
Unified Communication and WebRTC

Xiao Chen

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Mazen Malek Shiaa, ITEM

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology

Title: Unified Communication and WebRTC
Student: Xiao Chen

Problem description:

Web Real-Time Communication (WebRTC) offers application developers the ability
to write rich, real-time multimedia application (e.g. video chat) on the web, without
requiring any plugins, downloads or installations. WebRTC is also currently the
only existing soon-to-be standardized technology on the market to create horizontal
cross-platform communication services, encompassing smartphones, tablets, PCs,
laptops and TVs, which adds value for both consumers and enterprises. WebRTC
gives operators the opportunity to offer telephony services to more devices, such as
PCs, tablets and TVs. This thesis considers how WebRTC can enhance the existing
echo-systems for telephony and messaging services by providing the end-user rich
application client.

It will also covers research about different solutions to implement WebRTC
to cooperate with existing telephony services like hosted virtual Private Branch
Exchange (PBX) services.

A prototype of WebRTC deployment based on different rich communication
scenarios will be implemented along with this thesis. Some corresponding test and
evaluation will be fulfilled in this prototype.

Research about advanced WebRTC usability in telephony and messaging services
will be covered in this thesis by the feedback of the WebRTC prototype

Responsible professor: Mazen Malek Shiaa, ITEM
Supervisor: Mazen Malek Shiaa, ITEM

Abstract

During the development of traditional telephony echo-systems, the cost
of maintaining traditional telephony network is getting higher and higher
but the number of customer does not grow rapidly any more since almost
every one has a phone to access the traditional telephony network. We-
bRTC is an Application Programming Interface (API) definition drafted
by the World Wide Web Consortium (W3C) that supports browser-to-
browser applications for voice calling, video chat, and Peer-To-Peer (P2P)
file sharing without plugins. WebRTC, along with other advances in
HyperText Markup Language 5 (HTML5) browsers, has the potential to
revolutionize the way we all communicate, in both personal and business
spheres.

Research about current WebRTC technology usage and implemen-
tation of a WebRTC prototype system are the two main parts of this
thesis. The prototype system is implemented based on the research about
WebRTC integrated with legacy telephony network.

This thesis will cover the research about how to apply WebRTC
technology with existing legacy Voice over Internet Protocol (VoIP)
network. And one prototype system to archive the unified communication
solution with WebRTC will be introduced in this thesis. It can set up
conversation among WebRTC clients and Session Initiation Protocol (SIP)
clients and provide some advanced real time communication functions to
rich the normal telephony communication.

The prototype system described in this thesis is implemented to
cooperate with existing legacy VoIP network services through SIP server
and PBX1 service. It will provide most of essential functions which are
included in the legacy telephony business, besides other communication
functions already used on web . Moreover, some analysis and discussion
about the feedback of the prototype will be covered in this thesis.

The prototype system will be implemented in programming language
Javascript for both client font-end and server back-end by using the
AngularJs framework and Nodejs framework.

Keywords : WebRTC, AngularJs, Nodejs, SIP, WebSocket, Dialogic
XMS

1Users of the PBX share a certain number of outside lines for making telephone calls external
to the PBX.[Web14c]

Preface

WebRTC is quite popular topic in the web development filed since the
massive usage and development of HTML5 web applications on the in-
ternet. The initial purpose of this web API is to provide the browser
client the ability to create real-time conversation between each other.
After many WebRTC based application came out in the market, it is
quite normal to think about how to integrate these kinds of web applica-
tions with the current legacy telephony network as the next big step for
this technology. The requirement of this function is not only from the
traditional telephony operator but also the normal end-users.

As network operators aspect, WebRTC provides many opportunities
to the future telecommunication business module. For mobile phone cus-
tomers, operator can offer WebRTC service with session-based charging
to the existing service plans. Messaging APIs can augment WebRTC
web application with Rich Communication Services (RCS) and other
messaging services which developers have already implemented. Further-
more, since WebRTC is a web based API, then the implementation of
Quality of Service (QoS) for WebRTC can provide assurance to users and
prioritize services (enterprise, emergency, law enforcement, eHealth) that
a WebRTC service will work as well as they need it to. WebRTC almost
provides network operator a complete new business market with a huge
amount of new end-users.

As an end-user aspect, WebRTC provides a much simpler way to have
real-time conversation with another end-user. It is based on browser
and internet which almost personal or enterprise computer already have,
without any installation and plugins, end-user can have exactly the
same service which previous stand-alone desktop client provides. By the
prototype system of this thesis will cover, the end-user can even have the
real-time rich communication service with multiple kinds of end-users.

The goal of this thesis and prototype system is to make an unified
communication solution for Internet Protocol (IP) network and traditional
telephony network by usingWebRTC.

Acknowledgment

Written by Xiao Chen in Trondheim in May 2014

Thanks for Mazen Malek Shiaa, ITEM

Frank Mbaabu Kiriinya, Gintel AS

Roman Stobnicki, Dialogic, the Network Fuel company

Special thanks for Gintel AS

Source code of prototype system is owned by Xiao Chen and Gintel AS

Contents

List of Figures vii

List of Tables viii

List of Code Snippets ix

List of Acronyms xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Challenges . 2
1.3 Method . 3

1.3.1 Spiral Development . 4
1.3.2 Prototyping . 6

1.4 Thesis Structure . 7

2 Related Studies 9
2.1 WebRTC . 9

2.1.1 What is WebRTC ? . 9
2.1.2 WebRTC Network Structure 10
2.1.3 WebRTC Implementation Steps 12

2.2 WebRTC Usage Cases . 14
2.2.1 Tropo . 15
2.2.2 Uberconference . 15
2.2.3 Cube Slam . 16
2.2.4 Webtorrent . 18

2.3 SIP . 18
2.3.1 What is SIP ? . 19
2.3.2 SIP Network Elements . 19
2.3.3 SIP messages . 20

2.4 Prototype System Working Flow . 21
2.5 Prototype Working Scenario . 23

2.5.1 Advanced ’one-number’ communication platform 23

iv

2.5.2 Multiple doctors consultation room 23

3 Prototype System Design 25
3.1 Prototype System Network . 25

3.1.1 Mesh Network . 25
3.1.2 Centralized Network . 26

3.2 Prototype Implementation Framework 28
3.2.1 Client Implementation Framework 29
3.2.2 Server Implementation Framework 33

3.3 Implementation Framework Conclusion 37

4 Prototype System Implementation 39
4.1 Prototype System Functions . 39
4.2 WebRTC APIs Implementation . 41

4.2.1 MediaStream API . 42
4.2.2 RTCPeerConnection API . 45

4.3 AngularJs Framework Implementation 49
4.3.1 app.js Script (AngularJs Bootstrap) 50
4.3.2 contactTable.jade Script (View) 51
4.3.3 ContactTableDirective.js Script (Customized Directive) . . . 52
4.3.4 ContactsCtrl.js Script (Controller) 53
4.3.5 GoogleAPIService.js Script (Service) 55

4.4 Socket.IO Implementation . 57
4.4.1 Server Side Implementation 58
4.4.2 Client Side Implementation 58

4.5 SIP Implementation on Application Server 61
4.5.1 SIP Request Message Implementation 61
4.5.2 SIP Message Listener and Handler Implementation 63

4.6 XMS Media Server Integration on Application Server 65
4.7 Advanced Communication Function Implementation 69

4.7.1 SMS Messaging . 69
4.7.2 Files Sharing . 71

5 Prototype System Deployment 77
5.1 TURN Server Deployment . 77
5.2 Application Server Deployment . 79
5.3 XMS Server Deployment . 79

6 Discussion and Conclusion 81
6.1 Future Work . 81

6.1.1 RTCDataChannel usage . 81
6.1.2 Browser Compatibility . 82

6.1.3 Media Server Performance . 83
6.1.4 Object RTC (ORTC) API for WebRTC 83
6.1.5 Advanced function for telecommunication 84

6.2 Conclusion . 85

References 87

Appendices
A Appendix A 93

A.1 Socket.IO Implementation Script 93
A.2 SIP Implementation Script . 94
A.3 XMS Implementation Script . 97
A.4 MSG Implementation Script . 98
A.5 WebRTC in Dart . 99

B Appendix B 101
B.1 AngularJs Files Structure . 101

List of Figures

1.1 Spiral Development Model . 4

2.1 WebRTC Network: Finding connection candidates[Dut14] 10
2.2 Traditional Telephony Network . 11
2.3 WebRTC API View with Signaling[JB13a] 12
2.4 WebRTC architecture [Goo12] . 13
2.5 UberConference integrate with Hangouts Screen shot[Web14a] 15
2.6 Cube Slam Game Over Screen . 17
2.7 Prototype System Working Diagram [JB13b] 22

3.1 Illustration of a Mesh Network [Wik13i] 26
3.2 Prototype System Network . 27
3.3 Sipml5 and webrtc2sip Network . 31
3.4 Node.js Non-blocking I/O[Rot14] . 35
3.5 Multiple Threaded Server[Rot14] . 35
3.6 Mobicents SIP Servlets[Tel14c] . 36

4.1 Prototype Application Calling Outbound Mobile Number 41
4.2 WebRTC two peer communication process[Net14b] 42
4.3 Single Call from Browser to SIP Client 66
4.4 Single Call from SIP Client to Browser Client 68
4.5 Prototype Application in Conference Sending SMS 70
4.6 File Sharing Sender Client . 72
4.7 File Sharing Receiver Client . 72

B.1 Prototype Application AngularJs Files 101

vii

List of Tables

1.1 : Unified Communication Solution Spiral Model 5

4.1 : Prototype System Functions . 40
4.2 : Socket.IO Listening Channels in Code Snippet A.1 59

viii

List of Code Snippets

3.1 Add IceCandidate in Dart . 30
4.1 Get User Media Stream function . 43
4.2 WebRTCService.js in application client 44
4.3 Create Peer Connection function . 46
4.4 Add Remote IceCandidate function 47
4.5 Sample WebRTC Answer Session Description Protocol (SDP) 48
4.6 app.js in application client . 50
4.7 contactTable.jade in application client 51
4.8 ContactTableDirective.js in application client 53
4.9 ContactsCtrl.js in application client 54
4.10 Include Google API Javascript file in Index.iade 55
4.11 GoogleAPIService.js in application client 56
4.12 _setSocketListener() Function in PhoneViewCtrl.js on Application

Client . 60
4.13 ACK Alice -> Bob Sample [Soc03] 62
4.14 SIPREMOTE event handler for INVITE message 64
4.15 Files Sharing in ChatBoardCtrl.js . 73
5.1 Using TURN Server on WebRTC Client 78
A.1 socket.js on Application Server . 93
A.2 sip.js on Application Server . 94
A.3 xms.js on Application Server . 97
A.4 msg.js on Application Server . 98
A.5 WebRTCCtrl in Dart application client 99

ix

List of Acronyms

AJAX Asynchronous JavaScript and XML.

API Application Programming Interface.

AWS Amazon Web Service.

CSS Cascading Style Sheets.

DOM Document Object Model.

DTLS Datagram Transport Layer Security.

EC2 Amazon Elastic Compute Cloud.

EJS Embedded JavaScript templates.

FQDN Fully Qualified Domain Name.

GIPS Global IP Solutions.

GUI Graphical User Interface.

HTML HyperText Markup Language.

HTML5 HyperText Markup Language 5.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol over Secure Socket Layer.

ICE Interactive Connectivity Establishment.

IETF Internet Engineering Task Force.

IM Instance Message.

xi

IMS IP Multimedia Subsystem.

IO Input/Output.

IP Internet Protocol.

JAIN Java APIs for Integrated Networks.

JEE Joint Entrance Examination.

JSLEE JAIN Service Logic Execution Environment.

JSON JavaScript Object Notation.

JSONP JSON with padding.

JSR Java Specification Requests.

MPBX Multimedia Private Branch Exchange.

MSG Mobile Service Gateway.

MVC Model–View–Controller.

NAT Network Address Translator.

NIO Non-Blocking I/O.

NPM Node.js Package Manager.

OAuth Open standard for Authorization.

ORTC Object RTC.

OTT Over The Top.

P2P Peer-To-Peer.

PBX Private Branch Exchange.

PHP PHP: Hypertext Preprocessor.

PSTN Public Switched Telephone Network.

QoS Quality of Service.

RCS Rich Communication Services.

REST Representational State Transfer.

RTC Real-Time Communication.

RTP Real-time Transport Protocol.

SBC Session Border Controller.

SDK Software Development Kit.

SDP Session Description Protocol.

SIP Session Initiation Protocol.

SLEE Service Logic Execution Environment.

SMS Short Message Service.

SQL Structured Query Language.

SRTP Secure Real-time Transport Protocol.

SSL Secure Sockets Layer.

STUN Session Traversal Utilities for NAT.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TOR The Onion Router.

TURN Traversal Using Relays around NAT.

UA User Agent.

UAC User Agent Client.

UAS User Agent Server.

UDP User Datagram Protocol.

UI User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

VM Virtual Machine.

VoIP Voice over Internet Protocol.

W3C World Wide Web Consortium.

WebRTC Web Real-Time Communication.

XML Extensible Markup Language.

XMPP Extensible Messaging and Presence Protocol.

Chapter1Introduction

The main goal of an unified communication solution with WebRTC is to integrate
WebRTC technology with traditional telephony network. The term, unified commu-
nication, in this thesis means the unified solution for real time communication on
the internet and on the traditional telephony network.

1.1 Background and Motivation

As the development of smart mobile phone industry, there are more and more people
connected to the internet through smart phones. The real time communication
demands is from the traditional telephony network to IP network. There are many
client applications provide real time communication service through the internet.
There are two main different categories for these real time communication solution.
One kind of application is like Google Hangout, it provides users a real time commu-
nication channel on the internet and requires user clients are both using browser to
communicate. The other kind of application is like Skype1, it provides VoIP service
and let different client users(application client and physical phone) to communicate
with each other. The second type of service is the goal of unified communication
service in this thesis.

However, the problem of the second category application is that users have to
install some application client and it requests for some application credential to use
the service. There are already many different applications installed on user’s smart
phone and desktop computer. It is difficult for users to remember another application
credential and install one more application for just calling.

The motivation of this thesis is to provide a unified communication solution to
let users have real time conversations with others using mobile phones or computer.
The unified communication solution would not demand user to install any client

1Skype is a freemium voice-over-IP service and instant messaging client, currently developed by
the Microsoft Skype Division. The name was derived from "sky" and "peer".[Wik14v]

1

2 1. INTRODUCTION

software or plugins and not ask user to remember another new credential information
either. The approach for that would be a web application service using user telephone
number as credential and provide the user call any kind of other user no matter the
other user is on his mobile phone or his computer through internet. This system
will be a Over The Top (OTT) solution integrated with WebRTC network and VoIP
network. The service can provide user a new real time communication way to reach
other people in the world since every one is on the internet or on the phone nowadays.

The prototype system implemented in this thesis will provide rich multimedia
real-time communication service with WebRTC network and SIP network. Some
basic real-time communication application functions will be achieved, like calling
mobile phone, having video conferencing, instance messaging and file sharing. And
normal telephony functions will be achieved by the prototype system as well, for
instance, calling phone number, receiving call from other phone number, forwarding
phone and Short Message Service (SMS) messaging.

1.2 Challenges

Challenges of this thesis are mainly from two categories, research challenges and
implementation challenges.

For research challenges, since WebRTC technology is an new web technology and
not scandalized yet, there are a lot of articles about it but they are not all relevant
as references because different browser has different implementation on WebRTC
and the implementation keeps changing with the updates of the browser. Moreover,
there are not many open sourced project to support SIP on the web application. The
objective is to integrate WebRTC technology with traditional telephony network,
then it is necessary to do the search about the similar implementing project or
application in this scope. There are no such directly communication service between
SIP and WebRTC in the commercial market. The research cases could be studied
are mostly based on one of these technology.

For implementation challenges, there are no commercial products using the same
technology as the prototype system of this thesis in the market yet. The combination
of the technologies implemented in the prototype system is completely new in the
field. There are not so many references and documentation could be helpful during
the development. Student who developed the system has to understand the basic and
fundamental knowledge about SIP protocol and WebRTC implementation in order to
implement an unified communication service based on SIP and WebRTC . It requires a
lot of time on programming demo prototype to evaluate the implementation solutions.
Furthermore, there are many system design cases which need to be considered during
the development because the target integration system is the traditional telephony

1.3. METHOD 3

network. It requires high system stability. All the implementation source code of the
prototype system to achieve the objective of unified communication solution with
WebRTC is created by the student alone. Some of them are based on other third
party library with some changes by the student. These development process requires
student have very high programming skills on some specific programming languages
and network knowledge.

1.3 Method

The main focus of this thesis is to research about how to make an unified communi-
cation system with WebRTC technology. The approach to this goal will be studies
about WebRTC and its commercial usage and also the prototype implementation
to verify the prototype system design and some ideas about the way to implement
this unified communication system. The approach for this goal in the thesis is to
implement the prototype system and demo tests to understand the different solutions
and analysis their advantages and disadvantages.

To achieve the goal of this thesis, the research progress will be under the Spiral
development2 and Prototyping3 software development methodology.

The reason to use these two software development methodologies is that this
thesis is a single person project and the goal of this thesis is to figure out how to
integrate one technology to exist business market. Then the Scrum development
method4 is not suitable for one person project since it causes too much time to
discuss problem with others to get feedback and also it will cause too much plan
than the research or development work load. There will not be too much continues
user interaction during the research and development then it is not suitable to use
Rapid application development in this thesis.

2The spiral model is a risk-driven process model generator for software projects. Based on the
unique risk patterns of a given project, the spiral model guides a team to adopt elements of one or
more process models, such as incremental, waterfall, or evolutionary prototyping.[Wik13s]

3Software prototyping, refers to the activity of creating prototypes of software applications,
i.e., incomplete versions of the software program being developed. It is an activity that can occur
in software development and is comparable to prototyping as known from other fields, such as
mechanical engineering or manufacturing. A prototype typically simulates only a few aspects of,
and may be completely different from, the final product.[Wik13r]

4Scrum is an iterative and incremental agile software development framework for managing
software projects and product or application development. It defines "a flexible, holistic product
development strategy where a development team works as a unit to reach a common goal". It
challenges assumptions of the "traditional, sequential approach" to product development. Scrum
enables teams to self-organize by encouraging physical co-location or close online collaboration of
all team members and daily face-to-face communication among all team members and disciplines in
the project.[Wik13n]

4 1. INTRODUCTION

Figure 1.1: Spiral Development Model

1.3.1 Spiral Development

Because the target network for unified communication solution is telephony network
which requires high stability in the real live, using risk-driven process model like
Spiral development is quite suitable in this thesis. The basic Spiral development
model is shown in Figure 1.1.

The basic principles of Spiral Development are shown below[Wik13q]:
– Focus is on risk assessment and on minimizing project risk by breaking a
project into smaller segments and providing more ease-of-change during the
development process, as well as providing the opportunity to evaluate risks and
weigh consideration of project continuation throughout the life cycle.

– Each cycle involves a progression through the same sequence of steps, for each
part of the product and for each of its levels of elaboration, from an overall
concept-of-operation document down to the coding of each individual program.

– Each trip around the spiral traverses four basic quadrants: (1) determine ob-
jectives, alternatives, and constraints of the iteration; (2) evaluate alternatives;
Identify and resolve risks; (3) develop and verify deliverables from the iteration;
and (4) plan the next iteration.

– Begin each cycle with an identification of stakeholders and their win conditions,
and end each cycle with review and commitment.

Like which is shown in the Figure 1.1, there are four steps in each development
circle. Considering the objective of the thesis, there will be several development

1.3. METHOD 5

Table 1.1: : Unified Communication Solution Spiral Model

Function Risk Level Evaluation Method
WebRTC Conversation Low Implement basic WebRTC with

different frameworks
WebRTC with SIP conversation Low Research with different solutions

in demo tests
WebRTC DataChannel High Research about WebRTC Dat-

aChannel Usage on XMS Server
Rich Multimedia Conversation Low Implement basic real time com-

munication functions to test
WebRTC Browser Compatibility Medium Implementation tests on different

browsers
Advanced Real-time Conversa-
tion Functions

Medium Research and implementation
tests on some advanced real time
conversation functions

circle regarding to the functionality of the unified communication solution for the
prototype system. They are shown in the below Table 1.1(Most of the evaluation
and implementation explanation will be hold in later Chapters).

During the prototype system development in this thesis, the risk of each function
implementation is how the functionality will be integrated with telephony network
in WebRTC. There are some advanced WebRTC technology which are difficult and
high risk to cause more problem than the benefits of the prototype system during
the development. They will be addressed during the Chapter 3 and Chapter 6 to
explain the reason why they got dropped from the prototype system and how these
functions can be implemented in the fureture.

In the Table 1.1, the order of the function lists are the same development circle
order during the prototype system implementation and research of the thesis’s topic.
They are from the basic function which is higher priority to lower. Considering
the risk level to the exist telephony VoIP network and the evaluation result, some
of them will not be include in the final prototype system of the thesis. But all of
them are going through the four steps of Spiral development model, first to analysis
the function requirement, second to evaluate the possible solution to implement the
function, third to make some demo tests or prototype implementation in order to get
feedback, at last to decide if this function can be included in the prototype system
and plan for next function implementation.

