
Identity Management in M2M Networks

Pranas Butkus

Master in Security and Mobile Computing

Supervisor: Van Thanh Do, ITEM
Co-supervisor: Jukka K. Nurminen, Aalto University School of Science

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology

Title: Identity Management in M2M Networks
Student: Pranas Butkus

Problem description:

Currently developed future communication technologies are typically based on mul-
tiple devices that communicate with each other to exchange information about an
environment or objects that are monitored and afterwards automatically respond
with necessary actions. Although several of these future communication technologies,
including Machine-to-Machine (M2M) communications, have already caught atten-
tion of standardisation authorities, the standards that are currently available focus
on static, industry- and business-oriented solutions involving isolated environments
with fixed numbers and types of communicating devices.

In the mentioned static model, automated network functioning with minimal
maintenance needs can be achieved by pre-configuring devices with identity infor-
mation before deployment. However, future systems will largely focus on human
users and applications that automatically assist people with their tasks and feature
dynamic relationships. For example, a user utilising multiple applications might use
his/her devices to access separate systems, which recognise the user with different
identities. Furthermore, the application set utilised by a user can change over time.
Therefore, future communication technologies supporting user-oriented applications
will need an Identity Management (IdM) system capable of managing identities of
diverse communicating parties and changes in their relationships.

This master’s thesis focuses on an IdM system for future communications that
addresses challenges related to user-oriented applications, as described above. The
project is divided into several steps. First, it involves analysis of related com-
munication and IdM systems with a particular focus on M2M technology and its
specifications. Second, it includes identification and elaboration of requirements for
the dynamic user-oriented IdM system. Finally, it proposes an IdM system that
meets the identified requirements.

Responsible professor: Do van Thanh, ITEM

Abstract

Evolving communication technologies stimulate a rapid growth in
utilisation of communication-capable devices and therefore amount of
transmitted data. This imposes new requirements for automatic device
and data management necessary for successful exploitation of new oppor-
tunities. Unfortunately, currently developed systems, including Internet
of Things and Machine-to-Machine communications, mainly focus on in-
dustrial applications that involve fixed users, proprietary environments as
well as ad-hoc devices and things, whereas regular users along with possi-
bilities and challenges created by growing sets of personal user equipment
remain ignored.

This thesis addresses the defined problem by analysing currently
developed and utilised communication technologies and identity manage-
ment systems as well as proposing an advanced identity management
system that considers user-related needs and enables user-aware auto-
matic device-to-device communications. Our system is unique compared
to other automatic communication systems in that it enables global com-
munication of devices owned or used by different parties and supports
dynamic connection and relationship establishment based on data ad-
ministered in a sophisticated identity management infrastructure. Unlike
existing identity management mechanisms, our system extends the notion
of an identified and authenticated entity to a combination of both user
and device. Furthermore, the system introduces an original Single Device
Sign-On feature that simplifies user login procedure when accessing a
service with multiple devices. As a consequence, this thesis suggests
a new direction for evolution of communication technologies as well as
user-targeted Internet-based services and applications.

Contents

List of Figures xi

List of Acronyms xiii

1 Introduction 1

2 Background 5
2.1 Identity Management . 5

2.1.1 Utilisation of Identifiers . 5
2.1.2 Identities . 6
2.1.3 Entity Authentication . 7
2.1.4 Entity Authorisation and Accounting 9
2.1.5 IdM System Models . 10

2.2 Communication Technologies . 11
2.2.1 M2M Communications . 12
2.2.2 Internet of Things . 13
2.2.3 Ambient Intelligence . 13

3 State of the Art 15
3.1 Device-Oriented IdM Systems . 15

3.1.1 Object Identifier for Meta-Data 16
3.1.2 Cooltown . 16
3.1.3 Object Naming Service . 16

3.2 User-Oriented IdM Systems . 17
3.2.1 OpenID . 17
3.2.2 SAML . 18
3.2.3 OAuth 2.0 . 20
3.2.4 OpenID Connect . 22

3.3 Communication for Ubiquitous Computing 24
3.3.1 ETSI M2M System Architecture 24
3.3.2 MTC Standard . 32
3.3.3 oneM2M . 33

vii

4 Vision and Requirements 35
4.1 Problem Description . 35
4.2 Our Approach . 36
4.3 Challenges . 38
4.4 Envisaged Use Case . 40

5 IdM System Proposal 43
5.1 System’s Entities . 43

5.1.1 Logical Entities . 43
5.1.2 Physical Entities . 45

5.2 Identification System . 47
5.2.1 Requirements for Identification 47
5.2.2 Identification System . 48
5.2.3 Identity Information . 50

5.3 System’s Functionality . 51
5.4 System’s Structure . 56
5.5 System’s Actions . 59

5.5.1 User Login and Device Authentication 59
5.5.2 Connection to a Service . 60
5.5.3 System’s Management Operations 67

6 Discussion 71
6.1 System’s Comparison to Other Solutions 71

6.1.1 Device-Based Systems . 71
6.1.2 User-based Systems . 72

6.2 Satisfaction of 7 Laws of Identity . 73
6.3 Utilisation Characteristics . 75

6.3.1 Trust . 75
6.3.2 Usability . 76
6.3.3 Anonymity . 76

6.4 Practical Application Issues . 77
6.4.1 Prototype Implementation and Out-of-Scope Parts 77
6.4.2 Legal Identity Management Issues 77
6.4.3 Secure Data Storage in Users’ Devices 78

7 Conclusion 79
7.1 Future Work . 79

7.1.1 Practical Implementation . 79
7.1.2 Application Programming Interface for Device Subsystem . . 79
7.1.3 Legal Aspects . 80
7.1.4 Survey of Involved Actors . 80

7.2 Final Remarks . 80

References 83

List of Figures

3.1 ETSI M2M functional architecture [KSB+13, Eur13d] 25
3.2 Low-level identification system of ETSI M2M architecture [Eur13d] . . . 28

4.1 Users accessing services using devices configured with multiple identities 38

5.1 High-level structure of the system . 46
5.2 An example identifier used in the system 48
5.3 System’s use case diagram . 52
5.4 System’s class diagram . 57
5.5 Sequence diagram of general connection procedure 61
5.6 Sequence diagram of authentication procedure 64

xi

List of Acronyms

3GPP 3rd Generation Partnership Project.
3GPP2 3rd Generation Partnership Project 2.

AAA Authentication, Authorisation and Accounting.
ABAC Attribute-Based Access Control.
AC Assertion Consumer.
ACL Access Control List.
ACM Access Control Matrix.
AcN Access Network.
AmI Ambient Intelligence.
ANP Access Network Provider.
API Application Programming Interface.
App-ID Application Identifier.
ARPANET Advanced Research Projects Agency Network.
AS Authorisation Server.

BT Bluetooth.

CN M2M Core Network.
CONN-ID Service Connection Identifier.

D’D D’ Device.
DA Device Application.
DD D Device.
dD d Device.
DIP Device Interworking Proxy.

xiii

DNS Domain Name System.
DS Device Subsystem.
DSCL Device Service Capabilities Layer.

EAP Extensible Authentication Protocol.
EPC Electronic Product Code.
ETSI European Telecommunications Standards Insti-

tute.

FQDN Fully Qualified Domain Name.
FTP File Transfer Protocol.

GA Gateway Application.
GIP Gateway Interworking Proxy.
GSCL Gateway Service Capabilities Layer.

HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.
HTTPS Hypertext Transfer Protocol Secure.

IBAKE Identity-Based Authenticated Key Exchange.
IBC Identity-Based Cryptography.
ICT Information and Communication Technology.
ID-FF Identity Federation Framework.
IdM Identity Management.
IdP Identity Provider.
IdPS Identity Provider Subsystem.
IMSI International Mobile Subscriber Identity.
IoT Internet of Things.
IP Internet Protocol.
IR Infra-Red.

JSON JavaScript Object Notation.

Kma M2M Application Key.

Kmc M2M Connection Key.
Kmr M2M Root Key.

M-Bus Meter-Bus.
M2M Machine-to-Machine.
MAC Media Access Control.
MAS M2M Authentication Server.
MAS-ID MAS Identifier.
MSBF M2M Service Bootstrap Function.
MSBF-ID MSBF Identifier.
MSCF M2M Service Connection Function.
MTC Machine-Type Communications.
MTC-IWF MTC Interworking Function.

NA Network Application.
NFC Near-Field Communication.
NIC Network Interface Card.
Node-ID Node Identifier.
NSCL Network Service Capabilities Layer.

OID Object Identifier.
OIdP OpenID Identity Provider.
ONS Object Naming Service.
OS Operating System.

PC personal computer.
PIN Personal Identification Number.
PLC Programmable Logic Controller.
PLMN Public Land Mobile Network.
PoC M2M Point of Contact.
PROV-ID Service Provider Identifier.
PSK Pre-Shared Key.

RADIUS Remote Authentication Dial In User Service.
RBAC Role-Based Access Control.

RelP Relying Party.
REST Representational State Transfer.
RFID Radio Frequency Identification.
RO Resource Owner.
RP Reference Point.
RS Resource Server.

SAML Security Assertion Markup Language.
SCADA Supervisory Control and Data Acquisition.
SCL Service Capabilities Layer.
SCL-ID SCL Identifier.
SCS Services Capability Server.
SDSO Single Device Sign-On.
SMS Short Message Service.
SP Service Provider.
SS Service Subsystem.
SSO Single Sign-On.

TEE Trusted Execution Environment.
TISPAN Telecommunications and Internet Converged

Services and Protocols for Advanced Network-
ing.

TLS Transport Layer Security.

UA User Agent.
UE User Equipment.
UICC Universal Integrated Circuit Card.
UML Universal Modelling Language.
UMTS Universal Mobile Telecommunications System.
UPID User-Provided Identifier.
URI Universal Resource Identifier.
URL Universal Resource Locator.

W-LAN Wireless Local Area Network.

WiMAX Worldwide Interoperability for Microwave Ac-
cess.

WPAN Wireless Private Area Network.

xDSL x Digital Subscriber Line.
XML Extensible Markup Language.
XRI Extensible Resource Identifier.

Chapter1Introduction

Less than half a century ago, in 1969, one of the first packet-switched networks called
Advanced Research Projects Agency Network (ARPANET) was established with the
goal of providing universities and research laboratories with a long-distance data
exchange mechanism. Besides accomplishing this goal, ARPANET also initiated
development of various networking protocols that have afterwards resulted in creation
of the Internet utilised not only by academia, but also businesses, governments and
everyday users, thus improving lives in many aspects.

Although the early version of the Internet enabled global communication, it
provided a regular user with a rather limited functionality, i.e. remote communications
via email and access to static web sites in the World Wide Web. The key factor
that made the Internet as powerful as we know it today was creation of digital user
identities and Identity Management (IdM) mechanisms that enabled treating on-line
and physical user presence alike. By providing user-friendly features for identity
creation and access to data, e.g. by using federated IdM systems and Single Sign-On
(SSO) functionality, origination of IdM systems was the key factor that stimulated
emergence of web-based services, social networks and other automated user-related
functionality.

Currently, as the number of various network-connected devices rapidly increases,
the minds behind evolution of communication networks and Information and Com-
munication Technology (ICT) are putting effort into creation of autonomous device
communications and utilisation of these devices to gather sufficient data to enable
even more capable, automatic and intelligent applications. The most prominent of the
new technologies addressing these aspects are Machine-to-Machine (M2M) and Inter-
net of Things (IoT). M2M systems introduce the concept of autonomously functioning
networked devices with no or only minimal intervention of human personnel. This
technology mainly focuses on devices themselves and capabilities required for their
autonomous functioning. A related technology, IoT addresses the amount of data
these connected devices generate and thus emphasises the need for an infrastructure

1

2 1. INTRODUCTION

and applications, i.e. an advanced version of the Internet, capable of handling this
data.

Although the mentioned technologies seem promising, they principally aim at
industrial applications based on isolated hierarchies of proprietary communicating
devices. Furthermore, most of these devices are rather primitive and serve only a
single pre-defined purpose, i.e. sensors gather specific kind of data, actuators perform
certain physical operations and Radio Frequency Identification (RFID) tags embed a
device concept into ordinary things by merely enabling their identification needed
for discovery of their meta-data. As a result, M2M and IoT enable systems with
pre-defined parties that are involved in communication and management and linked
together using static relationships.

Our vision of evolution in communication technologies differs from the previously
mentioned approaches in the following aspects. First, the technology should serve a
regular human user and involve his/her devices as well as custom user applications.
Second, it should enable dynamic, on-demand relationships among communicating
parties, e.g. user’s devices and local service provider servers, rather than be limited to
fixed and pre-configured links. Thus, in order to enable this functionality, currently
developed technologies are insufficient and a different approach is needed.

This thesis shows that the described evolutionary step of device-to-device com-
munications can be achieved by applying the means proven successful before, i.e.
creating a suitable IdM infrastructure. We address the problem of user-oriented,
dynamic and intelligent communications by presenting an IdM system that involves
both user and device identities, thus providing sufficient data for automatic and
dynamic user-aware interaction of devices. The proposed system addresses various
user-related IdM challenges, including multiple identities, shared hardware equipment
and continuously increasing number of devices carried by a user. By noticing the
improvements in usability created by federated IdM systems and SSO service, we
further enhance the IdM system by proposing a Single Device Sign-On (SDSO)
mechanism that enables a user to connect to a service with multiple devices he/she
carries by performing authentication procedure from one of the devices.

It is important to note that although our system was initially aimed at M2M
communications, literature analysis that was performed as part of the thesis process
revealed that current M2M concept is rather limited and essentially addresses the
mentioned static systems. Conversely, we aim at enabling global dynamic device-to-
device communications. Therefore, unless we specifically refer to M2M technology
and specifications, we use the term M2M to describe autonomous device-to-device
communications.

This thesis is structured as follows. Chapter 2 presents the background of identities,

3

identity management mechanisms and their roles, as well as briefly discusses future
communication technologies under development. Afterwards, Chapter 3 further
covers the current situation of IdM and communication systems by presenting the
most relevant systems implemented as industrial solutions or proposed in scientific
literature. Subsequently, Chapter 4 explains the proposed system’s idea, the problems
it tackles and targeted use cases. Afterwards, Chapter 5 presents the actual solution.
Chapter 6 evaluates the system from various perspectives and provides a discussion.
Finally, Chapter 7 provides final remarks and conclusion of the thesis.

Chapter2Background

This chapter presents the background information related to IdM and future com-
munication technologies. This information is used in further chapters of this thesis.
Section 2.1 analyses the importance of identities, IdM and IdM systems. Afterwards,
Section 2.2 provides an overview of currently developed future communication tech-
nologies, specifically M2M, IoT and Ambient Intelligence (AmI). These technologies
are believed to provide the basis for ubiquitous computing and advanced automatic
applications. Chapter 3 continues the description of the technologies presented in this
chapter by discussing implementations of these technologies and their standardisation
processes.

2.1 Identity Management

2.1.1 Utilisation of Identifiers

Information and communication systems largely utilise various identifiers necessary
for recognition of a communicating party, as well as consistent session management.
For example, one of the popular computer networking models, the TCP/IP model,
contains 4 layers responsible for distinct functionality related to communications, as
explained in Chapter 1 of [Hun02]. Each of the layers introduces a certain identifier,
e.g. a Media Access Control (MAC), Internet Protocol (IP) and email addresses for
identification of a Network Interface Card (NIC), network-host combination and a
human user, respectively. These identifiers are necessary for identification and data
transmission over a communication channel.

Although sufficient for low-level communication or user-controlled applications,
identifiers often do not carry enough data to enable higher-level automatic applications.
Thus, additional information related to communicating entities or peers is needed
for connection establishment and further communication in higher-level application
context.

5

6 2. BACKGROUND

2.1.2 Identities

Data that describes relevant features of a subject, i.e. a person or a thing, and stored
in digital space is called digital identity, as defined by Windley [Win05]. According to
the author, digital identity features are comprised of attributes, describing subject’s
characteristics, preferences and traits, which are similar to attributes but are more
inherent to the subject and experience very rare or no modifications. In this document,
we simplify the definition of a digital identity and use identity to refer to a set of
attributes characterizing a communicating entity.

It is clear that data used to describe human users and devices differ rather
significantly, in such aspects as data format, number of data sets and their relation
to each other, data sensitivity, as well as utilisation and management of data, which
may be regulated by law. Furthermore, behaviour of users and devices differs rather
significantly. For example, a user typically controls a device, and the latter simply
performs requested operations, i.e. it is dependent on the user. Therefore, scientific
literature typically uses term identity for user entities, i.e. researchers analyse user
identities and treat device-related data merely as device meta-data [CY11, RC11].
On the other hand, recent scientific works, such as Hydra project [AH08], are starting
to address the increasing intelligence and actuality of devices, thus they treat device-
related data as device identities. To address the mentioned similarities between user
and device entities from the perspective of communication, we address both user-
and device-related data sets as identities. However, due to inherent differences, we
make a distinction between device identities and user identities, and further analyse
these identities separately.

Identities enable entity identification, i.e. recognition of a party by detecting
its unique characteristics. This process enables personalisation/customisation of a
service and communication, as well as access to and manipulation of personal or
other entity-related data. In this respect, attributes are used to represent identifiers,
which are partitioned into strong and weak identifiers [BSSB05]. A strong identifier
is sufficient to uniquely identify the entity in the system, and its value often does
not have other purposes. On the other hand, a weak identifier provides important
information about an entity, but its value may be shared with multiple other entities in
the same system. Thus, the strength of an attribute is determined by the uniqueness
of its value and the overall number of entities in the system. Furthermore, a set
of weak identifiers may enable reliable identification of a unique entity. Besides
attributes, other information units, such as certificates, can be used to perform
identification.

All identity data is created, managed and protected by a certain management
authority, generally called an IdM system. The remainder of this section thoroughly
analyses IdM system actions and models.

2.1. IDENTITY MANAGEMENT 7

2.1.3 Entity Authentication

Merely providing identity information, e.g. an identifier, without a proof that
this information really belongs to the claimed entity, is often insufficient. Thus,
multiple systems require communicating parties to perform entity authentication,
which is one of the primary functions of IdM systems [Win05]. Authentication
is a procedure performed to verify that an entity is what it claims to be. This
operation is critical in many systems that involve confidentiality, integrity and
other security-related mechanisms. Authentication is typically performed in the
beginning of communication. However, security-critical systems often require repeated
authentication either periodically or before performing important operations.

Scientific literature and the industry utilise multiple entity authentication methods,
which depend on specific systems and entity types. As mentioned above, we analyse
authentication procedure of two separate types: user and device identities. During
user identity authentication, a human user is typically asked for the following [BL07]:

1. Something a user knows. In this case, a user possesses knowledge of a secret
which can be used as a proof of identity. The most commonly used secret type
is a password that a user provides together with his/her unique user name,
which identifies the entity. There are other ways created to identify users
utilising their knowledge, including recognition of graphical images, drawing
patterns on screen [SS12] or even on the back side of mobile devices [DLvZN+13].
However, such inventive authentication methods are incapable of replacing
passwords in a widespread use, because, in comparison to passwords, they
provide little advantage in security and usability and are inferior to passwords
in authentication system’s deployability [BHOS12].

2. Something a user has. In this case, the system checks user’s possession of certain
items, i.e. tokens, data containers or other secrets that a user does not keep
in his/her memory. Everyday devices, such as a smart phone or a Bluetooth
(BT) token [CN03], may also be utilised as tokens if the secret information is
stored and kept in a secure manner. Compared to the previous case, possession
of an item frees the user from having to learn and remember secret phrases.
Furthermore, it enables more frequent authentication to repeatedly verify user’s
presence, which would be too intrusive if passwords were used for authentication.
However, it is generally doubted whether a token really proves the identity
of the user, since these items can be easily shared among multiple users, lost
or even stolen [CN03]. Thus, this type of authentication is more suitable for
authentication of actual devices rather than human users that carry them.

3. Something that is characteristic to the user. In this case, the user is reliably
identified by determining his/her unique features, i.e. genetic traits, e.g.

8 2. BACKGROUND

fingerprints, voice pattern, eye retina or DNA, and comparing this data to
equivalent data obtained during user’s registration [SP12]. However, this
method raises concern about potential unintended use and theft of digitised
biometric information, since, unlike passwords or physical tokens, biometric
information is bound to a user, it does not change and thus cannot be revoked
[BL07]. Furthermore, it is possible to make copies of this information, e.g.
photographs or gelatin fingerprint patterns, which may then be used to fake body
parts involved in authentication [BL07, Pan10]. It is possible to prevent this
kind of attack by supervising devices and premises involved in authentication,
but it is not technically feasible for all systems and services.

