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Abstract:
This paper proposes a guaranteed feasible control allocation method based on the model predictive control. Feasible region is

considered to guarantee the determination of the desired virtual control signal using the pseudo inverse methodology and is described as
a set of constraints of an MPC problem. With linear models and the given constraints, feasible region defines a convex polyhedral in the
virtual control space. In order to reduce the computational time, the polyhedral can be approximated by a few axis aligned hypercubes.
Employing the MPC with rectangular constraints substantially reduces the computational complexity. In two dimensions, the feasible
region can be approximated by a few rectangles of the maximum area using numerical geometry techniques which are considered as
the constraints of the MPC problem. Also, an active MPC is defined red selected as the controller to minimize the cost function in the
control horizon. Finally, several simulation examples are employed to illustrate the effectiveness of the proposed techniques.
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1 Introduction

Many safety critical systems such as aircrafts [1], ships
and underwater vehicles [2] are designed with redun-
dant effectors and actuators. This redundancy could be
employed in order to meet a secondary objective such
as power consumption optimization, manoeuvrability and
fault tolerance. Control allocation is an approach to man-
age actuator redundancy under various conditions. The
prime objective in a control allocation technique is to pro-
duce a desired total control effect computed by the system
controller from a set of redundant actuators such that the
actuators’ constraints are satisfied [3, 4].

In the last two decades, several methods have been pro-
posed for the control allocation problem. Most of the pro-
posed schemes follow a modular control configuration pro-

gram which divides the control systems structure into the
following two parts. The main controller that provides the
specified desired total control effort (also called the virtual
control signal) and the control allocator unit that maps the
total control demand onto individual actuator settings. The
simplest control allocation scheme is the pseudo inverse
approach to distribute the virtual control signal among the
available actuators [4]. The main drawback of the basic
pseudo inverse approach is the fact that the actuators con-
straints can be easilly violated.

The advanced techniques based on the pseudo inverse
concept attempt to resolve this problem. These include
the redistributed pseudo inverse method, the daisy chain
scheme, the pseudo inverse correction along the null space,
and the direct allocation method [4]. Basically, the pseudo
inverse solution is calculated first and if this solution satis-
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fies the actuators constraints, no further steps are needed.
Otherwise, different remedies are proposed to solve the
constraints violation problem. In the redistributed pseudo
inverse method, the control signal vector is partitioned into
the saturated, and unsaturated elements and the unsaturated
elements are recomputed by solving a reduced problem us-
ing the reduced pseudo inverse to compensate for the sat-
uration effects on the virtual control signal. The redistri-
bution procedure is repeated until either the desired vir-
tual control signal is generated or no improvements are
achieved in the process continuation [4, 5]. In the daisy
chain scheme, actuators are divided into several groups.
Initially, control signals of the first actuators group is cal-
culated using the reduced pseudo inverse. If the first group
of actuators could produce the desired virtual control, next
groups remain unused. Otherwise, the second group of ac-
tuators is employed to generate the remaining virtual con-
trol demand. This procedure is repeated until either the vir-
tual control signal is satisfied or all of the actuator groups
have been employed [6, 7]. [8] proposes an algorithm to
modify the pseudo inverse solution using the null space.
This approach is based on the fact that each member of the
null space of the control effectiveness matrix could not af-
fect the virtual control signal whereas it could modify the
control signal vector. In this method, a vector of the null
space is added to the pseudo inverse solution if the solu-
tion does not satisfy the constraints. The corrective term is
calculated such that elements of the control signal which
violate the constraints are forced back to the admissible re-
gion. [9] presents a robust adaptive fault tolerant control
using a wieghted pseudo inverse control allocation in the
presence of disturbance, unmodeled dynamics and actua-
tor nonlinearity. The main controller is a combination of an
adaptive control, radial basis function neural network and a
robust controller. Although the above mentioned methods
are fast and rather effective, they do not guarantee a feasi-
ble solution for the control allocation problem, even when
one exists.

The direct allocation approach is a constrained control
allocation approach based on scaling of the unconstrained
problem solution. When the pseudo inverse solution vio-
lates the actuators’ constraints, another control signal with
the same direction and a smaller norm is applied to the sys-
tem such that the control signal is located in the attainable
space [10, 11]. This method changes the desired total vir-
tual control which may lead to performance and stability
degradations.

