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Moving horizon estimation (MHE) solves a constrained dynamic optimization problem at each sampling
instant. Including nonlinear dynamics into an optimal estimation problem generally comes at the cost of
tackling a non-convex optimization problem. In this article, a particular model formulation is proposed
in order to convexify a class of nonlinear MHE problems. It delivers a linear time varying (LTV) model
that is globally equivalent to the nonlinear dynamics in a noise-free environment, hence the optimization
problem becomes convex, where its solution is the global minimum. On the other hand, in the presence
of noise and unknown disturbances, the accuracy of the LTV model degrades and this results in a less
accurate solution for the original nonlinear constrained optimization problem. This approximation may
drive the convex solution away from the global minimum in the case of unknown disturbances. For this
purpose, considering some assumptions on these bounded disturbances, a homotopy based approach is
proposed in order to transform the problem from the convex to the non-convex problem formulation,
where the sequential implementation of this technique starts with solving the convexi�ed MHE problem.
Each step in the proposed homotopy procedure requires the solution of a dynamic optimization problem,
which can be used as an initial guess for the next problem formulation. This procedure continues until a
locally optimal solution to the original non-convex estimation problem is found. The �rst simulation study
validates the e�ciency of the proposed approach in obtaining a solution close to the global minimum
with zero mean random disturbances. In addition, the second case study illustrates that in the presence
of large biased disturbances, the result of the convexi�ed MHE could lead the homotopy based MHE to
an alternative locally optimal solution.

Keywords: moving horizon estimation, non-convex optimization, nonlinear systems, nonlinear state
and parameter estimation.

1. Introduction

One of the main challenges in nonlinear state and parameter estimation is the non-convex nature of
the dynamic optimization problem, which could result in a locally optimal solution. For instance,
the estimates of the well-known extended Kalman �lter (EKF) can converge to a wrong value with a
poor initial guess; see the case studies by Johansen & Fossen (2016a); Haseltine & Rawlings (2005).
A convexi�ed approximation is one of the approaches that has been considered in many works to
tackle a non-convex problem; e.g. see the works by Diehl et al. (2009); Dinh et al. (2011); Hovgaard
et al. (2013).
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Moving horizon estimation (MHE), as one of the candidates for online constrained state estima-
tion, can deal with nonlinear dynamics explicitly and directly incorporate the physical or logical
constraints in its design. The MHE problem formulation is an approximation of a full information
constrained estimation technique. It considers a �xed number of measurements inside a moving
time window and this makes it tractable in practice, which is almost impossible for a full informa-
tion estimation approach. The arrival cost term is typically introduced in the MHE formulation to
represent the truncated data; see the explanation by Rao et al. (2003) for more details on MHE. Its
increased performance compared to classical techniques, such as Kalman �ltering, has been studied
extensively on several case studies; e.g. see the results on chemical engineering systems by Haseltine
& Rawlings (2005) and on vibration systems by Abdollahpouri et al. (2016); Abdollahpouri et al.
(2017). There are several factors that make MHE quite practical in industry compared to the tra-
ditional nonlinear estimation techniques (Johansen, 2011): including N samples of measurements
in the moving time window and incorporating the physical and logical constraints in a dynamic
optimization framework. One of the challenges that needs to be addressed from an optimization
point of view, is to �nd a good local solution (depending on the case study) or ultimately to obtain a
global solution to a non-convex problem reliably. Most available algorithms for treating non-convex
optimization problems are gradient based and end up with a local minimum. Sub-optimal solutions
not only degrade the quality of estimates, they can be misleading as well, e.g., in a structural health
monitoring system, by utilizing the incorrect state and parameters estimates.
A model reformulation has been studied by Johansen & Fossen (2016a), where the nonlinear

dynamics are translated into a linear time varying (LTV) model without any local linearization of
the dynamics. This technique is conceptually similar to the di�erential �atness theory; see the works
presented by Fliess et al. (1995) and Sira-Ramirez & Agrawal (2004). This approach eliminates the
nonlinearity by utilizing a set of measurements without optimally considering the input and output
disturbances. The resulting LTV model, in its nominal formulation, is globally equivalent to the
nonlinear system. Using this model transformation, Johansen & Fossen (2016b) proposed a two-
stage Kalman �ltering method, which is called a double Kalman �lter (DKF). This approach has
been analyzed for continuous time and recently its stability analysis in discrete time has been
studied in Abdollahpouri et al. (2017). The cascade con�guration in DKF utilizes the transformed
LTV model for sub-optimal estimation in the �rst stage, which then provides a linearization point
for the second stage. In the second stage, a linearized Kalman �lter (LKF) further improves the
estimation quality that has been lost because of the sub-optimal consideration of input and output
disturbances in the �rst stage.
One approach for tackling a non-convex optimization problem for receding horizon strategies has