This user-presented information obtained directly from the user or by performing
certain digital operations, e.g. scanning a fingerprint image and afterwards calculating
a pattern, is called credentials. After they are obtained from the user, credentials
are sent to a certain security authority or policy enforcement point for verification.

An alternative method to identity a user is by analysing his/her behavior, e.g.
gait, file system browsing or other behavioural patterns, as specified by De Luca et
al. [DLvZN+13]. However, as the authors specify, these techniques are susceptible
to attacks, because the behaviour can be recorded and replayed, thus they are rarely
used in secure systems.

Device authentication is similar to user authentication, although less complicated.
We classify it into two categories:

1. Something a device has. This case involves secrets stored in the device that are
used to prove its identity and is generally used to enable user authentication
with a token described above. As in the case of human users, the secrets may
be transferred and checked in a certain authentication authority. Alternatively,
a device may use a secret to derive another piece of information that is accepted
as a reliable proof by the authenticator. Challenge-response and certificate-
based authentication mechanisms are based on this concept. It is important to
emphasise that although device authentication items, e.g. a X.509 certificate,
are effectively issued to users for user authentication, they are often used in
an automatic matter and do not ensure user’s presence at exact moment, even
though a login or periodic presence verification procedure is used [CN03]. Thus,
secrets stored in a device should be treated as a means to authenticate devices
and not users.

2. Something that is characteristic to a device. This option enables determining
device identity by its behavioural or physical context credentials, e.g. geographic
or low-level operational features, such as frequency of transmitted signals

2.1. IDENTITY MANAGEMENT 9

[ARE+05]. However, although suitable for authentication, these credentials are
considered context-based rather than identity-based, thus they are not suitable
for detection of a specific identity, not to mention its verification.

2.1.4 Entity Authorisation and Accounting

Although authentication enables reliably detecting identities of communicating parties,
it is often insufficient for access to a certain resource or communication in a system.
Typically, a system contains resources or functionality that is accessible to specific
and limited sets of users, e.g. private data of a specific user. To enable control
over the mentioned features, the system has to check if the authenticated entity
is allowed to access the requested data and functionality. Thus, authentication is
followed by authorisation, i.e. a process that involves analysing entity’s rights in the
system [Win05]. This procedure is performed in a policy decision point and typically
compares security policy for a requested resource with permissions and entitlements
of the authenticated entity that requests it. As specified by Rotondi et al. [RP12],
there are several access control mechanisms, including the following:

1. Access Control Lists (ACLs) enable explicitly specifying individual actions
that an entity, which is called a subject, is allowed to perform with specific
resources, which are called objects. A generalised, more systematic approach of
this technique is Access Control Matrix (ACM), which enables specifying access
rights in a matrix, where matrix elements are subject-object pairs. However,
both ACLs and ACM approaches are complicated to manage when the number
of subjects or objects in a system is large.

2. Role-Based Access Control (RBAC) helps solving the rights management
problem mentioned above by introducing an additional role layer. This tech-
nique allows associating access rights to roles rather specific subjects. Thus, a
role can be treated as a subset of actions. Afterwards, one or more roles are
assigned to each subject, thus allowing the latter to perform operations defined
by one or more access right subsets.

3. Discretionary Access Control and Mandatory Access Control focus on
the issuer of access rights. In Discretionary Access Control, the resource owner,
typically a human user, specifies who or what can access his/her resources.
Conversely, Mandatory Access Control involves a central administration that
determines the rights of subjects to access system’s objects.

4. Attribute-Based Access Control (ABAC), unlike previously described
models, grants access to resources based on attributes of identities rather than
identities themselves. However, this method does not enable detecting specific
identities and is thus not suitable for the systems we analyse in this thesis.

10 2. BACKGROUND

To further increase security of the system, operations of an entity are often
recorded. This procedure is called accounting, and is more often used for logging
human user operations in order to gather proof for investigation of security breaches
and prevent non-repudiation.

Servers responsible for authentication, authorisation and accounting are typically
called Authentication, Authorisation and Accounting (AAA) servers.

2.1.5 IdM System Models

As mentioned above, identities are issued and managed by IdM systems. Such a
system also performs authentication and authorisation of identities in a specified
scope. However, this does not mean that an IdM system serves at most one Service
Provider (SP). Based on agreements and shared standards for identity data, as well
as its exchange mechanisms, a single IdM system may be utilised by multiple SPs.
This is especially common in user-oriented domains. User IdM system models, i.e.
those operating on user identities, are traditionally classified into three categories:
isolated, federated and centralised [GJK+09]. Besides the differences in IdM models,
types of identities also differ depending on specific IdM models, which are explained
together with the models below.

1. Isolated IdM model requires that each service contains its own IdM system.
In this case, the IdM system maintains separate identities along with isolated
identifiers for each user, thus every user has a separate identity per every
service he/she uses.To utilise such a system, a user creates a virtual identity,
representing only a subset of the entire user’s identity (all the data known
about the user) necessary for a user’s actions in a particular domain of a service
[HZW11].

Although this model is used in most of the systems, it has a disadvantage of
not being scalable from perspectives of both the user and SP. As the number
of a system’s users increases, IdM at a SP’s side requires more resources,
including hardware, bandwidth and human personnel. From the customer’s
perspective, a person that utilises services provided by multiple providers has
to manage credentials for all the accounts. This imposes additional effort
needed for creation of an account and accessing it later in order to use the
service. Furthermore, since most of the systems authenticate users by requesting
passwords (although alternatives exist, as specified above), this creates issues
related to password reuse, data leaks and limited human memory capabilities
[BHOS12].

2. A federated system model enables sharing identity information among
multiple parties that trust each other and have standardised procedures to

2.2. COMMUNICATION TECHNOLOGIES 11

map identity fields. These communicating parties, forming a federated group,
accept the same identifier provided by a user. In practical implementations, a
number of domains acting as Identity Providers (IdPs) control identity data
and authenticate users. The same or other parties in the federated group, e.g.
SPs, request trusted IdPs to authenticate a user and provide user’s identity
information. In this case, a user creates an identity by providing personal
details that are afterwards stored in one or multiple IdPs. Afterwards, when a
user wishes to access a service, a certain trusted IdP authenticates the user
and provides the service with a subset of stored identity attributes defined with
relationship agreements.
Federated IdM system model reduces the effort needed for a user to start using
a service and manage his/her credentials. Furthermore, since authentication in
this model is performed by an IdP, the model enables SSO service. SSO sim-
plifies utilisation of multiple services by requiring one-time user authentication,
after which a user is provided seamless access to multiple potentially unrelated
services that use the same IdP. In Section 3.2, we present several currently
utilised IdM systems that provide SSO feature and are based on this model.

3. A centralised IdM system model strictly defines the roles and relationships
among systems: there is one IdP that manages user authentication and identity
information, and one or more SPs that use the identity information. The IdP
has to be trusted by both the customers and the service providers. This model
also enables SSO feature and reduces user’s effort to use a new service, if there
are other services in the same domain that are already used. In this model,
a user is allowed to create one or more virtual identities, introduced together
with isolated IdM model. However, virtual identities issued by an IdP are not
linked to each other, although they are typically based on the same identity in
the IdP [HZW11].

Besides user authentication, current services and systems impose new require-
ments for IdM systems. For example, some systems enable access rights delegation,
which enables third parties to perform actions on the authenticated user’s behalf.
Furthermore, increasingly popular smart phones stimulate the trend of mobile appli-
cations that deal with challenges imposed by mobility, e.g. user or network mobility
and multi-homing. Thus, they create a need for new modern solutions in identification
management systems. Several modern systems addressing these issues are analysed
in Section 3.2.

2.2 Communication Technologies

In this section, we specify the other aspect of the thesis’ topic, that is modern com-
munication technologies. We do not provide specific details about implementations,

12 2. BACKGROUND

but rather define the general ideas of these technologies.

2.2.1 M2M Communications

M2M communications is a broad term describing any technology that enables net-
worked devices to exchange information and perform actions without manual assis-
tance of human personnel [WWR+12]. Besides performing tasks specific to their
system’s functionality, these devices act as independent network nodes, capable of
initiating communication by sending messages to other devices as well as responding
to incoming requests.

An M2M system potentially comprises a wide variety of both simple and in-
telligent devices, such as sensors, actuators and controllers. These devices can be
connected together by utilising various wired and wireless network technologies, e.g.
Ethernet, Wi-Fi, ZigBee and Universal Mobile Telecommunications System (UMTS).
M2M is expected to utilise currently available, open and standardised device and
communication technologies to create intelligent applications and services that are
scalable, reliable and, most importantly, cheap to deploy and maintain [Law04]. This
technology is also related to IoT technology, a vision that refers to connecting all
common devices and non-electronic items, i.e. things, to the Internet, as discussed
below. A system with such a large number of connected nodes increases the effort of
network management, making it extremely expensive and even impossible to perform
it manually. Thus, automation provided by M2M becomes essential.

The scope of application provided by M2M technology is rather wide. Some of the
areas expected to utilise M2M technology identified by Potter et al. [PHS13] include
smart metering, automotive applications, residential, commercial and large-area
automation as well as E-health. These applications operate in diverse environments
and create different challenges. Thus, as the authors note, there is no single optimal
solution covering all of these application areas.

Technologies similar to M2M have been present for a long time. The concept
of M2M technology originates from telemetry, designed for automatic measurement
and transmission of data using wired or wireless technologies [GBK+11]. The
difference between telemetry and M2M is that the latter utilises more common, open,
standardised and ubiquitously used technologies. For example, a predecessor of
M2M, Supervisory Control and Data Acquisition (SCADA) system also utilises a
similar network that includes sensors and actuators [Law04]. However, in SCADA,
the controlled devices are connected in a wired-manner to a central server, which is
responsible for polling the sensors and hence acquiring data. Furthermore, SCADA is
based on proprietary technologies, making the system impractical due to limitations
on system’s scalability and flexibility as well as high costs, difficulties and large time
resources needed for system’s deployment and maintenance.

2.2. COMMUNICATION TECHNOLOGIES 13

2.2.2 Internet of Things

IoT promotes the ideology that everything, from devices to ordinary things, should
be connected to the Internet [KKK+13]. As noted by Cisco [Eva11], the term also
emphasises evolution of the Internet, since the current Internet is designed for human
user-oriented communications and user-based traffic flows. Thus, new solutions
are needed in order to support the continuously increasing growth of numbers of
everyday things connected to the Internet, which has already overtaken the number
of connected human users. Furthermore, as the author of the term IoT, Kevin Ashton
[Ash09], describes, the infrastructure has to become capable of processing enormous
load of device-generated data, thus IoT is related not only to communications, but
also endpoints, i.e. smart servers and applications.

IoT is still in its early development phase and, as noted by Koreshoff et al.
[KRL13], its definition is not stable yet. Furthermore, the precise position of IoT
technology is unclear. Although presented as a powerful communication technology
connecting devices and things in the global Internet structure, IoT seems to be
targeted more towards simple devices and things, with applications enabling asset
tracking and quick item meta-data retrieval using RFID tags, as well as environment
monitoring using sensors [Ash09, Per12, WJ12]. In the terms of the latter use case,
IoT closely relates to M2M. In fact, Song et al. [SKSS14] define IoT as an underlying
technology providing connectivity for M2M devices and protocols.

2.2.3 Ambient Intelligence

Another technology currently in development that is believed to enable ubiquitous
computing is AmI. AmI is a technology that enables various device-based functional-
ity, when devices are integrated in physical environments and directly or through
user’s devices provide him/her with functionality [CNH+08]. For example, in a
home environment, a system detects user’s presence, and the latter can control
the surrounding devices using voice commands [GHL05]. Another example is a
AmI-powered conference building, where the premises are equipped with screens,
Near-Field Communication (NFC) readers and other devices enabling attendants
to easily register to the conference and sessions using their smartphones, obtain
real-time conference progress information and start their presentations by simply
approaching the screen in front of a presentation room [CNH+07].

Unlike the previously analysed technologies, AmI actually involves users and
minds their identities when providing services. On the other hand, AmI is also
related to the previously discussed technologies due to utilisation of the same devices,
including RFID and NFC-based equipment [CNH+08, CNH+07].

However, envisioned AmI applications are limited to local environments, and the

14 2. BACKGROUND

largest effort of the technology’s research is based on detecting context. For example,
current scientific effort includes works related to general detection of context using
RFID and NFC [CNH+08, CNH+07], user’s identity detection based on biometrics
[Piu13], or interacting with user using voice commands and learning to understand
user’s behaviour and habits to improve application features [GHL05]. Thus, this
technology is focused on local user-to-environment and user-to-device communication
rather than device-to-device communication. Since our work focuses on device-to-
device communication based on user identities, AmI is not directly related to our
work.

Chapter3State of the Art

This chapter analyses the state-of-the-art IdM systems utilised in ICT as well as
communication technologies related to ubiquitous device-to-device communications.
Since the goal of this thesis is to propose an IdM system for autonomous user-oriented
device communications, this chapter focuses on IdM related to communicating parties
and communications over the Internet performed among entities.

As mentioned in Section 2.1.2, there are significant differences among identities
of human users and devices. Thus, the analysis of current implementations of IdM
systems presented in the document is divided into two parts. The first part presents
systems that manage identities for devices and items, e.g. the things in IoT. These
systems are typically utilised by commercial organisations for business purposes,
e.g. asset tracking or equipment management. The second category includes user-
oriented IdM systems that manage human user-related information. These systems
are typically used by user-oriented services, such as web services and applications.
The further

3.1 Device-Oriented IdM Systems

In this section, we analyse identities and IdM systems related to devices. As mentioned
in Section 2.1.2, information related to devices is often treated simply as meta-data
rather than actual identities, although the current increase in device intelligence and
capabilities are reflected in new projects that treat devices as independent peers with
identities.

Quite surprisingly, identification of devices and acquisition of their further in-
formation is largely based on RFID technology. It enables item identification and
meta-data acquisition based on RFID tags that are attached to the mentioned items,
e.g. baggage at an airport [RC11]. The applications are illustrated in the analysis of
scientific work presented further.

15

16 3. STATE OF THE ART

3.1.1 Object Identifier for Meta-Data

Roussos and Chartier [RC11] describe utilisation of an Object Identifier (OID)
mechanism that identifies items using an identifier that follows Universal Resource
Identifier (URI) format and hence enables access to item meta-data stored on the
web. OIDs follow a tree structure, thus enabling definition of complex relationships,
including parents, siblings and children. The system is intended to provide information
about items, i.e. relatively static data. Furthermore, OIDs may be reused for
identification of different items, if temporary object identification is sufficient.

Due to utilisation of URIs, the system depends on Domain Name System (DNS).
However, as the authors note, DNS services are managed locally by network adminis-
trators, and no users from outside the domain, e.g. a company, can create or manage
OIDs for items. Thus, this solution is restricted to proprietary systems.

3.1.2 Cooltown

Another RFID-based device-related identity management system is Cooltown, spec-
ified by Kindberg et al. [KTV05, KBM+02]. The system uses Infra-Red (IR) and
RFID to transfer identifiers of users, devices and places, i.e. links to web-pages
representing them, enabling so-called web-presence [KBM+02]. The web-pages are
either hosted in the items themselves, e.g. in connected devices, or external web-
servers. These web-pages provide information and services related to the represented
entities. Furthermore, since entities are web-present, the approach actually treats
entity meta-data as identities.

In the broad sense, the system provides an AmI functionality, presented in Section
2.2.3, where a user may interact with locally available services presented by other
entities in the environment using his/her device, e.g. a mobile phone. Similarly
to OID-based approach, Cooltown is based on DNS services, thus creation of new
identifiers is rather restricted.

3.1.3 Object Naming Service

Object Naming Service (ONS) built on top of DNS is yet another similar identification
technology that is based on DNS functionality for storing Name Authority Pointer
records containing information about the location of meta-data of objects referred
to by identifiers [RC11]. ONS was originally designed in EPCGlobal system to map
product class level information to a service point and description. Due to relation to
DNS, the device meta-data may be obtained by sending regular DNS queries.

Although ONS enables finding the exact location of meta-data storage, it is
merely a discovery service and thus storage and acquisition of the actual meta-data

3.2. USER-ORIENTED IDM SYSTEMS 17

exceeds the scope of this technology. Therefore, in order to find and obtain this
data, operation of ONS must be combined with additional protocols, which may
complicate development and management of such systems. Furthermore, ONS does
not specify the way for obtaining object identifiers. Since Electronic Product Code
(EPC) is used to identify products, it potentially identifies the objects by using RFID
tags and bar-codes. However, as indicated by Roussos and Chartier [RC11], ONS is
now an insecure, deprecated technology that has been replaced by EPC Discovery
Service.

3.2 User-Oriented IdM Systems

This section discusses application-level IdM systems for management of human user
identities. We start by discussing features of OpenID in Section 3.2.1. Afterwards,
Section 3.2.2 analyses Security Assertion Markup Language (SAML) protocol. Then,
Section 3.2.3 describes OAuth v2.0. Finally, Section 3.2.4 discusses a recent protocol
OpenID Connect.

3.2.1 OpenID

General Description

OpenID is an authentication protocol providing a user with a SSO feature for
accessing web-based services [Opea]. It is a decentralised IdM system, i.e. it allows
having multiple OpenID identity servers capable of providing identity information to
any service supporting OpenID authentication.

OpenID, with the currently newest version 2.0, is designed as an IdM solution
for access to websites and web applications. It involves three parties: a User Agent
(UA), controlled by a human user, a Relying Party (RelP), which provides the service,
and an OpenID Identity Provider (OIdP), which authenticates the user and delivers
his/her personal information to RelP [Opea]. OIdP is identified by a URI. To use
OpenID technology, a user has to register in a selected OIdP and obtain an identifier
called User-Provided Identifier (UPID), which is needed later for authentication. A
user may create several identity profiles at the same OIdP and afterwards select a
specific identity to provide to a RelP, thus keeping control over private data. A user
may also establish his own private OIdP server, which enhances control over personal
data. However, this requires technical competence that is higher than possessed by
typical users.

OpenID does not ensure any trust mechanisms for relationship management
between RelPs and OIdPs. Therefore, few service providers wish to become RelPs,
which is considered the main reason why OpenID did not experience significant
adoption [BHOS12].

18 3. STATE OF THE ART

Operation of OpenID

Authentication process in a website that supports OpenID login is initiated by a user,
i.e. by first loading the website in a UA, i.e. a web-browser. The user then types in
his/her identifier in the form of a Universal Resource Locator (URL) or an Extensible
Resource Identifier (XRI). The latter option is available since OpenID version 2.0. A
user can also provide the identifier of an OIdP instead of the identifier of his/her
identity [Opea, CMT08], in which case he/she can choose an identity profile during
authentication in OIdP.

Afterwards, RelP performs OIdP discovery based on the provided identifier to find
the endpoint URL for OIdP. RelP connects to the endpoint and establishes a secure
channel to exchange secret information and enable message signing. Afterwards,
RelP redirects the UA to a corresponding OIdP for authentication and optionally
identity profile selection.

Subsequently, the UA is redirected to RelP with an assertion of either a successful
or failed authentication. This assertion may also include subject-related information.
RelP validates and analyses the response, and either allows or denies access to the
service.

3.2.2 SAML

General Description

SAML is an authentication protocol that allows exchanging security assertions
between parties to enable SSO service [OAS08]. These parties are security domains
with trust relationships established between them, thus SAML enables enterprise
authentication. The main principle of the protocol’s operation is similar to OpenID
discussed in Section 3.2.1. However, unlike in OpenID, collaboration between a
relying party and an identification provider using SAML is performed only if the
parties have a trust relationship and potentially additional information utilisation
contracts.

SAML involves three parties: SP, UA and IdP. A SP provides a service valuable
to the user. A UA is used by a human user, i.e. the subject, to obtain access to a
service provided by a SP. Typically, UA is a desktop or mobile web-browser. An IdP
provides SP with identity information related to the subject. In a typical scenario,
when a user requests access to a service using his/her UA, UA is redirected to the
IdP where the user has to prove his/her identity. Upon successful authentication,
IdP sends identity information, including authorisation and authentication-related
attributes, as assertions back to SP.