6 1. INTRODUCTION

1.3.2 Prototyping

Prototyping has several benefits: The software designer and implementer can get
valuable feedback from the users early in the project. The client and the contractor
can compare if the software made matches the software specification, according
to which the software program is built. It also allows the software engineer some
insight into the accuracy of initial project estimates and whether the deadlines and
milestones proposed can be successfully met. The degree of completeness and the
techniques used in the prototyping have been in development and debate since its
proposal in the early 1970s.[Wik13r]

There will be different case studies and implementation solution demo testing in
the thesis. They are helping the research about the unified communication solution.
Besides the understanding and analysis on the demo testing and case studies, the
prototype system implementation will give more feedback and future approach to
finalize the unified communication system.

The prototyping in each development circle of Spiral development module will be
shown to some pilot testers during the implementation process. Some feedback from
the pilot testers will be considered as part of the evaluation result. Although there
will software application development for prototype system in this thesis, the design
about the application logic of the software development will not be included in this
thesis because it is not the main objective of the topic.

The decision of the prototype system implementation method is based on the
comparison of different implementation solutions in the Chapter 3. All the comparison
of these implementation solutions are made based on the demo testing in these
different solutions.

After the prototype system implementation, the performance is judged by the
student and some other pilot testers. Because the prototype system in this thesis is to
prove the implementation solution and system design for the unified communication
service with WebRTC, the user experience and prototype system performance is not
the main focus in this thesis. Although some analysis and discussion will cover these
issues, they will not take big account of this thesis.

There will be discussion about the future work in this thesis based on the prototype
system implementation. It is based on WebRTC case studies and feedback of the
prototype system. It will help other researcher in the same field to have some
reference on the potential and direction of the unified communication service with
WebRTC.

1.4. THESIS STRUCTURE 7

1.4 Thesis Structure

There are five chapters about the process of creating an unified communication
service with WebRTC technology in this thesis.

Chapter 2 covers basic studies about WebRTC and SIP, these two technology.
The reason to discuss SIP network is because the SIP signaling protocol is the most
widely used VoIP protocol in all the kind of real time communication services. And
also the target VoIP network PBX in this thesis is SIP supported PBX. In this
chapter will also cover the basic working scenario of the prototype system based on
the WebRTC usage example of the commercial products.

Chapter 3 covers different solutions for the prototype system. They are imple-
mented and tested in some demo tests. After comparing these demo tests, some
choices will be made for the implementing process of the prototype system.

Chapter 4 covers some details about the key factor in the prototype system. There
are some explanation and analysis about the way how the prototype implementing.
The reason for this chapter is to support the discussion of chapter 3 and also give
more information about the prototype system functionalities.

Chapter 5 covers the process to deploy the prototype system to make it working.
Since the prototype system is targeting to telephony network and IP network, it is
necessary to deploy the prototype system and test it in the real working scenario not
only the testing environment. In most of the case, the deployment of this kind of
real time communication service will cause some trouble for the system itself which
needs to be concerned in the development.

Chapter 6 covers more discussion about the future work of the prototype system
according to the feedback and experience of the prototype system. Some discussion
will be addressed against with some points in the Chapter 3 as well.

Chapter2Related Studies

In order to bridge the IP network and telephony network, a solution to create a
real-time communication channel between IP network and VoIP network is the key
factor since the VoIP network is the bridge to make IP network to talk with telephony
network. In this Chapter, some introduction of WebRTC and SIP network will be
covered. SIP is one of the VoIP signaling protocols widely used in current internet
telephony service which is also the target telephony network in this thesis. There will
be some studies of WebRTC business cases and prototype working scenario based
on these WebRTC usage cases in this chapter. The prototype working scenario is
designed by considering these different WebRTC usage cases.

2.1 WebRTC

Before WebRTC announced, Gmail1 video chat became popular in 2008, and in
2011 Google introduced Hangouts2, which uses the Google Talk service (as does
Gmail). In May 2011, Google released an open source project for browser-based
real-time communication known as WebRTC. This has been followed by ongoing
work to standardize the relevant protocols in the Internet Engineering Task Force
(IETF) and browser APIs in the W3C.

2.1.1 What is WebRTC ?

WebRTC is an industry and standards effort to put real-time communications
capabilities into all browsers and make these capabilities accessible to web developers
via standard HTML5 tags and JavaScript APIs. For example, consider functionality

1Gmail is a free , advertising-supported email service provided by Google.
2Google Hangouts is an instant messaging and video chat platform developed by Google, which

launched on May 15, 2013 during the keynote of its I/O development conference. It replaces three
messaging products that Google had implemented concurrently within its services, including Talk,
Google+ Messenger, and Hangouts, a video chat system present within Google+.

9

10 2. RELATED STUDIES

Figure 2.1: WebRTC Network: Finding connection candidates[Dut14]

similar to that offered by Skype3. but without installing any software or plug-ins. For
a website or web application to work regardless of which browser is used, standards are
required. Also, standards are required so that browsers can communicate with non-
browsers, including enterprise and service provider telephony and communications
equipment[JB13c].

With the rapidly development of internet, more and more communication traffic
is moving to web from the traditional telephony network. And in the recent decade,
VoIP network services are growing to the peek of the market capacity. Solution to
integrate WebRTC and existing VoIP network is the right approach the trend of the
internet communication requirement.

2.1.2 WebRTC Network Structure

In the Figure2.1[Dut14] shows how the Interactive Connectivity Establishment (ICE)
framework4 to find peer candidate through Session Traversal Utilities for NAT
(STUN) server and its extension Traversal Using Relays around NAT (TURN) server.

Initially, ICE tries to connect peers directly, with the lowest possible latency, via
User Datagram Protocol (UDP). In this process, STUN servers have a single task
which is to enable a peer behind a Network Address Translator (NAT) to find out
its public address and port. If UDP fails, ICE tries Transmission Control Protocol
(TCP) (first Hypertext Transfer Protocol (HTTP), then Hypertext Transfer Protocol
over Secure Socket Layer (HTTPS)). If direct connection fails in particular, because

3Skype is a freemium voice-over-IP service and instant messaging client, currently developed by
the Microsoft Skype Division.[Wik14v]

4ICE is a framework for connecting peers, such as two video chat clients.[Wik14l]

2.1. WEBRTC 11

Figure 2.2: Traditional Telephony Network

of enterprise NAT traversal and firewalls ICE uses an intermediary (relay) TURN
server. In other words, ICE will first use STUN with UDP to directly connect peers
and, if that fails, will fall back to a TURN relay server. The expression ’finding
candidates’ refers to the process of finding network interfaces and ports.[Dut14]

The difference and usage of STUN server and TURN server will be discussed
more detail in Chapter 5.

WebRTC needs server to help users discover each other and exchange ’real world’
details such as names. Then WebRTC client applications (peers) exchange network
information. After that, peers exchange data information about media such as
video format and resolution. Finally, WebRTC client applications can traverse NAT
gateways and firewalls.

Compare to the traditional telephony network which is shown in Figure2.2[Inc05],
the main difference between these two communication network is that WebRTC is
P2P communication in STUN server scenario, after the signaling between end-peers,
the media data are exchanged directly between two peers. However, in the traditional
telephony, all the media data are transferred to PBX and switches regarding to
Public Switched Telephone Network (PSTN)5 then reach the other side of the peer.

5The PSTN consists of telephone lines, fiber optic cables, microwave transmission links, cellular
networks, communications satellites, and undersea telephone cables, all interconnected by switching

12 2. RELATED STUDIES

Figure 2.3: WebRTC API View with Signaling[JB13a]

Even in TURN server scenario for WebRTC, the media stream is only relaying to
the TURN then directly transfer to another peer, no switches involved.

2.1.3 WebRTC Implementation Steps

There are four main steps to implement a WebRTC session shown in Figure 2.3. The
browser client need to obtain local media first, then set up a connection between
the browser and the other peer through some signaling, after that attach the media
and data channels to the connection, afterwards exchange the session description
from each other. Then the media stream will automatically exchange through the
real-time peer to peer media channel.

Each step shown in the Figure 2.3 is implemented by some WebRTC APIs. More
detail about how to use these WebRTC APIs to implement these steps will be covered
in Chapter 4. The WebRTC architecture is shown in Figure 2.4, the main focus in
this thesis will be Web API part and transport part because Web API is the tool
to implement the WebRTC application and transport part is the key for WebRTC
application to communicate with application server, media server and any other end
peer in the system.

centers, thus allowing any telephone in the world to communicate with any other. Originally a
network of fixed-line analog telephone systems, the PSTN is now almost entirely digital in its core
network and includes mobile and other networks, as well as fixed telephones.[Wik14q]

2.1. WEBRTC 13

Figure 2.4: WebRTC architecture [Goo12]

Besides WebRTC APIs, signaling is the other important factor in the system.
WebRTC uses RTCPeerConnection (more about this API will be discussed in Chapter
4) to communicate streaming data between browsers, but also needs a mechanism
to coordinate communication and to send control messages, a process known as
signaling. Signaling methods and protocols are not specified by WebRTC by Google
in purpose, then signaling is not part of the RTCPeerConnection API which can be
decide how to implemented based on different project scenario.

Instead, WebRTC app developers can choose whatever messaging protocol they
prefer, such as SIP or Extensible Messaging and Presence Protocol (XMPP), and any
appropriate duplex (two-way) communication channel. The prototype application
in this thesis will use WebSocket6 as signaling between WebRTC browser end point
and keep use SIP as signaling for SIP end point (mobile/fixed phone based on PSTN
in this case).

Signaling is used to exchange three types of information in WebRTC[Dut14]:

– Session control messages: to initialize or close communication and report errors.
– Network configuration: to the outside world, the computer’s IP address and
port.

– Media capabilities: the codecs and resolutions can be handled by the browser
and the browser it wants to communicate with.

6WebSocket is a protocol providing full-duplex communications channels over a single TCP
connection.[Wik14z]

14 2. RELATED STUDIES

The exchange of information via signaling must have completed successfully before
peer-to-peer streaming can begin. For the prototype application in this thesis, the
signaling has two mechanisms, one is for WebRTC browser clients and the other is
for SIP clients, it will be explained in Chapter 4.

2.2 WebRTC Usage Cases

After Google released the WebRTC as open source project. There are more and more
web applications using it in different ways. WebRTC APIs includes three important
APIs, shown below. There are mainly two types of the WebRTC applications used
them in separately or cooperatively way.

– RTCPeerConnection: audio or video calling, with facilities for encryption
and bandwidth management.

– MediaStream: get access to data streams, such as from the user’s camera
and microphone.

– RTCDataChannel: peer-to-peer communication of generic data.
RTCPeerConnection is the foundation of all WebRTC application to establish

the peer to peer connection. For showing remote peer media source content and
exchange the local peer media source content, the web application need to get the
user’s camera view and microphone sound, the MediaStream API is used always in
real-time communication application. The following business usage cases, ’Tropo’
and ’Uberconference’, are in this category.

2.2.1 Tropo

Tropo is an application platform that enables web developers to write communication
applications in the languages they already use, Groovy7, Ruby8, PHP: Hypertext
Preprocessor (PHP)9, Python10 and JavaScript11, or use a Web API which will
talk with an application running on your own server through the use of HTTP and
JavaScript Object Notation (JSON), feeding requests and processing responses back
and forth as needed. Tropo is in the cloud, so it manages the headaches of dealing
with infrastructure and keeping applications up and running at enterprise-grade.
With Tropo, developers can build and deploy voice and telephony applications, or
add voice to existing applications.[Cru14a]

7Groovy is an object-oriented programming language for the Java platform. It is a dynamic
language with features similar to those of Python, Ruby, Perl, and Smalltalk.[Wik14j]

8Ruby is a dynamic, reflective, object-oriented, general-purpose programming language. It was
designed and developed in the mid-1990s by Yukihiro "Matz" Matsumoto in Japan.[Wik14s]

9PHP is a server-side scripting language designed for web development but also used as a
general-purpose programming language.[Wik14p]

10Python is a widely used general-purpose, high-level programming language.[Wik14r]
11JavaScript (JS) is a dynamic computer programming language.[Wik14m]

2.2. WEBRTC USAGE CASES 15

It has some advanced features, like ’Phone numbers around the world’, ’Text
messaging’, ’Transcription’, ’Call Recording’, ’Conferencing’, ’Text to Speech’ and
’Speech Recognition’. The prototype system in this thesis will provide similar functions
like ’Text messaging’ and ’Conferencing’. Since Tropo is a cloud application platform,
it generates its own scripts based on programming language to provide developer
possibility to easily use WebRTC to communicate with other kinds of network rather
than IP network. The functions Tropo provided is implemented in application server
in the prototype, the application server will handle both the SIP stack and WebRTC
stack in the system. For the client, scripts will be host on the same application server
for browser to access and use.

2.2.2 Uberconference

UberConference gives a visual interface to every conference call so callers can know
who’s on a call and who’s speaking at any time, in addition to making many other
features, such as Hangouts12 integration and screen sharing, easy-to-use with the
click of a button. It is built by the teams that brought Google Voice13 and Yahoo!
Voice to tens of millions of users, UberConference launched in 2012 and is funded by
Andreessen Horowitz and Google Ventures.[Cru14b]

Figure 2.5: UberConference integrate with Hang-
outs Screen shot[Web14a]

The prototype system in
this thesis ideally is to provide
same rich media communica-
tion platform as the service pro-
vided by UberConference. In
February of 2014, UberConfer-
ence release the new feature
which allow user to call into a
Google Hangouts session with
their mobile phone. The feature
is shown in Figure 2.5, Once you
have installed the UberConfer-
ence app in Hangouts, people
can join your call via phone with
the help of a dedicated number.
The prototype system will pro-
vide the same real-time communication service, but it allows the user to create a
video conference based on WebRTC on browser by their mobile phone number and
communicate with audio only mobile phone user as well.

12Google Hangouts is an instant messaging and video chat platform developed by Google, which
launched on May 15, 2013 during the keynote of its I/O development conference.[Wik14h]

13Google Voice (formerly GrandCentral) is a telecommunications service by Google launched on
March 11, 2009.[Wik14i]

16 2. RELATED STUDIES

Figure 2.6: Cube Slam Game Over Screen

It will be more easier for user since they just need to remember their user credential
related to their mobile phone number in order to use the prototype application
rather than register another service user binding with private telephone number.
And also it is more like usual telephone using because user call contacts based on
their telephone number on the contact list. During the real-time conversation, the
prototype application will provide user cooperation tools like instance message and
file sharing in this development phase.

2.2.3 Cube Slam

Moreover, there is another important API, RTCDataChannel , can be used more
creatively by developers to build web applications. The experiment usage cases,
’Cube Slam’ and ’Webtorrent’, are in this category which uses RTCDataChannel to
build P2P data sharing without data going though the server to dispatch to other
peers. It works more efficiently to handle the synchronization problem.

Cube Slam (shown in Figure 2.6) is a Chrome Experiment built with WebRTC ,
play an old-school arcade game with your friends without downloading and installing
any plug-ins. Cube Slam uses getUserMedia to access user’s webcam and microphone
,RTCPeerConnection to stream user video to another user, and RTCDataChannel to
transfer the bits that keep the gameplay in sync. If two users are behind firewalls,
RTCPeerConnection uses a TURN relay server (hosted on Google Compute Engine)
to make the connection. However, when there are no firewalls in the way, the entire
game happens directly peer-to-peer, reducing latency for players and server costs for
developers.[Blo14]

2.2. WEBRTC USAGE CASES 17

The idea behind the Cube Slam is that using RTCDataChannel to sync the
player data in real-time to reduce the latency by peer to peer. RTCDataChannel
sends data securely, and supports an "unreliable" mode for cases where you want
high performance but don’t care about every single packet making it across the
network. In the cases like games where low delay often matters more than perfect
delivery, this ensures that a single stray packet doesn’t slow down the whole app.
The prototype application in this thesis will use WebSocket for data sharing instead
of RTCDataChannel because the media server using in this system is not support
RTCDataChannel yet, so it is not possible to create peer to peer session regarding to
this issue. The RTCDataChannel solution in prototype application will be discussed
in Chapter 6.

2.2.4 Webtorrent

The goal of project Webtorrent is to build a browser BitTorrent client that requires
no install, no plugin, no extension, and fully-interoperates with the regular BitTor-
rent network. It uses WebRTC Data Channels for peer-to-peer transport. Since
WebTorrent is web-first, it’s simple for users who do not understand .torrent files,
magnet links, NATs, etc. By making BitTorrent easier, it will be accessible to new
swathes of users who were previously intimidated, confused, or unwilling to install a
program on their machine to participate.[Abo14]

Since WebRTC is usually used for peer to peer communication, the RTCDat-
aChannel can be used in more creative way like Webtorrent. Although it need to
keep the browser up and running on both ends and there will be no asynchronous
nature into it, it does reduce the bandwidth required and it adds privacy as to who
has access to the file being shared. Since the application can reach direct between
browsers, it can use the data channel to create a low latency network, where data
is shared directly without going through servers on the way. It is lower cost for
the developer and more secure for the clients. For example, doing the same using
a drastically larger number of web browser nodes as The Onion Router (TOR)14,
increases the chance of privacy.This can reduce the need for “real” web servers to
run services, and use those only as points of access into the dynamic network that is
created ad-hoc.

This RTCDataChannel usage is reasonable solution to the prototype system as
well. However, the main focus of the prototype system is to integrate the WebRTC
multimedia type with the VoIP network against with traditional telephony network.

14Tor (previously an acronym for The Onion Router) is free software for enabling online anonymity
and censorship resistance. TOR directs Internet traffic through a free, worldwide, volunteer network
consisting of more than five thousand relays to conceal a user’s location or usage from anyone
conducting network surveillance or traffic analysis.[Wik14x]

18 2. RELATED STUDIES

It will not implement RTCDataChannel function in the system, but this topic will
be discussed in chapter 6.

2.3 SIP

The prototype application in this thesis will be integrated with PSTN through SIP
server. Therefore the application server implemented in this system will use SIP as
signaling to communicate with SIP server to handle the signaling configuration with
mobile/fixed phone end-point.

2.3.1 What is SIP ?

The SIP is a signaling communication protocol, widely used for controlling multimedia
communication sessions such as voice and video calls over IP networks.

The protocol defines the messages that are sent between endpoints which govern
establishment, termination and other essential elements of a call. SIP can be
used for creating, modifying and terminating sessions consisting of one or several
media streams. SIP can be used for two-party (unicast) or multiparty (multicast)
sessions. Other SIP applications include video conferencing, streaming multimedia
distribution, instant messaging, presence information, file transfer, fax over IP and
online games.[Wik14u]

SIP works in conjunction with several other application layer protocols that
identify and carry the session media. Media identification and negotiation is achieved
with the SDP. It is different key filed format than the WebRTC SDP. For the
transmission of media streams (voice, video) SDP typically employs the Real-time
Transport Protocol (RTP) or Secure Real-time Transport Protocol (SRTP). For
secure transmissions of SIP messages, the protocol can be encrypted with Transport
Layer Security (TLS).

2.3.2 SIP Network Elements

In normal SIP network, SIP defines user-agents as well as several types of server
network elements. Two SIP endpoints can communicate without any intervening SIP
infrastructure. However, this approach is often impractical for a public service, which
needs directory services to locate available nodes on the network. In the system
implemented of this thesis, the application server will play the roles as ’User Agent’,
’Registrar’ and ’Gateway’ elements in the SIP network.

User Agent[Wik14u]:

2.3. SIP 19

A SIP User Agent (UA) is a logical network end-point used to create or receive
SIP messages and thereby manage a SIP session. A SIP UA can perform the role of
a User Agent Client (UAC), which sends SIP requests, and the User Agent Server
(UAS), which receives the requests and returns a SIP response. These roles of UAC
and UAS only last for the duration of a SIP transaction.

Registrar[Wik14u]:

A registrar is a SIP endpoint that accepts REGISTER requests and places the
information it receives in those requests into a location service for the domain it
handles. The location service links one or more IP addresses to the SIP Uniform
Resource Identifier (URI) of the registering agent. The URI uses the sip: scheme,
although other protocol schemes are possible, such as tel:. More than one user agent
can register at the same URI, with the result that all registered user agents receive
the calls to the URI.

Gateway[Wik14u]:

Gateways can be used to interface a SIP network to other networks, such as the
PSTN, which use different protocols or technologies. In the prototype application,
the application server is the gateway to interface a WebRTC WebSocket network.
The working process will be covered in Chapter 4.

2.3.3 SIP messages

Since the application server in this system will be used as SIP UA and SIP Gateway,
it will send SIP message requests to SIP server and receive SIP message requests
from the SIP server.

One of the wonderful things about SIP is that it is a text-based protocol modeled
on the request/response model used in HTTP. This makes it easy to debug because
the messages are easy to construct and easy to see. Contrasted with H.32315, SIP
is an exceedingly simple protocol. Nevertheless, it has enough powerful features to
model the behavior of a very complex traditional telephone PBX.[Wor04]

There are two different types of SIP messages: requests and responses. The first
line of a request has a method, defining the nature of the request, and a Request-URI,
indicating where the request should be sent.The first line of a response has a response
code.

15H.323 is a recommendation from the ITU Telecommunication Standardization Sector (ITU-T)
that defines the protocols to provide audio-visual communication sessions on any packet network.
The H.323 standard addresses call signaling and control, multimedia transport and control, and
bandwidth control for point-to-point and multi-point conferences.[Wik14k]

20 2. RELATED STUDIES

For sip requests, regarding to RFC 3261[Soc02], the application server in the system
will use following SIP messages:

– REGISTER: Used by a UA to indicate its current IP address and the Uniform
Resource Locator (URL)s for which it would like to receive calls.

