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ABSTRACT 
This paper presents a benchmark study on collision simulations that was initiated by the 

MARSTRUCT Virtual Institute. The objective was to compare assumptions, models, modelling 

techniques and experiences between established researchers within the field. Fifteen research groups 

world-wide participated in the study. An experiment involving an indenter that penetrates a ship-like 

side-shell structure was used as the case study. A description of how the experiment was performed, a 

geometry model of it, and material properties were distributed to the participants prior to their 

simulations. The paper presents the results obtained from the fifteen FE simulations and the 

experiment. It presents a comparison of, among other factors, the reaction force versus the indenter 

displacement, internal energy absorbed by the structure versus the indenter displacement, and analyses 

of the participants’ ability to predict failure modes and events that were observed in the experiment. 

The outcome of the study is a discussion and recommendations regarding mesh element size, failure 

criterion and damage models, interpretation of material data and how they are used in a constitutive 

material model, and finally, uncertainties in general.

Keywords: benchmark study, experiment, failure criteria, failure modes, finite element analysis, ship 

collision.

Nomenclature
List of abbreviations

DOF Degrees of Freedom

FE Finite Element

FEA Finite Element Analysis

FEM Finite Element Method 

List of symbols 

B Breadth of the test object [m]

E Elastic modulus [Pa]

H Height of the test object [m]

K Hardening coefficient [Pa]

l Element length in FE model [m]

L Length of the test object [m]

n Hardening exponent [-]

t Element thickness in the FE model [m]
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W Width of the test object [m]

x, y, z Coordinates [m]

f Fracture strain [-]

n Necking strain [-]

true True strain [-]

true True stress [Pa]

y Yield stress [Pa]

1. Introduction
The impact resistance of a ship or offshore structure subjected to collision can be quantified by the 

energy absorbed by the structure during its deformation and fracture. Explicit finite element (FE) 

analysis is an established method that is used to simulate collisions and analyse various collision 

scenarios and the crashworthiness of the structures involved. Recent advancements in computational 

capacity, resources and commercial FE software have reduced the computation time and made it easier 

for engineers and researchers to carry out crashworthiness studies of large-scale and complex marine 

structures. One should, however, not underestimate the challenges involved in ensuring that realistic 

and reliable results are obtained from these types of simulations and studies, which require in-depth 

understanding of factors coupled in the simulation model and analysis procedure, for example, choice 

of element type, mesh resolution, modelling and representation of material characteristics (elastic-

plastic deformation, failure criterion, damage modelling, element size, strain-rate effects, etc.), contact 

conditions, boundary conditions and numerical setting related to the FE software used and its solver.

It is important to continuously strive for model validation to ensure that the results from numerical 

simulations and predictions can form a solid basis for decision making in, e.g., the design of safe ships. 

Several investigations in the literature have shown how challenging it is to capture the sequential 

degradation and failure of a collided structure because of plastic deformation, fracture of its parts 

(sheets, stiffeners) and collapse by buckling (web frames, stiffeners). Ehlers et al. [1] presented FE 

simulations of the collision response of three different ship side structures. The study focused on 

determining the influence of different failure criteria and mesh sensitivity on the force-penetration 

results. Recommendations for element size and element length to thickness ratio were suggested, 

together with the failure criteria utilised in the study. Hogström et al. [2] presented an experimental 

and numerical study of the effects of length scale and strain state on the necking and fracture 

behaviours in sheet metals. They applied the results reported by Hogström et al. [3] in a parameter 
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study of the material characteristics’ influence on damage stability analyses of a collided ship. 

Recommendations on how ship collision analyses should be established were proposed, considering, 

among other factors, the dispersion of the material, failure criterion, modelling of striking bow section, 

friction and contact conditions, collision angle and striking ship speed.

Ship side and bottom structures are mainly composed of stiffened panels and web girders, whose 

impact strengths have been investigated extensively [4, 5]. Liu and Guedes Soares [6] and Liu et al. 

[7] have presented methods that combine external dynamics and internal mechanics in ship collisions 

for design appraisal assessments. Recently, there has been growing interest in the internal mechanics 

of structures impacted by a bulbous bow structure. Yu and Amdahl [8] proposed a full 6 DOF coupled 

simulation procedure for collision and grounding accidents, using an approximation of the 

hydrodynamic loads that captures the major effects of the fluid. Zhang and Pedersen [9] re-examined 

the validity and accuracy of the simplified method proposed by Pedersen and Zhang [10] for ship 

collision damage analysis in ship design assessments by comprehensive validations with experimental 

results from the public domain. It was concluded that the damaged spaces in heavy collisions can be 

assumed to be the same as the contour of the penetrated rigid bow of the striking vessel, and the rupture 

strain of the materials can be taken from standard coupon tensile tests.

Over the past several years, numerical analyses such as finite element analysis (FEA) have been widely 

used to investigate the structural performance of ships and offshore structures (see, e.g., Paik [11] and 

Ehlers et al. [12]) because of the development of high-performance computers. However, the 

definitions of certain parameters in FEA strongly influence the calculated structural load capacity. 

