ISA TRANSACTIONS 2019

Distributed Control Architecture for Real-time
Model Predictive Control for System-level
Harmonic Mitigation in Power Systems

Espen Skjong, Tor Arne Johansen, Senior Member, IEEE, and Marta Molinas, Member, IEEE

Abstract—TIt can be challenging to design and implement Model
Predictive Control (MPC) schemes in systems with fast dynamics.
As MPCs often introduce high computational loads, it can be
hard to assure real-time properties required by the dynamic
system. An understanding of the system’s behavior, to exploit
system properties that can benefit real-time implementation is
imperative. Moreover, MPC implementations on embedded local
devices rarely allows flexibility to changes in model and control
philosophy, due to increased complexity and computational loads.
A change in control philosophy (run-time) can be quite relevant in
power systems that can change from an integrated to a segregated
state. This paper proposes a distributed control hierarchy with
a real-time MPC implementation, designed as a higher-level
control unit, to feed a lower-level control device with references.
The higher-level control unit’s objective in this paper is to
generate the control reference of an Active Power Filter for
system-level harmonic mitigation. In particular, a novel system
architecture, which incorporates the higher-level MPC control
and handles distribution of control action to low-level controllers,
as well as receiving measurements used by the MPC, is proposed
to obtain the application’s real-time properties and control
flexibility. The higher-level MPC control, which is designed
as a distributed control node, can be swapped with another
controller (or control philosophy) if the control objective or the
dynamic system changes. A standard optimization framework
and standard software and hardware technology is used, and
the MPC is designed on the basis of repetitive and distributed
control, which allows the use of relatively low control update
rate. A simulator architecture is implemented with the aim of
mimicking a Hardware-In-Loop (HIL) simulator test to evaluate
the application’s real-time properties, as well as the application’s
resource usage. The results demonstrates that the implementation
of the harmonic mitigation application exhibits the real-time
requirements of the application with acceptable resource usage.

Index Terms—Real-time, model predictive control, harmonic
mitigation, system architecture, distributed hierarchical control,

This work has been carried out at the Centre for Autonomous Marine
Operations and Systems (AMOS). The Norwegian Research Council is
acknowledged as the main sponsor of AMOS. This work was supported by
Ulstein Power & Control AS and the Research Council of Norway, Project
number 241205, and Ulstein Blue Ctrl AS.

E. Skjong (corresponding author) is with the Department of Engineer-
ing Cybernetics, Norwegian University of Science and Technology, 7034
Trondheim, Norway, with the Centre for Autonomous Marine Operations and
Systems (NTNU-AMOS), Norwegian University of Science and Technology,
7052 Trondheim, Norway, and with Ulstein Blue Ctrl AS, 6018 Alesund,
Norway (e-mail: espen.skjong@ulstein.com)

T. A. Johansen is with the Department of Engineering Cybernetics, Norwe-
gian University of Science and Technology, 7034 Trondheim, Norway, with
the Centre for Autonomous Marine Operations and Systems (NTNU-AMOS),
Norwegian University of Science and Technology, 7052 Trondheim, Norway
(e-mail: tor.arne.johansen @itk.ntnu.no)

M. Molinas is with the Department of Engineering Cybernetics, Nor-
wegian University of Science and Technology, 7034 Trondheim, (e-mail:
marta.molinas @ntnu.no)

repetitive control

NOMENCLATURE
Symbol | Description Unit
ij Current in abc frame, electrical segment 7 | A
A} Voltage in abc frame, electrical segment j | V
L; Impedance, electrical segment j H
Cj Capacitance, electrical segment j F
R; Resistance, electrical segment j Q
X Dynamic states vector -
z Algebraic states vector -
u Control vector -
(") Equality constraints function -
h(") Inequality constraints function
1(-) Stage cost function -
V() Objective function -

I. INTRODUCTION

Model predictive control (MPC), which is founded on
optimization, utilizes a model of the system to online forecast
system behavior and optimize the forecast to produce the
best control decision at the current time instance [1], [2].
The model, which is an approximation of the physical system
that represent the dynamics under investigation, is initialized
by measurements, or estimates, of the system’s current state.
A cost function, defining the objective of the control and
constraints, may be applied to reflect the system’s physical and
operational limitations. At each sampling interval the future
control action is obtained by solving online a finite horizon
optimal control problem. A range of different MPC schemes
have been developed for systems with different properties and
requirements, including deterministic as well as stochastic,
linear and nonlinear systems. Hence, MPC is not one single
method but rather a set of methods and algorithms that forms
a control philosophy [3]. A general, but simplified, illustration
of MPC is portrayed in Fig. 1.

Since the early advents of MPC in the process industries,
thousands of successful MPC applications have been imple-
mented in the same industries [1], [4], [5]. A lot of research
has been directed to the MPC’s area of application, and MPC
has been investigated within several industries and fields of
research in the pursuit of smart control schemes. The desired
outcome of this research has been to improve existing non-
optimal control strategies, or to solve challenging control
problems where conventional control theory alone does not
provide a sufficient solution. In this regard, MPC is often used

ISA TRANSACTIONS 2019

CONTROLLER

Model / State
Estimator

ult,) Plant y(,)

(Process)

Fig. 1. Simplified illustration of model predictive control, with measurements
y(+), references "¢ (-) controls u(-), error (difference between references
and measurements) £(-), and time step &y,.

as a higher-level controller feeding one or multiple lower-level
controllers with references, or set-points, to be tracked.

In the field of electrical power engineering, MPC has been
frequently investigated as a vital option for optimal control of
power converters [6]-[14], where the switching of the Power
Electronics (PE) devices has been the main focus of control.
As examples, in [9] an indirect Finite Control Set (FCS)
MPC is investigated for the optimal control of the Modular
Multilevel Converter’s (MMC) switching. In [15] MPC is
applied to power system protection schemes, ship energy man-
agement [16], control of batteries in a peak-shaving application
is discussed in [17], frequency control in [18], control of
distributed energy resources in [19], [20], and mitigation of
harmonic distortions in [21]-[26]. MPCs do often introduce
high computational loads that might require the computational
loads to be shared among multiple distributed controller units.
[27], [28] do not utilize MPCs, however, present interesting
applications using multi-layered and distributed optimization-
based control strategies for optimal power flow in transmission
and distribution systems. Even though simultaneous real-time
optimization and control is one of the most desirable properties
of MPC, there is still a vast area of applications in electrical
power engineering where multi-layered control is common
practice, utilizing ad-hoc offline optimization strategies [29],
[30]. An example of such an application is mitigation of
harmonic distortions.

Harmonic distortions, which are any deviation from the
pure sinusoidal voltage or current waveform, introduce active
power losses and contributes to reactive power in the system
[31]. Methods for mitigating harmonic distortion include the
use of passive and active filters. Unlike passive filters, the
active filters can be controlled, and, depending on the control
philosophy, be able to adapt to changes in the harmonic
distortion spectra. This is a desirable functionality, especially
in power systems with dynamic load profiles. The most applied
control philosophy for active filters involves the mitigation of
harmonic distortion at a specific location in the power system
(e.g. [31], [32]). However, as active filters can be controlled
to dynamically track a current reference, a single active filter
can be designed to track a current reference that can optimize
the harmonic profile of the entire system. This task can be
performed in real-time by a tailor-designed MPC.

This paper proposes a scheme for real-time MPC implemen-

tation in a case-study of system-level harmonic profile opti-
mization, where the common practice has been the use of of-
fline optimization for the choice of set-points for the converter
controllers. The main contribution and novelty in this paper
lies in the real-time system framework and implementation of
an MPC designed for such a task, in contrast with the state
of the art solution based on offline optimization for set-point
definition. In specific, the novelty lies on the use of a standard
hardware and software platform for the real-time implemen-
tation of a Continuous Control Set (CCS) MPC application
for optimal mitigation of harmonic distortions, as discussed in
[21]-[25]. By exploiting the periodic nature of the voltage and
current waveforms to use relatively low control update rate, a
repetitive MPC control philosophy is selected and a dedicated
real-time framework is proposed. The MPC implementation
is split in two levels, by exploiting the architecture of this
dedicated hardware-software platform. In the higher level, the
MPC is designed as a higher-level distributed control node
that feeds a lower-level (local) controller with references, or
control set-points. The MPC, or the higher-level distributed
control node, can be swapped with another controller on-
the-fly if the control philosophy or the dynamical system
changes. Hardware-in-Loop (HIL) simulation experiments are
conducted to verify the system architecture with regards to the
MPC’s execution cost and the time delay introduced by the
framework and the communication link. The novel framework
enables a reliable and fast nonlinear MPC to be implemented
in this challenging application by using standard optimization
frameworks and standard software and hardware technology
without resorting to hard real-time systems implemented on
embedded devices, such as FPGAs and PLCs, and formal
verification.

