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Abstract—This paper presents a method for estimating the air
data parameters for a small fixed-wing, unmanned aerial vehicle
(UAV) using an arrangement of low-cost MEMS-based pressure
sensors embedded in the surface of the UAV. The pressure
measurements are used in a machine learning (ML) model to
estimate the angle of attack (AOA), sideslip angle (SSA), and
airspeed. Two ML algorithms based on artificial neural networks
(NNs) and linear regression (LR) are implemented, tested, and
assessed using data collected from wind tunnel experiments and
a flight test and the results are compared to a benchmark flight
test. Training the ML algorithms using wind tunnel data was
found to introduce several potential error sources that need to
be addressed in order to provide accurate estimation on the
benchmark flight test, whereas training the algorithms using flight
data provides lower estimation RMSE values. The performance
of the NN structures has been found to slightly outperform the
linear regression algorithms in estimation accuracy. Lastly, results
from using different sensor configurations and a pseudo Reynolds
number are presented in an effort to evaluate the influence of
sensor number and placement on the accuracy of the method.
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I. INTRODUCTION

Knowledge of the wind velocity surrounding a fixed-wing
UAV is critical to safe and efficient UAV control and operation.
The relative velocity of the UAV with respect to the air contains
information from which the angle of attack (AOA), sideslip
angle (SSA), and airspeed are directly computable. The AOA,
SSA, and airspeed variables are commonly referred to as the air
data parameters and the values during flight are directly related
to the performance and safety of the unmanned aircraft. For a
given UAV wing profile, the AOA will, for example, determine
when the wing is under stall conditions where a large increase
in separation of flow over the wing leads to a significant
drop in lift force. Because of the one-to-one map between
air data parameters and relative velocity, these variables will
throughout the rest of the paper simply be referred to as air
data parameters.
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Larger fixed-wing aircraft are often equipped with air data
systems, such as vanes and multi-hole pitot probes, but for
smaller UAVs, there are often strict requirements on size,
weight, power consumption, and cost. It is therefore highly
desirable to have an air data parameter estimation system only
utilizing measurements that are obtainable for a UAV through
standard sensor suite measurements and/or extra sensors that
have low cost and can easily be integrated into the UAV. The
solution presented in this document is based on a machine
learning (ML) approach using pressure sensors embedded in
the surface of the UAV.

Several papers have been published on air data estimation
for UAVs using a standard sensor suite consisting of an inertial
measurement unit, a GNSS receiver, a heading and attitude
reference, and an airspeed sensor. Long and Song [18] used
sensor fusion combined with an aerodynamic and kinematic
model to estimate airspeed and AOA without the airspeed
sensor. Langelaan et al. [14] proposed a direct computation
of the wind velocity, rate of change of wind velocity, and
wind velocity spatial gradient based on GNSS velocity and
acceleration measurements using linearized expressions for
the aerodynamic forces and moments. Ramprasadh and Arya
[24] obtained AOA and SSA estimates by using a Newton-
Rahpson solver on an aerodynamic model with an EKF. Lie
and Gebre-Egziabher [17] proposed a cascaded EKF and
aircraft model structure for estimating the air data without
airspeed measurements. Cho et al. [7] assumed having airspeed
measurements scaled by an unknown factor, and used an EKF
to estimate AOA, SSA, and the unknown airspeed sensor
scaling factor. Johansen et al. [13] proposed a model-free,
kinematic approach for estimating wind velocity and airspeed
scaling factor and proves global exponential stability of the
system under persistence of excitation of the aircraft angular
rates. Rhudy et al. [25] presented a nonlinear Kalman filter
airspeed estimation method that assumed measurements of the
AOA and SSA from wind vanes. Wenz et al. [30] presented an
EKF structure approach to estimating air data that exploits a
simplified aerodynamic model for lift and drag combined with
the Dryden wind model (as described in [9]). By employing
a moving horizon estimator, Wenz and Johansen [29] built on
the previous result and improved the accuracy.

Using a distributed pressure sensor approach to estimating
air data on fixed-wing aircraft has also been investigated.
NASA conducted research on flush air data sensing (FADS)
systems in response to the problems experienced with protrud-
ing Pitot probes. The FADS systems utilize pneumatic pressure
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orifices that are flush with the surface in a symmetric circular
pattern on the nose of the aircraft that when combined with
an aerodynamic sphere pressure model, allows for air data
estimation. This approach was demonstrated in wind tunnels
for subsonic airspeeds by Larson et al. [15]. Larson et al.
extended the FADS system method to transonic airspeeds [16],
and Whitmore et al. [31] demonstrated the system in-flight.

Using the pneumatic FADS system in combination with
NNs to estimate freestream static and dynamic pressure was
proposed and demonstrated by Rohloff et al. [26]. Rohloff et
al. [27] proposed an air data sensing system, where NNs were
used in combination with an aerodynamic model of the nose
of the aircraft to estimate the air data estimates. Quindlen and
Langelaan [23] presented a nose FADS system that used NNs
to estimate air data for a soaring UAV. The system was trained
using wind tunnel data and tested in flight without a ground
truth sensor to provide verification. Furthermore, the size of
the pneumatic system necessitated removing the electric motor,
thereby requiring a less optimal launching procedure. Instead
of pneumatic pressure sensors, Callegari et al. [6] presented
the idea of combining a maximum likelihood estimator with
strips of capacitive pressure sensors applied to the wings of a
UAV to estimate the airspeed and AOA. This was demonstrated
in simulation, but only with a low level of noise and for
small values of AOA. Samy et al. [28] used a matrix of
pneumatic pressure orifices placed on the leading edge of
the wing in combination with a NN to estimate the air data
parameters and tested this in a wind tunnel. The pneumatic
system designed by Samy et al. was connected to pressure
transducers placed outside of the aircraft and the system in its
presented configuration was therefore not usable for flight.

The solution presented in this paper consists of combining
non-intrusive low-cost MEMS-based pressure sensors embed-
ded in the surface of the UAV with an LR or NN modeling
approach. A strength of the presented solution lies in the flex-
ibility of the sensor placement since there are few geometric
constraints. Depending on the UAV, this potentially allows
equipping a UAV with an air data parameter estimation system
where other solutions are not viable. An example are aircraft
with nose propellers, which denies a nose FADS system.
Instead, the pressure sensors can be embedded in the wings or
fuselage of the aircraft, thereby still allowing air data parameter
estimation. The wide range of possible layouts of the solution
can be chosen to accommodate the exact needs of the UAV
it is designed for. The presented solution is not pneumatic,
i.e. does not require tubing to pressure scanners that can
be sensitive to mechanical stress. Furthermore, the approach
removes the need for mounting a protruding probe that is
exposed and susceptible to damage during landing. Another
contribution consists of the validation obtained from extensive
testing and comparing the results obtained from different ML
models and sensor configurations in both wind tunnel and flight
experiments.