Kõrgesaar et al. [13] presented ship collision simulations considering four different fracture criteria, 

three different mesh densities and two different material models in ABAQUS. The failure criterion 

was also examined by Liu et al. [14] and further examined and extended in [15]. Liu et al. [16] 

developed a numerical method for simulating structure impact problems and studied the effects of 

mesh sizes on failure strain and the impact response of a stiffened plate impacted laterally by a 

spherical indenter using LS-DYNA.

Marinatos and Samuelides [17] presented a numerical method for modelling of the material, i.e., 

material curve and rupture criterion, considering the effects of mesh size and strain-rate effect on the 

results. Subsequently, they applied the proposed method in numerical simulations of eighteen 

indentation tests conducted by different research groups using three different failure criteria. They 

concluded that realistic simulation of the tests and consistency in terms of the representation of the 

deformation patterns and the estimation of the absorbed energy is achieved with the criterion based on 
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the maximum equivalent plastic strain with a cut-off value for triaxialities equal to -1/3, below which 

the criterion is not activated. The threshold value of strain depends on the element length over thickness 

ratio, and the authors suggested that close to the area of interest this ratio should be between two and 

four, i.e., 2 4. On that basis, a failure criterion that includes the combined effect of mesh size  ≤ 𝑙/𝑡 ≤  

and stress triaxiality on the failure strain was proposed by Walters [18]. The reasoning behind such a 

scaling framework is that the effect of mesh size on the FE solution depends on the amount of strain 

localisation, which varies depending on the stress state [19]. Kõrgesaar and Kujala [20] proved that 

the approach was feasible based on a comparison with available experimental data, the force-

displacement curves of smaller panels and large-scale collision experiments. In addition, the effect of 

bending on the mesh size sensitivity of the analysis was discussed by Storheim et al. [21].

Experimental work is important to the validation of numerical models, and different efforts have been 

dedicated relatively recently to configurations that have aspects in common with those studied in this 

paper [4, 6, 22-24]. Both analytically based methods and finite elements have been used to assess the 

absorbed energy, but the details of the process can only be described by finite element approaches. 

Quinton et al. [25] demonstrated experimentally that hull capacity is significantly affected by whether 

an impact load acts entirely normal to the hull (and thus is stationary with respect to the hull location 

throughout the entire time history of the impact) or has a tangential component (and thus “slides” or 

“moves” along the hull during the impact). The authors showed that sliding loads causing plastic 

damage incite a structural response that varies as low as one-half the response of a similar structure 

under a stationary load of similar magnitude. That experimental work corroborates similar numerical 

predictions previously reported by Hong and Amdahl [26]. The present paper addresses the numerical 

prediction of hull response and onset and the development of hull fracture due to “stationary” impacts. 

It is important to note that the simulation of stationary loads is a special case of the more general 

problem of simulating sliding loads. One should not assume that the techniques appropriate for 

simulating stationary loads are sufficient for predicting responses to sliding loads.

2. Objective, description of benchmark study
Benchmark studies are important in comparing different research groups’ skills, best practices, 

assumptions and “traditions” regarding how to design numerical models and simulate and analyse, 

e.g., the structural response of a complex ship or offshore structure subjected to an impact load. Even 

if modelling guidelines and best practices are available, there are always sources of errors and 

uncertainties that lead to scatter in the simulation results. Benchmark studies help to compare and learn 

from all participants and systematically identify issues that require improvements and sometimes new 
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guidelines. Some important questions these studies discuss and try to answer are how large is the scatter 

in the results that can be accepted, which indicators or criteria should be used in the assessment, and 

probably most important of all, how can the lessons learnt be communicated to provide improvements 

and revised best practices.

The objective of this investigation was to present a benchmark study on participants’ ability, expertise 

and recommendations on how to design FE models for collision simulations. A reference experiment 

in which an indenter penetrates a ship-like structure was used as a case study. The case was designed 

to be similar to the realistic case in which a striking ship’s bulb penetrates the side-shell structure of a 

struck ship during a collision. Figure 1 presents a schematic and a photograph of the experiment 

involving the double-hull side-shell structure, which is penetrated by a solid half-sphere. 

Measurements from th(a)e experiment and stress-strain data from uniaxial tensile tests of the steel 

material in the structure were made available to the participants through previous work reported by 

Karlsson et al. [25].

 

Fig. 1. (a) Geometry of the side-shell structure and the indenter used in the benchmark study and (b) 

a photograph of the experimental setup.

Fifteen research groups world-wide participated. All are active in researching the collision and 

grounding of ships and offshore structures, and they have published numerous scientific papers on the 

topic. The majority of the participants are active in both the International Ship and Offshore Structure 

Committee (ISSC) [28] and in the MARSTRUCT Virtual Institute [29], which coordinated the 

benchmark study through the lead author of this paper. The participants received the same information, 

instructions, data and files prior to the start of the study:

 The geometric model of the setup: the side-shell structure, the indenter, and a reinforcing frame 

for the boundary conditions and control of the failure modes of the structure; see Section 2 for 

more details.

 The dimensions of all parts of the structure.

 The stress-strain curve obtained from uniaxial tensile tests of the material composing the side-

shell structure. 

 Coefficients from a curve fit of the stress-strain curve. 