The paper is organized as follows: The problem formulation
and adopted control philosophies are addressed in section II,
section III presents the system architecture and the imple-
mentation of the MPC and its framework and middleware.
Furthermore, section IV presents a HIL test of the system
architecture. Finally, section V concludes the work.

II. PROBLEM FORMULATION

The MPC uses a model, or a state estimator, of the system
to predict future behavior and be able to calculate the best
possible control action to control the system to meet a desired
objective. At the same time, the MPC has to comply with the
system’s physical and operational constraints. In the following,
the derivation of the MPC and its model on standard form
for the optimal harmonic mitigation application, as introduced
in [24], [25] for a two-bus shipboard power system, will be
discussed. The different hardware layers and adopted control
philosophy will be introduced.

A. MPC Formulation

For simplicity of presentation, although the concept is
general, a simplified model of a two-bus shipboard power
system, which is illustrated in Fig. 2, is used in the design
of the MPC’s internal model. According to Kirchhoff’s laws,
the model’s dynamic equations can be stated as

ISA TRANSACTIONS 2019

Vai L
Gl
Rar o
i i
c1i L1i Rub
Ve ——C; Load 1
+
_—

Ve

Le

Load 2

/

Fig. 2. Simplified model of a two-bus shipboard power system: Propulsion loads and Active Power Filter (APF) modeled as ideal current sources, generators
modeled as ideal voltage sources. Shunt capacitors are included for the purpose of modeling cable capacitance and provide bus voltages [24].

di .
Ls1% = —Rg1ig1 — veu (1a)
dv . . .
Cy d01 =ig1 —iyp —im1 (1b)
t
di .
Lyp ;ZB =vc1 — Vee — RyBivp (1o
dv
Cs dtcz =iyp tise —ir2 +iF (1d)
di .
Lgs diz = —Rgaigys — veo, (Te)

where t represents the continuous time. The vectors v and i

represent the three-phase voltages and currents, respectively,
given in the abc frame. Assuming the generators are not
sources of harmonic distortion, the fundamental components
(voltages and currents) are left out of (1), as only the dynamics
originating from the harmonic distortion introduced by the
loads are subjects for optimization. The propulsion loads (ir;
and i75) can be modeled as Fourier series,

z L”sm((wt+¢‘i7]l))
in;(t) = [>, ILJZsm (z (wt + ¢%’jﬂ- — 2%)) , :
Do If ; ;sin (z (wt—i—(;ﬁidn: 2%)))
VieH,je{1,2},

where H is the set of harmonic orders to be mitigated, w =
2m f with f as the fundamental frequency, [sz and ¢’Z7 ;i are
harmonic amplitudes and phases, respectively, for phases k €
{a,b,c}. The active filter’s current constraints can be stated
as

Lmin S ZF < Zm,;lxv (3)

with phases k € {a,b, c} Assummg a balanced filter yields
ik = —iF. Vk, and i¥ =il V(k,)|kz € {a,b,c} with
m € {mln7 max}. The harmomc mitigation problem can now
be written on standard MPC form,

min

x(t),z(t),u(t) V(x(t),z(t),u(t)) =

s.t.

Vt € [to, to + T

with initial time instance tg and horizon length 7', dynamic
equations f(-), algebraic equations g(-) and inequality con-
straints h(-). By dropping the time notation ¢, the dynamic
state vector x, algebraic state vector z and control vector u
are stated as

3T T 5T T T 1T
X= [lsu 152, 1MB7V017V02]
_[sT eT T

2= [i],.iL,] 5)
u:ip.

The objective function, which specifies the objective of the
optimization, is V'(-) with the convex stage cost function

l(x,2,u) =iy Qiis1 +15,Qais2 +u' Quu. (6)

The first and second term in (6) represent the quadratic
contribution of harmonic currents drawn from the generators,
while the last part is included to penalize the use of large
(high amplitude) active filter currents. Q;, Q2 and Q, are
diagonal weight matrices, where Q1 s, Q2 Qu,ii for
all ¢ € {1,2,3} as minimizing the harmonic currents is of
greater importance than penalizing the utilization of large
active filter currents. As evident from (1)-(6), all three phases
are decoupled from each other, which allows the use of
independent distributed MPCs, one for each phase, according
to [33]. This is a desired property, which might be crucial in
the pursue of meeting the application’s real-time demands. In
the rest of this work the MPC will be treated as a single-phase

ISA TRANSACTIONS 2019

MPC, according to the phase decoupling of the three-phase
MPC formulation presented by (1)-(6).

B. Control and Hardware Layers

MPC is often used as a higher-level controller feeding one
or multiple lower-level controllers with setpoints or references
(trajectories) to track, which forms a multi-layered solution
involving both hardware and software. A simplified schematic
of the control- and hardware layers for the optimal harmonic
mitigation application discussed in this work is showcased in
Fig. 3. As can be seen in the figure, the MPC is part of the
higher-level control layer and interacts with the lower-level
control layer. The lower-level control layer, which consists
of the Active Power Filter (APF) controller and measure-
ment processing, interacts with the MPC in the higher-level
control layer and the power system in the hardware layer.
The amplitude and phase information from the harmonics to
be mitigated are provided by FFT, or a suitable estimator
which can be realized on a suitable hardware platform such
as FPGAs (Field-Programmable Gate Arrays), DSPs (Digital
Signal Processor), or PLCs (Programmable Logic Controller).
Other available measurements are also provided by the lower-
level control layer (MEAS. SAMPLING block in Fig. 3). As
the MPC utilizes a simplified model of the power system
for predictive purposes, all available measurements should be
used to update and initialize the MPC model to minimize the
modelling errors. This includes voltage and current measure-
ments as well as impedance measurements. The measurement
gathering and synchronization can be realized using standard
hard-real-time industrial hardware and software solutions, e.g.
FPGAs, DSPs and PLCs, that utilizes estimators and filters
along with time synchronization mechanisms such as PTP
(Precision Time Protocol). Furthermore, the APF controller
is fed with an optimal current reference calculated by the
MPC. As the higher-level control layer exists of distributed
(general) control nodes running higher-level control (MPC)
to generate instantaneous current references for the lower-
level (embedded) controller to track, the time scale for the
higher- and lower-level control layer is quite different. The
higher-level control layer, which is a software-oriented control
layer, works in a time scale corresponding to the time horizon
spanned by the MPC, while the lower-level control layer,
which is a hardware-oriented control layer, adopts the time
scale of the APF, thus is more time sensitive. In this work
the design of the higher-level control layer will be treated, in
which incorporates the lower-level control layer as well as the
hardware layer.

C. Control Philosophy and Real-time Classification

Maybe the most used MPC control philosophy, where MPC
is involved as a higher-level controller, is to use the first,
or first few, points from the MPC’s output control vector,
which are fed to one or multiple lower-level controllers and
used as setpoints. This control philosophy is not suitable for
the harmonic mitigation application presented in this work
due to the inherent fast dynamics. The MPC must be able
to provide a new setpoint/reference to the APF control at a

MEAS.
SAMPLING

Available Power System
Measurements

l DC capacitor SOC

i APF IGBT PWM ;
G Control o POWER
MPC CONTROLL APF
ER SYSTEM
T Measured i,
‘VLI,I ’ng,i’ VLZ,A ’HLZJ
Vi e {harmonics} FFT/ tiotin

ESTIMATO
R

LOWER LEVEL CONTROL
LAYER

HIGHER LEVEL CONTROL
LAYER HARDWARE LAYER

Fig. 3. Multi-layered control- and hardware architecture for the optimal
harmonic mitigation application using MPC: The MPC in the higher-level
control layer interacts with the lower control layer, while the lower layer
control layer interacts with the hardware layer.

specific time instance to assure harmonic mitigation properties.
If the setpoint update is too slow, the active filter may inject
harmonics contributing to a higher THD, thus failing to meet
the designed control objective of harmonic mitigation.

