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Abstract— Increasing use of UAVs in high-precision applica-
tions, such as georeferencing and photogrammetry, increases
the requirements on the accuracy of the estimated position,
velocity and attitude of the vehicle. Commercial systems that
utilize magnetometers in the heading estimates are cheap,
but are affected by disturbances from both the vehicle itself,
nearby metal structures and variations in the Earth’s magnetic
field. On the other side, commercial dual-antenna satellite
navigation systems can provide the required accuracy, but are
expensive. This paper explores the use of a low-cost setup
using two independent GNSS receivers, aiding an inertial nav-
igation system by using pseudorange, Doppler frequency and
carrier phase measurements from two longitudinally separated
receivers on a fixed-wing UAV. The sensor integration was
based on a multiplicative extended Kalman filter (MEKF).
The main contribution of this paper is the derivation of
measurement models for the raw GNSS measurements based on
the MEKF error state, taking into account antenna lever arms
and explicitly including the difference in measurement time
between the receivers in the measurement model for double
differenced carrier phase. The proposed method is verified
using data collected from a UAV flight.

I. INTRODUCTION

The small unmanned aerial vehicles (UAVs) used by
hobbyists and professionals today are commonly equipped
with an autopilot system estimating its position, velocity
and attitude using one or more inertial measurement units
(IMUs) containing gyros and accelerometers, a single global
navigation satellite system (GNSS) receiver, a barometer and
a magnetometer (magnetic compass). Examples of such sys-
tems are the Pixhawk series of flight controllers [1]. GNSSs
provides position and velocity measurements which are free
of long-term drift. However, there are many challenges with
GNSS as a source of position and velocity information. The
measurements are normally available at a rate too low for
feedback control in highly dynamic systems, such as UAVs,
and the measurements can be noisy. Because the signals
received from the satellites have low power, the receivers
can be disturbed by interference, jamming or spoofing.
Obstructions between the receiver and satellites can block
the signals, making it less suitable in valleys or dense urban
environments and basically unsuitable for indoor navigation.

The use of an inertial navigation system (INS), consisting
of an IMU and the processing required to estimate posi-
tion, velocity and attitude, offers several advantages. As
it is completely self contained and does not rely on any
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external signals, it is not exposed to external interference.
The measurements also typically have low noise and are
available at a high rate, giving smooth position and attitude
outputs. The drawback of inertial navigation is that all IMUs
experience slowly varying errors that cause position and
attitude estimates, based on the mechanization of angular
rate and specific force, to drift over time.

Due to the complementary nature of INS and GNSS,
combining the measurements using an estimation algorithm
such as the Kalman filter [2] can give the best of both
worlds. The long-term drift is eliminated by estimating and
compensating the INS errors using GNSS measurements,
while the INS is used to smooth the output and provide
position, velocity and attitude (PVA) estimates even when
not receiving GNSS receiver measurement. The use of tightly
coupled integration, where raw GNSS measurements are
used directly, instead of intermediate calculation of GNSS-
only state estimates, allows correction of the INS estimates
even when only a few satellites are visible such that a
complete GNSS position solution is not available.

UAVs using today’s low cost autopilot systems are mostly
used for waypoint flying and other tasks where small attitude
errors pose no large problem as a deviation from the desired
flight path, which is visible in the observed position and
velocity errors, is handled using feedback control. For these
uses having a correct course (direction of movement) is
more important than a correct heading. Other applications
however, such as georeferencing, photogrammetry and map-
ping, require more accurate state estimates. It is especially
the accurate estimation of the vehicle heading which is a
challenge [3]. For UAVs flying in a steady state, or hovering,
with low acceleration and angular rate, the errors in attitude
and IMU biases are not observable with only a single GNSS
antenna, and the estimate will rely on the magnetic compass.
Magnetometers are susceptible to disturbances from irregu-
larities in the Earth’s magnetic field, or ferrous materials
or electrical currents close to the sensor [3]. They are also
not very useful when navigating near the magnetic poles,
and the local magnetic declination values for the areas of
operation must be known. Improved estimates of heading
can be obtainted by the use of dual-antenna GNSS, and with
three or more antennas full attitude can also be determined.
Commercial systems using GNSS for heading or attitude,
such as the Vectornav VN-300 [4], are however significantly
more expensive than the autopilot systems discussed.

This motivates the use of low-cost commercial-off-the-
shelf receivers for aiding in estimation of heading or attitude.
The determination of attitude using dedicated multi-antenna



receivers, where a single common clock is used for all track-
ing, has been researched by multiple authors [5]–[10]. The
use of a common clock, which is not the case when multiple
independent receivers are used, simplifies the measurement
processing, but requires dedicated hardware. The use of non-
dedicated receivers has two main properties that must be
adressed:

1) Different receivers have different clock errors.
2) Measurements from the different receivers are not nec-

essarily sampled at the same instant.

The second point is mainly a result of the first, as the re-
ceivers schedule raw measurement outputs according to their
local clocks, but also occurs if the receivers schedule their
measurements at different times according to their own clock,
i.e. if one receiver measures at the clock’s whole seconds
while the other does not. The first point is easily adressed
by double differencing the measurements, cancelling the
receiver clock errors, but this does not handle the difference
in measurement time. This is of less or no importance if
higher grade receivers are used, that either steer their clock
to the GNSS system time, or correct the clock often (i.e.
every time a navigation solution is calculated) such that the
clock error remains very small. For receivers used in today’s
consumer products, such as those made by U-Blox AG [11],
the clocks are however free to drift within set thresholds on
the millisecond level without being corrected. Only if the
threshold is violated will a millisecond step correction be
applied to the clock. This can lead to measurements being
taken a few milliseconds apart. The handling of this is a
necessary part of real-time kinematic positioning such as
RTKLIB [12], where measurements from the base receiver
can be delayed or sampled at a different rate than the rover
measurements. [13] suggests time extrapolating the carrier
phase measurements using the measured Doppler frequency
shift, while [14] proposes a clock correction based on code-
only least squares position and clock error estimates. [12]
uses the estimated receiver velocity to correct the base station
position before the baseline processing.