Section II states the problem and the assumptions behind the
method and Section III presents the two ML approaches to es-
timating the air data parameters from pressure measurements.
Section IV contains a description of the experimental setup and
Section V presents the obtained results. The presented results

are based on both wind tunnel tests and a flight test with a
UAV.

II. MAIN PRINCIPLES

For a UAV the relative velocity can be expressed in the body
coordinate frame as the difference of the ground velocity and
the wind velocity:

vbr = vb − vbw (1)

where vb = [u, v, w]> is the velocity over ground vector of
the UAV, vbr = [ur, vr, wr]

> is the relative velocity vector
and vbw = [uw, vw, ww]

> is the wind velocity vector. One can
use pressure sensor measurements to estimate the airspeed Va,
AOA α, and SSA β defined as:

Va =
√
u2
r + v2

r + w2
r (2)

α = tan−1

(
wr
ur

)
(3)

β = sin−1

(
vr
Va

)
(4)

Both the airspeed Va and AOA α are directly related to the lift
and drag forces, and knowing these is valuable in controlling
the aircraft. The relationship between the air data parameters
and the pressure distribution across a cambered airfoil and
a fuselage is not trivial to model. For an airfoil of a given
shape at a given AOA, the resultant aerodynamic force, R, is
dependent on five different parameters: The airspeed Va1, the
freestream density ρ∞, the viscosity of the fluid µ, the size of
the body by a reference length c, and the speed of sound a∞2.
By application of the Buckingham pi Theorem, dimensional
analysis allows expressing the aerodynamic force in terms
of a dimensionless force coefficient CR = R/ 1

2ρ∞V
2
a c

2,
as a general function of only two variables, the freestream
Reynolds number Re= ρ∞Vac/µ and the Mach number
M = Va/a∞. For a treatment of dimensional analysis for an
airfoil, the reader is directed to Anderson [2]. Furthermore,
for Mach numbers below 0.3, the effects of compressibility
are negligible and the flow can be considered incompressible.
Since most small UAVs operate in Mach numbers well
below 0.3, it is assumed that the use of Mach numbers
for the dimensional analysis can be neglected. Extending
dimensional analysis from two dimensional airfoil to three
dimensional aircraft requires the SSA. Hence, dimensional
analysis allows for stating the force coefficient CR for an
aircraft of a given shape as a general function of only
the Reynolds number, the AOA, and the SSA, where the
expression for the Reynolds number also contains the airspeed.

The theoretical basis for the method presented in this paper
revolves around the relation from air data to force coefficient
and pressure distribution. In general, the pressure distribution
and flow over a given 3-dimensional object moving through

1Often referred to as the freestream velocity in aerodynamic literature.
2Actually the compressibility of the fluid, but that value is representable by

the speed of sound.
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a fluid is highly nonlinear and very complicated to model.
Unless the object has certain favorable geometric properties,
finding the pressure and flow around the object requires
solving the Navier-Stokes equations numerically. In this
paper it is assumed that given a sufficient set of pressure
measurements from a set of measurement points distributed
on the surface of a UAV, it is possible to inversely map this
spatially sampled pressure distribution back to the air data.

The pressure measurements obtained by the sensors
have been used differentially with respect to a designated
reference sensor, i.e. a selected sensor measurement has
been subtracted from all the other sensor measurements.
Biases and sensor noise will be addressed later, but for this
discussion we assume perfect sensor measurements. Instead
of using the pressure measured directly, which is a function of
altitude, temperature, and humidity, the differential pressure
instead directly relates the measured pressure to the pressure
distribution on the aircraft. The price is the reduction of the
sensor measurements by one dimension, but should enable -
given a proper training data set and a suitable ML structure
- to make the ML method robust with respect to changes in
ambient conditions. With the differential sensor approach,
there is for a n-sensor setup in effect only n − 1 differential
pressure measurements available and throughout the rest of
this paper, they will be referred to using their sensor numbers
as ps1 to psn−1

.

Finally, it is assumed that the pressure differences stemming
from hydrostatic differences between sensors are negligible.
For example, if the UAV is engaged in a banked turn, one
wing will be higher than the other. For small UAVs the
pressure difference between the sensors on that wing relative
to the sensors on the other wing will be relatively small and
therefore not affect the results, i.e. the hydrostatic term in
Bernoulli’s equation can be neglected due to the low density
of air and the small differences in height.

III. MACHINE LEARNING MODELING APPROACH

The two ML approaches used in this paper are LR
and NNs. The results obtained using both approaches are
presented, compared, and discussed in the following sections.
However, the concept used in this paper is not restricted to
these ML algorithms and an algorithm such as support vector
machines should for example be able to replace the mapping
from pressure measurements to air data parameter estimates,
although the quality of the results will depend on algorithm,
training method, quality of training data, etc.

A. Linear Regression (LR)
LR has been called the "work horse" of ML [21]. Contrary

to what the name implies, LR is not limited to modeling
linear functions. The algorithm minimizes a least-squares error
cost function to map a linear combination of input variables
to an output, but these input variables can be chosen to

be nonlinear functions of the basis input. Augmenting the
basis input with nonlinear functions of the input is known
as basis function expansion. The high complexity of the
physics relating the air data to the pressure distribution over
the aircraft does not allow for a first principles approach to
choosing the basis function expansions. In this paper, three
generic basis function expansions have been tested, compared,
and verified by experiments. Basis function expansions can
potentially provide a higher accuracy to the linear regression
method, but comes with the cost of a higher computational
demand, both when computing the weights, but also during
run-time. Another common consideration for model choice is
the principle of parsimony, where the model ideally use the
fewest possible parameters to adequately represent the input-
output relations. The model choice is based on the fundamental
trade-off between underfitting and overfitting the data and
thereby balancing model bias with model variance [5]. For the
LR approach presented, the basis input consists of the differ-
ential pressure measurements. Three basis function expansions
will be considered, including two polynomial basis functions.
Using low-level polynomial basis function expansions is a
common modeling approach in LR [4, 21]. The basis input
is the vector of differential pressure measurements:

[ps1 , ps2 , . . . , psn−1 ]

The first basis function expansion uses the first order cross
terms between the differential pressure measurements. Using
polynomial cross terms is a widely used in LR modeling (see
[12], where the cross terms are referred to as interactions):

[ps1ps2 , ps1ps3 , . . . , ps2ps3 , ps2ps4 , . . . , psn−2psn−1 ]

where the psi represents the i’th sensor differential pressure
measurement. For a differential n sensor setup, this corre-
sponds to an augmentation of k vector entries, where k is
given by the binomial coefficient as:

k =

(
n− 1

2

)
=

(n− 1)!