– INVITE: Used to establish a media session between user agents.
– ACK: Confirms reliable message exchanges.
– CANCEL: Terminates a pending request.
– BYE: Terminates a session between two users in a conference.

The SIP response types defined in RFC 3261 will be listened by application server in
the following response codes[Wik14n]:

– 100 Trying: Extended search being performed may take a significant time so
a forking proxy must send a 100 Trying response.

– 180 Ringing: Destination user agent received INVITE, and is alerting user
of call.

– 200 OK: Indicates the request was successful.
– 400 Bad Request: The request could not be understood due to malformed
syntax.

– 401 Unauthorized: The request requires user authentication. This response
is issued by UASs and registrars.

– 408 Request Timeout: Couldn’t find the user in time. The server could not
produce a response within a suitable amount of time, for example, if it could
not determine the location of the user in time. The client MAY repeat the
request without modifications at any later time.

– 480 Temporarily Unavailable: Callee currently unavailable.
– 486 Busy Here: Callee is busy.
By listening these SIP response, the application will send requests to either

WebRTC browser client or SIP client to play as the gateway role in the system. This
gateway mechanism will be introduced in Chapter 3.

2.4 Prototype System Working Flow

To connect with the traditional telephony network, the VoIP system bridges the
PSTN and the IP network. VoIP systems employ session control and signaling
protocols to control the signaling, set-up, and tear-down of calls. They transport
audio streams over IP networks using special media delivery protocols that encode
voice, audio, video with audio codecs, and video codecs as Digital audio by streaming
media. In the prototype system, SIP signaling is used because of its widely usage
and current target PSTN has SIP server support.

The Figure 2.7 shows the basic working flow of the prototype system. The Web
Server/ Gateway is the application server in the prototyep system, it mainly bridges

2.4. PROTOTYPE SYSTEM WORKING FLOW 21

Figure 2.7: Prototype System Working Diagram [JB13b]

the WebRTC browser client with other WebRTC clients and the SIP network. The
SIP server bridges the SIP network and PSTN network or traditional telephony
network. And also the Media Relay server relay all the media stream from different
end clients. In the prototype system, there is another media server besides the
media relay function provided by SIP server because the media server needs to
handle different media SDP in signalings which are WebRTC SDP and SIP SDP.
The media server used in the prototype system is provided by Dialogic, the Network
Fuel company, which is called PowerMedia XMS v2.116. PowerMedia XMS acts as a
WebRTC Media Gateway to mediate WebRTC media-plane differences from those of
typical existing VoIP networks including encryption interworking, transcoding, and
client-based NAT traversal support. The reason to use this media server is to avoid

16PowerMedia XMS is pre-integrated with a variety of application servers and signaling gateways
with HTTP-to-SIP (H2S) functionality and rapidly integrates with others using its web API or
standard interfaces.

22 2. RELATED STUDIES

hard-code transition between WebRTC SDP and SIP SDP. Then the end client no
matter is a WebRTC client or a SIP client, they will communicate with the same
signaling client in their aspect.

Moreover, since the media server is used in this case, during the multiple end-point
conversation, each end-point will only exchange their media stream to the single
end-point on the media server (PowerMedia XMS server), it will make light client
and centralized media server control. The benefit of this system architecture will be
discussed more in the Chapter 3.

Therefore, in the Figure 2.7, all the end point keep using their own original
signaling protocol to communicate with different servers of the prototype system in
order to reach different scope end point.

2.5 Prototype Working Scenario

The prototype system in this thesis will pay more attention on the real-time commu-
nication usage of WebRTC. The main purpose of the system is to combine internet
browser user and traditional telephony user without complicate instillation, plugin
and extension. There are two typical working scenarios of the prototype system will
be described below.

2.5.1 Advanced ’one-number’ communication platform

Adam is a typical Facebook17 user and he does synchronize his contact list through
Google Contacts18 by his smart phone. Now his operator provides user credential from
his telephone number to him. Then Adam just login on his operator ’FellowPhone’
web page, now he can import his contacts list through his Google contact list. After
that, he can see if his contact person is online by using the same web application
’FellowPhone’ or not. He can also import his Facebook friends list and fulfill the
friends list with his contacts list information. Therefore, Adam can see if his facebook
friends online or not. If his facebook friends/ Google contacts are online and use
’FellowPhone’ web application from their operator, Adam can invite them have a
video conference otherwise his friends are not online then he can still invite them into
the video conference but through his friends mobile phone with only audio sound.

During the video conference, Adam can send his online friends files and instance
messages (website links, video links and so on). Moreover, his offline friends in the
same conference will get the same information as text SMS. Adam can reach his

17Facebook is an online social networking service.
18Google Contacts is Google’s contact management tool that is available in its free email service

Gmail, as a standalone service, and as a part of Google’s business-oriented suite of web apps Google
Apps.[Wik14g]

2.5. PROTOTYPE WORKING SCENARIO 23

friends wherever they are and no matter if they are online or not as long as they
have their mobile phone.

2.5.2 Multiple doctors consultation room

Eve is a 70-year-old lady, she lives with her children in their house. But at the day
time, her children go to work, she need take care of herself. She has appointment
with her doctor about her backache. But she can not go to hospital or family doctor
office by her own. Then she uses her mobile phone to call her family doctor. Her
family doctor, Isak, uses the prototype service from his company and operator. When
Eve call to her doctor for help, Isak answered her phone and tried to get her previous
medical information from his working system. Then he found out that Eve had other
doctor about her back treatment before. He can just login in the prototype system
and find out if the other doctor is at work (online in the system). Eve’s previous
doctor, Stella, she has the treatment log about Eve. She got invitation to join the
current conversion with Isak and Eve. She can send message to Isak and share the
treatment log with Isak if it is necessary. She can also listen to the talk between Isak
and Eve about the new update of the treatment to give suggestion. Isak can ask for
more different doctors in the system for advice and consultation to help for Eve case.

In Eve aspect, she only calls doctor Isak, but she can got help from more than
one doctor at the same time. If it is necessary, she can use the computer to login the
same system to have video conference with different doctors for her case. The only
thing required for her is a telephone number and a mobile phone.

Chapter3Prototype System Design

In this chapter, it will cover system design progress of the prototype system along with
explanation and analysis. The prototype system is designed based on preliminary
studies from previous chapter. There will be different implementation solutions
to the prototype working scenario discussed and evaluated in this chapter. After
evaluating these solutions, it will come up with the fit solution to the prototype
working scenario.

3.1 Prototype System Network

In the original WebRTC application implementation, it uses mesh network because
WebRTC meants to be the peer to peer communication architecture and bypass the
third party server. However, the prototype system will use centralized server network
to control and route the communication channels between different types end points.
In this section, it will describe the reason to use centralized server network rather
than mesh network.

3.1.1 Mesh Network

A mesh network is a network topology in which each node (called a mesh node)
relays data for the network, the illustration of the network is shown in Figure 3.1. All
nodes cooperate in the distribution of data in the network. When WebRTC designed,
it considered as mesh network using and take the advantages of the mesh network.
Mesh network provides point-to-point line configuration makes identification and
isolation of faults easy. The messages travel through a dedicated line in the mesh
network, directly to the intended recipient. More privacy and security are thus
enhanced. If a fault occurs in a given link of the network, only those communications
between that specific pair of devices sharing the link will be affected.[Wik13i]

However, with the design of mesh network, the more extensive the network, in
terms of scope or of physical area, the greater the investment necessary to build it

25

26 3. PROTOTYPE SYSTEM DESIGN

Figure 3.1: Illustration of a Mesh Network [Wik13i]

will be, due, among other considerations, to the amount of cabling and the number of
hardware ports it will require. Every device must be connected to every other device,
installation and re-connection are difficult. The huge bulk of the wiring can often be
greater than the available space in the ceiling or under floors can accommodate.

Considering the prototype system case, a real-time communication system, the
scaling problem will eventually be the top priority issue in the future. With the
mesh network, it is difficult and impossible to scale the system with the control
since the network scales by the unknown end points.There is a similar production
application called appear.in. It is a video conversations application with up to 8
people in the browser. appear.in uses peer-to-peer communication, meaning that
the video streams are sent directly between the browser clients. Nothing is stored
on the server and all the communication is encrypted over SSL. But the limit of 8
clients in one conversation is mainly because the client browser it self can not handle
too many peer connections. Because according to mesh network, every client in the
conversation would set up one unique WebRTC RTCPeerConnection object and one
unique media stream exchange channel on the client, it consumes client computer
resources a lot. Thus, the prototype system will not use mesh network as the system
network architecture in order to avoid the future scaling problem. The advantages
of the mesh network is well implemented in the WebRTC api, then the prototype
system will keep these advantages to keep the point-to-point lines isolated with each
other and keep the point-to-point communication more private and secure.

3.1.2 Centralized Network

Centralized network is a type of network where all users connect to a central
server, which is the acting agent for all communications. This server would store
both the communications and the user account information. Most public instant

3.1. PROTOTYPE SYSTEM NETWORK 27

Figure 3.2: Prototype System Network

messaging platforms use a centralized network. It is also called as centralized
server-structure.[Web14b] It is similar network architecture shown in Figure 3.2.

The advantages of centralized server network are centralized control of the system,
centralized observation of the system and light requirement for the client . In
the prototype system, there are application server and media server to handle the
application logic business and media stream exchange business(see in Figure 3.2).
Although every clients communicate with application server to do the WebRTC
signaling, the media stream is not go through the application server. Instead, it goes
through the media server only. Furthermore, every client creates single WebRTC
connection peer with the one call resource on XMS media server, the advantage of
point-to-point line configuration is still kept in this system. As client aspect, it still
makes peer-to-peer media stream connection based on Secure Sockets Layer (SSL).
The function of XMS media server is to combine more than two peer resources into
one conference resource in order to set up the multimedia conference channel. More
detail about XMS media server handling will be covered in Chapter 4.

The other important advantage of centralized server network is that the application
server and media server can observe the condition and quality of the real-time
conversation to administrate the routing and quality improvement process. For

28 3. PROTOTYPE SYSTEM DESIGN

this reason, the media stream quality on every end point will be more stable and
better quality control. Since the prototype application is to integrate with traditional
telephony network, it is important to provide similar quality control and fault tolerant
mechanism in the prototype system.

Regarding to centralized server network, it is possible to use different signaling
protocol for WebRTC browser clients with application server communication and SIP
clients with application server communication. The benefits of having two different
signaling protocols in prototype system is that it keeps the WebRTC clients and the
SIP clients in their own traditional working process, there will be no compatibility
issues for both sides. The application server in the prototype system will play the
role as a gateway to decide which signaling protocol needs to be used when there
are two different communication end clients in the conversation. Moreover, it will
be easier for different existing WebRTC commercial services and SIP commercial
services to integrate with the prototype system in order to communicate with each
other network.

The disadvantage of centralized server network would be the application server
and media server themselves. During the development of the prototype system, it is
easy to figure out that the machines for hosting the application server and media
server are not powerful enough to handle too many client connections and media
stream exchange traffic load. When it comes to the scaling issue, the application
server and media server need to be distributed in multiple server hosts on powerful
server machines. The cost of the entire system will probably be higher than the mesh
network solution.

As a conclusion of these two types network architecture, for this prototype system,
it will be centralized server network, Figure 3.2, to be implemented because it is
more suit to the goal of this thesis which is integrated with traditional telephony
network.

3.2 Prototype Implementation Framework

Since WebRTC is a web API, the prototype application will be a web application.
There are many different web application frameworks nowadays which provide ways
to develop a rich-client web application. In this section, some of the web application
framework will be discussed to figure out which framework is the best solution to the
prototype scenario. Furthermore, application server will be discussed with different
implementation solutions since it does signaling and bridges the SIP network and
browser clients.

3.2. PROTOTYPE IMPLEMENTATION FRAMEWORK 29

3.2.1 Client Implementation Framework

To choose right web application framework to implement the application client in
this thesis scenario, the main fact is that if the web application framework is fit to
the real time communication application and if the framework has the ability to
integrate with WebRTC API. After research about these kinds of web application
frameworks, it narrows down to three main framework to address.

AngularDart :

AngularDart is a framework for building web-apps in Dart. Dart is an open-
source Web programming language developed by Google. It is a class-based, single
inheritance, object-oriented language with C-style syntax. It supports interfaces,
abstract classes, reified generics, and optional typing. Static type annotations do not
affect the runtime semantics of the code. Instead, the type annotations can provide
documentation for tools like static checkers and dynamic run time checks.[Wik14d]
Because most of the script language is not type restrict, it is easy to mess up the code
and value type in script language. But Dart has the type restrict in the language
with the other feature script language has. Moreover, Dart has Dart-to-JavaScript
compiler,dart2js, it makes Dart can be used in client and server both. Addition to
AngularJs framework in Dart, it provide a professional web application structure to
the developer to implement. More about AngularJs notable features will be covered
in the later AngularJs solutions.

The WebRTC implementation in Dart is in this repository: https://github.com/
br1anchen/AngularDart_webRTC. The Code Snippet A.5 shows the main controller
in AngularDart. The line 5 is to import WebRTC client class speack_client.dart, the
class has all the WebRTC APIs implemented in Dart. Line 23 is to initialize the
SpeakerClient object and set the arguments WebSocket url and room name. They
are used for signaling in WebSocket Protocol.

However, after implementation of client application and server back-end in Dart.
There is a critical bug in the current Dartium browser. The Dart Software Devel-
opment Kit (SDK) ships with a version of the Chromium web browser modified to
include a Dart Virtual Machine (VM). Dartium browser can run Dart code directly
without compilation to JavaScript. It is intended as a development tool for Dart
applications, rather than as a general purpose web browser. When embedding Dart
code into web apps, the current recommended procedure is to load a bootstrap
JavaScript file, "dart.js", which will detect the presence or absence of the Dart VM
and load the corresponding Dart or compiled JavaScript code, respectively, therefore
guaranteeing browser compatibility with or without the custom Dart VM.[Wik14d]

The issue is noticed as RtcPeerConnection.addIceCandidate results in a

https://github.com/br1anchen/AngularDart_webRTC
https://github.com/br1anchen/AngularDart_webRTC

30 3. PROTOTYPE SYSTEM DESIGN

NotSupportedError: Internal Dartium Exception in the Dart Google Project
issues.[Iss14] The sample code in the WebRTC Dart implementation shown in Code
Snippet 3.1, line 1 is to create RTCPeerConnection object. From line 5 to line 9
is to send message to server when RTCPeerConnection object get onIceCandidate
event witch ICE candidate information. Line 13 is to bind the message listener event
to Dart function onCandidate.listen. From line 16 to line 19 is the Dart function
to create RTCIceCandidate object and add to RTCPeerConnection object. The
bug issue happens on line 20, when the RTCPeerConnection call addIceCandidate
function, it is not allowed to have callback function in current version Dartium.

Code Snippet 3.1: Add IceCandidate in Dart
1 var pc = new RtcPeerConnection (_iceServers , _dataConfig);
2
3 pc.onIceCandidate.listen ((e){
4 if (e.candidate != null) {
5 _send('candidate ', {
6 'label ': e.candidate.sdpMLineIndex ,
7 'id ': id ,
8 'candidate ': e.candidate.candidate
9 });

10 }
11 });
12 ...
13 get onCandidate => _messages.where ((m) => m['type '] == '

candidate ');
14 ...
15 onCandidate.listen ((message) {
16 var candidate = new RtcIceCandidate ({
17 'sdpMLineIndex ': message ['label '],
18 'candidate ': message ['candidate ']
19 });
20 _connections [message ['id ']]. addIceCandidate (candidate ,()

{},(e){
21 print('add ice candidate error ');
22 });
23 });
24 ...

There is a work around solution in one Stack Overflow1 answer: http://stackoverflow.
com/questions/20404312/how-to-call-addicecandidate-in-dart. The fix method is to

1Stack Overflow is a privately held website, the flagship site of the Stack Exchange Network,
created in 2008 by Jeff Atwood and Joel Spolsky, as a more open alternative to earlier Q&A sites
such as Experts Exchange.

http://stackoverflow.com/questions/20404312/how-to-call-addicecandidate-in-dart
http://stackoverflow.com/questions/20404312/how-to-call-addicecandidate-in-dart

3.2. PROTOTYPE IMPLEMENTATION FRAMEWORK 31

Figure 3.3: Sipml5 and webrtc2sip Network

use js-interop library to use pure JavaScript code in Dart to call the WebRTC Web
API instead of Dart WebRTC interface.

However, Mozilla’s Brendan Eich, who developed the JavaScript language, stated
that:

"I guarantee you that Apple and Microsoft (and Opera and Mozilla, but the first
two are enough) will never embed the Dart VM. So ’Works best in Chrome’ and even
’Works only in Chrome’ are new norms promulgated intentionally by Google. We see
more of this fragmentation every day. As a user of Chrome and Firefox (and Safari),
I find it painful to experience, never mind the political bad taste."[Wik14d]

Since Dart in not support to most modern web browser like FireFox, will not be
used in this prototype. The prototype application need to meet the requirement of
most modern web browsers.

Sipml5 + webrtc2sip:

Sipml5 is the world’s first open source HTML5 SIP client entirely written in
JavaScript for integration in social networks (FaceBook, Twitter, Google+), online
games, e-commerce websites, email signatures. The media stack rely on WebRTC.
The client can be used to connect to any SIP or IP Multimedia Subsystem (IMS)
network from your preferred browser to make and receive audio/video calls and
instant messages.[Tel14a]

Sipml5 provides entire client solution to communicate with other kinds of signaling
real-time communication network. The SIP and SDP stacks are entirely written in
JavaScript and the network transport uses WebSockets as per draft-ibc-sipcore-sip-
websocket. Like the Figure 3.3 showing, it works with media gateway webrtc2sip.
However the community of sipml5 is not so active, the issues and source code
on sipml5 source code project website https://code.google.com/p/sipml5/ are not
updated regularly.

https://code.google.com/p/sipml5/

32 3. PROTOTYPE SYSTEM DESIGN

webrtc2sip is a smart and powerful gateway using WebRTC and SIP to turn your
browser into a phone with audio, video and SMS messaging capabilities. The gateway
allows web browser to make and receive calls from/to any SIP-legacy network or
PSTN. The gateway contains four modules: SIP Proxy, RTCWeb Breaker, Media
Coder, Click-to-Call.[Tel14b]

In the prototype working scenario, it is necessary to have media gateway to com-
municate with SIP-legacy network. Since the current PSTN using in this prototype
go through Gintel Multimedia Private Branch Exchange (MPBX) Platform, it is
necessary to use RTCWeb Breaker to be able to connect the browser to a SIP-legacy
endpoint as well.

Therefore, the test for Sipml5 and webrtc2sip solution is based on the live demo
http://sipml5.org/call.htm. But even with the RTCWeb Breaker, the test is still
failed to call any number through the target PSTN. Since most of the source code of
these two framework are hidden from the encapsulation, it is impossible to debug
which part of the testing system causes the problem. In the test, the registration for
SIP client is successful, but there are ’too long message’ as the SIP error message got
from the SIP server. It means that the sipml5 and webrtc2sip network architecture
is not compatible with the target PSTN through the Gintel MPBX Platform. This
solution can not be used in the prototype system.

AngularJs + Socket.IO:

AngularJS is built around the belief that declarative programming should be used
for building user interfaces and wiring software components, while imperative program-
ming is excellent for expressing business logic. The framework adapts and extends
traditional HyperText Markup Language (HTML) to better serve dynamic content
through two-way data-binding that allows for the automatic synchronization of mod-
els and views. As a result, AngularJS de-emphasizes Document Object Model (DOM)
manipulation and improves testability. Angular follows the Model–View–Controller
(MVC) pattern of software engineering and encourages loose coupling between pre-
sentation, data, and logic components. Using dependency injection, Angular brings
traditional server-side services, such as view-dependent controllers, to client-side web
applications. Consequently, much of the burden on the backend is reduced, leading
to much lighter web applications.[Wik14a]

AngularJs is perfect for single-page web application, the framework features
provide developer a professional way to structure the web application in JavaScript.
Moreover, the developer community of AngularJs is quite active, there are a lot of
Angular module services to provide different interfaces against different web APIs. In
the prototype application, there will be several third party Angular module libraries
used in order to integrate with some advanced JavaScript library or web APIs in

http://sipml5.org/call.htm

3.2. PROTOTYPE IMPLEMENTATION FRAMEWORK 33

Angular style.

Socket.IO is a JavaScript library for real time web applications. It has two parts:
a client-side library that runs in the browser client, and a server-side library for
node.js. Both components have a nearly identical API. Socket.IO primarily uses the
WebSocket protocol, but if needed it can fallback on multiple other methods, such
as Adobe Flash sockets, JSON with padding (JSONP) polling, and Asynchronous
JavaScript and XML (AJAX) long polling, while providing the same interface.
Although it can be used as simply a wrapper for WebSocket, it provides many more
features, including broadcasting to multiple sockets, storing data associated with
each client, and asynchronous I/O.[Wik14w] In the prototype application, Socket.IO
is used in WebSocket protocol because the WebSocket protocol provides full-duplex
communications channels over a single TCP connection. Then the communication
channel will be active and real time between the clients and server during the whole
connecting procedure. It fits the real time communication application requirement
in prototype working scenario.