been proposed by Bonilla et al. (2010b). This work assumed no input or output disturbances, a
dynamical model that is a�ne in the parameters and full state measurements, which allows one
to transform the nonlinear dynamics to become linear in the parameters. Therefore, considering
this linear model instead, the resulting optimization problem becomes convex. The solution of this
convex approximation can be used as an initialization for the original non-convex problem. This
results in a homotopy based automatic initialization technique for parameter estimation problems
(Bonilla et al., 2010a), when all the states are assumed to be measured. It is worth mentioning that
our approach does not require all states to be measured and is therefore more generally applicable.
Further on this topic, Liu (2013) proposed an MHE scheme that makes use of a deterministic

observer for nonlinear systems with bounded model uncertainties. The auxiliary nonlinear observer
is meant to provide additional information to the arrival cost approximation and hence improve the
state estimates. However, the auxiliary nonlinear observer is locally convergent and its sensitivity
to di�erent initializations may provide wrong information to the MHE scheme, thus the overall
approach has some local convergence properties that can be inherited from the auxiliary observer;
readers are encouraged to compare it with the DKF (Johansen & Fossen, 2016b). A more detailed
comparison in practice, between the proposed approach and other MHE formulations, such as the
one in Liu (2013), is part of ongoing research.
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In this paper, we propose a constrained nonlinear estimation approach, which is globally con-
vergent in the disturbance-free case based on the reformulation technique by Johansen & Fossen
(2016b). This �atness-like model transformation is utilized to globally transform the nonlinear dy-
namics into an LTV model. The reformulation is applied to MHE, and results in a convexi�ed
optimization problem (CMHE) that, however, becomes suboptimal in case of input and output
disturbances. By the use of a homotopy approach, the suboptimal solution from CMHE can be
gradually improved by solving a sequence of dynamic optimization problems, resulting in an opti-
mal solution for the original non-convex estimation problem. Even with the added complexity of
the homotopy based MHE (HMHE), the computational burden of our method is comparable or can
even become smaller than in case the nonlinear optimization problems are solved in a cold started
fashion. This is because the proposed method starts by solving the CMHE and uses the result for
initializing the next steps. First, let us begin by introducing the problem formulation.

2. Flatness based problem formulation

This section provides the de�nitions and assumptions, needed for employing the model transforma-
tion. The nonlinear dynamics are described by

xk+1 = f(xk) + ẃk, (1a)

yk = h(xk) + v́k, (1b)

where xk ∈ X ⊆ Rn, ẃk ∈ W ⊆ Rn and v́k ∈ V ⊆ Rp respectively denote the state vector, input
and output disturbances in discrete time. The nonlinear dynamics are de�ned by f(·) : X→ X and
the nonlinear measurement function is expressed by h(·) : X → Rp. Furthermore, yk ∈ Rp is the
bounded observed output and the discrete time index is denoted by k. The solution for the dynamic
system in (1) is denoted by x(k;x0, 0, (ẃj)

k−1
j=0) at time k, starting from time point 0 with initial

value x0 and given the sequence of input disturbances (ẃj)
k−1
j=0 . The output response is denoted

by y(k;x0, 0, (ẃj)
k−1
j=0) := h(x(k;x0, 0, (ẃj)

k−1
j=0)), such that v́k := yk − y(k;x0, 0, (ẃj)

k−1
j=0). For a

disturbance-free case, (ẃj)
k−1
j=0 = 0, the nominal output response is denoted by y(k;x0, 0).

Assumption 1: The sets W and V are compact with 0 ∈W and 0 ∈ V.

Assumption 2: For any possible sequence of disturbances (ẃj)
k−1
j=0 , the initial state x0 leads to the

system trajectory x(k;x0, 0, (ẃj)
k−1
j=0) that lies in a compact set X.

Assumption 3: The nonlinear functions f(·) and h(·) are Lipschitz continuous in all of their

arguments with Lipschitz constants cf and ch, respectively, for all k ≥ 0.

Assumption 4: There exists a map ψ(·, ·, ·) : Rpd × Rn(d−1) × Rpd → Rn, which is Lipschitz

continuous in all of its arguments, and there exists a positive integer d such that the state of (1)
for all k ≥ d− 1 can be written as

xk = ψ
(
(yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l

)
,

where l = k − d+ 1.

Remark 1: Assumption 4 implies that system (1) is di�erence �at (Sira-Ramirez & Castro-Linares,
2000), with �at outputs (yj)

k
j=l, (ẃj)

k−1
j=l and (v́j)

k
j=l. Moreover, it follows from Assumption 4 that

the current state xk can be uniquely determined from a number of current and past output measure-
ments (yj)

k
j=l and disturbances (ẃj)

k−1
j=l and (v́j)

k
j=l. This is naturally related to the observability
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of the dynamic system in (1).

De�nition 1: (Rao et al., 2003) A function φ : R→ R is a K-function, if it is continuous, strictly
monotone increasing, positive de�nite and unbounded.

De�nition 2: (Rao et al., 2003) The system in (1) is said to be uniformly observable if there exists
a positive integer N and a K-function φ(·) for any x1, x2 ∈ X, with

φ(‖x1 − x2‖) ≤
N−1∑
j=0

‖y(k + j;x1, k)− y(k + j;x2, k)‖,

for all k ≥ 0.