2!(n− 3)!
(5)

The second expansion is a square of the input measurements:

[p2
s1 , p

2
s2 , . . . , p

2
sn−1

]

The third and last expansion is the input measurements cubed:

[p3
s1 , p

3
s2 , . . . , p

3
sn−1

]

There are obviously an infinite amount of possible basis
function expansions and there are probably ones that could
provide better results than the expansions chosen. However,
the chosen basis function expansions are generic choices and
should serve as a first approximation for testing the presented
concept and could instead be augmented with more tailored
functions, if available.

When presenting the LR results, the following naming
abbreviations have been used to keep the results concise:
• B: Basis input vector.
• X: First order cross term expansion.
• Q: Quadratic expansion.
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• C: Cubic expansion.
Following this convention, BXC will refer to a the basis
input vector expanded by first order cross terms and the
cubic terms, where BQC will refer to the basis input vector
expanded by the quadratic and cubic terms, etc.

For the wind tunnel experiments, the data used for LR has
been partitioned into a 85% training set and a 15% test set,
and the data has been randomly divided into these two sets.
The LR weights are found using the training data and the
test set is used in providing a measure of the performance of
the method. The influence of the training and test partition
sizes were found to be negligible when kept in the ranges
of 60/40% to 85/15% and the partition sizes of 85/15% was
chosen to allow a large set of training data. The stochastic
element from randomly dividing the data into training and
test sets will result in different outcomes for every set of
linear regression weights calculated. Therefore, whenever
numerical results are presented, a mean of ten different training
set results have been used to reduce the impact of randomness.

B. Artificial Neural Networks (NNs)
The structure of interconnected neurons in artificial NNs

provide a generic method for approximating continuous func-
tions from observational data. The NNs in this paper have
been designed using the MATLAB nftool toolbox. The NNs
are trained using the Levenberg-Marquardt (LM) backpropa-
gation algorithm (Marquardt [19]), since it is very efficient for
networks consisting of a few hundred weights or less [10].
The LM algorithm minimizes a least-squares cost function
by blending gradient descent with Gauss-Newton’s algorithm,
retaining the favorable stability properties of gradient descent
and the speed of the Gauss-Newton algorithm. The LM al-
gorithm uses the Gauss-Newton Jakobian-based method of
estimating the Hessian, but with an added positively scaled
identity matrix

H ≈ J>J + µI (6)

where H is the Hessian, J is the Jakobian, and µ is a positive
scalar called the combination coefficient. The weights are
updated using the update rule

wk+1 = wk − H−1
k Jkek (7)

where k is the training iteration index, w are the weights, and
e is the model output error vector. The combination coefficient
can be viewed as a blending factor between gradient descend,
if µ is large, and the Gauss-Newton algorithm, if µ is close
to zero. The blending factor µ is reduced for each step that
reduces the cost function output, and increased for each step
that increases the cost function output, thereby allowing the
LM algorithm the stability of gradient descent, but with faster
convergence.

The NNs have been chosen with the hidden layer using
the tan-sigmoid function and the output layer using a linear
function [10]. The NNs have been designed with one or two

hidden layers and a varying number of hidden neurons. It is
known from NN approximation theory that with a sufficient
number of hidden neurons, continuous functions can be
approximated to arbitrary accuracy. The optimal structure
depend on the training data and the chosen structures will be
validated and compared through results. The three different air
data parameters (airspeed, AOA, and SSA) will be estimated
each by a separate NN and the NNs presented will therefore
all have a single output neuron. Figure 1 shows the structure
of a NN for estimating the airspeed from the measurements
of n− 1 pressure sensors using 10 neurons in a single hidden
layer.

ps1

psn−1

Σh1

Σh10

bh;10

w

bh;1

hidden layer

fts

fts

Σo1 fl

output layer

Va

bo;1

Fig. 1: An illustration of a NN that provides estimates of the airspeed,
Va. The NN is here illustrated with n − 1 differential pressure
measurements as input, a single hidden layer with 10 tan-sigmoid
function neurons fts, and a linear function output layer that outputs
the airspeed estimate.

Since all the presented NNs are trained using the same
algorithm and all have a single output neuron, the only
variables varied will be the number of hidden layers and the
number of neurons in each hidden layer. As with the linear
regression results, a naming abbreviation has been employed
to keep the results concise. Fk is used to denote the first hidden
layer containing k neurons and Sl denotes the second hidden
layer containing l neurons. Hence, F8S0 denotes a NN with a
single hidden layer with 8 neurons and F12S8 denotes a NN
with two hidden layers with respectively 12 and 8 neurons in
first and second hidden layer.

For the wind tunnel experiments using NNs, the data has
been partitioned into 70% training data, a 15% validation
data, and a 15% test data. The data has randomly been
divided into these three sets. Other possible data partition
sizes, including 60/20/20% and 50/25/25%, were also tested,
and the partition sizes were found to have a very small
influence when kept in this range. Just as for the linear
regression approach, dividing the data randomly results in
varying results for each new NN trained and a mean of ten
NN results are therefore provided whenever numerical results
are provided and both training and test set results are provided.
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IV. EXPERIMENTAL SETUP

The results in this paper are obtained using a Skywalker
X8 Flying Wing UAV. The Skywalker X8 is a consumer
grade UAV with a wingspan of 2.12 meters that is usually
flown in airspeeds ranging from 15 to 25 m/s. A picture of a
Skywalker X8 in flight is shown in Figure 2.

