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Summary

Anisotropy in large parts of the earth’s crust, particularly in sedimentary basins is well
modeled by orthorhombic (ORT) symmetry. Schoenberg and Helbig (1997) introduced the
orthorhombic medium as a combination of vertical fractures and horizontal fine layering,
which resembles quite much of a petroleum reservoir. Hence understanding the behavior
of the seismic response for this particular medium has become quite popular for this past
years.

A well data is provided in this study for observing the seismic signature of a fractured
reservoir, which known as ORT medium. The kinematic parameters derived by Stovas
(2016) are utilized in this study. Polar plot of azimuthal dependence of these kinematic
parameters is conducted in order to observe the difference signature of a fractured and non-
fractured medium. Furthermore, the effect of considering overburden above the fractured
reservoir is also discussed.

Since well data and seismic wavelength work in a slightly different frequency domain,
a process that helps to transfer a series of a thin layered model that match with seismic
wavelength is required. Upscaling is commonly known to handle this issue. Two methods
of upscaling, which are classic or famously known as Backus average and least square,
are conducted, and the results are compared. In addition to that, in a fractured reservoir
observation, two approaches to introducing fractures are also discussed and compared.
These approaches are to introduce the fractures before and after the upscaling process.

This study aims to observe the seismic signature in the form of kinematic parameters that
are azimuthally dependent for a fractured reservoir with the condition, as stated before.
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Chapter

Introduction

1.1 Background

Anisotropy is a real life scenario that contribute in petroleum exploration activities. It is
there in most parts of the earth’s crust, particularly in sedimentary basins. Anisotropy can
be defined into several medium which depend on the condition of the earth’s layer itself.
For example, if the layers are homogeneous in one of the symmetry axis, then the medium
is called Transversely Isotropic. This case mainly can be found in shale lithology where
it’s properties appear to be homogeneous along the axis that perpendicular to the vertical
axis. This type of lithology is classified as Vertical Transverse Isotropic (VTI) medium.
Another common condition is in a fractured reservoir where the lithologies are consist of
several stacks of thin layers of sandstone and shale with vertical fractures embedded in it.
Such condition is classified as Orthorhombic medium which become an interest of study
for the past years.

Schoenberg and Helbig (1997) introduced the orthorhombic medium as a combination
of vertical fractures and horizontal fine layering that is equivalent to a long wavelength.
Such condition is relevant to a fractured reservoir that is commonly found in petroleum
exploration. The approach for analyzing this medium requires knowledge from anisotropy
in VTI medium, fracture weaknesses and a method to transform a stack of several thin
layers into one effective medium that fit with seismic wavelength.

Along with understanding the anisotropy parameters, kinematic properties help us to un-
derstand how the seismic signature behaves in anisotropic media. Stovas (2016) derived
the kinematic properties for P-wave and S-wave velocity in orthorhombic media for both
pure-mode and converted waves. This study however, will only be focused to pure-mode
waves only. Additionally, the responds of azimuth dependent of this kinematic properties
will also be conducted.
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In a matter of observing seismic signature in a fractured reservoir, one needs to consider
how it will be observed from the surface. It brings to a condition where the overburden
layers above the fractured reservoir need to be included in the calculation of the kinematic
parameters. This will come to a series of reflections being recorded in the function of time
and recorded on a seismogram. Then, these travel time can be computed and converted
into layer parameters, famously known as Dix (1955) inversion.

1.2 Objectives

The objectives of this study are listed as:

1. To work with anisotropy concept that focuses on Schoenberg-Helbig Orthorhombic
model.

2. Comparing Backus Average and Least Square as an upscaling method to acquire
effective medium properties.

3. Comparing two different approaches of introducing fractures to the medium. They
will be introduced before and after upscaling methods.

4. To observe kinematic properties on pure-mode waves based on the designated ap-
proaches.

5. To perform a dix-type equation in order to simulate how the kinematic parameters
of a medium at certain depth are observed from the surface.

1.3 Outline

In this study, nine chapters will be presented, including this introduction. Each chapter is
presented, and there will be a brief explanation about it at the beginning of each chapter.
A summary of the chapters is given below.

Chapter one gives background information, objectives, and the outline of this study. This
content is provided for giving a brief explanation of what this study is all about.

Chapter two explains the anisotropy models that are mainly discussed for this study. Two
anisotropy models will be highlighted, Vertical Transverse Isotropic or VTT medium and
Orthorhombic or ORT medium. A brief discussion about symmetry class is also discussed
beforehand.

Chapter three discusses the averaging or upscaling methods, which is used to obtain an
effective parameter that is gathered from well log data. Two upscaling methods will be
compared, the first one is classic upscaling or commonly known as Backus Averaging,
and the second one is least square upscaling. These methods are conducted in both VTI
and ORT media.
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Chapter four explains about Dix-type equations. A discussion about these equations that
is intended to calculate the effective parameters with several layers to be accounted for is
provided. This approach illustrates how a specific layer’s parameters at a certain depth are
observed from the surface.

Chapter five contains the observation of well log data that is used in this study. General
interpretation regarding this data is also provided. Furthermore, how the methods are
going to be performed are also defined in this chapter.

Chapter six discusses the fracturing effect in a medium. Preliminary consideration that
state any necessary assumption and notation are discussed at the beginning. The condi-
tion of the medium before fracturing will be calculated and observed beforehand, along
with that, upscaling methods will also be performed in this chapter. The effect of the frac-
tures when they are introduced to a medium will be the main observation in the form of
kinematic parameters.

Chapter seven mainly focused on a comparison of the methods and approaches that are
conducted in this study. These will relate to upscaling comparison and fracturing approach
comparison. Whether these methods give significant different to the kinematic parameters
or not will be explained at the end of this chapter.

Chapter eight is involving an overburden effect on the study. The kinematic parameters
of a layer at a certain depth will be observed when the overburden layers are included.
Chapter nine summarizes the work of what has been done in this project. There will be a
conclusion based on analyzing the results.
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Anisotropy Models

Anisotropy is commonly defined as the variation of a physical property depending on the
direction in which it is measured (Sheriff, 2002). Therefore, in term of seismic anisotropy,
it refers to the directional variation of a layer’s response to the path of seismic waves.
Specifically, it can be referred to as the dependence of seismic velocity upon angle. In here,
velocity is commonly described as the speed of a seismic wave. It is the physical property
that affects traveltime, amplitude, frequency, attenuation, and many other properties which
are measured from seismic data. The angle is commonly described as directions including
polar or incident angle (offset) and source-receiver azimuth (Liu and Martinez, 2012).

In some occasions, the term anisotropy and heterogeneity may lead to confusion. A sim-
ilar case such as isotropic and homogeneous may also lead to some misunderstanding.
Figure 2.1 can give clarity about these terms. The figure illustrates how each medium
is affecting the seismic velocity. Note that the arrow represents the velocity value and
direction.
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Homogeneous Heterogeneous

i i

Isotropic |

Figure 2.1: Illustration of how velocity behave given different model of medium. The value of the
velocity is represented by the length of the arrow.

2.1 Symmetry Class

The symmetry of a medium is reflected in the structure of the elastic stiffness tensor C' ;1.
In anisotropic media, stiffness tensor is related to stress o;; and strain €;; through Hooke’s
law.

Hooke’s law states that for sufficiently small stresses, the strain is proportional to the stress.
For an anisotropic medium, Hooke’s law can be written as:

€ij = SijklOkl (2.1

where ¢;; and 0;; denote components of the second-rank strain tensor and the stress tensor
respectively. S;;; denotes the component of the fourth-rank elastic compliance tensor.

Equation 2.1 can be inverted to express the components of the stress tensor in terms of the
components of the strain tensor, hence:

0ij = Cijki€kl 2.2)

Where C';;1,; denotes a component of the fourth-rank elastic stiffness tensor, C. The second
rank tensor € and o possess the following symmetries:

€ij = €ji, Oij = 0ji (2.3)




2.2 Vertical Transverse Isotropic Medium

The fourth-rank tensors S and C possess the following symmetries:
Sijkt = Sijiks Sijrt = Sjirts Cijrt = Cijiks Cijrr = Clina 2.4

The relationship shown in Equation 2.3 and Equation 2.4 reduce the number of indepen-
dent elements of S;;;; and Cj;z; and therefore make it possible to introduce the Voight
notation in which pairs of subscript ¢5 and kl are abbreviated by single subscripts.