3. The proposed model transformation

Assuming the nonlinear system (1) satis�es Assumption 3 and 4, i.e. di�erence �atness and s-
moothness properties, this section provides the information needed to perform the LTV model
transformation. Let us use Proposition 2.4.7 in Abraham et al. (2012) for (1)

f(xk) = f(0) +

∫ 1

0

∂f

∂x
(sxk)ds xk = f(0) +

∫ 1

0

∂f

∂x

(
sψ
(
(yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l

))
ds xk,

h(xk) = h(0) +

∫ 1

0

∂h

∂x
(sxk)ds xk = h(0) +

∫ 1

0

∂h

∂x
(sψ((yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l))ds xk,

using Assumption 4, in order to replace the nonlinear terms in the state space model by the
associated measurements. When there are no disturbances, xk = ψ((yj)

k
j=l, 0, 0), then the nonlinear

dynamics can be globally transformed to an LTV model as

xk+1 = f(0) + F
(
(yj)

k
j=l

)
xk + wk, (2a)

yk = h(0) +H
(
(yj)

k
j=l

)
xk + vk, (2b)

where Fk = F (·) and Hk = H(·) are time varying functions of (yj)
k
j=l. It should be noted that the

state vector does not change by applying the linearizing transformation; hence the same notation
is utilized. One possible approach for �nding Fk and Hk is given as

Fk =

∫ 1

0

∂f

∂x

(
sψ
(
(yj)

k
j=l, 0, 0

))
ds, Hk =

∫ 1

0

∂h

∂x

(
sψ
(
(yj)

k
j=l, 0, 0

))
ds,

although simpler, but problem speci�c methods may be possible in many practical applications.
Note that after this transformation, the input and output disturbances are accounted for by wk
and vk, respectively. Although transforming (1) to (2) keeps the nominal dynamics una�ected, the
input and measurement disturbances are not entering the model (2) in the same way as in (1);
wk = w

(
(yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l

)
and vk = v

(
(yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l

)
. This can be summarized as
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follows

f(0) + Fkxk + wk = f(xk) + ẃk →

wk = ẃk +

∫ 1

0

(∂f
∂x

(sψ
(
(yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l

)
)− ∂f

∂x
(sψ((yj)

k
j=l, 0, 0))

)
ds xk, (3)

h(0) +Hkxk + vk = h(xk) + v́k →

vk = v́k+

∫ 1

0

(∂h
∂x

(sψ
(
(yj)

k
j=l, (ẃj)

k−1
j=l , (v́j)

k
j=l

)
)− ∂h

∂x
(sψ((yj)

k
j=l, 0, 0))

)
ds xk, (4)

where we note that
∫ 1

0
∂f
∂x (sxk)ds xk = f(xk)−f(0) and

∫ 1
0
∂h
∂x(sxk)ds xk = h(xk)−h(0), which fol-

lows from Abraham et al. (2012, Prop. 2.4.7). From Assumption 4, we have that xk = ψ((yj)
k
j=l, 0, 0)

if ẃk and v́k are zero for all k. By substituting xk = ψ((yj)
k
j=l, 0, 0) in (3) and (4), one can directly

see that wk and vk are uniformly zero if ẃk and v́k are uniformly zero. Remark 2 quanti�es the
deviation between the state obtained by the approximated LTV model from the true state value,
based on the input and output disturbance bounds.

Remark 2: If the elements of (yj)
k
j=l, (wj)

k−1
j=l and (vj)

k
j=l are uniformly bounded ‖(wj)

k−1
j=l ‖ ≤ Cw,

‖(vj)kj=l‖ ≤ Cv and ψ is Lipschitz continuous with respect to (wj)
k−1
j=l and (vj)

k
j=l with the constant

Lψ, then the corresponding estimation error is bounded by

‖xk − ψ
(
(yj)

k
j=l, 0, 0

)
‖ ≤ Lψ

(
‖(wj)k−1

j=l ‖+ ‖(vj)kj=l‖
)

:= Cψ,

where Cψ = Lψ(Cw + Cv).

Assumption 5: The LTV model in (2) is observable in the sense of De�nition 2.

Example 1: Let the nonlinear dynamics of (1) be described in discrete time as

xk+1,1 = xk,1 + xk,2 + wk,1,

xk+1,2 = −xk,1x2
k,2 + xk,1 sin2(xk,1),

yk = xk,1 + vk.