 Clear definitions of the boundary conditions.
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 Definitions of the contact point and conditions between the indenter and the top of side-shell 

structure.

 The material properties of the rigid indenter.

 A description of how the experiment was carried out: the displacement-controlled conditions, the 

load rate and when the experiment was terminated.

The participants submitted individual reports of their results and recommendations on how to design 

the FE model and perform the numerical simulation of the experiment. The information in these reports 

was compiled and is presented in this study:

 Detailed description of the FE model and all assumptions that were made, e.g., choice of finite 

element type and mesh resolution of the different parts of the structure.

 The FE software and version that was used.

 Modelling of the boundary conditions in the experiment.

 Modelling of the contact and loading conditions in the experiment.

 Choice of constitutive material model for simulating the elastic-plastic behaviour of the material, 

which material data were used in the model, and whether strain-rate effects were considered in the 

model. 

 The choice of failure model/criterion that was used in the FE analysis together with the used and 

assumed properties.

 Other models and assumptions made, such as Barba’s law [30] for the effect of elements’ 

dimensions on the value of the fracture strain.

Three types of results were reported by each participant: (1) the reaction force-indenter displacement 

curve, (2) the internal energy-indenter displacement curve, and (3) a table presenting the indenter 

displacement value at which a structural member failed/fractured, buckled, etc. in the FE simulation. 

These results were compared among the participants and discussed in relation to how the different FE 

models were designed and the simulations were performed. Section 3 of this paper provides a brief 

summary of the reference experiment. In Section 4, a summary of the fifteen FE models is presented, 

followed by a comparison of the results from the FE simulations and the experiment in Section 5. The 

section includes a discussion of the results and recommendations for how this type of FE simulation 

should be carried out with respect to the FE model parameters, constitutive material model and failure 

criteria. The conclusions of the study are presented in Section 6.
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3. Reference experiment
The ship-like structure test geometry designed by Karlsson et al. [27] was used as the reference 

structure. It resembles a typical double-hull side-shell structure (hereafter referred to as the test object) 

of a ship subjected to a collision load, where the bulb of the striking ship penetrates the struck ship 

structure. To fit the test object to the testing machine, the object was scaled to one-third the size of a 

similar full-scale ship structure. This section provides a brief description of the experimental setup and 

how the experiment was carried out to make the presentation of the benchmark study complete. A 

detailed description and analyses of the experiment are presented by Hogström et al. [3] and Karlsson 

et al. [27]. 

3.1 Description of the test object, boundary and contact conditions
The test object consisted of one outer and one inner side-shell, web/stringer sheets, web/stringer beams 

and stiffeners in the form of L-profiles. The global dimensions L W H of the structure were 1500  

mm 1090 mm 300 mm, and the sheet thickness was between 3 mm for the thinnest elements and 5  

mm for the thickest structural elements. To establish well-defined boundary conditions, a reinforcing 

rigid frame was designed around the structure. Figure 2 shows the geometry and the dimensions 

without the reinforcing frame.

Fig. 2. Dimensions of the test object, from Karlsson et al. [27].

The reinforcing frame was designed and welded around the test object along its edges to create clamped 

boundary conditions and to ensure well-controlled failure modes of the structure. The lower part of the 

frame was welded to a rigid fixture. Four displacement transducers were positioned in two directions 

on the supporting frame and fixture. The transducers measured the frame’s deformations to ensure that 

the fixture’s deformations during the tests were negligible; see Fig. 3 for the experimental setup, where 

two of the displacement transducers are shown in front and to the left of the test object.

Fig. 3. Photograph of the test object in the test rig with the indenter (half-sphere),

the reinforcing frame welded to the rigid fixture, and the displacement transducers.

The test object was manufactured from K240-Z shipbuilding mild steel. The indenter was created as a 

solid (rigid) half-sphere with a radius of 135 mm and made from SS2541 steel. Friction tests without 

lubrication were carried out by Karlsson et al. [27], who showed that the kinematic friction coefficient 

was 0.230.01 for the current contact conditions.
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3.2 Test procedure and measurements
The test object was mounted in a press machine with a 20 MN load capacity. To relax the residual 

stresses caused by welding the test object’s sheets to the frame before the test, the indenter was pushed 

perpendicularly to load and unload the structure at low speed ten times. The magnitude of the load in 

this loading sequence was within the elastic region of the material. 

The indenter penetrated the structure with a constant displacement rate of 4 mm/s. The collision point 

was located at the centre of the sheet (see Fig. 3), and the loading direction was perpendicular to the 

upper sheet’s surface. The experiment was interrupted when the lower sheet was fully penetrated by 

the indenter. Throughout the experiment, the resultant force in the load cell, the position of the indenter, 

and the displacement transducers on the rigid frame were monitored and recorded. The total calculated 

measurement uncertainty for the maximum force was less than 1%. The reported uncertainty 

corresponded to an approximately 95% confidence interval around the measured value; see Karlsson 

et al. [27] for details.

