many decision events prior to selection
can represent scenarios for traits that contribute additively to
reproductive success, such as foraging-related decisions
where payoffs accumulate over a long sequence of behavioural
events. However, simulations with a small number of decision
events per lifetime would represent traits/decisions related
more directly to reproductive events, such as clutch size or
timing of breeding. Here, the payoffs for decisions do not
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Figure 1. (a) Conceptual illustration of the factors predicted to affect selection for variance-averse (light) versus variance-prone (dark) strategies in the light of
bet-hedging theory. An increasing number of decision events prior to reproduction (moving right on the x-axis) across which payoffs accumulate additively, and a
finer environmental grain (moving down on the y-axis) which decreases correlations in payoffs among variance-prone individuals, should in combination favour
variance-prone strategies, since they both shift the balance from geometric to arithmetic fitness accumulation (coloured arrows). By contrast, fewer decision
events prior to reproduction and coarser environmental grain causes fitness to accumulate multiplicatively over time, favouring variance-averse strategies providing
lower variation in fitness despite also providing lower expected fitness. (b) Maximum proportional decrease in the mean payoffs at the constant patch relative to the
variable patch (a, shown in the shade of grey background and contour lines) that allow the constant patch to be favoured (i.e. the upper bound of a for choosing
the constant option). Values are shown for different amounts of variation at the variable patch, b, and number of decision events prior to reproduction, n. Limits of a
in each grid cell are calculated by solving inequality (2.2) for the given value of b and n. See text for more detail. (Online version in colour.)
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simply accumulate additively across events within a lifetime,
but will more obviously accumulate multiplicatively across
consecutive generations in a lineage. We therefore predict
the evolution of variance-averse behaviours despite their
lower (arithmetic) mean fitness benefits in scenarios favouring
bet-hedging strategies (i.e. coarse-grained environments and a
low number of decisions prior to selection; figure 1a). This
analysis provides novel links between short-term behavioural
and long-term evolutionary adaptations to environmental
variability.
2. Model description
We model asexual populations that choose between a risky
versus a safe strategy to obtain fitness rewards, which we
refer to as ‘variable’ versus ‘constant’ payoffs. The ‘variable’
payoff is determined by some randomly varying environ-
mental factor (‘good’ versus ‘bad’ conditions), while the
‘constant’ payoff is always the same. We hypothesize that
the importance of arithmetic versus geometric mean fitness
in determining long-term evolution of these two strategies
should depend upon: (i) the number of decision events or
times (n) that the trait is used to gain resources prior to selec-
tion; and (ii) the ‘grain’ of the environment, g (i.e. the extent
to which the environmental fluctuations affect the individuals
in the population in the same way; see Introduction and
figure 1a). We use two different versions of our simulation
model to investigate these effects.

(a) Model 1: risky versus safe strategies when payoffs
accumulate additively versus multiplicatively

In model 1, the only effect of the environment is whether the
individuals using the variable strategy get a high or low
payoff. We simply set the conditions to be good (1) or bad
(0) with equal probability, 0.5. Environmental grain gr (for
‘grain of resources’) is incorporated as the correlations in
resources among patches (see table 1 for explanation of math-
ematical notation), which in this model determines the payoffs
of individuals choosing the variable strategy. If the resource
grain gr = 1, the quality of the variable patch is the same for
all individuals, whereas if it is gr = 0, each individual choosing
the variable strategy has an independent chance of encounter-
ing a patch that is rich or low in resources, each with
probability 0.5. For any gr, we first sample probabilistically
whether the overall state of resources R is good or bad (1 or
0), and next whether each individual i experiences the same
or different resource conditions ri, with respective probabilities
P(ri =R) = 0.5 + (gr/2) and P(ri≠R) = 1− P(ri =R). We recog-
nize that some combinations of environmental grain and
number of decision events are more realistic than others. For
example, the success of risky reproductive strategies is typi-
cally determined by weather conditions experienced by at
least a considerable part of the population, making low
number of decision events n and high-resource grain gr
an interesting scenario. For foraging-related traits such as
choosing between variable versus constant patches, the
environment represents patch quality, and is probably best
approximated with a low gr (individuals choosing variable
patches are likely to differ in their success in any given time
step) and high n (foraging happens many, many times per life-
time, for most species). Yet, we here examine the full range of
combinations of n = {1, 2, 5, 10} and gr = {0, 0.25, 0.5, 0.75, 1}.