Let δk = yk−vk such that xk,1 = δk. From the �rst system equation, we obtain xk−1,2 = δk−δk−1−
wk−1,1. Substituting this in the second system equation yields xk,2 = −δk−1(δk − δk−1−wk−1,1)2 +
δk−1 sin2(δk−1). Hence, we can de�ne ψ in Assumption 4 as

ψ
(
(yj)

k
j=k−1, (ẃj)

k−1
j=k−1, (v́j)

k
j=k−1

)
=

[
δk

−δk−1(δk − δk−1 − wk−1)2 + δk−1 sin2(δk−1)

]
:=

[
φ1(yk, vk)

φ2

(
(yj)

k
j=k−1, (ẃj)

k−1
j=k−1, (v́j)

k
j=k−1

)] .
Using the map ψ, the nonlinear system can be written as an LTV system of the form (2), with

f(0) = 0, h(0) = 0, φk,1 := φ1(yk, 0) and φk,2 := φ2(yk, 0, 0)

xk+1,1 = xk,1 + xk,2 + w1,k,

xk+1,2 = xk,1 sin2(φ1,k)− φ1,kφ2,kxk,2 + w2,k,

yk = xk,1 + vk,
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as in (2a) and (2b). We note that this linearizing transformation is not unique, since the second
state update can be rewritten, e.g., as xk+1,2 = (−(ηx2

k,2) + sin2(xk,1))xk,1 + (1− η)(−xk,1xk,2)xk,2
for any scalar η. Hence, the use of any matrix Fk that satis�es

Fk =

[
1 1

sin2(φ1,k)− ηφ2
2,k −(1− η)φ1,kφ2,k

]
,

for any η ∈ R, results in an LTV system. �

4. Homotopy based Moving Horizon Estimation

When using the LTV dynamic model (2) for estimation, one obtains a convex optimization problem
with a unique global minimum. The solution obtained from this problem will be used as a starting
point for the nonlinear MHE formulation. The proposed approach is based on several intermediate
steps between the solution of the convex problem and the non-convex MHE formulation, in order
to perform a numerical continuation on the resulting solution manifold (Allgower & Georg, 1990).
In what follows, we will specify the nonlinear MHE formulation, which generally is a non-convex
optimization problem. Furthermore, using the transformed LTV model, the convexi�ed problem
can be formulated and we present the corresponding homotopy based approach.

4.1 Nonlinear MHE formulation

First, we formulate the nonlinear moving horizon estimation as the following optimal control prob-
lem (OCP) in discrete time by de�ning l = k −N + 1

MHE : Φk = min
(x̂j)kj=l,(ξ́j)

k−1
j=l ,(ν́j)

k
j=l

Γl(x̂l) +

k∑
i=l

Li(ξ́i, ν́i)

s.t. x̂i+1 = f(x̂i) + ξ́i, i = l, . . . , k − 1, (5a)

yi = h(x̂i) + ν́i, i = l, . . . , k, (5b)(
(x̂j)

k
j=l, (ξ́j)

k−1
j=l

)
∈ Ω

where x̂k denotes the current estimated state of the MHE problem formulation, Ω is the convex set
of constraints de�ned in the bottom of this page‡. The stage cost is denoted by Li(·, ·) ∈ R, and the
arrival cost Γl(·) ∈ R can be calculated based on an update procedure as found in the literature,
e.g., see a linearization based approach by Kühl et al. (2011). In Fig. 1, the complete scheme of
the MHE implementation is illustrated, where the measurements (yj)

k
j=l are stored using an N -step

data bu�er block. Furthermore, the �rst element of the measurement set yl is utilized by the arrival
cost update block to provide the optimizer with the necessary parameters; see Kühl et al. (2011).
Finally, (xi)

k
i=l denotes the optimized trajectory of state values over the current time horizon.

Assumption 6: The arrival cost term is assumed to be a positive de�nite quadratic function as

Γl(x̂l) := ‖x̂l − x̃l‖2Pl , where x̃l and Pl � 0 are the online tuning parameters.

Assumption 7: Let the stage cost Li(ξ́i, ν́i) := ξ́T
i Q́
−1
i ξ́i + ν́T

i Ŕ
−1
i ν́i for i = l, . . . , k − 1 and

Lk(ξ́k, ν́k) = ν́T
k Ŕ
−1
k ν́k, where Q́i � 0 and Ŕi � 0 are the tuning parameters with proper dimensions.

‡Ω :=

(x, ξ) :

xi ∈ X, i = l, . . . , k

ξi ∈ W, i = l, . . . , k − 1
νi ∈ V, i = l, . . . , k

6
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Figure 1. Schematic overview of nominal MHE.

Assumption 8: There exists a K-function γ such that

0 ≤ Γk(x) ≤ γ(‖x− x̂k‖)

holds for all x ∈ X.

Considering the reachable set RNk = {x(k;xl, l, (ẃj)
k−1
j=l ) : ((xj)

k
j=l, (ẃj)

k−1
j=l ∈ Ω)} at time k with

a feasible initial state (over the horizon) xl and an input disturbance sequence of (wj)
k−1
j=l , the

following assumption is complementary for a bounded estimation error of the MHE.

Assumption 9: For any k ≥ N , and any p ∈ RNk , the arrival cost Γk(·) satis�es the following

condition

Γk(p) ≤ min
(x̂j)kj=l,(ξ́j)

k−1
j=l ,(ν́j)

k
j=l

{
Γl(x̂l) +

k∑
i=l

Li(ξ́i, ν́i) : x(k;xl, l, (ξ́j)
k−1
j=l ) = p,

(
(x̂j)

k
j=l, (ξ́j)

k−1
j=l

)
∈ Ω

}
Lemma 1: If Assumptions 1, 2, 3, 6 and 7 hold, and if the system in (1) is uniformly observable

in the sense of Def. (2), and the arrival cost sequence satis�es the Assumptions 8 and 9, then the

estimation error of MHE is bounded.