A. Main contribution

The main contribution of this paper is tightly coupled
integration of dual receiver GPS L1 C/A measurements with
inertial navigation using a multiplicative extended Kalman
filter (MEKF) [15] (with the attitude error state based on the
Gibbs vector), estimating the attitude as a unit quaternion
in addition to position, velocity, IMU biases, carrier phase
ambiguities and receiver clock offsets and drift rates. The
difference in measurement time is explicitly included in
the carrier phase measurement model as a function of the
estimated vehicle state, also including this in the linearized
model used for covariance correction. Thus the corrected
smooth INS output is used for measurement time correction,
unlike pure GNSS-based estimates or measurements in [13]
and [14]. The lever arm of the receivers and the rotation-
induced velocity is included in the measurement models,
such that the estimated position and velocity is valid for the

position of the IMU. The estimation algorithm is tested using
data collected during a fixed-wing UAV flight.

The paper proceeds as follows: We first describe the
measurement models used for the raw GNSS measurements
and the interferometric use of carrier phase for measuring
attitude. The compensation of differences in measurement
time for carrier phase interferometry is described, before
briefly introducing the multiplicative extended Kalman fil-
ter (MEKF) and the system dynamics model used. The
measurement models used for the MEKF correction step
is then presented. The carrier phase measurement model is
formulated to take the difference in measurement times into
account. Results from verification of the proposed method
using the collected UAV flight data is then presented and
discussed. Finally, the concluding marks are presented with
suggestions for further work.

II. GNSS OBSERVABLES

1) Pseudorange: The pseudorange is the difference be-
tween the time of signal reception according to the receiver
and the time of signal transmission according to the satellite,
scaled to distance using the speed of light c. Receiver and
satellite clock errors, ionospheric and tropospheric delays,
multipath and other sources all cause errors in ranging. The
true geometric range between the antenna of a satellite s
and receiver α travelled by the signal in absence of atmo-
spheric effects, using Earth Centered Earth Fixed (ECEF)
coordinates, is

ρα,s(trx) = ‖Re,rx
e,txp

e,tx
es (ttx)− pe,rxeα (trx)‖2, (1)

= c(trx − ttx), (2)

where pe,rxeα (trx) is the position of the receiver antenna at the
time of signal reception trx, given in the ECEF coordinate
frame of the same time, {e, rx}, and pe,txes (ttx) is the position
of the satellite antenna at the time of signal transmission ttx
in the ECEF frame {e, tx}. The rotation matrix Re,rx

e,tx =
Rz(ωie(trx − ttx)) around the ECEF z-axis accounts for
Earth rotation rate ωie during the signal propagation time,
such that the positions used in the expression for range are
in the same frame [16]. With the effects of ionospheric
and tropospheric delays, and satellite and receiver clock
errors included, the psedorange for a single satellite can be
modelled as [17]

Pα,s(trx,α) = ρα,s(trx,α) + c(δtα(trx,α)− δts(ttx,s))
+ Iα,s + Tα,s + εP , (3)

where Pα,s is the measured pseudorange, δtα and δts are
the receiver and satellite clock errors, respectively, Iα,s and
Tα,s are the ionospheric and tropospheric delays and εP is
noise and unmodelled errors such as multipath. The times
trx,α = trx + δtα and ttx,s = ttx + δts are the time of the
receiver and satellite clocks at the true times of reception
and transmission. The time of transmission of the satellite
clock can be found using the relation ttx,s = trx,α − P

c and
the true time can then be found by calculating the correction
δts using parameters in the received navigation data.



2) Doppler frequency shift: The receiver tracks the car-
rier frequency of the received signal, often as a part of
carrier phase tracking. The frequency received depends on
the relative movement of the satellite and the receiver due
to the Doppler shift. This raw measurement relates to the
pseudorange P and carrier phase φ measurements as [16]

Ṗ = λφ̇ = −λ∆fm, (4)

where λ is the wavelength, and ∆fm is the difference
between the measured carrier frequency and the nominal
carrier frequency, ∆fm = fmeasured−fL1. Because the rate of
change of the ionospheric and tropospheric errors are small,
we ommit these terms and use the model

λφ̇α,s(trx,α) = ρ̇α,s(trx,α)+ c(δ̇tα(trx,α)− δ̇ts(ttx,s))+ εφ̇.
(5)

Earth rotation also needs to be taken into consideration when
using range rate to estimate the antenna velocity. The velocity
contribution of the rotating ECEF frame relative to inertial
space, with the lever arms from the center of the Earth,
should be included in the model [16],

ρ̇α,s(trx) = (le,rx)>
(
Re,rx
e,tx (ve,txes (ttx)+S(ωeie)p

e,tx
es (ttx))−

(ve,rxeα (trx) + S(ωeie)p
e,rx
eα (trx))

)
, (6)

where le,rx is the unit length line of sight (LOS) vector from
pe,rxeα (trx) pointing towards pe,rxes (ttx).

3) Carrier phase: The carrier phase of the signal is
tracked by phase lock loops (PLLs) in the receiver. The
carrier phase measurement is based on the accumulation
of Doppler frequency shift [18] in addition to fractional
phase measurements [19], and the observable is therefore
also known as accumulated Doppler range (ADR). Because
the receiver only starts counting cycles from the time at
which it locks onto the signal from each satellite, the carrier
phase does not provide absolute range measurements, since
the number of carrier cycles from satellite to receiver is
unknown. The carrier phase measurement can be modelled
as [16]

λφα,s = ρα,s + λNα,s − Iα,s + Tα,s + c(δtα − δts)
+ bα − bs + φp + φM + εφ, (7)

written here without explicit times, where Nα,s is an in-
teger number of carrier cycles, bα and bs are receiver and
satellite LOS-independent phase biases with respect to the
code, occuring in hardware, software and antennas, including
phase-windup due to in-plane rotation of the antennas. φp is
a LOS-dependent windup error, φM is an error due to signal
multipath and signals received only via reflected paths, and
εφ is the carrier phase tracking error. This model assumes
that half cycle errors, caused by the data modulated onto the
carrier, are resolved by the receiver after demodulating the
data.

