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Abstract—This paper develops a method for deciding when to
update the prediction model or transmit a set of measurements
from the sensor to the fusion centre (FC) to achieve minimal data
transmission in a dual prediction scheme (DPS). The proposed
method chooses a transmission strategy that results in the lowest
expected future transmission cost among a given set of strategies.
In a practical IoT setting, statistical information of the measure-
ments might be limited. Hence, without assuming any distribu-
tion for the measurements, the proposed method estimates the
transmission cost for each strategy through bootstrap data where
associated model residuals are resampled using the maximum
entropy bootstrap algorithm, which preserves several stochastic
properties of the empirical distribution. Numerical results with
simulated and real world data shows that the proposed method
results in significant reduction in the transmitted data.

I. INTRODUCTION

The Internet-of-things (IoT) holds great potential for infras-
tructure monitoring, smart cities, and digital society due to
the paradigm of connecting myriads of sensors that monitor
various physical phenomena and analyzing the vast amount
of data acquired. The utility of IoT depends on the ability of
the sensors to deliver relevant and accurate measurements to
the destination or fusion center (FC) on time. However, data
communication consumes significant portion of the energy
resources at the sensor nodes. The sensor nodes have lim-
ited energy storage capabilities and extensive communication
severely reduces their lifetime [1]. Therefore, we need ap-
proaches that reduce the number of data transmissions from the
sensors without compromising the data accuracy, and thereby
enhance utility and prolong lifetime of sensor nodes.

The sensor measurements in IoT tend to be spatio-
temporally correlated, which can be exploited to reduce the
number of transmitted measurements. This has motivated
solutions such as adaptive sensing [2], [3], data compression
[4], and data aggregation [5] to reduce the communication
from sensor nodes. However, in delay-sensitive and safety-
critical applications [6], it is important to fulfill real-time
monitoring requirements, where compressing or aggregating
data is not an option.

These shortcomings can be overcome by prediction based
data-reduction methods [7]–[9], in which the FC replaces
missing transmissions with predictions. One such method is
the dual prediction scheme (DPS) [9]–[16], which can lead to
sparse transmissions in time, low latency, and bounded error
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at the FC. The DPS is based on the idea of employing an
identical prediction model for the sensor measurement process
at both the sensor and FC. The model is used to predict
the future sensor measurement, and if the prediction error
is below a predefined threshold, the sensor node does not
transmit the measurement and the FC registers the locally
predicted value instead of the true measurement. The number
of transmission instances, for a given threshold, depends on
the prediction accuracy, which is influenced by the choice of
prediction model, model parameter estimates and input data. In
literature, the prediction models suggested are in the form of
time series models [12], adaptive filters [13], [14], a weighted
average [17], or a hybrid of two prediction models [15].

In practice, the sensors observe processes that are often
dynamic and non-stationary [18]. Hence, to maintain an
acceptable prediction accuracy, the model parameters need
to be re-estimated and transmitted to the FC on a regular
basis. In addition, if the input variables to the predictor, i.e.,
predictions and/or true measurements, get outdated, the sensor
and FC predictors need to update their inputs with more
recent measurements, which incur sensor-FC communication.
Although the works in [7], [12]–[16] consider protocols for
updating the prediction model to account for changes in
the measurement process, they do not evaluate whether such
update improves the prediction accuracy. Therefore, energy
efficiency for communication can be enhanced by protocols
that are not only selective in transmission of measurement
data, but also in transmission of model parameter updates.

In this paper, we present a method for DPS that reduces the
amount of data transmissions in the sensor-to-FC communica-
tion link. Our method decides on a transmission strategy that
minimizes the expected future transmission cost. In particular,
we generate measurement trajectories by bootstrapping model
residuals and estimate the future transmission costs for each
strategy. Our approach of estimating the transmission cost is
similar to pricing financial derivatives in quantitative finance,
where the future pay-out is a path-dependent function of an
underlying asset [19], [20].

In large IoT networks sensor measurement distributions tend
to be heterogeneous and non-stationary, and it is appropriate to
use robust estimation techniques [21] where the performance
is less sensitive to inaccurate assumptions of measurement
distributions. The bootstrap method is an efficient tool to
avoid using estimators derived from assumed distributions,



by resampling from the empirical distribution [22], [23]. To
create the simulated trajectories we use model-based bootstrap
and resample the model residuals using the maximum entropy
bootstrap algorithm [24], [25], which preserves the mean,
variance and time dependence structure of the empirical distri-
bution. We test our approach on simulated as well as real data
and observed that the proposed method yields transmission
reductions up to 92%.