After test demo client application implemented in AngularJs and Socket.IO frame-
works, it works fine with the basic WebRTC functions and simple SIP registration
against SIP server to target PSTN. The final decision of the client implementation
framework of prototype system will be AngularJs and Socket.IO.

3.2.2 Server Implementation Framework

Since the client side will use Socket.IO as communication protocol library, the server
back-end in the prototype system needs to support Socket.IO framework as well.
The most natural solution would be Node.js, but it is possible to work with other
traditional web server solution based on WebSocket protocol still. In this section,
more detail about comparison and differences of Node.js against traditional web
service back-end (in Java, ASP .NET2 or PHP) will be covered.

Node.js:

Node.js is a software platform for scalable server-side and networking applications.
Node.js applications are written in JavaScript, and can be run within the Node.js run-
time on Mac OS X, Windows and Linux with no changes. Node.js applications are de-
signed to maximize throughput and efficiency, using non-blocking I/O(Input/Output)
and asynchronous events. Node.js applications run single-threaded, although Node.js
uses multiple threads for file and network events. Node.js is commonly used for real
time applications due to its asynchronous nature.[Wik14o]

2ASP.NET is a server-side Web application framework designed for Web development to produce
dynamic Web pages. It was developed by Microsoft to allow programmers to build dynamic web
sites, web applications and web services.[Wik14c]

34 3. PROTOTYPE SYSTEM DESIGN

Figure 3.4: Node.js Non-blocking I/O[Rot14]

Figure 3.5: Multiple Threaded Server[Rot14]

At high levels of concurrency server needs to go to asynchronous non-blocking,
otherwise there will be blocking Input/Output (IO) on the server to delay other IO
process. The issue is that if any part of the server code blocks, on the traditional
server framework, it is going to need a thread. And at these levels of concurrency, it
can’t keep creating threads for every connection. Then the whole code path needs
to be non-blocking and synchronized, not just the IO layer. This is where Node.js
excels, shown in Figure 3.4. The main difference between Figure 3.4 and Figure 3.5
is the way of server to handle the requests. On Node.js server, it handles all the
requests in asynchronous threads after the requests are delegated from event loop.
But on multiple threaded server, programming language used on these server mostly
does not support for the async pattern. Then it would not matter whether raw
Non-Blocking I/O (NIO) performance is better than Node or any other benchmark
result.

Since the prototype is a real-time communication application, it is better to use
Node.js as back-end server rather than multiple threaded server. Moreover, the

3.2. PROTOTYPE IMPLEMENTATION FRAMEWORK 35

Figure 3.6: Mobicents SIP Servlets[Tel14c]

WebSocket protocol framework(Socket.IO) used on client side has good server side
solution based on Node.js, it makes the prototype system much easier to implement.
The prototype system is a centralized server network, the communication between
application server to XMS server will be hold on normal HTTP/HTTPS protocol,
Node.js provides these protocol communication as well, no need to host any additional
web server software such as Apache3.

For the other part of the prototype, SIP network, there is a existing Node.js
module can be used as SIP stack on Node.js server. sip.js is a SIP stack for node.js.
It implements tranaction and transport layers as described in RFC32614.[kir14]
Although sip.js is not production framework yet, it is one of the few SIP stack
library in Node.js. It provides SIP message parser, UDP/TCP/ TLS based transport
transactions and digest authentication. These features are quite fit to the prototype
requirement and quite handy to implement.

There will be more detail about SIP implementation on sip.js library on Node.js
in chapter 4. Since it is not mature library, there are quite a few stuff need to be
fixed through the development.

Mobicents Sip Servlets

Mobicents SIP Servlets delivers a consistent, open platform on which to develop
and deploy portable and distributable SIP and Converged Joint Entrance Exam-
ination (JEE) services. It is the first open source certified implementation of the

3The Apache HTTP Server, commonly referred to as Apache, is a web server application notable
for playing a key role in the initial growth of the World Wide Web.[Wik14b]

4SIP: Session Initiation Protocol

36 3. PROTOTYPE SYSTEM DESIGN

SIP Servlet v1.1 (Java Specification Requests (JSR) 289 Spec) on top of Tomcat5

and JBoss6 containers and it strives to feature best performances, security, foster
innovation and develop interoperability standards between SIP Servlets and JAIN
Service Logic Execution Environment (JSLEE) so that applications may exploit the
strengths of both. The Java APIs for Integrated Networks (JAIN)7-SIP Reference
implementation is leveraged as the SIP stack and Mobicents JAIN Service Logic
Execution Environment (SLEE)8 is used as the SLEE implementation.

The architecture of the Mobicents SIP Servlets is shown in Figure 3.6. As
it described, Mobicents SIP Servlets provide multiple transport protocol include
HTTP, UDP, TCP and WebSocket. These transport protocols are fit the prototype
requirements, but on the application layer, it has two application server need to
be host, one is JBoss and the other is Tomcat 7, JBoss is support for all the
SIP stack transport and Tomcat 7 is support for HTTP requests. JBoss is the
gateway to communicate with SIP network and Tomcat host the application server
to communicate with media server to handle the real-time multimedia stream.

It is quite nice system architecture to work with, but it needs powerful server
machine to host two web application server on it. Considering Node.js solution, it is
not easy to maintain the system since developer need to configure on two different
web application server to handle different protocol transportation. And client and
server are implemented in different programming languages, it makes the development
harder as well.

After implemented one test application by Mobicents SIP Servlets framework,
it is hard for developer to program the lower level source codes, for example SIP
message headers field modification and WebSocket transport template. The test
application successes to set up conversation session between WebRTC browser client
and SIP client. But when the media stream exchange on XMS server(media server),
there is only one way audio(from browser to phone) in the conversation. But the
SIP transport layer is encapsulated in the Mobicents SIP Servlets framework, it is
hard to modify it in order to do more test if the bug is in the transport layer of the
framework. The source code of this test application is owned by Gintel AS.

5Apache Tomcat (or simply Tomcat, formerly also Jakarta Tomcat) is an open source web
server and servlet container developed by the Apache Software Foundation (ASF).[Wik13b]

6WildFly, formerly known as JBoss AS, or simply JBoss, is an application server authored by
JBoss, now developed by Red Hat. WildFly is written in Java, and implements the Java Platform,
Enterprise Edition (Java EE) specification. It runs on multiple platforms.[Wik13u]

7Java APIs for Integrated Networks (JAIN) is an activity within the Java Community Process,
developing APIs for the creation of telephony (voice and data) services.[Wik13g]

8An accelerated development and deployment environment of new IP Multimedia Subsystem
(IMS) services for convergent fixed- mobile network environments.[Bah14]

3.3. IMPLEMENTATION FRAMEWORK CONCLUSION 37

3.3 Implementation Framework Conclusion

To sum up, the prototype system will use Node.js as server side back-end to commu-
nicate with AngularJs client application on Socket.IO protocol.

The basic set up for the prototype system is the web service on Node.js(v0.10.25).
It hosts a web application client implemented by AngularJs and Socket.IO(0.9.16).
The prototype development is programed and debugged on Macintosh machine. The
programming language used on both client and server side is Javascript. The other
component in the prototype system, XMS media server is host on a PC laptop(Dell
Latitude E6410), it has Intel Core i7 processor, 4GB DDR3 RAM and 250GB
7200RPM hard drive.

Chapter4Prototype System Implementation

In this chapter, it will cover implementation progress of the prototype system along
with explanation and analysis. The prototype system is implemented based on
solution research from chapter 3.

4.1 Prototype System Functions

Based on the study from previous chapter, there are some real time features im-
plemented in the prototype system, they are shown in the Table 4.1. The final
version of prototype application is shown in Figure 4.1, it is the main page of the
web application client. The green notification message on the left shows that there is
an outgoing call from the client to the ’Brian Chen’ contact.

Figure 4.1: Prototype Application Calling Outbound Mobile Number

39

40 4. PROTOTYPE SYSTEM IMPLEMENTATION

Table 4.1: : Prototype System Functions

No Function Detail
#1 Single Call Web browser client application can

call outbound SIP client and receive
outbound SIP client calling

#2 Multiple Users
Video Conference

Multiple Web browser clients can
have video conference

#3 Multiple Clients
Conference

Multiple web browser client and sin-
gle SIP client conference session

#4 Forward Call When one of two web browser clients
leaves the current three end points(2
WebRTC clients and 1 SIP client)
conference, this SIP phone call will
be forwarded to the only WebRTC
client in the current conference ses-
sion

#5 Instance Message Instance Message chatting board in
the current conference session

#6 Instance Message to
SMS

SMS messages will be sent to SIP
client phone which is in the current
video conference session

#7 Files Sharing Files can be shared in the current
video conference session with the We-
bRTC client in the conference

#8 Google Contacts
Import

User can import their Google Con-
tacts to the application clients for
synchronize contacts list

#9 Web Notification All the necessary application notifi-
cation will be display through the
browser web notification message

4.2. WEBRTC APIS IMPLEMENTATION 41

In the prototype system function Table 4.1, functions #1 to #4 is the basic
telephony functions, they are implemented by WebRTC API, application server
and XMS media server. The detail about them will be covered in WebRTC APIs
Implementation section, SIP Implementation section and XMS Media Server section
since they are the real time communication function for WebRTC and SIP clients.

Function #5 is implemented by Socket.IO framework which is discussed in previous
chapter. The implementation detail will be covered in Socket.IO Implementation
section. Function #6 is the advanced function along with the function #5, it is
implemented in Mobile Service Gateway (MSG) which will be discussed in SMS
Messaging section in the later chapter.

Function #7 is implemented by Delivery.js framework not the original WebRTC
RTCDataChannel, more detail will be discussed in Files Sharing section.

Function #8 is another advanced feature provided by prototype application, it is
implemented by Google Contacts API which will be covered in AngularJs Framework
Implementation section as the sample code section for AngularJs framework.

Function #9 is to make the web application more user friendly and more like
traditional telephone usage scenario. It will not be covered in this thesis since the
user experience is not the top priority object for this thesis.

4.2 WebRTC APIs Implementation

WebRTC components are accessed with JavaScript APIs. Currently in development
are the Network Stream API, which represents an audio or video data stream, and
the PeerConnection API, which allows two or more users to communicate browser-to-
browser. Also under development is a DataChannel API which enables communication
of other types of data for real-time gaming, text chat, file transfer, and so forth.
Because the media server used in prototype system is not support for DataChannel
yet, the DataChannel API will not be covered in this section. RTCDataChannel API
will be discussed in chapter 6.

4.2.1 MediaStream API

The MediaStream API represents synchronized streams of media. For example,
a stream taken from camera and microphone input has synchronized video and
audio tracks. In order to obtain local media, the start step for both peers in Figure
4.2, the WebRTC API provides navigator.getUserMedia() function to get the video
and audio stream from user. For privacy reasons, a web application’s request for
access to a user’s microphone or camera will only be granted after the browser has
obtained permission from the user. Each MediaStream has an input, which might be

42 4. PROTOTYPE SYSTEM IMPLEMENTATION

Figure 4.2: WebRTC two peer communication process[Net14b]

a MediaStream generated by navigator.getUserMedia(), and an output, which might
be passed to a video element or an RTCPeerConnection.

The getUserMedia() method takes three parameters:
– A constraints object.
– A success callback which, if called, is passed a MediaStream.
– A failure callback which, if called, is passed an error object.
The Code Snippet 4.1 shows that how the prototype application implements

getUserMedia() function, it is encapsulated in WebRTCService (service is a reusable
business logic independent of views in prototype application regarding to AngularJs
framework1).For the constraints object in parameters, the prototype application set
’audio’ and ’video’ value to true because it is necessary for the real-time communication
application to have video and audio stream both.

Code Snippet 4.1: Get User Media Stream function
1AngularJS is an open-source web application framework, maintained by Google and community,

that assists with creating single-page applications, one-page web applications that only require
HTML, CSS, and JavaScript on the client side.[Wik14a]

4.2. WEBRTC APIS IMPLEMENTATION 43

1 var media_constraints = { audio: true , video: true };
2
3 function _setMediaStream (){
4 WebRTCService.getUserMedia (media_constraints ,
5 _handleUserMedia ,
6 _handleUserMediaError);
7 console.log ('Getting user media with constraints ',
8 media_constraints);
9 }

getUserMedia() function is currently available in Chrome, Opera and Firefox.
Almost all of the WebRTC APIs are slightly different based on different browsers
implementation. In the Code Snippet 4.2, there are two blocks to make all the set
up process for FireFox and to make the same set up process for Google Chrome.
Because WebRTC is not standard Web API yet, so the implementation on different
browsers are different as well. For example, the RTCPeerConnection API in Firefox
is mozRTCPeerConnection but in Google Chrome it is webkitRTCPeerConnection.
In order to make the WebRTC application works on more browsers, the client side
need to figure out which kind of browser is using on the machine then call the
corresponding WebRTC APIs. Google provides a JavaScript shim called adapter.js.
It is maintained by Google, it abstracts away browser differences and spec changes.
For Angularjs framework used by prototype application, then the WebRTCService
is implemented to be integrated with adapter.js function to achieve the goal of
compatibility.

However, the prototype application in this thesis will only focus on Google
Chrome browser2 to simplify the development process because WebRTC lower level
implementation on different browsers are different and hard to track the issues.
Then most of the results in this thesis is based on the application performance of
Google Chrome browser. The reason to choose Google Chrome browser rather than
other browser because WebRTC is the technology rapidly pushed by Google and
Google Chrome browser has the most market share in the world. As of March 2014,
StatCounter estimates that Google Chrome has a 43% worldwide usage share of web
browsers, making it the most widely used web browser in the world.[Wik14f] However,
Google changes a lot to improve the performance of WebRTC on Google Chrome
browser, then it makes the WebRTC APIs work differently on different version of
Google Chrome browser. In the Code Snippet 4.2, from line 19 to line line 29 is the
sample case to distinguish the difference among different version of Google Chrome
to handle the RTCPeerConnection ICE server constraint implementation.

2Google Chrome is a freeware web browser developed by Google. It used the WebKit layout
engine until version 27 and, with the exception of its iOS releases, from version 28 and beyond uses
the WebKit fork Blink.[Wik14f]

44 4. PROTOTYPE SYSTEM IMPLEMENTATION

Code Snippet 4.2: WebRTCService.js in application client
1 angular.module ('webrtcDemo.services ').
2 factory ('WebRTCService ',function () {
3
4 ...
5
6 function _setRTCElement () {
7
8 if(navigator.mozGetUserMedia){
9 ...

10 }else if(navigator.webkitGetUserMedia){
11 ...
12
13 // Creates iceServer from the url for Chrome.
14 _createIceServer = function (url , username , password)

{
15 ...
16 if (url_parts [0]. indexOf ('stun ') === 0) {
17 ...
18 } else if (url_parts [0]. indexOf ('turn ') === 0) {
19 if (_webrtcDetectedVersion < 28) {
20 // For pre-M28 chrome versions use old TURN

format.
21 var url_turn_parts = url.split ("turn:");
22 iceServer = { 'url ': 'turn: ' + username + '@'

+ url_turn_parts [1],
23 'credential ': password };
24 } else {
25 // For Chrome M28 & above use new TURN format.
26 iceServer = { 'url ': url ,
27 'credential ': password ,
28 'username ': username };
29 }
30 }
31 return iceServer;
32 };
33
34 ...
35 }else{
36 console.log (" Browser does not appear to be

WebRTC-capable ");
37 }
38
39 }
40

4.2. WEBRTC APIS IMPLEMENTATION 45

41 return {
42 ...
43 }
44 });

Since WebRTC APIs is not standard API yet, the prototype application in
this thesis will not pay too much work-load on compatibility for different browsers
platform. More detail about this issue will be discussed in the Chapter 6.

4.2.2 RTCPeerConnection API

The step 1 of Figure 4.2 is that the caller peer set up a communication process, it
simply creates RTCPeerConnection then send aWebRTC offer(by calling createOffer()
function and sending WebSocket message with SDP) with local SDP to the other
peer. In the prototype system, it will send WebRTC offer to the application server,
then the application server will check if the receiver is a WebRTC client or SIP to
send different type of offer message(It will be covered in later of this chapter).

To set up peer connection, the RTCPeerConnection API sets up a connection
between two peers. In this context, “peers” means two communication endpoints
on the World Wide Web. Instead of requiring communication through a server, the
communication is direct between the two entities. In the specific case of WebRTC,
a peer connection is a direct media connection between two web browsers. This is
particularly relevant when a multi-way communication such as a conference call is
set up among three or more browsers. Each pair of browsers will require a single
peer connection to join them, allowing for audio and video media to flow directly
between the two peers.

To establish peer connection, it requires a new RTCPeerConnection object. The
only input to the RTCPeerConnection constructor method is a configuration object
containing the information that ICE, will use to “punch holes” through intervening
NAT devices and firewalls. The Code Snippet 4.3 shows the create RTCPeerCon-
nection object and set three listener (onicecandidate,onaddstream,onremovestream)
to trigger the handlers to deal with the ICE candidate event and remote stream
add/remove events.

The RTCPeerConnection API has two arguments to set, one is configuration
object for peer connection and the other is constraint object (set transparent protocol
and encryption) for peer connection, these value are shown in Code Snippet 4.3
line 1 to line 10. In the showing case, the prototype is using STUN servers for
different browser aspect, and set the Real-Time Communication (RTC) channel

46 4. PROTOTYPE SYSTEM IMPLEMENTATION

encryption protocol to Datagram Transport Layer Security (DTLS)3 and enable the
RTC DataChannel.

Because in Firefox, WebRTC media transparent channel is only based on DTLS
protocol, and in latest version Google Chrome, DTLS is supported, then in the
prototype application, it will use DTLS protocol to exchange the media stream.

There are two APIs to handle the RTCIceCandidate object which contains ICE
information data. One is onicecandidate listener to trigger the function to handle
the new RTCIceCandidate data object. The other one is addIceCandidate function,
which is shown in the Code Snippet 4.4, to add the new RTCIceCandidate data
object to the remote/local peer connection session description field. As Code Snippet
4.4 shown, the RTCIceCandidate object has three attributes, sdpMLineIndex is the
media line index in the SDP, sdpMid is the media id which differ it is video or audio
in the SDP and candidate is the IP address and other detail of this media source.

Code Snippet 4.3: Create Peer Connection function
1 pc_config = WebRTCService.webrtcDetectedBrowser () === '

firefox ' ?
2 {'iceServers ':[{ 'urls ':'

stun:stun.services.mozilla.com '}]} :
3 {'iceServers ':[{ 'urls ': '

stun:stun.l.google.com:19302 '}]};
4
5 pc_constraints = {
6 'optional ': [
7 {'DtlsSrtpKeyAgreement ': true},
8 {'RtpDataChannels ': true}
9]

10 };
11
12 function _createPeerConnection (){
13
14 try {
15 pc = WebRTCService.peerConnection (pc_config ,

pc_constraints);
16 pc.onicecandidate = _handleIceCandidate;
17 console.log ('Created RTCPeerConnnection with:\n' +
18 ' config: \'' + JSON.stringify (pc_config) + '\ ';\

n' +

3In information technology, the Datagram Transport Layer Security (DTLS) protocol provides
communications privacy for datagram protocols. DTLS allows datagram-based applications to com-
municate in a way that is designed to prevent eavesdropping, tampering, or message forgery.[Wik14e]

4.2. WEBRTC APIS IMPLEMENTATION 47

19 ' constraints: \'' + JSON.stringify (
pc_constraints) + '\'.');

20 } catch (e) {
21 console.log ('Failed to create PeerConnection , exception:

' + e.message);
22 alert('Cannot create RTCPeerConnection object. ');
23 return;
24 }
25 pc.onaddstream = _handleRemoteStreamAdded;
26 pc.onremovestream = _handleRemoteStreamRemoved;
27
28 }

Code Snippet 4.4: Add Remote IceCandidate function
1 var candidate = WebRTCService.RTCIceCandidate ({
2 sdpMLineIndex:data.content.label ,
3 sdpMid:data.content.id ,
4 candidate:data.content.candidate
5 });
6 pc.addIceCandidate (candidate);

There are difference between Firefox and Google Chrome to handle the RT-
CIceCandidate content in the SDP while sending the offer to the other peer. In
Firefox, it waits for all the RTCIceCandidate data is fetched from STUN/TURN
server then send it with WebRTC offer message. However, in Google Chrome, it
sends the WebRTC offer message first, then update the local SDP with new coming
RTCIceCandidate data one by one. Then in the prototype system, it needs to handle
these differences by listening the endIceCandidate event on application. After client
fetches all the RTCIceCandidate data, it sends an endIceCandidate message to the
application server to send the complete WebRTC offer message to the other peer.

In the step 2 of Figure 4.2, after the caller RTCPeerConnection run createOffer()
function to send offer to callee through signaling channel, the callee need run
createAnswer() function to ask the STUN/TURN server to find the path for each
other peer and create the answer with SDP content. SDP is intended for describing
multimedia communication sessions for the purposes of session announcement, session
invitation, and parameter negotiation. SDP does not deliver media itself but is
used for negotiation between end points of media type, format, and all associated
properties.[Wik14t] Before RTCPeerConnection use createOffer() function to send a
WebRTC offer to the callee, it is required to be present with local streaming video,
like Figure 4.2 mentioned.