Proof. The constraints are assumed to be convex, the state trajectory with arbitrary disturbances
stays feasible and the nonlinear dynamics are su�ciently smooth. The stage cost function and
arrival cost are assumed to be positive de�nite and quadratic. Therefore, all the assumptions are
satis�ed for applicability of Rao et al. (2003, Proposition 3.7), where its proof is dependent on the
results of Rao et al. (2003, Proposition 3.4) and Rao et al. (2003, Lemma 2.5).

4.2 Convexi�ed MHE formulation

As a �rst step to deal with the non-convex optimization problem in (5), we could use the linear
dynamic model from Eq. (2) instead of the nonlinear dynamics. This results in a convex MHE
problem, if additionally the inequality constraints can be represented by convex sets (Boyd &
Vandenberghe, 2004).

CMHE : min
(x̂j)kj=l,(ξj)

k−1
j=l ,(νj)

k
j=l

Γl(x̂l) +

k∑
i=l

Li(ξi, νi) (6a)

s.t. x̂i+1 = f(0) + Fix̂i + ξi, i = l, . . . , k − 1, (6b)

yi = h(0) +Hix̂i + νi, i = l, . . . , k, (6c)(
(x̂j)

k
j=l, (ξj)

k−1
j=l

)
∈ Ω, (6d)

where Li(·, ·) satis�es Assumption 7. It is assumed that ξj is limited in the same convex set as
de�ned in the original MHE formulation of Eq. (5). Based on the explanation provided in Sect. 3,

we know that the characteristics of wj (analogous to ξj) are di�erent from ẃj (analogous to ξ́j),

7
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hence ξj and ξ́j not necessarily reside in the same set. However, in this method, we assume that
they are in the same set and this can be a conservative assumption.

Remark 3: Given no input and output disturbances, the result of CMHE is equivalent to the
unique solution of the nonlinear MHE problem. However, even with a small bounded disturbance,
the two solutions of CMHE and MHE will be di�erent. In Figure 2, xC1 and xC2 represent two
possible solutions of CMHE with di�erent input and output disturbances. Similarly, xN1 and xN2 are
possible local and global minima of the nonlinear MHE problem formulation. This questions the
guarantee in ensuring a global minimum, as Sect. 5.2 will illustrate this issue.

Remark 4: From Remark 3.2 in (Rao et al., 2003) the Assumption 9 is satis�ed, since the arrival
cost term is a positive quadratic function, and the system is described by an LTV model with convex
constraints. Therefore, the boundedness analysis for CMHE estimates can be obtained similarly to
Lemma 1 using Assumption 5 for the observability condition.

C
os
t

Solution

Figure 2. The illustration of local and global solutions for an arbitrary cost function; black line: scalar original (non-convex)
cost function, blue line: scalar convexi�ed cost function leading to the local minimum, red line: scalar convexi�ed cost function
leading to the global minimum.

4.3 Homotopy based MHE implementation

After introducing MHE and CMHE, we can propose an implementation based on the combination of
those problems using a homotopy approach. This homotopy based approach�HMHE� is utilizing
MHE and CMHE in one uni�ed optimization problem. For this purpose, a tuning parameter λ has
been introduced in (7a) and the homotopy based optimization problem is given as a sequence of

8
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problems for λj ∈ Λ:

HMHE(λj) : min
(x̂i)ki=l,(ξi)

k−1
i=l ,(νi)

k
i=l

(ξ́i)
k−1
i=l ,(ν́i)

k
i=l

Γ(x̂l) +

k∑
i=l

(1− λj)Li(ξi, νi)+ (7a)

k∑
i=l

λjLi(ξ́i, ν́i) (7b)

s.t. x̂i+1 = f(x̂i) + ξ́i, i = l, . . . , k − 1, (7c)

x̂i+1 = f(0) + Fix̂i + ξi, i = l, . . . , k − 1, (7d)

yi = h(x̂i) + ν́i, i = l, . . . , k, (7e)

yi = h(0) +Hix̂i + νi, i = l, . . . , k, (7f)(
(x̂i)

k
i=l,(ξi)

k−1
i=l

)
∈ Ω, (7g)(

(x̂i)
k
i=l,(ξ́i)

k−1
i=l

)
∈ Ω, (7h)

where the strictly monotonic increasing sequence Λ = {λ0, λ1, . . . , λnλ} is de�ned for 0 ≤ λj ≤
1 and j ∈ {0, 1, . . . , nλ}. In the case that λ0 = 0, the equality constraints (7c), (7e) and the
corresponding disturbance variables can be eliminated, such that the problem becomes convex as
long as the inequality constraints are convex. Starting from λ0 = 0 ensures that Algorithm 1 ends
up with a unique solution, since the optimization problem becomes convex. Although, due to the
approximation mentioned in Remark 3, the solution can be di�erent from the global solution of the
MHE. Gradually, as λ goes to 1, the optimization problem adds more weight to satisfy the nonlinear
dynamics. Finally, for λ = 1, the constraints (7d), (7f) and the corresponding disturbance variables
can be eliminated. It should be noted that the resulting homotopy path is followed within every
sampling period of the MHE scheme. Even though it is not guaranteed, by tuning the nλ homotopy
steps in (7) as λ→ 1, the resulting local minimum of this non-convex problem can be close or equal
to the global solution. This might be possible by assuming su�ciently small bounded disturbances,
which will be illustrated through two di�erent case studies in Sect. 5.