The method presented in this paper utilizes an array of low-
cost pressure sensors strategically embedded in the surface of
the UAV. The method is not dependent on a specific type of
pressure sensor, but the accuracy of the chosen sensor will
affect the results and so the sensor choice will be a trade-off
between cost, accuracy, weight, size, power consumption,
robustness, and ease-of-implementation. For the Skywalker
X8 prototype implementation, our objective is a proof of
concept, and the BMP280 sensor by Bosch was chosen with
the breakout board designed by Adafruit. The Bosch BMP280
is a MEMS-based3 digital pressure and temperature sensor
that offers a decent accuracy and a small footprint for a low
cost, which makes it ideal for this application. The BMP280
has an absolute accuracy of ±100 Pa and a relative accuracy
of ±12 Pa, a temperature range of -40 to 80 ◦C, and is in
the highest resolution capable of logging at 26.3 Hz. The
difference in absolute accuracy and relative accuracy stems
from a slowly varying bias. A 24 hour test was conducted,
where the bias for 16 sensors only varied minimally and
it was therefore concluded that the BMP280 biases can be
assumed as constant throughout a UAV flight and as a counter
measure, these biases have been removed from the tests. This
was done in a pre-flight calibration by finding the biases from
data where there was no wind velocity on the Skywalker X8
as the difference between the mean measurement of a specific
sensor and the mean measurement of all the sensors. This
calibration method has been employed for all the data used in
this paper. Hence, the BMP280, when used in a differential
setup, is assumed to have an accuracy of ±12 Pa. Throughout
the wind tunnel test the logging frequency was 7 Hz and for
the flights it was increased to 20 Hz. The BMP280 comes
with built-in low pass filters, but these filters have not been
employed, since an objective of the presented method is to be
able to estimate air data parameters in high dynamics.

A total of 16 BMP280 sensors have been embedded in the
surface of the Skywalker X8 used in all the tests. The sensors
are connected to an Arduino Mega 2560 through Serial
Peripheral Interface (SPI). The wire-based communication
usable for a MEMS-based sensor relieves the conventional
setup of rubber tubes connected to a pressure scanner, which
will simplify the implementation. The Arduino Mega 2560
collects the pressure and temperature readings and outputs
the readings through serial to USB to either a laptop (the
setup used the wind tunnel tests) or an ODROID-XU4 that
logs the data (the setup employed in the flight tests). The 16
sensors have been distributed in a symmetric pattern with
5 sensors on a cross section of each wing that is parallel
to the (longitudinal) xy-plane. The remaining 6 sensors

3Microelectromechanical systems.

have been embedded in the nose of the Skywalker X8 in
a pattern roughly resembling a circle. Figure 3 shows the
implementation of the pressure sensors on the wings, where
the sensor installment has been attempted to result in as
small an intrusion as possible to the aircraft surface. The
wing is shown before a layer of film is applied to reduce
the roughness of the surface. After applying the layer of
film, small rectangles were cut in the film to leave the
BMP280 sensors open to the environment. Figure 4, shows
the placement of all BMP280 sensors on the portside of a 3D
model of the Skywalker X8.

A. Wind tunnel tests setup

A part of the development and verification of the results
in this paper is based on wind tunnel testing. The tests were
conducted in the BLTW Slovak University of Technology
(STU) wind tunnel in Bratislava [11]. The BLTW STU wind
tunnel allows testing in both laminar and turbulent wind flow
depending on the section of the tunnel used. For the purpose
of the method presented in this paper, laminar wind flow was
chosen and all results presented are from tests conducted in
the designated laminar flow area of the tunnel. The BLTW
STU wind tunnel is 14.6 m long and has a cross section of
2.6 x 1.6 m.

For the wind tunnel tests a PTU-D48 pan-and-tilt unit
by FLIR Systems was employed as a part of the mount of
the Skywalker X8 in order to control AOA and SSA. The
PTU-D48 offers a precision up to 0.006◦ and is controlled
through a computer, which enabled altering the AOA and SSA
during the tests without having to stop/start the wind tunnel
for every single AOA and SSA. Since the wind tunnel has
a few minutes transition time before reaching a steady state
airspeed, this allowed for a much faster data collection rate.
A picture of the wind tunnel setup is shown in Figure 5. The
data from PTU-D48 and the BMP280 sensors were collected
and synced using DUNE: Unified Navigation Environment,
developed by the Underwater Systems and Technology
Laboratory [22].

The BLTW STU is equipped with three Scanivalve
DSA3217 pneumatic pressure scanners. The DSA3217
pressure scanners measures with a frequency of 10 Hz and
offer a ±1.25 Pa full scale long term accuracy, corresponding
to an accuracy improvement compared to the BMP280 of
almost a factor 10. The DSA3217 pressure scanners have
been connected through rubber tubes to thin cobber pipes
embedded in the Skywalker X8, flush with the surface. The
pressure scanners have been used to measure the pressure
at the points at the tips of the cobber pipes at the surface
of the Skywalker X8. The high accuracy pressure scanners
allows insight into the impact of sensor accuracy on the
estimation method by comparing results obtained using the
high accuracy DSA3217 pressure scanners to the results
obtained using the lower accuracy BMP280s. Since it is not
possible to place both types of pressure sensors directly on top
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Fig. 2: A Skywalker X8 in flight.

Fig. 3: A top view of the Skywalker X8 starboard wing showing four
BMP280 pressure sensors.

of each other and to avoid cross influence between sensors,
the DSA3217 pneumatic cobber tubes have been placed in
different positions from the BMP280s and furthermore, a total
of 22 pneumatic sensors has been placed on the Skywalker
X8 and the placement is shown in Figure 4. It should be
noted that since the placement and numbers of sensors will
influence the results, the comparison between DSA3217
pneumatic and MEMS-based pressure sensors is not ideal,
but should still serve to give insight into the advantage of a

higher number of higher accuracy sensors on the presented
method.

The wind tunnel tests were conducted the 7th and 8th
of September, 2016. The tests encompassed six different
airspeeds: 11.01 m/s (T = 27.4 ◦C, ρ = 1.1573 m/kg3), 12.09
m/s (T = 27.4 ◦C, ρ = 1.1573 m/kg3), 13.12 m/s (T = 27.5
◦C, ρ = 1.1568 m/kg3), 14.14 m/s (T = 27.6 ◦C, ρ = 1.1564
m/kg3), 15.21 m/s (T = 27.6 ◦C, ρ = 1.1559 m/kg3), 16.23
m/s (T = 27.7 ◦C, ρ = 1.1555 m/kg3), and 17.32 m/s (T =
27.8 ◦C, ρ = 1.1555 m/kg3). At high airspeeds, the Skywalker
X8 looked to be under some flutter and a high static wing
load. For that reason, no tests with airspeed higher than 17.32
m/s were attempted, although the Skywalker X8 is usually
flown in airspeeds up to 25 m/s. The inability to cope with
high airspeeds in the wind tunnel are assumed to primarily be
attributed to two different factors. Firstly, the Skywalker X8
blocks out a sizeable amount of the tunnel cross section, this
will result in the airspeed being higher around the aircraft
because of the blockage effect. Secondly, the free stream
turbulence is approximately 5% and since the shear stress in
turbulent flow is higher than in laminar [3], this results in
higher drag on the X8.