Antenna α Antenna β
~b

~lα

~lβ
∆ρ

∆φ

∆N

Fig. 1: Parallel LOS vectors. The LOS for receivers α and β, ~lα
and ~lβ , can be reasonably approximated as equal, ~lα ≈ ~lβ . ∆ρ is
the difference in range from each receiver to the satellite, which
can be split into an integer wavelength part ∆N and a fractional
part ∆φ.

III. CARRIER PHASE INTERFEROMETRY

The use of multiple antennas for estimation of heading
or attitude, for short baselines, can be done using an inter-
ferometric method with the measured carrier phase. Due to
the large distance from a user to the medium Earth orbit
(MEO) satellites, antennas fixed at different locations on a
vehicle can be reasonably approximated as having parallel
LOS vectors. This is illustrated in Fig. 1. This approximation
means that the signal from a satellite can be seen as a
plane wave. Because receivers can start tracking a satellite
at different times, because cycle slips can occur causing the
integer ambiguity to change, and because some receivers add
an integer to the measurement in an attempt to align the
measurement with the range measured using code, each of
the components ∆φ and ∆N in Fig. 1 will not necessarily
be smaller in magnitude than the length of the baseline in
cycles.

By differencing the carrier phase (7) between two re-
ceivers, called single differencing, we are able to cancel the
satellite clock error and phase bias. Because the atmospheric
errors are highly spatially correlated, the errors for two
receivers mounted on the same vehicle is close to identical,
such that these also can be considered to cancel each other.
If the antennas are mounted with their planes in parallel, the
LOS-dependent phase windup error also cancels for short
baselines,

λ∆φαβ,s = λ(φα,s − φβ,s)
= ∆ραβ,s + λ∆Nαβ,s + c(δtα − δtβ)

+ bα − bβ + ∆φM + ∆εφ.

(8)

Furthermore, differencing (8) between two satellites s1 and
s2, called double differencing, cancels errors common to
the receivers, including the receiver clock errors and phase
biases,

λ∇∆φαβ,s1s2 = λ(∆φαβ,s1 −∆φαβ,s2)

= ∇∆ραβ,s1s2 + λ∇∆Nαβ,s1s2

+∇∆φM +∇∆εφ.

(9)

The multipath and tracking errors do not cancel, and will be
considered as disturbances. Because we normally track many
satellites simultaneously, the differencing between satellites
can be done in multiple ways. In general we can define a



differencing matrix A ∈ R(k−1)×k for k single differenced
measurements, with rows that sum to zero,

λA∆φαβ = A(∆ραβ − λ∆Nαβ + ∆εφ). (10)

In the following, A will be chosen to use the highest
elevation satellite as the reference to difference all other
satellites against.

The range difference to a satellite between two receivers is
the projection of the baseline vector ~b onto the LOS vector,

∆ραβ,s = ~ls ·~b = ‖~b‖2 cos θ~ls,~b, (11)

which in vector form can be written as

∆ραβ = λ(∆φαβ −∆Nαβ −∆εφ) = (Le)>Re
bb
b, (12)

with

∆φ =
[
∆φ1 · · ·∆φk

]>
, ∆N =

[
∆N1 · · ·∆Nk

]>
, (13)

Le =
[
le1 . . . l

e
k

]
∈ R3×k. (14)

The equation being the basis for the MEKF measurement
model for double differenced carrier phase (DDCP) is then

Aλ(∆φαβ −∆Nαβ −∆εφ) = A(Le)>Re
bb
b. (15)

IV. RECEIVER MEASUREMENT TIME COMPENSATION

The carrier phase differencing in section III assumes that
the measurements are taken at exactly the same time by both
receivers. If measurement times are different, the satellites
will move, satellite clocks will drift, and, for attitude determi-
nation cases like here, both receiver antennas can move in the
interval between measurements. Note that the clock drift of
the receivers in the period between measurements will cancel
in double differencing and does not have to be considered.
Using independent receivers, the best performance would be
achieved if the measurement times could be steered to a
common time (i.e. aligned with Global Positioning System
Time (GPST)), but low-cost receivers typically do not do
this [19]. Instead the error caused by different measurement
times must be compensated afterwards using some form of
correction term. The time of validity of the resulting state
correction must be chosen, for example as the measurement
time of one of the receivers or as a different time, i.e.
aligned with GPST. Aligning with GPST has the advantage
of making the validity time of the correction independent of
the receiver clock errors, but requires two correction terms
instead of one.

One possibility is to use the measured Doppler frequency
shifts to extrapolate the carrier phase measurements to the
chosen common time, using the approximation

φβ(tα) ≈ φβ(tβ) + (tα − tβ)φ̇β(tβ). (16)

This has the advantage of simplicity, as the measurement
model used in a Kalman filter does not have to consider the
correction at all, but the Doppler measurement noise will
then propagate to the extrapolated carrier phase. An example
of this method on estimated double differenced ambiguity is
shown in Fig. 2. Equivalently, an estimate of the carrier phase
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Fig. 2: Effect of differences in measurement time on DDCP:
The differences between the measured DDCP, with and without
correction for different measurement times (as shown in Fig. 5) for
the two receivers, and the predicted double differenced (DD) range
from post-processed kinematic (PPK) positioning are plotted. The
blue uncorrected value is clearly affected by the clock drift of the
two receivers. The red corrected value is very close to the integer
value of -14 wavelength cycles.

rate based on the estimated vehicle state from the INS and
the satellite states calculated using the ephemeris parameters,
using (5), can be used for extrapolation, which can then
also be included in the linearized measurement model used
for gain calculation and covariance correction, as will be
done in section VI-C. Simply including the extrapolation of
the measurement(s) using modelled carrier phase rate will
however also extrapolate the position and clock errors of
the satellites, which is unneccessary as these values can
be calculated at any time within the validity period of the
ephemeris. Thus one could calculate the satellite positions
and clock errors for the times needed, and only extrapolate
the base antenna position. Consequently, for the case of
real-time kinematic positioning where a fixed base antenna
is used, no extrapolation is necessary as only the effect
of satellite movement and clock drift must be considered,
which is well predicted from the broadcast orbital and clock
parameters and significant differences in measurement time
can thus be handled. For the short time difference between
receiver measurements however, the error caused by satellite
position extrapolation is on the sub-micrometer level and thus
considered negligible. Because the measurement output of a
GNSS receiver are commonly more delayed than the output
of an IMU, it is also possible to interpolate the INS-predicted
position instead of extrapolating it, if the output rate of the
IMU is high enough.