In order to investigate the importance of bet-hedging, we
set the payoff from the constant strategy to beWconst = µ(1− a),
so that the proportion aɛ[0,1) represents the penalty for choos-
ing the constant strategy relative to the expected payoff of the
variable strategy, which is µ. We set the variability in payoffs
of the variable strategy to be the proportion bɛ(0,1] of the
expected payoff µ, such that the payoffs are Wvar(ri = 0) =
µ(1− b) or Wvar(ri = 1) = µ(1 + b). If b = 1, we note that bad
outcomes provide payoff µ(1 – 1) = 0, while for lower b = 0,
the payoffs are more equal. Intuitively, a larger b provides a
larger reduction in geometric mean fitness and would thus
require a larger a (the penalty in payoff of the constant



Table 1. List of mathematical notation and parameter values.

parameter or
variable description range or values

model 1

R overall state of resource availability (determining whether the variable strategy

gives good or bad payoffs)

{0, 1}

gr grain of resources {0, 0.25, 0.5, 0.75, 1}

ri local resource availability for individual i {0 (bad), 1 (good)}

µ mean payoff of the variable strategy 2 (baseline)

a proportional reduction in payoff for the safe strategy relative to variable strategy [0, 1), set to 0.1 in figures 2 and 3.

b proportional variability in payoff for the variable strategy (0, 1], set to 0.9 in figures 2 and 3.

model 2

E overall state of environmental quality (determining energetic state) [0, 1]

ge grain of environment {0, 0.25, 0.5, 0.75, 1}

xi energetic state of individual i [0, 1]

simulation parameters

n number of decision events prior to reproduction {1, 2, 5, 10}

α between-season mortality set to 1 or 0.5 in figure 2 and S1, and

0.5 in figure 3.

K carrying capacity 5000

mp mutation rate baseline 0.005

mσ mutational size baseline 0.05
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strategy relative to the mean payoff for the variable strategy)
for the variable option to still be favoured. In this model,
we expect the constant strategy to be favoured when fitness
accumulation is entirely multiplicative across generations, as
is the case when resource grain gr = 1, because the arithmetic
mean fitness advantage of a lineage playing a risky strategy
should be outweighed by the reduction in geometric mean
fitness created if the mean fitness of the genotype varies
more across generations (top left in figure 1a). This variability
increases as gr approaches 1, since all individuals experience
the same environmental condition (high correlation in fitness
among individuals), and decreases as the number of decision
events or time steps n becomes larger, since the variance
in lifetime average payoff (arithmetic mean of a series of
Bernoulli decision events) decreases with more decision events.
Specifically, if individuals accumulate resources additively
across n decision events in a lifetime, the long-term fitness of a
lineage playing the variable strategy when fitness multiplies
across lifetimes is given by a weighted geometric mean

Gvar,n¼
Yn
m¼0

[mð1�bÞðn�mÞþmð1þbÞm]
n
m

� �
0:5n

8<
:

9=
;

¼m
Yn
m¼0

½ð1�bÞðn�mÞþð1þbÞm�
n
m

� �
0:5n

8<
:

9=
;, ð2:1Þ

where m is the number of ‘successful’ decision events (i.e. how
many of the n times the environment was of good quality).
Equation (2.1) is derived by multiplying the payoffs over all
possible combinations of outcomes (numbers of successes
and failures) from n decision events, raised to the power of
the probability of each outcome occurring. This type of
geometric mean differs from the better-known formulation
which takes the nth root of the product of n values in a sequence
(equivalent to raising each value to 1/n). This gives the
same ‘weight’ to each value, which in a probabilistic setting
would assume that each value is equally likely to occur. Our
formulation in equation (2.1) is a commonly used fitness
measure in the literature on evolution in stochastic
environments [5,19].

Comparing this to the payoff of playing the constant
strategy n times each generation, Gconst,n = µn(1− a), we can
identify a condition for a value of a below which the
constant strategy should be favoured (figure 1b)

Gconst,n . Gvar,n

l

mnð1� aÞ . m
Qn
m¼0

½ð1� bÞðn�mÞ þ ð1þ bÞm�
n
m

� �
0:5n

8<
:

9=
;

l

a , 1� Qn
m¼0

[(1� b)(n�m)þ (1þ b)m]
n
m

� �
0:5n

8<
:

9=
;
,

n ,

ð2:2Þ
which does not depend on µ, but does depend on n, with this
condition becoming less stringent as n increases. Figure 1b
shows the results from inequality (2.2) for a range of values
of b and n, such that the values represent the maximum
value of a (reduction in the mean payoffs from choosing the
constant strategy) favouring the constant strategy. We use
this to choose suitable values of a and b, so that simulated
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populations are predicted to switch from safe to risky strat-
egies as n increases and gr decreases. For the simulation
results shown here, we use a = 0.1, b = 0.9 and µ = 2 (i.e. the
constant strategy provides payoff 0.9 × 2 = 1.8, and the vari-
able patch provides payoff 2 × 0.1 = 0.2 or 2 × 1.9 = 3.8, each
with probability 0.5). These parameter values give approxi-
mately equal fitness for the two strategies when n = 5 (follow
contour line for a = 0.1 up to b = 0.9 in figure 1b), thus favour-
ing the constant strategy for lower values of n and the variable
strategy for higher values of n. However, note that we predict
this balance point to shift as the resource grain gr decreases
from 1, since this entails a shift frommultiplicative to additive
long-term fitness accumulation (cf. figure 1a).
Proc.R.Soc.B
286:20192070
(b) Model 2: risky versus safe strategies with differences
in individual energetic state

Model 2 follows the same structure as model 1 (above), but it
explicitly also includes individual energetic state, x, and a
sigmoid utility function relating energetic state to fitness

W(x) ¼ 2m
1þ e�5(x�0:5) : ð2:3Þ

Individual state was an unnecessary complication for
model 1, but here it allows us to capture the mechanisms typi-
cally associated with the theory and empirical assessments of
variance-sensitivity (see Introduction). We now allow an
environmental variable E to vary continuously between 0
(bad) and 1 (good). E determines the energetic state of individ-
uals, which are stochastically drawn from a uniform
distribution around E. The width of this distribution is given
by the grain of the environment ge, with the lower boundary
set to ge × E and the upper boundary to E + (1− ge) × (1− E).
These formulations allow individual states xi to become
increasingly similar to each other and to E (drawn from a
linearly narrowing range around E) as ge increases. If ge = 1,
all individuals have the same energetic state of xi = E, and if
ge = 0, individual states range from 0 to 1. We consider the
environment in such cases to represent something like over-
night roost temperature determining mass loss for birds
metabolizing fat to stay warm [50], which might vary
considerably among individuals due to differences in nest
insulation or location, and thus have a lower ge. Alternatively,
an environmental variable such aswinter harshness determin-
ing body condition at the beginning of the next season [51] is
likely to affect everyone equally and to have a higher ge.

Once individual states are determined, we allow variance-
sensitive individuals that ended up in low state (x < 0.5, the
inflection point of W(x)) to forage at a variable patch, which
will increase (if successful) or decrease (if unsuccessful) their
energetic state by 0.1. The probability of success at the variable
patch is determined by the overall state of the resources, R, and
the grain of the resources, gr. These act in the same way as in
model 1.We assume that variance-averse individuals and indi-
viduals in high energetic state forage at a constant patch with
moderate payoffs, which provides enough food to predictably
keep them on the same energy level (i.e. leaving their state
unchanged). Finally, updated energetic state x0 is converted
to resources used to acquire fitness, as determined by the
utility functionW(x0). Scaling the function to an upper asymp-
tote of 2µ allows a similar interpretation of µ as in model 1,
so that µ/n represents the mean reproductive rate.
(c) Simulation algorithm
We use individual-based simulations to investigate the fate of
a gene determining its bearer’s probability of playing avariable
versus a constant strategy in model 1, or a variance-sensitive
versus an all variance-averse strategy in model 2. After n
time steps or decision events in a lifetime where individual i
gathers resources prior to reproduction (as described for the
two model versions above), offspring are produced propor-
tionally to the total amount of resources the individual
gathered, Wi ¼

Pn
t¼1 Wt,i. Then, depending upon the number

of offspring produced and the population density (determined
by between-year mortality α and adult population size N
relative to the carrying capacity K), a number of recruits to
next year’s population are chosen at random from the pool of
offspring. This number is

P
i Wi if

P
i Wi þNa . K, and

Nα−K if
P

i Wi þNa , K. Thus, we assume that juveniles
are not affected by density regulation, that offspring of adults
that die overwinter are able to survive without their parents,
and that there may be a period over the course of the winter
where the total population size exceeds K, but that by the
time the next season begins N≤K. Since between-year
mortality is random with respect to the effects of the gene of
interest, this does not affect the evolutionary outcome (results
not shown). A proportion mp of offspring produced are then
subject to mutation, which changes their gene value according
to aGaussian distribution around the parent’s gene value, with
standard deviationmσ. Finally, since the gene determines prob-
abilities, gene values are constrained to be between 0 and 1,
such that negative values are set to 0 and values exceeding 1
are set to 1.