48 4. PROTOTYPE SYSTEM IMPLEMENTATION

WebRTC clients need to ascertain and exchange local and remote audio and
video media information, such as resolution and codec capabilities. Signaling to
exchange media configuration information proceeds by exchanging an offer and an
answer using the SDP. The createOffer() function and createAnswer() function both
have callback function to handle the SDP either to call setLocalDescription() by
caller or call setRemoteDescription() by callee when callee gets the caller’s SDP from
WebRTC offer. The Code Snippet4.5 shown is the WebRTC answer SDP from the
callee when the callee end-point decide to accept this conversion session.

The sample SDP from the prototype application is shown in Code Snippet 4.5.
Line 2 in Code Snippet 4.5 is the field ’o’, it describes originator, session identifier,
username, id, version number and network address. It usually means that where this
package comes from. Line 7 and line 17 are field ’m’, it describes media name and
transport address. And line 11,12 and line 27,28 are the relevant lines for audio and
video media field, they describes media filed ’candidate’ attributes, in the sample
case of Code Snippet 4.5, they are the ICE candidate from the STUN/TURN server.
These are important fields regarding to the prototype system because they are used
in XMS server and application server of the prototype system to exchange the media
stream.

Code Snippet 4.5: Sample WebRTC Answer SDP
1 sdp: v=0
2 o=xmserver 1399363527 1399363528 IN IP4 10.254.9.135
3 s=xmserver
4 c=IN IP4 10.254.9.135
5 t=0 0
6 a=ice-lite
7 m=audio 49152 RTP/SAVPF 0 126
8 a=rtpmap:0 PCMU /8000
9 a=sendrecv

10 a=rtcp:49153
11 a=candidate:1 1 UDP 2130706431 10.254.9.135 49152 typ host
12 a=candidate:1 2 UDP 2130706430 10.254.9.135 49153 typ host
13 ...
14 a=acfg:1 t=1
15 a=rtpmap:126 telephone-event /8000
16 a=fmtp:126 0-15
17 m=video 57344 RTP/SAVPF 100
18 b=AS:1000
19 a=rtpmap:100 VP8 /90000
20 a=fmtp:100 max-fr=30; max-fs=1200
21 a=sendrecv
22 a=rtcp:57345
23 a=rtcp-fb:100 ccm fir

4.3. ANGULARJS FRAMEWORK IMPLEMENTATION 49

24 a=rtcp-fb:100 nack
25 a=rtcp-fb:100 nack pli
26 a=rtcp-fb:100 goog-remb
27 a=candidate:2 1 UDP 2130706431 10.254.9.135 57344 typ host
28 a=candidate:2 2 UDP 2130706430 10.254.9.135 57345 typ host
29 ...

In the step 3 of Figure 4.2, the caller will receive the answer from callee and
process it by adding the remote SDP to RTCPeerConnection, like the Code Snippet
4.4. By the meantime, the step 4 of Figure 4.2, the callee will receive the SDP from
caller with the ICE candidate information data, and process it the same way as caller
does, add some to RTCPeerConnection object by addIceCandidate() function. In the
prototype system, these exchange RTCIceCandidate process is relayed by application
server to the different end points.

Once the RTCPeerConnection is established, the client need configure where the
media or data to store and display if it is necessary. In the prototype application of
this thesis, media stream will be displayed in a HTML5 tag called <video>. It will
only be shown when there is media stream in <video> tag source.

4.3 AngularJs Framework Implementation

As it described about AngularJs in Chapter 2, there are three layer components in
the framework, view, controller and service. The files structure is shown in Appendix
B.1. Application has two main web pages, login page and phone page. There
are chatboard,contacts list, contacts table, dialpanel and notification user interface
component blocks in phone page. For each part of the application blocks, it has
controller script and service script. Controller and service scripts are working with
the HTML view scripts. In this section, there will be one sample component block of
the prototype application client explained in order to understand how the AngularJs
is used in prototype application.

The app.js script shown in Code Snippet 4.6 is the bootstrap script for AngularJs
framework. It initializes the application module of AngularJs framework and declare
the dependencies which will be used in the application.

The contact table component in phone page of the application is structured in four
scripts, contactTable.jade script in Code Snippet 4.7, ContactTableDirective.js script
in Code Snippet 4.8, ContactsCtrl.js script in Code Snippet 4.9 and GoogleAPISer-
vice.js script in Code Snippet 4.11. It provides the application contacts information
in advanced functioning table and search function in text input filed.

50 4. PROTOTYPE SYSTEM IMPLEMENTATION

4.3.1 app.js Script (AngularJs Bootstrap)

The app.js script shown in Code Snippet 4.6, it declares the application level mod-
ule which depends on different filters, modules and services. The modules we-
brtcDemo.services, webrtcDemo.controllers, webrtcDemo.directives and webrtcDemo.filters
are the customized modules implemented for prototype application. The rest of the
modules included as dependencies are third party AngularJs modules used in the
prototype application. AngularJs developer community is quite active community,
there are many useful open sourced projects or modules can be just included for
using in the prototype application.

In Code Snippet 4.6, from line 8 to line 20 is implemented to set the application
routing map. There are two main pages, one is login page with "/login" URL and the
other one is phone page with "/chat" URL. The Angular controllers which are bind
with these page view are also declared in $routeProvider service. And the default
URL is set to "/login" to make sure if user has not logged in the system, he need to
input the user credential to enter the service.

Code Snippet 4.6: app.js in application client
1 angular.module ('webrtcDemo ', [
2 ...
3 'webrtcDemo.services ',
4 'webrtcDemo.controllers ',
5 'webrtcDemo.directives ',
6 'webrtcDemo.filters '
7]).
8 config (function ($routeProvider , $locationProvider ,

$httpProvider) {
9 $routeProvider.

10 when('/chat ', {
11 templateUrl: 'partials / phoneView ',
12 controller: 'PhoneViewCtrl '
13 }).
14 when('/login ' ,{
15 templateUrl: 'partials /login ',
16 controller: 'LoginViewCtrl '
17 }).
18 otherwise ({
19 redirectTo: '/login '
20 });
21
22 ...
23 });

4.3. ANGULARJS FRAMEWORK IMPLEMENTATION 51

4.3.2 contactTable.jade Script (View)

The contactTable.jade script is the view component of the AngularJs. It is a Jade4

script file. The template engine used on Node.js in prototype application is Jade
which provides more clear way to program HTML node template scripts than normal
Embedded JavaScript templates (EJS) template engine. In Code Snippet 4.7, Jade
has the same node name as EJS. And there are some Angular directives in the
template from Code Snippet 4.7. For example, at line 2 in Code Snippet 4.7,
the angucomplete-alt directive is a third party Angular directive to provide auto-
completion features in HTML <input> text tag. The different attributes in the
angucomplete-alt node is to set some configuration to this directive, like the attribute
field local-data is the array data to search for content as auto-complete reference.

Moreover, AngularJs itself provides native Angular directive as well. For instance,
at line 11 in Code Snippet 4.7, the attribute ng-class is a native Angular directive
attribute, it provides the Cascading Style Sheets (CSS)5 changes to some specific
CSS class name according to some certain value matches in AngularJs expression. At
line 11, the <tr> tag’s CSS attributes will be success CSS class only if the boolean
value of item.online is true.

AngularJs provides two-way data module binding in the template and controller.
Line 17 in the Code Snippet 4.7, {{item.number}} is the Angular template to display
the number property value of item object in the HTML template. And line 14 is the
example of Angular template integrated with Angular filter, the third-party filter
iif here is the filter to check the {{item.online}} value if it is true or false. If it is
true then it will show Online string text in the HTML template otherwise it will
show Offline string text. The syntax here is quite similar to any other programming
language.

Code Snippet 4.7: contactTable.jade in application client
1 div(id = " contactTable ")
2 angucomplete-alt (id=" contactSearch ",
3 ...
4 local-data= " contactsHolder.contacts ",
5 ...)
6 tabset
7 tab(heading = " Conacts ")
8 table(id = " contacts ", at-table , at-paginated ,

at-list= " contactsHolder.contacts | orderBy:online "

4Jade is a high performance template engine heavily influenced by Haml and implemented with
JavaScript for node.[vis14]

5Cascading Style Sheets (CSS) is a style sheet language used for describing the look and
formatting of a document written in a markup language.[Wik13d]

52 4. PROTOTYPE SYSTEM IMPLEMENTATION

, at-config= " config ",class= "table table-hover
table-striped table-condensed ")

9 thead
10 tbody
11 tr(ng-class = "{ success: item.online }", ng-init =

" item.hvor = false", ng-mouseenter = "
contactHvor (item)", ng-mouseleave = "
contactHvor (item)")

12 ...
13 p(ng-hide = " item.hvor ").
14 {{ item.online | iif : " Online " : " Offline "

}}
15 ...
16 p
17 | Telephone : {{ item.number }}
18 ...

4.3.3 ContactTableDirective.js Script (Customized Directive)

After creating the view of contact table component, it is necessary to bind controller
to the view and declare the component a tag name used in the HTML template. It
is called Directive in AngularJs, and the ContactTableDirective.js script is shown
in Code Snippet 4.8. From line 1 to line 12 is the directive declaration, it sets the
templateUrl to ’partials/contactTable’ which is the view component file path and
binds the controller which named as ContactsCtrl to the view component. The
restrict filed in the directive is to set the template type for ContactTableDirective, in
the Code Snippet 4.8 line 5, it means this directive is a HTML element template,
it can be used as normal HTML element by using name ’contact-table’. By using
AngularJs directive, it makes the HTML view template more modularized and makes
the same view component could be reused in different place in the web application.

From line 14 to line 19 is the Angular filter declaration, it is a filter named as iif,
the only function it does is to check the input value and return trueValue if input is
true otherwise return falseValue. The usage is described in previous section at line
14 of the Code Snippet 4.7.

Code Snippet 4.8: ContactTableDirective.js in application client
1 angular.module ('webrtcDemo.directives ').
2 directive ('contactTable ',function () {
3
4 return {
5 restrict: 'E',
6 replace: true ,
7 scope: true ,

4.3. ANGULARJS FRAMEWORK IMPLEMENTATION 53

8 templateUrl: 'partials / contactTable ',
9 controller: 'ContactsCtrl '

10 };
11
12 });
13
14 angular.module ('webrtcDemo.filters ').
15 filter ('iif ', function () {
16 return function (input , trueValue , falseValue) {
17 return input ? trueValue : falseValue;
18 };
19 });

4.3.4 ContactsCtrl.js Script (Controller)

The controller in AngularJs is to control the user interface logic and bridge the
data business logic from the services with the user interface views. The example
controller in Code Snippet 4.9 controls the contactTable view directive and get data
functions from GoogleAPIService. At the line 2 of Code Snippet 4.9, in the controller
construction function, there are several services arguments. They are the services
this controller will use in the application, one of them is GoogleAPIService which
is related to the contacts information data. The contactTable view directive need
contacts information data to show in the HTML template. And storage is another
service provides localstorage function in HTML5 application. This service is used
to store the contacts information data locally to make user no need to import his
Google contacts information all the time. This function is implemented at line 22 of
the Code Snippet 4.9 by calling storage.set() function to store the contacts data in
the W3C web storage.

At line 5 of the Code Snippet 4.9, it is the function $scope.importContacts, the
reason this function is under $scope object is because this function is directly triggered
by one User Interface (UI) button. In this function, there are two Javascript promise
functions from the GoogleAPIService used. One is GoogleAPIService.oAuth() function
which is to ask user to get Google API permission to query the Google Contacts API.
The other one is to query the contacts information data by Google Contacts API
after get the Google API permission.

Promise object is the new concept in the AngularJs, and it will be standardized
in new ECMAScript6 6. The core idea behind promises is that a promise represents

6ECMAScript is the scripting language standardized by Ecma International in the ECMA-
262 specification and ISO/IEC 16262. The language is widely used for client-side scripting on
the web, in the form of several well-known implementations such as JavaScript, JScript and
ActionScript.[Wik13f]

54 4. PROTOTYPE SYSTEM IMPLEMENTATION

the result of an asynchronous operation. A promise object is in one of three different
states:[pro14]

– Pending - The initial state of a promise.
– Fulfilled - The state of a promise representing a successful operation.
– Rejected - The state of a promise representing a failed operation.
It is a great concept and important feature in the AngularJs. Since everything in

Javascript is asynchronous operation, then promise function is used to deal with the
function calling after previous asynchronous operation success. The implementation
of these two promise functions will be covered in the next section of AngularJS
service.

From line 9 to line 15 is the process to strip the useful information from the
response data to get the correct contact information into contact object, then push
them one by one into a contact object array in order to use the contacts list in contact
table view component.

Code Snippet 4.9: ContactsCtrl.js in application client
1 angular.module ('webrtcDemo.controllers ').
2 controller ('ContactsCtrl ',function ($scope ,$location ,

WebSocketService , GoogleAPIService ,storage , $filter) {
3 ...
4
5 $scope.importContacts = function (){
6 $scope.contactsHolder.contacts = [];
7 GoogleAPIService.oAuth ().then(function (token){
8 GoogleAPIService.queryContacts (token).then(function (

data){
9 angular.forEach (data.feed.entry , function (person ,

key){
10 if(person ['gd$phoneNumber ']){
11 var contact = {
12 name: person.title ['$t'],
13 number: person ['gd$phoneNumber '][0]['$t '],
14 online: false
15 }
16
17 ...
18
19 }
20 });
21
22 storage.set ('contactList- ' + username ,

$scope.contactsHolder.contacts);
23

4.3. ANGULARJS FRAMEWORK IMPLEMENTATION 55

24 });
25 });
26 }
27
28 });

4.3.5 GoogleAPIService.js Script (Service)

AngularJs service provides most of the business logic of the application. Like the
sample code shown in Code Snippet 4.11, it provides interfaces of Google API to
the controller. There are two interfaces in the GoogleAPIService.js script. One
is Google authorization login to get the user permission, the other one is fetching
Google contacts information from the Google Contacts API.

From line 4 to line 20 in Code Snippet 4.11, it is the promise function, _authLo-
gin(), to get Google authorization token in order to call any Google APIs later.
It uses $q service from AngularJs to provide deferred API and prmoise API. The
purpose of the deferred object is to expose the associated prmoise instance as well as
APIs that can be used for signaling the successful or unsuccessful completion, as well
as the status of the task.The purpose of the prmoise object is to allow for interested
parties to get access to the result of the deferred task when it completes.[ang14]
At line 5 and line 23 is the code to create a new instance of deferred and a new
prmoise instance. From line 7 to 10, it is the configuration object for Google API
authorization. The gapi object is loaded from the Google API Javascript client script
included in index.jade shown in Code Snippet 4.10.

Code Snippet 4.10: Include Google API Javascript file in Index.iade
1 script (src= 'https: // apis.google.com /js/ client.js ' type= 'text

/ javascript ')

Since application only needs to get permission form user Google Contacts, then
the scope is set to https://www.google.com/m8/feeds and the client_id is got from
the Google App Engine (https://console.developers.google.com). Developer needs to
create his own Google App project then set the APIs which the project will ask user
permission for and the credentials used for client or web service. In the prototype
system, it is the web application client to use the Google Contacts API then there is
a client Open standard for Authorization (OAuth) 2.07 credential created on Google
App project.

7OAuth is an open standard for authorization. OAuth provides client applications a ’secure
delegated access’ to server resources on behalf of a resource owner.OAuth 2.0 is the next evolution
of the OAuth protocol and is not backwards compatible with OAuth 1.0. OAuth 2.0 focuses on
client developer simplicity while providing specific authorization flows for web applications, desktop
applications, mobile phones, and living room devices.[Wik13k]

https://www.google.com/m8/feeds
https://console.developers.google.com

56 4. PROTOTYPE SYSTEM IMPLEMENTATION

Then the gapi object call auth.authorize() function with the configuration object
to get authorization token. At line 15, when the asynchronous process is finished,
deferred object will call resolve function to send the token object back to the
promise.then function at line 7 in Code Snippet 4.9 which is mentioned at previous
section.

From line 22 to line 34 in Code Snippet 4.11 is another promise function, _fetch-
Contacts() , to fetch the Google contacts information data after getting user per-
mission to use their Google service data. This function makes a HTTP request in
JSONP to fetch all the contacts information from Google Contacts API. JSONP is a
communication technique used in JavaScript programs running in web browsers to
request data from a server in a different domain, something prohibited by typical
web browsers because of the same-origin policy. JSONP takes advantage of the fact
that browsers do not enforce the same-origin policy on <script> tags[Wik13h]. The
reason application uses JSONP in HTTP request is that web application is host in
one origin domain and Google API server is in another origin domain, it is cross
domain request when prototype application requests for data from Google API server.
And Google API server does not support cross domain request for security, but with
JSONP it is allowed to have cross origin domain resources sharing.

The _fetchContacts() function uses the same mechanism as _authLogin() function
described above to make promise function, it returns contacts information data from
Google Contacts API as the promise function resolving data, shown at line27 in
Code Snippet 4.11.

Code Snippet 4.11: GoogleAPIService.js in application client
1 angular.module ('webrtcDemo.services ').
2 factory ('GoogleAPIService ', function ($q ,$http , storage) {
3
4 function _authLogin (){
5 var deferred = $q.defer ();
6
7 var config = {
8 'client_id ': '

xxxxxxxxxxxxxxx.apps.googleusercontent.com ',
9 'scope ': 'https: // www.google.com /m8/feeds '

10 };
11 gapi.auth.authorize (config , function () {
12
13 console.log ('login complete ');
14 console.log (gapi.auth.getToken ());
15 deferred.resolve (gapi.auth.getToken ());
16
17 });

4.4. SOCKET.IO IMPLEMENTATION 57

18
19 return deferred.promise;
20 }
21
22 function _fetchContacts (authToken){
23 ...
24
25 $http.jsonp (url).
26 success (function (data , status , headers , config) {
27 deferred.resolve (data);
28 }).
29 error (function (data , status , headers , config) {
30 deferred.reject ('

GoogleAPIService:queryContacts:Failed ');
31 });
32
33 return deferred.promise;
34 }
35
36 ...
37 });

4.4 Socket.IO Implementation

In the prototype system, web application client and application server communicate
with each other over WebSocket shown in Figure 3.2. There are two main intentions
to have the signaling channel over WebSocket. One is for signaling of WebRTC
ICE candidate exchange and the other one is to exchange the communication data
(text message, files). Unlike HTTP, WebSocket provides full-duplex communication.
Additionally, Websocket enables streams of messages on top of TCP. TCP alone deals
with streams of bytes with no inherent concept of a message. Before WebSocket,
port 80 full-duplex communication was attainable using Comet8 channels; however,
Comet implementation is nontrivial, and due to the TCP handshake and HTTP
header overhead, it is inefficient for small messages. WebSocket protocol aims to
solve these problems without compromising security assumptions of the web.[Wik14z]

8Comet is a web application model in which a long-held HTTP request allows a web server to
push data to a browser, without the browser explicitly requesting it.Comet is an umbrella term,
encompassing multiple techniques for achieving this interaction. All these methods rely on features
included by default in browsers, such as JavaScript, rather than on non-default plugins. The Comet
approach differs from the original model of the web, in which a browser requests a complete web
page at a time.[Wik13e]

58 4. PROTOTYPE SYSTEM IMPLEMENTATION

Table 4.2: : Socket.IO Listening Channels in Code Snippet A.1

WebSocket Channel Message Data Type System Function

SIP
register Web application login page SIP reg-

isteration message to SIP server
invite Web application client invites SIP

client message
answerInvite Web application client gets INVITE

SIP message from SIP client and an-
swers it

WebRTC

register Web application client finishes login
with SIP credential and gets user per-
mission to use getUserMedia() func-
tion and registers client itself on ap-
plication server for WebSocket usage

offer Web application client sends offer
message to appliction server to create
call resource on XMS media server

answerInvite Web application client gets INVITE
message from WebRTC client and
answers it

endCandidate Web application client finishes
getting ICE candidate from
STUN/TURN server then applica-
tion sends HTTP request to XMS
media server with final SDP

hangup Web application client sends hangup
messge to hangup itself from the cur-
rent conference

message Instance Message
(IM)

Web application sends instance mes-
sage to application server in order
to broadcast to all the rest clients in
current conference

SMS Web application client sends SMS to
SIP client

disconnect * Web application client disconnects
from the application server

4.4. SOCKET.IO IMPLEMENTATION 59

4.4.1 Server Side Implementation

The Code Snippet A.1, it is implementation of Socket.IO on the application server.
From line 1 to line 6, it is the initialization process of the Socket.IO on Node.js.
At line 4, it means that when the client binds with the application server through
WebSocket, the listener start in handler function _handlerSocket(). The WebSocket
channels and usages are shown in Table 4.2.

At line 11 in Code Snippet A.1, socket object is created by the Socket.IO framework
whenever one client connects with the server through WebSocket. The listener
function is implemented in the same pattern in socket.on(). There are two arguments
taken by this function. The first one is the channel name, at line 11, it is sip, and
second argument is callback function when this channel got any socket message. This
callback function also takes one argument which is the message data sent by the
client.

At line 16 in Code Snippet A.1, it is the implementation for server to send socket
message back to the client through WebSocket in Socket.IO framework. socket.emit(),
this function takes two arguments, the first one is the WebSocket channel name
and second one is the socket message data object. All the socket message data is
formatted in JSON because it is easier for both client and server side to resolve these
message data.