The AOA and SSA values were chosen to span a large
range of different values, since ML algorithms are better
suited for interpolation than extrapolation. The Skywalker X8
was therefore also tested in stall conditions. The nonlinear
relation between lift coefficient and AOA for the stall regions,
is assumed to also influence the pressure distribution in a
nonlinear fashion, making the ML modeling more difficult.
The AOA values tested for extend up to 35 ◦, which is beyond
the AOA values normally identified with regular flight. AOA
values in this range are usually only associated with special
maneuvers such as deep stall landings, see Mathisen et
al. [20], or other agile maneuvers or high turbulence. The
intended purpose of the air data parameter measurement
system should be considered when selecting the training data
range for AOA, SSA and airspeed. Given the discussion in
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Fig. 4: Sensor placement illustrated on the Skywalker X8 UAV. The red dots correspond to the BMP280 sensors and the blue dots correspond
to the DSA3217 pressure scanner measurement points described further down. The dots with connected line and arrow denotes a sensor or
measurement point, placed on the underside. Note that besides the two BMP280 middle nose sensors, the remaining sensors and measurement
points are only shown on the port side, however, the placement is symmetric on the starboard side.

Fig. 5: A sideways view of the wind tunnel setup with the Skywalker
X8 mounted on the PTU-D48.

Section II, it is also important to have data spanning a large
range of Re numbers, and since the Re number is directly
proportional to the airspeed, this was attempted fulfilled by
varying the airspeed.

The raw pressure data for the Skywalker X8 nose BMP280
sensors and the corresponding air data parameters for the test
with airspeed 11.01 m/s are shown in Figure 6. It is worth

noticing that some of the sensors appear to have a very small
response to changes in SSA while other sensors likewise
appear to largely not be affected by the changes in AOA. This
is related to the geometry of the Skywalker X8 relative to the
wind and indicates that these sensors would be less valuable
in estimating the corresponding parameter compared to the
sensors with a larger change in response.

B. Flight test setup

For the flight test, the same Skywalker X8 as employed in
the wind tunnel tests was used. However, since flight does
not allow for connection by cable, the test setup was different
from the tunnel test setup in a few ways. The Scanivalve
DS3217 pressure scanners have not been possible to use,
since they are too heavy and cumbersome for the Skywalker
X8. The 16 embedded BMP280 pressure sensors are therefore
the only embedded pressure sensors used during flight. The
BMP280 sensors are read using an Arduino Mega 2650 and
are sent through a serial connection to an ODROID-XU4
where it is logged along with GNSS and IMU data with
precise timestamps using a synchronization board developed
by Albrektsen and Johansen [1]. As a source of ground-truth
air data parameters for ML and testing, the Micro Air
Data System by the Aeroprobe Corporation has been used.
The Micro Air Data System consists of a 5-port air data
probe connected through rubber tubes to a small pressure
scanner. The Micro Air Data System has an accuracy of
±1◦ on flow angles and has a total flow velocity accuracy
<1 % or 1 m/s (whichever is larger). The Micro Air Data
System air data probe is mounted on the nose section of
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Fig. 6: The raw data from the wind tunnel test with an airspeed of
11.01 m/s.

the Skywalker X8. The mounting mechanism can result in a
slight misalignment between the probe and the aircraft axes
from which the AOA and SSA are defined with respect to,
and this should be compensated for. Another error source is
that the Aeroprobe saturates beyond ±21◦ for AOA and SSA
and any measurements outside this range will be truncated to
±21◦. This will have a negative influence when using ML
to estimate AOA and SSA values above 21◦, and will also
inhibit result assessments for angles outside of this range.

The flight test was conducted on the 20th of September
2016 on a field in Udduvoll, Norway. For the period of
the flight, there was a temperature of approximately 16◦C.
The data set begins at the catapult launch of the Skywalker
X8 and ends directly after landing. During the flight that
lasts just below 37 minutes, the pilot operated the UAV
in a large square with some changes in pitch and altitude.
For the last part of the flight, the pilot engaged in some
high dynamic maneuvers. The flight has been divided into
two separate segments. The first five minutes of the flight
has been separated from the remaining 31 minutes and will
throughout the test be used as a flight benchmark test in order
to assess the ML algorithms capabilities in estimating air data

parameters for a flight scenario.

V. RESULTS

This section contains the results obtained using the ML
approaches on both wind tunnel test data and flight data.
First, the BMP280 wind tunnel data is used to train and test
the NN and LR approaches to see if the ML methods are
capable of modeling the wind tunnel data input and output
relations. Afterwards, a comparison with the more accurate
DS3217 follows. The main benchmark test of the ML method
capabilities will be a five minute test segment of flight with the
Skywalker X8. The wind tunnel trained ML algorithms will be
tested on this data to assess whether it is feasible to use the
obtained wind tunnel data in order to train the ML algorithms
for estimating air data parameters during flight. Afterwards,
ML algorithms trained using the other segment of flight will
be tested on the five minute benchmark flight and the results
will be compared and discussed. Then, the impact of choice
of sensor configuration on the accuracy of the results will be
evaluated, as well as using a pseudo Reynolds number as an
extra input.

A. Wind tunnel test results
The focus of this section will be on the results obtained

using the BMP280 sensors on the wind tunnel data and
whether the ML algorithms are capable of modeling the
air data parameters from the measured pressure. Results
obtained with the BMP280 data using different LR and NN
configurations are displayed in Table I and II, respectively.
The tables contain the RMSE for the air data parameter
estimates from both the training data and the test data,
however, the validation data results from the NNs have been
left out.

Looking into the numerical LR results, it appears that the
basis function expansion of adding first order cross terms is
the single function augmentation that yields the best numerical
results. However, it does also expand the input vector with 105
extra entries, since

number of extra entries =
(
n

k

)
(8)

where n=15 and k = 2, whereas the other feature expansions
only increase the vector size with an additional 15 entries
each. The remaining basis function expansions yield similar
results. The best numerical results are obtained for the
basis function expansion BXQC, but the RMSE values
are relatively close to the results obtained expanding only
with the first order cross terms. The choice of LR basis
function expansion will therefore be a trade-off between
accuracy and computational cost, but for this data set it
appears that the chosen function expansions leave a limit
on the level of obtainable accuracy when compared to the NNs.

The results obtained using NNs are from an accuracy
perspective superior to the LR results. The estimate RMSE
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Linear Regression

B BX BQ BC BXQC

V̌a [m/s] 0.4519 0.1541 0.3005 0.3280 0.1465

V̄a [m/s] 0.4541 0.1558 0.2987 0.3260 0.1505

α̌ [◦] 1.2490 0.4833 0.8252 0.8967 0.4371

ᾱ [◦] 1.2650 0.4889 0.8333 0.9044 0.4704

β̌ [◦] 1.0462 0.6079 0.8033 0.7972 0.5950

β̄ [◦] 1.0647 0.6384 0.8073 0.8088 0.6094

TABLE I: The results obtained using LR with different basis function expansions on the wind tunnel data. Vee denotes the training set RMSE
and bar denotes the test set RMSE.