Another control philosophy, that is supported by Continuous
Control Set (CCS) MPCs, which is adopted in this work,
is repetitive control. Instead of using only one or the first
few points from the MPC’s optimal future control vector, the
whole vector is used to form a reference for the active filter
to track. The MPC’s optimization horizon can be designed to
span one fundamental period, in which, due to the optimization
problem’s nature, gives interesting properties that can be used
for fault handling: If for instance the MPC fails to deliver a
new control vector to the APF control within a finite deadline,
the old control vector might be used once more for the next
period. How to utilize this property of repetitive control will
be discussed in more details later on.

To be able to define success criteria for the implementation,
where required real-time properties are assured, a real-time
system must be defined. There exist many definitions clas-
sifying real-time systems. In general, a real-time system is a
system that is required to react to stimuli from the environment
(including the passage of physical time) within time intervals
dictated by the environment [34]. A real-time system is in
terms any information processing activity or system which
has to respond to externally generated input stimuli within
a finite and specified period. Furthermore, real-time systems
can be split into two groups, soft and hard, with the following
definitions, [34]:

e Hard real-time systems are those where it is absolutely
imperative that responses occur within the specified dead-
line.

o Soft real-time systems are those where response times
are important but the system will still function correctly
if deadlines are occasionally missed.

With the definitions of hard and soft real-time systems one

can really wonder if a MPC would be hard real-time (or real-
time at all). It all comes down to the application area and

ISA TRANSACTIONS 2019

the requirements (success criteria) defined by the application.
For many MPC applications it would be a requirement to
include an additional control logic (probably not based on
optimization) as backup if the MPC is not able to finish its
calculations in time, [4]. This is especially important for hard
(embedded) real-time systems with firm deadlines.

In this work the MPC can be classified as being part of a soft
real-time system, due to the repetitive nature of the calculated
control vector (applied control vector equals one fundamental
period in length). If the MPC is not able to finish in time, the
previous control vector can be used. In addition, alternative
mitigation approaches, that do not rely on optimization can
be used, as discussed in [24], as backup controllers in case
the MPC overshoots its deadline. Since the commands from
the MPC are synchronized within the lower-level control
layer in Fig 3, the consequence of the MPC not finishing its
calculations in time is not a failure of the control system,
but a limited degradation in control performance with limited
increase in THD for a short period of time. Furthermore, the
MPC scheduling is strongly dependent on receiving new (and
updated) measurements. If the MPC does not receive new
measurements, the previous control vector should be used as
control action. Hence, the MPC should never be re-scheduled
based on old measurement. In this term, the scheduling of
the MPC can be said to be a reactive and event-triggered
(sporadic) soft real-time system.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

To obtain the required real-time properties for an MPC
controlling a stiff system with fast dynamics might prove to
be a challenge. Even if the MPC is able to meet the necessary
real-time demands, the middleware, which is responsible for
connecting the MPC to the rest of the system, might introduce
additional critical latency which combined with the MPC’s
computational costs fail to assure the real-time demands. As
important as thorough MPC design and tuning, the middleware
should be designed to interact with the MPC and the rest of
the system without unnecessary overhead. In the following the
MPC implementation and the system architecture, including
the middleware, is discussed. Moreover, a simple simulator
architecture is proposed for the purpose of verifying the
control system’s real-time properties.

A. MPC Implementation

There exist many suitable software solutions and libraries
for nonlinear MPC implementations, and two examples are
CasADi [35] and the ACADO toolkit [36]. These simplifies
the implementation since they provide an abstraction layer
between the MPC specification and the numerical optimization
software. In this work the ACADO toolkit is used due to its
fast prototyping properties and real-time support [37]. ACADO
comes with a high-level C++ interface, where the MPC’s
model and specifications are written on standard form. From
this C++ interface, a highly efficient C code can be generated.
This approach has been adopted in this work using the MPC
on standard form in (4), and the generated C code has been
embedded in a larger system which will be discussed below.

Optimization horizon
A

Ny-1| Ny N-1 N

N Y,
Y
Applied control horizon

Fig. 4. Visual representation of the control vector length: Optimization
horizon discretization steps IV, applied control steps Ny, N > Ny.

To achieve the needed real-time properties, the discretization
and optimization horizon, as well as integrator and Nonlinear
Programming (NLP) solver, have to be chosen with care. These
design parameters will be treated separately in the following:

1) Optimization Horizon: The control philosophy adopted
in this work is repetitive control. Repetitive control means
that controls reappear in a repetitive manner, which indeed is
the case for harmonic currents. Harmonic currents introduce
fast nonlinear dynamics, which require a lot of computational
effort. Therefore, instead of using one single step from each
optimal future control vector calculated by the MPC, which is
an often applied practice in MPC design, a whole fundamental
period of control steps (i.e. active filter currents) will be used.
This requires the optimization horizon to be larger than one
fundamental period (20ms for 50Hz), enabling an overlap
between fundamental horizons. Such an overlap is important
for keeping future changes in account, and assure optimality
between fundamental periods. Moreover, by using a control
vector which spans one fundamental period, the repetitive
nature of the harmonic currents allows to reuse the same
control vector (assuming approximately constant fundamental
frequency) if the MPC fails to deliver a new control vector
within the required deadline. If the fundamental frequency is
not constant, the optimization horizon should be long enough
to enclose the freqency variations’ fundamental periods. This
work assumes a fundamental frequency close to 50Hz, thus
the optimization horizon is chosen to be 22ms and the applied
control horizon is 20ms. A visualized representation of the
applied control horizon and optimization horizon is given in
Fig. 4.

2) Discretization: The discretization should be chosen to
represent the fastest dynamics treated in the control appli-
cation, while, on the other hand, be chosen to satisfy real-
time demands as an increased number of discretization steps
introduce additional computation costs. Assuming a funda-
mental frequency of 50Hz, and assuming harmonics up to the
50th order, the Shannon-Nyquist sampling theorem (to avoid
aliasing) states that the sampling frequency should be chosen
as 2 - 50Hz - 50 = 5000Hz. This gives a step size of 0.2ms,
and for a 22ms optimization horizon a discretization of 110
steps is needed.

The discretization type (or method) is responsible to convert
the MPC on standard form to NLP form, which can be solved
by a suitable NLP solver. The most common discretization
methods are single shooting, multiple shooting and collocation
[3]. Multiple shooting is a refinement of single shooting.

ISA TRANSACTIONS 2019

Unlike single shooting, which integrates a differential state
throughout the horizon as one trajectory, multiple shooting
divides the optimization horizon into elements. The elements
are integrated separately, which gives better numerical stability
and robustness due to decoupling of the elements. State con-
straints are enforced on each segment junction to ensure con-
tinuity between the elements throughout the horizon. Multiple
shooting forms a larger NLP problem than single shooting,
but, on the other hand, enables parallelization of element inte-
gration routines, which might give an advantage in the pursuit
of real-time properties. Collocation, as with multiple shooting,
divides the optimization horizon into elements, however, the
state trajectories in a collocation scheme are approximated by
polynomials on each control interval within the optimization
horizon. Each polynomial is parametrized by interpolating
points, which have the same dimension as the state space
formulation and are extra decision variables in the NLP
scheme. Even though the size of the NLP problem increases
compared to multiple shooting, the polynomial approximations
of the state trajectories often become easier to solve [3], [22],
especially with highly nonlinear system equations, and the
system matrices are often sparse which could be exploited
by a sparse QP solver.

Both multiple shooting and collocation are good candidates
for discretization type for the MPC application presented in
this work, however, collocation is not yet supported by the
code generation feature in ACADO. Hence, multiple shooting
is chosen as the discretization type.

3) Integrator: The problem formulation presents a stiff
nonlinear system, thus using a common integrator such as the
Runge-Kutta of order 4 (RK4) will require a high number of
integration steps. The RK4 integrator was implemented for
the problem formulation in (4), and required 1500 integration
steps to converge. Even with that high number of steps the
solution was not sufficiently accurate. In addition, the high
number of integration steps destroyed the real-time properties
of the MPC. In this work the implicit Runge-Kutta Radau ITA
of order 3 (RIIA3), which is an integrator that is able to handle
stiff systems [38], is chosen with 2N (220) integrator steps.

4) NLP Solver: There exist a range of different NLP
solvers with different properties that might fit the MPC
proposed in this work. ACADO’s code generation feature is
currently supporting qpOASES [39] and FORCES [40], which
are both Quadratic Programming (QP) solvers. qpOASES is
an active set online QP solver, and ACADO provides different
condensing techniques when using qpOASES to exploit the
structure of the system matrices. FORCES is an interior point
QP solver that exploit sparsity in the system matrices. As
only qpOASES is open source, with available source code
that can easily be embedded in a larger framework, the
gpOASES solver is chosen in this work. Table I summarizes
the implementation details of the MPC.