Simulationswere run for 2000 seasons and 100 independent
replicates for each parameter combination were produced.
Populations were initiated with uniformly distributed gene
values between 0 and 1, and with an initial population size
N0 at the carrying capacityK, whichwas set to 5000 individuals.
For the results presented here, we use mutation ratemp = 0.005,
mutation effects of sizemσ = 0.05 and expected payoff µ = 2, but
varying these parameters did not affect the evolutionary
outcomes. The model is coded in R v. 3.3.1 [52] and the code
is available in the electronic supplementary material.
3. Results
(a) Model 1
Figure 2 shows the evolved gene values at the end of the
simulations for discrete (between-year mortality α = 1) and
overlapping (α = 0.5) generations in scenarios with different
resource grains (gr) and number of decision events prior to
reproduction (n). All populations survived until the end of
the simulations and maintained stable population sizes at
carrying capacity. Gene values stabilized and were highly
repeatable across replicate simulations (as evidenced by the
small error bars). Whether generations were overlapping or
discrete did not affect evolutionary trajectories (see strong
similarity among panels in figure 2). There was a strong inter-
action effect of gr and n on the gene values for probability of
playing the variable strategy. Specifically, when gr was low
(no/low correlations among the payoffs of individuals playing
the variable strategy), the variable strategy was favoured
regardless of n. By contrast, for higher values of gr, low
values of n strongly favoured the safe strategy, whereas
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types). Points indicate means and error bars indicate standard deviations across 100 replicate populations, and relative point size represents the proportion of popu-
lations surviving until the end of the simulation (for the parameters shown here, all populations survived). Payoffs of the variable and constant strategies are
determined as described in §2a, using the parameter values µ = 2, a = 0.1 and b = 0.9. (Online version in colour.)
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simulations with higher values of n tended less strongly
towards the safe strategy as gr increased. Indeed, for n = 10,
the populations ended up choosing the variable strategy
nearly 100% of the time no matter what the among-individual
correlations in payoffs, and when gr = 0 or 0.25, this was the
case for all values of n. Note that for n = 1 (red line, open cir-
cles, figure 2), this result at low gr involved half of the
population hardly getting any reproductive success at all,
but this did not prevent the spread of the gene for choosing
the variable strategy, since the low correlations in fitness
among individuals led to low variance in fitness across
generations at the genotype level.
(b) Model 2
Figure 3 shows the evolved gene values at the end of the
simulations with overlapping generations, in scenarios with
different environmental grain (ge), resource grain (gr) and
number of decision events prior to reproduction (n). As in
model 1, results were similar whether generations were dis-
crete or overlapping (see electronic supplementary material,
figure S1). In the model 2 simulations, population size was
generally more variable and extinction rates were higher
than in model 1, especially in the simulations with low n, dis-
crete generations and a large environmental grain ge (strong
correlations among individual energetic states). Resource
grain gr (correlations among payoffs of individuals choosing
the variable strategy) did not affect extinction risk (see
electronic supplementary material, figure S2).

We observe high frequencies of variance-sensitive strategies
when either ge or gr were low, and selection for variance
sensitivity was consistently stronger for low n. This is seen by
the red lines being significantly higher than blue lines in the
leftmost subpanels of figure 3 (see also electronic supplemen-
tary material, figure S1). Variance aversion was increasingly
favoured as the resource grain gr approached 1, but only for
n = 1 (and to a limited extent n = 2) and when there was a
high environmental grain ge. Evolution of the gene for
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variance sensitivitywas completely unaffected by ge or grwhen
n is sufficiently high (the slope of the blue lines is zero and their
elevation is unchanged across panels in figure 3).
 lsocietypublishing.org/journal/rspb
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4. Discussion
The results presented here illustrate that long-termbet-hedging
strategies for choosing constant payoffs can outcompete
short-term variance-prone strategies providing more variable
payoffs, even though such variance proneness offers higher
arithmetic mean fitness. The importance of such bet-hedging
effects depends upon the relative importance of additive
versus multiplicative fitness accumulation (see [4]). Our
models allow individuals to accumulate fitness in the form of
resources or reproductive success additively across n decision
events within their lifetimes. However, the models also allow
variation in the grain of the environment, which alters the
correlations in fitness among individuals, and this in turn
alters the extent to which long-term fitness of a genotype is
determined additively versus multiplicatively across gener-
ations [20,34,53,54]. Our simulation results broadly follow
our intuition from figure 1a based upon existing theory, in
that we observe interactive effects of the number of decision
events (n) and the environmental grain (ge) on the evolution
of variance-averse versus variance-prone strategies.