4.4.2 Client Side Implementation

Since Socket.IO library is a library to make the communication channel between server
and client, besides server side implementation, there is client side implementation
which is correspond to the server side implementation.

The client side Socket.IO implementation is quite similar as the server side
implementation mentioned above. The socket message event listener is implemented as
the same pattern, like line 3 in Code Snippet 4.12. Moreover, at line 15, socket.emit()
function is used for client to send socket message through WebSocket to server in
Socket.IO framework. In this way, the client has same WebSocket channels listed in
Table 4.2 and sends the related data type to the server to request server to run some
corresponding process.

Code Snippet 4.12: _setSocketListener() Function in PhoneViewCtrl.js on Applica-
tion Client

1 function _setSocketListener (socket){
2
3 socket.on ('log ', function (array){
4 console.log.apply (console , array);
5 });

60 4. PROTOTYPE SYSTEM IMPLEMENTATION

6
7 socket.on ('webrtc ', function (data){
8
9 switch (data.type){

10 ...
11 case 'answer ':
12 if(isStarted){
13 ...
14 if(! data.self){
15 socket.emit ('sip ' ,{
16 type: 'invite ',
17 username: $scope.user.name ,
18 content: {
19 to: $scope.outPhone.number
20 }
21 });
22 }else{
23 ...
24 }
25 }
26 break;
27 ...
28 }
29 });
30
31 ...
32 }

4.5 SIP Implementation on Application Server

There are not many SIP stack module made on Node.js Package Manager (NPM)9.
After a lot of research, this prototype system will use a simple SIP module(sip.js
,https://www.npmjs.org/package/sip) on Node.js. It implements tranaction and
transport layers as described in RFC3261(SIP: Session Initiation Protocol, http:
//www.ietf.org/rfc/rfc3261.txt). This library is still maintained by its author although
the developer of this library is not so active during this thesis research period. But
this library is the most appropriate library for Node.js.

The examples of sip.js library usage mostly are to be implemented as a SIP
registration server or proxy server. Then the most of the interfaces provided by sip.js

9npm is the official package manager for Node.js. As of Node.js version 0.6.3, npm is bundled and
installed automatically with the environment. npm runs through the command line and manages
dependencies for an application. It also allows users to install Node.js applications that are available
on the npm registry.[Wik13j]

https://www.npmjs.org/package/sip
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

4.5. SIP IMPLEMENTATION ON APPLICATION SERVER 61

library are design to redirect all the SIP message and SIP register request. Although
sip.js library provides SIP stack for Node.js and lower layer transportation on SIP
protocol interface, it is not designed for manually generating different SIP message
request to SIP server. Most of the SIP implementation of prototype application server
have to be implemented to handle with all different types of SIP message generation
cases by its own which is shown in Code Snippet A.2. These implementation is made
based on the reference of RFC3261 and Wireshark10 trace log of the SIP soft-phone
application11 (like Zoiper).

4.5.1 SIP Request Message Implementation

As mentioned in Chapter 1, there will be REGISTER,INVITE,ACK,CANCEL and
BYE SIP message request implemented in application server to provide normal
WebRTC browser client the SIP communication ability. Fortunately, the sip.js library
provides mostly used SIP response, it is no need to modified these response when
application server relaies the SIP response back to client.

From line 3 to line 20 of Code Snippet A.2 , it is the code block for generating
REGISTER SIP message request. It is implemented regarding to RFC3261. The
important part of this block implementation is the header of REGISTER SIP message.
There are call-id,cseq,from,to,contact fields need to be set in the header. Field call-id
contains a globally unique identifier for this call, generated by the combination of a
random string and the client’s host name or IP address. The combination of the to
tag, from tag, and call-id completely defines a peer-to-peer SIP relationship between
two end points and is referred to as a dialog. Field cseq or Command Sequence
contains an integer and a method name. The cseq number is incremented for each
new request within a dialog and is a traditional sequence number. For the prototype
application server, the cseq number is increased (shown at line 69 of Code Snippet
A.2) when the SIP REGISTER request is unauthorized then application server need
to send another SIP REGISTER request with authorization information. And the
method of cseq is REGISTER in this registration implementation. This process is
implemented from line 63 to line 99 in Code Snippet A.2. Moreover, since the return
200 OK SIP response with the limited expired time for this REGISTER session by
Session Border Controller (SBC)12, at line 76, the application server sets up a timer
to re-register the client in the interval of expire time. Field to contains a display

10Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting,
analysis, software and communications protocol development, and education. Originally named
Ethereal, in May 2006 the project was renamed Wireshark due to trademark issues.[Wik13v]

11A softphone is a software program for making telephone calls over the Internet using a general
purpose computer, rather than using dedicated hardware.[Wik13p]

12A session border controller (SBC) is a device regularly deployed in Voice over Internet Pro-
tocol (VoIP) networks to exert control over the signaling and usually also the media streams
involved in setting up, conducting, and tearing down telephone calls or other interactive media
communications.[Wik13o]

62 4. PROTOTYPE SYSTEM IMPLEMENTATION

name and a SIP or SIPs URI towards which the request was originally directed.
Field from also contains a display name and a SIP or SIPs URI that indicate the
originator of the request. This header field also has a tag parameter containing a
random string that was added to the URI by the application server. It is used for
identification purposes. Field contact contains a SIP or SIPs URI that represents a
direct route to contact client, usually composed of a username at a Fully Qualified
Domain Name (FQDN). It is important to use application server public IP address
and port number since all the client SIP request messages and SIP responses need
to be sent to application server in order to trigger other process in the prototype
system.

Code Snippet 4.13: ACK Alice -> Bob Sample [Soc03]
1 ACK sip:bob@client.biloxi.example.com SIP /2.0
2 Via: SIP /2.0/ TCP

client.atlanta.example.com:5060;branch=z9hG4bK74bd5
3 Max-Forwards: 70
4 From: Alice

<sip:alice@atlanta.example.com>;tag=9fxced76sl
5 To: Bob <sip:bob@biloxi.example.com>;tag=8321234356
6 Call-ID: 3848276298220188511 @atlanta.example.com
7 CSeq: 1 ACK
8 Content-Length: 0

During the development, there is a bug issue found in the sip.js library when it
regards to implement the ACK SIP message if an INVITE SIP message got accepted
(200 OK message). The example SIP ACK message is from RFC3665(SIP Basic
Call Flow Examples, http://tools.ietf.org/html/rfc3665) shown in Code Snippet 4.13.
When implementing this SIP message in sip.js, the URI field of SIP ACK message
need to set the port number with it to force this SIP message sending to the correct
SIP protocol port on the SIP server regarding to line 2 of Code Snippet 4.13. It is
normally set client.atlanta.example.com;transport=udp for the URI headers filed in
most SIP soft-phone client. It means that the SIP request will be sent to the URL
address server on UDP/TCP protocol port. Usually SIP server will set port number
5060 as UDP protocol port as default setting. However, this URI format feature
is not supported by sip.js library. Then the implementation of this process, shown
from line 22 to line 25 is to check if the contact URI of the SIP response header has
port number or not. If there is no port number in it, it need to set the URI with
the 5060 port number which is the target SIP server UDP port with SIP protocol
implementation (it is implemented in same way as most SIP server).

http://tools.ietf.org/html/rfc3665

4.5. SIP IMPLEMENTATION ON APPLICATION SERVER 63

4.5.2 SIP Message Listener and Handler Implementation

The application server in the prototype system does not only create SIP request
message and send them to SIP server, but also listens to the SIP request/response
messages from the SIP server.

In Code Snippet A.2, from line 29 to line 62, it is the initialization function for
SIP gateway on application server. There are two parts in this code block. The first
part is from line 31 to line 39 in Code Snippet A.2, it is the initialization of the
SIP stack on application server on port 5060. It configures the SIP stack on host
IP address and host port number, also initializes the registration array for sip client
credentials. Then at line 206, the function sip.start() is to start the SIP stack listener
on these SIP gateway configuration.

The second part of the code in in Code Snippet A.2, it is the SIP listener to handle
different SIP requests and SIP responses. Since the communication protocol between
WebRTC browser clients and application server is WebSocket not SIP. Then the SIP
messages to the application server are only from the SIP server on the traditional
telephony network. The rq object in Code Snippet A.2 is the request/response SIP
stack object on application server. It is the same message object when the application
send to SIP server in sip.js library. In the code block of this part, it is necessary to
check the method parameter of rq object to find out which type message it is.

For example, from line 45 to line 61 in Code Snippet A.2, it is the code block
when application server get SIP INVITE request from the SIP server. It means
that there is one SIP client wants to call the other WebRTC browser client in the
prototype system. The application firstly send back a Trying SIP response back to
the SIP server (at line 47 and 48 in Code Snippet A.2) by using the sip.makeResponse
function to notify SIP client that the application server is trying to find out if this
contact number is online in the prototype system. If the contact number is online in
the prototype sytem, the application stores some necessary information data from the
INVITE request and broadcast an internal event (SIPREMOTE) by EventEmmitter
(init at line 1 in Code Snippet A.2) from events module in Node.js framework. This
event is used to let socket service of application server get notified by remote SIP
events to send necessary WebSocket message to the client in order to notify the end
point user about the SIP messages(in INVITE example, the socket handler function
is shown in Code Snippet 4.14).

Code Snippet 4.14: SIPREMOTE event handler for INVITE message
1 function _handlerSip (){
2 gw.on('SIPREMOTE ', function (data) {
3 switch (data.type){
4 ...

64 4. PROTOTYPE SYSTEM IMPLEMENTATION

5 case 'INVITE ':
6 var client = clients [data.content.toNumber];
7 if(client.inConference){
8 ...
9 }else{

10 ...
11 xmsManager.createXMSCall ({
12 callType: 'sip ',
13 sdp: data.content.inviteRequest.content
14 }, function (remote_xmsSDP , remote_id){
15 sip.remote_xmsSDP = remote_xmsSDP;
16 sip.remote_identifier = remote_id;
17
18 client.socket.emit ('sip ' ,{
19 type: " createRTCoffer ",
20 inComingNumber: data.content.fromNumber ,
21 callDirection: 'outbound '
22 });
23 ...
24 });
25 }
26 ...
27 }
28 }

In Code Snippet 4.14, at line 7, it checks if the receiver of this SIP INVITE
message is during the conversation. If not, it will send createXMSCall request to
XMS media server to create a new call resource for the SIP client(at line 11 in Code
Snippet 4.14) and send WebSocket message (from line 18 to line 22 in Code Snippet
4.14) about this invite message to the WebRTC target client. At line 21 in Code
Snippet 4.14, the callDirection parameter of WebSocket message object is set to
outbound, it means that this invite message request is from a SIP client(outside of
the prototype system network) to a WebRTC client(inside the prototype system
network). The reason for this flag is for application server to create correct call
resources on the XMS media server and does correct switch routing work for either
WebRTC client or SIP client. The integration with XMS media server of application
server will be discussed more in the next section.

4.6 XMS Media Server Integration on Application Server

XMS media server is used as media gateway in the prototype system, the main
functions of it are to create call/conference session resources for multiple clients and

4.6. XMS MEDIA SERVER INTEGRATION ON APPLICATION SERVER 65

to convert between WebRTC SDP and SIP SDP in order to bridge the WebRTC
clients with SIP clients on RTP channel.

Since the integration is only between application server and XMS media server,
using Representational State Transfer (REST)ful13 communication based on HTTP
is a appropriate solution to the prototype scenario and it is supported by XMS media
server and Node.js framework on application server as well. The detail working flow
of the prototype system integrated with XMS media server is shown in Figure 4.3.

During the process of single call from WebRTC client to SIP client, the application
server needs to send INVITE message with WebRTC SDP of browser client to XMS
media server(create call resrouce request) in order to request XMS media server to
create WebRTC call resource and get the SDP of this newly created call resource
from XMS media server. After WebRTC and newly created call resource connected
in the RTP channel, application server sends INVITE message without SDP(create
call request) to XMS media server in order to create SIP call resource. Then it
sends the SIP INVITE message with the return SDP to SIP server to crate RTP
session with SIP client. At the end, application server sends join request to XMS
media server in order to joint these two created WebRTC call and SIP call resources,
then these two different RTP session channel get connected. The process of multiple
clients join a existing conference resource on XMS media server is a similar process
as the single call example in Figure 4.3.

According to the documentation provided by Dialogic on XMS 2.1 RESTful
API[Dia13], it is only necessary to set encryption field as dtls and ice as field yes in
the SDP for WebRTC SDP otherwise not set both fields for SIP SDP when creating
a call resource on XMS media server(shown at line 4 and 5 in Code Snippet A.3). It
makes the interfaces on application server not necessarily be implemented differently
for WebRTC and SIP clients.

In this sense, there are createXMSCall(), joinXMSCall(), updateLocalSDP(),
createConference(), joinConference(), deleteXMSCall() and deleteXMSConference()
interfaces(shown in Code Snippet A.3) implemented on application server by the
reference of XMS 2.1 RESTful API User’s Guide [Dia13].

Using createXMSCall() function as example of XMS integration implementation
(from line 1 to line 37 in Code Snippet A.3), application server uses http Node.js
module and xml2js Node.js module to implement this interface. Regards to XMS 2.1

13Representational state transfer (REST) is a software architectural style consisting of a coordi-
nated set of architectural constraints applied to components, connectors, and data elements, within
a distributed hypermedia system. REST ignores the details of component implementation and
protocol syntax in order to focus on the roles of components, the constraints upon their interaction
with other components, and their interpretation of significant data elements.[Wik13m]

66 4. PROTOTYPE SYSTEM IMPLEMENTATION

Figure 4.3: Single Call from Browser to SIP Client

RESTful API, creating call resource on XMS media server is a POST HTTP request
with configuration Extensible Markup Language (XML) as request content. From
line 2 to line 7 n Code Snippet A.3 is to generate the XML content. And at line 8,
application server calls http.request() function with the option object and callback
function as arguments. The request option object has host,port,method,path,headers
fields need to be set. The important point is that the Content-length is necessary
in the headers field, it is the length of the XML content. These configuration is
implemented from line 9 to line 17 in Code Snippet A.3. At line 35, application server
calls req.write() function to write XML content data in HTTP request and sends
it to XMS media server. There is a callback function along with the asynchronous
function (http.request()). In the callback function, application server needs to check
the response data from the HTTP POST request for useful SDP data. By using
xml2js module object xmlparser to parse the XML data into JSON, at line 26 and
line 27, it is the process to strip the useful data SDP from the response data. It is
easier to keep using JSON format for all the data object in Node.js as well as the
application client. After the other process at line 28 and line 30, replacing some
unsupported character in the SDP for XMS media server by string.replace() function,
the createXMSCall() function will return usful SDP as result.

The rest of the interfaces for XMS media server on application server are similar

4.6. XMS MEDIA SERVER INTEGRATION ON APPLICATION SERVER 67

Figure 4.4: Single Call from SIP Client to Browser Client

with createXMSCall() interface. joinXMSCall() interface is made for single call
resource join with another single call resource, it is used when a WebRTC call
resource join a SIP call resource for single pair conversation in the prototype system.
updateLocalSDP() is made to update the SDP of specific call resource on the XMS
media server, but it does not work well against the current XMS media server when
the WebRTC call resource is made without SDP during the test and development.
For this reason, the prototype application server can not use the normal process
shown in Figure 4.4 when application server got a SIP INVITE message. During the
test, after creating the WebRTC call resource on XMS media server without SDP
and updating it later with the browser client answer SDP, browser client fails to
connect with the call resource on XMS media server in the RTP session. To fix that,
the application does the same process for the WebRTC part as the process shown in
Figure 4.3. It means that no matter the WebRTC client is a receiver or a sender of
the call request during the establishment, for WebRTC client itself will treat itself as
a sender all the time, then the application server can always get the correct SDP
from the client to create the WebRTC call resource on XMS media server. This
implementation of fixing solution is based on the WebSocket channels answer and
answerInvite for both client side and server side Soket.IO code blocks with the self

68 4. PROTOTYPE SYSTEM IMPLEMENTATION

flag value to see if the client is sender or receiver of the INVITE message. This issue
is reported to Dialogic team, hope it will be resolved in the future version of XMS
media server.

createConference() and joinConference() are the corresponding interfaces against
createXMSCall() and joinXMSCall(), they are made for conference resources usage
on XMS media server. deleteXMSCall() and deleteXMSConference() are the delete
functions for call resources and conference resources on XMS media server.

4.7 Advanced Communication Function Implementation

The most exciting reason for combining WebRTC technology with SIP VoIP network
is that there will be more advanced communication functions can be implemented
under the power of web technology. There are two main advanced communication
functions implemented in the prototype system.

4.7.1 SMS Messaging

SMS messaging is required for normal telephone usage. In the prototype system,
it is necessary to have SMS messaging function during the conference if one of
the participants is on his mobile phone only. The working prototype is shown
in Figure 4.5. There are two peers in one conference, two of them are WebRTC
clients(Gintel tester1, Gintel tester2) and one mobile phone client(Brian Chen). The
implementation service is based on MSG provided by Gintel AS. It is a message
service gateway for SIP clients to send SMS to other SIP clients or physical mobile
phone. The implementation is shown in Code Snippet A.4. It uses the same HTTP
Node.js module to implement the HTTP request communication with MSG server.

There are two steps to send SMS message. The first one is to get correct MSG
user credential by providing the correct loginDto object. loginDto is a JSON object
generated with the user name and password. From line 2 to line 23 in Code Snippet
A.4 is the implementation of this process. It uses another Node.js framework library
https.request() function because of HTTPS protocol is used on target MSG. This
library can be used in the same pattern as http.request() described before. However,
https.request takes only string text in the header fields, then at line 2 in Code Snippet
A.4, it converts JSON object into string. At line 13 in Code Snippet A.4, it is shown
that if the credential sent to MSG server is correct, it will return a validate cookie
in response data. This cookie will be used for second step to send SMS message.
From line 25 to line 61 is the implementation of second step, the login credential
and cookie need to be set in the header fields login and Cookie(shown at line 23 and
36). Moreover the message string is set in the HTTP request body at line 59, the

4.7. ADVANCED COMMUNICATION FUNCTION IMPLEMENTATION 69

Figure 4.5: Prototype Application in Conference Sending SMS

Content-Type and Content-Length in the headers should be set as "application/json"
and the length of message string content(it shows at line 33 and line 37).

4.7.2 Files Sharing

Because the RTP media channel is connected with XMS media server for media
stream exchange, WebRTC RTCDataChannel can not be used in this case. However,
considering the prototype system is a real-time communication platform for collabo-
ration working scenario, it is necessary for end points to have some collaboration
tools such as files sharing. The screen shoot of file sharing in prototype application
is shown in Figure 4.6 and Figure 4.7.

As the screen shoot showing, when sender client uploads files to the application
server, application server will directly share these files with the other clients in current
conference session. The receiver client can decide whether these files need to be saved
or not.

Prototype application uses Delivery.js library to do bidirectional File Transfers For
Node.js via Socket.IO. Delivery.js uses Node.js and Socket.IO to make it easy to push
files to the client, or send them to the server. Files can be pushed to the client as text
(utf-8) or base64 (for images and binary files).[Git14] Since it is based on Socket.IO,
it has the similar client and server implementation mechanism as Socket.IO. Once
a WebSocket connection is established messages (frames) sent between the client

70 4. PROTOTYPE SYSTEM IMPLEMENTATION

Figure 4.6: File Sharing Sender Client

Figure 4.7: File Sharing Receiver Client

4.7. ADVANCED COMMUNICATION FUNCTION IMPLEMENTATION 71

and server contain only 2 additional bytes of overhead. In contrast, a traditional
POST request, and response, may have headers totaling 871 bytes. This could be a
significant addition if many files are being sent, and would be even more significant if
files are being divided into batches before being sent to the server. When pushing files
to the client, the overhead of traditional polling methods provides an even starker
contrast to WebSockets.

At line 9 in Code Snippet A.1, it declares the delivery object using Delivery.js
API dl.listen() with the Socket.IO socket object as the argument. From line 36
to line 64 in Code Snippet A.1 is the server side Delivery.js implementation code.
It listens to the ’receive.success’ WebSocket channel, when the upload files from
client are received successfully the application server will make temporary files for
the upload files and push these files to every connected clients in sender’s current
conference session. At line 38, application server uses fs.writeFile() function from
the Node.js framework fs library to write the file byte data got from the client to
the application server file system, then at line 46, it uses Delivery.js delivery.send()
function to push the file to the connected WebScoket client. For security reasons, the
temporary files will be removed from the server when all the pushing process finished,
it is implemented at line 54 by using fs.unlink() function from Node.js framework fs
library.

After the files are pushed to the client, at line 42 in Code Snippet 4.15, the
client side implementation will listen to the same WebSocket channel ’receive.success’.
When there is file message from the application server to the client, the client listener
will save the files in the runtime memory (it is not best solution for files sharing case,
the improvement will be discussed in Chapter 6), then let the user decide if these
files need to be downloaded or removed. At line 32 in Code Snippet 4.15, it is the
client side sending files function (delivery.send()) to the server through WebSocket.