Iterative methods are also widely employed to solve
the control allocation problem. Linear and quadratic pro-

gramming approaches are proposed as control allocation
methodologies. These methods convert the control allo-
cation problem to the standard optimization formats and
consider actuators constraints. These methods minimize
a selected linear or quadratic cost function to minimize
the difference between the produced virtual control and
its desired value [12–14]. Linear and quadratic program-
ming techniques have been used to manage actuator con-
straints in many applications [15–17]. [18] considers inter-
action between actuators and proposes the control alloca-
tion problem as a mixed optimization problem.

In addition, some integrated methods are proposed for
control allocation which concurrently analyse the main
controller and the control allocator unit. Fault tolerant con-
trol scheme using on-line control allocation based on var-
ious types of sliding mode control concepts are presented
in [19–24]. They develop a rigorous design procedure from
a theoretical view and prove closed loop stability in the
presence of some bounded uncertainties. [25] presents the
standard H-infinity criterion to minimize the control effort
and the virtual control error. The integrated methods do not
consider actuators constraints explicitly in their design.

he Control allocation has a growing application in a
wide range of systems. Recently, it has been employed
in unmanned aerial vehicles (UAV) [26], neuroprosthesis
[27], and electric vehicles [28].

In this paper, to achieve feasibility, actuator constraints
are included in the control design through a feasible re-
gion determination procedure that simultaneously benefits
from the modular and integrated control allocation strate-
gies. The control allocator unit finds the feasible region in
the virtual control space. The idea proposed in this paper is
to consider the feasible region as the constraints of a set of
MPC problems which produce the desired virtual controls.
Generally, the feasible region could be considered as poly-
hedral constraints. The feasibility consideration guarantees
generation of a desired virtual control which maintains sys-
tems stability and performance.

It is possible to replace a polyhedral by its approxima-
tion which includes a few axis aligned hypercubes. The
set of employed model predictive controllers consider the
control allocation feasible regions in the approximated hy-
percubical form as their control signal constraints, and pro-
duce the desired virtual control to satisfy the corresponding
constraints. This reduces the computational complexity of
the MPC problems, but may require the solution of sev-
eral MPC problems to achieve an accurate approximation.
In this paper, the two dimensional case is studied in detail
and two algorithms are employed to find the largest rectan-
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gle in the feasible region.
The paper is structured as follows. The problem state-

ment is given in section 2. Section 3 presents the proposed
methods to design the guaranteed feasible control alloca-
tion using the MPC approach. In section 4, simulation re-
sults are illustrated to show the performance of the pro-
posed scheme. Concluding remarks are given in section 5.
Also, two algorithms are outlined for finding the maximum
area rectangle in a polygon in the appendix.

2 Problem statement

Consider a linear system described by the following dis-
crete time state-space equations:

x (t+ 1) = Ax (t) + Buu (t)

y (t) = Cx (t) (1)

where x ∈ <n, u ∈ <m , and y ∈ <k are the state vari-
ables, inputs and outputs of the system, respectively. Also,
A ∈ <n×n, Bu ∈ <n×m, and C ∈ <k×n are the state,
input and output matrices, respectively. It is assumed that
the system has input redundancy and therefore the input
matrix is rank deficient:

rank (Bu) = d < m (2)

The virtual control signal is the total effect of the inputs
and it is introduced as follows:

v (t) = Bu (t) (3)

where B ∈ <d×m is called the control effectiveness matrix
which is derived from the system structure and is related to
the effectors type, size and location. Combining (1) and (3)
yields the following state space representation:

x (t+ 1) = Ax (t) + Bvv (t)

y (t) = Cx (t) (4)

and Bv satisties

Bu = BvB (5)

The admissible space can be defined as follows:

u (t) ∈ Ω ≡ {ui | ui ≤ ui (t) ≤ ūi;∀1 ≤ i ≤ m} (6)

where the constraints bounds ui and ūi depend on the re-
spective actuator health and status.

Control system is divided into two parts, the main con-
troller and the control allocator unit. The main controller
produces the desired virtual control signal in order to meet
the primary closed loop specifications such as stability, set
point tracking and disturbance rejection. The control allo-
cator unit maps the desired virtual control to the actuators
commands. It is assumed that the actuators are static and
if their commands are admissible with respect to their con-
straints, u (t) will equal to its command.