B. MPC Framework and Architecture

In the design of a system architecture and framework, which
comply with real-time demands, aspects such as threading,
communication (middleware), scheduling and execution of

TABLE I
MPC IMPLEMENTATION DETAILS.
Parameter Value
Software ACADO

Optimization horizon (1) 22ms
Applied control horizon 20ms
Discretization steps (V) 110
Applied control vector 100

discretization steps (Nu)
Discretization type
Hessian approximation (V2f)
Integrator type

Multiple Shooting
Gauss-Newton
Implicit Runge Kutta Radau IIA 3
(IRK RIIA3)

Number of integration steps 220 (2N)
NLP solver qpOASES
Number of iterations 2

tasks with cross-thread synchronization need to be considered.
In the wake of Industrial Internet of Things (IloT), event-
based architectures have gained a lot of attention. Unlike
cyclic execution, which runs with a predefined cycle frequency,
event-based architectures trigger on events, or signals, meaning
that an event-based thread is in hibernation (latent) until an
event arrives and triggers execution of the tread. Both cyclic
and event-based architectures have desired properties that can
be exploited in the design of the system architecture for the
harmonic mitigation application addressed in this work. An
example of desired property of the event-based architecture is
minimal resource use, i.e. memory and CPU, while for a cyclic
architecture is fast response. This is because an event-based
thread that is latent (sleeping) does not consume processing
resources, while a cyclic thread is running whether it is doing
any work or not, which adds to the resource use. However,
as the cyclic thread is constantly running, it does not have
any invoking delay, which might be the case for an event-
based thread, depending on the occupied system resources and
processor scheduling at the time instant the event mechanism
calls for task scheduling.

Fig. 5 portrays the system architecture for the main con-
troller, i.e. the controller running the MPC with suitable
middleware and framework. In this work the term middleware
is defined as communication between devices, while frame-
work is defined as internal mechanisms that constitutes cross-
thread communication and synchronization, internal memory
allocation and information sharing. The blocks in Fig. 5
represents threads, and for each tread a state-machine based on
Unified Modelling Language (UML) [41] is presented. Cross-
thread signals (events) are presented as connections between
the threads. The communication (interaction) to the rest of the
system (Fig. 3) is also presented as arrows to/from the main
controller block. In the following the blocks (threads) in Fig.
5 will be treated separately. Thread names are referred to with
bold font, while states and signals use italic font.

1) Engine: The Engine thread is the main component in
the MPC framework; it is an event-based thread and act as
an event manager, meaning receiving events from the other
threads and determines appropriate actions. The appropriate
actions are then distributed to the other threads as new events.
As can be seen from Fig. 5, the initial state in the Engine’s

ISA TRANSACTIONS 2019

<SS -----"--""""-"""-"""""-"--"-¥-""-¥]-$ -¥"\"=-""-"{—_ _—¥—¥m-—”-—-—-——_ ~
| MAIN CONTROLLER :
: Engine MPC |
{'Event Based | [Event Based |
I LCeouten SerthiPe |_Exeaution_| '
| Read) Read |
| Config. k-New Controls Signal- Config. W© |
| Evemt b Error Signal L L ! |
El Event istril
| iy e I
I
I () I
I Handle Process Fault Handle Start ,\F,::g I
Timeout Results Handler Message MPC k J |
I
| . . - Error Signal H : |
I Send New i i i) Start Timer Signal ~ Stop Timer Signal I
Controls Signal 1 New Messlage Signal i ! |
I L | Send Scheduling Error Signal Timeout Signal i i
I Error ESlgnaI Received Signal | fmeow Signa MPC Execution Timer |
| COM Tralnsmitter - COM Fleceiverl I
|| [Eenased] . | | w0 b I
| L Executon | |
I I
I I
I I
| Error Event Send |
Handler Handler Message
| i T T l
I
I é Error
I Handler I
I I
I I
\)
> N T T T T - - - N T T T T T T - -

COM Measurement Message !
1
i COM Schedule MPC Message

COM Recevied Scheduling Message !
1

N

i
COM Controls Message
1

COM Controls Received Message N2

Fig. 5. Simplified schematic of the main controller architecture. The different blocks (either cyclic or event-based execution) represents threads. The signals
between the blocks are internal event-based signals. The arrows connected to the main controller block represents communication links with other devices,

such as the simulator in Fig. 6.

state-machine is responsible for reading configuration. This
configuration is given as an XML file during startup, and
includes configuration related to the MPC (parameters), the
communication link (COM Transmitter and COM Receiver
thread) and the MPC Execution Timer thread. The read
configuration is then stored in the shared memory to be loaded
by the other threads. As the Engine thread is the only thread
reading the XML configuration file, all other threads are
initialized after the Engine thread finishes reading and storing
the configuration. After reading the configuration, the Engine
goes to the Event Manager state and awaits events. Depending
on the received events, the Engine may take different states.
The Handle Timeout state handles the timeout of the MPC, i.e.
if the execution of the MPC takes longer time than specified
in the configuration file. An appropriate action is then to
send the previously computed control vector to the active
filter, which can be reused due to the repetitive nature of
the filter currents and the fact that the applied horizon length
equals one fundamental period. Another state is the Process
Results state, which handles the resulting control vector after

the MPC finishes. The control vector is then checked (length,
discretization and amplitude) before being sent to the active
filter controller through the COM Transmitter thread. The
Fault Handler state handles faults from the different threads.
Examples of faults could be communication error or that
the MPC is unable to provide a new control vector due to
infeasibility. An appropriate action for communication error
would be to check the return codes (error messages) from the
erroneous sockets for further diagnostics to find the reason
behind the errors. As a last resort the communication sockets
might be closed and the communication threads reinitialized.
For MPC infeasibility, depending on the cause, an appropriate
action could be to rerun the MPC with new measurements,
while sending the previously computed control vector to the
active filter controller. The Handle Message state handles
all messages received over the communication link, which
is delivered by the COM Receiver thread. If a Schedule
MPC message is received, a reply message is made and
signalled to the COM Transmitter thread to be sent. This
reply message can be omitted if a reliable protocol, such as

ISA TRANSACTIONS 2019

TCP over Ethernet, is used. The last state, Start MPC, signals
the MPC thread to start (if new measurements are available),
and reallocates memory for a new control vector.

2) MPC: The MPC thread is also an event-based thread
which is started when receiving a Start MPC signal from
the Engine thread. As can be seen from Fig. 5, the MPC
thread has also a Read Configuration state, which reads the
configuration from the internal memory stored by the Engine
thread. After the configuration is read, the Event Handler
state is invoked. When receiving a Start MPC signal from the
Engine thread, the state Run MPC is invoked. In this state a
Start Timer signal is sent to the MPC Execution Timer thread
before the MPC is run. When the MPC finishes, a Stop Timer
event is signalled the MPC Execution Timer thread, before
invoking the Distribute Results state. In this state the resulting
control vector is stored in the controller’s internal memory
before signalling to the Engine thread that new controls are
available. After this, a transition to the Event Handler state
is made. In case of errors, which may result from the MPC
(infeasibility, solver failure, etc.), the MPC thread enters the
Error Handler state, which performs local diagnostics and
signals an error message to be handled by the Engine thread.
After the error message is sent, the MPC thread transitions
back to the Event Handler state.

3) MPC Execution Timer: This thread is a cyclic (suspend-
resume) thread which is started when the MPC thread starts,
and stopped when the MPC thread stops. Its main function
is to time the execution of the MPC using a high resolution
monotonic timer. As with the previous threads, the MPC Ex-
ecution Timer thread reads the configuration during startup,
then enters the Stop Timer state. When signalled by the MPC
thread, the MPC Execution Timer thread enters the Start
Timer state, in which resets and starts the timer before entering
the Running State. If a Stop Timer signal is sent from the
MPC thread before the timer times out, a transition to the
Stop Timer state is made. On the other hand, if the timer times
out, according to a predefined setpoint in the configuration, a
transition to the Timeout state is made, which signals a Timeout
signal to the Engine thread. Also this thread has an Error
Handler state, which handles errors related to the timer object
used. If an error is not solved locally, an Error signal is sent
to the Engine thread for further investigation and appropriate
actions.