In model 1, where the only environmental parameter is the
correlation in payoffs among individuals that choose the
variable strategy (gr), our simulated populations evolved a
choice for the constant strategy when there were fewer
decision events for accumulating resources prior to reproduc-
tion, and higher correlations in the variable payoffs between
different individuals (figure 2). Our analytical calculations
(figure 1b) matched our simulation results for gr = 1 (i.e.
when all individuals playing the variable strategy obtain the
same reward), which show that at n = 5, the two strategies
are competitively equal in terms of long-term fitness. For
n = 1, this model captures the basic set-up of well-known
bet-hedging scenarios, such as that of annual plants in wet
versus dry years [19,20,33]. Conservative bet-hedgers,
coping moderately well with both wet and dry years, corre-
spond to our individuals choosing the safe option, gaining a
constant but moderate payoff no matter the state of the
environment. Strategies specializing on one of the environ-
ments, essentially gambling that the environment will be the
one that suits them best, correspond to our individuals choos-
ing the variable option, gaining high enough payoffs when
the environment is in ‘good’ condition (i.e. it matches their
phenotype) that these cases outweigh the relative losses
during ‘bad’ environmental conditions (i.e. when their pheno-
type is mismatched). In line with previous theory, when
fitness accumulation is primarily multiplicative, bet-hedging
dominates the outcome.

In model 2, we introduced the mechanism that traditional
variance-sensitivity literature assumes will favour variance-
proneness: a sigmoid utility function relating individual
energetic state to fitness and the predictions regarding
variance sensitivity from the energy budget rule [7,10,11,
13,18]. In this model, fitness correlations among individuals
can come from two sources: correlations in environmental
conditions determining energetic state (ge), and correlations in
resource payoffs for individuals playing the variable strategy
(gr). Here, we found that variance aversion is only favoured
when n is low (1 and arguably 2) and both ge and gr are high
(0.75 or above). The relatively weaker selection for variance
aversion in this model compared with model 1 is not due to
the arithmetic mean fitness benefits of variance proneness
being larger than in model 1 (variance-proneness offers an
increase in expected fitness of about 5–10% for x< 0.5), but
rather due to there being two uncorrelated sources of stochasti-
city affecting correlations in payoffs among individuals.
For example, even if all individuals being variance-prone
receive the same payoff (a scenario strongly favouring the
‘safe’ strategy in model 1), variance-prone individuals may
differ so much in energetic state that some individuals will
still do well enough to ensure high genotype fitness despite
the increase in fitness variation.

Interpreting our different modelling scenarios as repre-
senting the evolution of traits related to different activities,
we can make simple inferences on the importance of bet-
hedging in determining the evolution of variance sensitivity
as a viable strategy in nature. In particular, bet-hedging is unli-
kely to play a role in the evolution of variance-sensitive
foraging preferences, such as in small-scale foraging patch or
habitat choice, as these decisions for both animals and plants
represent essentially an infinitely large number of (or a con-
tinuous sequence of) decision events [17]. Even if group
members using the variance-prone strategy gain similar
payoffs (i.e. high gr) in any one time step (e.g. one day), addi-
tive accumulation of foraging payoffs over the large number of
decision events (or days) before the total resources determine
reproductive success ensures that the strategy giving largest
arithmetic mean payoffs should be favoured evolutionarily.
Similarly, the variance of the sum of such repeated trials
decreases with an increasing number of trials (which lowers
what could be called among-generation environmental
variance), also reducing the scope of bet-hedging. Thus, our
modelling exercise does not reveal any flaw in traditional
predictions of variance sensitivity as it applies to optimal fora-
ging theory, and apparent failures of this paradigm to explain
observed outcomes of foraging experiments (see [12,18]) are
likely to lie elsewhere, such as in applying inappropriate
statistical measures of variance when assessing outcomes
(see [16]).