4. Finite element models and analyses of the experiment
The participants of the benchmark study created their FE models by using the geometry file that defined 

the geometries of the test object, the indenter and the reinforcing frame. None of the welds were 

modelled in the FE models. The indenter was modelled as a rigid body and was allowed to move only 

in the direction perpendicular to the upper sheet at a constant displacement rate. Figure 4 shows an 

example of an FE model with and without the reinforcing frame; the rigid indenter is not shown in the 

figure. Table 1 presents a summary of the participants’ different FE model definitions and parameters. 

Two FE solvers were used, ABAQUS [31] and LS-DYNA [32]; all modelling details referring to these 

solvers can be found in the corresponding references.

Fig. 4. Example of an FE model of the test object:

(a) with the reinforcing frame and (b) without the reinforcing frame.

Table 1. Summary of the participants’ FE model definitions and parameters.

The majority of the participants carried out convergence analyses to determine the mesh size of the FE 

model. All participants used four-node shell elements with five section points through the thickness. 

“Element size” in Table 1 refers the primary size of the elements in the parts of the structure that 

undergo failure and fracture under the numerical simulation. Recommended practice prescribes that 
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the element length to thickness ratio, l/t, should be approximately 5. It should be noted that l/t varies 

from 2 to 6 among the FE models in Table 1.

The users of ABAQUS/Explicit used the “general contact conditions” criterion to define the contact 

conditions together with the coefficient of frictions presented in Table 1. This contact criterion enforces 

contact constraints using a penalty contact method, which searches for node-into-face and edge-into-

edge penetrations. Similarly, the users of LS-DYNA used the coefficient of frictions in Table 1 but 

two different contact criteria: “automatic surface-to-surface” for the contact between the indenter and 

the test object and “automatic single surface” for the contacts between other structural components. 

Furthermore, it should be noted that to save computation time, the indenter speeds were often much 

higher in the FE analyses compared with those in the physical experiment, without, however, 

exhibiting any dynamic effects. The material properties did not include any effects from high loading 

rates; further details are provided in this section. 

The indenter was assumed to be rigid with a Young’s modulus of 206 GPa, Poisson’s ratio of 0.3 and 

density of 7,850 kg/m3. The test object and reinforcing frame were originally manufactured from 

K240-Z shipbuilding mild steel with a density of 7,850 kg/m3 and Poisson’s ratio 0.3. The properties 

of this material were determined based on a few tensile tests carried out and presented by Karlsson et 

al. [27]. The results were, however, not sufficient for detailed modelling and calibration of material 

parameters for different types of failure and fracture criteria. Therefore, Hogström et al. [3] carried out 

an in-depth investigation of material properties and parameters for the K240-Z shipbuilding mild steel 

and the similar NVA shipbuilding mild steel for which additional test results were available and more 

tests were carried out. It was found that the K240-Z and NVA shipbuilding steels had similar 

properties. Hence, the latter was used in the current study because more material parameters could be 

provided to the participants of the benchmark study. 

Figure 5 presents the stress-strain curve obtained from uniaxial tensile tests of the NVA shipbuilding 

mild steel. The participants received the raw data from the experiment. The isotropic hardening of the 

inelastic stress-strain relation follows the power law described by Eq. (1). The values of the material 

parameters that describe the non-linear material behaviour were calculated by curve fitting and shared 

with the participants: yield stress, y = 290 MPa; hardening coefficient, K = 616 MPa; hardening 

exponent, n = 0.21; necking strain, n = 21%; and fracture strain, f = 26%; the Young’s modulus was 

206 GPa.
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true = K(true)n (1)

Fig. 5. True stress-strain relationship for the NVA shipbuilding mild steel.

Table 2 presents a summary of the constitutive material models and their parameters for each FE 

model. In all of the cases, the material was represented by a nonlinear elastic-plastic constitutive 

material model with isotropic hardening. Because the physical experiment was carried out at low 

speed, strain-rate effects were considered negligible, i.e., they were disregarded in the analyses. The 

summary shows that the participants used the provided information in different ways, using more than 

the two possibilities that were suggested; they implemented either the raw data from the uniaxial tensile 

test or the material properties that can be used in the power law for isotropic hardening of the inelastic 

stress-strain.

Table 2. Constitutive material models and material parameters for

the test object and the reinforcing frame.

One large difference between the FE models was related to which failure criterion was preferred and 

how the damage was modelled. The majority of the participants used a failure criterion that does not 

consider stiffness degradation after the necking point. Few participants used a multiple damage 

criterion that separates the damage and failure processes into damage initiation (from the strain at the 

yield stress to the strain at the necking point) and damage evolution (from the strain at the necking 

point to the strain at the fracture point) and thereby accounts for stiffness degradation after the necking 

point according to constitutive mechanics principles. Table 3 presents a summary of the failure criteria 

and the damage models that were used in the FE models. All participants checked or corrected the 

element size’s effect on the value of the fracture strain. It was stated in the comments whether Barba’s 

law [30] or any other model was implemented in the FE model to allow for the fracture strain’s 

dependence on the element size and thickness in different parts of the FE model.