4) COM Transmitter: This event-based thread is respon-
sible for sending information to other devices, i.e. handles
external outgoing communication. As with the other threads
this thread has also a Read Configuration state, which reads
configuration related to the communication link. The commu-
nication link itself could be i.e Ethernet or serial communi-
cation. After the configuration is read, the thread enters the
Event Handler state, and awaits events sent by the Engine
thread. If events are received, i.e. a Send New Controls or
Send Scheduling Received signal, the Send Message state is
entered, which sends the message before transitioning back
to the Event Handler state. Examples of messages are COM
Received Scheduling and COM Controls, as depicted in Fig.
5. As communication links may break down or fail, the thread
also includes an Error Handler state. If the error is not solved

locally, an Error signal is sent to the Engine thread for further
investigation.

5) COM Receiver: This thread is a cyclic (suspend-resume)
thread that checks the communication link for new messages
in a cyclic behavior. As with the other thread this thread
also has a Read Configuration state which is entered after
the thread initialization. After the configuration is read, the
thread transitions to the Receive state. If a new message is
received over the communication link, the thread enters the
Handle Message state, which parses the message and copies
its content to an appropriate data structure which is stored
in the controller’s internal memory. A New Message event
is then signalled to the Engine thread, in which processes
the message. Example of messages are COM Measurement
and COM Schedule MPC, as depicted in Fig. 5. As with the
COM Transmitter thread, also this thread has an Error state
in which communication errors will be handled. If the error is
not resolved, an Error signal is sent to the Engine thread for
further action.

C. Simulator Architecture

To test and verify the architecture of the main controller,
discussed in the previous section, a simulator architecture is
proposed in Fig. 6. As in the previous section, the different
threads (blocks) will be separately discussed in the following.
The COM Transmitter and COM Receiver threads adopt
the same functionality as for the communication threads in
the main controller in Fig. 5.

1) Engine: The simulator’s Engine thread is like the En-
gine thread in Fig. 5, although simpler. It is an event-based
thread and acts as an event manager. The states Read Con-
figuration and Handle Message work just like the coinciding
threads in the main controller’s Engine thread, except that
the Handle Message state has functionality devoted for the
types of messages that are received by the simulator’s COM
Receiver thread. As an example, if a COM Controls Message
is received, depending on the communication protocol, a reply
message should be sent to the main controller indicating
the new control vector was received. Furthermore, the Fault
Handler state is responsible for resolving errors that are not
resolved locally by corresponding threads. The Engine thread
also has a Handle Timeout state, in which is entered if the
Control Message Timer thread distributes a Timeout event.
Such an event is distributed if the time difference between
sending a COM Schedule MPC message and receiving a COM
Controls message exceeds a predefined threshold.

2) Measurement Simulator: The Measurement Simula-
tor thread is a cyclic thread responsible for generating mea-
surements that are distributed to the main controller through
the COM Transmitter thread. The first state is the Read
Configuration state, which reads the configuration that spec-
ifies how the measurements should be generated, e.g. which
harmonic orders to generate, amplitude bands, phase bands and
rate of change. After the configuration is read, a transition to
the Simulate Measurements state is made, and in this state
the measurements are generated. After the measurements are
generated the Distribute Measurements state is entered, which

ISA TRANSACTIONS 2019

N
COM Measurement Message !
i COM Schedule MPC Message

!
COM Recevied Sclheduling Message 1

AN 1
! COM Controls Message
i COM Controls Received Message :

o — —— — — — — — — — e — — — — — — — NV e e e e e e i — — — — — — AV — \
(
, SIMULATOR |
| COM Receiver Engine |
I
I ({ Event Based | I
| { Executionj | New Message___ Execution |
Signal Read
. |
: ----- Error Signal----> |
Error |
l Handler |
I
I
I Handle Handle Fault Handle I
| Message Timeout Handler Message |
I 7
l Start Timer Signal : |
I Stop Timer Signal ‘ |
Error Signal !) [
I f = Error Signal
' I
l Control Message Timer Send Schedule Measurement Simulator I
| MPC Signal)
I ~Gyeic] Send Controls Error Signal |
| Execution | Received Signal l
I 4
| I
l Stop COM Transmitter :
Timer
: [Event Based | |
I Start Distribute I
Timer Send Measurement Measureme I
I Signal nts
| I
Errol
| Error Event Send |
I Handler Handler Message |
T I T
| & '
| I
N _l

Fig. 6. Simplified schematic of the simulator architecture, which includes measurement generation. The different blocks (either cyclic or event-based execution)
represents threads. The signals between the blocks are internal event-based signals. The arrows connected to the simulator block represents communication

links with other devices, such as the main controller in Fig. 5.

packs the measurements in a suitable data structure to be
sent over the communication link by the COM Transmitter
thread by invoking a Send Measurement event signal. The
Measurement Simulator thread also has an Error Handler
state, in which handles errors related to the timer used for
generating the measurements. If errors are not solved locally
an Error signal is sent to the Engine thread for further
investigation.

3) Control Message Timer: The Control Message Timer
thread is also a cyclic (suspend-resume) thread. Its main
function is to calculate the time difference between sending a
COM Schedule MPC message over the communication link
and receiving a new COM Controls message using a high
resolution monotonic timer. The thread’s state machine has
the same structure as the MPC Execution Timer in Fig. 5.

D. Synchronization of Measurements

Available measurements, which are sampled different places
in the grid, are sent to the main controller after proper

processing (noise suppressing and validation) to be used by the
MPC. However, if not all the measurements are consistent, i.e.
all the measurements are not sampled synchronously, leading
to the MPC receives and uses some new measurement along
with old measurements, the controls obtained from the MPC
cannot be guaranteed to be valid. Thus, synchronization of the
measurements are quite important for the MPC to provide a
valid control vector. A proper synchronization procedure of
the measurement devices might result in unnecessary high
communication traffic and communication delay, thus might
lead to measurements being invalid when reaching the MPC.
As the measurements should be filtered to suppress mea-
surement noise in the lower-level control layer in Fig. 3, an
estimator such as a Kalman filter [42] can be used, which has
both predictive as well as noise suppression capabilities. The
filter’s prediction capabilities allow to predict measurements
at a desired time instance when measurements do not arrive
simultaneously. As the design of measurement processing
systems falls outside the scope of this work, this will not be

ISA TRANSACTIONS 2019

discussed any further.

E. Communication Link

The communication link, which is supervised by the COM
Receiver and COM Transmitter threads, is quite important
for this type of application. The communication link must
allow fast distribution of much data. For instance, if 100 active
filter reference points (float representation with 32 bits) are
distributed at least every 20ms, this means 18%33[’ = 160kb/s,
or 20kB/s. Even though this transmission rate does not include
additional message overhead, which is protocol dependent, an
RS-232 serial communication link is excluded. An alternative
serial link that can be used is RS-485, but a more appropriate
solution that has the needed transmission rate, and at the same
time offers flexibility and N-to-N connection, is Ethernet with
protocols such as TCP or UDP. Unlike the TCP protocol, in
which can guarantee that the messages arrive their destination
as long as the communication link is alive, UDP is a best
effort protocol, where the arrival of important messages, such
as the COM Schedule MPC and COM Controls messages in
Fig. 5 and 6, must be confirmed by separate reply messages
(for this example the COM Received Scheduling and COM
Controls Received messages). UDP is widely used in the
industry for communication between distributed control nodes
and systems, and plays an important role in cloud based IloT
middleware without centralized servers. However, both TCP
and UPD will have overheads due to collisions and back-off
of the Ethernet protocols in access to the transmission medium.
This problem can be minimized by using switched Ethernet, or
totally eliminated by using a TDMA (Time-Division Multiple
Access) based real-time communication layer, such as RTNET,
above the UDP layer.