3 The guaranteed feasible control allocation
methodology

This paper proposes a control allocation scheme which
employs the model predictive controllers to guarantee that
the desired virtual controls are generated such that the ac-
tuators command are admissible.

3.1 Determining the feasible region

The first step of the method is to determine the feasible
region in the virtual control space.

Definition 1. Feasible region is a subset of the virtual con-
trol space. If the desired virtual control signal is located
there, it is guaranteed that the control allocation unit will
map it into the control signal space such that actuator con-
straints are not violated.

Let B† denote the pseudo inverse of the matrix B:

F = B† = W−1
I BT

(
BW−1

I BT
)−1

(7)

where WI is a weighting matrix which could be the iden-
tity matrix in particular. The solution of the control alloca-
tion problem using the pseudo inverse is:

u (t) = Fvd (t) = B†vd (t) (8)

where vd is the desired virtual control. To determine the
feasible region, the following inequalities, which define a
convex polyhedron should be satisfied:

ui ≤ fivd (t) ≤ ūi;∀i = 1, 2, · · · ,m (9)

where fi is the ith row of F. There are numerous softwares
to show the polyhedral in both hyper plane and vertex rep-
resentations such as CDD and the multi parametric toolbox
(MPT) [29]. For the two dimensional virtual control space,
the admissible solution for each inequality is a space be-
tween two parallel lines denoted by si1 and si2 which is
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defined as follows:

si1 : fivd = ci1

si2 : fivd = ci2 (10)

where ci1 = ui and ci2 = ūi. The feasible region of the
control allocation problem is a convex polygon whose ver-
tices are among the intersection points of the lines which
satisfy all the inequalities in (9). Intersection points could
be determined as follows:

pik,jl =

[
fi

fj

]−1 [
cik

cjl

]
(11)

where i, j = 1, 2, · · · ,m, i 6= j and k, l = 1, 2.
In what follows, the algorithm for determining the fea-

sible polygon region for a two dimensional space is given.

Algorithm 1. The procedure of determining the feasible
region could be expressed as follows:
• Consider the 2m lines given by equations si1 and si2 as

(10).
• Determine the intersection points as (11).
• Find the intersection points satisfying (9) for all 1 ≤ i ≤
m.
• The polygon whose vertices are the points found in the

third step is the feasible region.
Fig.1 shows the feasible region of a given B matrix and

the actuator constraints.

Fig. 1 The feasible region

3.2 Feasible control allocation using the MPC con-
troller with the polyhedral constraints

If the desired virtual control vector is in the feasible re-
gion, the pseudo inverse solution directly gives the actua-
tors commands. Therefore, the main controller should pro-

duce the desired value of the virtual control signal located
in the feasible area. The first strategy is to employ an MPC
controller which could consider inequalities shown in (9)
as its input constraints. The MPC controller minimizes the
following cost function [30]:

J (Vd) =

N∑
j=1

([ŷ (t+ j|t)−w (t+ j)]
T
Q [ŷ (t+ j|t)−w (t+ j)]

+ [vd (t+ j − 1|t)− v∗d]
T
R [vd (t+ j − 1|t)− v∗d])

(12)

where ŷ (t+ j|t) is an optimum j-step ahead prediction
of the system output based on the data up to time t, N is
the control horizon, Q and R are the weighting matrices,
w (t+ j) is the future reference trajectory, and v∗d is the
ideal input value. To put the MPC problem in a suitable
optimization form, stacked vectors with future states and
control inputs are defined as follows [30]:

Y =


ŷ (t+ 1|t)
ŷ (t+ 2|t)

...

ŷ (t+N |t)

 , Vd =


vd (t|t)

vd (t+ 1|t)
...

vd (t+N − 1|t)

 ,

V∗d =


v∗d (t)

v∗d (t+ 1)
...

v∗d (t+N − 1)

 , W =


w (t+ 1)

w (t+ 2)
...

w (t+N)

 (13)

The predicted states can be rewritten as Y = Hx (t|t)+

SVd where:

H =


CA

CA2

...