II. BACKGROUND AND PROBLEM FORMULATION

A dual prediction scheme (DPS) exploits correlation in
consecutive measurements to reduce the amount of communi-
cation between sensors and fusion centre (FC). In DPS sensors
selectively transmit the measurements to the FC that replaces
missing measurements by local predictions. For this purpose,
identical predictors are employed at both the sensor and FC.
Consequently there is an associated tracking error at the FC,
since stored predicted values differ from true measurements.
Since the sensor can calculate the prediction error, it transmits
information to the FC only when the prediction error exceeds
a predefined threshold. This ensures that the data at the FC
differs from the true observation at most by the predefined
error threshold.

Let x̂t denote the prediction of measurement xt at time
t and γ represent the accuracy threshold. The measurement
registered for traditional DPS at the FC can be expressed as

xFC
t =

{
x̂t, if |xt − x̂t| ≤ γ,
xt, if |xt − x̂t| > γ.

(1)

The predicted value x̂t at the FC and sensor can be obtained
by using the prediction model given by

x̂t = h(θt,x
FC
t−1), (2)

where the function h : Rp×Rn → R defines the model, θt =
[θt,1, θt,2, . . . , θt,p]T ∈ Rp denotes the prediction model pa-
rameter of dimension p and xFC

t = [xFC
j1
, xFC

j2
, . . . , xFC

jn
]T ∈

Rn is the data available at the FC for predictions, where
ji ∈ {1, 2, . . . , t} and n is number of values. Note that xFC

t

can consist of both measurements and predictions according
to (1).

From (1) and (2), we see that a measurement xt is trans-
mitted due to: volatility of the process xt, outdated model
parameter θt, or, inaccurate predictor input xFC

t . Therefore,
the model parameters θt and input variables xFC

t−1 must
occasionally be updated to reduce the number of future trans-
missions. The model parameters are continuously re-estimated
at the sensor node and can be transmitted to the FC to replace
the model parameters currently used by predictor. The input
variables can be updated by having the sensor transmit a set x̃t

of k, k ≤ n, of missing measurements, such that all the input
variables for the upcoming prediction are true measurements.

Let dt ∈ S denote the decision by sensor at time t and
S = {0, 1, 2, 3, 4} denote the set of strategies available at
the sensor. If the prediction error magnitude is below the
accuracy tolerance level γ no transmission takes place and
dt = 0. Otherwise, the sensor either decides to transmit the

TABLE I
TRANSMISSION STRATEGIES AND COST FOR CURRENT TIME.

Strategy s Transmit Current Transmission Cost Mt(s)

0 - 0

1 xt 1

2 x̃t k

3 θ̂t p

4 x̃t and θ̂t p+ k

measurement xt, i.e., dt = 1, or to improve the prediction
accuracy by transmitting a set of missing measurements x̃t

i.e. dt = 2, or re-estimated model parameters θ̂t to the FC i.e.
dt = 3 or transmit both x̃t and θ̂t, which is represented by
dt = 4. The transmission strategies available at the sensor is
summarized in Table I.

After a sensor transmission is triggered according to (1), the
sensor-to-FC communication protocol decide on the strategy
that leads to the lowest number of transmissions in future. The
transmission cost for the current time Mt(s) that is associated
with each strategy is summarized in Table I. In previous
literature [7], [12]–[16], the protocols for updating model
parameters or inputs are ad-hoc, and do not consider whether
such updates reduce future transmission cost. The energy-
efficiency for communication can, therefore, be enhanced by
a more selective transmission of (x,θ̂t, x̃t).

In the following section we propose a transmission strategy
that projects the least future transmission instances within a
given prediction horizon. We estimate the expected number of
future transmission instances given each strategy by simulating
the number of future transmission instances. For the simulation
we use model-based bootstrap, where we resample from the
empirical distribution. We choose this approach to avoid
relying fully on an assumed parametric distribution.

III. BOOTSTRAP BASED COST-AWARE DUAL PREDICTION
SCHEME

This section presents a method for deciding which transmis-
sion strategy should be chosen at a transmission instance in
DPS. The proposed cost-aware dual prediction scheme (CA-
DPS) relies on model-based bootstrap to estimate the future
transmission cost associated with each strategy in DPS.

A. Decision criterion for transmission reduction

Assuming that a transmission is triggered at time t accord-
ing to (1), the expected number of transmission instances in
future Nt(m, s) during time period (t, t+m] is given by

Nt(m, s) =

t+m∑
k=t+1

Ex[1(|xk − x̂k| > γ) | dt = s], (3)

where 1(·) is an indicator function having value 1 if the
condition in the argument is true and 0 otherwise, and the
expectation over the distribution of xt.