The current version of SAML protocol is 2.0, created after merging an earlier

3.2. USER-ORIENTED IDM SYSTEMS 19

version 1.1 with Shibbolleth and Identity Federation Framework (ID-FF), developed
by Liberty Alliance [Ora10]. Earlier protocol versions 1.0 and 1.1 are now deprecated,
thus further discussion addresses protocol version 2.0.

SAML protocol is comprised of the three following components [OAS05a]:

1. Messages that encapsulate data, e.g. security assertions;

2. Bindings that specify the means for transporting SAML messages;

3. Profiles that specify complete combinations of bindings that can be used to
perform authentication and authorisation.

SAML protocol messages are based on Extensible Markup Language (XML)
format. The fundamental SAML message type is security assertions, which contain
statements about a subject’s attributes and rights. A single assertion message
contains one or more statements of the following types:

1. Authentication Statement that provides information about the authentica-
tion process, e.g. time and method and result of subject authentication.

2. Authorisation Decision Statement that indicates whether access to a
requested resource has been granted.

3. Attribute Statement that provides additional information about the authen-
ticated subject.

Assertions also contain information about the issuer of the message, general
information about the subject and potentially indicate conditions of token’s validity.
For example, a token may be valid at a specific period of time.

SAML also includes Authentication Request and Artifact Resolution message
types. Authentication Request specifies messages used for initiation of subject
authentication in the IdP, which are sent from the SP. Artifact Resolution messages
enable SP and IdP exchange message references, which are afterwards resolved in
order to obtain the content of the messages.

Besides message formats, SAML protocol specifies bindings and profiles. Bindings
[OAS05b] define how the messages are sent, and profiles [OAS05c] describe a com-
bination of bindings used for communication among specific parties. For example,
Hypertext Transfer Protocol (HTTP) Redirect Binding enables adding the SAML
message into URL query string of a HTTP message. However, due to URLs length
limit, this option is suitable only for short messages, such as Authentication Requests.

20 3. STATE OF THE ART

Alternatively, POST Binding enables putting a transferred message into a HTTP
form that is forwarded to another party (SP or IdP) through a UA. Furthermore,
HTTP Artifact Binding profile enables using UA to transfer message references as
Artifact Messages, which are used by the receiver to directly contact the sender and
obtain the actual message content.

Operation of SAML 2.0

SAML communication sequence begins when a subject uses his/her UA to access a
resource in a SP [OAS05c]. This invokes a security check for a given resource at the
SP. If the particular SP already contains a user-related security context, it simply
checks the context for subject’s rights to access the resource and afterwards returns
the resource. Otherwise, SP tries to obtain information about the user from an IdP
it already knows about or discovered using the Identity Provider Discovery protocol.

After obtaining information about the IdP, a SP creates a request for IdP that
includes authentication request message and RelayState parameter describing the
location of SP. This request is forwarded to IdP by the UA. After receiving the
request, IdP checks if it has a security context created for the requested user identity
and, if not, requests the user to prove his/her identity. The SAML protocol standard
does not specify authentication mechanisms for the IdP, thus passwords, allowing
utilisation of certificates or any stronger type of authentication. After successful
authentication, IdP creates a security context related to the user identity, meaning
that the user is logged in the IdP and future assertion requests are handled without
the need for the user to re-authenticate, thus enabling SSO service.

After authentication, IdP validates the request of SP and sends a response back
through the UA. The response contains security assertions and RelayState parameter
value initially issued by the SP. When forwarding the response to SP through UA,
the user might be asked for consent to transfer his/her information to the SP.

Assertion Consumer (AC) validates the response, creates a security context for
the user at the SP for this and future uses and redirects the UA to the requested
resource.

3.2.3 OAuth 2.0

General Description

OAuth 2.0 (further called OAuth2) is an authorisation framework. Unlike previously
discussed technologies, it does not focus on authenticating a user and providing parties
with the user’s identity information. Instead, it defines a protocol for authorisation of
a third party service, i.e. Client, to act on a resource owner’s behalf when performing
certain actions on a resource stored in a Resource Server [Int].

3.2. USER-ORIENTED IDM SYSTEMS 21

OAuth2, as a recent technology, addresses current needs, such as mobile appli-
cations based on web-services. Unlike OAuth v1.0, which specifies its own security
mechanisms, OAuth2 relies on security provided by Hypertext Transfer Protocol
Secure (HTTPS) protocol, which depends on Transport Layer Security (TLS). Fur-
thermore, OAuth2 enables obtaining long-time possession of tokens by distinguishing
short-time tokens and refresh tokens.

As discussed by Dennis [Den], OAuth2 has an advantage over OpenID and
SAML 2.0 protocol because it does not use HTTP POST messages and thus fully
supports mobile clients, i.e. applications. In certain modes of SAML 2.0 and OpenID,
assertions and authentication results, respectively, are sent in HTTP POST messages.
Mobile applications launched using URL obtained as SAML response, do not have
access to POST messages, thus cannot access information sent in these messages.
Although workarounds exist, this feature of OpenID and SAML constrains mobile
application development. Thus, OAuth2 addresses this problem by using only HTTP
redirects in UA for message forwarding among parties and entirely avoiding utilisation
of POST messages.

OAuth2 specification [Int] defines the following four parties involved in the process
of OAuth2-based authorisation:

1. Resource Owner (RO): an entity that possesses (contains rights to) certain
resources and is willing to grant a third party Client with access to the resources.

2. Resource Server (RS): a server that contains the resource.

3. Client: a third-party application (web-based, mobile-based or other) that
desires to perform certain actions on a resource in RS.

4. Authorisation Server (AS): a server responsible for authenticating the RO
and issuing authorisation tokens to Clients allowing certain operations on a
resource.

RS and AS roles can be performed by a single entity. It is noted that relationship
and interaction between these parties is beyond the scope of SAML specification.

Operation of OAuth2

OAuth2 authorisation procedure begins when a Client sends an Authorisation Request
to RO. The message can be sent directly to the RO or indirectly through AS. At this
step, the owner may be prompted to complete authentication procedure. Afterwards,
RO sends an Authorisation Grant back to the Client. Authorisation Grant is
generally an explicit owner’s agreement indicating that the Client is allowed to use

22 3. STATE OF THE ART

the resource. For example, it can be a combination of a user-name and a password
or an authentication code received from an AS associated with the RS.

The Client uses the Authorisation Grant to request the AS for an Access Token.
The AS performs user (Resource Owner) authentication, validates the Authorisation
Token and issues an Access Token to the Client. Access Tokens typically have limited
lifetime. To enable token refreshment without the need for user re-authentication,
AS can also provide the Client with a Refresh Token that can be used to obtain new
Access Tokens.

Having the Access Token, the Client application can request permission to perform
certain operations with the resource on user’s behalf. In order to do so, it sends
a request with information about desired actions as well as the Access Token to
the RS, where the resource is located. Afterwards, RS validates the Access Token
and performs the requested operations. Validation method is not defined in the
specification, but it typically involves collaboration between RS and AS.

As it is noticed by Dennis [Den], unlike authentication response in SAML 2.0,
OAuth2 Authorisation Grant and Access Token, obtained by the Client after user’s
authentication and authorisation, does not provide the Client with user identity
information. Thus, an additional request to the AS is needed to validate the Token
and to obtain certain user identity data as a resource. On the other hand, this
enables invalidating the Access Token on the server side if the token is compromised
and thus forbidding the Client’s further access to a specific resource.

3.2.4 OpenID Connect

General Description

As discussed in Section 3.2.3, OpenID and SAML do not support mobile applications.
Although OAuth2 addresses this problem, there are multiple important aspects
that are not defined by OAuth2 specification, which leads to differences and thus
non-interoperability of implementations. Furthermore, OAuth2 is designed for third
party authorisation, i.e. delegation of rights, rather than authentication. As noted
in OpenID Connect specification [SBJ+], OAuth specification includes methods for
obtaining Access Tokens needed for accessing resources, but omits definition of access
to user identity information.

OpenID Connect (current version 1.0) [Opeb] addresses these and other issues of
predecessor protocols and is described by its creators as Application Programming
Interface (API)-friendly technology that enables protocol support for native and
mobile applications. It is "a simple identity layer on top of the OAuth 2.0 protocol.
It allows Clients to verify the identity of the End-User based on the authentication

3.2. USER-ORIENTED IDM SYSTEMS 23

performed by an Authorization Server, as well as to obtain basic profile information
about the End-User in an interoperable and REST-like manner" [Opeb]. OpenID
Connect is an extension of OAuth2 providing authentication functionality, thus it
largely depends on OAuth2 for authorisation and flow of messages. OpenID Connect
also defines most of the out of scope parts of OAuth2, thus providing a complete
authentication framework specification.

OpenID specification defines the roles of OpenID connect members based on
OAuth2 definitions. For example, a RelP is described as OAuth2 Client that requests
Claims (information asserted about specific entities). Similarly, an OpenID Provider
is defined as OAuth2 Authorisation Server capable of providing a RelP with requested
Claims.

Operation of OpenID Connect

OpenID Connect Core specification [SNB+] defines three message flows, specifically
Authorisation Code Flow, Implicit Flow and Hybrid Flow that involve different
endpoints for issuing tokens. In this section, we analyse Basic Client’s implementation
[SBJ+], which uses Authorisation Code Flow, that uses Token Endpoint to issue
all the tokens.

Authentication procedure begins when a RelP prepares and sends an Authentica-
tion Request, which specifies a request to authenticate and/or return identity data
about a user, to an Authorisation Server. If needed, the latter authenticates the user
and asks the latter if RelP is allowed to access user’s personal data. Authorisation
Server then provides the RelP with a response that includes a code (an equivalent of
Authorisation Token in OAuth2). RelP uses this data structure to request a Token
Endpoint for access to user data. After receiving this request, Token Endpoint

provides a RelP with ID and Access Tokens, as well as potentially a Refresh Token
[SBJ+]. ID Token contains information about the authentication event. Among the
required parameters, such as the issuer and subject identifiers as well as expiration
time, it may include details about authentication processes that were performed.

Identity information access functionality is managed by UserInfo Endpoint.
After RelP receives an Access Token, it can use this token to request UserInfo
Endpoint for user identity-related information. Identity information set that is re-
turned by UserInfo Endpoint depends on Access Token and previously described
Access Token acquisition step. In order to specify requested identity information set,
a RelP specifies requested identity fields in the scope parameter that is included
in the request for Access Token sent to Token Endpoint. scope may include
request for user profile information, email, address and phone number request values.
However, it always includes openid value identifying that the request is an OpenID
Connect request.

24 3. STATE OF THE ART

As mentioned, OpenID Connect specification also fills multiple gaps that are
present in OAuth2. One of the most criticised shortcomings of OAuth2 is the lack of
definition of Access Token validation performed in the Authorisation Server. OpenID
Connect defines validation procedure not only for Access Tokens, but also for ID
Tokens and other related security parameters. Similarly to OAuth2, OpenID Connect
uses TLS for securing message transmission.

3.3 Communication for Ubiquitous Computing

This section discusses various industrial approaches of communication systems used
for ubiquitous computing. We start with a rather thorough discussion of European
Telecommunications Standards Institute (ETSI) M2M architecture specification in
Section 3.3.1, and briefly analyse other related efforts afterwards.

3.3.1 ETSI M2M System Architecture

One of the important M2M communication standards developed by ETSI [Eur13d]
defines M2M system’s functional architecture. This section thoroughly analyses ETSI
architecture from the perspectives of communicating components, their identification
and communication.

Architecture Components

In ETSI architecture, an M2M network consists of a number of different hierarchically-
ordered components that communicate with each other to perform high-level system’s
functionality, as presented in Figure 3.1. In the top-most level, ETSI-specified system
consists of Device and Gateway Domain and Network Domain. The Device and
Gateway Domain is comprised of the following elements:

1. M2M Device(s), responsible for running M2M Applications (referred to as
Device Applications (DAs)) using M2M Device Service Capabilities Layer
(DSCL). For example, a DA may be responsible for measuring environment
conditions and periodically sending data to other devices in the domain or to
the M2M Core Network (CN) in Network Domain, by utilising M2M Area or
Access Network, respectively. M2M devices may also provide connectivity to
M2M legacy devices which are not compliant to ETSI standards. In this thesis,
we refer to M2M Devices as D nodes.

2. M2M Gateway, which functions as a proxy between M2M devices and CN.
Similarly to M2M Devices, a Gateway also runs M2M Applications (referred to
as Gateway Applications (GAs)) on top of M2M Gateway Service Capabilities
Layer (GSCL). In simple scenarios, it can function as a mere repeater, relaying

3.3. COMMUNICATION FOR UBIQUITOUS COMPUTING 25

Figure 3.1: ETSI M2M functional architecture [KSB+13, Eur13d]

the packets between M2M devices and CN. However, it often performs more
sophisticated operations, e.g. aggregation and compression of data received
from M2M Devices, and afterwards transmission of this processed data to
M2M Core Network. Such gateway capabilities enable reducing the number
and size of messages sent from one domain to another. There can be multiple
Gateways in the Device and Gateway Domain. Furthermore, Gateways can
also provide connectivity to legacy M2M devices that are not compliant with
ETSI architecture. We refer to M2M Gateways as G nodes.

3. M2M Area Network, which enables connectivity between M2M devices
and M2M Gateway. It may be based on Wireless Private Area Network
(WPAN) technologies, e.g. Bluetooth, ZigBee and ISA100.11a, or use local
network technologies, such as Wi-Fi, Programmable Logic Controller (PLC)
and Meter-Bus (M-Bus). Utilisation of short-range networks allows minimising
consumption of energy needed for communication, thus prolonging lifetime of
energy-restricted M2M nodes.

Network Domain consists of:

1. M2M Access Network, which enables communication among M2M Devices
and/or Gateways and CN. It is typically a large area network based on a long-
range communication technology, e.g. x Digital Subscriber Line (xDSL), satellite
link, Wireless Local Area Network (W-LAN) and Worldwide Interoperability
for Microwave Access (WiMAX).

26 3. STATE OF THE ART

2. M2M Core Network, which is primarily responsible for providing M2M
Devices and Gateways with IP connectivity to the global Internet. Additionally,
it runs service and network control functions, provides roaming and interconnec-
tion with other networks. CN types defined in the specification include, among
others, 3rd Generation Partnership Project (3GPP) CNs, ETSI Telecommunica-
tions and Internet Converged Services and Protocols for Advanced Networking
(TISPAN) CN and 3rd Generation Partnership Project 2 (3GPP2) CN. In this
thesis, we also refer to this component as N node.

3. M2M Service Capabilities, which is a layer of abstraction that provides
common functions and hides network and technology specifics. These functions
can be used by M2M Applications. To differentiate this layer from similar
Service Capabilities layers in M2M Devices and Gateways, we refer to it as
Network Service Capabilities Layer (NSCL).

4. M2M Applications, which utilise M2M NSCL to run service logic. These
applications are responsible for high-level system’s logic and user interface
utilised by consumers to access the system’s services. We refer to applications
running in Network Domain as Network Applications (NAs).

The Network Domain also includes two layers of management functions: Network
Management Functions Layer and M2M Management Functions Layer.

As mentioned above, some DAs are running in devices that do not have a Service
Capabilities Layer (SCL) or are even ETSI-incompatible. Thus, M2M devices are
classified into three categories. The first category comprises devices that contain
a SCL and are ETSI-compatible. The second category contains ETSI-compatible
devices that do not have a SCL. Such devices use dIa Reference Point (RP) to
connect to a Gateway and utilise the latter’s GSCL. Finally, the third category is
comprised of legacy devices that do not have a SCL and are ETSI-incompatible.
These devices can be connected to the network through a D or G node by using
Gateway Interworking Proxy (GIP) or Device Interworking Proxy (DIP) capabilities,
respectively, provided by the supporting device’s SCL. ETSI does not specify the
connection between a legacy device and the node that connects it to the network.
Like in [Eur13d], we refer to the devices of the three categories as D Device (DD), D’
Device (D’D) and d Device (dD), respectively. Connections between these devices
and other architecture components are shown in Figure 3.1.

Identities in M2M Network

M2M systems utilise identities to establish robust and secure connections between
network components and to communicate afterwards. This section discusses IdM
system specified in ETSI functional M2M architecture [Eur13d].

3.3. COMMUNICATION FOR UBIQUITOUS COMPUTING 27

Identifiers in M2M Network The overall functioning of ETSI M2M system is
based on a set of identifiers defining different components of the system. Based on
ETSI specification, this set is divided into two identifier models. The first model
consists of identifiers that are used by the features specified in the specification. More
specifically, these are M2M components and their logical relationships, defining the
ETSI M2M platform. The specification focuses on the latter model of identifiers,
and the provided instructions related to these identifiers are normative. Since an
M2M system greatly depends on underlying communications network (at least for
the Access Network part), there is another hierarchy of identifiers that addresses
identification and communication at lower level, concerning mostly SP and Access
Network (AcN) parts. However, these lower-level communications are out of scope of
the specification and the provided details are merely informative. Therefore, in this
thesis we focus on the first model, and mention only the important aspects of the
second model.

The following are the components that comprise the normative model of identifiers:

1. Application Identifier (App-ID) uniquely identifies an M2M Application
registered at a certain SCL. If there is more than one instance of the same
application registered at the same SCL, App-IDs must be unique. App-ID is
used by other parties for interaction with the application.

2. Node Identifier (Node-ID) identifies a node, i.e. the logical representation
of components in a M2M Device (D Node), Gateway (G Node) or Network
Device, registered with a particular SP. A node is comprised of a SCL, M2M
Service Bootstrap Function (MSBF) and M2M Service Connection Function
(MSCF). A Node-ID is created during M2M Bootstrap procedure or when
pre-provisioning a D/G Node with SP configuration parameters. If a device
registers with several SPs, then there can be multiple nodes deployed on a
M2M device or gateway, but they all must have unique Node-IDs.

3. SCL Identifier (SCL-ID) uniquely identifies a SCL. According to the speci-
fication [Eur13d], SCL-ID may have the same value as Node-ID.

4. Service Connection Identifier (CONN-ID) identifies the connection be-
tween a DSCL/GSCL and NSCL. Such a connection is used for communication
between a D/G Node and the Network. A connection between the parties
is not permanent, i.e. after it is terminated, it can be re-established or even
replaced with a new connection, thus the CONN-ID of a connection between
two parties is not static and can change in time.

5. Service Provider Identifier (PROV-ID) identifies a SP. The value of this
identifier is unique and static.

28 3. STATE OF THE ART

6. MSBF Identifier (MSBF-ID) is a unique and static value that identifies a
MSBF. MSBF-ID is assigned by a SP.

7. MAS Identifier (MAS-ID) is a unique and static value identifying a M2M
Authentication Server (MAS) and is provided by a SP.

In addition to the mentioned model, the specification provides an informative part
about lower-level identification used for addressing and communication purposes, and
instructions for mapping between the two models (see Figure 3.2). The lower-level
model consists of two layers: M2M Service Device Level and M2M Transport Device
Level. M2M Service Device Level is further divided into M2M Application Identifier,
M2M Service Subscription Identifier and M2M Service Device Identifier. M2M
Transport Device Level identifier set consists of M2M Access Network Subscription
Identifier, M2M Access Network Device Identifier and M2M Access Network Address.

Distinction of the layers enables a logical and potentially physical separation of
functionality provided by a high-level SP and lower-level communication part, based
on capabilities of Access Network Provider (ANP). It also implies that identifiers in
different layers are utilised by different parties, i.e. SP and ANP.

The lower-level model of identifiers addresses the two cases when SP and ANP
are the same entity and when they are separate entities associated with a pre-
established relationship. Furthermore, these two layers can refer to a single or two
separate physical devices (a service device and a transport device). For example, a
D’D contains only Service Device Level identifiers, whereas the Gateway the device
connects to provides the Transport Device Level identifiers.

Some of the lower-level identifiers can be omitted in the implementation of the
network. For example, a DD acts as both a Service and Transport Device, which
means that the hardware information is the same in both levels. In this case, Access
Network Device Identifier is sufficient and M2M Service Device Identifier is redundant.

Figure 3.2: Low-level identification system of ETSI M2M architecture [Eur13d]

3.3. COMMUNICATION FOR UBIQUITOUS COMPUTING 29

Furthermore, when the SP is the same entity as ANP, the M2M Service Subscription
Identifier carries the same information as the M2M Access Network Subscription
Identifier, thus one of them can be omitted.

Connectivity in the Access Network may be enabled by diverse technologies, e.g.
UMTS, a satellite connection and xDSL, as mentioned in Section 3.3.1. The choice of
a communication technology may influence the identifier formats used in the system’s
implementation.