CAN

 ,

S =


CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CAN−1BCAN−2B · · · CB

 (14)

Hence, the cost function can be written as follows:

J (Vd) = (Hx (t|t)−W)
T
Q̄ (Hx (t|t)−W)

+ VT
d

(
ST Q̄S + R̄

)
Vd + V∗d

T R̄V∗d
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+ 2 (Hx (t|t)−W) ¯QSVd (15)

where Q̄ and R̄ are the extended weighting matrices. Solv-
ing the following constrained convex quadratic optimiza-
tion problem in the virtual control space yields the desired
virtual control signal:

min
Vd

J(Vd)

subject to :ui ≤ fivd (t+ j − 1|t) ≤ ūi; (16)

∀i = 1, 2, . . . ,m, ∀j = 1, 2, . . . , N − 1

3.3 Feasible control allocation using the MPC con-
troller with rectangular constraints

Considering the constraints as (16) may lead to a large
computational burden. Replacing the feasible region poly-
hedral by an approximated axis aligned hypercube can re-
duce the number of constraints and make them simpler and
reduces the computational time. In the two dimensional
virtual control space, the feasible region could be approx-
imated by an axis aligned rectangle. It is possible to em-
ploy the algorithms of finding the maximum area rectangle
in a polygon described in the appendix. The derived rect-
angles based on the algorithms mentioned in the appendix
are shown in Fig.2. Note that the area of the second and
fourth derived rectangles equal to zero.

One conservative strategy is to consider the largest rect-
angle among the four rectangles which are found based on
the algorithms mentioned in the appendix as the control
signal constraints of an MPC controller. The MPC con-
troller solves the following optimization problem where
the cost function is defined as (15):

min
Vd

J(Vd)

subject to :vi ≤ vd (t+ j − 1|t) ≤ v̄i; (17)

∀i = 1, 2,∀j = 1, 2, . . . , N − 1

where vi and v̄i,i = 1, 2 are the lower and upper bands of
the x and y coordinates given by the largest rectangle. The
advantage of this strategy is that it is computationally sim-
pler than (16), but it is conservative and leads to reduced
performance, since the rectangle is an inner approximation
of the polygon.

Fig. 2 Maximum area rectangles in the feasible region

Algorithm 2. The following steps are proposed to imple-
ment the feasible control allocation based on the MPC con-
troller:
• Determine the feasible region of the control allocation

problem.
• Find the largest axis aligned rectangle inscribed in the

feasible polygon region.
• Design the MPC controller constrained by the control

signal within a given rectangle.
• In each sample time:
· Calculate the desired virtual control signal using the

MPC strategy.
· Map the desired virtual control to the actuator com-

mands using the pseudo inverse (7)- (8).
It should be noted that the first three steps are executed
only for initialization.

3.4 Feasible control allocation using the multiple
MPC controllers

In Fig.2, it can be clearly observed that by selecting any
rectangle, a significant part of the feasible polygon region
will be neglected. This problem could decrease the con-
troller performance due to the virtual control signal being
too restricted. In order to enlarge the covered area of the
feasible region approximation, a multiple MPC strategy is
proposed, where each calculated rectangle is considered as
the constraints of a separate MPC controller. Therefore, a
larger area within the polygon region will finally be cov-
ered. Plant dynamics and cost function parameters remain
unchanged while the control signal constraints are derived
from the determined rectangles for l = 1, 2, · · · , Nr. Each
controller solves an optimization problem as follows [30]:

min
Vdl

J(Vdl)
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subject to :vil ≤ vdl (t+ j − 1|t) ≤ v̄il; (18)

∀i = 1, 2,∀j = 1, 2, . . . , N − 1

where vil and v̄il are specified by coordinates of the lth
rectangle and Nr is the number of rectangles with non-
zero areas. At each sample time, all controllers are evalu-
ated and their corresponding cost functions are compared
with the other cost functions. Then the MPC controller cor-
responding to the minimum cost function is selected as the
active controller and its corresponding virtual control sig-
nals will be sent to the control allocator unit. The active
controller index is denoted by σ (t). The dwell time con-
cept in switching between the controllers is considered for
closed loop considerations, where the selected controller
should be active for at least τd units of time and where τd
is called the dwell time [31].