Table 3. Summary of the preferred failure criterion for each FE model,

how damage was modelled and values of relevant and used material parameters.
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5. Results and discussion
The results of the FE simulations of the reference experiment are presented, compared and discussed 

with respect to the resultant vertical force versus indenter displacement (Section 5.1), the internal 

energy versus indenter displacement (Section 5.2), and analyses of deformations and failure modes 

(Section 5.3), and a general discussion is provided (Section 5.4). As in the experiment, the FE 

simulations were run until an indenter displacement of 0.5 m was reached. This indenter displacement 

corresponds to a full penetration of the indenter through both sheets of the test object. It should be 

noted that the registered signals from the four displacement transducers showed that the reinforcing 

frame was perfectly rigid throughout the experiment.

5.1 Resultant vertical force versus indenter displacement 
Figure 6 shows the resultant vertical force of the indenter versus its vertical displacement. The origin 

for the measurement of the displacement was on the upper surface of the upper sheet of the structure. 

The penetration of the upper sheet is depicted by the first peak and the penetration of the lower sheet 

by the second peak; see Section 5.3 for a detailed analysis of the deformations and failure modes. 

Overall, the results from the FE simulations capture the trend and show good agreement with the 

experiment. There is minor scatter between the FE simulations, and the result obtained from the 

experiment is in the middle of all the curves, at least until the intender displacement is approximately 

0.35 m. Beyond that value, the majority of the FE simulations overestimate the force at the second 

peak, where the penetration of the lower sheet occurs, and a small offset in the displacement arises 

when it occurs. The results in Fig. 6(b) show that neither the users of the FE solver ABAQUS nor those 

of LS-DYNA mimic the results from the experiment better than the other.

Fig. 6. Resultant vertical force versus displacement of the indenter. (a) Results from the reference 

experiment in [27] and the FE simulations of the benchmark study; (b) the same results presented in 

(a), where the black curves represent the users of the FE solver ABAQUS and the red curves represent 

the users of LS-DYNA. 

5.2 Internal energy versus indenter displacement
The processes of plastic deformation and fracture of the test object are complex. In the design and 

analysis of crashworthiness of structures, the internal energy, i.e., the energy absorbed through 

deformation and fracture of the structure, is an important property in resisting external loadings. Figure 

7 presents the internal energy versus the displacement of the indenter from the experiment and the FE 

simulations. Curves No. 2, 3, 7, 9 and 14 show excellent agreement with the curve from the experiment, 
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and curve No. 8 stands out because it is the only FE simulation that overestimates the internal energy. 

All other curves underestimate the internal energy relative to that determined by the experiment. The 

results in Fig. 7(b) show that neither the users of the FE solver ABAQUS nor those of LS-DYNA 

mimic the results from the experiment better than the other.

Fig. 7. (a) Energy absorbed by the structure versus indenter displacement and (b) the same result 

presented in (a), where the black curves represent the users of the FE solver ABAQUS and the red 

curves represent the users of LS-DYNA. 

5.3 Analysis of deformations and failure modes
Events referring to the deformation and fracture of the test object were identified to enable a 

comparison between the experiment and the FE models. Table 4 presents the nine events and their 

indenter displacements, which could easily be identified in an FE simulation but only in eight of the 

cases in the experiment (event 1 could not be observed). Figure 8 presents markers of the events in the 

curve from the experiment for the resultant vertical force versus indenter displacement. The markers 

refer to the mean values of the indenter displacement from FE simulations and the observations and 

registered values in the experiment. Figure 9 presents snapshots from an FE simulation of the deformed 

structure for each event.

Table 4. Summary of the preferred failure criterion for each FE model,

how damage was modelled and values of relevant and used material parameters.

Fig. 8. Presentation of the events in the curve from the experiment for the resultant vertical force versus 

indenter displacement. The markers “o” refer to the mean values of the indenter displacement from the 

FE simulations, and “*” represents the observations in the experiment. The error bars represent the 

standard deviation for each event from the FE simulations; see Table 4.

Fig. 9. (a) Event 1: initiation of plasticity expansion of the T-beam. (b) Event 2: tripping of the T-

beam. (c) Event 3: buckling of the webs of the two central L-profiles attached to the upper sheet. (d) 

Event 4: fracture initiation of the upper sheet. (e) Event 5: folding of the webs of the two central L-

profiles attached to the upper sheet. (f) Event 6: T-beam off. (g) Event 7: T-beam starts to contact with 

the L-profile attached to the lower sheet. (h) Event 8: contact of the indenter with the lower sheet. (i) 

Event 9: fracture initiation of the lower sheet.
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The results show rather good agreement between the simulations and the experiment for all the events, 

except for event 9. Prior to this event, the test object has undergone large plastic deformation and 

fracture of several structural members. It is a true challenge to capture the last event of the fracture of 

the lower plate. It is also possible that the predictions made by the FE simulations are within the range 

of the total uncertainty of the experiment, particularly at the instant that event 9 occurs. Because the 

results from only one experiment were available, it was not possible to find a better explanation for 

this deviation.

Not all of the events were observed by all participants of the benchmark study; events 2, 3, 5, 6 and 7 

were not identified by everyone. One FE model could not observe any of these 5 events, one FE model 

missed events 3 and 6, and two other FE models missed event 3. Analyses of the FE models showed 

that the mesh resolution of the structural members (not the upper and lower sheets) and supporting 

structures that were involved in the deformation processes leading to these events may not be adequate. 