Identification and Connection of D/G nodes In order to provide secure
M2M communications, node identification and authentication processes are of prime
importance. In ETSI M2M system, this is addressed with a hierarchy of keys,
identifiers and a set of procedures that are utilised to identify a D/G node during
connection establishment between the node and the M2M system.

The top-level key used in M2M identification process is the M2M Root Key (Kmr).
This key allows authentication and key agreement between a D/G Node and the
SP. Kmr depends on Node-ID and PROV-ID, thus every M2M node has a separate
Kmr shared with the SP. Furthermore, a Kmr is used to generate M2M Connection
Keys (Kmcs) and afterwards M2M Application Keys (Kmas). Kmc is involved in
authentication of a M2M connection. Similarly, Kma is utilised in authentication and
authorisation of an M2M application. In addition to that, Kma allows protecting
the data traffic of an application. Keys Kmc and Kma are derived using CONN-IDs
and App-IDs, respectively.

A device may obtain a Kmr needed for further key generation in several ways.
Kmr may be preconfigured, i.e. stored in a device’s Secured Environment Domain,
e.g. in a Universal Integrated Circuit Card (UICC) module. Alternatively, the device
may be provisioned with the material required to generate the keys, including Kmr,
during service bootstrap. As the specification describes, Node-ID, SCL-ID and a
list of NSCLs identifiers can be produced as additional elements of M2M service
bootstrap.

There are multiple ways to perform the bootstrap procedure, depending on
equipment and communication technologies that are present in the network and
whether Access Network provides assistance. In the Access Network-assisted scenario,
a node can obtain the information required for key derivation and to locate other
network members by utilising network credentials. Independent scenarios, however,
are based on pre-provisioned information set by the manufacturer in D/G devices. For
example, Identity-Based Authenticated Key Exchange (IBAKE)-based automated
bootstrapping procedure requires pre-provisioned identifiers, as well as a pre-shared
secret (key or a password). Thus, in this case the same information would be

30 3. STATE OF THE ART

separately and securely provisioned into the D/G devices and the MAS before
deploying the system.

ETSI specification also defines a temporary service connection that is established
between a D/G node and the service provider in order to gain connectivity and access
to MSBF which is then used to perform service bootstrap. However, in order to
create a temporary connection, the connecting node has to be pre-configured with
service provider address as well as identity and secret parameters.

After a D/G performs M2M bootstrap and service connection procedures, it
contains Kmr and Kmc keys, as well as mId RP. This information can be used by
the node to perform service registration procedure, which involves registration of
a node’s SCL in the NSCL. In addition to that, when applications are registered
in the node’s SCL and Kmas are generated, the node can communicate with other
nodes in the network via the Network node. Thus, it can either request or provide
functionality enabled by M2M applications.

Addressing of Applications

Communication of devices and applications is based on a feature of ETSI M2M
architecture called M2M Point of Contact (PoC). PoC is used by M2M network to
locate the device’s SCL and afterwards the required application by looking up the
information related to the targeted SCL that is stored in NSCL and translating it into
a URI or IP address. These addresses are then used to perform communication with
the device and application using Representational State Transfer (REST) protocol.
The further part of this section contains a description of a D/G node SCL and
application registration procedure, as well as processes performed to locate and reach
the desired application.

Initially, when a D/G node is connecting to the network, it has to perform
bootstrap, network and service connection as well as service registration procedures,
as described above. During service registration, a SCL (DSCL or GSCL) has to
register to a NSCL. When performing this procedure, the registering node creates a
SCL resource, i.e. a data structure, in NSCL to provide the latter with information
of the node’s SCL. This resource contains another resource, M2MPoC, which holds
information specifying how to reach the registered SCL, i.e. the D/G node that
contains it.

After SCL registration, M2M applications can register in the local SCL. Similarly
to SCL registration in NSCL, this procedure involves creation of another resource
application that stores information about an application, but in this case the informa-
tion is stored in the local SCL, i.e. located in the same node as the applications. The
SCL can then also register applications in the remote SCL, i.e. NSCL. The ETSI

3.3. COMMUNICATION FOR UBIQUITOUS COMPUTING 31

specification does not specify what and when decides to register the application in
NSCL, thus it is assumed that it depends on the implementation specifics of the
application and the system.

After the application registration is complete, NSCL knows about the SCL and
the applications that have registered to it. Thereafter, it might be requested by some
other party, e.g. an application in another D/G node, to send a REST request to one
of these applications. To successfully locate and address a destination application,
NSCL performs a two-step approach using PoC information:

1. NSCL locates the SCL where the application is registered by analysing the
PoC information. It can be either DSCL in a DD or GSCL. In the case of a
DA running in D’D or dD, the NSCL would try to locate the GSCL to which
the mentioned D nodes are attached. Information about the SCL’s location is
taken from the M2MPoC resource stored in NSCL.

2. NSCL transfers the request to the located SCL. The request contains identi-
fication (App-ID) of the target application. The local SCL then locates the
target application and delivers the request to it.

It is emphasised that for a SCL to reach NSCL, PoC functionality is not needed,
because the former is expected to already contain information about the NSCL,
which is initially used for SCL registration. D/G nodes are pre-provisioned with this
information (e.g. in a UICC card), or provided with it during bootstrap procedure.

The scheme of location detection and addressing of an application also supports
advanced connection features, such as multi-homing and mobility. In the case of
multi-homing, an SCL simply provides an NSCL with several M2MPoC resource
records. In case of mobility, an SCL is provided with capabilities of refreshing the
location and accessibility values in M2MPoC resources of NSCL. Furthermore, the
specification allows service capabilities to decide which of the registered channels
to reach a node registered in a SCL, thus the best connection of those specified
with M2MPoC resources can be selected. Finally, the architecture is capable of
detecting situations when a D/G node is not reachable, e.g. when no response can
be received. In such a situation, the connection specified by M2MPoC entry in
NSCL is marked as "not reachable", which makes the system use alternative ways
for contacting the device, e.g. by sending wake up messages using Short Message
Service (SMS) [Eur13d].

32 3. STATE OF THE ART

3.3.2 MTC Standard

Machine-Type Communications (MTC) is a type of M2M communications that uses
Public Land Mobile Network (PLMN) technology as the Access Network. A mecha-
nism of such communications is specified by 3GPP [3GP11a, 3GP11b]. According
to the specifications, MTC is a type of communication that involves at least one
device that does not necessarily require human interaction. However, as identified
by Song et al. [SKSS14], whereas the presented ETSI M2M architecture focuses
on the functional M2M aspects and specifies a fully connected functional platform,
standards provided by 3GPP are related to signalling and communication among
distinct devices.

MTC specification defines transport, subscriber management and M2M device
triggering based on 3GPP access technologies, e.g. UMTS. Unlike ETSI specification,
MTC treats all devices uniformly as User Equipment (UE). Thus, enhancements of
MTC created for M2M communications are also available for regular communication
devices, e.g. mobile phones.

MTC defines communication among UA located in UE and an MAS located
outside the operator domain. To support communication between the two parties,
MTC specifies two additional components:

1. Services Capability Server (SCS), which connects AS to the network. SCS
may be controlled by the mobile operator or the provider of MTC service that
provides the applications.

2. MTC Interworking Function (MTC-IWF), which is an additional control
node for MTC, located in the home network. It is mainly responsible for device
identification and triggering. As mentioned in [SKSS14], this component uses
E.164 MSISDN or External Identifier to find the equivalent International Mobile
Subscriber Identity (IMSI) of a device and decide on the best triggering method,
such as sending an SMS that includes an Application Port Identifier indicating
a targeted application.

Unlike ETSI M2M architecture specification that defines two sets of identifier
systems, MTC uses only two identifiers, i.e. internal and external identifiers. The
internal identifier, i.e. IMSI, is defined inside the core network and has local scope of
validity. The external identifier consists of the domain and local identifiers, specifying
entity in the operator’s domain.

3.3. COMMUNICATION FOR UBIQUITOUS COMPUTING 33

3.3.3 oneM2M

The capabilities of M2M technology have encouraged standardisation processes
performed by a number of organisations, including the already mentioned ETSI and
3GPP, which lead to potential incompatibilities and isolated vertical structures. In
order to address this problem, ETSI together with other organisations have formed
a global M2M organisation, oneM2M, established in order to enable global M2M
communications by defining a common M2M service layer [one12, SKSS14]. It also
addresses coordination of development processes associated with the current M2M
service layer standards and common features based on needs of vertical market
aspects.

With a common service layer, oneM2M seeks to define methods for various func-
tions, including M2M protocols, APIs, security, privacy, reachability, discovery and
management. oneM2M expects to minimise deployment expenses, simplify application
development, reduce the time-to-market and prevent overlaps of standards.

Chapter4Vision and Requirements

The future of communications involves participation of multiple various devices
finding and interacting with each other to achieve individual or common goals. This
chapter presents our vision of an IdM system that supports dynamic communications
among multiple devices and thus enables advanced user-oriented applications. An
analysis of incapabilities and drawbacks related to current device communication
technologies discussed in Chapters 2 and 3 is presented in Section 4.1. Afterwards,
Section 4.2 thoroughly describes the vision of our system. Section 4.3 describes the
indicated imposed on the envisaged system. Finally, Section 4.4 presents several use
cases of how our envisaged system could be used.

4.1 Problem Description

Currently, there are two prominent approaches to intelligent device-to-device com-
munications: M2M and IoT. As described in Section 2.2.1, M2M is a technology
that enables communication among devices with no or minimal human intervention.
Although M2M communications technology is attracting large interest, the current
M2M technology specifications and implementation cases [Eur13d, 3GP11a, Eur13c,
Eur13b, Eur12, Eur13a] are static, proprietary and limited to specific application
areas. Therefore, M2M systems consist of ad-hoc devices that communicate with
other pre-defined devices, which leads to a problem of multiple isolated vertical
systems, described by Clayman and Galis silos [CG11]. Furthermore, these systems
omit the concept of an owner or a system’s user, because it is assumed that each of
the private systems are utilised and managed by separate isolated users.

Another approach to enable intelligent communication among devices is IoT.
As noted by Cisco [Eva11], IoT is an evolutionary step of the Internet that is now
becoming a communication media not only for human users, but also for intelligent
devices. That is, IoT is responsible for carrying large amounts of machine-type
information, not intended to be processed or utilised directly by users. Unlike M2M,

35

36 4. VISION AND REQUIREMENTS

IoT enables connecting any and every device with each other if needed, thus the
scope of peers any device can reach is not limited. Furthermore, IoT devices are
not dedicated to a single application and can be aware of the context that includes
human users.

Although IoT potentially allows global device communications, the infrastructure
consisting of the Internet, servers, applications and user-held devices is currently
geared towards human users, their decisions and data utilisation, whereas devices
perform low-level operations involving information delivery and processing. The
mentioned advanced device communication technology requires devices to be able
to obtain the necessary information about each other including their features, capa-
bilities, intentions and ownership. In other words, communications should include
semantic information related to communicating peers.

Unfortunately, currently even a reliable consistent identification of a communi-
cating device is not available. Although MAC addresses provide a certain type of
identification, it merely identifies the network interface and thus is only useful in a
local scope and merely for a lifetime of a physical connection. However, a device
might have several network interfaces, and use different or several of them to connect
to a certain peer, thus determining identity of connecting device is complicated.

4.2 Our Approach

In order to solve the mentioned issues and enable global, autonomous and dynamic
interaction among devices, we envisage a need for global identification of communicat-
ing entities and particularly an IdM mechanism primarily dedicated for use by devices
in an automated manner. As mentioned above, the identification system should
allow devices to learn each other’s identities, i.e. functionality, capabilities, goals
and ownership, perform discovery of devices and establish customised identity-based
connections with selected devices.

The vision analysed in this chapter, as well as its implementation presented in
Chapter 5, aims at describing a system that utilises capabilities of IoT to build
a platform of recognisable communicating entities, i.e. devices that are uniquely
identified and contain their own identities, similarly to human users. Furthermore,
identification of devices involves information about their owners. The latter feature
enables device authentication that is aware of the device’s user, thus enabling
automatic, user-oriented applications and device communications.

In the remainder of the document, we use term M2M to refer to autonomous
intelligent communication among devices, without referring to current M2M system
implementations or ETSI specification.

4.2. OUR APPROACH 37

Although the discussed technology is designed for utilisation by devices, it is
eventually targeted towards enhancing functionality and experience of human users,
e.g. regular consumers that carry one or more intelligent devices with them. Therefore,
the system should also involve user-related information. However, besides including
user information in authentication processes, the IdM system also has to address the
following aspects related to user’s behaviour:

– Device sharing. In many environments, including home and workplaces,
there are certain devices that are utilised by different users at different time.
Thus, the devices should be user-aware and allow services and other peers
to get user-related information, which could afterwards be used for device
authorisation or adaptation of communications.

– Multiple identities. Users may desire or be demanded to use certain iden-
tities in specific environments. For example, "bring your own device" policy
increasingly used in workplace environments allows employees to bring their
own devices for performing work-related activities. However, companies may
wish to restrict possibilities to perform tasks not necessary for work, e.g. using
social networks. Similarly, a person might not want to use work-related creden-
tials when he/she is accessing services from home. Thus, a device should be
able to represent different identities related to the same user that are used in
specific areas. Therefore, there is a need for a mechanism that enables selection
of active identity.

– Multiple devices. A user may be equipped with multiple devices at a given
moment. Before he/she can access a certain service using more than one
device, it is necessary to authenticate the devices. However, typing in the login
credentials in each device is impractical. The system has to address this issue
by providing a mechanism for simplified login procedure for service access using
multiple devices.

The configuration of a system oriented towards a human user is illustrated in
Figure 4.1. Here, user John utilises his set of devices, i.e. a smart phone, a tablet
personal computer (PC) and a laptop PC, to reach multiple services available to him.
When John wishes to use a certain service, he sets the devices to provide the service
with one of John’s identities that the service is able to recognise. In the presented
figure, any device is used with one or more of the identities. Furthermore, a given
identity allows authenticating to multiple services, which is indicated in the figure
using rounded rectangles representing association of identities and services.

38 4. VISION AND REQUIREMENTS

Figure 4.1: Users accessing services using devices configured with multiple identities

What is more, another user Michael, working in one or more shared environments
with John, is allowed to utilise the same devices that John is using, thus making
devices shared and required to know the exact user and his/her identity.

4.3 Challenges

The aspects of the envisaged IdM system presented above create multiple challenges.
Most of them are related to multiplicity and varying number of entities as well
as dynamic relationships. In this section, we elaborate the list of challenges in
more detail. As mentioned, the technology is intended to enhance device-to-device
communications needed for advanced user-oriented applications, thus the challenges
presented further reflect actions from a user’s perspective.

The following are the challenges imposed on the envisaged IdM system:

1. Authentication using a user-related identifier. Although this document
discusses a communication system for users and user-oriented applications,
the system is primarily based on communications among devices. To enable
automatic communications among devices and providing users with services,
devices should be aware of their users and present their identifiers to other
peers for authentication and further communication.

4.3. CHALLENGES 39

2. Creation and management of identities. As already mentioned, a user
has multiple identities that he/she wants to use when working in different
environments and accessing various services. The system should provide a way
to create new identities as well as to present them for services during registration
and later authentication. Additionally, the system should support management
of relationships among different identities, e.g. user-device relationships.

3. Authentication of multiple devices. This challenge can be treated as the
next step of "single user, multiple services", that is currently approached with
SSO feature with SAML, OAuth and other technologies. Although in our
situation there is still a one user accessing multiple services, the user utilises
multiple devices, potentially simultaneously, and expects a seamless access to
a certain service with all of his/her devices after the initial authentication,
performed on one of his/her devices. Thus, the IdM system has to support
convenient authentication of multiple user’s devices, i.e. a feature we call
SDSO.

4. Discovery of identities suitable for authentication. The number of
services accessed by a typical user is continuously growing. This also infers
that the number of identities created by a user for different sets of services
will only increase. Thus, eventually manual discovery of available services
and selection of suitable identity might become practically infeasible. Identity
selection should be performed semi- or fully automatically. Thus, the developed
system should provide a mechanism to discover services, learn about their
accepted identities and prompt the user for identity selection only after the list
of identities is minimised to those that the service accepts.

5. Privacy Protection. Utilisation of the envisioned technology might cause a
threat to user’s privacy. Even more, the imposed threat may be larger than
potential threat caused by classical services, i.e. when one identity is used per
service. The scale of the threat is influenced by the following reasons.

First, an identity might be used by multiple services. However, some identity
data fields might be intended for use only by one or several specific services.
Hence, there is a need for identity data access management mechanism that is
aware of services that access identity data.

Second, although a user presents the same identity to multiple services, usually
he/she does not want the services to be able to recognise that it is the same
user. In other words, services should not be able to communicate to each other
and share details about the user, e.g. user’s behaviour, without explicit user’s
consent.

Third, details about the set of user’s devices and each individual device can
reveal additional details threatening user’s privacy. For example, from a set of

40 4. VISION AND REQUIREMENTS

devices, the service might be able to predict what the user intends to do, e.g.
work, go on vacation, exercise or other. Although this information is at first
glance innocent, it may be exploited for malicious intentions. Thus, disclosure
of such information has to be controlled.

6. Utilisation of existing technologies. The problems explained in this chap-
ter are already present. Therefore, the provided solution is already needed and
thus has to utilise currently available technologies. However, the system should
also enable potential future extension based on evolution of ICT.

4.4 Envisaged Use Case

This section presents a use case that illustrates a realistic situation of the system’s
utilisation from the user’s perspective.

In our envisaged scenario, a user John has several identities installed in his devices
(a smart phone, a tablet PC and a laptop PC, as shown in Figure 4.1). He uses these
devices to access different services. When John goes to his friend Michael, he wants
to obtain access to the WiFi network of Michael’s home and access the Internet from
his devices.

In the classical scenario, John would ask Michael for the network’s password.
However, typing network password into all of his devices is not practical. Besides, the
password itself can be very complex for security reasons, which increases the rate of
errors during authentication. Thankfully, Michael’s network access is managed from
a cloud IdP server which also stores John’s identity. The latter identity is specified
in Michael’s home network as Michael’s friend, thus the system may provide John’s
devices with access to the network if they can prove that they belong to and are
currently controlled by John. To obtain access to the network, John takes one of
his devices, e.g. his smart phone, selects the identity and performs authentication.
Authentication to the identity requires John to type in his personal user name and
password. When the device is authenticated by the IdP, Michael’s home network
provides access to this device, obtains a list of other John’s devices that he potentially
has at the moment and suggests authenticating additional devices. John selects
additional devices from the list by using the same smart phone and sends a response
back to the server. After this procedure, the specified John’s personal devices obtain
access to the network.

Analogous steps may be performed when John wants to obtain access to the
network of his workplace. He then simply selects a network, authenticates with his
enterprise identity and specifies additional devices to connect.

4.4. ENVISAGED USE CASE 41

When going to stay in the hotel, John can use one of his identities, depending
on the circumstances of his stay. If it is a personal trip, the stay at the hotel and
access to the hotel’s network is charged directly to John, thus his personal details,
including address, bank account number or a credit card information are presented
to the hotel’s system. If John is staying at the hotel for business reasons, he might
want to provide the hotel’s system with his enterprise identity. This identity may
store bank account number only for internal use, e.g. for paying salary. Thus, in
this case the enterprise IdP would provide another virtual identity, where John’s
bank account number is replaced by his company’s account number. The further
authentication process matches the one described in the case of authentication to
Michael’s home network.

Chapter5IdM System Proposal

This chapter presents the proposed IdM system that addresses future communications
based on autonomous devices and geared towards user-oriented services. Analysis
of the system starts with Section 5.1, which presents an abstract view of the IdM
system’s components and entities it involves. Afterwards, Section 5.2 describes
the identification mechanism used in the system. Section 5.3 presents the system’s
functionality and responsibilities. Subsequently, Section 5.4 presents the system’s
static view by focusing on internal system’s structure. Finally, Section 5.5 analyses
the system from dynamic perspective by presenting system’s actions and operations
performed by different components. In order to avoid ambiguity, system’s analysis
includes Universal Modelling Language (UML) diagrams, where applicable.

5.1 System’s Entities

This section describes entities that are distinguished in our IdM system and directly
or indirectly participate in M2M communications. In our system, these objects
are unambiguously identified with identifiers and described with identities, as it is
presented further in Section 5.2. The remainder of this section is divided into 2 parts.
The first part discusses system’s logical entities, which define the data involved in
the IdM model. The second part addresses the physical infrastructure and presents
physical entities that enable our IdM system.