The expected total transmission cost for time period [t, t+
m] in future due to choosing strategy dt = s at time t is given
by

Ct(m, s) = Mt(s) +Nt(m, s), (4)

where Mt(s) is the current transmission cost at time t as
described in Table I. The transmission strategy chosen at
triggering time t, dt = s∗(m), is the one that minimizes the
expected total transmission cost

s∗(m) = arg min
s∈S

Mt(s) +Nt(m, s). (5)

Since Mt(s) is known apriori, we only need to determine
Nt(m, s) from (3).

However, evaluating (3) is intractable and requires knowl-
edge of the distribution of xt, which is seldom available for
real-world measurements in IoT. To overcome this, we find an
estimate of Nt(m, s) that is subsequently used to determine the
decision criterion as s∗(m) = arg mins∈SMt(s) + N̂t(m, s).
In the next section, we present the approach for estimating
Nt(m, s).

B. Estimating the number of future transmissions

We propose to find an estimate N̂t(m, s) of the number of
future transmissions Nt(m, s) using the bootstrap paradigm
[26]. In this approach, we generate L future trajectories of the
measurements [x

(l)
t+1, x

(l)
t+2, . . . , x

(l)
t+m]T , l = 1, 2, . . . , L, in the

time interval [t + 1, t + m] by drawing resamples from the
empirical distribution of measurement process xt. Thereafter,
DPS described in Section II is applied to each trajectory given
the model parameters and input variables corresponding to
each strategy s ∈ S to compute the number of transmissions
for the lth resample, which is denoted by N (l)

t (m, s). We then
estimate Nt(m, s) by taking the average of N (l)

t (m, s) i.e.,

N̂t(m, s) =
1

L

L∑
l=1

N
(l)
t (m, s), ∀s ∈ S. (6)

We use model-based bootstrap [27] to draw the resamples
of xt. The future trajectories of xt are obtained by sequentially
using the estimated prediction model in (2), with re-estimated
model parameters θ̂t, and adding resampled residuals from the
empirical distribution of the estimated model residuals.

Define the model residual ei as

ei = xi − h(θ̂t,xi−1), (7)

where xi is a set xi = [xj1 , xj2 , . . . , xjn ]T ∈ Rn and ji ∈
{1, 2, . . . , i}. Starting from measurement xt, we generate the
next time step x(l)t+1 of the lth simulated trajectory as

x
(l)
t+1 = h(θ̂t,xt) + e

(l)
t+1, (8)

where e(l)t+1 is a resampled from the empirical distribution of
model residuals. The model residuals are resampled using the
maximum entropy bootstrap algorithm (with scale adjustment)
described in [24], [25], which preserves several stochastic
properties such as temporal correlation, variance and mean

from the empirical distribution. We repeat the same procedure
to create a full trajectory [x

(l)
t+1, x

(l)
t+2, . . . , x

(l)
t+m]T .

To capture changes in the measurement distribution of xt
we estimate θ̂t from a sliding time window of w previous mea-
surements and compute the model residuals for the empirical
residual distribution.

IV. EVALUATION

To evaluate the performance, we test the proposed cost
aware dual prediction scheme (CA-DPS) using a linear pre-
diction model on both synthetic and real-world data.

A. Synthetic data − Gaussian random walk with drift

The synthetic data set follows a Gaussian random walk with
drift, xt+1 = xt + θt + zt, where zt ∼ N(0, σ2) and σ = 0.1.
The drift parameter θt gives the linear trend of the process
and was simulated as constant until it made random normal
distributed jumps ∆θt ∼ N(0, 1) with a probability of 0.02.
The assigned predictor h has the form x̂t+m = xt + mθ̂FC

t ,
where θ̂FC

t is the estimate of θt available at FC. The maximum
likelihood estimate of θt, computed at the sensor whenever a
transmission is triggered, is given by [28]

θ̂t =
xt − xt−w+1

w − 1
. (9)

where w is the window size. Consequently, we have θ̂FC
t = θ̂t

for strategies s = 3 and s = 4 whenever the error bound is
violated, and θ̂FC

t = θ̂FC
t−1 otherwise.

We compare the method to an oracle solution (ORACLE),
where the sensor knows the distribution of xt and transmits the
model parameters every time the distribution changes. We also
compare the proposed method to a constant prediction model
(CM), where the prediction is the last transmitted measurement
for which the registered measurement at the FC is [29]

xFC
t =

{
xFC
t−1, if |xt − xFC

t−1| ≤ γ,
xt, if |xt − xFC

t−1| > γ.
(10)

Figure 1 shows the percentage of data transmitted versus
accuracy γ for ORACLE, CM, and CA-DPS with window
size w = 10 to estimate θt, m = 10 time steps, and L = 50
resamples. We see that CM performs poorly since the model
does not capture the drift component θt in the process xt. For
CA-DPS, the FC model parameter is updated in line with the
ORACLE method.