Hence, finer meshes of the FE models should have been used.

5.4 Discussion
The summaries of the FE models in Tables 1 to 3 show that the FE models have many similarities but 

also differences as a result of the variety of assumptions, experiences and interpretations among the 

participants according to their own best practice. Nevertheless, the total scatter is low, and the 

agreement with the results from the experiment was found to be generally very good.

Out of the fifteen participants, four used the FE software ABAQUS and eleven used LS-DYNA. The 

results presented in Figs. 6(b) and 7(b) show that neither the ABAQUS nor LS-DYNA users mimic 

the results from the experiment better than the other. The results from participants No. 2, 3, 7, 9, 10 

and 14 show the best agreement with the experiment with respect to (i) the reaction force versus 

intender displacement (see Fig. 6), (ii) energy versus indenter displacement (see Fig. 7), and (iii) 

prediction of the failure modes in Table 4. A model uncertainty analysis of how these FE models were 

defined showed the following: 

 All included the reinforcing frame in the FE model. 

 They used a mesh size of either 10 or 15 mm, and the fracture strain was adjusted according to 

Barba’s law [30] or the researchers’ own methodology.

 Two used ABAQUS but with different failure criteria and damage models; three used LS-DYNA 

and the same failure criterion. 



15

 All but participant No. 7 used the power law coefficient K and exponent n provided at the outset 

of the benchmark study; No. 7 used the curve (raw data) from the uniaxial test and created their 

own curve fit, which can also be observed in the values of the yield stress and the fracture strain 

(which were included in addition to the mesh size dependence in the method that was used).

The difference between ABAQUS FE models No. 2 and 3 lay in which failure criterion and damage 

model were used, but this difference caused only a minor variation in the results. Similarly, the 

difference between LS-DYNA FE models No. 10 and 14 was the mesh size with the adjusted value of 

the fracture strain; the difference in the Young’s modulus was assumed to be negligible for the current 

case because of the large plastic deformations and fracture processes. The conclusion is that despite 

these deviations in these factors, they were not sufficient to significantly influence the uncertainty in 

the prediction of the experiment’s characteristics using these FE models.

The force-deformation curves are predicted generally quite well, as expected. Certain differences, 

however, can be observed, which could be due to the use of different mesh sizes but are more likely 

due to differences in the adopted stress-strain relationships. It is observed that No. 8 and 13 obtain a 

high initial peak; this result is expected because they assume a large fracture strain. Model No. 7, on 

the other hand, which used the largest fracture strain of all, does not follow this trend although the 

same fracture criterion is used (effective plastic strain). This difference is likely due to a different 

stress-strain relationship; the early softening and significant deviation from the experimental curve 

might be explained by early localisation due to less pronounced strain hardening. The use of a high 

yield stress could also be an indicator. Thus, the force level is good, while the strain level is not as 

good.

Based on the results of this benchmark study, the authors found it difficult to pinpoint which model 

parameters or factors contributed the most to the uncertainty in the prediction. The scatter in the results 

was low, and the participants were observed to have good experience in designing FE models and 

establishing this type of simulation. It could be a coincidence of small variations in the model 

definitions that caused five of the FE models to show somewhat less agreement with the reference 

experiment. In contrast to the FE models 2, 3, 7, 9, 10 and 14,

 No. 1 and 4 used different power law data for K and n, and No. 4 used a different constitutive 

material model. 
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 No. 5 did not consider the reinforcing frame in the FE model. Participant and FE model No. 13 

did not include the frame either, but other differences in model parameters may have cancelled the 

effect of not including the reinforcing frame.

 No. 11 used different power law data for K and n and the BWH instability criterion in [21], which 

did not consider post-necking damage.

 No. 15 featured a different combination of element size and fracture strain compared with the 

other FE models but essentially had the same other model definitions.

The results from this benchmark study can serve as a guideline on how to design FE models and 

establish a numerical simulation of ship collisions. The summaries presented in Tables 1 to 3, together 

with the results discussed in Section 5, show how different combinations, selections and variations of, 

e.g., element size, failure criterion and damage models, material data and parameters in general affect 

and contribute to the variability and uncertainty in a numerical simulation of ship collisions. It is 

strongly recommended to conduct parameter sensitivity analyses prior to “sharp” FE simulations. All 

the participants of this benchmark study worked according to this principle before they submitted their 

recommended FE model, its definitions, and simulation results.

6. Conclusions
This paper presented a benchmark study on collision simulations initiated and organised by the 

MARSTRUCT Virtual Institute. A comparison of the participants’ ability, expertise and 

recommendations on how to perform the explicit FE simulation of an experiment in which an indenter 

penetrates a ship-like structure was presented. The experiment was designed to be similar to a realistic 

case in which a striking ship’s bulb penetrates the side-shell structure of a struck ship during a collision. 

Fifteen experienced research groups within the field of ship collision and grounding participated world-

wide. The results from fifteen FE models and simulations of the experiment were compared with 

respect to resultant force versus indenter displacement, internal energy versus indenter displacement, 

and failure modes of the ship-like structure.