5.1.1 Logical Entities

As already mentioned, our proposed IdM system addresses a situation where multiple
potentially shared devices communicate with each other or certain services to obtain
desired data or functionality provided by certain parties. Based on this simple
definition, we identified the following system’s entities:

1. User: a human user that utilises one or more devices to access services, such as

43

44 5. IDM SYSTEM PROPOSAL

a social website, WiFi connectivity or advanced context-aware and AmI-based
functionality, e.g. a smart conference room or a smart payment system in a
shopping mall.

2. Device: typically a piece of hardware equipment communicating with other
hardware over a certain connectivity channel in order to obtain information or
a service. In our system, devices are controlled by human users. However, a
single device may be shared, i.e. used by several users during different time
periods. Therefore, decisions of whether to allow a device to access certain
functionality or resources are based on information about the current user of
the device.

3. Domain: an area where a device or a user operates, or, in other words, an
institution that provides the identity and defines its utilisation scope. It can be
a workplace, a specific service or home environment. Together with information
about the user and/or device, a domain provides additional information enabling
access-related decisions made on the side of Service Provider. Furthermore, a
domain itself may define specific Service Providers that a user and/or device can
reach, and perform authorisation checks in IdP before forwarding authorisation
to the service. This enables two-step authentication from both the side of a
Domain and a Service Provider.

4. Service Provider: a party that provides services to requesting users that
utilise certain devices.

As described above, system’s entities are related to each other. For example,
a device, e.g. a smart phone, can be controlled by a certain user. Furthermore,
the device and the user both represent a certain organisation, i.e. domain. We
suggest that this information, specifically user, device and organisation, is included
into consideration when deciding whether this combination is authorised to access
requested features in a service. Thus, we suggest using identifier parts to specify
distinct users, devices and domains. These parts are afterwards combined into a
single user-device-domain combination that is an identifier representing a specific
user utilising a certain device and coming from a certain domain. Existence of such
an identifier also means that the domain allows a certain user to utilise a particular
device to access services. This combined identifier, as further specified in Section 5.2,
is the key-structure that is presented by a device to a service when requesting access.

As mentioned in Chapter 4, there may be multiple relationships among users,
devices and domains. A single user might contain several devices and devices may be
shared among multiple users. Furthermore, as the mentioned "bring your own device"
policy used in workplaces illustrates, devices can be utilised in different operational
areas, i.e. domains, and utilisation of identities related to these domains may be

5.1. SYSTEM’S ENTITIES 45

restricted based on internal domain policies. Thus, a single device may have multiple
user-device-domain combinations associated with it even for the same human user.

5.1.2 Physical Entities

Our proposed system is a distributed system and follows federated IdM model. Its
infrastructure consists of several physical parts that relate to logical entities defined
above. The following are the physical system’s entities representing the general view
of the systems infrastructure, as presented in Figure 5.1:

1. Device Subsystem (DS) is a middle-ware layer stored in a user’s device and
providing a set of functionality to Operating System (OS) and user applications.
DS is potentially located in a secure element or trusted execution environment
to prevent unauthorised modification of data or corruption of valid operations.

2. Service Subsystem (SS) is a part of service infrastructure that enables
using the protocol and infrastructure of the proposed system for authentication
of a device and user. Furthermore, this subsystem enables authentication of
additional user’s devices, as discussed later in this chapter. From the perspective
of user’s devices, services and therefore SSs may be either local or remote, e.g.
WiFi connection or a social website, respectively.

3. Identity Provider Subsystem (IdPS) represents the part of IdP responsible
for storage of all the identity data as well as authentication of users/devices and
services. Unlike SS, IdPS is considered a remote entity, i.e. not in the location
of a device and services (when the latter do not include IdP functionality). It
can be either a private or public entity, installed by a private user at home or
a public party in a cloud, respectively.

4. User represents an actor that uses one or more devices to access and utilise
services. In turn, services learn about the user’s identity and obtain related
identity data by communicating with IdP.

IdPS is a new element in device-to-device communications. It may seem con-
troversial to trust a third party for storing such sensitive data as identities and
authentication secrets, but it is needed in order to provide the following benefits and
solve certain problems, as discussed further.

In the broad sense, IdPS is required for automated communications and func-
tionality, since an identifier alone is not always sufficient to perform reliable and
effective communications. For example, a communicating service and a device of a
specific domain may decide they can trust each other if 1) the parties can prove their
identities and 2) the service and IdP storing domain’s identities are connected with

46 5. IDM SYSTEM PROPOSAL

Figure 5.1: High-level structure of the system

a static relationship. However, as mentioned in Chapter 4, devices should be allowed
to dynamically establish connections when no initial static relationships are defined.
Thus, additional information about entities has to be provided in such a way that
it is easily discoverable and available for devices during authentication and further
communication. These storage, search and discovery features are provided by IdPS.

Storing identity data in a remotely accessible server also enables freeing devices
from having to store identity data in their own memory, which would be rather
space-consuming if a device contains multiple identities. Furthermore, our design
enables global entity discovery by specifying certain criteria, if the IdPs themselves
are discoverable. This also enables device mobility, i.e. changing communication
addresses, and multi-homing. Information related to device addresses and access
technologies may be stored in IdPSs as part of device identities.

Furthermore, as already mentioned, the system’s design is intended to enable
regular home users to create private subsystems of identifiers for possessed devices
and self-established identities, which can then be provided to local or remote services
that trust user’s IdPS, e.g. a friend’s home network. However, in order to enable
remote services to access user’s private IdPS, the user establishing an IdPS has to
obtain a public IP address enabling direct access to the IdPS. Although technically
possible, the current situation indicates that a rather small number of private Internet
users have public IP addresses. Thus, providing IdM functionality as a service in the
cloud enabling public access seems a more rational choice for private users. However,
we allow a user to establish an IdPS of our system personally for his/her local services
at home, work or other private space.

Additionally, having identities in the cloud improves privacy, as long as the IdP
itself can be trusted. More specifically, our system requires that both the user and
the service are authenticated before the service obtains user’s identifier and identity

5.2. IDENTIFICATION SYSTEM 47

information. If the service cannot prove its identity or it is not trusted by IdP, as
well as when it appears that the device is asking for access to a different service
than the one requesting user’s authentication, the service does not learn the user’s
identifier and/or identity data.

Finally, as already mentioned, IdP is intended to be established as a cloud service
and thus provide typical cloud benefits, such as scalable capabilities of computing
and storage, as well as global public access.

The exact functionality, structure and collaboration of subsystems are discussed
more thoroughly in Sections 5.3, 5.4 and 5.5, respectively.

As mentioned above, the system is distributed, because the design allows having
multiple IdPSs managed by multiple IdPs. Similarly, there can be multiple services
managing separate SS, as well as multiple users with their own devices that contain DS.
The system enables each component to communicate with other system’s components
of different types. Thus, SSs are allowed to communicate with one or more IdPS
instances, making the system a federated IdM system.

5.2 Identification System

As discussed in Section 5.1, the proposed system consists of several communicating
entities. In order for these entities to discover each other and obtain the necessary
information related to peers, they hold their identifiers and present them to other
parties on demand. This section discusses the identifiable entities and format of their
identifiers. Furthermore, it describes how the IdM system supports identity data
management.

5.2.1 Requirements for Identification

IdM system presented in this document enables identification of logical entities
specified in Section 5.1, which directly or indirectly communicate with each other.
Before specifying structure of identifiers, we analyse the requirements imposed on
entity identification:

1. It is clear that our identifiable entity set comprises a hierarchical structure.
For example, an IdP holds identity data and provides identification of users
and devices associated with one or more domains. Furthermore, a domain may
contain one or more devices and provide them with identifiers. Similarly, a
domain may involve one or more users, e.g. employees, who use their company’s
devices. Finally, a device may be used by one or more users. An identification
system should reflect these hierarchical relationships.

48 5. IDM SYSTEM PROPOSAL

2. In order to enable global communication, identifiers have to be globally discov-
erable and have consistent and unique meaning across different domains.

3. An identifier has to include all the necessary information for identification of a
specific communicating unit. For example, a communicating user’s identifier
should uniquely define the user, device and domain. Otherwise, if part of this
information, e.g. the device identification part, was stored as part of a user’s
identity, obtaining this information would require additional requests to IdP,
which would happen rather often due to importance of device identification.

4. It is desirable that identification mechanism enables easy access to identity
data related to different identities.

5.2.2 Identification System

In order to meet the requirements specified above, our IdM system contains an a
tree-structure of identifiers based on URL format. As discussed in Section 5.1, a stand-
alone identifier represents the combination of partial identifiers. The universal iden-
tifier format follows the scheme idpID/domIDPart/devIDPart/userIDPart

that constitutes a valid HTTP URL (see Figure 5.2) and contains the following fields:

1. idpID: identifier of an IdP. This is a standalone identifier representing a valid
URL. The idpID part is the authority component, i.e. the address of an IdP.
It is either a symbolic value, i.e. a Fully Qualified Domain Name (FQDN), or
an IP address.

2. domIDPart: partial identifier of a domain specifying an organisation or scope
where devices and users are registered. This element can be treated as the root
element of an identification hierarchy in a company. However, domIDPart
is a partial identifier, meaning that it needs an idpID part pre-pending it in
order to represent an addressable and unique identifier. There may be several
different domains with the same domIDPart registered in different IdPs.

3. devIDPart: partial identifier of a device. It is created and assigned to a
device by a certain domain. Typically, this identifier is formatted accordingly
to domain’s regulations. devIDPart is static, i.e. it installed in a device and
does not change if the device is used by different users identified in the domain.

Figure 5.2: An example identifier used in the system

5.2. IDENTIFICATION SYSTEM 49

Similarly to domIDPart, devIDPart is not a standalone identifier and needs
to be combined with idpID and domIDPart to constitute a complete and
unique identifier.

4. userIDPart: partial identifier of a user. Together with the previously men-
tioned identification components, this identifier uniquely identifies the user
coming from a specific domain that is utilising a device.

As discussed above, identification in our IdM system is based on a family of
identifiers that are made of one or more sub-components, i.e. partial identifiers. A
certain combination of partial identifiers constitutes a complete identifier that may
indicate different entities and contexts, as specified below:

1. Full user-device identifier udevID specifies the user and the exact device
that is connecting to a service on user’s behalf. It follows format idpID/-
domIDPart/devIDPart/userIDPart. The devIDPart and userIDPart
are both registered in domain identified by domIDPart, which stores and man-
ages their identity data in an IdP identified by idpID.

2. IdP identifier idpID, as discussed above, completely and uniquely identifies
and provides location information to IdP in the web. This sub-component is
the only one that can be used as a standalone identifier in our system.

3. Domain identifier domID identifies a domain as an entity registered in an
IdP. It follows format idpID/domIDPart.

4. Device identifier devID identifies a device that belongs to domain domID,
which has identities registered in IdP idpID. devID follows format idpID/-
domIDPart/devIDPart. It is a user-independent identifier that merely
defines hardware equipment that is related to a specific domain.

5. User identifier userID identifies a user identity that belongs to domain
domID and follows format idpID/domID//userID. Unlike the full format
identifier, user identifier lacks the devID part, because it is not relevant in this
structure.

Different identifiers, i.e. combinations of the mentioned identifier sub-components,
are managed with user accounts. In order to start using the proposed IdM system,
with a certain device, a user has to log into the device with one of his/her accounts,
as described in Section 5.5.1. Afterwards, the device obtains a specific udevID
combination to be presented to other communication parties, e.g. services.

50 5. IDM SYSTEM PROPOSAL

If a different person in the same domain starts using the same device, the
new active udevID differs from the one used by the previous user only by its
userIDPart sub-component. However, if a user (the same or another) logs into an
account that specifies a different domain, the mentioned sub-components may be
different, depending on configuration.

The presented identification system is designed for use by devices in automatic and
dynamic communications. However, in certain situations a user may be requested to
specify his/her user identity or an exact device that is going to be used. For example,
during user login in a device, he/she needs to provide user identifier, specified in
userID format, as described above. However, URL-based identification in user level
may seem too complex for regular users. Remembering different sub-components
of an identifier, typing them in a correct sequence and remembering the differences
of identifiers, e.g. udevID, devID and userID, is error prone and may lead to
rejection of the technology.

To improve user experience, we introduce certain simplifications. First of all, it is
worth noting that during login procedure, the user does not use udevID to specify
user identity. udevID is composed after authentication, based on selected devID and
userID and is processed only by lower-level components, e.g. DS and SS. Therefore,
its complexity does not influence user’s experience. Second, devIDs are bound to
certain domains and installed before their utilisation. In addition to that, the system
may restrict that a particular device may contain at most one devID issued by a
certain domain. In this case, the userID can be simplified to userIDPart@domID
format, which follows the structure of an email address that is familiar to the majority
of Internet users. This identifier is used locally at user’s level and is transformed to
complete userID and back by DS to send in the network and vice versa. We can
reduce user’s effort even more by creating a rule that domIDPart is globally unique,
regardless of IdP, with identity claimed using certificates, e.g. X.509. In this case,
userID may be simplified to userIDPart@domIDPart, i.e. excluding idpID.

Additionally, a higher-layer software may be used to control user’s local account
and improve user experience. For example, such software may prepend userIDPart
typed in by the user with one of devIDs associated with user’s account in the device.

5.2.3 Identity Information

The identification scheme discussed above allows uniquely identifying IdP, domain,
device and a user. A change of at least one of the components in the identifier results
in an identifier that potentially refers to a different identity with different properties.
This identity information has to be available for access by other entities before
they establish connections. However, as explained above, multiple combinations of
components lead to a rather large set of identities in each device, and keeping the

5.3. SYSTEM’S FUNCTIONALITY 51

identity information in a device itself might be impossible or complicated due to
memory limits of a device. Furthermore, polling devices in order to decide if certain
application-based communication can be performed drains its already limited energy
resources and is especially complicated in a system involving billions of devices.

The IdM system proposed in this thesis solves the mentioned problem by storing
identity information in an IdP and enabling identity’s global addressing with an iden-
tifier that follows a URL format, as specified in Section 5.2.2. Such an identification
mechanism enables various parties to access identity data based on the identifier,
which might be directly requested from a communicating entity or found in an IdP
by performing discovery. For example, identity information located using devID or
udevID contains information about an entity’s PoCs, physical location, peers that
are communicating with the entity and other information. Just like information in
the World-Wide Web, identity data in our system is composed by linking data from
different entities, e.g. domain, user and one or more devices.

Although entity identification is based on URL structure, it does not strictly define
the application-level protocol that is used, e.g. HTTP. This is because communicating
parties may have different capabilities for parsing data and even for obtaining it.
Therefore, a given IdP may support several protocols for providing data, including
Hypertext Markup Language (HTML) document, a text file obtained using File
Transfer Protocol (FTP) or other. Furthermore, the data may be provided in XML
or JavaScript Object Notation (JSON) format. However, specific information stored
in an IdP as well as its storage and delivery formats exceed the scope of this thesis.

5.3 System’s Functionality

This section discusses the proposed IdM system’s functions and involved parties. The
system’s functions are specified in a use case diagram presented in Figure 5.3. As
the diagram shows, the system involves three types of actors, i.e. roles, and three
distinct subsystems responsible for performing certain use cases.

The subsystems provide specific sets of functionality and are utilised by different
actors. A User utilises the DS installed in his/her device to log into a certain
user identity and access services available directly to the user or indirectly, through
lower-level utilities provided for the device, based on this user identity. The second
subsystem, IdPS, stores identity data related to participating entities, i.e. domains,
users and devices, thus enabling easy discovery and communication of devices,
authentication of users, devices and services as well as management of device access
to these services. Identity data stored in IdPS is managed by one or more Identity
Managers. It is important to note that Identity Manager is not the same as
an identity provider. The latter provides the infrastructure for managing identities,

52 5. IDM SYSTEM PROPOSAL

F
igure

5.3:
System

’s
use

case
diagram

5.3. SYSTEM’S FUNCTIONALITY 53

whereas the former acts as an administrator related to a certain domain and uses the
infrastructure. Finally, SS, which is a part of a service compatible with our system,
manages access rights of identities and performs authorisation. Service access rights
depend on the identity information it obtains from an IdPS. Their management
may be based on additional access control mechanisms, such as those discussed in
Section 2.1.4. Access rules managed by both Identity Manager and Service

Provider enable controlling access to services from two points, i.e. IdPS and SS.
This aspect is discussed more thoroughly below.

Before analysing use cases in detail, it is needed to explain several aspects of the
diagram. First, although the diagram involves three distinct actors, a certain party
may be responsible for more than one of these actor roles. For example, a university
may provide and manage both the IdPS and services that utilise this IdM system.
Similarly, a user himself may establish an IdPS and store as well as manage his/her
identities privately. This information may be provided in requests to access certain
services that trust the provider, e.g. a friend’s home network. Furthermore, although
the system includes multiple use cases, some of them are not specifically defined in
this document, because they can be implemented in many different ways that are
platform- or application-dependent. Nevertheless, these use cases are included in our
vision of the IdM system’s capabilities and responsibilities. Although we provide
implementation examples for certain use cases, the exact implementation details are
beyond the scope of this document and need further definition.

The remainder of this section discusses each of the use cases in more detail. We
start with use cases in DS.

Use case "Login to Identity" enables a User to set an active identity in his/her
device. Based on the active identity, the device presents a certain identifier to services
for authentication and afterwards service access. This thesis does not specifically
define how a User provides credentials for login process in a device. In the most
typical case, the User knows his/her user name and password combinations for
each of the identities he/she uses and inputs a specific combination during login.
Alternatively, biometric, behavioural or some other password-related technology may
be used for user recognition, although a user would still need to specify the userID
for selection of a specific identity. Based on user-specified login information, DS sets
an active identity identified by a certain udevID.

When a User does not wish to utilise the identity that is currently active in a
device, he/she performs the action specified by use case "Logout from Identity", which
is typically performed by pressing a button in device’s menu, executed automatically
by the device after an inactivity period or using another technique. If a User logs
out of an identity in a device, a corresponding DS unit has no active identity set and

54 5. IDM SYSTEM PROPOSAL

thus cannot operate with other system’s components until a certain identity is set
again by performing the login procedure.

Another use case performing actions with active identities is "Switch Identity".
This use case is performed when there is a need to change identity to a suitable
or desirable one, typically when SS requires an identity issued and managed by a
specific IdPS. Similarly to virtual identities specified in [HZW11], in our system a
User may have multiple identities that represent different, potentially overlapping
attribute sets. Thus, when switching into a specific identity in a device, a User

has to perform the full login procedure as specified for use case "Login to Identity",
including provision of credentials or certain secret information. Optionally, if there
is another identity currently set as active, a logout procedure is performed before
login procedure is allowed.

One of the most important use cases of the system is "Connect to a Service".
This use case enables manual connection to a service with a user’s device. However,
this use case may be extended with additional steps defined by use case "Connect
to Service with Additional Devices". This use case enables SDSO functionality and
allows a User to connect other devices he/she is currently using to the same service
using the same identity but without the need to type the full credentials in each of
the devices. Actions that enable this functionality on the side of IdPS are defined in
use case "Connect Additional Devices".

Functionality of the mentioned connection to a service procedure is based on
several key-aspects. First, it ensures service access provision based on the presented
User’s identity, i.e. access is granted to the User, regardless the device he/she uses,
rather than a secret that is related to the service itself, e.g. a pass-phrase used in WiFi
with Pre-Shared Key (PSK) security mode. Furthermore, devices are able to use this
authentication scheme to access both local and remote services. For example, a device
may access a traditional WiFi network that uses EAP-TLS authentication technique,
or a remote service, e.g. a synchronisation service or storage of measurements of
environmental conditions. Finally, although based on identity related to the User,
authentication is provided both to the user and to his/her one or multiple devices.
It means that a device may still perform its own independent functions that are not
directly related to User, but utilise his/her identity to obtain access to establish
connections to services or other devices. Connection-related use cases are thoroughly
analysed later in this chapter.