While low-cost receivers do not steer their internal clock to
align with GPST, they can correct the clock in millisecond
increments in order to keep it approximately aligned with
GPST [20]. It must also be taken into consideration that
the receivers do not necessarily schedule each measurement
at the exact same time according to their own clock. The
difference in the reported measurement time must be used
in addition to the estimated clock errors. The combined
difference for two receivers is

(tα − tβ) = tmα − tmβ︸ ︷︷ ︸
Timestamps

+ δtβ − δtα︸ ︷︷ ︸
Clock errors

, (17)

where tmα and tmβ are the receiver measurement times-
tamps.



V. MEKF

The multiplicative extendend Kalman filter [15] is an
error state Kalman filter used for attitude estimation where
the nominal part of the attitude is parametrized using the
unit quaternion, while the error component is chosen as a
three dimensional parametrization. After the initial transient
the error component will be small, staying away from any
singularities of the error parametrization, while having a
covariance matrix with full rank. The estimator is therefore in
practice globally nonsingular. The multiplicative part of the
filter is the injection of the estimated error into the nominal
estimate, which is done using the quaternion product [21].
Note that the error injection form can be chosen individually
for the different states, such that the multiplicative error
injection for attitude can be combined with the standard
additive injection for other states.

A. IMU model

The measurement from the angular rate sensor is modelled
as

ωmIMU = S−1
g ω

b
ib + bmg +wm

g , (18)

where ωbib is the angular rate of the body frame {b} relative
inertial space, approximated as the Earth Centered Inertial
(ECI) frame {i}, Sg is the gyro calibration matrix which
includes the orientation of the measurement frame {m}
relative {b} as well as scale factor and non-orthogonality
errors, bmg is a measurement bias, modelled as a Wiener
process,

ḃ
m

g = wm
bg , (19)

where wm
g and wm

bg
are Gaussian noise processes with the

distributions

wm
g ∼ N (0, σ2

g) wm
bg ∼ N (0, σ2

bg ), (20)

which means that the noises are assumed isotropic, and the
noise properties are independent of the decomposing axes.
The accelerometer measurement is modelled as

fmIMU = S−1
f f

b
ib + bma +wm

a (21)

= S−1
f (abib − gb) + bma +wm

a (22)

where f bib is the specific force on the sensor, given relative
ECI, abib is the coordinate acceleration and gm is the gravity
vector. Sf is the accelerometer calibration matrix. Bias and
noises are modelled as for the angular rate sensor,

ḃ
m

a = wm
ba , (23)

wm
a ∼ N (0, σ2

a) wm
ba ∼ N (0, σ2

ba). (24)

B. System kinematic model

As the ECEF frame is used by the Global Positioning
System (GPS), it is a reasonable choice of reference frame
also for the MEKF. The state vector representing the true
values is chosen as

x = [qeb
> bm>g peeb

> veeb
> bm>a tεf tεβ tdf tdβ N

>
dd]
>,
(25)

where qeb ∈ R4 is the unit quaternion describing the rotation
between ECEF and the body frame, bmg and bma are the biases
in (18) and (22), peeb and veeb are the ECEF position and
velocity vectors of the body frame origin (chosen as the
location of the IMU), tεf and tεβ are the clock offsets of
the front and back receiver in unit of meters and tdf and
tdβ are the clock drift rates of the front and back receivers
in unit of meters per second. Ndd are real-valued double
differenced carrier phase ambiguities, which will vary in
dimension as the number of tracked satellites change over
time. The ambiguities are estimated as real-valued, before
the LAMBDA algorithm [22] is used to find the best fitting
integer vector. For the MEKF the state vector is split into a
nominal component

x̂ = [q̂eb
>
b̂
m>
g p̂eeb

>
v̂eeb
>
b̂
m>
a t̂εf t̂εβ t̂df t̂dβ N̂

>
dd]
>,
(26)

where the ∧ operator indicates the expected value, and an
error component

δx = [δa> δbm>g δpeeb
> δveeb

> δbm>a δtεf δtεβ δtdf δtdβ δN
>
dd]
>,

(27)
where δa is the attitude error parametrized by twice the
Gibbs vector [15],

δa := 2
δε

δη
, (28)

with δε being the imaginary vector part of the error quater-
nion δq = (q̂eb)

−1 ⊗ qeb , with ⊗ indicating the quaternion
product [21], and δη is the real scalar part. The nominal and
error components relate to the true state using

qeb = q̂eb ⊗ δq(δa)

bmg = b̂
m

g + δbmg

peeb = p̂eeb + δpeeb

veeb = v̂eeb + δveeb

bma = b̂
m

a + δbma

tεf = t̂εf + δtεf

tεβ = t̂εβ + δtεβ

tdf = t̂df + δtdf

tdβ = t̂dβ + δtdβ

Ndd = N̂dd + δNdd,

(29)

where the error quaternion can be calculated from δa using

δq(δa) =
1√

4 + ‖δa‖22

[
2
δa

]
. (30)

1) True system dynamics: The attitude and translational
kinematics using the true states are

q̇eb =
1

2
qeb ⊗ ωbeb, (31)

=
1

2
qeb ⊗ (Sg(ω

m
IMU − b

m
g −wm

g )−R(qeb)
>ωeie), (32)

ṗeeb = veeb, (33)
v̇eeb = R(qeb)Sf (fmIMU − b

m
a −wm

a ) + ge − 2S(ωeie)v
e
eb.
(34)