11 51,222,333, 44 — 4, 31&13 — 5, 12&21 — 6 2.5)

Combining the Hooke’s law in Equation 2.2 with equation of motion below:

2
0 Uj o adij

= 2.6
Lo = b, (26)
will give result in wave equation such that:
82’&1‘ 6ui
=iy ——F 2.7
P 12 ijkl 8x18xj ( )

Using Equation 2.5, the stiffness tensor C;;z; can be written as a matrix C,; which can be
shown below:

Ci1 Ci2 Ci3 Cuy G5 Cug
Cia Coz Coz3 Coy Co5 Coe
Ciz Coz3 C33 C3y C35 Czg
Ciy Coy C3y Cy Cys Cye
Cis5 Cy5 C35 Cy5 Cs5 Cse
Ci6 C C3s Cus Cs6 Cos

2.8)

From the symmetry in matrix C,p, it follows that the maximum number of independent
stiffness coefficients is 21 in an anisotropic medium. These independent stiffness coeffi-
cients range in term of complexity from Isotropic medium with two independent stiffness
coefficient to the most complex Triclinic medium with 21 independent stiffness coeffi-
cient. In this study, VTI and ORT medium that have five and nine independent stiffness
coefficient will be mainly discussed.

2.2 Vertical Transverse Isotropic Medium

Vertical Transverse Isotropic (VTI) medium is one of the class which belonged to trans-
versely isotropic medium that has one single rotational symmetry axis, so that, in direc-
tions perpendicular to this, the material’s properties appear to be directionally invariant.
As in VTI case, it has the vertical rotational symmetry axis.
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Figure 2.2: Illustration of VTI medium.

The common cause for VTI anisotropy in the subsurface are thin horizontal bedding or
the preferential alignment of minerals and grains during deposition. An example of a VTI
medium is a fine layering of shale.

2.2.1 Stiffness Coefficients

VTI is described by five independent stiffness coefficients (C11, Css, Cq4, Cgg, and Cy3)
which have the following matrix form:

Ciy Ci1 —2Ces Ci3 O 0 0
Ci1 —2Cq6 Ciy Csz 0 0 0
o Ci3 Ci3 Cy3 O 0 0
Cij = 0 0 0 Cu 0 0 2.9)
0 0 0 0 Cu4u O
0 0 0 0 0 Ces

Individual components of the stiffness matrix which representing individual layers are
shown below, following (Thomsen, 1986).

Cs3 = V?)O Ps
Cs5 = Cas = V2, p,
C11 = (1+25) C3,37 (210)

Co6 = (1 + 27) Cyy4, and
Ci3 = 1/20C33(Cs3 — Cs5) + (C33 — Cs5)2 — Cs5

where p is density, V0 and Vj are vertical velocity of P-wave and S-wave respectively. ¢,
v, and § are the anisotropy parameters which will be discussed later on.

8



2.2 Vertical Transverse Isotropic Medium

2.2.2 Anisotropy Parameters

For seismic applications, it is not convenient to use parameterization in terms of stiffness
coefficients. It is best to split the parameters relevant to velocities and anisotropy itself
which concisely characterize a wide range of seismic signatures.

In VTI effective medium where there are several isotropic layers stacked together, pa-
rameterization is referred to (Thomsen, 1986), in which there are two vertical velocities
explained as,

Ca-
Vp, = 33
p
(2.11)
C
v, = 44
P
and three anisotropy parameters described as,
_ G —GCss
2C33 '
_ Ce6 —Cuy
T o, (2.12)

(Ci3 4 Cy4)? — (C33 — Cuq)?
2C33(C33 — Cya)

(5:

Here, ¢ and «y are controlling the horizontal propagation of P-wave and SH-wave, re-
spectively. Note that, S-wave has two different polarization, vertical and horizontal to its
propagation, and they are equal while propagating vertically in VTI medium. For horizon-
tal velocities, the equations are provided below and note that the horizontal velocity for
SV-wave is equal to vertical S-wave velocity.

s
A (2) = V3 (1+2)

(2.13)
m
Vii(5) = Va4
For parameter 4, it is responsible for NMO velocity of P-wave,
Vi amo) = Vao(1 4 26) (2.14)

Parameter o is introduced when dealing with SV-waves,
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_ _po
o is responsible for SV-wave NMO velocity,

Vivimo) = V(1 +20) (2.16)

2.3 Schoenberg & Helbig: Orthorhombic Medium

Vertical fractures and horizontal fine layering combine to form a long-wavelength equiv-
alent orthorhombic medium (Schoenberg and Helbig, 1997). Such media can also be de-
scribed as vertical fractures which are embedded into a transversely isotropic background
medium with a vertical axis of symmetry (VTI) as illustrated in Figure 2.3. Note that
symmetry planes are defined in such a way according to the axis, which is defined in the
figure.

Figure 2.3: Schematic diagram of vertical fractures embedded in VTI medium adopted from
(Schoenberg and Helbig, 1997). (a) VTI medium, (b) Vertical fractures set, and (c) ORT medium.

Here, an agreement to the symmetry planes are set, where [X1,X2] and [X2,X3] are the
vertical symmetry planes that perpendicular to the fractures and parallel to the fractures
respectively. As for the [x1,X2], it is the horizontal symmetry plane.

2.3.1 Stiffness Coefficients

There are nine independent stiffness coefficients in ORT medium: six diagonal elements
that relate specifically to velocities along the coordinate axes and three independent off-
diagonal elements.

The stiffness matrix C of such medium can be described as follow:

10
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Cu

Ci2

Ci3
0
0
0

Ci2

Coo

Caz
0
0
0

Ci3

Cas

Ca3
0

0 0

0 0

0 0| [a o

0 0 B 4’
Css O

0 Ces

2.17)

Here, the velocities along the coordinate axes are illustrated in the Table 2.1 based on how
the propagation and polarization are from. The P-waves in the x;, X2, and x3 directions
are given by 1/Ci1, v/Ca2, and 4/Css respectively. The S-waves are expressed on the
off-diagonal elements.

Propagation
Polarization X1 Xo X3
X1 VCii VCss  VCss
X2 VCss VCa2 +Cas
X3 Css Cyq Css

Table 2.1: Axial Propagation

Now, returning to Equation 2.17, the 0 is the 3 x 3 zero matrix and ¢; and ¢; are given by:

_Cllb(l —Apn) Ci2,(1—An) Cis, (1 — Ay)
Ciy Ci2
Ciz,(1-Ay) Cyp|1-A L Cis [1—An=—"
e m< th) m( ten, (2.18)
Ci2 C2
e O A (e
and
Cug, 0 0
~2 = 0 C44b(1 — AV) 0 (219)
0 0 Ces, (1 — Ap)

Here, C;;, are the stiffness coefficients of the VTI background explained in Equation 2.10.
AN, Ay, and Ay are the dimensionless weakness of the fractures which change from
zero (no fracture) to unity (extreme fracturing). Ay and Apy correspond to vertical and
horizontal tangential fracture weaknesses respectively, and Ay corresponds to normal
fracture weakness.

11
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Fracture weaknesses also provide another definition term. The tangential weaknesses Ay
and Ay provide a measure of crack density, whereas the normal weakness Ay provides
information regarding fluid content of the fractures and possible fluid flow between the
fractures and pore space, Ay = 0 indicates wet fractures and Ay = 0.5 indicates dry
fractures (Bakulin et al., 2000).

Note again that matrix in (2.17) describes a particular type of orthorhombic medium with
the stiffness satisfying the relation (Schoenberg and Helbig, 1997):

Ci3(Caz + C12) = Ca3(Ci1 + C12) (2.20)

The existence of this additional constraint (2.20) come from the fact that while the general
orthorhombic medium is described by nine independent values of C;;, the vertical fracture
induced mode considered in this model is defined by only eight quantities. Those are five
stiffness coefficients of the VTI background medium (2.10) and three fracture weaknesses
(AN, Av, and AH)

Recollecting all the matrix shown in (2.18) and (2.19), individual components of the stiff-
ness matrix can be written in the following form:

Ci1 =C11,(1 - An), Cag = Cyy,,

Cc? C2?
Cag = Cy1, — Ay =222, Css = Csg, — Ay =222,

Cllh Cllb

C
C23 = (:131J (1 — AN C12b >7 C55 = C44b(1 - Av)7 (221)
11,

Ci2 = Cia, (1 — An), Ce6 = Cos, (1 — Am),

Ci3 = Cy3,(1 — Ap)

2.3.2 Anisotropy Parameters

In ORT effective medium, where there is a set of vertical fractures embedded in VTI
medium as the background, anisotropy parameters are defined for each symmetrical plane
accordingly. Those consist of two vertical symmetry planes and one horizontal symmetry
plane (Tsvankin, 1997).