Code Snippet 4.15: Files Sharing in ChatBoardCtrl.js
1 angular.module ('webrtcDemo.controllers ').
2 controller ('ChatBoardCtrl ',function ($scope ,$location ,

$upload , WebSocketService ,storage ,appId) {
3 ...
4 function b64toBlob (b64Data , contentType , sliceSize) {
5 contentType = contentType || '';
6 sliceSize = sliceSize || 512;
7
8 var byteCharacters = atob(b64Data);
9 var byteArrays = [];

10
11 for (var offset = 0; offset < byteCharacters.length;

offset += sliceSize) {

72 4. PROTOTYPE SYSTEM IMPLEMENTATION

12 var slice = byteCharacters.slice (offset , offset +
sliceSize);

13
14 var byteNumbers = new Array(slice.length);
15 for (var i = 0; i < slice.length; i++) {
16 byteNumbers [i] = slice.charCodeAt (i);
17 }
18
19 var byteArray = new Uint8Array (byteNumbers);
20
21 byteArrays.push (byteArray);
22 }
23
24 var blob = new Blob(byteArrays , {type: contentType });
25 return blob;
26 }
27 ...
28 function _upload (files){
29 if(channelReday){
30 _.each (files , function (file){
31 ...
32 delivery.send (file);
33 });
34 }
35 }
36 ...
37 function _initChatBoardView (){
38 socket = WebSocketService.getCurrentSocket ();
39 ...
40 delivery = new Delivery (socket);
41 ...
42 delivery.on ('receive.success ',function (file){
43 $scope.recievedFiles.push (file);
44 ...
45 });
46 ...
47 }
48 ...
49 $scope.saveFile = function (msg , filename){
50 var tempFile = _.find ($scope.recievedFiles , function (

file){
51 return file.name == filename;
52 });
53

4.7. ADVANCED COMMUNICATION FUNCTION IMPLEMENTATION 73

54 var fileBlob = b64toBlob (tempFile.data ,
tempFile.mimeType);

55 saveAs (fileBlob , tempFile.name);
56 ...
57 }
58 ...
59 });

Because Delivery.js sends files in base6414 encoding format, on the client applica-
tion, it is necessary to convert base64 encoding string to Web Blob15 data for using
the HTML5 W3C saveAs() function to download file at line 55 in Code Snippet
4.15. The saveAs() function takes Web Blob object and file name as the two function
parameters. The converting function is implemented at line 4 to line 26 as b64toBlob()
function in Code Snippet 4.15, it takes base64 string, content type of the file and
slice size (in the prototype case it uses default 512 bit) to convert base64 string data
to Web Blob data. The important function in this code block is atob(), it decodes a
string of data which has been encoded using base-64 encoding, then slice the byte
character data into byte array since Blob() function only takes array of data objects,
shown at line 24.

Based on these implementation for file sharing, it is even possible to send an
E-mail with the sharing files as attachments to the current mobile phone(SIP client)
participant in the conference on the application server. Although the mobile phone
(SIP client) can not get the sharing files directly in real time, the user can still browser
these shared files during the conference to discuss the topic with other participants.

14Base64 is a group of similar binary-to-text encoding schemes that represent binary data in an
ASCII string format by translating it into a radix-64 representation. The term Base64 originates
from a specific MIME content transfer encoding.[Wik13c]

15A Blob object represents a file-like object of immutable, raw data. Blobs represent data that
isn’t necessarily in a JavaScript-native format. The File interface is based on Blob, inheriting blob
functionality and expanding it to support files on the user’s system.[Net14a]

Chapter5Prototype System Deployment

In this Chapter, there will be three main topics discussed because of deploying the
prototype system to production usage. They are TURN server deployment for ICE
candidate exchange, application server deployment for prototype system working
logic and XMS media server deployment for RTP media communication channel.

5.1 TURN Server Deployment

During the development of the prototype system, the test based on XMS media server
is not stable at the beginning. There is one way audio issue which happens in the
prototype system when WebRTC client init a outbound call to a SIP client(mobile
phone). Since it is working fine when the outbound SIP client call into the WebRTC
client, after tracing the network log from the XMS media server, the problem is the
ICE candidate information got from the original STUN server can not punch the
whole on the firewall and NAT of the XMS media server. It is normal to replace
the STUN server as TURN server to solve this problem because if the STUN server
solution is blocked during the media stream exchange from two end point, it will
switch to TURN server solution to exchange the media stream through the TURN
server to relay all the media traffic.

Moreover, the TURN server solution will work well in the different corporation
networks scenario since there will be highly restrict corporation firewalls and NATs
in front of the corporation network. Then TURN server can relay all the media
stream to establish the peer to peer connection. After testing prototype system
against TURN server instead of STUN server provided by Google (shown at line 3 in
Code Snippet 4.3), the one way audio issue is solved and two end clients in different
corporation network scenario works fine as well.

To set up TURN server in the production of prototype system, the prototype

75

76 5. PROTOTYPE SYSTEM DEPLOYMENT

system uses Amazon Web Service (AWS) Amazon Elastic Compute Cloud (EC2)1,
IP address: 54.187.157.224. The open source project,rfc5766-turn-server, is a free
open source implementation of TURN and STUN server maintained by Google. It
provides the AWS EC2 hosting image, then it is only needed to configure the AWS
EC2 virtual instance to open the necessary ports for the TURN server usage. It is
shown in the following list:

– TCP 443
– TCP 3478-3479
– TCP 32355-65535
– UDP 3478-3479
– UDP 32355-65535
Furthermore, the TURN server can either use a flat file or a Structured Query

Language (SQL) database for configuration and user information. In the prototype
system, the TURN server on AWS EC2 will use a flat file for configuration and user
information. It is edited in "/usr/local/etc/turnuserdb.conf" by adding an entry on
its own line: "my_username:my_password".[Her13] Other configurations need to be
completed by following the README file under the hosting instance image directory
on AWS EC2. There are several paramters need to be set in "/etc/turnserver.conf"
on TURN server.

Besides establishment for TURN server, there are some changes need to be done
on the client application as well in order to use this TURN server to fetch the useful
ICE candidate information during the peer to peer connection. Compare to the
Code Snippet 4.3 with original Google STUN server address, in Code Snippet 5.1,
prototype TURN server is set as iceServer. The iceTransports field is the parameter
to force client to use TURN server if it is set to relay, but it is only an additional
feature purposed by Google Chrome, it is not standard feature and not implemented
in Google Chrome either.

Code Snippet 5.1: Using TURN Server on WebRTC Client
1 if (location.hostname != " localhost ") {
2
3 pc_config =
4 {
5 'iceServers ': [{
6 'urls ': 'turn:54.187.157.224 ',

1Amazon Elastic Compute Cloud (EC2) is a central part of Amazon.com’s cloud computing
platform, Amazon Web Services (AWS). EC2 allows users to rent virtual computers on which to run
their own computer applications. EC2 allows scalable deployment of applications by providing a
Web service through which a user can boot an Amazon Machine Image to create a virtual machine,
which Amazon calls an "instance", containing any software desired. A user can create, launch, and
terminate server instances as needed, paying by the hour for active servers, hence the term "elastic".
EC2 provides users with control over the geographical location of instances that allows for latency
optimization and high levels of redundancy.[Wik13a]

5.2. APPLICATION SERVER DEPLOYMENT 77

7 'username ': 'my_username ',
8 'credential ': 'my_password '
9 }],

10 'iceTransports ': 'relay '
11 };
12 }

5.2 Application Server Deployment

Because the prototype application server is implemented in Node.js, there is no
restrict requirements for the operation system platform to deploy the application
server if the operation system can install Node.js library and can run V8 JavaScript
Engine2.

It also needs to open the 5060 port to support UDP for SIP stack usage. Then
it just needs to use "node server.js" command to host the application server for
production.

5.3 XMS Server Deployment

The XMS media server is host on a stand alone machine during the development.
For deployment reason, it is necessary to map the internal IP address of XMS media
server to a public IP address. And it is important to open the necessary port for the
XMS media server usage. According to the documentation of Dialogic PowerMedia
XMS Installation and Configuration Guide[Dia14],the default PowerMedia XMS
configuration uses the following ports:

– TCP: 22, 80, 81, 443, 5060, 1080, 15001
– UDP: 5060, 49152-53152, 57344-57840
Because the application server and XMS media server in the prototype system are

host in the corporation network, it only opens necessary port to the public network.
During the exchange ICE candidate information for client, the XMS IP address will
be the internal IP address by the rule of the corporation network. It is necessary
to change the internal IP address into public IP address before pushing the ICE
candidate information back to the end point client. This process is implemented at
line 29 in Code Snippet A.3, it simply just replaces the internal IP address as public
IP address of XMS media server in the SDP content string.

2The V8 JavaScript Engine is an open source JavaScript engine developed by Google for the
Google Chrome web browser.V8 compiles JavaScript to native machine code (IA-32, x86-64, ARM,
or MIPS ISAs) before executing it, instead of more traditional techniques such as interpreting
bytecode or compiling whole program to machine code and executing it from a filesystem. [Wik13t]

Chapter6Discussion and Conclusion

In this Chapter, there are some future improvements discussion for the prototype
system will be discussed. And some future research directions of WebRTC integrated
with traditional telephony network will be include as well.

6.1 Future Work

6.1.1 RTCDataChannel usage

The RTCDataChannel API enables peer-to-peer exchange of arbitrary data, with
low latency and high throughput.The API has several features to make the most of
RTCPeerConnection and enable powerful and flexible peer-to-peer communication[Dut14]:

– Leveraging of RTCPeerConnection session setup.
– Multiple simultaneous channels, with prioritization.
– Reliable and unreliable delivery semantics.
– Built-in security (DTLS) and congestion control.
– Ability to use with or without audio or video.

Communication occurs directly between browsers, so RTCDataChannel can be
much faster than WebSocket even if a relay (TURN) server is required when ’hole
punching’ to cope with firewalls and NATs fails.

Because the XMS media server handles all the media stream exchange between the
end point clients and it is not support RTCDataChannel, the prototype application
does not implement RTCDataChannel feature in the system. Current using Delivery.js
library is good at bidirectional file sharing between clients and server through
WebSocket. But it has some disadvantages still. The most apparent disadvantage
would be the fact that it bypasses traditional caching methods. Instead of caching
based on a file’s URL, caching would be based on the content of the Web Socket’s
message. One possibility would be to cache a base64, or text, version of the file

79

80 6. DISCUSSION AND CONCLUSION

within Redis1 for fast, in memory, access. And also the sharing files are uploaded to
the server then pushing back to the other clients, it takes longer time to finish this
process than peer-to-peer sharing files. Moreover, in current prototype system, the
shared files will be temporary pre-stored for the client, it will cause some problem
when the sharing file is in a very big size and it will take over all the memory resource
which the client has.

One obvious solution will be implementing the RTCDataChannel API on each
connected client and create new RTCPeerConnection for each pair user in mesh
network for only sharing files purpose. Since these new RTCPeerConnection is not
necessary active during the whole time of application using, they are possible to be
removed after they are used for sharing files to release more memory recourse for
browser clients.

The other solution will be using third party peer to peer sharing services, such
as Sharefest2. It operates on a mesh network similar to Bit-torrent network. The
main difference is that currently the peers are coordinated using an intelligent server.
This coordinator controls which parts are sent from A to B and who shall talk with
whom. Peer5(http://peer5.com/) Coordinator (or any other solution) is used to
accomplish this. Each peer will connect to few other peers in order to maximize
the distribution of the file.[Pee14] In this case the client will still keep having single
RTCPeerConnection with the RTCDataChannel on the client, it will fit the work
scenario of the prototype system.

6.1.2 Browser Compatibility

The prototype system is developed on a single browser (Google Chrome), it is not
tested on other browser. The main reason is that the bug fixing for cross browser
platform on WebRTC is too complicated and changed a lot during the development.
Since WebRTC is not standard Web API yet, all the browsers have their own
implementation. Although most of the WebRTC APIs used in the application layer
are more or less the same, the issues happen in different ways and they are hard to
debug.

Fortunately, Google provides the adapter.js script for developers to solve the cross
platform issue on Google Chrome and Firefox. It is implemented in WebRTCService
in prototype application client. During the test, it still happens some compatibility
issues between Google Chrome and Firefox. Current version of prototype system is

1Redis is an open-source, networked, in-memory, key-value data store with optional durability.
It is written in ANSI C.[Wik13l]

2One-To-Many sharing application. Serverless. Eliminates the need to fully upload your file to
services such as Dropbox or Google Drive. Put your file and start sharing immediately with anyone
that enters the page. Pure javascript-based. No plugins needed thanks to HTML5 WebRTC Data
Channel API

http://peer5.com/

6.1. FUTURE WORK 81

working fine on both Google Chrome and Firefox browser. However, there are some
problem when call is made from Firefox to Google Chrome, from Google Chrome to
Firefox works. The main reason for that, it is the SDP content generated on both
platform is not compatible in this work scenario. This issue need to be fixed in the
future work.

6.1.3 Media Server Performance

During the test of the prototype system, the XMS media server performance is quite
concerned in the work scenario. The main reason is that the current XMS media
server host on a normal laptop machine, it is not powerful enough for high traffic
load of the media stream exchange.

The solution for that, it would be easy to host the media server on another
powerful server machine. Considering the purpose of the prototype system is to build
a system integrated with WebRTC and VoIP network, it is not good solution to keep
updating the XMS media server machine. There will be two way to solve this issue
in real time communication work scenario. One is to host XMS media server on the
third party cloud service, like AWS EC2 instance. Because the third party service
will handle the machine performance, it will rarely have the problem on machine
performance issue. However, this solution is quite expensive when huge number of
users make large amount of media stream traffic to the XMS media server. The other
solution will be distribute multiple XMS media server to share the traffic load in
the prototype system. Then it will be easy to control the performance of the media
server but it will cost more physical machine expense.

As a result, the performance of the media server need to be considered as the
cost of media server deployment and distribution together.

6.1.4 Object RTC (ORTC) API for WebRTC

Object RTC (ORTC) is a free, open project that enables mobile endpoints to talk to
servers and web browsers with RTC capabilities via native and simple Javascript APIs.
The Object RTC components are being optimized to best serve this purpose.[ort14]
The mission of ORTC is to enable rich, high quality, RTC applications to be developed
in mobile endpoints and servers via native toolkits, simple Javascript APIs and
HTML5. It is also a mandate that Object RTC be compatible with WebRTC.

Current WebRTC client is made for browser only, only the smart phone with
supported mobile web browser can use these application. According to ORTC, it
is possible to make all the smart phone as a WebRTC client. Then there will be
no more different signaling implementation because both end point use WebRTC
SDP content and WebRTC mechanism. Only one signaling mechanism need to be

82 6. DISCUSSION AND CONCLUSION

implemented in this way, it will make less compatibility problem for different types
end points.

There is a related open source project, ortc-lib (https://github.com/openpeer/
ortc-lib), it is ORTC C++ library wrapper for WebRTC.This SDK library imple-
mentation of the ORTC specification that will enable mobile end points to talk to a
WebRTC enabled browser.

If we look at the success of apps like Whatsapp3 , Tango4 , Viber5, Voxer6,
Facebook Messenger7 etc these are all OTT applications that have already won in
mobile communications. Placing a phone call, is nearly the last thing a teen or
twenty-something user is looking to do with their phone nowadays.[Web14d] If the
concept of ORTC has been widely spread and implemented, WebRTC and ORTC
will become the next generation telecommunication network.

6.1.5 Advanced function for telecommunication

Since the prototype system bridges the web network and telecommunication network,
it is easy to think about how to implement powerful web technology with the telephony
use case. For example real time translation in speaking. Translator.js is a JavaScript
library built on top of Google Speech-Recognition & Translation API to transcript
and translate voice and text. It supports many locales and brings globalization in
WebRTC.[Kha14] It uses Google Speech-Recognition API to convert user spoken
sentence into text string, then uses Google’s Non-Official Translation API to translate
the text into target language text and use meSpeak.js library to play text using a
robot voice.

With the social network information, it is easy to get the person profile information
of the current conversation user. It is possible to visualize the social network
topological diagram to show what is the relationship between two speaking user in
the conversation. For the business conference using, it is possible to know the person
information and company background information during the conference.

3WhatsApp Messenger is a proprietary, cross-platform instant messaging subscription service
for smartphones that uses the internet for communication. In addition to text messaging, users can
send each other images, video, and audio media messages as well as their location using integrated
mapping features.

4Tango is third-party, cross platform messaging application software for smartphones developed
by TangoME, Inc.

5Viber is a proprietary cross-platform instant messaging voice-over-Internet Protocol application
for smartphones developed by Viber Media.

6Voxer is a San Francisco based mobile app development company most well known for its free
Voxer Walkie Talkie app for smartphones.

7Facebook Messenger is an instant messaging service and software application which provides
text and voice communication. Integrated with Facebook’s web-based Chat feature and built on
the open MQTT protocol,Messenger lets Facebook users chat with friends both on mobile and on
the main website.

https://github.com/openpeer/ortc-lib
https://github.com/openpeer/ortc-lib

6.2. CONCLUSION 83

Furthermore, with the voice recognization on the web, it is possible to make any
useful command through the video/audio conference. For example, one of users
want other people to send an E-mail with some attachments to him and mentioned
it during the conversation. Then the other user’s application will recognize the
command and generate the E-mail content at the same time and add the files from
the computer as attachments. It will make the normal conference meeting more
efficient and less misunderstanding and better for reminding.

6.2 Conclusion

Considering about the research of this thesis and the prototype system, it is clearly
that the unified communication service with WebRTC is a promising concept in the
telecommunication industry. The functions provided by prototype system will rich
the traditional telephony service for users. The objective of this thesis is achieved by
the prototype system, the prototype system can provide an unified communication
service based on WebRTC and SIP.

The advantage of prototype system is that it does not require users to install
any application client and it is no need for users to have another user credential for
this service (prototype system uses telephone number as user credential). Moreover,
this unified communication service is server centralized system, it will have more
advanced real time communication functions can be implemented on both server side
and client side. In this system architecture, there is more space for developers to
add more advanced functions and it is easier for scaling for larger user base.

Because the prototype system is based on WebRTC, it means that it is highly de-
pendent on web browser client. More advanced concept about unified communication
service would be implementing OTT real time communication. It will either require
the mobile browsers on the smart phones implemented for WebRTC standard or
WebRTC can be implemented on different mobile operation platform as native API.
Afterwards, there will be more devices can use prototype system to have rich real time
communication service between mobile phone users and computer users. Therefore,
current application client of the prototype system is based on browser client. The
compatible devices which can use the application client are WebRTC supported
browsers. Because there are not so many mobile browsers support WebRTC yet,
then the user clients to use the prototype application are computer clients only, there
are more potential users on the mobile platform.

The performance of the prototype system needs to be concerned in the future
work because it is hard to evaluate the performance under small group of users and
poor server machines. Although the prototype system is not production project, it is
still deployed on the public network to test the network issues on the real working

84 6. DISCUSSION AND CONCLUSION

scenario. The reason of this thesis implemented prototype system deployment is
because there are many feedback about network firewall issues mentioned in other
WebRTC web service. It is critical to test the deployment of the prototype system
to avoid later big changes for the network architecture because the network problem.
The result of the prototype system deployment is verified that the prototype network
architecture is a good solution in the working scenario.

Furthermore, there is no commercial products to provide unified communication
service based on WebRTC and SIP. There are many potential usage of the prototype
system integrated with other popular web service in different industry area. And
the bridge to connect the web world and telephony work is the prototype system
service. The unified communication service will be the big game changing for the
web communication and telephony communication business.

References

[Abo14] Feross Aboukhadijeh. Webtorrent - streaming torrent client for node and the
browser, 2014. [Online; accessed 9-May-2014].

[ang14] angularjs.org. $q - service in module ng, 2014. [Online; accessed 23-May-2014].

[Bah14] Bruce Bahlmann. Slee - service logic execution environment, 2014. [Online;
accessed 20-May-2014].

[Blo14] The Chromium Blog. Play cube slam, a real-time webrtc video game, 2014.
[Online; accessed 8-May-2014].

[Cru14a] Crunchbase. Tropo, 2014. [Online; accessed 8-May-2014].

[Cru14b] Crunchbase. Uberconference, 2014. [Online; accessed 8-May-2014].

[Dia13] Dialogic. Powermedia xms restful api user’s guide, 2013. [Online; accessed
26-May-2014].

[Dia14] Dialogic. Dialogic powermedia xms installation and configuration guide, 2014.
[Online; accessed 27-May-2014].

[Dut14] Sam Dutton. Getting started with webrtc — html5rocks, 2014. [Online; accessed
2-May-2014].

[Git14] Github. Delivery.js — asynchronous bidirectional file transfers for node.js via
socket.io, 2014. [Online; accessed 27-May-2014].

[Goo12] Google. General overview — webrtc.org, 2012. [Online; accessed 7-May-2014].

[Her13] John Hermanski. Setting up a turn server for webrtc use, 2013. [Online; accessed
27-May-2014].

[Inc05] Cisco Systems Inc. Differences between traditional telephony and voip, 2005.
[Online; accessed 2-May-2014].

[Iss14] Dart Issues. Issue 15008: Rtcpeerconnection.addicecandidate results in a not-
supportederror: Internal dartium exception (webrtc/dartium), 2014. [Online;
accessed 15-May-2014].

85

86 REFERENCES

[JB13a] Alan B Johnston and Daniel C Burnett. WebRTC: APIs and RTCWEB Protocols
of the HTML5 Real-Time Web, chapter How to Use WebRTC, page 33. Digital
Codex LLC, second edition, 2013.