Note that when the quaternion product notation ⊗ here
involves a vector, the vector takes the place of the imaginary
part of a quaternion, with the real part set to zero. The clock



offset and drift rates are assumed to behave as the models

ṫεf = tdf + wtεf , wtε,f ∼ N (0, σ2
tεf

) (35)

ṫεβ = tdβ + wtεβ , wtε,β ∼ N (0, σ2
tεβ

) (36)

ṫdf = wtdf , wtd,f ∼ N (0, σ2
tdf

) (37)

ṫdβ = wtdβ , wtd,b ∼ N (0, σ2
tdβ

) (38)

and the IMU biases, chosen to be decomposed in the mea-
surement frame, have the models (19), (23). The ambiguity
state is modelled as a slowly varying Wiener process,

Ṅdd = wN , wN ∼ N (0, σ2
N ). (39)

2) Nominal dynamics: The dynamics of the nominal
component of the state vector is simply the expected value of
the true dynamics, which means that the states are replaced
with their expected value and all noises are set to zero.
The IMU used was configured to output velocity and angle
increments, ∆vmIMU and ∆θmIMU at a rate of 250 Hz. The
use of increments means that the internal high rate samples
are integrated to provide lower rate outputs maintaining all
information. The mechanization equations are implemented
in discrete form as

âeeb∆t = R(q̂eb)Sf (∆vmIMU−b̂
m

a ∆t)+ge∆t−2S(ωeie)v̂
e
eb∆t
(40)

p̂eeb ← p̂eeb + v̂eeb∆t+ âeeb
∆t2

2
(41)

v̂eeb ← v̂eeb + âeeb∆t (42)

∆θ̂
b

:= Sg(∆θ
m
IMU − b̂

m

g ∆t)−R(q̂eb)
>ωeie (43)

q(∆θ̂
b
) =

 cos

(
‖∆θ̂b‖

2

)
∆θ̂

b

‖∆θ̂b‖
sin

(
‖∆θ̂b‖

2

)
 (44)

q̂eb ← q̂eb ⊗ q(∆θ̂) (45)

t̂εf ← t̂εf + t̂df∆t (46)

t̂εβ ← t̂εβ + t̂dβ∆t (47)

3) Error state dynamics: Since the expected error before
a measurement is always zero, and the observed error is
injected into the nominal state after a measurement, the
expected error is zero at every timstep and the state prediction
step of the Kalman filter does therefore not have to be
implemented. The linearized error dynamics are however still
needed for covariance propagation. From [15] we have the
attitude error dynamics

δȧ = ∆ω− ω̂beb × δa−
1

2
∆ω× δa+

1

4
(∆ω · δa)δa (48)

with ∆ω extended with the effect of the Earth rotation,

∆ω = −Sgδbmg −Sgwg+R(q̂eb)
>ωeie−R(qeb)

>ωeie. (49)

The translational error dynamics are

δṗeeb = δveeb. (50)

δv̇eeb = −2S(ωeie)δv
e
eb+(R(qeb)−R(q̂eb))Sf (fmIMU− b̂

m

a )

−R(qeb)Sf (δbma +wm
a ). (51)

The error dynamics for the remaining biases, clock errors and
ambiguity states are simply given by their process noises.
These equations are linearized in order to find the linear
system matrix F. For attitude it is used that R(qeb) =
R(q̂eb)R(δa) and the first order approximation R(δa) ≈
I3×3+S(δa). The resulting linearized, continous time system
matrix F̄ associated with the fixed part of the state vector,
without the variable size ambiguity vector, is given in (52),

F̄ =

−S(ω̂bib) −Sg 03×3 03×3 03×3 03×1 03×1 03×1 03×1
03×3 03×3 03×3 03×3 03×3 03×1 03×1 03×1 03×1
03×3 03×3 03×3 I3×3 03×3 03×1 03×1 03×1 03×1

−R(q̂eb)S(f̂
b
ib) 03×3 03×3 −2S(ωeie) −R(q̂eb)Sf 03×1 03×1 03×1 03×1

03×3 03×3 03×3 03×3 03×3 03×1 03×1 03×1 03×1
01×3 01×3 01×3 01×3 01×3 0 0 1 0
01×3 01×3 01×3 01×3 01×3 0 0 0 1
01×3 01×3 01×3 01×3 01×3 0 0 0 0
01×3 01×3 01×3 01×3 01×3 0 0 0 0

.
(52)

Combining this with the zero dynamics of the double
differenced ambiguity errors, we get the complete matrix

F =

[
F̄ 019×(k−1)

0(k−1)×19 0(k−1)×(k−1)

]
∈ R(19+k−1)×(19+k−1).

(53)
The process noise input matrix for the fixed part of the error
state is

Ḡ =


−Sg 03×3 03×3 03×3 03×1 03×1 03×1 03×1
03×3 I3×3 03×3 03×3 03×1 03×1 03×1 03×1
03×3 03×3 03×3 03×3 03×1 03×1 03×1 03×1
03×3 03×3 −Sf 03×3 03×1 03×1 03×1 03×1
03×3 03×3 03×3 I3×3 03×1 03×1 03×1 03×1
01×3 01×3 01×3 01×3 1 0 0 0
01×3 01×3 01×3 01×3 0 1 0 0
01×3 01×3 01×3 01×3 0 0 1 0
01×3 01×3 01×3 01×3 0 0 0 1

, (54)

and the complete matrix including the ambiguities is

G =

[
Ḡ 019×(k−1)

0(k−1)×16 I(k−1)×(k−1)

]
∈ R(19+k−1)×(16+k−1).

(55)
The linear process model is then

δẋ = Fδx+ Gw, (56)

where the noise vector is

w = [w>g w
>
bg w

>
a w

>
ba wtεf wtεβ wtdf wtdβ w

>
N ]>. (57)

The discrete time equivalents of F and G are found using
Van Loan’s method [23].