Neural Networks

F5S0 F10S0 F15S0 F20S0 F10S5 F10S10

V̌a [m/s] 0.1369 0.1171 0.0991 0.0877 0.0829 0.0498

V̄a [m/s] 0.1391 0.1239 0.1060 0.0986 0.0938 0.0689

α̌ [◦] 0.3950 0.3522 0.3491 0.3275 0.3303 0.3286

ᾱ [◦] 0.4086 0.3860 0.3799 0.3675 0.3716 0.3642

β̌ [◦] 0.5605 0.4830 0.4456 0.4138 0.3942 0.3690

β̄ [◦] 0.5738 0.5200 0.5018 0.4650 0.4608 0.4305

TABLE II: The results obtained using NNs with different structures on the wind tunnel data. Vee denotes the training set RMSE and bar
denotes the test set RMSE.

decreases with the increase in the NN structure complexity
which might hint that more neurons and more layers provide
more accurate estimates. It appears that the difference between
training and test set RMSE grows with NN complexity, which
could indicate a small degree of overfitting for the more
complex NN structures, as expected.

Figure 7 consists of two plots of the results obtained using
LR and Figure 8 consists of the two corresponding plots
using NNs. These plots contain the true values along with
the estimates using the complete data set, i.e. both training
data and test data (and validation data for the NN), and the
error between true values and estimates. For the LR results, it
appears that the accuracy of the airspeed is relative constant,
but for NN results, the accuracy is slightly higher for lower
airspeeds. For higher AOA and SSA, both methods exhibit less
accurate estimates compared to lower AOA and SSA values.

Figure 9 shows the difference between the NN and LR
estimates from Figure 7 and Figure 8. It appears that for the
wind tunnel tests, the biggest difference between the two ML
algorithms occurs when the AOA assumes high values and this
is assumed to be attributed to nonlinearities and turbulence
introduced when the wing is under stall conditions.

B. Comparison with higher accuracy pressure sensor
To obtain insight into the advantage of using more sensors

of higher accuracy on the method, a comparison with the
Scanivalve DSA3217 pneumatic pressure scanner setup is
presented. As mentioned previously, the DSA3217 is too
heavy and large to install on the Skywalker X8 and was

therefore not possible to use during flight. Furthermore, the
setup utilizes more sensors than the BMP280 setup, and
the measurement points are not identical. The comparison
between the two sets of sensors can therefore as such not
provide a complete picture of the influence of sensor amount
and sensor accuracy on the method, but it can function towards
an impression of the highest attainable estimation accuracy
given the used sensor accuracy, as well as an understanding
of the influence of ML algorithm choice on the results. For
the comparison between BMP280 sensors and the DSA3217,
only a single LR and NN structure has been chosen, BXQC
and F10S0, respectively. A plot of the F10S0 NN estimation
results are shown in Figure 10 and the numerical results are
listed in in Table III.

The spikes in estimation error seen in Figure 10, is assumed
primarily to be a result of the built-in low pass filter of the
DSA3217 pressure scanner, resulting in a transient phase
between reaching the PTU-D48 pan-and-tilt unit set points
and the pressure measurements. There are therefore two sets
of results in Table III. In the first set of results, the data has
been used without any processing (labeled as raw data). In
the second set of results, the transition phase and has been
removed from the data before training and testing (labeled as
stationary data). It appears that the higher number of sensors,
and higher accuracy of the DSA3217 pressure scanners
improves the numerical results for the ML approaches when
compared to the less accurate BMP280 measurements. Based
on these results, it is expected that an increase in number of
sensors and sensor accuracy will improve the output of the
ML algorithms, and that the choice of sensor and quantity of
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BXQC (raw data) F10S0 (raw data) BXQC (stationary data) F10S0 (stationary data)

V̌a [m/s] 0.0205 0.0172 0.0169 0.0128

V̄a [m/s] 0.0213 0.0179 0.0182 0.0140

α̌ [◦] 0.2213 0.1796 0.0285 0.0235

ᾱ [◦] 0.2347 0.2062 0.0328 0.0247

β̌ [◦] 0.3497 0.3311 0.0447 0.0370

β̄ [◦] 0.3678 0.3610 0.0452 0.0373

TABLE III: The results obtained using LR and NN on the DSA3217 pressure scanner measurements. Vee denotes the training set RMSE and
bar denotes the test set RMSE.
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Fig. 7: Results obtained using LR with the basis input vector
augmented with the first order cross terms, the quadratic term, and the
cubed term (BXQC). The results displayed consists of the complete
wind tunnel data set.
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Fig. 8: Results obtained using NNs with 10 neurons in a single hidden
layer (F10S0). The results displayed consists of the complete wind
tunnel data set.
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Fig. 9: The difference between the NN and LR estimates, respectively
denoted by V̂a,NN and V̂a,LR, from Figure 7 and Figure 8.

sensors will be a trade-off between price, weight, size, and
power consumption of the sensors and the accuracy of the air
data parameter estimates.

The results presented so far indicates that a more complex
structure of the ML approach provides better results and that
the NNs have slightly lower RMSE values than the LR. Also,
there is reason to believe that using higher accuracy sensors
results in higher accuracy estimates. However, a weakness with
the approach so far is that the estimates are trained and tested
with a set of data with identical conditions and only a rather
limited set of different air data parameter points. Should the
trained LR and NN structures be tested with a different set of
data with air data parameters differing from the points trained
for, there is no guarantee on the quality of the results. The test
and training of ML methods on flight benchmark test data is
therefore the primary focus of the remaining part of the results
section.

C. Wind tunnel trained ML algorithms on benchmark flight
test

This section contains the results obtained using the ML
methods trained using the wind tunnel data on the benchmark
flight test. For this comparison, 100% of the wind tunnel
data has been used in training the LR method and for the
NN method, the wind tunnel data has been divided into 85%
training data set and a 15% validation data set. The initial
numerical results using the wind tunnel data for training
(not included here) showed low estimation accuracy on the
benchmark flight test. Given a significant difference between
the RMSE of the training set results and the test set results, it
is assumed that the poor results are not primarily attributable
to poor sensor accuracy, but instead stems from one or several
of the following factors.