F. Implementation Aspects

In this work, the MPC framework in Fig. 5 and the simulator
in Fig. 6 were implemented in C++ with libraries from Qt
[43], [44] for event management, with Linux (Ubuntu 16.04
with low-latency kernel patch) as target platform. The kernel
used, 4.4.0-X, does not feature a real-time (RT) scheduler,
as this was removed from the official Ubuntu distribution
after kernel version 2.6.X. Hence, the non-RT scheduler CFS
(Completely Fair Scheduler), which is part of the official
kernel release from Ubuntu, was used in this work to satisfy
the requirements of realizing the application on a standard
hardware and software platform. The threads are implemented
using the thread abstraction layer in Qt, and given a high
priority (QThread::HighPriority). External priority
grouping, i.e. task priority and scheduling policy directly from
the kernel, was not adopted in this work. The timers used to
log the latencies are implemented as high resolution monotonic
timers in the Qt framework (QtElapsedTimer class). The
communication link is realized using UDP over Ethernet. The
message protocol is designed using JSON, which offers great
properties in the design and prototyping of communication
structure. JSON 1is promoted as a low-overhead alternative
to XML, with great debugging and logging properties due
to human-readable text to transmit data objects consisting of

attribute-value pairs. JSON messages are also easily parsed
and processed, and corrupt messages can easily be detected
due to the JSON message identifiers, which encloses one
message structure.

IV. HARDWARE IN THE LOOP TEST

Hardware in the Loop (HIL) simulation tests are conducted
with two computers connected to a local Ethernet network,
see Fig. 7. One of the computers acts as the main controller
running the MPC and its framework, while the other computer
runs the simulator, as discussed in the previous section. The
specifications of the two computers are listed in Table II, and
the HIL setup is showcased in Fig. 7. As showcased in Fig. 7
the two controllers are connected to a local dedicated Ethernet
and communicates through a gigabit switch. The architecture
for the higher-level control, as described in Fig. 5, is imple-
mented on the main controller, where the software runs as a
common process in the Linux operation system. The lower-
level control is mimiced by a simulator, with architecture
described in Fig. 6, and runs as a common process in the
simulator controller’s Linux operation system. For generality,
the computers used in this HIL-setup are common desktop
computers.

GB
Ethernet

Main Controller

Netgear GS105 Simulator

Fig. 7. Hardware in loop setup: Two computers, one acting as the main
controller running the MPC and its framework and the other running the
simulator, connected to a local Gb Ethernet network.

TABLE 11
DETAILS OF MAIN CONTROLLER AND SIMULATOR USED IN HIL TEST.

Simulator
Lenovo Thinkpad P50
24GB memory (DDR4, 2133MHz)
Intel® Core™
i7-6820HQ CPU @ 2.70GHz x 8
Graphics:

Quadro M2000M/PCIe/SSE2
64-bit Ubuntu 16.04 LTS
Low latency kernel:
4.4.0-22 x86_64

Main Controller
Lenovo Thinkpad T440s
8GB memory (DDR3, 1600MHz)
Intel® Core™
i7-4600U CPU @ 2.10GHz x 4
Graphics:

Inte]® Haswell Mobile
64-bit Ubuntu 16.04 LTS
Low latency kernel:
4.4.0-22 x86_64

The parameters in the MPC’s internal model are, according
to Fig. 2, listed in Table III. As can be seen, the APF’s power
rating is set to 10% of the generator rating, which is a relative
small filter. With a voltage level of 690V this corresponds to
current limits of 4y = —imin = V2 - 56091‘8(/,* ~ 102.48A (peak
current) in (3). Furthermore, the fundamental frequency is set
to SOHz, and the harmonics to be mitigated are the first four
significant harmonic orders in a 6-pulse rectifier, i.e. Sth, 7th,
11th and 13th. The other electrical parameters are adopted
from [24], [25].

ISA TRANSACTIONS 2019

N
o

<

— 30

]

3

=20

(%]

%

310

=

E 0 { I I I |
0 0.2 0.4 0.6 0.8 1

40

<

o 30

]

@

220

(%]

S

310

=

E 0 I I n | |
0 0.2 0.4 0.6 0.8 1

Time [s]

(a) FFT amplitudes.

Phases, load 1 [rad]

S

S

—H1
——H2

H3
—H4

0.4 0.6
Time [s]

(b) FFT phases.

2 I

o

Fig. 8. Simulated FFT amplitudes and phases for the four harmonic orders (H) to be mitigated: H1=5th, H2=7th, H3=11th and H4=13th.

TABLE III
POWER SYSTEM MODEL PARAMETERS, ACCORDING TO FIG. 2.

Parameter Value
RMS voltage 690V
Generator ratings 500kVA

APF rating 50kVA
Lai, Laa 30.309mH
Rag1, Raa 9.512m<2
Ly g 60.619uF
RyB 1.904m$2
Ch, Co 2uF
Fundamental frequency (f) 50Hz
Harmonic orders to
be mitigated 5th, 7th, 11th, 13th

The simulator, with architecture showcased in Fig. 6, is
responsible for generating the measurements the MPC is using
for optimal harmonic conditioning. The generated FFT ampli-
tudes and phases, for the load currents in Fig. 2, are shown in
Fig. 8. The measurements are designed to provide a dynamic
spectra of the harmonics to be mitigated, with the intention
to provide both low and high levels of harmonic pollution
that challenges the MPC in different ways that might affect
the MPC’s computational costs. Hence, the measurements are
not extracted from a physical (or simulated) power system,
but designed to stress test the MPC and challenge the the
system architecture and the MPC’s real-time properties. The
measurements are generated as sine waves, with amplitudes
and phases for load 1 and load 2 in Fig. 2 given as

1
ih: (A?s-FAbeln(Qﬂ'ht)) IG
)) CZ"Z

(bh:Ag-sin 2m -

(N
¢
h
T¢
Al is the amplitude setpoint, A”, is the amplitude band,
% is the amplitude frequency, AZ is the phase amplitude
and T%f is the phase frequency for each harmonic order h.

_ /3 500kVA
G = /2 7690V

~

is the rated generator current. Table IV lists

the parameters used in (7) to generate the measurements in
Fig. 8.

TABLE IV
AMPLITUDE AND PHASE MEASUREMENT PARAMETERS USED TO
GENERATE THE MEASUREMENTS IN FIG. 8. LOAD 1 AND 2 ACCORDING TO

FIG. 2.
Harmonic order A%"S ARb T;‘ Ag TE
(load 1)
5th 0.03 0.01 5 0.2 19
7th 0.025 | 0.005 7 0.1 13
11th 0.01 0.008 9 0.15 | 17
13th 0.008 | 0.004 10 005 | 4
Harmonic order ?S A!“,b Tih Ag Tl(z";
(load 2)
5th 0.025 | 0.015 2 0.13 | 8
7th 0.01 0.005 3 0.14 | 12
11th 0.005 | 0.002 6 0.08 | 6
13th 0.004 | 0.0015 | 8 0.11 | 3

As the simulator does not provide closed-loop control, due
to the fact that the HIL test is designed to test the MPC’s real-
time properties and not the harmonic mitigation capabilities
(which has been thoroughly explored in [24], [25]), the state
trajectories (voltages and currents) from the previous run of the
MPC is used to initialize the states before a new run. Hence,
the MPC should be in a worst-case situation regarding con-
vergence and execution time (cold-start conditions), compared
to an industrial situation with closed-loop measurements and
model re-initialization based on results and values from the
previous cycle.

A HIL test was performed with 2.5 million MPC runs,
and the results are shown in Fig. 9 and summarized in Table
V. Fig. 9a shows the MPC’s time consumption, which was
calculated by the MPC Execution Timer thread in Fig. 5,
and the time between scheduling an MPC run and receiving
the control vector (indicated in the figure by Receiver side)
calculated by the Control Message Timer thread in Fig. 6.
The difference between these timers represents the pipeline
in the figure, including transmission delays and framework
delays. The additional latency experienced by the receiver side,

ISA TRANSACTIONS 2019

Time consumptions
T T

20

o

| I | | | ‘ ‘
|
ulwmmmm

o

oty M“ |
hnwummwmm Ll

Time Consumption [ms]
(%))

—— Pipeline —— Receiver side MPC time consumption
I | I I
0 0.5 1 15 2 25
Number of MPC runs %108

(a) Time consumptions of the HIL test.

Number of MPC runs

25 %x10° Histogram fit of time consumptions
MPC time consumption [l Receiver side [l Pipeline
ol
15
1k
05
0 . S
0 5 10 15

Time consumption [ms]

(b) Histogram fit of time consumptions from the HIL test.

Fig. 9. Results of the HIL test: Time consumption of the MPC, of the pipeline and the time between scheduling an MPC run and receiving the control vector

from the simulator side.

which is shown as spikes in Fig. 9a for the pipeline, might be
related to other high priority background processes running on
the controllers, additional latency introduced by the framework
and/or by the switch in the HIL setup in Fig. 7. In Fig. 9a one
can see a pattern with slightly increasing time consumption.
This is due to logging the results (time consumption measure-
ments) to files, where the log files become quite large. Hence,
the time spent to opening, writing, and closing the log files
after each MPC run increases with increasing log file sizes.