Remark 5: It can be assumed that bounds on wi, vi, ẃi and v́i for i = l, . . . , k are strict enough,
such that it guarantees the solution of CMHE to be su�ciently close to the solution of the nonlinear
MHE problem. It should be noted that there is generally no guarantee of obtaining the global
solution. However, using the proposed method (HMHE), we might expect to have a higher chance
of �nding a global solution (or maybe a better local solution), compared to the case of applying a
gradient based optimization solver directly to the non-convex problem.

The procedure presented in Alg. 1 provides an insight on how to implement the homotopy based
MHE scheme. Although this method can further improve the CMHE solution, it comes at the price
of solving a sequence of nλ parameterized optimization problems. Hence, this motivates the study
of a computationally attractive way to implement this algorithm. Note that Algorithm 1 assumes
a local solver to be used for the nonlinear optimization problem in Step 4, based on the previous
solution along the homotopy path as an initial guess.

4.4 Adaptive tuning of the HMHE

In some examples, solving the convex optimization problem (CMHE) for λ0 = 0 in the �rst step,
results in a solution that is close enough to the global minimum. In this case, no intermediate steps
might be needed to solve the nonlinear optimization problem for λ = 1. Therefore, an adaptive step
size selection procedure can be used for the numerical continuation method as discussed in Allgower

9
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Algorithm 1 Implementation of HMHE

Initialization: x̂0 ∈ X0, ξ0 ∈W, ξ́0 ∈W, ν0 ∈ V, ν́0 ∈ V, λ0 = 0 and j = 0
Input: nλ, Ykl

1: Compute the LTV model (2) using Ykl
2: Formulate HMHE using (1) and (2) as in Eq. (7)
3: while j < nλ do
4: Solve HMHE(λj) in (7) and update the optimizers: (x̂i)

k
i=l, (ξi)

k−1
i=l , (νi)

k
i=l, (ξ́i)

k−1
i=l and (ν́i)

k
i=l

5: Use the solution of HMHE(λj) as an initial guess for the next problem
6: j ← j + 1
7: end while

Output: x̂k.

& Georg (1990). Algorithm 2 presents a simpli�ed implementation of such a procedure, by adaptively
changing the total number of steps nλ with a factor of δλ. This is equivalent with changing the
step size in Λ. In the case that subsequent solutions are su�ciently close, i.e. small ‖Xj+1 − Xj‖,
then the number of homotopy steps can be reduced. On the other hand, if these solutions are
relatively di�erent, then the number of steps can also be increased. The details are summarized
in Alg. 2, where the small δx and large ∆x are the tuning variables. Simulation results show a
signi�cant reduction of the computational complexity, compared to the standard implementation
in Algorithm 1.

Algorithm 2 Implementation of modi�ed HMHE

Initialization: X0 = x̂0 ∈ X0, ξ0 ∈W, ξ́0 ∈W, ν0 ∈ V, ν́0 ∈ V, λ0 = 0 and j = 0
Input: nλ, Ykl , 0 < δλ < 1, δx > 0 and ∆x > 0

1: Compute the LTV model (2) using Ykl
2: Formulate HMHE using (1) and (2) as in Eq. (7)
3: while j < nλ do
4: Solve HMHE(λj) in (7) and update the optimizers: (x̂i)

k
i=l, (ξi)

k−1
i=l , (νi)

k
i=l, (ξ́i)

k−1
i=l and (ν́i)

k
i=l

5: Xj+1 ← (x̂i)
k
i=l

6: if ‖Xj+1 −Xj‖ < δx then
7: nλ ← δλnλ
8: else if ‖Xj+1 −Xj‖ > ∆x then

9: nλ ← nλ/δλ
10: end if

11: Use the solution of HMHE(λj) as an initial guess for the next problem
12: j ← j + 1
13: end while

Output: x̂k.

Remark 6: In Algorithm 2 the increase/decrease of nλ might not be well-posed for arbitrary δλ.
However it is assumed that nλ stays integer; i.e. the increment/decrement is a multiplier of nλ.

5. Numerical case studies

This section presents two numerical case studies for state and parameter estimation, in order to
illustrate the proposed method. As mentioned before, input and output disturbances (in some
literature known as the process and measurement noise) might reduce the validity of the LTV
model in (2). Therefore, we will �rst investigate the in�uence of zero mean random input and

10
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output disturbances with small amplitude on the convergent properties of HMHE. In the second
example, a biased output disturbance is assumed in two forms: constant and random. This type
of disturbances ended up with a deviated estimates for CMHE and consequently deteriorated the
quality of HMHE estimates. Nevertheless, it will be illustrated that the homotopy approach can
result in a better local minimum compared to the MHE.