• There might have been a misalignment between the AOA
and SSA in of the Skywalker X8 in the wind tunnel and
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Fig. 10: Results for the NN (F10S0) estimation method using the
DSA3217 pressure scanner measurements and displaying the com-
plete wind tunnel data set.

the mounting of the Aeroprobe sensor. This would result
in biases on the AOA and SSA estimates corresponding
to the misalignment.

• As mentioned previously, the Skywalker X8 blocked
out a sizeable amount of the wind tunnel. This could
therefore result in the airspeed around the Skywalker
X8 being higher than the wind tunnel airspeed used in
training the ML methods. This could in turn result in the
estimates provided by the ML methods being too low.

• ML methods are not suited for extrapolation and a
considerable fraction of the airspeeds experienced by
the Skywalker X8 in the flight test, was higher than
the highest value tested for in the wind tunnel tests.
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Courrieu [8] suggested a geometric approach of using
a convex hull polytope to find the domain of validity of
a feedforward NN and this limit is obviously violated
by the airspeed, without even having to consider the
remaining values of the estimated parameters.

• Too few training data points to properly model the
(biased) input-to-output relationship. Rohloff et al. [26]
discusses a binning technique to choose a proper training
set from a larger data set. The training data is divided
into bins in the different dimensions and choosing data
following this technique then ensures a decent density
distribution of the training data. However, for the wind
tunnel data this technique could be misleading since the
data could appear to be evenly divided into different
bins, while in reality, many of the points in the bins
would be from the same static air data parameter wind
tunnel set points. Instead, data collected from flight tests
will add a stochastic element that ensures that no air
data parameter points are exactly the same, and that
should result in a finer resolution and a better distribution
compared to the wind tunnel.

Furthermore, training the ML methods using data containing
stall conditions introduce strong nonlinearities into the system,
and modeling will require even more data and represents an
unnecessary difficulty if the intention is to not fly under stall
conditions4.

In order to remove the effect of blockage and misalignment
on the results, a new set of results have been generated where
the training data have had bias correction terms added to it.
The bias have been estimated as the mean of the error for 10
instances of training F10S0 NNs with the wind tunnel data and
testing on the benchmark flight. The biases were found to be
3.24 m/s for the airspeed, 10.59◦ for the AOA, and -1.63◦ for
the SSA. The results are listed in Table IV and V.

Modifying the training data in an attempt to account for
the effects of blockage and misaligned sensors improved the
numerical results. However, the high AOA and SSA RMSE
for the LR method, may indicate that there are significant
nonlinearities in the wind tunnel data. The NN results indicate
that the more advanced structures are prone to overfitting. As
mentioned previously, the numerical results are found as the
mean of the results obtained from 10 different instances of
NNs with identical structure. The results from each of these
10 NNs show a large variation in the RMSE of the different
estimates. The best NNs were capable of obtaining a RMSE on
the flight benchmark test of 0.54 m/s for the airspeed, 0.77◦
for the AOA, and 1.37◦ for the SSA, which is significantly
lower than the mean of the results from the 10 NNs. This
indicates that the results could be improved by a training
data choosing algorithm, perhaps using a binning technique
as described previously. The high variance on the accuracy
of the results is assumed to be primarily due to a lack of a

4It should be noted that the comparison sensor, the Micro Air Data System
by the Aeroprobe Corporation, is not capable of measuring in the stall region
either.

high resolution wind tunnel training data set that covers all
possible air data parameter values that the Skywalker X8 can
be expected to experience in flight.

D. Flight trained ML algorithms on benchmark flight

This section contains the results of training the ML methods
with a 31 minute flight training set and evaluating the methods
on the flight benchmark test. The last part of the training
segment involved the Skywalker X8 flying in high dynamic
maneuvers and the training data set contains data that eclipses
the test set and the algorithms will therefore not have to
rely on extrapolation. The results are shown in Table VI
and VII. The results obtained by training the ML algorithms
using flight data gives much better results than the ones
obtained using the wind tunnel data for training. It appears
that the test LR results obtained are not that dependent on
the structure of the LR, although it seems beneficial to add a
single basis function expansion to increase the the accuracy of
the estimates. For the NN, the results appear to be relatively
independent on the chosen structure, which indicates that
for the conditions trained and tested in, the relation between
pressure and air data parameters must be possible to model by
three five-neuron NNs. Furthermore, the numerical results are
relatively close in accuracy and both methods seems viable to
use for similar flight conditions if properly trained.

Figure 11 and 12 contains plot of the results obtained using
the flight data trained BXQC LR and F10S0 NN algorithms.
The plots show relatively low estimation errors from both
algorithms. The improvements of the results from using flight
data compared to wind tunnel data is expected to be caused
by the removal of the error points discussed in the previous
section - there is no misalignment of angles, the airspeed used
in the training data is not biased due to blockage effect, and
there is no extrapolation. However, the biggest improvement
is assumed to be attributed to the data being distributed in
relevant flight conditions and with a much finer parameter res-
olution which allows the methods a better chance at correctly
modeling the input/output relations.

Figure 13 shows the difference between the NN and LR
algorithm estimates Figure 11 and Figure 12. The plot indicates
that the two algorithms provide the largest differences in
estimates when the air data ground truth values deviate the
furthest from steady flight conditions. This is assumed to be
due to less training data covering these air data values.

E. Sensor configuration influence

So far, all the algorithms have been trained using the
data from all the BMP280 sensors. However, a part of the
novelty of the presented method lies in the option of adjusting
the sensor configuration to whichever aircraft is the desired
platform of implementation. This section investigates the
relation between different sensor configurations and their
corresponding results in estimating the air data parameters.
The results will obviously only be valid for the Skywalker
X8 UAV, but can perhaps serve as an indicator of how the
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Linear Regression

B BX BQ BC BXQC

V̌a [m/s] 0.4521 0.1541 0.3001 0.3275 0.1468

V̄a [m/s] 1.2075 1.4815 1.7577 3.5591 1.0415

α̌ [◦] 1.2512 0.4828 0.8260 0.8974 0.4406

ᾱ [◦] 8.6618 2.4905 3.4954 17.0525 7.7749

β̌ [◦] 1.0488 0.6115 0.8036 0.7986 0.5959

β̄ [◦] 4.1666 5.1462 2.8018 5.3993 4.9833

TABLE IV: The results obtained using LR trained with wind tunnel data with added bias corrections on the flight benchmark test. Vee denotes
the training set RMSE and bar denotes the test set RMSE.