Algorithm 3. The following steps are performed to imple-
ment the feasible control allocation methodology based on
the multiple MPC controller strategy:
• Determine the feasible region of the control allocation

problem.
• Find Nr axis aligned rectangles in the feasible polygon

region.
• Design Nr MPC controllers by the control signal con-

straints defined by the rectangles.
• In each sample time:
· Calculate the desired virtual control signal and the cost

function of each MPC controller.
· Select the best virtual control which has the minimum

cost function. The controller is switched only if the
new active controller improves the cost function value
with the hysteresis parameter h. Also, the selected
controller remains active for at least τd time units.
· Map the chosen desired virtual control to the actuator

commands using the pseudo inverse (7)-(8).
Structure of the proposed algorithm is shown in Fig.3.
The switching control supervisor unit selects the active
controller by considering the dwell time and the hystere-
sis. Also, the feasible control allocation unit determines
the feasible region and introduces the corresponding rect-
angles to the MPC controllers for constraints generation.
The computation time can be reduced since the MPC con-
trollers can be evaluated in parallel simple box constraints.

Fig. 3 Structure of the feasible control allocation using the mul-
tiple MPC strategy

4 Simulation results

In this section, simulation results are presented to show
the effectiveness of the proposed methodologies. The CVX
toolbox [32] is employed to solve the optimization prob-
lems.

4.1 Example 1

In this example, the following methods are employed for
a comparitative study:
(1) The feasible control allocation (FCA): An MPC

controller is employed as the main controller that
considers the feasible region as the polyhedral input
constraints.

(2) MPC with PAN: An unconstrained MPC and the
pseudo inverse along the null space (PAN) methodol-
ogy [8] are used as the main controller and the control
allocator unit, respectively.

(3) MPC with quadratic programming (QP): An un-
constrained MPC and the quadratic programming
strategy are used as the main controller and the con-
trol allocator unit, respectively.

(4) LQ with quadratic programming: A linear
quadratic(LQ) optimal control and the quadratic pro-
gramming strategy [13] are used as the main con-
troller and the control allocator unit, respectively.

(5) LQ with RPI: A linear quadratic(LQ) optimal con-
trol and the redistributed pseudo inverse (RPI) strat-
egy [5] are used as the main controller and the control
allocator roles, respectively.
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Consider the following linearized state space model [33]:

A =



−0.543 0.013 0 0.978 0

0 −0.12 0.221 0 −0.9661

0 −10.52 −0.997 0 0.6176

2.62 −0.003 0 −0.506 0

0 0.708 −0.0939 0 −0.213



B =


0 −4.24 4.24 1.487

1.653 −1.27 −1.27 0.0024

0 −0.28 0.28 −0.88

 ;

Bv =

[
02×3

I3

]
;C =

[
03×2 I3

]
u =

[
−5 −3 −3 −3

]T
; ū
[
2 3 3 3

]T
(19)

Under the given condistions, the different methods have
a similar performance and they appropriately manage the
actuators. As is shown in Table 1, employing the LQ con-
troller instead of the MPC decreases the computational
burden significantly. In order to quantitatively compare the
results, Table 1 presents the computational time and the
cost function value for the methods. The cost function is
defined as follows:

Js = (20)∑Tend

t=0

(
(y(t)−w(t))

T
Q (y(t)−w(t)) + u(t)TRu(t)

)
Tend

Table 1. Example 1- Methods comparison
Method Cost function Computational time (s)

MPC with FCA 5.71 0.08

MPC with PAN 5.71 0.076

MPC with QP 5.71 0.081

LQ with QP 5.74 0.016

LQ with RPI 5.73 5.27*10−4

In the next simulation, the upper and lower bounds of the
4th actuator are tightened (e.g. due to the actuator fault) as
follows:

u =
[
−5 −3 −3 −1

]T
; ū
[
2 3 3 1

]T
(21)

In this case, closed loop systems which do not consider
the feasibility concept became unstable. Instability has oc-
curred due to the discrepancy between the desired and the
actual virtual control signals which appeared because of
lack of feasibility consideration. As is shown in Fig.4, us-
ing the feasible control allocation preserves closed loop

stability and only the transient performance is degraded.
There is no discrepancy between the desired and the ac-
tual virtual control signals as shown in Fig.4.b Hence, it
is observed that using the feasible region information in
the main controller could extend the stability region and
achieve a better performance.
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Fig. 4 Example 1- The feasible MPC method, (a) System outputs,
(b) Virtual control signals, (c) Control signals