Fig. 9b portrays a histogram of the time consumptions in
Fig. 9a. As can be seen in the figure, the time consumption
of the MPC, the receiver side and the pipeline all give single
characteristic peaks in the histogram, which represent consis-
tent time consumption within stochastic distributions. Table V
summarizes Fig. 9, and as the receiver side’s maximum time
consumption is below 20ms, there is no need to reuse any
control vectors. Hence, the results from this HIL simulations
indicate that the MPC, with architecture shown in 5, is able
to fulfill the real-time requirements, i.e. deliver a new con-
trol vector every 20ms, for the proposed optimization-based
system-level harmonic mitigation application. This validates
the main result in this paper, that the proposed real-time MPC
architecture fulfills the requirements to resource usage and
real-time performance.

TABLE V
HIL RESULTS SUMMARY OF FIG. 9.

Time measurement Avg. Max Min Histogram Peak
[ms] [ms] [ms] [ms]

MPC 8.825 | 12990 | 4.991 8.823

Receiver side 9.602 | 14.584 | 8.478 9.605

Pipeline 0.777 4.445 0.309 0.775

Fig. 10 shows the resource use of the main controller during
the HIL test, sampled at 1Hz. The upper plot shows the
percentage of CPU time used by the application, the plot
in the middle shows the physical memory currently used by
the application (RSS), while the lower plot shows the total
memory the application has allocated for its execution (VSZ).

From the plots it is evident that the application running on
the main controller is quite steady in its resource usage.
The % CPU time settles around 52.2%. The RSS and VSZ
are constant throughout the HIL test, 12.2MB and 373.6MB
respectively.

Resource usage

)
3

% CPU time
N
5

0.4 12

04
Time [s]

0.4 0.8 1

Time [s]

Fig. 10. The main controller’s resource usage during HIL test, sampled at 1Hz.
From above: i) % CPU time, which is the CPU time used by the application
divided by the time the application has been running, ii) RSS (resident
set size) is the non-swapped physical memory (RAM) that the application
currently is using, iii) VSZ (virtual set size) is the memory size assigned to
the application and represents how much memory the application has available
for its execution usage (allocated address space).

V. CONCLUSION

MPC applications for systems with fast dynamics are chal-
lenging, and put stringent requirements on the implementation,
which relate to the design and the internal mechanisms of the
MPC as well as its framework and middleware connecting
the MPC application to the physical system. In this work a
novel MPC implementation for optimal harmonic mitigation,
that is based on a standard hardware and software platform,
has been presented, and the system design and architecture
for obtaining the necessary (soft) real-time properties have
been discussed and implemented. To obtain the required real-
time properties, the design of the MPC has been centered
around the repetitive control philosophy, which enables the

ISA TRANSACTIONS 2019

utilization of larger parts of the calculated control vector
compared to conventional MPC designs, which uses only one
or few steps from the obtained control vector. The proposed
system architecture uses both cyclic and event-based threads
with the aim of minimizing the resource usage. To mimic
a practical implementation of this architecture, a simulator
was designed to verify the MPC’s and the framework’s real-
time properties, for which a HIL test using two computers
connected to a dedicated Ethernet link was conducted. The
results indicate that the proposed system architecture is able
to meet the system’s soft real-time demands with consistent
and relatively low resource usage. The main results can be
listed as follows:

e A scenario for system-level harmonic mitigation suitable
to a marine vessel’s electric system utilizing MPC and
multi-layered distributed control has been explored, and
a HIL test has been conducted to quantify computational
loads and resource usage

e During the HIL test the MPC never failed to deliver a
new control vector within deadline

o The resource usage on the higher-level controller run-
ning the MPC experienced a stable computational load;
CPU time settles around 52.2%, and RAM usage around
12.2MB

By definition, as the MPC never failed to deliver a new control
vector during the HIL test, the proposed system architecture
and conceptual implementation was able to meet hard real-
time requirements as well, although this can not be guar-
anteed for other potential simulation scenarios. Even though
the results indicate that the application, with the proposed
architecture, exhibits the required real-time properties, this
work is only centered around the higher-level control layer in
Fig. 3. Hence, future work has to be conducted for realizing
the lower-level control layer, thus enabling possibilities for
experimental tests where the complete system is considered.
Potential applications for this control architecture are envi-
sioned in the marine vessel power system, where operation
and configuration of the power system can change demanding
control flexibility that can be met by the scheme presented in
this paper.

ACKNOWLEDGMENT

This work has been carried out at the Centre for Au-
tonomous Marine Operations and Systems (NTNU-AMOS)
whose main sponsor is The Research Council of Norway. The
work was supported by Ulstein Power & Control AS and The
Research Council of Norway, Project number 241205, and
Ulstein Blue Ctrl AS.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory and
design. Nob Hill Pub., 2009.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Survey
paper constrained model predictive control: Stability and optimality,”
Automatica, vol. 36, pp. 789-814, 2000.

[3] L. Biegler, Nonlinear Programming: Concepts, Algorithms, and Applica-
tions to Chemical Processes, ser. MOS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104), 2010.

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

T. A. Johansen, “Toward dependable embedded model predictive con-
trol,” IEEE Systems Journal, vol. 11, pp. 1208-1219, 2017.

H. Peyrl, H. J. Ferreau, and D. Kouzoupis, “A hybrid hardware imple-
mentation for nonlinear model predictive control,” IFAC-PapersOnLine,
vol. 48, no. 23, pp. 87 — 93, 2015, 5th IFAC Conference on Nonlinear
Model Predictive Control NMPC, Seville, Spain, 17-20 September 2015.
C. Bordons and C. Montero, “Basic Principles of MPC for Power
Converters: Bridging the Gap Between Theory and Practice,” IEEE
Industrial Electronics Magazine, vol. 9, no. 3, pp. 31-43, Sept 2015.
J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta,
H. Abu-Rub, H. A. Young, and C. A. Rojas, “State of the art of finite
control set model predictive control in power electronics,” IEEE Trans.
Ind. Informat., vol. 9, no. 2, pp. 1003-1016, 2013.

S. Kouro, P. Cortés, R. Vargas, U. Ammann, and J. Rodriguez, “Model
predictive controla simple and powerful method to control power con-
verters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826-1838,
2009.

M. Vatani, B. Bahrani, M. Saeedifard, and M. Hovd, “Indirect finite
control set model predictive control of modular multilevel converters,”
IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1520-1529, May 2015.

P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and
J. Rodriguez, “Predictive control in power electronics and drives,” IEEE
Trans. Ind. Electron., vol. 55, no. 12, pp. 43124324, 2008.

P. Cortés, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G.
Franquelo, “Model predictive control of an inverter with output filter
for ups applications,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp.
1875-1883, 2009.

P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, “Direct
power control of an afe using predictive control,” IEEE Trans. Power
Electron., vol. 23, no. 5, pp. 2516-2523, 2008.

S. Richter, S. Marithoz, and M. Morari, “High-speed online MPC
based on a fast gradient method applied to power converter control,”
in Proceedings of the 2010 American Control Conference, June 2010,
pp. 4737-4743.

M. Rivera, A. Wilson, C. A. Rojas, J. Rodriguez, J. R. Espinoza, P. W.
Wheeler, and L. Empringham, “A Comparative Assessment of Model
Predictive Current Control and Space Vector Modulation in a Direct
Matrix Converter,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 578—
588, Feb 2013.

L. Jin, R. Kumar, and N. Elia, “Model predictive control-based real-time
power system protection schemes,” IEEE Trans. Power Syst., vol. 25,
no. 2, pp. 988-998, May 2010.

T. V. Vu, D. Gonsoulin, F. Diaz, C. S. Edrington, and T. El-Mezyani,
“Predictive control for energy management in ship power systems under
high-power ramp rate loads,” IEEE Trans. Power Conversion, vol. 32,
pp. 788 — 797, 2017.

T. I. Bgand T. A. Johansen, “Battery power smoothing control in a
marine electric power plant using nonlinear model predictive control,”
IEEE Transactions on Control Systems Technology, vol. 25, pp. 1449—
1456, 2017.

A. M. Ersdal, D. Fabozzi, L. Imsland, and N. F. Thornhill, “Model
predictive control for power system frequency control taking into
account imbalance uncertainty,” in Proc. IFAC World Congr, vol. 19,
2014, pp. 981-986.