5.1 First case study: the e�ect of small disturbances

Consider the parameter varying one-dimensional nonlinear system

xk+1 = (1− 5Ts + 5Tsxk)xk + pk cos(xk) + ẃk,1 =: f(xk, pk) + ẃk,1,

yk = xk + vk,

where pk denotes the parameter which is assumed to be slowly time-varying in between each sam-
pling interval Ts = 0.01 s. It is worth mentioning that the domains considered in Assumption 3
are compact, hence the functions f and h are Lipschitz continuous in all their arguments on the
respective compact domains. Let us consider the compact sets as −1 ≤ xk ≤ 1 and −5 ≤ pk ≤ −1.

Choosing N = 2 and φ(
[
xk pk

]T
) = cx‖xk‖2 + cp‖pk‖2 gives the uniform observability based on

Def. 2, where cx and cp are chosen as su�ciently small positive constants. This property is mainly
the result of the compactness sets assumption. Further on this topic, it should be mentioned that
compactness of the domain is not only linked to the boundedness of states, but also to the bound-
edness of estimates. In the latter case constraints on state estimates can be helpful for the theory
although may not be needed in practice. This is considered as one of our ongoing research topic.
Moreover, the input and output disturbances are white Gaussian noise with variance 0.001 and

0.005, respectively. In order to formulate this problem in an augmented parameter and state esti-
mation framework, we consider p as a second state and its dynamic reads pk+1 = pk + ẃk,2. The
LTV model (2) can be obtained as follows[

xk+1

pk+1

]
=

[
1− 5Ts + 5Tsyk cos yk

0 1

] [
xk
pk

]
+

[
wk,1
ẃk,2

]
= Fk

[
xk
pk

]
+

[
wk,1
ẃk,2

]
,

where we note that wk,1 is not necessarily white and can be denoted as wk,1 = w(yk, ẃk,1, vk). The
cost function for the MHE problem formulation in (5) is given by

J0 = Px(xl − x̄l)2 + Pp(pl − p̄l)2 +

k−1∑
i=l

Qx(xi+1 − f(xi, pi))
2 +Qp(pi+1 − pi)2 +

k∑
i=l

Rx(yi − xi)2,

where N = 10 such that l = k − 9 and the 2N = 20 optimization variables are (xi)
k
i=l and (pi)

k
i=l.

The weights are selected as Px = Pp = Qp = 1, Qx = 1000 and Rx = 200. Assuming that the
system is in steady state, for di�erent values of (xj)

k
j=l := x and (pj)

k
j=l := p, the non-convex cost

function of the MHE is illustrated in Fig. 3. The global solution is denoted by a white circle.
The Hessian of this cost function (HMHE) is denoted by H ∈ R2N×2N . Based on the eigenspec-

trum of the corresponding Hessian matrix, in Fig. 4(a), the 2N eigenvalues of the Hessian for the
HMHE problem are illustrated, as λ is changing from 0 to 1. The optimizer index denotes each
element in the augmented state and parameter space over the prediction horizon. To investigate
the convexity of the HMHE problem, the state and parameter estimates used in the Hessian and
its eigenvalues corresponding to each optimizer indices, are plotted for one single time instance in
Fig. 4(a). For λ = 0, the problem is convex, such that all the eigenvalues are positive. As the value
of the homotopy parameter changes and gets closer to 1, we can observe that some eigenvalues are
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Figure 3. Convexity analysis of MHE for the �rst numerical case study (white circle is the global solution with no disturbances
included).
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(a) Hessian eigenvalues of the HMHE.
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(b) Cost function of HMHE with the homotopy path
(white line).

Figure 4. Convexity analysis of HMHE for the �rst numerical case study.

negative. In Fig. 4(b), the cost function of HMHE is illustrated for di�erent λ, where the e�ect of
disturbances is visible, even though it is small. For this illustration, it is assumed that the parameter
is �xed and the system is in steady state, i.e., the value of the augmented state is constant over
the horizon. In this case, we can demonstrate the behavior of HMHE for di�erent values of x. The
homotopy path is denoted by the white curve and it shows the transition between the result of the
convex problem and the non-convex one.

Performance analysis

The simulations were carried out on an Ubuntu 16.04 desktop computer using the ACADO Toolkit
(Houska et al., 2011). Table 1 shows that the performance of di�erent algorithm implementations
for the proposed homotopy based HMHE scheme result in a similar level of accuracy. Denoting the
augmented estimated state as x̂ =

[
x̂1 x̂2

]
, with a proper initialization x̂ =

[
−2 2

]
close to the

true value
[
x0 p0

]
=
[
1 −1

]
, all the methods have indistinguishable estimation errors; see Fig.