4.2 Example 2

In the second example three methods are employed
for comparison study, 1)feasible control allocation using
the MPC controller with polyhedral constraints, 2)feasi-
ble control allocation using the single MPC controller with
rectangular constraints, and 3)feasible control allocation
using the multiple MPC controllers with rectangular con-
straints. Consider the following linear model of an electric
vehicle [34]:

A =

[
0.3348 −0.0277

0.0927 0.2436

]

Bv =

[
0.0609 −0.0022

0.0073 0.0537

]

C =

[
1 0

0 1

]
(22)

Also, the control effectiveness matrix and the actuator up-
per and lower limits are as follows:

B =

[
5.4012 5.4012 0 0 0 0

51.2 −54.4 −0.0015 −0.0015 −0.0015 −0.0015

]

u =
[
−0.1 −0.05 −1 −1 −1 −0.1

]T
ū =

[
0.1 0.05 1 1 1 0.1

]T
(23)

Fig.5 depicts the results of employing the feasible con-
trol allocation using an MPC controller with the polyhedral
constraints. As is shown in Fig.5(a), this scheme leads to

the desired transient and steady state responses. Also, there
is no discrepancy between the desired virtual and actual
control signals as shown in Fig.5(b).

For the feasible control allocation with a single MPC
controller, the largest rectangle found in the feasible re-
gion of this example shown Fig.2 is considered as the con-
straints of an MPC controller. It is obvious that a large area
of the feasible region is ignored by considering only the
largest rectangle and it causes steady state error in the sec-
ond output as is depicted in Fig. 6(a). A particular problem
is that positive values of the desired virtual control signal
are strongly restricted as is shown in 2. Note that it could
be seen in Fig.6(b) that the generated and the desired vir-
tual signals are identical which is due to applying a part
of the feasible region as the input constraints of the MPC
problem.

For the multiple MPC controller scheme both rectangles
shown in Fig.2 are considered. Results of applying mul-
tiple control with the dwell time are shown in Fig.7. As
is seen in Fig.7(a), enlarging the feasible region by con-
sidering two rectangles improves the control performance.
Also, the difference between the virtual and actual control
signals equals zero. The active controller is switched when
it is necessary, as is shown in Fig.7(d). Table 4.2 shows the
average running time of the proposed methods to compare
their computational burden. Using the multiple MPC con-
troller scheme with rectangular constraints which employs
parallel processing decreases running time of the control
procedure in each sample time while it does not cause an
unacceptable performance. It should be mentioned that the
computational times are presented only for comparison and
they can be decreased substantially in real time implemen-
tations.

Table 2. Comparison of the running time of the presented
methods

FCA Method Computational time (s)

MPC with polyhedral constraints 0.38

MPC with rectangular constraints 0.21

Multiple MPC 0.23

5 Conclusion

This paper proposes a guaranteed feasible control allo-
cation methodology. The feasible region is determined by
characterizing the polyhedral feasible region of the pseudo
inverse solution. Then, the feasible region is introduced to
the main controller as the constraints of an MPC problem.
Another approximated method is presented for decreasing
computational time where several axis aligned hypercubes
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are considered as an approximation of the feasible region.
A set of MPC controllers solved using parallel processing
are employed as the main controllers where each of the
given hypercubes is considered as constraints in the corre-
sponding MPC controller. Then, switching control is used
to choose the most appropriate controller in each step hav-
ing the lowest cost and satisfying dwell time specifications.
In the case of two dimensional virtual control space, an al-
gorithm is employed to find the maximum area rectangles
inscribed in the feasible polygon region. Simulation results
are used for comparison studies and to show that computa-
tional cost can be reduced with the approximate method.
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Fig. 5 Example 2- The feasible region method using an MPC
controller with polyhedral constraints, (a) System outputs, (b)
Virtual control signals, (c) Control signals
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Fig. 6 Example 2- The MPC controller method, (a) System out-
puts, (b) Virtual control signals, (c) Control signals
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Fig. 7 Example 2- The multiple MPC controllers method, (a)
System outputs, (b) Virtual control signals, (c) Control signals,
(d) Switching signal
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Appendix