VI. MEASUREMENT MODELS

For the measurements from each receiver, we take into
account that the antenna positions are offset from the body
frame coordinate origin, defined at the position of the IMU,
by the vectors rbf and rbβ ,

peeb,f = peeb + R(qeb)r
b
f , (58)

peeb,β = peeb + R(qeb)r
b
β . (59)



The velocity of each receiver is then

veeb,f = veeb + R(qeb)S(ωbeb)r
b
f , (60)

veeb,β = veeb + R(qeb)S(ωbeb)r
b
β . (61)

In the following the frame {e} denotes the ECEF frame of
the time of reception, {e, rx}.

A. Pseudorange

As a function of the vehicle state, using the lever arm, the
pseudorange model (3) of the front receiver is written as

Pf = ‖R̂e
e,txp

e,tx
es − (peeb + R(qeb)r

b
f )‖2

+ tεf + εP + I + T − cδts. (62)

where δts is the clock error computed from the correction
parameters in the satellite navigation message [24] along
with the satellite position pe,txes at the corrected time of signal
transmission. I and T are values for the ionospheric delay
from the Klobuchar [25] ionospheric model and the NATO
STANAG tropospheric model [16]. Linearizing the model at
the expected zero error, for a vector of k measurements, for
each receiver, the linear measurement matrices become

HP,f =


l̂
>
f,1R(q̂eb)S(rbf ) 01×3 −l̂

>
f,1 01×3 01×3 1 0 0 0 01×(k−1)

l̂
>
f,2R(q̂eb)S(rbf ) 01×3 −l̂

>
f,2 01×3 01×3 1 0 0 0 01×(k−1)

...
l̂
>
f,kR(q̂eb)S(rbf ) 01×3 −l̂

>
f,k 01×3 01×3 1 0 0 0 01×(k−1)

,
(63)

HP,β =


l̂
>
β,1R(q̂eb)S(rbβ) 01×3 −l̂

>
β,1 01×3 01×3 0 1 0 0 01×(k−1)

l̂
>
β,2R(q̂eb)S(rbβ) 01×3 −l̂

>
β,2 01×3 01×3 0 1 0 0 01×(k−1)

...
l̂
>
β,kR(q̂eb)S(rbβ) 01×3 −l̂

>
β,k 01×3 01×3 0 1 0 0 01×(k−1)

,
(64)

each ∈ Rk×(19+k−1).

B. Doppler

Using (4) and (5) and the antenna velocity (60), the
Doppler measurement can be written as

λ∆ff = le>f

(
veeb + R(qeb)S(ωbeb)r

b
f + S(ωeie)p

e
eb

− R̂e
e,tx

(
ve,txes − S(ωeie)p

e,tx
es

))
− tdf + c ˙δts + ε∆f . (65)

The dependency of the model on position errors through
the Earth rotation rate and the dependency on position and
attitude errors throught the LOS-vector are ignored as these

terms are negligible due to the slow Earth-rotation rate and
low sensitivity of the LOS vector to small position errors.
The linearization of the model at the expected zero error
gives the measurement matrices (72), (73).

C. Double differenced carrier phase

The carrier phase measurement matrix will be constructed
first for the fixed part of the state vector, x̄, for single
differenced measurements, with the corresponding double
differenced measurement matrix then simply calculated as

Hdd,x̄ = AHsd,x̄. (66)

The complete double differenced measurement matrix in-
cluding the double differenced ambiguities is then

Hdd =
[
Hdd,x̄ I(k−1)×(k−1)

]
∈ R(k−1)×(19+k−1). (67)

Using the linear time extrapolation with the measurement
time of the front receiver chosen as the time of differencing,
the single differenced measurement model becomes

φβ + (tf − tβ)φ̇β − φf =
1

λ
le>R(qeb)b

b +Nsd. (68)

Substituting in the expression for the carrier phase derivative
using (65) and (4) gives

φβ − φf =
1

λ
le>R(qeb)b

b +Nsd

+ (tf − tβ)
1

λ

(
le>(veeb + R(qeb)S(ωbeb)r

b
β + S(ωeie)p

e
eb

−R̂e
e,tx

(
ve,txes −S(ωeie)p

e,tx
es

)
)−tdβ+c ˙δts+ε∆f

)
+εφsd .

(69)

Note that because we will difference the model between
satellites later, terms that are the same for all satellites will
cancel, in this case this only applies to the drift rate tdβ ,
which will therefore be ignored in the following derivatives.
The derivative with respect to the attitude error is

∂∆φβf
∂δa

= − 1

λ
le>R(q̂eb)

(
S(bb)− (tf − tβ)S(S(ωbeb)rβ)

)
.

(70)
The angular rate ωbeb makes the model dependent on the gyro
bias. Differentiating with respect the gyro bias error gives

∂∆φβf
∂δbmg

=
tf − tβ
λ

le>R(qeb)S(rβ)Sg. (71)

H∆f,f =


−l̂e>f,1R(q̂eb)S(S(ω̂beb)r

b
f ) l̂

e>
f,1R(q̂eb)S(rbf )Sg 01×3 l̂

e>
f,1 01×3 0 0 −1 0 01×(k−1)

−l̂e>f,2R(q̂eb)S(S(ω̂beb)r
b
f ) l̂

e>
f,2R(q̂eb)S(rbf )Sg 01×3 l̂

e>
f,2 01×3 0 0 −1 0 01×(k−1)

...
−l̂e>f,kR(q̂eb)S(S(ω̂beb)r

b
f ) l̂

e>
f,kR(q̂eb)S(rbf )Sg 01×3 l̂

e>
f,k 01×3 0 0 −1 0 01×(k−1)

 ∈ Rk×(19+k−1), (72)

H∆f,β =


−l̂e>β,1R(q̂eb)S(S(ω̂beb)r

b
β) l̂

e>
β,1R(q̂eb)S(rbβ)Sg 01×3 l̂

e>
β,1 01×3 0 0 0 −1 01×(k−1)

−l̂e>β,2R(q̂eb)S(S(ω̂beb)r
b
β) l̂

e>
β,2R(q̂eb)S(rbβ)Sg 01×3 l̂

e>
β,2 01×3 0 0 0 −1 01×(k−1)