First of all, the vertical velocities of the P and S waves are still following the Thomsen’s
recipe in VTI medium. However, the preference of using S-wave polarized in x; -direction
is used for defining the S-wave vertical velocity (Tsvankin, 1997). The reason for that is
due to C44 and Cj5 values are no longer the same as it is introduced in VTI medium. As the
vertical fractures are embedded in VTI medium, the vertical S-wave velocity that polarized

12



2.3 Schoenberg & Helbig: Orthorhombic Medium

in [x1] direction (Cs5) will have different velocity compared to the one that polarized in
[x2] direction (C44). Therefore the vertical velocities are expressed as:

C.

Vp, = 4/ —2 (2.22)
p
Cs

Vv, = p5 (2.23)

For anisotropy parameters in the [x;,Xx3] vertical symmetry plane, they are defined as:

Ci1 —Css
_ Ciu—Cs 2.24
. o (2.24)
Co6 — Cyq
_ Cas—Cus 225
Al 2Cas ( )
5, — Gt Cs5)* — (Css — Cs5)” (2.26)

2C33(C33 — Csp)

Note that in the definition of § for VTI media in Equation 2.12, C44 is used rather than Css5.
The reason for that is since both values are the same in VTI medium as the vertical S-waves
that polarized in [x;] and [X2] direction are identical. However, those two stiffness coeffi-
cients differ for orthorhombic media. Hence, Cs5 is always used in Equation 2.26 which
correspond to vertical S-wave that polarized in [x;] direction. For anisotropy parameters
in the [X2,x3] vertical symmetry plane, they are defined as:

Gy —Cs3

= 2.2
“2 2Cs3 2.27)
Cgs — Css5
=0 " 2.28
Y2 5Ces (2.28)
C Cu4)? — (C35 — Cyq)?
5y = (Co3 4+ Cua) (Css 44) (2.29)

2C33(C33 — Caa)

As the two vertical velocities and six anisotropy parameters introduced above can be used
instead of eight original stiffness coefficient: Cy;, Ca2, Cs3, Cy4q, Cs5, Cgg, Cosz, and
C13. The only remaining stiffness C;5 can be replaced with a dimensionless anisotropic
parameter analogous to the § coefficients in the vertical planes of symmetry.

(Ci2 4 Cg6)? — (C11 — Cep)?
2C11(Cq1 — Ces)

03 = (2.30)
The coefficient 3 plays the role of Thomsen’s § for [X;,X2] horizontal symmetry plane.

Note that the quantities for € and +y in this horizontal symmetry plane would be redundant
(Tsvankin, 1997).
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Chapter 2. Anisotropy Models

2.3.3 Kinematic Parameters

In recent years, full azimuth seismic data processing and interpretation in ORT medium
have earned popularity. ORT medium requires more attention on both parameterization
and kinematic properties. Hence, experimenting on pure mode waves with azimuth depen-
dent will be conducted in this study, and they will be defined in phase and group domain
should they behave differently in the anisotropic medium.

Two kinematic parameters will be analyzed, and those are NMO velocity and anellipticity.
These parameters are azimuthally dependent, and they can be expressed in phase and group
domains. These parameters are related to the curvatures of the slowness surface computed
at the point where both horizontal projections of the slowness vector are zero in the phase
domain. In the group domain, these parameters are related to similar curvatures calculated
from the travel time surface at zero offsets.

NMO velocity ellipses are known as the first order of curvatures in the group domain
(Grechka and Tsvankin, 1998), while anellipticity is the second order of curvatures that
responsible for the anelliptic behavior of either slowness or the traveltime surface in the
phase domain (nonhyperbolic in the group domain). Here, they will be explained in sys-
tematic ways, and all the following formulas are referred to (Stovas, 2016) that has done
the research in kinematic parameters of pure- and converted-mode waves for elastic or-
thorhombic medium.

First of all, P-wave kinematic parameters are calculated. Here, three properties are needed
to obtain, those are Vg, Vi, and V4 which correspond to vertical P-wave velocity and
P-wave NMO velocity in the vertical symmetry plane of [x1,x3] and [Xx2,X3] respectively.
Note that notation 1 and 2 in anisotropy parameters &, y, § also represent those in [X1,X3]
and [X2,X3] symmetry plane respectively.

Vo =V,
Vi=V2 (1+26), 2.31)
V3 = V2 (1+26),
Next is to define how to calculate the anellipticity for P-wave,
o (51 — 61)(1 + 2(51 — 7’(2))
T a2 (1 —2)

B (62—52)[(1+252)(1+2’Yl) _T%(1+2’72)] (2.32)
P T A 20021+ 21 — 12(1 + 27)] '

. bo + bQT% + b4’l“g + b67“8 — 2r17rars
T = ST+ 260) (1 + 205) [T+ 271 — r2(1 + 272)]

where,
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2.3 Schoenberg & Helbig: Orthorhombic Medium

by = 2(1 + 2(51)(1 + 252)(1 + 2’71),

by = —(14261)(1 4 27v2) — (1 +282)(1 + 271)
—2(14261)(1 + 262) (1 4+ 71 +72)
—2(1 4 2v1)(1 + 272)(1 + 61 + &2), (2.33)

by = (1+272) [4 4 261 + 265 + 271 + 272
+ (14 201)(1+ 292) + (1+202)(1 + 2m)],
bg = —2(1 + 272)°
For S-wave kinematic properties, the term of S1 and S2 is used instead of saying faster
or slower S-waves. They correlate with either Cs5 or C44. The S1-wave is related to the

vertical velocity of 1/Css, and the kinematic properties are following the formula below.
Note that the notations being used here are also the same as those in P-wave.

VO = Vsm
2 2 €1 — 0
V2=V (1 S b ) (2.34)
5
V3= V5, (1+2m%),
Next is to define how to calculate anellipticity for S1-wave,
. (61 — 1) 13 (14261 —rd)
1= 2 )
(1+28522) (1 -3)
0
ne =0, (2.35)
bo + b2r§ + b4r8‘ + bﬁrg — 2r1Tors
Ney = —

(1= 1) (1+ 29520 ) (3 — ) (1 + 272)

where,
bo = (14 271)?[(1 +261)(1 +252) + (1 + 233)(1 + 221)?],

by = —(1+271)[(1 +201) (1 + 272) + (1 +202)(1 + 271)
+ (1+29) (1 +200) (1 + 62) (1 + 21) (1 + 272))
+2(1 4 261) (1 + 292) (1 + 63) (1 + &1 +71)], (2.36)

by = (1+271)(1 + 272) [3 4 261 + 262 — 2(1 + 262) (72 — ™1)
+2(1+ 29) (L + &1 +71) + (1 +283) (1 + 2e1)(1 + 272)],

bs = —2(1 4 272)*(1 + 271 + 2m172)
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Chapter 2. Anisotropy Models

The last one that need to be calculated is S2-wave kinematic properties. The S2-wave is
related to the vertical velocity of 1/Cy44, and the kinematic properties are defined below.
And again the notation in here is also the same as the other two kinematic properties

explained above.
[1+ 279
Vo =V ;
0 0 1 + 2’)/1

V2= V2 (1+29), (2.37)
1+ 27, (e2 — d2)
vi=v? 2
2 EN) (1 ¥ 271 + 7"8 )

And finally to define the anellipticity of S2 wave,

m = 07
142
L afuem-
- 142 Nk 142 ’
(L+2m)2 ({58 + 2l |1 - (g 2.38)

by + b27”(2) + b47’3 + b6r8 — 2r1rors3

Ny = — —
a4+ 20) [1+ 29 — (14 200)r8] [(§5522) + 2222 | (2 — )

where,
bo = (14 2v1) [(1 4 261) (1 + 202) + (1 4 263) (1 + 2e1)?],

by = —(14261)(1 + 27v2) — (1 +22)(1 4 271)
— (14 292) [(1 +261) (1 + 202) + (1 + 2¢1) (1 + 27)]
— 2(1 —+ 281)(1 + 2’)/1)(1 —+ 263)(1 —+ €1 + ’Yg),

(14 272)[3 + 261 + 202 + 2(1 +201)(v2 — 1)
+2(142v)(1 + &1 +2)
+ (1+283)(1 + 2e1)(1+2m1)],

bg = —2(1 + 272)(1 4 22 + 27172)

(2.39)

by

And for all the equations for the kinematic parameters above, 1, 72, 73, and g are defined
as:

r= /(1= r2)(1+ 20, — 1),

ra =/ [1+ 27— r3(1+ 292)] [(1+202) (1 +291) — r3(1 + 23],

(2.40)
rg = \/[1 + 261 — 12(1+ 272)] [(1 + 203) (1 + 2e1) — r3(1 + 272)],
7"3 = Vg" — %
V2, G
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2.3 Schoenberg & Helbig: Orthorhombic Medium

When all the kinematic parameters are obtained, they can be observed in term of az-
imuthal dependent, and since the study is in anisotropic media, they need to be distin-
guished between phase and group domain. The difference for these domains can be seen
in Figure 2.4. The wavefront has become ellipse and no longer circle comparing with
the isotropic medium. The ray path that comes directly from the source is called group
velocity, and normal to the wavefront point is called phase velocity.

source

wavefront

4
)’ wave vector

Figure 2.4: Illustration of group and phase velocity in anisotropic media.