[JB13b] Alan B Johnston and Daniel C Burnett. WebRTC: APIs and RTCWEB Protocols
of the HTML5 Real-Time Web, chapter How to Use WebRTC, page 48. Digital
Codex LLC, second edition, 2013.

[JB13c] Alan B Johnston and Daniel C Burnett. WebRTC: APIs and RTCWEB Pro-
tocols of the HTML5 Real-Time Web, chapter Introduction to Web Real-Time
Communications, page 15. Digital Codex LLC, second edition, 2013.

[JB13d] Alan B Johnston and Daniel C Burnett. WebRTC: APIs and RTCWEB Protocols
of the HTML5 Real-Time Web, chapter Preface, page 12. Digital Codex LLC,
second edition, 2013.

[Kha14] Muaz Khan. Translator.js, 2014. [Online; accessed 27-May-2014].

[kir14] kirm. sip.js — github, 2014. [Online; accessed 20-May-2014].

[Net14a] Mozilla Developer Network. Blob, 2014. [Online; accessed 27-May-2014].

[Net14b] Mozilla Developer Network. Peer-to-peer communications with webrtc, 2014.
[Online; accessed 12-May-2014].

[ort14] ortc.org. Ortc (object rtc) object api for rtc – mobile, server, web, 2014. [Online;
accessed 27-May-2014].

[Pee14] Peer5. Sharefest — web based p2p file sharing built on webrtc data channels api,
2014. [Online; accessed 27-May-2014].

[pro14] promisejs.org. What is a promise?, 2014. [Online; accessed 22-May-2014].

[Rot14] Issac Roth. What makes node.js faster than java?, 2014. [Online; accessed
20-May-2014].

[Soc02] The Internet Society. Sip: Session initiation protocol — rfc 3261, 2002. [Online;
accessed 7-May-2014].

[Soc03] The Internet Society. Session initiation protocol (sip) basic call flow examples —
rfc 3665, 2003. [Online; accessed 25-May-2014].

[Tel14a] Doubango Telecom. sipml5.org, 2014. [Online; accessed 15-May-2014].

[Tel14b] Doubango Telecom. webrtc2sip.org, 2014. [Online; accessed 15-May-2014].

[Tel14c] Telestax. sipservlets - leading html5 webrtc compliant sip/ims application server,
2014. [Online; accessed 20-May-2014].

[vis14] visionmedia. Jade — github, 2014. [Online; accessed 22-May-2014].

REFERENCES 87

[Web14a] The Next Web. Uberconference turns google hangouts into a conference calling
system, 2014. [Online; accessed 8-May-2014].

[Web14b] Webopedia. Centralized network, 2014. [Online; accessed 22-May-2014].

[Web14c] Webopedia. Pbx - private branch exchange — webopedia, 2014. [Online; accessed
2-May-2014].

[Web14d] WebRTC.is. Webrtc, ortc and ott comm, 2014. [Online; accessed 27-May-2014].

[Wik13a] Wikipedia. Amazon elastic compute cloud — Wikipedia, the free encyclopedia,
2013. [Online; accessed 27-May-2014].

[Wik13b] Wikipedia. Apache tomcat — Wikipedia, the free encyclopedia, 2013. [Online;
accessed 20-May-2014].

[Wik13c] Wikipedia. Base64 — Wikipedia, the free encyclopedia, 2013. [Online; accessed
27-May-2014].

[Wik13d] Wikipedia. Cascading style sheets — Wikipedia, the free encyclopedia, 2013.
[Online; accessed 22-May-2014].

[Wik13e] Wikipedia. Comet (programming) — Wikipedia, the free encyclopedia, 2013.
[Online; accessed 2-June-2014].

[Wik13f] Wikipedia. Ecmascript — Wikipedia, the free encyclopedia, 2013. [Online;
accessed 2-June-2014].

[Wik13g] Wikipedia. Java apis for integrated networks — Wikipedia, the free encyclopedia,
2013. [Online; accessed 20-May-2014].

[Wik13h] Wikipedia. Jsonp — Wikipedia, the free encyclopedia, 2013. [Online; accessed
2-June-2014].

[Wik13i] Wikipedia. Mesh networking — Wikipedia, the free encyclopedia, 2013. [Online;
accessed 22-May-2014].

[Wik13j] Wikipedia. npm (software) — Wikipedia, the free encyclopedia, 2013. [Online;
accessed 23-May-2014].

[Wik13k] Wikipedia. Oauth — Wikipedia, the free encyclopedia, 2013. [Online; accessed
23-May-2014].

[Wik13l] Wikipedia. Redis — Wikipedia, the free encyclopedia, 2013. [Online; accessed
27-May-2014].

[Wik13m] Wikipedia. Representational state transfer — Wikipedia, the free encyclopedia,
2013. [Online; accessed 26-May-2014].

[Wik13n] Wikipedia. Scrum (software development) — Wikipedia, the free encyclopedia,
2013. [Online; accessed 6-June-2014].

88 REFERENCES

[Wik13o] Wikipedia. Session border controller — Wikipedia, the free encyclopedia, 2013.
[Online; accessed 2-June-2014].

[Wik13p] Wikipedia. Softphone — Wikipedia, the free encyclopedia, 2013. [Online; accessed
23-May-2014].

[Wik13q] Wikipedia. Software development methodology — Wikipedia, the free encyclope-
dia, 2013. [Online; accessed 6-June-2014].

[Wik13r] Wikipedia. Software prototyping — Wikipedia, the free encyclopedia, 2013.
[Online; accessed 6-June-2014].

[Wik13s] Wikipedia. Spiral model — Wikipedia, the free encyclopedia, 2013. [Online;
accessed 6-June-2014].

[Wik13t] Wikipedia. V8 (javascript engine) — Wikipedia, the free encyclopedia, 2013.
[Online; accessed 27-May-2014].

[Wik13u] Wikipedia. Wildfly — Wikipedia, the free encyclopedia, 2013. [Online; accessed
20-May-2014].

[Wik13v] Wikipedia. Wireshark — Wikipedia, the free encyclopedia, 2013. [Online; accessed
23-May-2014].

[Wik14a] Wikipedia. Angularjs — Wikipedia, the free encyclopedia, 2014. [Online; accessed
12-May-2014].

[Wik14b] Wikipedia. Apache http server — Wikipedia, the free encyclopedia, 2014. [Online;
accessed 20-May-2014].

[Wik14c] Wikipedia. Asp.net — Wikipedia, the free encyclopedia, 2014. [Online; accessed
20-May-2014].

[Wik14d] Wikipedia. Dart (programming language) — Wikipedia, the free encyclopedia,
2014. [Online; accessed 15-May-2014].

[Wik14e] Wikipedia. Datagram transport layer security — Wikipedia, the free encyclopedia,
2014. [Online; accessed 13-May-2014].

[Wik14f] Wikipedia. Google chrome — Wikipedia, the free encyclopedia, 2014. [Online;
accessed 12-May-2014].

[Wik14g] Wikipedia. Google contacts — Wikipedia, the free encyclopedia, 2014. [Online;
accessed 15-May-2014].

[Wik14h] Wikipedia. Google hangouts — Wikipedia, the free encyclopedia, 2014. [Online;
accessed 8-May-2014].

[Wik14i] Wikipedia. Google voice — Wikipedia, the free encyclopedia, 2014. [Online;
accessed 8-May-2014].

REFERENCES 89

[Wik14j] Wikipedia. Groovy (programming language) — Wikipedia, the free encyclopedia,
2014. [Online; accessed 8-May-2014].

[Wik14k] Wikipedia. H.323 — Wikipedia, the free encyclopedia, 2014. [Online; accessed
7-May-2014].

[Wik14l] Wikipedia. Interactive connectivity establishment — Wikipedia, the free encyclo-
pedia, 2014. [Online; accessed 2-May-2014].

[Wik14m] Wikipedia. Javascript — Wikipedia, the free encyclopedia, 2014. [Online; accessed
8-May-2014].

[Wik14n] Wikipedia. List of sip response codes — Wikipedia, the free encyclopedia, 2014.
[Online; accessed 7-May-2014].

[Wik14o] Wikipedia. Node.js — Wikipedia, the free encyclopedia, 2014. [Online; accessed
20-May-2014].

[Wik14p] Wikipedia. Php — Wikipedia, the free encyclopedia, 2014. [Online; accessed
8-May-2014].

[Wik14q] Wikipedia. Public switched telephone network —Wikipedia, the free encyclopedia,
2014. [Online; accessed 2-May-2014].

[Wik14r] Wikipedia. Python (programming language) — Wikipedia, the free encyclopedia,
2014. [Online; accessed 8-May-2014].

[Wik14s] Wikipedia. Ruby (programming language) — Wikipedia, the free encyclopedia,
2014. [Online; accessed 8-May-2014].

[Wik14t] Wikipedia. Session description protocol — Wikipedia, the free encyclopedia, 2014.
[Online; accessed 13-May-2014].

[Wik14u] Wikipedia. Session initiation protocol — Wikipedia, the free encyclopedia, 2014.
[Online; accessed 7-May-2014].

[Wik14v] Wikipedia. Skype — Wikipedia, the free encyclopedia, 2014. [Online; accessed
2-May-2014].

[Wik14w] Wikipedia. Socket.io — Wikipedia, the free encyclopedia, 2014. [Online; accessed
16-May-2014].

[Wik14x] Wikipedia. Tor (anonymity network) — Wikipedia, the free encyclopedia, 2014.
[Online; accessed 12-May-2014].

[Wik14y] Wikipedia. Webrtc — Wikipedia, the free encyclopedia, 2014. [Online; accessed
29-April-2014].

[Wik14z] Wikipedia. Websocket —Wikipedia, the free encyclopedia, 2014. [Online; accessed
7-May-2014].

[Wor04] Network World. What is sip? — network world, 2004. [Online; accessed 7-May-
2014].

AppendixAAppendix A

A.1 Socket.IO Implementation Script

Code Snippet A.1: socket.js on Application Server
1 SocketManager.prototype.listen = function (server){
2 ...
3 io = socketio.listen (server);
4 io.sockets.on ('connection ', _handlerSocket);
5 _handlerSip ();
6 }
7
8 function _handlerSocket (socket) {
9 var delivery = dl.listen (socket);

10 ...
11 socket.on ('sip ',function (data){
12 switch (data.type){
13 case 'register ':
14 if(data.username != ""){
15 gw.register (data.content.browserClient , function (

result){
16 socket.emit ('sip ',result);
17 });
18 }
19 break;
20 ...
21 }
22 });
23
24 socket.on ('webrtc ', function (data) {
25 ...
26 });
27
28 socket.on ('message ',function (data){

91

92 A. APPENDIX A

29 ...
30 });
31
32 socket.on ('disconnect ', function () {
33 ...
34 });
35
36 delivery.on ('receive.success ',function (file){
37 ...
38 fs.writeFile (file.name , file.buffer , function (err){
39 if(err){
40 console.log ('File could not be saved. ');
41 }else{
42 console.log ('File saved. ');
43 _und.each (clients , function (client ,key){
44 if(sendingClient.conf_id && client.conf_id ==

sendingClient.conf_id && client.username !=
sendingClient.username){

45 ...
46 client.delivery.send ({
47 name: file.name ,
48 path : './' + file.name
49 });
50
51 }
52 });
53
54 fs.unlink ('./ ' + file.name);
55 };
56 });
57 });
58
59 }

A.2 SIP Implementation Script

Code Snippet A.2: sip.js on Application Server
1 util.inherits (SipGateway , EventEmitter);
2 ...
3 function createRegister (user){
4 return {
5 method: 'REGISTER ',
6 uri: 'sip: ' + user.hostname ,
7 headers:
8 {

A.2. SIP IMPLEMENTATION SCRIPT 93

9 'call-id ': user.callid ,
10 cseq: { method: 'REGISTER ', seq: ++ user.seq },
11 from: {name: '', uri: 'sip: ' + user.name + '@' +

user.hostname , params: { tag: user.tag }},
12 to: {name: '', uri: 'sip: ' + user.name + '@' +

user.hostname },
13 expires: 3600 ,
14 contact: [{
15 uri: 'sip: ' + user.name + '@'+ hostPublicAddress + '

:' + hostPort
16 }]
17
18 }
19 }
20 }
21 function createInviteACK (rs ,client ,sdp){
22 var uri = rs.headers.contact [0]. uri.split (';');
23 if(uri [0]. split(':'). length != 3){
24 uri [0] = uri [0] + ':5060 ';
25 }
26 ...
27 }
28 ...
29 SipGateway.prototype.init = function () {
30 ...
31 registry = {};
32 sip.start ({
33 port: hostPort ,
34 logger: {
35 ...
36 },
37 publicAddress: hostPublicAddress ,
38 tcp: false
39 },
40 function (rq) {
41 try {
42 if(rq.method === 'REGISTER ') {
43 ...
44 }
45 else if(rq.method === 'INVITE ') {
46 ...
47 var rs = sip.makeResponse (rq , 100, 'Trying ');
48 sip.send (rs);
49 if(contact) {
50 ...

94 A. APPENDIX A

51 self.emit ('SIPREMOTE ' ,{
52 type: 'INVITE ',
53 content: {
54 fromNumber: sip.parseUri (rq.headers.from.uri).

user ,
55 toNumber: username ,
56 inviteRequest: rq
57 }
58 });
59 }
60 ...
61 });
62 }
63 function _register (client , callback){
64 var rq = createRegister (client);
65 sip.send (rq , function (rs){
66 if(rs.status === 401){
67 var user = client;
68 var creds = { user: user.name , password: user.password

, realm: user.hostname };
69 rq.headers ['cseq ']. seq ++;
70 ...
71 digest.signRequest (creds , rq , rs , creds);
72 sip.send (rq , function (rs){
73 if(rs.status === 200){
74 client.authorization = rq.headers.authorization;
75 if (! client.registerTimer){
76 client.registerTimer = setInterval (function (){
77 console.log ('register timer ');
78 _register (client);
79 }, parseInt (rs.headers.expires) *1000) ;
80 }
81 ...
82 }else{
83 ...
84 }
85 });
86 }else if(rs.status === 200){
87 ...
88 }
89 });
90 }
91 SipGateway.prototype.register = function (client , callback){
92 ...
93 _register (registry [client.name], callback);

A.3. XMS IMPLEMENTATION SCRIPT 95

94 }
95 ...
96 module.exports.SipGateway = SipGateway;

A.3 XMS Implementation Script

Code Snippet A.3: xms.js on Application Server
1 XmsManager.prototype.createXMSCall = function (data , callback)

{
2 var requestContent = " <web_service version= \"1.0\" >";
3 ...
4 if(data.callType === 'webrtc '){
5 requestContent += " encryption= \" dtls \"" + " ice= \" yes \"

";
6 }
7 ...
8 var req = http.request ({
9 host: xmsAddress ,

10 port: xmsPort ,
11 method: 'POST ',
12 path: xmsPath + 'calls? appid= ' + xmsAppId ,
13 headers: {
14 'Accept ' : 'application /xml ',
15 'Content-Type ' : 'application /xml ',
16 'Content-Length ' : requestContent.length
17 }
18 }, function (res) {
19 var resData = '';
20 res.setEncoding ('utf8 ');
21 res.on ('data ', function (chunk) {
22 resData += chunk;
23 }).on('end ', function () {
24 if(resData != ''){
25 xmlparser.parseString (resData , function (err , result){
26 var xmsSdp = result ['web_service ']['call_response '

][0]['$']. sdp;
27 var id = result ['web_service ']['call_response '

][0]['$']. identifier;
28 var regex = new RegExp (xmsAddress ,"g");
29 pub_xmsSdp = xmsSdp.replace (regex , xmsPublicAddress

);
30 callback (pub_xmsSdp.replace (/\n/g,"\r\n"),id);
31 });
32 }
33 });

96 A. APPENDIX A

34 });
35 req.write (requestContent);
36 req.end ();
37 }
38 ...
39 module.exports.XmsManager = XmsManager;

A.4 MSG Implementation Script

Code Snippet A.4: msg.js on Application Server
1 MsgManager.prototype.login = function (loginDto ,success ,fail)

{
2 var loginStr = JSON.stringify (loginDto);
3 ...
4 var req = https.request (options , function (res) {
5 var resData = '';
6 res.setEncoding ('utf8 ');
7 res.on ('data ', function (chunk) {
8 resData += chunk;
9 }).on('end ', function () {

10 if(resData != ''){
11 var jsonObject = JSON.parse (resData);
12 if(jsonObject.code === 200){
13 success (jsonObject , res.headers ['set-cookie '][0]);
14 }else{
15 fail(jsonObject);
16 }
17 }
18 });
19 });
20 req.write (loginStr);
21 req.end ();
22 ...
23 }
24
25 MsgManager.prototype.sendSMS = function (organization ,login ,

cookie ,msgObj ,success ,fail){
26 var msgStr = JSON.stringify (msgObj);
27 var options = {
28 host: msgRestUrl ,
29 path: '/your/url/here/sms ',
30 method : 'POST ',
31 headers : {
32 " Accept " : " application /json",
33 " Content-Type " : " application /json",

A.5. WEBRTC IN DART 97

34 " organization " : organization ,
35 "login" : login ,
36 " Cookie " : cookie ,
37 'Content-Length ' : msgStr.length
38 }
39 };
40
41 var req = https.request (options , function (res) {
42 var resData = '';
43 res.setEncoding ('utf8 ');
44
45 res.on ('data ', function (chunk) {
46 resData += chunk;
47 }).on('end ', function () {
48 if(resData != ''){
49 var jsonObject = JSON.parse (resData);
50 console.log ('MSG:SENDSMS:jsonObject: ',jsonObject);
51 if(jsonObject.code === 200){// TODO: check report

values as true
52 success ();
53 }else{
54 fail ();
55 }
56 }
57 });
58 });
59 req.write (msgStr);
60 req.end ();
61 }
62
63 module.exports.MsgManager = MsgManager;

A.5 WebRTC in Dart

Code Snippet A.5: WebRTCCtrl in Dart application client
1 library webRTCCtrl;
2
3 import 'package:angular / angular.dart ';
4 import 'dart:html ';
5 import 'package:webrtcDemo / speaker / speack_client.dart ';
6
7 @NgController (
8 selector : '[webrtc-ctrl]',
9 publishAs : 'ctrl '

10)

98 A. APPENDIX A

11
12 class WebRTCCtrl {
13
14 static const String SERVER_URL = "ws: //127.0.0.1:3001 ";
15
16 String websocketUrl = SERVER_URL;
17
18 WebRTCCtrl () {
19 _initConnection ();
20 }
21
22 void _initConnection (){
23 var speaker = new SpeakerClient (websocketUrl , room: '

room ');
24
25 speaker.createStream (audio: true , video: true).then ((

stream) {
26 var video = new VideoElement ()
27 .. autoplay = true
28 .. src = Url.createObjectUrl (stream);
29
30 document.body.append (video);
31 });
32
33 speaker.onAdd.listen ((message) {
34 var video = new VideoElement ()
35 ..id = 'remote$ { message ['id ']}'
36 .. autoplay = true
37 .. src = Url.createObjectUrl (message ['stream ']);
38
39 document.body.append (video);
40 });
41
42 speaker.onLeave.listen ((message) {
43 document.query ('# remote$ { message ['id ']}'). remove ();
44 });
45 }
46 }

AppendixBAppendix B

B.1 AngularJs Files Structure

Figure B.1: Prototype Application AngularJs Files

99

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Background and Motivation
	Challenges
	Method
	Spiral Development
	Prototyping

	Thesis Structure

	Related Studies
	WebRTC
	What is WebRTC ?
	WebRTC Network Structure
	WebRTC Implementation Steps

	WebRTC Usage Cases
	Tropo
	Uberconference
	Cube Slam
	Webtorrent

	SIP
	What is SIP ?
	SIP Network Elements
	SIP messages

	Prototype System Working Flow
	Prototype Working Scenario
	Advanced 'one-number' communication platform
	Multiple doctors consultation room

	Prototype System Design
	Prototype System Network
	Mesh Network
	Centralized Network

	Prototype Implementation Framework
	Client Implementation Framework
	Server Implementation Framework

	Implementation Framework Conclusion

	Prototype System Implementation
	Prototype System Functions
	WebRTC APIs Implementation
	MediaStream API
	RTCPeerConnection API

	AngularJs Framework Implementation
	app.js Script (AngularJs Bootstrap)
	contactTable.jade Script (View)
	ContactTableDirective.js Script (Customized Directive)
	ContactsCtrl.js Script (Controller)
	GoogleAPIService.js Script (Service)

	Socket.IO Implementation
	Server Side Implementation
	Client Side Implementation

	SIP Implementation on Application Server
	SIP Request Message Implementation
	SIP Message Listener and Handler Implementation

	XMS Media Server Integration on Application Server
	Advanced Communication Function Implementation
	SMS Messaging
	Files Sharing

	Prototype System Deployment
	TURN Server Deployment
	Application Server Deployment
	XMS Server Deployment

	Discussion and Conclusion
	Future Work
	RTCDataChannel usage
	Browser Compatibility
	Media Server Performance
	Object RTC (ORTC) API for WebRTC
	Advanced function for telecommunication

	Conclusion

	References
	Appendix A
	Socket.IO Implementation Script
	SIP Implementation Script
	XMS Implementation Script
	MSG Implementation Script
	WebRTC in Dart

	Appendix B
	AngularJs Files Structure