E. Mayhorn, K. Kalsi, J. Lian, and M. Elizondo, “Model Predictive
Control-Based Optimal Coordination of Distributed Energy Resources,”
in 2013 46th Hawaii International Conference on System Sciences
(HICSS), Jan 2013, pp. 2237-2244.

E. D. Mehleri, H. Sarimveis, L. G. Papageorgiou, and N. C. Markatos,
“Model predictive control of distributed energy resources,” in 2012 20th
Mediterranean Conference on Control Automation (MED), July 2012,
pp. 672-678.

E. Skjong, M. Ochoa-Gimenez, M. Molinas, and T. A. Johansen,
“Management of harmonic propagation in a marine vessel by use of
optimization,” in 2015 IEEE Transportation Electrification Conference
and Expo (ITEC). IEEE, 2015, pp. 1-8.

E. Skjong, M. Molinas, and T. A. Johansen, “Optimized current ref-
erence generation for system-level harmonic mitigation in a diesel-
electric ship using non-linear model predictive control,” in 2015 IEEE
International Conference on Industrial Technology (ICIT). IEEE
Conference Publications, 2015, pp. 2314-2321.

E. Skjong, M. Molinas, T. A. Johansen, and R. Volden, “Shaping the
current waveform of an active filter for optimized system level harmonic
conditioning,” in Proceedings of the Ist International Conference on
Vehicle Technology and Intelligent Transport Systems, 2015, pp. 98—
106.

ISA TRANSACTIONS 2019

[24] E. Skjong, J. A. Suul, A. Rygg, M. Molinas, and T. A. Johansen,
“System-wide harmonic mitigation in a diesel electric ship by model
predictive control,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4008—
4019, July 2016.
E. Skjong, J. A. Suul, M. Molinas, and T. A. Johansen, “Opti-
mal compensation of harmonic propagation in a multi-bus micro-
grid,” in International Conference on Renewable Energies and Power
Quality (ICREPQ’16), Renewable Energy and Power Quality Journal
(RE&PQJ), 2016, pp. 1-6.
E. Skjong, “Optimization-based control in shipboard electric systems,”
PhD thesis, Norwegian University of Science and Technology (NTNU),
2017, 2017:139.
A. Mohammadi, M. Mehrtash, and A. Kargarian, “Diagonal quadratic
approximation for decentralized collaborative tso+ dso optimal power
flow,” IEEE Transactions on Smart Grid, 2018.
M. H. Amini, S. Bahrami, F. Kamyab, S. Mishra, R. Jaddivada,
K. Boroojeni, P. Weng, and Y. Xu, “Chapter 6 - decomposition methods
for distributed optimal power flow: Panorama and case studies of the dc
model,” in Classical and Recent Aspects of Power System Optimization,
A. F. Zobaa, S. H. A. Aleem, and A. Y. Abdelaziz, Eds. Academic
Press, 2018, pp. 137 — 155.
[29] W. M. Grady, M. J. Samotyj, and A. H. Noyola, “Survey of active power
line conditioning methodologies,” Power Delivery, IEEE Transactions
on, vol. 5, no. 3, pp. 1536-1542, 1990.
[30] W. Grady, M. Samotyj, and A. Noyola, “Minimizing network harmonic
voltage distortion with an active power line conditioner,” Power Delivery,
IEEE Transactions on, vol. 6, no. 4, pp. 1690-1697, 1991.
H. Akagi, E. Watanabe, and M. Aredes, Instantaneous Power Theory and
Applications to Power Conditioning, ser. IEEE Press Series on Power
Engineering. Wiley, 2007.
N. A. Al-Emadi, C. Buccella, C. Cecati, and H. A. Khalid, “A novel
dstatcom with 5-level chb architecture and selective harmonic mitigation
algorithm,” Electric Power Systems Research, vol. 130, pp. 251-258,
2016.
A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright,
“Distributed mpc strategies with application to power system automatic
generation control,” [EEE Trans. Control Syst. Technol, vol. 16, no. 6,
pp. 1192-1206, Nov 2008.
A. Burns and A. J. Wellings, Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson
Education, 2001.
[35] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven,
Department of Electrical Engineering (ESAT/SCD) and Optimization in
Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium,
October 2013.
B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit — An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298-312,
2011.
[37] ——, “An Auto-Generated Real-Time Iteration Algorithm for Nonlinear
MPC in the Microsecond Range,” Automatica, vol. 47, no. 10, pp. 2279—
2285, 2011.
E. Hairer and G. Wanner, “Stiff differential equations solved by radau
methods,” Journal of Computational and Applied Mathematics, vol. 111,
no. 12, pp. 93 — 111, 1999.
H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpoases: a parametric active-set algorithm for quadratic programming,”
Mathematical Programming Computation, vol. 6, no. 4, pp. 327-363,
2014.
A. Domahidi and J. Jerez, “FORCES Professional,” embotech GmbH
(http://embotech.com/FORCES-Pro), Jul. 2014.
M. Fowler, UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.
R. G. Brown and P. Y. C. Hwang, Introduction to random signals and
applied kalman filtering: with MATLAB exercises and solutions; 3rd ed.
New York, NY: Wiley, 1997.
M. Summerfield, Advanced Qt Programming: Creating Great Software
with C++ and QT 4, ser. Prentice Hall open source software develop-
ment series. Addison-Wesley, 2011.
S. Huang, Ot 5 Blueprints, ser. Community experience distilled. Packt
Publishing, 2015.

[25]

[26]

[27]

[28]

(31]

(32]

[33]

[34]

[36]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Espen Skjong received his MSc degree in Engi-
neering Cybernetics at the Norwegian University
of Science and Technology (NTNU), Trondheim,
Norway, in 2014, specializing in model predictive
control (MPC) for autonomous control of UAVs.
He is currently employed in Ulstein Power & Con-
trol AS (Alesund, Norway) as an industrial PhD
candidate. His research topic is optimization in
power management systems for marine vessels. His
industrial PhD fellowship is within the Center of
Excellence on Autonomous Marine Operations and
Systems (AMOS) at NTNU.

Tor Arne Johansen (M’98, SM’01) received the
MSc degree in 1989 and the PhD degree in 1994,
both in electrical and computer engineering, from
the Norwegian University of Science and Tech-
nology (NTNU), Trondheim, Norway. From 1995
to 1997, he worked at SINTEF Information and
Communication Technology as a researcher before

» he was appointed Associated Professor at NTNU in
77N Trondheim in 1997 and Professor in 2001. He has
\ \\B published several hundred articles in the areas of
o ‘ control, estimation and optimization with applica-
tions in the marine, automotive, biomedical and process industries. In 2002
Johansen co-founded the company Marine Cybernetics AS where he was Vice
President until 2008. Prof. Johansen received the 2006 Arch T. Colwell Merit
Award of the SAE, and is currently a principal researcher within the Center
of Excellence on Autonomous Marine Operations and Systems (AMOS) and
director of the Unmanned Aerial Vehicle Laboratory at NTNU.

g

A

Marta Molinas (M’94) received the Diploma de-
gree in electromechanical engineering from the Na-
tional University of Asuncion, Asuncion, Paraguay,
in 1992; the Master of Engineering degree from
Ryukyu University, Japan, in 1997; and the Doc-
tor of Engineering degree from the Tokyo Institute
of Technology, Tokyo, Japan, in 2000. She was a
Guest Researcher with the University of Padova,
Padova, Italy, during 1998. From 2004 to 2007, she
was a Postdoctoral Researcher with the Norwegian
University of Science and Technology (NTNU) and
from 2008-2014 she has been professor at the Department of Electric Power
Engineering at the same university. From 2008 to 2009, she was a Japan
Society for the Promotion of Science (JSPS) Research Fellow with the Energy
Technology Research Institute, National Institute of Advanced Industrial
Science and Technology, Tsukuba, Japan. In 2014, she was Visiting Professor
at Columbia University and Invited Fellow by the Kingdom of Bhutan working
with renewable energy microgrids for developing regions. She is currently
Professor at the Department of Engineering Cybernetics, NTNU. Her research
interests include stability of power electronics systems, harmonics, oscillatory
phenomena, and non-stationary signals from the human and the machine.
Dr. Molinas has been an AdCom Member of the IEEE Power Electronics
Society. She is Associate Editor and Reviewer for I[EEE Transactions on
Power Electronics and PELS Letters.