Use cases related to identity creation and modification are performed by an
Identity Manager and involve actions in DS and IdPS. User, device and domain
identities are created by performing "Create Identity in Server". This use case also
includes input of identity information that is afterwards stored in IdPS. For user

5.3. SYSTEM’S FUNCTIONALITY 55

identities, identity data also includes user’s credentials needed for logging into one or
more devices. However, to actually log into a user identity in a device, the latter
has to be configured to support the identity. Thus, some additional information has
to be installed in the device, including security data for communication with the
corresponding IdPS and domain. As explained below, this information defines a
device identity in an exact device. The latter information is stored by performing
"Store Identity in Device" use case. Actions performed during creation of identities
are thoroughly described in Section 5.5.3.

Similarly, a device may be considered not suitable any more for logging in with
user identities from a certain domain. In this case, a device identity related to the
corresponding domain may be deleted by a performing a procedure defined as "Delete
Identity From Device". The corresponding device information is also deleted from
the server that stores it with a use case "Delete Identity from Server". Similarly, this
use case also enables deleting user and domain identities.

In addition to previously defined identity creation and deletion use cases, IdPS
contains one more management use case "Manage Identity Data in Server". This
operation enables administering data related to user, device or domain entities, to
preserve its validity, up to date status and avoid violation of security precautions,
e.g. keeping only the minimal data set necessary for intended operations. Depending
on IdPS implementation specifics, this use case may be performed either by an
Identity Manager working as a centralised management authority or the user
himself. A User might be allowed to perform this use case only from a personal
device by logging into it using the corresponding identity first. Alternatively, IdPS
might provide a website accessible from anywhere, thus a user could use any device
with a web browser to perform management. However, this option still requires
the User to prove his/her identity by providing login credentials in the web page.
Further specifics of the use case exceed the scope of this document and remain for
definition during implementation.

The final category of use cases involves IdPS and SS operations related to
user/device authorisation and connection establishment. First, "Manage Access
Rights" in SS describes all the activities related to specifying rules for making
authorisation decisions based on identity data obtained from IdPS. The access rules
are implementation-specific and thus beyond the scope of this document. Furthermore,
as already mentioned, both IdPS and SS involve operations related to checking user’s
identity. More specifically, IdPS is responsible for authenticating user’s device and the
service he/she is trying to access. Therefore, use case "Authenticate Device" checks
if identity presented by a device really represents the current user. Authentication is
performed based on login credentials provided by the user earlier or during connection
to the service. Additionally, "Authenticate Service" checks if the service contacting

56 5. IDM SYSTEM PROPOSAL

the IdPS is what it claims to be and it actually is the one that the device is trying
to access. Finally, when IdPS confirms validity of a user’s identity to the specified
service and optionally provides the service with additional identity data, a SS is able
to check if the user utilising a particular device is authorised to perform any actions
with a service. This procedure is indicated by use case "Check Authorisation", which
is a part of broader use case "Accept Device Connection" that defines the sequence
of messages required for connection establishment and sent between the service and
user’s device.

5.4 System’s Structure

This section describes the static structure of the proposed IdM system, including its
members and their relationships. The description includes a more thorough analysis
of system’s physical entities presented in Section 5.1. For clarity reasons, some of the
information from earlier sections is also repeated in this section. The static system’s
structure represented in a UML class diagram format is shown in Figure 5.4. This
diagram is closely related to previously discussed use cases and identification system.

The system consists of several main components. The DS, SS and IdPS represent
the already described components of the IdM system. The actor User, introduced
in Section 5.3, is also presented in the structure as one of the components involved
in the system. This actor differs from other actors, since he/she has or remembers
certain information, i.e. credentials required to login to his/her identities on a device.
Other actors merely act as entities taking management decisions. They do not play
a role in the system’s static model and are not included in the class diagram.

As explained in Section 5.1, the system is distributed and federated, thus many-
to-many relationships are possible among different subsystems, as it is reflected in
the class diagram. The remainder of this section analyses each of the components
more thoroughly.

DS represents the system’s side related to a user’s device. As the diagram shows,
each device contains an IdentityAgent designed to work as a middle-ware IdM
layer and provide authentication-related functionality to underlying OS as well as
higher-level subsystems, e.g. third-party applications. DS stores installed device
identities, i.e. identifiers along with security tokens for secure connection with
corresponding IdPs and domains, as well as tracks the currently active user identifier.

The Application class included in DS is not directly provided by our system.
The class is included in the diagram only to specify that applications utilising the
system are required to be aware of it and developed using provided API. More
specifically, applications have to be capable of invoking connection process by utilis-

5.4. SYSTEM’S STRUCTURE 57

F
ig
ur
e
5.
4:

Sy
st
em

’s
cl
as
s
di
ag
ra
m

58 5. IDM SYSTEM PROPOSAL

ing capabilities of system’s IdentityAgent and know identifiers of services they
want to access. Other application features are implementation-dependent, thus
Application class is defined abstract in the diagram.

IdPS acts as an independent subsystem that stores identity data for different
users, devices and domains, as well as itself. This information is kept in memory using
IDData and its children classes. Furthermore, IdPS stores relationships among these
identities for more complex identity data usage scenarios. Finally, the subsystem uses
class UserIDData to store credentials associated with user accounts related to user
identities. IdPS is typically stored remotely in the cloud and is globally accessible.
However, independent private IdPSs used with private services are also allowed. It
is important to note that although multiple IdPSs are allowed, any collaboration
among them is beyond the scope of this document.

IdPS collaborates with SSs located together with services by providing them with
requested identity data. Only trusted services that have pre-signed contracts with
IdP are allowed to obtain data from its IdPS. However, we do not specify this trust
mechanism and leave it to be defined during implementation. One of the possibilities
to manage the trusted service providers is to store a list of pairs containing a service
identifier and a pair-wise secret at the IdP. This secret could then be used to perform
a Diffie-Hellman key exchange to establish a secure channel between SS and IdPS.

Furthermore, IdPS communicates with devices of multiple users in order to
allow them to log into their identities. Trust among IdP and devices is ensured
by using information in devices that is installed as part of device identities, as
mentioned in Section 5.3. Specifically, device identities include security information
for communication with IdPSs and domains that issued these identities. Specific
implementation for this security information is beyond the scope of this document.
Implementation options include, but are not limited to, X.509 certificates, secret for
Diffie-Hellman key exchange or a pre-shared token. These options determine the
specifics of data structures in communicating DS and IdPS.

Finally, SS is a component that is deployed together with the service and performs
authorisation of a user’s device based on identity data related to a user and his/her
device (identified by udevID). As mentioned in Section 5.1, the proposed IdM
solution targets services accessible by a device both locally, such as WiFi connectivity
service, and remotely, e.g. a social network or a cloud data storage service. Thus,
depending on a specific service, a certain SS can also be treated as local or remote.

5.5. SYSTEM’S ACTIONS 59

5.5 System’s Actions

Previous sections of this chapter described the proposed IdM system’s static features.
This section continues the description of the system by analysing it from dynamic
perspective, i.e. presenting its actions. Among other features, this section discusses
an innovative SDSO feature that enables users to obtain access to a service from
multiple devices by performing full authentication on only one of the devices. Analysis
of the dynamic features starts with discussion of the basic authentication principles
in Section 5.5.1. Afterwards, Section 5.5.2 describes collaboration among different
system’s components during device authentication and connection to a service estab-
lishment. Finally, Section 5.5.3 thoroughly describes system’s management actions
and particularly focuses on creation of identity data in the IdM infrastructure.

5.5.1 User Login and Device Authentication

The proposed system enhances autonomous device-to-device communications based
on the information about users utilising them at particular moments. To learn and
use information about the current user, the system involves two authentication stages:
user login in a device and device authentication to other communicating devices, e.g.
services. As already explained in Section 5.2, user and device identifiers are related,
thus a particular user’s identity that is specified during user login also determines
the full identifier udevID that a device provides to other peers.

In order for a user to start utilising services connected to the system’s infrastruc-
ture, he/she has to log into the device by providing the latter with credentials that a
device can use when communicating to other parties. The IdM system is designed
for on-line communications with connection to an IdP available when needed. Thus,
a device authenticates a user on-line, i.e. by communicating with an IdP responsible
for the identity a user provides. However, when logging into a device, a user may use
a certain userID only if the device contains an identifier devID that belongs to the
same domain. As discussed in Section 5.5.3, device identity installation process is
performed by a responsible administrator or the user himself, depending on whether
the IdP is public or private.

It is important to emphasize that user login procedure is typically performed
when requesting access to a service. A user may then be requested to select an
identity and provide login credentials. Typically, a user’s account is protected with a
user name and password combination, thus a user has to type in his/her credentials
in order to authenticate. However, when a user logs into a device, the user identity
is set as active and its credentials are cached for later use when connecting to other
services that accept identities from the same domain.

Device authentication differs from user login procedure, because in this case

60 5. IDM SYSTEM PROPOSAL

it is the device that provides identifier (udevID) to other parties and the user is
not involved. Furthermore, device authentication may be performed multiple times
during a single connection, e.g. when performing security-critical functions. To prove
identity, a device needs to provide its own secret, or show knowledge of it, and also
include authentication data of a user.

For the device secret, we propose using Identity-Based Cryptography (IBC),
which enables secure identity verification without a need for public key management,
because an already publicly available identifier, e.g. an email address, may be used.
In our case, system’s identifiers, e.g. udevID and devID, may serve as public
identifiers. Furthermore, communicating IdPS and DS may both store a shared
secret used for authentication and verification of device identity part. The user’s
credentials may additionally be transferred from device to the IdP, when requested,
by protecting them using the same shared secret.

5.5.2 Connection to a Service

The major attention of our system is focused on a device authentication mechanism
that enables controlling access to services based on information about devices and their
current users. The proposed system involves two related procedures for establishing a
connection to a service: general connection and authentication. The latter is part of
general connection procedure, but for simplicity and clarity reasons it is distinguished
and analysed separately. The further description thoroughly analyses various aspects
related to connection to a service and subsystem collaboration during connection
establishment. From the perspective of SDSO feature, we initially discuss actions
performed by the first device connecting to a service and controlled manually by the
user. Afterwards, we discuss automatic connection of additional user’s devices.

General Connection Procedure

General connection to a service ensures that during successfully performed procedure,
a connecting device finds a service, learns about IdPs supported by the service,
authenticates to the service using device and user identity data, and eventually
obtains a service connection that it may use to utilise the service. Collaboration of
different parties during the general connection procedure is presented as a sequence
diagram in Figure 5.5. Due to clarity reasons, we separate description of complex
authentication procedure from general connection steps. Thus, this explanation
focuses on connection procedure, whereas authentication is analysed separately below.
Furthermore, although the overall connection procedure also involves SDSO-related
steps, they are discussed individually after description of manual connection and
authentication procedures.

5.5. SYSTEM’S ACTIONS 61

Figure 5.5: Sequence diagram of general connection procedure

62 5. IDM SYSTEM PROPOSAL

Figure 5.5 illustrates a situation when a human user utilises a device and instructs
a certain application to connect to a locally or remotely available service that is
pre-defined in the application or dynamically discovered. Alternatively, an application
may not depend on user’s requests for connection and connect to a certain service
automatically. The latter option is often suitable for pre-defined, i.e. known by
application beforehand, or local services.

Afterwards, the application contacts IdentityAgent installed in the same
device with a request for connection to a service specified by serviceID or alterna-
tively other service contact information. Based on the mentioned service information,
IdentityAgent finds and communicates with the service’s ServiceManager to
learn about relationships between the service and different IdPs and information
about requested identity fields.

When IdentityAgent obtains the service-related information, it uses the list
of IdPs associated with the service to check whether device’s active identity, if any is
set, is suitable for the service. Afterwards, IdentityAgent informs the user about
the service and identity data fields it requests, as well as potentially prompts the
user to switch to another identity based on specific requirements.

The optional login procedure shows two alternatives. The first one, i.e. manual
connection, is performed when the connecting device is manually controlled by the
user and is the first user’s device accessing the service. The second optional procedure,
automatic connection, enables easily connecting additional user’s devices after a user
performs manual connection with one of them, as explained in the scenario above.
Since automatic connection is explained below, we exclude it from this description
and currently focus on manual connection.

After login, the new identity is set as the active identity. However, the credentials
are not yet checked by the device or IdP. They are used in authentication procedure
performed as the next step of the sequence. In this step, these credentials are sent to
an IdP in Extensible Authentication Protocol (EAP)-manner, as explained in the
description of authentication procedure below.

When the authentication procedure is complete, IdentityAgent sends a
sessionToken obtained from IdentityProverManager during authentication
back to the application, which uses the token for further communication with the
service without involving the IdentityAgent.

Authentication Procedure

The authentication sequence executed during connection to a service is presented in
Figure 5.6. As mentioned above, this sequence is not performed independently, but

5.5. SYSTEM’S ACTIONS 63

instead is a part of general connection procedure presented in Figure 5.5. Although
for simplicity this procedure is called an authentication procedure, it also includes
potential authorisation steps to check user’s validity to use a service.

In the broad sense, procedure of authentication to a service resembles EAP-based
authentication performed when connecting to a wireless network. As shown in Figure
5.6, the procedure begins when an IdentityAgent located in an authenticating
device contacts a ServiceManager in a selected service. However, unlike in EAP,
the IdentityAgent also informs the service either about its active udevID or just
idpID. Provision of a certain identifier is necessary, because a service may have
relationships with multiple IdPs and thus could not independently determine the
IdP needed to contact for authentication of a device.

An option to initially provide the service with idpID instead of full udevID
enables preserving security and potentially anonymity, because an IdP may hence
hide the real identity of the user and/or device. In such a scenario, the service obtains
the complete udevID of a connecting device only after a corresponding IdP verifies
the service’s identity and that the latter matches the service that a device intends to
access, as described in later steps of this procedure.

The IdP may also analyse data records stored by an Identity Manager to
check if the user, device or their combination is allowed to use the particular service.
This evaluation is performed together with verification of user’s and service’s identities.
If connection to the service is not allowed, authentication procedure fails.

After receiving the connection request message, ServiceManager analyses
the included identifier (udevID or idpID) and contacts a corresponding IdP’s
IdentityProviderManager to authenticate the device. In order to perform au-
thentication, IdentityProviderManager requests the device’s IdentityAgent
for certain identity-related information, e.g. credentials. These requests from
IdentityProviderManager to IdentityAgent and responses transmitted in
the opposite direction are transferred among the parties directly or indirectly, i.e.
forwarded by ServiceManager. The exact identity information, credentials, meth-
ods for their protection and transfer techniques depend on implementation. One of
the examples to perform the procedure is to use:

– EAP-TLS between the device and the IdP,

– EAPOL between the device and the service endpoint,

– Remote Authentication Dial In User Service (RADIUS) between the service
and IdP.

64 5. IDM SYSTEM PROPOSAL

Figure 5.6: Sequence diagram of authentication procedure

In this step, IdentityProviderManagermay also request ServiceManager
to prove its identity and check if the service requested by the device matches
the service requesting device authentication. After IdentityProviderManager
validates identity of the device, it returns the IdP authentication result back to
ServiceManager. This result includes identifier udevID.

The diagram also includes an optionally performed fragment that enables setting
an active identity in IdentityAgent. However, this action is not performed in the
first device that is connected to a service. This fragment, as well as other SDSO-
related deviations from actions performed by first connecting device, is presented in
the description of automatic connection below.

When ServiceManager receives a proof of device’s identity, it performs its
own procedure of device authorisation based on device’s udevID and additional

5.5. SYSTEM’S ACTIONS 65

parameters received from IdentityProviderManager. At this point, Service-
Manager may also request IdentityProviderManager for additional informa-
tion related to identity of udevID. The further authorisation mechanism, depending
on implementation and specifics of the service, may include RBAC, access matrix or
other access control models.

If authorisation succeeds, ServiceManager requests IdentityProvider-
Manager to connect the authenticated device to the service and provides additional
service data that needs to be sent to the device. DS may perform additional actions
with this data, if needed.

Afterwards, IdentityProviderManager enables communication among the
service and device by presenting the necessary data to both parties. In this step,
the ServiceManager obtains security parameters for secure communication with
the device, based on service data presented to the IdPS and udevID of the device.
Similarly, device obtains a sessionToken that includes the necessary information
related to device and service authentication, identity data accessed by the service
as well as security information for communication with the service. As mentioned
above, this token is afterwards returned to the requesting application.

Connection of Additional Devices

The presented IdM system focuses on a situation when a user utilises multiple devices
and many or all of them have to be connected to a specified service. Connecting
each of the devices by following the manual connection and authentication procedure
specified above would be cumbersome and impractical. Thus, the proposed IdM
system includes a SDSO feature for seamless automatic connection of additional
devices after one of the user’s devices is connected manually by performing manual
connection procedure. SDSO ensures that after this procedure is complete, other
devices that a user picks for utilisation do not require the user to perform the full
authentication and obtain service access in a simplified way.

In the description of this procedure, we refer to the first connected device that
a user utilises to perform manual connection as initial device. Other devices that
obtain access to a service by performing a simplified automatic connection are called
additional devices. It is also important to note that, just like the initial device, addi-
tional devices are connected only after a user initiates connection, e.g. by launching
an application. This feature enables avoiding overhead due to authentication and
connection of devices that, although specified, are never used to access a service.

Automatic connection procedure is enabled by additional connection records
stored in ConnMsg class objects in DS and managed by IdentityProvider-

Manager (see Figure 5.4). The procedure involves both general connection and

66 5. IDM SYSTEM PROPOSAL

authentication sequences specified in Figure 5.5 and Figure 5.6, respectively. However,
the performed steps are different than explained above. The further description
analyses the differences and additional actions included in automatic connection
procedure.

As shown in the lower part of Figure 5.5, connection procedure involves additional
steps necessary for connection of additional devices to the service, after the initial
device is successfully authenticated and connected. These steps define that at the
end of successful connection to a service, IdentityAgent asks the user if he/she
desires to use the service with additional devices (displayed as an invocation of
requestAdditionalDevicesOption method). A user may then agree to use
additional devices and merely specify a secret that is used to derive an authToken.
This token is used later during connection of additional devices, as specified below.
The secret may be also obtained in ways other than requesting a textual code from a
user. For example, the secret might be obtained from a user’s personal UICC card
inserted in a device.

Afterwards, IdentityAgent sends the derived authToken and sessionToken
to IdentityProviderManager, which creates a ConnMsg structure that enables
simplified connection of other user’s devices. IdentityProviderManager stores
this data for a limited time period.

During connection of an additional device, a user switches to a device different
than the one used when performing authentication manually. Furthermore, he/she
desires to use the same identity to access the same service. Thus, he/she again
performs connection and authentication procedures specified above, but this time
certain actions are performed differently. Specifically, during user login step of the
connection procedure, the automatic connection alternative is performed. In this
case, rather than providing full udevID and authentication credentials, a user simply
specifies a devID or domID, as discussed above, and a secret. This data is afterwards
used in authentication procedure (see Figure 5.6) in the loop of request and response
messages sent between IdentityAgent and IdentityProviderManager. In
this case, after receiving an authentication request from a ServiceProvider,
IdentityProviderManager requests IdentityAgent of a device to provide a
devID and performs checkAdditionalDevices method to check if it is storing
any ConnMsg structures that are associated with users allowed to utilise this device.
Upon a hit, it sends the device a request for an authToken, which is obtained by
using an analogous secret in the same way as it was obtained in the initial user’s de-
vice. After successful authentication using a secret, IdentityProviderManager
sends the device udevID and potentially credentials that the device can use for man-
ual access to other devices. Other device and service authentication steps performed
in the EAP-like request-response message sequence that are not related to SDSO are

5.5. SYSTEM’S ACTIONS 67

also performed during this automatic authentication alternative.

After the request-response sequence is performed, the device possesses the au-
thenticated user’s identifier and credentials, thus it may use them to set the current
identity. Further authentication and connection steps are the same as in manual
connection performed in the initial device.

In the case of additional device connection, the user is not requested if he/she
wishes to use the service with additional devices. If there are multiple additional
devices, this procedure is performed separately in each of them, when they are picked
up by the user to access the service.

This procedure shows that actions of ServiceManager do not depend on the
specific connection procedure, i.e. manual or automatic. The mentioned aspect is
enabled by storing all the sensitive data and critical functionality in centralised and
trusted IdPs. This feature simplifies creation and complexity of services and reduces
risks related to insecure or distrusted services misusing secret data.

5.5.3 System’s Management Operations

The last dynamic aspect addressed in this thesis is establishment of the system,
i.e. the process of IdPS deployment, configuration of relationships and creation of
domain, device and user identities.