Neural Networks

F5S0 F10S0 F15S0 F20S0 F10S5 F10S10

V̌a [m/s] 0.1341 0.1154 0.0961 0.0818 0.0773 0.0567

V̄a [m/s] 0.7337 0.9642 1.0603 1.2318 1.0871 1.3066

α̌ [◦] 0.4004 0.3566 0.3411 0.3190 0.3334 0.3148

ᾱ [◦] 1.0877 1.5216 1.7246 3.7936 2.2111 3.8493

β̌ [◦] 0.5665 0.5003 0.4471 0.4220 0.4122 0.3784

β̄ [◦] 2.2016 2.4157 2.5866 3.1320 2.6473 2.0639

TABLE V: The results obtained using NNs trained with wind tunnel data with added bias corrections on the flight benchmark test. Vee denotes
the training set RMSE and bar denotes the test set RMSE.

Linear Regression

B BX BQ BC BXQC

V̌a [m/s] 0.3815 0.2865 0.3213 0.3227 0.2760

V̄a [m/s] 0.4439 0.3587 0.3655 0.3696 0.4088

α̌ [◦] 0.3112 0.2010 0.2325 0.2465 0.1896

ᾱ [◦] 0.2736 0.2379 0.2609 0.2591 0.2328

β̌ [◦] 1.3654 0.9162 1.0928 1.1371 0.8652

β̄ [◦] 1.3358 1.0058 0.9997 1.0572 1.0161

TABLE VI: The numerical results obtained using LR trained with flight data on the flight benchmark test set. Vee denotes the training set
RMSE and bar denotes the test set RMSE.

results would be on similar platforms (which would have to
be trained using data acquired using that specific platform).
The flight data trained BXQC LR and F10S0 NN algorithms
have been chosen as the basis ML algorithms for this sensor
configuration assessment. Furthermore, a single test is included
where the the full sensor configuration is augmented with a
pseudo Reynolds number. The pseudo Reynolds number uses
ambient pressure and temperature from the autopilot, but with
the relative velocity in the forward direction, ur, obtained
from the Pitot-static tube as an approximation for the airspeed.

Reverting back to Figure 3 and 4, the naming convention of
the sensors is that the first five sensors, ps1 - ps5 are located
in the starboard wing. The topside sensor at the leading
edge is ps1 and the sensor numbers then increment towards
and around the trailing edge with ps5 as the sensor on the
bottom of the wing. For the nose, the sensor located at twelve
o’clock in Figure 4 is the reference sensor and the sensor

on the right is ps6 . Incrementing in a clock-wise pattern, the
sensor to the left of the reference sensor is ps10 . The port
wing follows the same system as the starboard wing starting
with sensor ps11 and ending with ps15 on the bottom side of
the wing. For the tests, the LR and NN structures BXQC
and F10S0 have been used once again. Regarding the choice
of sensor configurations, it appears intuitive to evaluate the
configurations that involves using only nose or wing sensors,
since there might be limitations on a UAV platform related to
these, e.g. propellers that hinders the use of pressure sensors
in either nose or wings. It would also be advantageous to
get an impression of the influence of using fewer sensors on
the attainable accuracy. Fewer sensors would reduce the cost
of the setup, reduce complexity of the implementation, and
lower the risk of a single sensor malfunctioning.

The numerical results from different sensor configurations
and augmenting with the pseudo Reynolds number are shown
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Neural Networks

F5S0 F10S0 F15S0 F20S0 F10S5 F10S10

V̌a [m/s] 0.2745 0.2516 0.2388 0.2305 0.2437 0.2326

V̄a [m/s] 0.3503 0.3497 0.3460 0.3478 0.3372 0.3492

α̌ [◦] 0.1905 0.1735 0.1654 0.1613 0.1677 0.1622

ᾱ [◦] 0.2341 0.2298 0.2415 0.2445 0.2298 0.2313

β̌ [◦] 0.8504 0.7584 0.7055 0.6592 0.6922 0.6676

β̄ [◦] 0.9165 0.9329 0.9585 0.9674 0.9322 0.9180

TABLE VII: The numerical results obtained using NNs trained with flight data on the flight benchmark test set. Vee denotes the training set
RMSE and bar denotes the test set RMSE.
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Fig. 11: Results obtained using a BXQC LR trained with flight data
on the flight benchmark test set..
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Fig. 12: Results obtained using a F10S0 NN trained with flight data
on the flight benchmark test set.
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Fig. 13: The difference between the NN and LR estimates, respec-
tively denoted by V̂a,NN and V̂a,LR, from Figure 11 and Figure 12.

in Table VIII and IX, where the numbers are used for denoting
the sensors used in the configuration, i.e. 5 corresponds to
using sensor ps5 in the configuration. Both tables show the
same trends in accuracy with respect to the different sensor
configurations. The nose sensors alone are relatively poor at
estimating the airspeed, whereas adding a sensor from each
wing greatly increase the accuracy. The wing sensors alone are
on the other hand decent at estimating the airspeed, but suffer
from poor SSA estimates, since the sensors only measure in
two parallel planes, both perpendicular to the SSA. The choice
of sensor configuration should be dependent on the UAV
platform of implementation and will be a trade-off between
accuracy, cost, and ease of implementation. Adding the pseudo
Reynolds number only appears to provide a small benefit to the
results. However, the flight results contain relatively constant
ambient conditions, and the pseudo Reynolds number can
potentially provide a higher level of robustness with respect
to these conditions or be used in non-dimensionalizing the
pressure measurements into pressure coefficients.

VI. CONCLUSION

A method for estimating the air data parameters for small
fixed-wing unmanned aerial vehicles have been presented. The
method comprises a set of low-cost MEMS-based pressure
sensors embedded in the surface of the unmanned aerial vehi-
cle combined with machine learning algorithms. A strength of
the presented method is the flexibility of the pressure sensor
placement. Two different machine learning algorithms, neural
networks and linear regression, have been implemented and
tested. Both algorithms have been evaluated on data obtained
through wind tunnel experiments and real flight data. The
neural network algorithm was found to generally provide
a slightly lower estimation error than the linear regression
approach presented. However, linear regression allows for basis
function expansions that could potentially improve the results
further. By comparing the results obtained from using the

low-cost sensors on the aircraft against the results from the
expensive pressure scanner from the wind tunnel, the influence
of the number of sensors and sensor accuracy on the results
was assessed. Training the machine learning algorithms using
only wind tunnel data was found to have several error sources,
namely the wind tunnel blockage effect, misalignment in the
aircraft mount, as well as a too sparse (not very rich) training
data set. However, trying to account for these error sources
showed potential in decreasing the estimation error. Using
flight data to train the machine learning algorithms was found
to be a feasible approach that allowed estimating the air data
parameters for both neural networks and linear regression.
Finally, a study of the sensor number and placement influence
on the result was conducted along with an assessment of
augmenting the system input by using a pseudo Reynolds
number.
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