...
−l̂e>β,kR(q̂eb)S(S(ω̂beb)r

b
β) l̂

e>
β,kR(q̂eb)S(rbβ)Sg 01×3 l̂

e>
β,k 01×3 0 0 0 −1 01×(k−1)

 ∈ Rk×(19+k−1). (73)



Differentiating with respect to the clock biases, using (17),
gives

∂∆φβf
∂δtεf

= − 1

cλ

(
le>(veeb + R(qeb)S(ωbeb)r

b
β + S(ωeie)p

e
eb

−R̂e
e,tx

(
ve,txes − S(ωeie)p

e,tx
es

)
) + c ˙δts + ε∆f

)
,

(74)

∂∆φβf
∂δtεβ

= −∂∆φβf
∂δtεf

. (75)

With respect to the velocity we have

∂∆φβf
∂δveeb

= (tf − tβ)
1

λ
le>. (76)

Writing ∆φβf for satellite i as ∆φi and using expected
values, these can be combined to the matrix

Hsd,x̄ =


∂̂∆φ1
∂a

∂̂∆φ1
∂δbg

01×3
∂̂∆φ1
∂δve

eb
01×3

∂̂∆φ1
∂δtεf

∂̂∆φ1
∂δtεβ

0 0

∂̂∆φ2
∂a

∂̂∆φ2
∂δbg

01×3
∂̂∆φ2
∂δve

eb
01×3

∂̂∆φ2
∂δtεf

∂̂∆φ2
∂δtεβ

0 0

...
∂̂∆φk
∂a

∂̂∆φk
∂δbg

01×3
∂̂∆φk
∂δve

eb
01×3

∂̂∆φk
∂δtεf

∂̂∆φk
∂δtεβ

0 0

 (77)

∈ Rk×19, and the complete measurement matrix, including
the ambiguity states, is constructed using (66) and (67).

D. Fixed integer ambiguity correction

After all measurement corrections have been per-
formed, integer ambiguity resolution is attempted using
the LAMBDA algorithm [26]. If an integer vector N̂fixed
sufficiently better than the next best alternative is found,
a ”pseudo-measurement” correction is performed where
Ndd is assumed measured with no uncertainty, such that
RN̂fixed

= 0. With the simple measurement matrix H =
[0(k−1)×19 I(k−1)×(k−1)], the fixed state vector is

x̂fixed = x̂+ K(N̂fixed −Hx̂). (78)

Note that because it is not desired to feed the fixed integers
back in the MEKF, due to the potentially destabilizing effect
it can have, the fixed estimates x̂fixed are propagated using
the expressions in section V-B.2 in parallel with x̂ until the
next time measurements corrections (and integer ambiguity
resolution) are performed, in order to get a high rate ”fixed”
output.

E. Initialization and handling changes in usable satellites

Position, velocity, clock offsets and clock drift rates are
initialized using single-epoch least-squares GNSS estimates.
Starting on the ground before launch, roll and pitch are
initialized using accelerometer leveling [16],

φ̂ = atan2(−f bIMU,y,−f
b
IMU,z), (79)

θ̂ = atan2(f bIMU,x,
√

(f bIMU,y)2 + (f bIMU,z)
2), (80)

and heading using a magnetometer. Following this the double
differenced ambiguity estimates are initialized using the
attitude estimate,

∇̂∆ρβf,s1s2 = (les1 − l
e
s2)>R̂e

bb
b, (81)

∇̂∆Nβf,s1s2 =
1

λ
∇̂∆ρβf,s1s2 −∇∆φβf,s1s2 . (82)

This method is also used to initialize ambiguities whenever
a satellite, which was not usable the previous epoch, is to
be used, both the first time it is observed and after any
signal tracking issues such as cycle slips. Double differenced
pseudoranges can also be used for initialization, but for
very short baselines the noise present in the pseudoranges
can make this undesirable. Gyro biases are initialized by
utilizing the known ωbeb = 0 on the ground before launch,
and accelerometer biases are initialized by using the initial
attitude, calculated gravity vector and known abeb = 0.

VII. EXPERIMENTAL TESTING

The UAV used for data collection was the ET-Air Cruiser
Mini, equipped with a Sensonor STIM300 IMU (engineering
sample), running at 250Hz output rate, and and two longi-
tudinally spaced antennas connected to U-Blox NEO-M8T
receivers. The flight path of the UAV is shown in Fig. 3.
All measurements were received by the SenTiBoard (sensor
timing board) [27], which also receives synchronization sig-
nals from each sensor. Using the known delay characteristics
of the IMU measurement output [28], the time-of-validity
(TOV) output signal and a pulse-per-second (PPS) output of
one of the GPS receivers, which signals at the top of each
GPST second, the fractional time of validity of the IMU
measurements in GPST can be found accurately. This is illus-
trated in Fig. 4. Combining this with the GNSS measurement
timestamps and the estimated clock errors, the absolute time
of validity of the IMU measurements can be found. This
was used to apply the GNSS measurement corrections with
a timing error less than one IMU sample interval (4ms). The
difference in measurement time of the GNSS receivers was
taken into account in the DDCP measurement, but was not
considered for the time of validity of the other measurements,
as this difference is smaller than the time between IMU
samples.

The MEKF was implemented in Matlab, running on a
desktop computer for offline processing. The Matlab imple-
mentation of the LAMBDA algorithm from [22] was used for
integer ambiguity resolution, using the ratio test with µ = 0.5
to accept integer results. The detection of half cycle errors
and cycle slips done by the receivers, and output as flags
together with the raw measurements, was used to exclude
unusable satellites for the DDCP correction.
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Fig. 3: North-East plot of the flight path.
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Fig. 4: Time syncronization using the SenTiBoard.

A stationary GNSS receiver was placed near the launch
site, logging raw GPS observables. The raw data from the
base station and each antenna on the UAV was used for
PPK positioning of each antenna using RTKLIB [12]. In
addition, RTKLIB was run in ”moving base” mode using
only the onboard receivers. The estimates using the base
station were less noisy, but did not always have the carrier
phase integer ambiguities resolved. The moving base results
were stiched into these parts of the output. These results were
only used for comparison with the results from the MEKF.
While the PPK positions are very precise, the accuracy
depends on how well the location of the base station is
known. Here the position of the base station was assumed
to be the average of the ”single” position calculated using
pseudoranges. Unlike with the implemented algorithm, both
GPS, GLONASS and European Geostationary Navigation
Overlay System (EGNOS) corrections were used in RTKLIB
to calculate the reference signals for comparison.