The azimuthal kinematic properties in phase domain can be calculated as:
v2(¢) = Vicos?¢ + Visin®¢
(6) = m Vicos*p + nyVasine + nryV%Vgsin%ﬁcosqu
o= (VZcos2¢ + Visin’g)?2 ’ (2.41)
_ m Vicos*e + naVasinte + 1., VIVasin® peos?¢
v (9)

While the azimuthal kinematic properties in group domain can be calculated as:

1 cos?f N sin®6
ViO) Vi V3
I e i
77( ) B (cosze + sin26)2
vl V2
mcost®  mosin®@  1,,sin*0cos?0
Vi Vs ViV3 )

, (2.42)

—vio(
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Chapter
Upscaling

Consider a series of thin layered model properties correspond to isotropic velocity model
that is much smaller than the seismic wavelength. Such a circumstance will make the
seismic wavelength to be unable to detect all those layers individually. However, all those
thin layers can be estimated as an effectively homogeneous medium, hence translating it
into anisotropy. This procedure to compute the parameters of an effective medium is what
is called as an upscaling.

In this study, two ways of performing an upscaling will be tested. Both are used to calculate
the effective stiffness coefficient ’C’ for each medium, VTI, and ORT. The first one is
called classic upscaling that operate by taking the mean value of the data by averaging
them. It is often known as Backus Average for calculating effective medium in VTI which
can also be applied in ORT. The second one is Least Square, which finds a line that best
fits the data trend.

3.1 Classic

Classic upscaling is often known as Backus Average for calculating in VTI medium. It
mathematically explained that a stack of homogeneous isotropic layers is equivalent to a
homogeneous VTI medium in a long wavelength limit.

From the figure above, H is the length of Backus averaging, which represents the thickness
that should be less than one-third of the dominant seismic wavelength (Kumar, 2013). The
small thickness of each layer is represented by h;. A illustrates how the seismic wavelength
is unable to represent several thin layers individually.

In term of math, Backus averaging can be explained in the following way. Consider a stack
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Chapter 3. Upscaling

Figure 3.1: A stack of thin layers consisting of two rock types.

of thin layers of VTI symmetry. Then, define the equation of motion in 1D medium,

@ = jwA;b (3.1)
dz

where b is the vector displacement and particle velocity projections, w is the frequency and
A; is the 4x4 matrix of the medium parameters (for layer j) with the following symmetry,

0 M,

with matrices M; and N; expressed as 2x2 matrix. Upscaling results in arithmetic aver-
aging of matrix A, assuming that each of the layers is weighted equally, it can be written
as,

_ 1 &
A=(4;) = Vi Z hiA; (3.3)
i1

where H and h represent the stack of layers and individual layers respectively. The i
represent the -th layer, which is being calculated.
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3.1 Classic

3.1.1 Classic Upscaling for VTI

These equations are used to calculate the effective *C’ for VTT medium (Kumar, 2013).
e __ 1 -
37\ Ca3 ’
1\t
C@ — e —
44 55 < C44 > )

. . C 1\*
C13_C23_<C;z><c33> ) (3.4

C26:<C66>7
=) (&) (&)
o =Cs = (Cr) + (=8N () — (=18 and
1 2 = (Cn) <C33 Css Cs3
izz Tl_QCgﬁ

3.1.2 Classic Upscaling for ORT

The following equations are used to calculate the effective ’C’ for ORT medium (Kumar,
2013).

33 >
Cas < 1 >1
o= (2N ) | 3.5
23 =/ \ o (3.5)
C66_<C66>7
ciz:\?/ 1\ ' /c?
ci=ten+(g2) (o) ()
n = (Cn) 33 Ca3 Cs3
=) (e (&)
Coy = (Ca2) +( =— — —(==), and
2 = (Ca2) < 33 Ca3 Cas
C13><C23>< 1 >1 <C13C23>
Cy = (Cro)+ ( BN =2V ) =
2 = (Cra) < 33/ \C33/ \Cs3 Ca3
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3.2 Least Square

The method of Least Square is a form of mathematical regression analysis which finds the
line of best fit for a set of data. It provides the overall rationale for the placement of the
line of best fit among the data points being studied.

Suppose there are 'n’ data points that can be modeled by first-degree polynomial,

y=ax+b, 3.6)

Here, there are unknown coefficients of a and b that need to be solved. A ’F’ function can
be written as a system of 'n’ simultaneous linear equations in two unknowns of ’a’ and
7b7,

F= Z(yi — az; — b)? (3.7)
i=1
Since the Least Square fitting process minimize the summed square of the residuals, the

coefficients are determined by differentiating ’F’ with respect to each parameter and setting
the result equal to zero,

OF ~
e =2 ; —i(yi —ax; —b) =0 (3.8)
OF "
%:22—1 (yi —az; —b) =0 3.9

Q
Il
-

Hence, equation (3.8) and (3.9) become:

> @iy —azi —b) =0 (3.10)
=1
Z(yi—axi—b) =0 (3.11)

=1

where the summation run from i = 1 to n. The normal equation are defined as:

inyi:azgc?—ka:ri 3.12)
Syi=ad wi+bn (.13)
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3.2 Least Square

From here, elimination process can be done to solve ’a’:

a:aniyi—ExiZyi (3.14)

ny x?— (Z:Ei)Q

Finally, ’b’ can be solved using the ’a’ value, such that:

bz%(Zyi—ain) (3.15)

3.2.1 Least Square Upscaling for VTI

In this study, ’a’ and ’b’ will be solved for every data of stiffness coefficients. First, every
calculation for stiffness coefficients is gathered as a new curve in log data. For example,

% will be calculated first and stored as a new curve in log data. Then, ’a’ and ’b’ are

calculated at a targeted interval for solving C§5 using the data points from curve é

Since each ij have different requirements to be solved, new ’a’ and ’b’ needs to be
calculated which depend on the new curve that is required to solve certain Cf;.

The following formulas are used to obtain the C{; for VTI medium as a function of x

(depth):
co /LN 1
37\ Cag ~aj;x+by’
Ce _ e _ i - _ 1
M T Cyy ~ asx + by’

e _ e <C13>< 1 >_133X+b3
13772 7\ Ca3/ \ Cas ~a;x+by’

Cés = (Co6) = asx + by, (3.16)
Cis\°/ 1 \7" /%
1 2 = (Cn) Cs3 Cs3 Cs3
_ (azx + bs)?
= (8.5X+b5) =+ ax 1 by (36X+b6),

e _ e e
12 — Cll _2C66

3.2.2 Least Square Upscaling for ORT

For ORT medium, the concept of obtaining the ’a’ and ’b’ are the same as it explained
in VTI medium. The following formula are used to obtain the Cf; for VTT medium as a
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function of x (depth):

1
alx—&-bl’

1
azXx —‘rbg,

<1>1 _ ayxX+by
Cs3 N a1x+b1’

C23>< 1 >1_ asx + by
33/ \Cs3 ajx + by’

1\ 1
C44 _32X+b2,

Css = (Ces) = asx + bg,
. C 2 1 —1 C2
ei=tem+(5) (as) (o)
= (azx + by) + % — (asx + bs),
C 2 1 —1 C2
=i+ (GE) (o) - (e)
= (agx + by) + % — (a10x + b1o),
-1
cia= e+ (G N2 )M am) ¢
= (a1 x +byp) + (aux +alfi)j(ta15>j —

— (a12x + b12)

(3.17)
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Dix-Type Equations

In practice of seismic acquisition, several reflections are recorded on seismic seismogram
in the function of time. If a horizontally layered mediums are considered, these travel
time functions can be processed and converted into layer parameters. Such procedure is
famously known as (Dix, 1955) inversion.