A The maximum area rectangle principle

In the two dimensional virtual control space, the feasible
region can be generally characterized by a convex poly-
gon. To develop a guaranteed feasible control allocation
strategy with lower computational complexity, a maximum
area rectangle (MAR) which lies in the convex polygon of
the feasible region is identified. To derive this MAR the
algorithm developed in [35] is employed. This mathemat-
ical algorithm has been used in several engineering appli-
cations such as the wireless sensor network [36]. The algo-
rithm takes the polygon vertices and yields an axis-aligned
rectangle in the polygon which has the maximum area. To
briefly present the MAR algorithm, some basic definitions
are given below. Consider Q,Q′ ∈ <2, Q = (x, y), Q′ =
(u, v) with x < u and y < v. Then R = Rect (Q;Q′) is
the rectangle with the lower left corner given by Q and
the upper right corner given by Q′. Area of the rectan-
gle is denoted by area(R) = (u− x) (v − y). Let P be
a bounded convex polygon with n vertices and denote its
boundary by δP . Also, the corners of a rectangle indicated
by the lower left, lower right, upper left and upper right are
denoted by LL(R),LR(R),UL(R) and UR(R), respec-
tively. Also, the southeast, southwest, northeast and north-
west parts of the polygon are denoted by SE,SW,NE, and
NW, respectively. Note that the four parts are not necessar-
ily disjoint. The maximum area rectangle could have two
or three corners on δP , and two separate algorithms are
presented in [35] to find the above two possible rectangles.

A.1 MAR with at least three vertices on the boundary

Let xl be the minimum x-coordinate of a vertex of
P . Consider xNW (xSW) as the maximum x-coordinate
of a vertex on NW (SW), and xr = min (xNW, xSW).
Let S (x) be the vertical line at x, xl ≤ x ≤ xr, and
let y1 and y2 be the y-coordinates of the intersections of
S (x) and P . Consider ui as the x-coordinate of the hor-
izontal projection of yi onto NE ∪ SE, i = 1, 2. Define
x′ = min (u1, u2). Also, consider the rectangle R (x) =

Rect ((x, y1) , (x′, y2)).

Definition A.1 [35]. A function f(x) is called almost
strictly bitonic on [xi, xj ], if there exist xk, xm ∈ [xi, xj ]

such that f(x) is strictly increasing on [xi, xk], strictly de-
creasing on [xm, xj ] and constant on [xk, xm].

Theorem A.1 [35]. area (R (x)) is continuous and almost

strictly bitonic on [xl, xr].

Algorithm A.1 [35]. The procedure of finding the maxi-
mum area rectangle with at least 3 corners on the boundary
of the polygon is summarized as follows:
• Find that vertex (x1, y1) of SW which halves SW with

respect to the number of vertices and its right neighbour
(x2, y2).

• Compute the corresponding rectangle R (x1), R (x2)

and determine the following alternatives:
· If area (R (x1)) > area (R (x2)), then search should

be followed in [xl, x2].
· if area (R (x1)) < area (R (x2)), then search should

be followed in [xl, xr].
· if area (R (x1)) = area (R (x2)), then iteration

should be stopped.
• If only two adjacent vertices of SW are left, a binary

search should be done.

A.2 MAR with two vertices on the boundary

Consider the maximum area rectangle M that has ex-
actly two diagonally opposed corners on δP . Only the
cases that LL (M) ∈ SW and UR (M) ∈ NE will be dis-
cussed here. Let xl and xr be defined as above, x ∈ [xl, xr]

and (x, y) be the projection of x onto SE. Then, MR (x) is
the maximum area rectangle (not necessary included in P )
with lower left corner (x, y) and upper right corner on NE.

Theorem A.2 [35]. area (MR (x)) is continuous and al-
most strictly bitonic on [xl, xr].

Algorithm A.2 [35]. The procedure of finding the maxi-
mum area rectangle with exactly two corners on the bound-
ary of the polygon is summarized as follows:
• Find x as the x-coordinate of that vertex which halves

[xl, xr] with respect to the number of vertices on SW.
• Compute MR (x) by a binary search on NE.
• If both UL (MR (x)) and LR (MR (x)) are outside of P ,

stop the algorithm. Because it is proved that no MR (x′)

could be found such that it is totally contained in P , for
any x′ ∈ [xl, xr].
As indicated in the algorithms A.1 and A.2, two rectan-

gles could be obtained which have a corner on SW. Ac-
cording to the algorithms, it is possible to determine an-
other two rectangles that their lower right corners are lo-
cated on SE. It should be noted that some of these rectan-
gles could have zero area.
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