A. Body frame definition and IMU calibration

When working with vehicle attitude estimation a choice
which must be made is how the body frame {b} should
be defined. One possibility is to use the IMU measurement
frame {m} as the definition. The calibration matrices Sg and
Sf would then not include rotation, only scale factor and axis
non-orthogonality corrections. The GNSS receiver antenna
positions would then need to be known in this frame, which
can be difficult if the exact orientation of the IMU in the
UAV fuselage is uncertain. Online estimation of the antenna
lever arms would then be a possibility. Another option is to
define the body frame by the antenna positions themselves,
and treat {m} and {b} as different frames with the same
origin.

In this case the vehicle body frame was defined as having
its origin at the location of the IMU, x-axis along the
baseline between antennas (from back antenna to front), y-
axis towards the starboard wing and z-axis downwards giving
a right-handed coordinate frame. This allows the simple
computation of pitch and heading from antenna positions
by using the four-quadrant inverse tangent function. This
does however leave the roll-component of the body frame
uncertain, in the absence of a third antenna. A separate
”alignment” mode was implemented in the MEKF, where the
18 values of the IMU calibration matrices Sg and Sg used in
(18) and (22) were estimated online. In order to make these
observable, the roll estimates from the autopilot, a Pixhawk
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Fig. 5: Estimates of the clock errors and the difference in mea-
surement time between receivers, tf − tβ . The jump at around
1450 seconds is caused by the front receiver changing its local
measurement time by 1ms.

2, were used as measurements in the MEKF. For the testing
of the MEKF the roll measurement and calibration values in
the state vector were removed. The roll measurement used
to enable observability of the matrices is of course an error
source in itself, which would not be necessary if a third
GNSS antenna had been used.

VIII. RESULTS

Five different measurement configurations were tested:

1) Front antenna only, pseudorange and Doppler.
2) Both antennas, pseudorange, Doppler and DDCP:

a) No time correction.
b) Time correction handling satellite movement only,

omitting UAV velocities in the correction term of
(69).

c) Time correction using measured Doppler shift, and a
simpler measurement model replacing the estimated
Doppler shift in (69) with the measurement.

d) Time correction using the complete model (69).
The estimated clock errors and receiver measurement time
difference are plotted in Fig. 5. The estimated mean and
RMS errors when compared to PPK (except the roll error,
which is compared to the flight controller estimate) are
shown in Tab. I. The attitude errors are also plotted in
Fig. 6. The differences in position, velocity, roll and pitch
results are only minor. Case 2a, with no measurement time
correction, is able to resolve integer ambiguities only 18.9%
of the time, including many false fixes resulting in a large
heading error. This is to be expected from Fig. 2, noting
that the estimated float ambiguities do not correspond well
to integers if the difference in measurement time is ignored.
For case 2b, integer ambiguity resolution failed with a rate
of 4.908×10−4 and for 2c and 2d only 1.088×10−6. Cases
2c and 2d give nearly identical results, with mean and RMS
differences of 1.80 × 10−5◦and 1.64 × 10−4◦respectively,
suggesting that the more detailed measurement model may
not be worthwhile.



TABLE I: MEKF estimation errors.
Mean 1 2a 2b 2c 2d
pnx 0.150m 0.187m 0.188m 0.188m 0.188m
pny 1.530m 1.478m 1.482m 1.482m 1.482m
pnz 0.856m 1.067m 1.068m 1.065m 1.065m
vnx 1.104 mm

s 0.217 mm
s -1.315 mm

s -1.104 mm
s -1.124 mm

s
vny -0.597 mm

s -0.627 mm
s -0.967 mm

s -0.579 mm
s -0.570 mm

s
vnz 0.155 mm

s 1.114 mm
s 1.228 mm

s 0.673 mm
s 0.656 mm

s
Roll 0.129◦ 0.156◦ 0.159◦ 0.160◦ 0.160◦
Pitch 0.524◦ 0.542◦ 0.529◦ 0.519◦ 0.519◦
Heading 0.563◦ 0.757◦ 0.102◦ 0.099◦ 0.099◦

RMS
pnx 0.356m 0.336m 0.337m 0.337m 0.337m
pny 1.548m 1.494m 1.497m 1.498m 1.498m
pnz 1.843m 1.834m 1.837m 1.838m 1.838m
vnx 9.936 cm

s 9.998 cm
s 9.850 cm

s 9.838 cm
s 9.838 cm

s
vny 4.095 cm

s 4.087 cm
s 3.980 cm

s 3.946 cm
s 3.946 cm

s
vnz 8.354 cm

s 8.137 cm
s 8.138 cm

s 8.144 cm
s 8.143 cm

s
Roll 0.898◦ 0.903◦ 0.902◦ 0.902◦ 0.902◦
Pitch 1.318◦ 1.322◦ 1.310◦ 1.308◦ 1.308◦
Heading 0.731◦ 2.150◦ 0.372◦ 0.381◦ 0.381◦
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Fig. 6: Attitude error plotted as Euler angles

IX. CONCLUSION

The results show that use of carrier phase interferometry
using low cost receivers can improve the heading estimate
compared to the use of a single receiver, and that handling
the difference in measurement time is necessary to reliably
resolve the integer ambiguities. However, the proposed mea-
surement model yields estimates which are almost identical
to those resulting from handling the measurement times using
measured Doppler shift, despite increased complexity. Esti-
mates of roll, pitch, position and velocity are almost identical
is all the tested cases. An extension left for the future is to
add a third receiver, making attitude completely observable,
allowing IMU errors to be estimated more accurately. The
use of a higher IMU sample rate to reduce integration errors
and improve IMU-GNSS timing should also improve the
estimates.
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