(Stovas, 2015) derived the effective properties formulas in ORT medium that can be com-
puted by the Dix-type equations. In this study, the ORT medium that is about to introduced
is assumed to have the same azimuthal orientation in each layers. The effective NMO ve-
locity can be computed as,

2 2
VO TQ = ZVOjtoj y
2 2
ViTo =Y vijto;, (4.1)
2 2
V2 TQ = ZVthoj y
where to; is the interval travel time in layer j that calculated along the zero-offset ray.
Ty is the total travel time for the accounted layers. vy, vy, and vy are the vertical and
NMO velocities for each layer. V; and V5 are the effective NMO velocities. Note that the

subscript 1 and 2 on the NMO velocities are relevant to those discussed in subsection 2.3.3.
The to; and Tq can be defined as,

Voj 4.2)

For anelliptic parameters, they are defined as,
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N; = é(v‘{lTo > (14 8m)vijto; — 1> ,
N2 1(1 Z(l + 812) vy to; — 1> 4.3)
8\ Vit 2570 ’
N,y = 1<1 D (1 +4n,)V3 V3510, — 1)
x 4 V%VETO xy) V15 V254075 y

Further explanation is given through Figure 4.1 to illustrate the notation for performing
Dix calculations.

tOJ rhjooooocoooooooooooooc

Layer1 Ve Nas

Vit Mot o oo o o o o oo oo oo ooee oo TorVey Vs

Nu, NZJ, nyj
to N2
Layer2 vm> Na»
Vn22 Nx_2

Tofz, Van, Vn272
NLZ, N272, ny72

Figure 4.1: A horizontally layered model. The capital letters on the right side that are attached next
to the reflector stand for kinematic parameters computed from corresponding reflector. Small letters
inside the layers describe the kinematic parameters related to the individual layers.
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Data

In this chapter, the information about the data that is used in this study is provided. The
first section is going to discuss the type of data that is available for this study, followed by
the condition of the data itself, whether if it is a good data or should there be any necessary
steps required to condition the data that seems to be logically impossible to exist.

Afterward, general observation and interpretation regarding the available data are dis-
cussed, followed by selecting the interval of the data that is going to be the main target
of the study. Lastly, the methods that are conducted in this data will be defined.

5.1 Data Availability

In this study, log data is provided with a measurement that is reaching 2220 m deep. It can
be seen in Figure 5.1 and consists of GR, density, Vp, Vs, and anisotropy parameters of
epsilon, gamma, and delta. In total, the data sample for each curve reaches 12165 samples.

5.2 Log Conditioning

Log conditioning is done before some data that seems to be unrealistic. These unrealistic
data are often observed as spike, which mostly caused as a miscalculation from the tool
itself. However, the approach to removing this spike is limited to any number that contains
-999 value and anisotropy parameters with value reach above one. This is due to the lack
of information about lithology or well report.

Figure 5.2 are the log data after conditioning. Some of the data samples are removed,
leaving to 11461 samples left.
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Figure 5.1: Original log data.
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Figure 5.2: Log data after conditioning.

28



5.3 Defining the Method

GR (API) p (g/cm?) Vp (km/s) GR (AP) p (g/cm?) Vp (km/s)
115 2 25 3 1 3 5 7 0 100 200 2 24 2.8 25 3 35 4 45

Block 1

- =l

Block 2

Depth (km)

15
Block 3

Block4 [

2

Block5 -

Figure 5.3: Zonation of the log data. The highlighted light yellow area is assume to be the
reservoir which interpreted based on the GR and other log data. Dark yellow area represent the
main target for this study.

5.3 Defining the Method

Here in this section, the methods that are performed on the log data set are explained. Two
subsection are discussed, the first one is creating zonation that divide the log data set into
several blocks is conducted. Following with that, a general observation regarding to the
data availability in the targeted zone is also executed. The second one is to illustrate how
classic and least square upscaling are performed in the log data set.

5.3.1 Zonation and Data Observation

Dividing the log into several blocks is done by observing the trend of log data, mainly
focusing on GR. The target block for this study is the interval that resembles reservoir
characteristic, which consists of sand and shale lithology, and it is highlighted in Figure 5.3
marked in the yellow area.

The thickness of the study interval reaches 495 m that start from the depth of 1275 m to
1770 m. Further zonation is done prior to changes in data trend. Here, block A with a
depth interval of 1275 m to 1430 m is the main target of this study to be experimented
with, and it is highlighted in the dark yellow area.

In data observation, anisotropy parameters obtained from the log are calculated for the
highlighted area. By analyzing the anisotropy parameters obtained from the log in Fig-

29



Chapter 5. Data

GR (API) € v o
0 100

Figure 5.4: Data observation for anisotropy parameters in the area of study.

ure 5.4, one can notice that the value of € — § < 0. This condition is actually not common
for VTI condition that is dominated by shale, which corresponds to laboratory data ex-
perimented by (Wang, 2002). However, in this experiment, such condition is possible to
appear in brine-saturated reservoir sand where essentially the reservoir is clay-free. Such
condition indicates a very little intrinsic anisotropy exists in unfractured or clay free reser-
voir rocks such as sandstone.

Given the condition stated above and with the interval dominated by low GR value, block
3-A represents much of a sandstone reservoir with little clay-bearing. This situation leads
to an interpretation of a sandstone reservoir, which is intrinsically isotropic, and it explains
why the value of € — § is less than zero.

5.3.2 Classic and Least Square Upscaling

Two methods for upscaling are introduced, classic and least square upscaling. An illus-
tration of those is provided in Figure 5.5. The log data are within the interval of block 3,
and P-wave velocities are shown to illustrate how the upscaling work in the data. Starting
from the left, (a) is the original Vp after log conditioning is performed, (b) is the classic
upscaling of Backus average in VTI background for the entire block 3, (c) is the classic
upscaling in ORT medium, and (d) is the least square upscaling in ORT medium. The log
data in (a) represents the raw data measured from the log while (b), (c), and (d) represent
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Figure 5.5: Upscaling illustration in log data. (a) Original Vp after conditioned, (b) Classic
upscaling in VTI medium, (c) Classic upscaling in ORT medium, (d) Least square upscaling in
ORT medium. Scale are adjusted to emphasize the differences.

the effective parameter measured after upscaling method is performed.

Note that there is a significant difference when upscaling is performed for the entire block
3 and when it is implemented in each divided interval that is based on the different data
trendline. The latest approach suggests the better way of performing upscaling as the log
data shows different trendline for each interval in block 3.

5.3.3 Fracturing After and Before Upscaling

Two approaches to introducing the fractures are suggested. The first one is to perform
upscaling on VTI layers at the beginning in order to get the effective parameters of stiffness
coefficients according to Equation 3.4 or Equation 3.16. Afterward, fracture parameters
are introduced to the obtained effective stiffness matrix that makes the medium become
ORT by using Equation 2.21.
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@ Upscaling Fracturing
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Figure 5.6: Illustration for fracturing approaches. a) Fractures are introduced later b) Fractures are
introduced first.

The second one is to introduce fracture parameters at the beginning for every data sample
of stiffness coefficients, which creates ORT layers by using Equation 2.21. After that,
upscaling on ORT layers are computed in order to get the effective parameters of stiffness
coefficients according to Equation 3.5 or Equation 3.17. Once each of the approaches
is done, anisotropy parameters of the ORT medium can be obtained, and the kinematic
parameters calculation for P- and S-waves will proceed.

Ilustration for this approach is given in Figure 5.6. A similar approach has been conducted
by (Ivanov and Stovas, 2016) for investigating the influence of fracturing on P-wave anel-
lipticity parameters in full azimuth surveys.
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Fracturing

This chapter explains how fracturing in a targeted zone is done. In addition to that, the
respond of a medium before fracturing is introduced is also observed beforehand. Frac-
turing is introduced based on Schoenberg-Helbig model that is explained in section 2.3.
There are two approaches to be tested for introducing the fractures. The first one is to
introduce the fractures after upscaling method is performed, and the second one is to in-
troduce the fractures before upscaling method is performed. Furthermore, the calculation
of two upscaling methods, classic and least square, are also provided in this chapter.

All of the calculations from upscaling and fracturing are shown here. The calculations in-
clude stiffness coefficients C;;, anisotropy parameters in the effective medium, and kine-
matic parameters in group and phase domain.

6.1 Preliminary Consideration

First and foremost, in order to get not confused, preliminary consideration will be deter-
mined in defining the symmetry plane of the anisotropy medium. Such is required because
some sources also have their own consideration that is different from others.

When fractures are introduced following Schoenberg-Helbig model, the fractures will be
set as vertical fractures that aligned parallel to one of the vertical symmetry plane, as
shown in Figure 6.1.