Since the decision criterion is based on the estimate
N̂t(s,m), we compared the distribution of simulated transmis-
sion instances to the realizations of Nt(s,m) at each trans-
mission time instant. Table II shows the percentage of data
transmitted (DT) and percentage of transmission strategies
picked, for which strategies s = 1 and s = 3 were most
frequent. To evaluate the efficacy of the proposed method, in
Table II we present the mean absolute difference (MAD) be-
tween estimates N̂t(s,m) and realized transmission instances
Nt(s,m), coverage probability (CP), defined as the percentage
of realized transmission instances Nt(s,m) included in the
90%-confidence interval of the empirical distribution of the
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Fig. 1. Percentage of data transmitted versus accuracy γ for CM and CA-DPS
with sliding window length w = 10, forecast horizon m = 10 and L = 50
trajectory simulations.

TABLE II
PERFORMANCE OF FUTURE TRANSMISSION COST ESTIMATION

(γ = 0.5, L = 40).

m w DT s = 1 s = 3 s = 4 MAD CP BOS

10 10 8% 45% 51% 4% 0.7 78% 82%

10 20 9% 51% 49% 0% 0.9 72% 93%

20 30 11% 51% 47% 2% 2.4 47% 83%

30 40 13% 55% 39% 5% 4.0 42% 74%

40 80 23% 61% 24% 16% 6.7 24% 85%

50 80 23% 62% 22% 16% 9.4 17% 72%

80 100 27% 70% 19% 12% 18.8 9% 59%

simulations of Nt(s,m), and the best-strategy-selected (BOS),
denoting the percentage of times the picked strategy resulted
in the minimum realized transmission cost Ct(s,m). We see
that the estimates of N̂t(s,m) and the empirical distribution of
simulated transmission instances are in line with the realized
transmission instances as the process evolves over time. As the
length of the sliding window w and the forecast horizon m
increases so does the probability of a shift in the measurement
distribution, i.e., a jump in the parameter θt during the time
span [t− w, t+m]. Therefore, the simulated trajectories and
estimates N̂t(s,m) diverge more from the realizations for
larger values of w and m.

B. Real world data and benchmarks

CA-DPS was also tested on a real-world data set, containing
the readings from 54 Mica2Dot sensors in the Intel Berkeley
Research lab between March 6 and 9, 20041. Each sensor is
identified by a Mote ID number and has readings of humidity,
temperature, light and voltage, taken every 31 seconds. This
data set has repeatedly been used as test data in the literature
of prediction based data reduction [13], [14], [16], [30].

1Available at http://db.lcs.mit.edu/labdata/labdata.html
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Fig. 2. Percentage of data transmitted versus accuracy γ for Mote ID 30 for
CA-DPS with sliding window length w = 30, forecast horizon m = 20, and
L = 40 trajectory simulations, LMS with filter length N = 4, and step-size
µ = 10−5 and AM-DR with fixed window size wf = 4, slow window size
ws = 8, and learning rate α = 10−7.

To compare the performance, we used three different DPS
algorithms as benchmarks. The first benchmark was again
the CM model. The second benchmark was the least-mean-
square (LMS) algorithm presented in [13], which achieved a
transmission rate of 8% at an acceptance tolerance level of
γ = 0.5. The third benchmark is the proposed method in [14],
referred to as adaptive method for data reduction (AM-DR).
All benchmark methods use linear models.

Figure 2 shows the percentage of data transmitted for CA-
DPS and benchmark methods when applied to the temperature
data of Mote ID 30, as was also done in [13], [14]. We see that
CA-DPS achieves the lowest transmission rate for γ between
0.1 and 0.5. At γ = 0.1 it achieves a transmission rate of 17%
with a mean absolute error (MAE) of 0.05 between the true
and predicted readings |xFC

t − xt|.
CA-DPS achieves a lower transmission rate for all 54 mote

IDs, at γ = 0.1, as all sensors are below the 45◦ line in
Fig. 3. It was able to achieve an average transmission rate
of 8%, at γ = 0.1, for all sensors using the same settings
(w = 30,m = 20, L = 40).

V. CONCLUSION

This paper presented a cost-aware dual prediction scheme
for reducing the amount of data transmitted between IoT
sensor nodes and fusion center. In particular, we proposed
the CA-DPS method that chooses among a set of strate-
gies the one that achieves minimum expected transmission
cost within a given forecast horizon. The transmission cost
incurred in future is estimated using bootstrapping model
residuals associated with each strategy. Simulations results
with both synthetic and real measurement data confirmed that
the proposed method achieves a significant reduction in the
communication requirement for a given error constraint.
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