The summary of the results from all FE simulations showed low scatter, and the agreement with the 

results from the experiment was generally very good. Despite some variations in the FE models 

regarding, e.g., element size, boundary conditions, constitutive material model and material data used, 

the differences in the results must be considered acceptable considering the complexity in simulating 

this type of experiment with large plastic deformation and a number of sequential failure modes of the 

structure. Regardless of the choice of failure criterion and damage models used in the FE models – 
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shear failure criterion, equivalent plastic strain criterion, the BWH criterion, a multiple damage 

criterion with initiation and evolution – the scatter in the results between the FE simulations was 

acceptable and low. While the majority of the simulations somewhat underestimated the internal 

energy during the damage process, such an outcome is still considered to be on the “safe side” when 

considering the safety of the structure.

The main contribution of the study is its intention to serve as a guideline on how to design FE models 

and establish a numerical simulation of a ship collision. The summaries of the fifteen FE models and 

the results of their simulations show how different combinations, selections and variations of, e.g., 

element size, failure criterion and damage models, material data and parameters in general, affect and 

contribute to the variability and uncertainty in a numerical simulation of ship collisions. It is strongly 

recommended to conduct parameter sensitivity analyses prior to “sharp” FE simulations. All the 

participants of this benchmark study worked according to this principle before they submitted their 

recommended FE model, its definitions, and simulation results.
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Table 1. Summary of the participants’ FE model definitions and parameters.

ID FE solver Element type
Integration: 
reduced (R) 
or full (F)

Element size 
[mm]

Indenter 
speed 
[m/s]

Friction 
coefficient

Reinforcing 
frame in 
the model: 
Yes/No

1 ABAQUS/Explicit 
v6.13-3

S4R; hourglass 
control R

Sheets: 10
Other members: 
9.2-9.8

1.0 0.23 Yes

2 ABAQUS/Explicit 
v6.13-3

S4R; hourglass 
control R 15 1.0 0.23 Yes

3 ABAQUS/Explicit 
v6.13-4

S4R; hourglass 
control R 15 3.0 0.23 Yes

4 ABAQUS/Explicit 
v6.13-3

S4R; hourglass 
control R Upper sheet: 15

Lower sheet: 30 10.0 0.23 Yes

5 LS-DYNA v9.71 FE type 16 F 10 0.50 0.23 No

6 LS-DYNA v9.71, 
smp d R7.1.1 FE type 16 F 15 5.0 0.23 Yes

7 LS-DYNA v9.71, 
smp d R8.0.0

Belytschko-Lin-
Tsay elements R 10 2.0 0.23 Yes

8 LS-DYNA v9.71 Belytschko-Lin-
Tsay elements R 15 3.0 0.23 Yes

9 LS-DYNA v9.71
Hughes-Liu 
(HL) shell 
elements

R 9 0.50 0.23 Yes

10 LS-DYNA v9.71, 
smp d R7.0.0

Belytschko-Lin-
Tsay elements R 10 0.45 0.23 Yes

11
LS-DYNA v9.71, 
R7.0.0 double 
precision

Belytschko-Lin-
Tsay elements R 10 2.0 0.23 Yes

12 LS-DYNA v9.71, 
smp d R7.1.2

Belytschko-Lin-
Tsay elements R

Sheets: 10
Stiffener web: 
12

0.01 0.23 Yes

13 LS-DYNA v9.71 Belytschko-Lin-
Tsay elements F 20 2.0 0.23 No

14 LS-DYNA v9.71 Belytschko-Lin-
Tsay elements R 15 2.2 0.23 Yes

15 LS-DYNA v9.71 
R7.1.1

Belytschko-Lin-
Tsay elements R 10 1.0 0.23 Yes



Table 2. Constitutive material models and material parameters for

the test object and the reinforcing frame.

ID Constitutive material 
model Material

Young’s 
modulus, E 
[GPa]

Yield 
stress, y 
[MPa]

Stress-strain 
relationship: curve 
from test or 
inelastic power law 
(K and n)

Comments

1

Isotropic hardening, 
inelastic Swift power 
law with a yield 
plateau [33]

NVA mild 
steel 206 310 K = 700 MPa

n = 0.195
Own curve fit to curve 
from test. 

2
Isotropic hardening, 
inelastic power law 
in Eq. (1)

NVA mild 
steel 206 290 K = 616 MPa 

n = 0.21  

3
Isotropic hardening, 
inelastic power law 
in Eq. (1)

NVA mild 
steel 206 290 K = 616 MPa 

n = 0.21  

4
Modified Ludwik’s 
constitutive equation 
[34]

NVA mild 
steel 206 310.5 K = 406 MPa 

n = 0.468
Own curve fit to curve 
from test.

5 Mat.024-piecewise 
linear plasticity

NVA mild 
steel 206 290 Curve from test.

6 Mat.024-piecewise 
linear plasticity

NVA mild 
steel 206 290 Curve from test.

7
Mat.123-modified 
piecewise linear 
plasticity

NVA mild 
steel 206 325 Curve from test. Own fit of the yield 

stress.

8
Mat.123-modified 
piecewise linear 
plasticity

NVA mild 
steel 206 290 K = 616 MPa 

n = 0.21  

9 Mat.024-piecewise 
linear plasticity

NVA mild 
steel 206 290 Curve from test.