Here, [x1,Xx3], [X2,X3], represent vertical symmetry plane that is parallel to the fractures
and perpendicular to the fractures respectively while [x;,Xx2] represent horizontal symme-
try plane. [x1,x3], [X2,X3], and [X1,X2] are short noted as 1,2, and 3 respectively in any
necessary equation.
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Figure 6.1: Notation agreement.

6.2 Upscaling for VTI Medium

It is known that the log data from chapter 5 are the VTI parameters. Hence, upscaling in a
VTI medium is the first step that needs to be calculated. This step is needed to acquire the
background medium that will be fractured later on and become ORT medium. The steps
of this process can be listed as follow:

1. Calculate C;; for every sample in log data using the known vertical velocity of P-
wave and S-wave, anisotropy parameters, and density. The formulas for calculating
this are referred to Equation 2.9 and Equation 2.10.

2. Perform upscaling of C;; that have been obtained including density. The formu-
las for this calculation are referred to Equation 3.4 for classic upscaling and Equa-
tion 3.5 for least square upscaling.

3. Calculate the anisotropy parameters for effective medium following Thomsen’s pa-
rameters, effective C;; that have been obtained previously is used. The formula is
referred to Equation 2.11 and Equation 2.12.

4. Lastly, kinematic parameters are calculated to observe how pure mode waves behave
when fractures are not introduced yet and compared later on with fractured medium.

The first step is done in order to obtain background parameters which represented as stiff-
ness coefficient and the results of this calculation can be seen in Figure 6.2.

6.2.1 Classic Upscaling in VTI

Once all the required C;; are obtained, upscaling process is conducted and in this section,
classic upscaling or also known as Backus averaging is used. The calculation for this step
is done in block 3-A and the results can be seen in the matrix 6.1 below.
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Cb, (GPa) Cb , (GPa) Cb,, (GPa) Cb., (GPa) Cb,, (GPa) Cb, (GPa)
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Figure 6.2: C;; calculation for every sample in log data which highlighted the interval of block 3.
The scale of C;; are in Giga Pascal (GPa).

2032 8140 7762 0 0 0

8140 20320 7762 0 0 0

. |7762 7762 24008 0 0 0
G = 0 0 7644 0 0 ©6.1)

0 0 0 7644 0

0 0 0 0 6.090

Notice that some of the C;; have the same values. These results are an indication that the
medium is homogeneous in one of the axis; for this case, it is homogeneous horizontally.
For example, C17 and Co4 are the stiffness coefficients that correspond to a P-wave velocity
that is propagating in x; and x, direction respectively. The same value for these two C;;
indicate that the medium is invariant in the horizontal axis, causing the velocities of P-wave
in these directions to become equal.

By utilizing the upscaled C;; for calculating anisotropy parameters as referred to Equa-
tion 2.11 and Equation 2.12, it gives the effective parameters for this medium. Hence, the
effective parameters for the background medium in this study are acquired and shown in
Table 6.1.

After obtaining the effective medium parameters, kinematic parameters are calculated with
formulas referred to those explained in subsection 2.3.3. However, as this calculations are
now currently in VTI medium, the anisotropy parameters in both vertical symmetry plane
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Block 3-A pe (glee) Vi (km/s) Vg, (km/s) [ vé ¢
VTI effective 2.249 3.267 1.843 -0.0768 -0.1017 -0.0387

Table 6.1: Effective anisotropy parameters for VTT as background medium, block 3-A. The results
are calculated using classic upscaling.

VTI 3-A
Vo (km/s) Vi (km/s) Vs (km/s) m M Nay
P wave 3.2670 3.1380 3.1380 -0.0397 -0.0397 -0.0794
S1 wave 1.8436 1.6079 1.6079 -0.1197 -0.1197 -0.2394
S2 wave 1.8436 1.6455 1.6455 0 0 0

Table 6.2: Kinematic parameters for VTI as background medium, block 3-A. The results are
calculated using classic upscaling.

are equal. Hence, e = €5 = €%, 71 = 72 = 7% and 61 = J3 = &°. Furthermore, as
in VTT medium the layers are isotropic horizontally, d3 is then become 0 and it is proven
by calculating it from C§ in matrix 6.1 by applying Equation 2.30. The results of this
kinematic parameters are shown in Table 6.2.

Once the kinematic parameters are obtained, they are plotted in a polar plot which illus-
trates the azimuthal dependence for given quantity with the azimuth angle measured from
the horizontal axis. These are all applied for any polar plot figures presented in this study.

Figure 6.3 shows the results of the azimuth-dependent of kinematic parameters which cal-
culated using classic upscaling. The results are presented in phase and group domain. Note
that there are no changes given in phase or group domain and the NMO velocities wave-
front are appear to be circle rather than an ellipse. Such results correspond to homogeneity
along the horizontal axis in the VTI medium.

6.2.2 Least Square Upscaling in VTI

A similar procedure is presented in this section with the difference in the upscaling method
being used. Here, in matrix 6.2, the effective stiffness coefficients are very similar to those
computed using classic upscaling. Similar results also appear in the effective anisotropy
parameters and kinematic parameters when computed using classic upscaling. Such results
suggest that least square upscaling provide similar results with an insignificant difference
that can be negligible when compared with classic upscaling.
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Figure 6.3: Azimuth dependent of kinematic parameters of pure mode waves using classic
upscaling on VTI medium. Left images are V., and right images are anellipticity. (a) Parameters

on phase domain (b) Parameters on group domain.
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P (glee) Voo (km/s) V& (kmfs) e e 5¢
VTl effective | 2.249 3.267 1.845  -0.0762 -0.1014 -0.0375

Table 6.3: Effective anisotropy parameters for VTI as background medium. The results are
calculated using least square upscaling.

VTI 3-A
Vo (km/s) Vi (km/s) Vy (km/s) m 2 Nay
P wave 3.2670 3.1421 3.1421 -0.0402 -0.0402 -0.0804
S1 wave 1.8459 1.6065 1.6065 -0.1202  -0.1202 -0.2404
S2 wave 1.8459 1.6454 1.6454 0 0 0

Table 6.4: Kinematic parameters for VTI as background medium. The results are calculated using
least square upscaling.

20.341 8160 7.753 0 0 0
8.160 20.341 7.753 0 0 0
7.753 7753 24.011 0 0 0
G = 0 0 7.663 0 0 62)
0 0 0 7663 0
0 0 0 0  6.090

Figure 6.4 shows further evidence and illustrations of kinematic parameters that is again
similar to those calculated using classic upscaling in Figure 6.3. In Figure 6.5, a polar plot
of both calculations from classic and least square upscaling in VTI medium are provided to
be compared. The plot suggests that both methods are applicable for performing upscaling
as they are overlapping with each other.

6.3 Introducing Fracture After Upscaling

Once the stiffness coefficients from VTI medium are obtained, they are used as background
parameters for further calculation in ORT medium. Here, a set of vertical fractures are
added after upscaling of stiffness coefficients in VTI medium are done.

For placing the fractures in the area of study, normal fracture weakness (Ay) is set to
0.15, and tangential (vertical, Ay and horizontal, A ) weaknesses are set to 0.2 assuming
the fractures are rotationally invariant. As it already discussed, once the VTI medium is
introduced with fractures, it will become ORT medium, and matrix (6.3) and (6.4) shows
the stiffness coefficient of the effective ORT medium that is obtained by using classic (Us)
and least square (Us) upscaling.
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Figure 6.4: Azimuth dependent of kinematic parameters of pure mode waves using least square
upscaling on VTI medium. Left images are V., and right images are anellipticity. (a) Parameters
on phase domain (b) Parameters on group domain.
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Figure 6.5: Polar plot of upscaling comparison in VTI medium block 3-A. Dash and dot line
represent classic and least square upscaling respectively.
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[17.272  6.919 6.598 0 0 0
6.919 19.831 7.295 0 0 0
6.598  7.295 23.563 0 0 0
FU; Con = 0 0 7644 0 0 6.3)
0 0 0 6116 0
I 0 0 0 0  4.872]
[17.289  6.936 6.590 0 0 0
6.936 19.849 7.285 0 0 0
. 6.590 7.285 23.566 0 0 0
FUs Con = 0 0 7.663 0 0 6.4)
0 0 0 6130 0
I 0 0 0 0 4.872]

Once the stiffness coefficients are obtained, effective anisotropy parameters can be calcu-
lated and they are shown in Table 6.5:

ORT |3-A | FU, FU;

Vo (km/s) | 32366 32367

Vo (km/s) | 1.6489  1.6504
€1 -0.1335  -0.1329
7 -0.1813  -0.1811
&1 0.1737  -0.1727
€3 -0.0792  -0.0786
Y9 -0.1017  -0.1014
5 -0.0403  -0.0390
5 -0.0344  -0.0344

Table 6.5: Effective anisotropy parameters for ORT medium when fractures are introduced after
upscaling.