As already mentioned, IdPS may be installed locally by a private user or an
enterprise for internal use, i.e. for access by local services. However, the general
intention is to provide the system as a public cloud service. This document does
not specify exact IdPS implementation or deployment specifics, but the system must
communicate using the defined protocol and have a reachable IP address or FQDN
that can be used as idpID.

When a user or an organisation wishes to utilise a certain IdP for management of
device and user identities, it first creates a domain, i.e. registers for IdM service and
obtains a domID. This operation is performed by a user or a responsible administrator
of a company, acting as Identity Manager actor presented in Section 5.3. During
domain registration, IdP creates an administrator account associated with the
created domID. This account may represent one of the user identities identified
with a distinct userID defined in the domain. Depending on implementation, IdP
may allow creating additional user accounts with administrator rights in the same
domain during or after the procedure of domain registration. An IdP must ensure
that domains are isolated, i.e. management operations and data access policies are
controlled only by domain-related administrators.

68 5. IDM SYSTEM PROPOSAL

In the proposed system, a domain created in an IdP is also issued an identity. Thus,
other parties may request additional domain-related information, which is managed
by Identity Managers. In the most limited case, a domain is associated with
information about its users and devices, which is required for search and discovery of
potential communication peers.

After a domain is created, it is possible to create identities for users and devices
associated to the domain. As already mentioned, identifiers of such new identities
would include domID representing the domain, and therefore address of IdP.

Creating a user identity is a simple procedure that is performed by an Identity
Manager and involves typical account creation steps present in other identity-based
systems. However, in our system, user identity is associated with an identifier
userID representing a hierarchical structure. The userIDPart is domain-specific,
i.e. Identity Manager may specify it explicitly or create a rule, e.g. that an
identifier should consist of person’s name, surname and birth year. Additional user
identity information may be provided and managed by Identity Manager or
the actual user, by connecting to the same system using his/her credentials. These
credentials are created as part of the user identity and used to prove user’s presence
when logging into a device or into the IdP website for management of his/her data.

The type of user’s credentials is implementation-specific and depends on security
requirements as well as infrastructure of services that use this data. Similarly, distri-
bution of user’s credentials also depends on implementation and type of operations
performed by domain. The simplest and most common type of credentials is a
username and password combination, which can be sent to a user using e-mail, or
distributed as a printed copy by an identity management office. However, the system
may use biometric user’s information for identification, in which case users provide
data before user identities are created or enabled for access.

Creation of device identity involves two steps:

1. creation of identity in the IdP server, which is similar to creation of user
identity,

2. deployment of device identifier devID along with other related security data
in the actual device.

During device identity creation, an Identity Manager creates a certain device-
related data structure that is stored in the server and potentially used for device
discovery as well as establishment of a connection with the latter. Identity

Manager may manually enter this data in the server. However, a more convenient

5.5. SYSTEM’S ACTIONS 69

approach is to have the DS itself store most of the necessary device-related information,
e.g. device type, and provide this information to the server when the device is
directly connected to it. Direct connection during device identity creation also
enables performing both of the mentioned identity creation steps, i.e. creating an
identity structure in the server and storing devID and related data in the device, to
be performed at the same time.

The data set deployed in the device is used by the latter to prove its identity when
connecting to services and IdP servers. Effectively, the second step of device identity
creation defines permission for users to log into the device using a userID that
belongs to the same domain as the installed devID. Similarly to userID, devID
may be defined manually by an Identity Manager or generated by IdP using a
specified rule.

Similarly to domain isolation, device identity structures stored in a device must be
separated and protected from modification by unintended parties, as well as malicious
or careless users. Thus, rights for data modification in a device must be protected
with another secret, e.g. a password or an UICC card. Alternatively, similarly to
identity creation, device data modification may require connecting a corresponding
device to a specific IdP in order to perform and synchronise changes in both IdP
and the device.

Chapter6Discussion

This chapter discusses and evaluates the proposed IdM system described in Chapter
5. It analyses the system’s features, identifies its weaknesses and aspects that need
further investigation. In addition to that, it proposes available options to solve certain
challenges that were not addressed in the thesis. Along with the thesis outcome, i.e.
the proposal of an IdM system, this chapter addresses the thesis work process itself
by identifying and discussing findings related to this work. The analysis begins in
Section 6.1, which compares our system to other IdM systems presented in Chapter
3. Section 6.2 evaluates the system based on 7 identity laws proposed by Cameron
[Cam05]. Section 6.3 analyses some of the system’s characteristics related to trust,
usability and anonymity. Finally, Section 6.4 discusses the most important issues
related to practical implementation and usage issues related to the proposed system.

6.1 System’s Comparison to Other Solutions

This section compares the proposed system to other systems discussed in Chapter
3. As in the mentioned chapter, here we address device-based and user-based IdM
systems separately. The provided comparison shows that even though differences
exist, the systems share certain similarities. This means that although the proposed
system is designed to serve a different purpose than other analysed systems, it
depends on these technologies and is built using their strong points.

6.1.1 Device-Based Systems

Object Identifier The most similar aspect of OID and our system is identification
system. OID uses URIs resolvable by DNS servers, whereas our system utilises
resolvable URLs, which effectively comprise a subset of URI set [BLWF+05]. However,
our system’s identification system is much more complex, defining different members
that are involved and enabling identifier distinction by different contexts. Furthermore,
our system is targeted towards user equipment, i.e. intelligent devices, whereas OID
utilises additional equipment, e.g. RFID tags, and thus enables identification and

71

72 6. DISCUSSION

acquisition of data based on any kind of items, regardless of their intelligence, if
any, and communication capabilities. In addition to that, unlike OID, which enables
temporary identification of an item and thus promotes reuse of identifiers for different
items, our system considers an identifier closely associated with a device, thus
identifier reuse is not intended. Finally, whereas OID merely enables identification
and data acquisition, our system’s functionality is much more complex, involves
authentication, sophisticated identity data management, discovery of devices and
enables utilisation of enhanced security mechanisms.

Cooltown Similarly to OID, Cooltown uses IR and RFID to identify items, thus
unlike our system, it enables providing data and functionality related to identified
things regardless of their computing or communication capabilities. On one hand,
this aspect of Cooltown enables identification of users, devices and places, which is
similar to entities identified in our system. On the other hand, unlike Cooltown, our
system defines a structured approach of entity identification.

Object Naming Service Unlike ONS, our system enables both discovery of
identity data storage and acquisition of this data. Furthermore, in contrast to
device meta-data management technologies, our system is focused on human user
and his/her devices regardless of technology used. Finally, our system defines the
format of identifiers as well as procedures of identity and identifier creation and
entity authentication, which is beyond the scope of ONS.

6.1.2 User-based Systems

Before addressing user-based systems individually, it is worth discussing the common
differences between these systems and our proposal. First, unlike other systems, our
system involves both user and device identities. Second, it introduces an additional
party, identity manager, which is different from identity provider and performs
IdM in an IdP’s server. Third, whereas other mentioned systems typically involve
independent third-party applications to transmit messages, our system includes a
native, shared and dedicated component DS, which is installed in user’s device.
Finally, our system serves a wider purpose, i.e. not only IdM, but also discovery,
thus unlike other services, it enables search of devices and users, based on defined
policies. Other aspects depend on particular systems, as specified below.

OpenID Compared to OpenID, our system uses a similar approach for accessing
services with identities that are provided by multiple different IdPs. However,
services involved in our system are not limited to web-services and web-applications
that are accessible only by using web browsers. Furthermore, unlike OpenID, our
system includes a communication precondition for a relationship established between
collaborating SP and IdP. This relationship also defines data used by SP and terms of

6.2. SATISFACTION OF 7 LAWS OF IDENTITY 73

its storage and usage. Just like OpenID, our system uses resolvable URLs to specify
identifiers. OpenID v2 also allows using XRI. However, due to criticism regarding
this identification scheme in comparison to URLs [BLW], we omit utilisation of XRIs
in our system. Finally, OpenID enables a user to select one of the identities stored in
an OIdP. This is possible if the user provides OIdP identifier in the service login form.
This is similar to our system’s approach, where an IdP may store multiple identities
of the same user. However, our system makes the identity provision procedure more
automatic and provides the identity of currently logged in user. In this case, idpID is
provided only to avoid revealing userID before the SS is authenticated, as specified
in Section 5.5.

SAML Just like SAML, our system enables federated IdM, i.e. requires that parties
providing and using identity data initially establish relationships. However, SAML
defines several profiles that include HTTP POST messages, thus it is designed to
enable SSO to web-services by using web browsers, whereas our system does not
impose any limitations on service or client software.

OAuth2 Similarly to OAuth2, our system uses an authorisation mechanism for
resource access control. However, OAuth2 defines a wide scope of available resources
and operations for their manipulation, whereas in our system, resources are identity
data and services. Furthermore, in our system, authorisation decisions are made by
two parties, i.e. IdP and service. Just like SAML, OAuth2 is similar to our system
because of a requirement to establish relationships among parties before they actually
communicate. Furthermore, OAuth2 omits using HTTP POST messages. Thus, just
like our system it enables a wide scope of services and clients.

OpenID Connect From the systems defined in Chapter 3, our system is mostly
similar to OpenID Connect, because both of them enable user authentication and
provide identity management layer for access to identity data as a resource. Since
OpenID Connect is built on OAuth2, it shares most of its features and thus similarities
with our system, as mentioned above.

6.2 Satisfaction of 7 Laws of Identity

Cameron [Cam05] defined a set of laws for IdM that are necessary for preserving
user’s privacy when using identities to access web-based services. We evaluate our
system based on these laws, as presented further:

1. User Control and Consent requires that a user has control over his/her iden-
tity data in IdM system and authorises the system to reveal user’s information
to other parties by explicit consent. This requirement is rather straightforward

74 6. DISCUSSION

and simply defines that a user should know when and what data is sent to a
party. Our system addresses this aspect by informing the user about acceptable
identities before login, and the specific set of identity data during login, based
on relationships between IdP and SP.

2. Minimal Disclosure for Constrained Use specifies that only the minimal
set of information that enables certain functionality, e.g. a service, should be
disclosed. Our system does not directly address this aspect. However, since
a SP has to establish a trust relationship with an IdP before it can obtain
identity data, these relationships may be used to define what data subsets
are needed for certain operations. Furthermore, upon login and/or request to
data associated with a user or device, IdP may inform the user about service’s
requirements for data.

3. Justifiable Parties defines that identity information should be disclosed only
to parties that serve a certain purpose in the system, defined with relationships.
Our system addresses this requirement by performing user, device and service
authentication. In this case, identity data and userID itself, if the initial
connection message sent by DS to SS includes only idpID, is revealed to the
service only after it is authenticated.

4. Directed Identity principle states that a universal IdM system should support
both omni-directional and unidirectional identifiers representing an entity for
other public and private entities, respectively. Our system fails to meet this
requirement, since it treats all entities the same, and uses one type of identifier,
i.e. udevID to access services. However, since already mentioned, initial
provision of idpID rather than udevID may be treated as provision of a
public identifier, until the service is authenticated and thus trusted with the
private udevID. Furthermore, the proposed system enables having multiple
different identities and controls access to these identifiers and identity data.
Thus, it effectively provides the same privacy features as demanded by this law.

5. Pluralism of Operators and Technologies requires a system to enable
collaboration of multiple IdM technologies delivered by different IdPs. Our
system fails to meet this requirement, because it does not address collaboration
of different IdPs, although this functionality may be introduced in future work.
However, from a user’s perspective, he/she may use several IdPs, potentially
based on different communication technologies. On the other hand, in order
to ensure a uniform functionality of several IdPs, specifying the protocol for
interaction is insufficient. It is also necessary to define identity fields, e.g.
name, address, account number, device communication frequency, etc. Lack of
such definitions would complicate IdP and service implementation, as well as
establishment of relationships among them. The current work does not address

6.3. UTILISATION CHARACTERISTICS 75

these issues. However, they may be easily addressed by introducing an identity
data specification layer with field types and formats for use by all IdPs, SSs
and DSs.

6. Human Integration defines that an IdM system should enable such attack-
proof means for human-machine interaction that a human user would become
a part of the IdM mechanism. Effectively, involving a human user into device-
to-device communications is one of the primary goals for our system. The
identification system and authentication mechanisms presented in this thesis
show that our proposed system meets this requirement.

7. Consistent Experience Across Contexts principle states that a system
should enable separation of contexts based on different operators and technolo-
gies as well as enable consistent user experience across these contexts. Our
system entirely meets this requirement and even exceeds it, because besides
operators and technologies (we assume communication technologies), it also
involves domains, i.e. organisations issuing the identities, into consideration
during definition of contexts.

6.3 Utilisation Characteristics

This section addresses additional IdM features that are considered important in
related literature.

6.3.1 Trust

As identified by Windley [Win05], storing identity data in IdP server is greatly related
to trust of IdP, which is not limited to merely knowing the exact organisation that
provides IdM service. In addition to that, the users of the system, including identity
managers and the actual subjects described by identities, need to be ensured that
the IdP they utilise will not go out of business. Such a situation would result in
inability of accessing services and potentially loss of managed data. Furthermore,
a user cares if IdP would block his/her account if the credentials are stolen or it is
hacked in some way.

Our system does not address the issue of an IdP going out of business. Thus,
in order to protect the data and functionality, the system needs additional means
for exporting the managed identities. This would enable easily moving the identity
hierarchy of a domain to another IdP. However, devIDs installed in devices include
domIDs, which depend on idpIDs. Thus, if identities are moved to another IdP,
data installed in devices has to be updated. This aspect is not addressed in the
current system’s proposal and requires further investigation.

76 6. DISCUSSION

On the other hand, our system enables blocking compromised accounts by deleting
identities and potentially creating new ones, with the same information, but different
identifier. Identity deletion on IdP side is sufficient, because even if the user’s device
provides non-existent credentials, login procedure is performed on-line and involves a
corresponding IdP, thus authentication would fail. However, for usability purposes,
e.g. in order to avoid suggesting that a user chooses non-existent identities, inactive
identity data should be deleted from a device in a certain way. Since modification of
data in a device is protected by administrator password or additional mechanisms,
such a procedure would be rather complex. However, just as installation of new
identities, deletion of old identity data is expected to be performed rather infrequently.
Thus, such a situation should not introduce significant discomfort.

6.3.2 Usability

We consider system’s usability from the user’s perspective. In order to increase the
chances of the system being widely adopted, it needs to be user-friendly. In other
words, it should not require much effort from users to learn and afterwards use the
system. One of the strategies to reduce the mentioned effort is to make the system’s
operation similar to other IdM systems.

Our system is focused on a user that has several identities and authenticates using
certain credentials. This situation is already familiar to Internet users, since they have
multiple different accounts associated with diverse services. In the most common case,
our system demands that a user provides a user-name (user identifier) and password
combination, which is also common in various web-based systems as well as mobile
applications. Furthermore, authorising services to access user information is also a
frequent feature, e.g. seen in third party application authorisation in Facebook. Thus,
when prompted with service requests to access identity data, users should not be
surprised and are expected to understand performed actions and their implications.

However, new features, such as additional device login, may puzzle users without
initial preparation. Thus, in order to perform new operations, a proper interactive
helper is needed, that would introduce the feature and assist the user when performing
certain steps of these features.

6.3.3 Anonymity

In certain cases, a user may want to stay anonymous, i.e. provide only general
information that would not enable identification. However, just like other IdM
systems discussed in this document, our system is geared towards provision of data
that is pseudo- or completely identifying the user and thus enable personalised
services. Typically, services that enable anonymous connection do not authenticate
users or utilise their identity data. Thus, even if a user is required to provide a

6.4. PRACTICAL APPLICATION ISSUES 77

pseudonym when he/she accesses a service, this does not constitute an identity and
thus is not considered a problem related to IdM.

6.4 Practical Application Issues

6.4.1 Prototype Implementation and Out-of-Scope Parts

An apparent drawback of this work is lack of a system’s prototype implementation.
Although the system looks promising theoretically, it is essential to implement its
prototype and test it with real users. This also means that out-of-scope parts of
the systems must be filled with specific design solutions. For many of these parts,
we provide recommended or possible implementation options, thus creation of a
prototype should not be a problem.

However, multiple out-of-scope parts indicate that such an identity management
and communication system greatly depends on other systems and technologies
that provide security, communication mechanisms and software for functionality.
This means that introduction of such a system may require collaboration with
multiple institutions to make adjustments or updates in the associated technologies.
However, it also means that this thesis provides an idea of an IdM system based on
identified requirements, rather a complete specification. Parts left for decisions during
implementation show that this document does not limit implementation possibilities
and leave development of specifications for this kind of systems to specification
institutions.

6.4.2 Legal Identity Management Issues

Identity data identifies a user and reveals user’s personal details that, if stolen, may
result in damage of certain type. Thus, it must be protected. As noted by Windley
[Win05], IdM systems are often regulated by law that often requires that IdPs define
utilised methods for obtaining and storing the data, the purpose of collecting data
and the peers that will have access to this data. However, previous technologies
consider either public general data stored in a public IdPs, or private, more sensitive
data, e.g. bank account number and home address, in ad-hoc IdPs controlled by
certain institutions for provision of specific internal services and serve specialised
purposes.

However, in this work, we go a step further and propose storing private identity
data in the cloud, i.e. in a public IdM system. Although this data is managed by
trusted parties, it is stored in a remote location. Furthermore, in order to enable
automatic access to this data, it cannot be completely hidden from the IdP. Thus, our
system is facing a potential problem associated with trust and legal restrictions that
may impede successful spread of the technology. In order to avoid that, additional

78 6. DISCUSSION

security mechanisms or contracts by public IdPs may be needed, which this document
does not address.

6.4.3 Secure Data Storage in Users’ Devices

Another concern emerges from current implementations of sensitive data protection
in users’ devices.

Currently, Android OS "forgets" user’s credentials when the screen of a device
is locked and retrieves them again for easy access when the screen is unlocked.
The unlock mechanism requires that the owner of a device proves his/her presence
by typing in a Personal Identification Number (PIN) code or drawing a pattern
that is used to recompute the secret to unlock credentials [Ele12]. Although this
security aspect ensures data protection, it limits possibilities of creating a completely
automatic system that works with a locked screen. In order to enable desired
functionality of access to sensitive data without the need to constantly unlock the
screen, Trusted Execution Environment (TEE) technology [Gil14] could be used.
However, it still requires changes and adoption by mobile OSs before it can be used.

In addition to that, mobile OSs treat devices as personal devices, thus PIN- or
pattern-based screen unlock mechanisms assume there is only one user/owner and
thus one correct user-provided secret. There are no possibilities to isolate sets of
credentials by creating separate user accounts with different PIN codes for each user.
Thus, our system would require even more changes in different mobile OSs.

Chapter7Conclusion

This thesis revealed current issues related to development of future communication
technologies, particularly lack of orientation towards regular users, and addressed
these problems by proposing a sophisticated IdM system that utilises a complex
identification system and enables management of identity hierarchies in a private or
a could IdM server. Furthermore, the system addresses user-related IdM, which led
to a proposal of a SDSO mechanism. This section discusses potential future work
that would allow improving the system as well as presents the final remarks of the
thesis.

7.1 Future Work

7.1.1 Practical Implementation

In order to evaluate the currently proposed system and be able to improve it, the
next step of the remaining work is to implement and test the system in practice. A
prototype implementation based on the proposal presented in this thesis should be
tested by real human users, who could afterwards provide feedback regarding the
effort needed to understand the system’s concept, create identities and use identifiers
to access services.

Furthermore, current proposal involves multiple out-of-scope aspects, which may
require further elaboration and specification. Implementing a practical prototype
would allow trying different options, which would in turn give more information
about the needs of the system and thus enable improving it further.

7.1.2 Application Programming Interface for Device Subsystem

One of the aspects not elaborated in this document is interaction between third
party or OS applications and the DS. Therefore, it is important to define an API

79

80 7. CONCLUSION

specification that would allow developers more quickly learn the technology and use
it in development of applications and services.

7.1.3 Legal Aspects

As indicated in the discussion provided in Chapter 6, IdM procedures are subject to
legal regulations. Our system complicates the situation even more by introducing
universal IdPs that do not fit in the regulations designed for more limited, ad-hoc
IdM systems. Thus, envisaged future work includes an analysis of existing regulations
in different countries and identification of system’s aspects that contradict existing
rules and require modification of existing or introduction of new legal rules.