10
Isotropic hardening, 
inelastic power law 
in Eq. (1)

NVA mild 
steel 206 290 K = 616 MPa 

n = 0.21  

11

Isotropic hardening, 
inelastic Holloman 
power law with a 
yield plateau [35]

NVA mild 
steel 206 310 K = 720 MPa 

n = 0.21
Own curve fit to curve 
from test.

12 Mat.024-piecewise 
linear plasticity

NVA mild 
steel 206 310 Curve from test. Own fit of the yield 

stress.

13 Mat.024-piecewise 
linear plasticity

K240-Z 
mild steel 206 235 K = 658 MPa 

n = 0.194

Own curve fit to curve 
from tests in Karlsson 
et al. [27].

14 Mat.024-piecewise 
linear plasticity

NVA mild 
steel 210 290 K = 616 MPa 

n = 0.21  

15 Mat.024-piecewise 
linear plasticity

NVA mild 
steel 206 290 Curve from test.



Table 3. Summary of the preferred failure criterion for each FE model,

how damage was modelled and values of relevant and used material parameters.

ID Failure 
criterion

Clarification of the failure 
criterion and damage models

Necking 
strain, n [%]

Fracture 
strain, f [%] Comments

1

Fracture 
initiation 
based on 
element size 
and stress 
state.

No separate damage evolution 
model after necking. 0.21 0.26

Fracture criterion as 
described in [36]; no 
damage induced 
softening. Calibration of 
fracture parameters 
based on tensile test.

2

Multiple 
damage 
criterion: 
initiation and 
evolution.

Damage initiation was 
modelled using the shear 
criterion; damage evolution 
was modelled using a bilinear 
damage evolution model.

0.21 0.26

See [2, 31] for details 
regarding the damage 
initiation and evolution 
models. Barba’s law [30] 
is used in the FE model.

3 Shear failure 
criterion.

Own shear criterion in a 
VUMAT; see [17] for details. 
No separate damage evolution 
model after necking.

0.26

Allows for the influence 
of element size and 
thickness on the fracture 
strain value in the FE 
model according to a 
model in [17].

4 Shear failure 
criterion.

No separate damage evolution 
model after necking.  0.28

Allows for the influence 
of element size and 
thickness on the fracture 
strain value in the FE 
model according to a 
model in [37].

5 Effective 
plastic strain.

No separate damage evolution 
model after necking.  0.26

6 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.26

7 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.525

The fracture strain was 
calculated according to 
[38] and considered the 
influence of mesh size. 
Allows for the influence 
of element size on the 
fracture strain value in 
the FE model.

8 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.45

The fracture strain was 
calculated according to a 
model in [15]. Allows 
for the influence of 
element size and 
thickness on the fracture 
strain value in the FE 
model.

9 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.35

The value of the fracture 
strain was revised using 
Barba’s law [30] to 
match the mesh size of 
the FE model.

10 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.43

The value of the fracture 
strain was studied in a 
parametric study (mesh 
size was one of the 
parameters) before one 



recommended and final 
value was decided.

11

The BWH 
(Bressan-
Williams-
Hill) 
instability 
criterion in 
[39].

The criterion was used 
without the post-necking 
damage model presented in 
[21].

0.21  
The fracture strain is not 
used in the failure 
criterion.

12

The 
Germanischer 
Lloyd (GL) 
criterion 
based on thru 
thickness 
plastic strain 
[1].

No separate damage evolution 
model after necking. 0.26

13 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.35

The value of the fracture 
strain was studied in a 
parametric study (mesh 
size was one of the 
parameters) before one 
recommended and final 
value was decided.

14 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.39

The value of the fracture 
strain was studied in a 
parametric study (mesh 
size was one of the 
parameters) before one 
recommended and final 
value was decided.

15 Effective 
plastic strain.

No separate damage evolution 
model after necking. 0.315 Barba’s law [30] is used 

in the FE model.



Table 4. Summary of the preferred failure criterion for each FE model,

how damage was modelled and values of relevant and used material parameters.

Event 
No.

Description of the 
event

Experiment: 
indenter 
displacement 
[mm]

FE simulations: 
mean value of the 
indenter 
displacement [mm]

FE simulations: 
standard deviation 
of the indenter 
displacement [mm]

No. of participants 
that identified the 
event in their FE 
simulation

1

Initiation of 
plasticity 
expansion of the 
T-beam.

No data 
available. 11.6 4.7 15

2 Tripping of the T-
beam. 103 89.4 18.9 14

3

Buckling of the 
webs of the two 
central L-profiles 
attached to the 
upper sheet.

132 145.2 18.8 11

4
Fracture initiation 
of the upper 
sheet.

157 157.6 19.6 15

5

Folding of the 
webs of the two 
central L-profiles 
attached to the 
upper sheet.

173 169.7 39.7 14

6 T-beam off. 216 236.6 22.3 13

7

T-beam starts to 
contact with the 
L-profile attached 
to the lower 
sheet.

254 264.2 17.8 14

8
Contact of the 
striker with the 
lower sheet.

291 317.2 18.7 15

9
Fracture initiation 
of the lower 
sheet. 

399 423.6 12.2 15