After all the anisotropy parameters are known, calculation of kinematic parameters for
ORT medium is performed for both of the parameters obtained by classic and least square
upscaling. The results are shown on the Table 6.6 for classic upscaling and Table 6.7 for
least square upscaling.

Looking at Figure 6.6 and Figure 6.7, one can see that both upscaling methods give quite
similar results for both NMO velocity and anellipticity. The noticeable difference is spot-
ted between phase and group domain for both NMO velocity and anellipticity, indicating
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ORT FU, | 3-A
Vo (km/s)  Vy (km/s)  Vj (km/s) m 2 Nay
Pwave | 32366  2.6148 3.1036  0.0501 -0.0406 0.0535
S1wave || 1.6489 1.8869 14717 -0.0032 0 47219
S2 wave || 1.8435 14717 1.6071 0 0.0243  -0.2175

Table 6.6: Kinematic parameters for ORT medium when fractures are introduced after classic

upscaling.
ORT FUs3; | 3-A
Vo (km/s)  Vy (km/s) V; (km/s) m 2 Ny
P wave 3.2367 2.6181 3.1075 0.0495 -0.0412 0.0540
S1 wave 1.6504 1.8861 1.4717 -0.0033 0 4.7072
S2 wave 1.8452 1.4717 1.6046 0 0.0281 -0.2324

Table 6.7: Kinematic parameters for ORT medium when fractures are introduced after least square

3-AFU2 | Phase Velocity

upscaling.
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Figure 6.6: Azimuth dependent of kinematic parameters using classic upscaling on ORT medium
when fractures are introduced after upscaling. (a) Parameters on phase domain (b) Parameters on

group domain.
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Figure 6.7: Azimuth dependent of kinematic parameters using least square upscaling on ORT
medium when fractures are introduced after upscaling. (a) Parameters on phase domain (b)
Parameters on group domain.
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anisotropy effect that is affected by fracturing. The concentration of clay content has prob-
ability in contributing small effect to anisotropy due to low GR condition in this area, and
reasons stated in chapter 5.

Concerning to fractures orientation, the observation from NMO velocity can explain it.
Notice that the velocity for P-wave is slower in x-axis than in y-axis. Such condition
indicates that P-wave is slower when it travels through the fractures as fractures can be
considered as an empty space where the density is smaller compared to the surrounding.
S2-wave travel slower in x-axis compared to S1-wave due to S2-wave polarization that
goes through the fractures. The same explanation is relevant to what happened in y-axis
when S1-wave and S2-wave behave in the opposite way than in x-axis.

6.4 Introducing Fracture Before Upscaling

In this approach, fracture parameters are introduced when the stiffness coefficients for
every data sample in VTI layers are obtained. The fracture weaknesses are remain the same
as before (Ay = 0.15 and Ay = Ay = 0.2). Once the fractures are introduced, every
data sample is no longer VTI medium anymore but ORT medium, hence the upscaling
is performed under ORT condition. The stiffness matrix for this calculation is shown in
matrix (6.5) for classic upscaling and matrix (6.6) for least square upscaling.

17.306 6.933 6.613 0 0 0
6.933 19.823 7.297 0 0 0
. 6.613 7.297 23548 0 0 0
UoF Cor = 0 0 7.644 0 0 6.5)
0 0 0 6116 0
0 0 0 0  4.872
17.321 6.949 6.604 0 0 0
6.940 19.840 7.287 0 0 0
6.604 7.287 23553 0 0 0
UsF Con = 0 0 7.663 0 0 (6.6)
0 0 0 6130 0
0 0 0 0  4.872

Once the stiffness coefficients for ORT effective medium are obtained, anisotropy param-
eters for the effective ORT medium can be calculated, and they are shown in Table 6.8.
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ORT |3-A | U,F U;F

Vo (km/s) | 32356 3.2359

Vo (km/s) | 1.6489  1.6504
€1 -0.1325  -0.1320
" -0.1813  -0.1811
&1 -0.1728  -0.1720
€5 -0.0791 -0.0785
Yo -0.1017  -0.1014
5 -0.0396  -0.0385
5 -0.0355  -0.0354

Table 6.8: Effective anisotropy parameters for ORT medium when fractures are introduced before
upscaling.

After anisotropy parameters are obtained, the calculation for kinematic parameters of
NMO velocity and anellipticity are performed, and the results can be seen in Table 6.9
when using classic upscaling and Table 6.10 when using least square upscaling.

ORT U,F | 3-A
Vo (km/s)  Vy (km/s)  Vy (km/s) m 12 Ny
Pwave || 3.2356 26175 31048  0.0501 -0.0411 0.0540
S1wave || 1.6489 1.8873 14717 -0.0032 0 4.7360

S2 wave 1.8435 1.4717 1.6036 0 0.0249  -0.2229
Table 6.9: Kinematic parameters for ORT medium when fractures are introduced before classic
upscaling.

ORT U;F | 3-A
Vo (km/s) Vy (km/s) Vs (km/s) m M2 Nzy

P wave 3.2359 2.6205 3.1085 0.0496 -0.0415 0.0540
S1 wave 1.6504 1.8866 1.4717 -0.0033 0 4.7193
S2 wave 1.8452 1.4717 1.6013 0 0.0244  -0.2604

Table 6.10: Kinematic parameters for ORT medium when fractures are introduced before least
square upscaling.
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Figure 6.8: Azimuth dependent of kinematic parameters using classic upscaling on ORT medium
when fractures are introduced before upscaling. (a) Parameters on phase domain (b) Parameters on
group domain.
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Figure 6.9: Azimuth dependent of kinematic parameters using least square upscaling on ORT
medium when fractures are introduced before upscaling. (a) Parameters on phase domain (b)

Parameters on group domain.

Looking at Figure 6.8 and Figure 6.9, one can see similar observation with those done in
section 6.3. Both upscaling methods have no significant difference at the selected interval.
Notice the difference of NMO velocity and anellipticity when plotted in group and phase
domain, which indicating an anisotropic medium. Also notice that the difference can be
seen more obvious for anelliptic parameters, meaning that anelliptic parameters are more
sensitive in domain changes.

Same explanation regarding to fractures orientation is discussed in section 6.3. By observ-
ing the P-wave NMO velocity only, and noticing that the NMO velocity is slower in the
x-axis, the fracture orientation is vertically parallel at [x1,x3] symmetry plane.
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Chapter

Methods Comparison

In this chapter, the discussions are highlighted in comparing the results of the two upscal-
ing methods and the two fracturing approaches that are performed in the interval of block
3-A of the given well log data.

7.1 Upscaling Comparison

In this section, the two methods of upscaling, as explained in subsection 5.3.2 for gaining
the kinematic parameters will be further discussed with fractures being introduced before
upscaling is performed.

Figure 7.1 shows the polar plot of the kinematic parameters that are going to be compared.
The plots are only drawn in one quadrant since the kinematic parameters plot is symmetric
with respect to origin in term of azimuth dependent in ORT medium. Us stands for classic
upscaling and Us stands for least square upscaling. Both cases have fractures that are
introduced before upscaling is conducted.

It is observed that both upscaling methods, classic and least square that are represented by
a dash and dot lines respectively are overlapping with each other in NMO velocities and
anellipticity of S1-wave. Small changes can be observed in anellipticity of P-wave and
S2-wave.

These outcomes suggest that the impact of choosing different methods for upscaling only
appeared at the second order of curvatures while they are less affecting the first order of
curvatures.
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Figure 7.1: Polar plot of upscaling comparison of kinematic parameters when fractures are
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7.2 Fracturing Approach Comparison

In this section, the two approaches of introducing the fractures, as explained in subsec-
tion 5.3.3 for obtaining the kinematic parameters will be observed further. Least square
method is used for conducting the upscaling process in order to retrieve the effective pa-
rameters.

Figure 7.2 shows the polar plot that is about to be compared. FUj3 stands as fracturing after
least square upscaling is done, and UsF stands as fracturing before least square upscaling
is performed. Similar results are observed as those in Figure 7.1, which suggest both
approaches for introducing fractures are working either way. However, minor changes in
S2-wave anellipticity can still be observed that affect the second order of curvatures.
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Figure 7.2: Polar plot of fracturing comparison of kinematic parameters with least square
upscaling. Parameters are plotted in group domain.
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Chapter

Overburden Effect

This chapter explains how the kinematic parameters of the ORT medium react when the
overburden layers above it are included in the calculation. The NMO velocity and anellip-
ticity for P-wave and S-wave are observed in order to see how these parameters actually
behave given the seismic acquisition is performed from the surface.