7.1.4 Survey of Involved Actors

Users often express their concern regarding privacy when an IdM system or a service
asks them for personal details. Such a reluctance to provide personal information
may prevent our system from reaching an adequate number of users, enterprises
and services that would enable large-scope benefits of the system. Thus, in future
work, it is needed to survey different parties, including regular human users, identity
managers and service providers, regarding their expectations about the proposed IdM
system and willingness to use it. The survey should address two different situations:
when the IdPS is run privately and when it is deployed in a cloud.

7.2 Final Remarks

Scientists and the industry unanimously agree that the number of communication-
capable devices used by both industry and regular human users is only going to
increase. This will inevitably result in a multiplicity of devices and abundance of
communicated data, most of which will be redundant and impose requirements for
automatic processing. This will not only require changes in communication techniques
and infrastructures, but also rethinking service models, applications and especially
user-performed work-flow.

To the best of our knowledge, this thesis is the first work that addresses automatic
user-based device-to-device communications and SDSO feature for easy connection of
multiple user’s devices. With this proposal, we hope to attract scientific community’s
attention towards the unexplored and rather relevant area of user-related automatic
device communications. As a result, we expect that the proposed solution encour-
ages new user-related communication system proposals, specific protocols and their
implementations, as well as emergence of applications based on these systems. Such
systems would contribute to evolution of communications and the Internet, thus

7.2. FINAL REMARKS 81

even more improving user welfare by enabling advanced automatic and ubiquitous
user-related functionality.

However, it is important to note that the IdM system presented in this thesis
serves a different purpose than other currently developed industry-related technologies
that enable communications in proprietary static infrastructures. The latter systems
address different problems and enable use cases that diverge from objectives of our
system. Therefore, it is highly possible that the future of communication technologies
will experience coexistence of both industry- and regular user-oriented technologies
and applications, thus providing specialised solutions serving distinct needs.

References

[3GP11a] 3GPP Organizational Partners. Service requirements for machine-type communi-
cations (stage 1), 3GPP TS 22.368 V11.3.0. Available at http://www.3gpp.org/
ftp/Specs/archive/22_series/22.368/22368-b30.zip, September 2011.

[3GP11b] 3GPP Organizational Partners. System improvements for machine-type commu-
nications, 3GPP TR 23.888 V1.6.0. Available at http://www.3gpp.org/ftp/Specs/
archive/23_series/23.888/23888-160.zip, November 2011.

[AH08] H. Akram and M. Hoffmann. Laws of identity in ambient environments: The hydra
approach. In Mobile Ubiquitous Computing, Systems, Services and Technologies,
2008. UBICOMM ’08. The Second International Conference on, pages 367–373,
Sept 2008.

[ARE+05] Nidal Aboudagga, Mohamed Tamer Refaei, Mohamed Eltoweissy, Luiz A. DaSilva,
and Jean-Jacques Quisquater. Authentication protocols for ad hoc networks:
Taxonomy and research issues. In Proceedings of the 1st ACM International
Workshop on Quality of Service &Amp; Security in Wireless and Mobile Networks,
Q2SWinet ’05, pages 96–104, New York, NY, USA, 2005. ACM.

[Ash09] Kevin Ashton. That ’internet of things’ thing. Available at http://www.rfidjournal.
com/articles/view?4986, 1 2009. [Online; accessed 15-May-2014].

[BHOS12] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The
quest to replace passwords: a framework for comparative evaluation of Web
authentication schemes. Technical Report UCAM-CL-TR-817, University of
Cambridge, Computer Laboratory, March 2012.

[BL07] Michelle Boatwright and Xin Luo. What do we know about biometrics authenti-
cation? In Proceedings of the 4th Annual Conference on Information Security
Curriculum Development, InfoSecCD ’07, pages 31:1–31:5, New York, NY, USA,
2007. ACM.

[BLW] Tim Berners-Lee and Stuart Williams. TAG recommends against XRI. Available
at http://lists.w3.org/Archives/Public/www-tag/2008May/0078.html. [Online;
accessed 27-March-2014].

83

http://www.3gpp.org/ftp/Specs/archive/22_series/22.368/22368-b30.zip
http://www.3gpp.org/ftp/Specs/archive/22_series/22.368/22368-b30.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.888/23888-160.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.888/23888-160.zip
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://lists.w3.org/Archives/Public/www-tag/2008May/0078.html

84 REFERENCES

[BLWF+05] Tim Berners-Lee, W3C/MIT, R. Fielding, Day Software, R. Masinter, and
Adobe Systems. Uniform resource identifier (URI): Generic syntax. Available at
http://www.ietf.org/rfc/rfc3986.txt, 01 2005. [Online; accessed 03-June-2014].

[BSSB05] Abhilasha Bhargav-Spantzel, Anna C. Squicciarini, and Elisa Bertino. Establishing
and protecting digital identity in federation systems. In Proceedings of the 2005
Workshop on Digital Identity Management, DIM ’05, pages 11–19, New York, NY,
USA, 2005. ACM.

[Cam05] Kim Cameron. The laws of identity. Available at http://www.identityblog.com/
stories/2005/05/13/TheLawsOfIdentity.pdf, 5 2005. [Online; accessed 2-June-
2014].

[CG11] Stuart Clayman and Alex Galis. Inox: A managed service platform for inter-
connected smart objects. In Proceedings of the Workshop on Internet of Things
and Service Platforms, IoTSP ’11, pages 2:1–2:8, New York, NY, USA, 2011.
ACM.

[CMT08] Sébastien Canard, Eric Malville, and Jacques Traoré. Identity federation and
privacy: one step beyond. In Proceedings of the 4th ACM workshop on Digital
identity management, DIM ’08, pages 25–32, New York, NY, USA, 2008. ACM.

[CN03] Mark D. Corner and Brian D. Noble. Protecting applications with transient
authentication. In Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services, MobiSys ’03, pages 57–70, New York, NY,
USA, 2003. ACM.

[CNH+07] G. Chavira, S.W. Nava, R. Hervas, J. Bravo, and C. Sanchez. Combining rfid and
nfc technologies in an ami conference scenario. In Current Trends in Computer
Science, 2007. ENC 2007. Eighth Mexican International Conference on, pages
165–172, Sept 2007.

[CNH+08] G. Chavira, S. W. Nava, R. Hervás, V. Villarreal, J. Bravo, S. Martín, and
M. Castro. Services through NFC technology in AmI environment. In Proceedings
of the 10th International Conference on Information Integration and Web-based
Applications & Services, iiWAS ’08, pages 666–669, New York, NY, USA, 2008.
ACM.

[CY11] Yuan Cao and Lin Yang. Gisl: A generalized identity specification language based
on xml schema. In Proceedings of the 7th ACM Workshop on Digital Identity
Management, DIM ’11, pages 3–12, New York, NY, USA, 2011. ACM.

[Den] Zach Dennis. Choosing an SSO strategy: SAML vs OAuth2.
Available at http://www.mutuallyhuman.com/blog/2013/05/09/
choosing-an-sso-strategy-saml-vs-oauth2/. [Online; accessed 10-March-2014].

[DLvZN+13] Alexander De Luca, Emanuel von Zezschwitz, Ngo Dieu Huong Nguyen, Max-
Emanuel Maurer, Elisa Rubegni, Marcello Paolo Scipioni, and Marc Langheinrich.
Back-of-device authentication on smartphones. In Proceedings of the SIGCHI

http://www.ietf.org/rfc/rfc3986.txt
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/
http://www.mutuallyhuman.com/blog/2013/05/09/choosing-an-sso-strategy-saml-vs-oauth2/

REFERENCES 85

Conference on Human Factors in Computing Systems, CHI ’13, pages 2389–2398,
New York, NY, USA, 2013. ACM.

[Ele12] Nikolay Elenkov. Storing application secrets in Android’s cre-
dential storage. Available at http://nelenkov.blogspot.no/2012/05/
storing-application-secrets-in-androids.html, 6 2012. [Online; accessed
3-June-2014].

[Eur12] European Telecommunications Standards Institute. ETSI TR 102 935 V2.1.1
(2012-09) machine to machine communications (M2M); applicability of M2M
architecture to smart grid networks; impact of smart grids on M2M platform.
Available at http://www.etsi.org/deliver/etsi_tr/102900_102999/102935/02.01.
01_60/tr_102935v020101p.pdf, September 2012.

[Eur13a] European Telecommunications Standards Institute. ETSI TR 102 857 V1.1.1
(2013-08) machine to machine communications (M2M); use cases of M2M appli-
cations for connected consumer. Available at http://www.etsi.org/deliver/etsi_
tr/102800_102899/102857/01.01.01_60/tr_102857v010101p.pdf, August 2013.

[Eur13b] European Telecommunications Standards Institute. ETSI TR 102 857 V1.1.1
(2013-08) machine to machine communications (M2M); use cases of M2M appli-
cations for eHealth. Available at http://www.etsi.org/deliver/etsi_tr/102700_
102799/102732/01.01.01_60/tr_102732v010101p.pdf, August 2013.

[Eur13c] European Telecommunications Standards Institute. ETSI TR 102 898 V1.1.1
(2013-04) machine to machine communications (M2M); use cases of automotive
applications in M2M capable networks. Available at http://www.etsi.org/deliver/
etsi_tr/102800_102899/102898/01.01.01_60/tr_102898v010101p.pdf, April
2013.

[Eur13d] European Telecommunications Standards Institute. Machine-to-machine com-
munications (M2M); functional architecture. Available at http://www.etsi.org/
deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf, 10
2013.

[Eva11] Dave Evans. White paper: The Internet of Things. How the Next Evolution of
the Internet Is Changing Everything, 04 2011.

[GBK+11] V. Galetic, I. Bojic, M. Kusek, G. Jezic, S. Desic, and D. Huljenic. Basic principles
of machine-to-machine communication and its impact on telecommunications
industry. In MIPRO, 2011 Proceedings of the 34th International Convention,
pages 380–385, 2011.

[GHL05] Alfonso Gárate, Nati Herrasti, and Antonio López. Genio: An ambient intelligence
application in home automation and entertainment environment. In Proceedings of
the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative
Context-aware Services: Usages and Technologies, sOc-EUSAI ’05, pages 241–245,
New York, NY, USA, 2005. ACM.

http://nelenkov.blogspot.no/2012/05/storing-application-secrets-in-androids.html
http://nelenkov.blogspot.no/2012/05/storing-application-secrets-in-androids.html
http://www.etsi.org/deliver/etsi_tr/102900_102999/102935/02.01.01_60/tr_102935v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/102900_102999/102935/02.01.01_60/tr_102935v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102857/01.01.01_60/tr_102857v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102857/01.01.01_60/tr_102857v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.01.01_60/tr_102732v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.01.01_60/tr_102732v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102898/01.01.01_60/tr_102898v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102898/01.01.01_60/tr_102898v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf

86 REFERENCES

[Gil14] Kevin Gillick. Globalplatform made simple guide: Trusted execution environment
(TEE) guide. Available at http://www.globalplatform.org/mediaguidetee.asp,
2014. [Online; accessed 03-June-2014].

[GJK+09] Matteo Gaeta, Juergen Jaehnert, Kleopatra Konstanteli, Sergio Miranda, Pierluigi
Ritrovato, and Theodora Varvarigou. Federated identity management in mobile
dynamic virtual organizations. Identity in the Information Society, 2(2):115–136,
2009.

[Hun02] Craig Hunt. TCP/IP Network Administration (3rd Edition; O’Reilly Networking).
O’Reilly Media, Inc., 04 2002.

[HZW11] Chunye Hu, Jie Zhang, and Qiaoyan Wen. An identity-based personal location
system with protected privacy in iot. In Broadband Network and Multimedia
Technology (IC-BNMT), 2011 4th IEEE International Conference on, pages
192–195, Oct 2011.

[Int] Internet Engineering Task Force. The OAuth 2.0 Authorization Framework.
Available at http://tools.ietf.org/html/rfc6749. [Online; accessed 18-March-2014].

[KBM+02] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe
Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schet-
tino, Bill Serra, and Mirjana Spasojevic. People, places, things: Web presence for
the real world. Mob. Netw. Appl., 7(5):365–376, October 2002.

[KKK+13] Byoungoh Kim, Taehun Kim, Han-Gyu Ko, Dongman Lee, Soon J. Hyun, and In-
Young Ko. Personal genie: A distributed framework for spontaneous interaction
support with smart objects in a place. In Proceedings of the 7th International
Conference on Ubiquitous Information Management and Communication, ICUIMC
’13, pages 97:1–97:10, New York, NY, USA, 2013. ACM.

[KRL13] Treffyn Lynch Koreshoff, Toni Robertson, and Tuck Wah Leong. Internet of
things: A review of literature and products. In Proceedings of the 25th Aus-
tralian Computer-Human Interaction Conference: Augmentation, Application,
Innovation, Collaboration, OzCHI ’13, pages 335–344, New York, NY, USA, 2013.
ACM.

[KSB+13] Damjan Katusic, Pavle Skocir, Iva Bojic, Mario Kusek, Gordan Jezic, Sasa
Desic, and Darko Huljenic. Universal identification scheme in machine-to-machine
systems. In Telecommunications (ConTEL), 2013 12th International Conference
on, pages 71–78, 2013.

[KTV05] Eija Kaasinen, Timo Tuomisto, and Pasi Välkkynen. Ambient functionality: Use
cases. In Proceedings of the 2005 Joint Conference on Smart Objects and Ambient
Intelligence: Innovative Context-aware Services: Usages and Technologies, sOc-
EUSAI ’05, pages 51–56, New York, NY, USA, 2005. ACM.

[Law04] G. Lawton. Machine-to-machine technology gears up for growth. Computer,
37(9):12–15, 2004.

http://www.globalplatform.org/mediaguidetee.asp
http://tools.ietf.org/html/rfc6749

REFERENCES 87

[OAS05a] OASIS. Assertions and protocols for the OASIS security assertion markup
language (SAML) v2.0. Available at http://docs.oasis-open.org/security/saml/
v2.0/saml-core-2.0-os.pdf, 3 2005. [Online; accessed 17-March-2014].

[OAS05b] OASIS. Bindings for the OASIS security assertion markup language (SAML) v2.0.
Available at http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.
pdf, 3 2005. [Online; accessed 18-March-2014].

[OAS05c] OASIS. Profiles for the OASIS security assertion markup language (SAML) v2.0.
Available at http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.
pdf, 3 2005. [Online; accessed 18-March-2014].

[OAS08] OASIS. Security assertion markup language (SAML) v2.0 technical overview; com-
mittee draft 02. Available at https://www.oasis-open.org/committees/download.
php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf, 3 2008. [Online; accessed
17-March-2014].

[one12] oneM2M. Leading ICT standards development organizations launch oneM2M.
Press Release, July 2012. Available at http://www.onem2m.org/press/oneM2M%
20Launch%20Release.pdf.

[Opea] OpenID Foundation. OpenID Authentication 2.0 - Final. Available at http:
//openid.net/specs/openid-authentication-2_0.html. [Online; accessed 14-March-
2014].

[Opeb] OpenID Foundation. Welcome to OpenID Connect. Available at http://openid.
net/connect/. [Online; accessed 01-April-2014].

[Ora10] Oracle. The Liberty ID-FF Convergence (Sun Java System Access Manager 7.1
Federation and SAML Administration Guide): The Liberty ID-FF Convergence.
Available at http://docs.oracle.com/cd/E19462-01/819-4674/gdore/index.html,
2010. [Online; accessed 17-March-2014].

[Pan10] R.R. Panko. Corporate Computer and Network Security. Prentice Hall PTR,
2010.

[Per12] George Percivall. Connecting islands in the internet of things. In Proceedings
of the 3rd International Conference on Computing for Geospatial Research and
Applications, COM.Geo ’12, pages 4:1–4:1, New York, NY, USA, 2012. ACM.

[PHS13] C.H. Potter, G.P. Hancke, and B.J. Silva. Machine-to-machine: Possible ap-
plications in industrial networks. In Industrial Technology (ICIT), 2013 IEEE
International Conference on, pages 1321–1326, 2013.

[Piu13] V. Piuri. Biometric technologies for ambient intelligence in the internet of things.
In Green Computing and Communications (GreenCom), 2013 IEEE and Internet
of Things (iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, pages lxxi–lxxii, Aug 2013.

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.onem2m.org/press/oneM2M%20Launch%20Release.pdf
http://www.onem2m.org/press/oneM2M%20Launch%20Release.pdf
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/connect/
http://openid.net/connect/
http://docs.oracle.com/cd/E19462-01/819-4674/gdore/index.html

88 REFERENCES

[RC11] G. Roussos and P. Chartier. Scalable id/locator resolution for the iot. In
Internet of Things (iThings/CPSCom), 2011 International Conference on and
4th International Conference on Cyber, Physical and Social Computing, pages
58–66, Oct 2011.

[RP12] D. Rotondi and S. Piccione. Managing access control for things: A capability
based approach. In Proceedings of the 7th International Conference on Body Area
Networks, BodyNets ’12, pages 263–268, ICST, Brussels, Belgium, Belgium, 2012.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering).

[SBJ+] Nat Sakimura, John Bradley, Michael B. Jones, Breno de Medeiros, and Chuck
Mortimore. OpenID Connect Basic Client Profile 1.0 - draft 28. Available at
openid.net/specs/openid-connect-basic-1_0.html. [Online; accessed 01-April-
2014].

[SKSS14] Jaeseung Song, Andreas Kunz, Mischa Schmidt, and Piotr Szczytowski. Con-
necting and managing M2M devices in the future internet. Mob. Netw. Appl.,
19(1):4–17, February 2014.

[SNB+] Nat Sakimura, NRI, John Bradley, Ping Identity, , Michael B. Jones, Microsoft,
Breno de Medeiros, Google, Chuck Mortimore, and Salesforce. OpenID Connect
Core 1.0. Available at http://openid.net/specs/openid-connect-core-1_0.html.
[Online; accessed 01-April-2014].

[SP12] M. Sujithra and G. Padmavathi. Next generation biometric security system: An
approach for mobile device security. In Proceedings of the Second International
Conference on Computational Science, Engineering and Information Technology,
CCSEIT ’12, pages 377–381, New York, NY, USA, 2012. ACM.

[SS12] Roland Schlöglhofer and Johannes Sametinger. Secure and usable authentication
on mobile devices. In Proceedings of the 10th International Conference on Advances
in Mobile Computing & Multimedia, MoMM ’12, pages 257–262, New York,
NY, USA, 2012. ACM.

[Win05] Phillip J. Windley. Digital identity. O’Reilly, 2005.

[WJ12] Qiang Wei and Zhi Jin. Service discovery for internet of things: A context-
awareness perspective. In Proceedings of the Fourth Asia-Pacific Symposium
on Internetware, Internetware ’12, pages 25:1–25:6, New York, NY, USA, 2012.
ACM.

[WWR+12] D. Walczak, M. Wrzos, A. Radziuk, B. Lewandowski, and C. Mazurek. Machine-
to-machine communication and data processing approach in future internet
applications. In Communication Systems, Networks Digital Signal Processing
(CSNDSP), 2012 8th International Symposium on, pages 1–5, July 2012.

openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

	List of Figures
	List of Acronyms
	Introduction
	Background
	Identity Management
	Utilisation of Identifiers
	Identities
	Entity Authentication
	Entity Authorisation and Accounting
	IdM System Models

	Communication Technologies
	M2M Communications
	Internet of Things
	Ambient Intelligence

	State of the Art
	Device-Oriented IdM Systems
	Object Identifier for Meta-Data
	Cooltown
	Object Naming Service

	User-Oriented IdM Systems
	OpenID
	SAML
	OAuth 2.0
	OpenID Connect

	Communication for Ubiquitous Computing
	ETSI M2M System Architecture
	MTC Standard
	oneM2M

	Vision and Requirements
	Problem Description
	Our Approach
	Challenges
	Envisaged Use Case

	IdM System Proposal
	System's Entities
	Logical Entities
	Physical Entities

	Identification System
	Requirements for Identification
	Identification System
	Identity Information

	System's Functionality
	System's Structure
	System's Actions
	User Login and Device Authentication
	Connection to a Service
	System's Management Operations

	Discussion
	System's Comparison to Other Solutions
	Device-Based Systems
	User-based Systems

	Satisfaction of 7 Laws of Identity
	Utilisation Characteristics
	Trust
	Usability
	Anonymity

	Practical Application Issues
	Prototype Implementation and Out-of-Scope Parts
	Legal Identity Management Issues
	Secure Data Storage in Users' Devices

	Conclusion
	Future Work
	Practical Implementation
	Application Programming Interface for Device Subsystem
	Legal Aspects
	Survey of Involved Actors

	Final Remarks

	References