In contrast with the many decision events involved in
foraging, certain important key decisions in the life of organ-
isms are made only once or a few times, and can offer similar
variance-sensitive scenarios of choosing between ‘safe but
low gain’ versus ‘high risk–high gain’ options. For example,
decisions related to seasonal migration, including timing,
stopover site choice, choice of destination or even whether
to migrate at all [55–58], are likely to include strong bet-
hedging elements if there are correlations in the payoffs
among related individuals choosing the risky strategy. There-
fore, ongoing rapid changes in the spatial scale of synchrony
in resource availability or environmental variation as a conse-
quence of anthropogenic climate change, habitat change or
habitat destruction, can all have dramatic effects on popu-
lation viability [59,60]. The extent to which populations are
able to adjust their strategy use in response to these changes
is largely unknown, but it seems likely that such changes in
fitness correlations among individuals are difficult to detect,
so that previously advantageous variance proneness may
become an evolutionary trap [61].

Similarly, our model results suggest that bet-hedging may
be a considerable selective force favouring variance aversion
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in reproductive decisions and life-history strategies. For
example, recent theoretical and comparative studies have
suggested that cooperative breeding and cooperation in
general might be adaptive because they offer lower fitness
variance in variable environments (despite the short-term
reductions in expected fitness) when compared with solitary
breeding and less cooperative behaviour [41,42,62]. Our ana-
lyses broadly support these results in that bet-hedging may
be an important selective force when fitness correlations
among individuals are high (i.e. coarse environmental grain,
which emphasizes geometric mean fitness), but also demon-
strate how additive fitness accumulation over the course of
repeated variance-sensitive trials quickly shifts the balance
to favour variance proneness. Even with a coarse environ-
mental grain, predictions for bet-hedging through variance-
averse reproductive decisions and life-history strategies will
differ depending on certain (evolved) properties of the species,
such as expected lifespans and degree of iteroparity [63].
Notably, a variance-prone reproductive strategy may still be
favoured in long-lived species where an individual can
expect to breed many times throughout its life, given that
the environmental variable determining whether this risky
strategy is successful or unsuccessful is uncorrelated among
breeding seasons [51,64]. We therefore suggest that more
progress can be made in understanding the evolution of
cooperative breeding by not only studying the severity or
magnitude of environmental fluctuations [65,66], but also
how they affect the spatial and temporal scale of correlations
in fitness payoffs among and within individuals.

Other life-history traits may respond similarly to the axes
we outline here of spatio-temporal variation affecting
arithmetic versus geometric mean fitness accumulation. For
example, apparently suboptimal clutch sizes in many bird
species could represent a possible CBH strategy in response
to year-to-year variation in spring onset and food availability
[4,46], if those annual fluctuations are experienced by
the entire population (i.e. coarse environmental grain). This
follows from larger clutches leading to higher reproductive
success in good years and higher arithmetic mean fitness
across years, but smaller clutches having much higher
offspring survival in bad years, and thus higher geometric
mean fitness across years. Similar mechanisms are probably
at play in the evolution of lifespan and/or body size in response
to fluctuating density-dependent selection [67,68], as well as
the evolution of plasticity in reproductive attempts and effort.
As the strength of fluctuating selection increases, and fitness
correlations among individuals increase, larger costs related
to informed plastic changes such as information gathering,
learning and phenotypic adjustment are tolerated [67,69].
This dependence on among-individual correlations relates to
differences among populations in the degree to which environ-
mental stochasticity versus demographic stochasticity drives
population fluctuations. The relative importance of these
can be estimated from field data [70], so this approach
therefore identifies a starting point for examining the evolution
of variance sensitivity versus CBH in all types of life-history
strategies.

In summary, our models support the growing under-
standing that bet-hedging strategies that reduce variance in
fitness can be favoured in unpredictably varying environ-
ments despite reducing arithmetic mean fitness. We
demonstrate that variance aversion can be an adaptive CBH
strategy even when traditional variance-sensitivity theory
predicts that variance proneness should be favoured. We
also show that increasing the number of decision-making
events over which payoffs accumulate will favour variance-
proneness, and while this validates the approach taken in
optimal foraging theory, it does have implications for the
evolution of variance-sensitive life-history strategies. We
also highlight the importance of environmental grain and
the correlation of fitness payoffs across individuals of the
same genotype, which although common in bet-hedging
theory is rarely considered in connection with variance-
sensitivity. We therefore hope that links between areas of
theory in what have been quite disparate fields of study
will improve our understanding of potential evolutionary
responses to environmental stochasticity and human-induced
environmental change.
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