5(a). The rest of 20 optimization variables are updates with the system update equation for k < N .
The non-convex MHE formulation allows a local solver to �nd an unacceptable local solution,

given a bad initial guess; c.f. Fig. 5(b). In this scenario, the initial state is assumed to be far from the
true value as it was chosen x̂ =

[
0 200

]
. The HMHE approach converged to the desired solution,

while MHE converged to one of the alternative local minima. A comparison study in the sense
of sum of absolute estimation error is provided in Table 1. It should be noted that considering
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Figure 5. HMHE simulation results for the �rst numerical case study.

the number of optimizers, which in this case is 20, it is not feasible to demonstrate all the local
minima. For this numerical case study, the computational complexity of HMHE using Algorithm
2 is relatively faster compared with the nominal MHE; see Table 1. Further on the computational
complexity, it should be noted that the paper assumes that the mapping ψ is readily available
hence its calculation does not add to the overall computational complexity; see Abdollahpouri et
al. (2017, Sect. 5.2) for an example with 4 states. For more complicated examples the solution of
integrals might have to be computed at each time step to compute the matrices F and H. The
numerical complexity of computing F and H, if ψ is available, is generally low compared to solving
the HMHE problem.

Table 1. Comparison of average computation time and overall estimation error for the �rst case study.

MHE Alg. 1 Alg. 2
Estimation error (wrong x0) 1850 10.45 10.45
Estimation error (true x0) 5.26 4.03 4.03

Execution time (ms) 0.63 0.7 0.3

5.2 Second case study: the e�ect of a large output disturbance

In this case study, a primitive gradient descent method has been adopted to demonstrate the
possibility of �nding a local minimum with the HMHE approach. It should be noted that a di�erent
solver might result in di�erent estimation performance. Let us consider the following scalar nonlinear
dynamics

xk+1 = Ts(−20x3
k + 10x2

k + uk) + xk,

yk = xk + vk,

where vk is primarily assumed to be a �xed output disturbance (measurement bias), which is 1.5
in this example. The input signal is assumed to be a constant uk = 30 in the beginning of the test
and has been changed to another value uk = −15 in the middle of the simulation. The sampling
period Ts is 0.01 s and the true initial state is x0 = −1. The LTV model can be obtained, utilizing
the measurement yk as xk+1 = (−20Tsy

2
k + 10Tsyk + 1)xk + Tsuk +wk. In this transformation, the

in�uence of vk is summarized by wk : w(yk, vk). Similar to the previous example, on a compact
domain, the nonlinear function f is Lipschitz, since it is continuously di�erentiable with respect
to x. Furthermore, assuming N = 1 and φ as identity function, this nonlinear system is uniformly
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Figure 6. HMHE cost for di�erent x and λ (white line is the homotopy path).
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(a) Estimated state with random output disturbance.
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Figure 7. HMHE analysis for the second numerical case study.

observable based on the Def. 2. Assuming a horizon N = 10 and the cost function in (7), the
homotopy transformation is illustrated in Fig. 6 in steady state. The cost function can be simpli�ed
as

J2 = Px(xl − x̄l)2 +

k−1∑
i=l

Qx(xi+1 − f(xi, pi))
2 +

k∑
i=l

Rx(yi − xi)2,

where Px = Qx = Rx = 1. The white curve shows the homotopy path, which drives the solution
to a local minimum. In Fig. 7(b), Λ = {0} and Λ = {1} denote the CMHE and MHE, respectively.
For the homotopy based case Λ = {0, 1}, the solution got closer to the true value and this can be
considered as a better local minimum; see Table 2 for a comparison of the estimation performance.
Furthermore, to demonstrate the bene�t of HMHE with at least nλ = 2, a white Gaussian noise

with variance of 0.5 is assumed for vk. In this case, even though the CMHE solution deviates
at some iterations (see Fig. 7(a)), the homotopy approach can drive the solution to the global
minimum. For this case, the tuning parameters in CMHE will stays as before, however the tuning
variables in the MHE cost is chosen as Rx = 0.001 to reduce the e�ect of noisy measurements.
Therefore, the state update that the MHE is using has more impact than the one in measurement
error (Qx > Rx) and eventually helps the HMHE approach to converge to the global minimum. In
Table 2, the improvement of performance in the sense of the sum of absolute value of estimation
error is illustrated.
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Table 2. Comparison of overall estimation error for the second case study

Estimation Method Biased disturbance Random disturbance
CMHE 86.96 31.31
MHE 35.42 10.64
HMHE 24.61 10.1

6. Conclusions

This paper presents a homotopy based nonlinear MHE method, which is globally convergent in a
nominal condition; with no input and output disturbances. A model reformulation has been em-
ployed to transform the nonlinear dynamics into an LTV model, hence the leading optimization
problem is convexi�ed�CMHE. This model transformation is sensitive to input and output dis-
turbances, therefore the resulting CMHE problem might have a deviated solution compared to the
original nonlinear problem. Although the model transformation is applicable to di�erence �at sys-
tems, this approach is not limited to this class of nonlinear systems. Utilizing a homotopy approach
starting with the CMHE solution can lead the overall optimization problem to be convergent, as-
suming small bounded disturbances. On the other hand, a larger input or output disturbance might
deviate the CMHE solution from the global minimum and result in a sub-optimal solution as it is
illustrated through two simulation studies.
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