The application of Dix-type equations is implemented for this case. Block 1 and block 2
are defined as the overburden layers, while block 3-A is the ORT medium. For calculating
the effective parameters in each zone, both of upscaling methods can be used in this case
as their results have no significant difference.

8.1 Effective Parameters of the Overburden

In order to see the seismic signature of the fractured reservoir with overburden being in-
cluded in the scenario, the effective anisotropy parameters for the layers above the frac-
tured reservoir need to be calculated. Looking back at Figure 5.3, two blocks; block 1 and
block 2 are defined as the overburden and their effective parameter are calculated as VTI
parameter. The upscaling process for these calculations is using least square upscaling.

VTl effective | p° (g/cc) Vi, (km/s) Vg, (km/s) I ~¢ o€

Block 1 2.1739 2.3619 1.0886 -0.0043  0.0035 -0.0063
Block 2 2.4200 2.7087 1.2086 0.1340  0.2002  0.0447
Block 3-A 2.2493 3.2672 1.8452 -0.0762 -0.1014 -0.0375

Table 8.1: Effective anisotropy parameters for VTI as background medium for block 1, 2, and 3-A.
The results are calculated using least square upscaling.
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Table 8.1 shows the calculation of the anisotropy parameters in VTT medium, including
block 3-A that has not introduced with the fractures yet. Notice that on block 1, the
anisotropy parameters are rather small compared to block 2. These results correspond to
the GR log data in block 1, where they are relatively low that resembles more to a layer
that is more sandstone dominated. Hence, indicating very little intrinsic anisotropy exist
in this particular layer.

VTI | 1
Vo (km/s) Vj (km/s) Vy (km/s) m M2 Ny
P wave 2.3619 2.3478 23478 0.0025 0.0025 0.0049
Sl wave | 1.0886 1.0514 1.0514  0.0266 0.0266 0.0532
S2 wave 1.0886 1.0793 1.0793 0 0 0

Table 8.2: Kinematic parameters for VTI of block 1. The results are calculated using least square

upscaling.
VTI | 2
Vo (km/s) Vi (km/s) Vo (km/s) m 2 Ny

P wave 2.7087 2.8212 2.8212 0.0840 0.0840 0.1681
S1 wave 1.2086 1.6655 1.6655 0.4494 0.4494 0.8988
S2 wave 1.2086 1.4300 1.4300 0 0 0

Table 8.3: Kinematic parameters for VTI of block 2. The results are calculated using least square
upscaling.

Table 8.2 and Table 8.3 shows the calculation for kinematic parameters of NMO veloc-
ity and anellipticity parameters for block 1 and block 2 respectively. Notice that those
parameters are represented as a circle if they are plotted with azimuth dependent, which
corresponds to VTI medium characteristic.

ORT FU; | 3-A
Vo (km/s)  Vq (km/s) Vs (km/s) m N Nay
P wave 3.2367 2.6181 3.1075 0.0495 -0.0412 0.0540
S1 wave 1.6504 1.8861 1.4717 -0.0033 0 4.7072
S2 wave 1.8452 1.4717 1.6046 0 0.0281 -0.2324

Table 8.4: Kinematic parameters for ORT medium when fractures are introduced after least square
upscaling.

Table 8.4 shows the calculation for the kinematic parameters of NMO velocity and anel-
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lipticity of a vertically fractured VTI medium of block 3-A. All the calculations steps and
fracture weaknesses are the same as those discussed earlier in chapter 6.

8.2 Fractured Reservoir with Overburden Effect

Once all the kinematic parameters on each of the effective medium are gathered, Dix-
type equation is performed to observe how the seismic signature behaved for the fractured
reservoir given with overburden layers to be accounted for.

As for the calculations of Dix, they are referred to those described in chapter 4. Effective
vertical velocity (Vo) and NMO velocity (V1 and V3) are obtained by using Equation 4.1.
While effective anelliptic parameters (7)1, 7)2, and 7)) are obtained by using Equation 4.3.
The results of the effective kinematic parameters from the combination of block 1, 2, and
3-A are shown in Table 8.5.

Effective Medium with Overburden
Vo (km/s)  Vy (km/s) Vy (km/s) "2 Nay
P wave 2.5811 2.5164 2.5854  0.0474 0.0286 0.0876
S1 wave 1.1985 1.3584 1.2987 0.3180 0.3670  2.0042
S2 wave 1.2210 1.2304 1.2474  0.0108 0.0218 -0.0328

Table 8.5: Kinematic parameters for ORT medium with overburden effect.

After the kinematic parameters of this Dix-effective medium are obtained, they are plotted
along with the kinematic parameters from the fractured reservoir (ORT medium) only.
Plots are done with azimuth dependent in group domain, and the results are provided in
Figure 8.1.

The outcome in this figure suggests that the elliptic characteristic that once clearly seen in
ORT medium is changing to more circle-wise when the overburden is introduced, particu-
larly in NMO velocities. This situation implies that the effect of overburden layers, which
are known to be VTI gives a significant impact on the seismic signature on the first order
of curvatures. Elliptic characteristic of a fractured reservoir will be harder to observe due
to this overburden effect.

On the contrary, anelliptic parameters also seem to be changing but not close to a circle
shape as the NMO velocities have displayed. It implies that the fractured reservoir char-
acteristics remain observable from the second order of curvatures even though overburden
layers are accounted for.
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Figure 8.1: Polar plots with azimuth dependent of kinematic parameters of ORT medium with and
without overburden effect. a) NMO velocities b) Anelliptic parameters for P and S-2 waves c)
Anelliptic parameters for S1-wave. Solid and dot lines represent ORT with and without overburden
respectively.
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Chapter

Conclusion

In this study, the signature of a seismic response on a fractured and non-fractured reservoir
from a given well data set at a target interval has been observed. Two methods of upscaling
are conducted and compared within that window interval. Two approaches for introducing
the fractures at the reservoir are also suggested and put as a comparison. Lastly, the appli-
cation of Dix-type equations is performed for observing the kinematic parameters of the
pure-mode waves when overburden layers are introduced above the fractured reservoir.

In a non-fractured reservoir, the azimuthal dependent of kinematic parameters shows as a
circle for both NMO velocities and anellipticities. Such conditions suggest homogeneous
materials are present on an axis that is perpendicular to the vertical axis. Furthermore,
these responses remain the same when observed in group and phase domain, which implies
the characteristic of a VTI medium.

On the contrary, the fractured reservoir observed in the block 3-A of a given well log
data shows an elliptic behavior on its kinematic parameters. Both NMO velocities and
anellipticities display a different behavior when plotted in phase and group domain with
azimuth dependent, which implies the characteristic of an ORT medium. Moreover, the
orientation of the vertical fractures can be observed from NMO velocities in either phase
or group domain. One can observe the fracture orientation easily by looking in which
axis does the P-wave NMO velocity is slower, which correspond to fractures are located
vertically perpendicular to that axis.

Two upscaling methods, classic and least square that are tested in the block 3-A show
insignificant differences. A possible explanation for this result is due to the data samples
that are not drifted too much from each other within the targeted interval. Hence, either
of the methods can be safely used to perform upscaling in this particular data. Similar
results showing insignificant differences are observed for two approaches of introducing
the fractures on before or after upscaling.

Overburden layers that are suggested as a VTI medium give a tremendous effect on the
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Chapter 9. Conclusion

seismic signature of the fractured reservoir. Once the overburden layers are included in the
calculations, the response of kinematic parameters is changing towards VTI characteristic.
The NMO velocities are more affected by the overburden effect, which leads to difficulties
to distinguish it with VTI characteristic. However, the second order of curvatures seems to
be more sensitive as the differences are more distinguished when it is compared to those
in VTI medium only.
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Appendix A: Matlab Code - Introducing Fracture After
Classic Upscaling

clc,clear
%% Read Data
% Log Conditioning of bad data is performed on excel

load 'Databconditioned.txt'

x = readtable('Databconditioned', 'headerlines',0);

z = tableZarray(x(:,1)); % m

GR = tablelarray(x(:,2));

vp0 = tablel2array(x(:,3)); % m/s

vs0 = tablel2array(x(:,4)); % m/s

dens = table2array(x(:,5))*1000; % kg/m"3

eps = tableZarray (x(:,6));

del = tableZarray (x(:,7));

gam = tablelarray(x(:,8));

epsx = tablelarray(x(:,6))-tableZarray(x(:,7)); %e-d

%% Defining Interface

% Interface decision based on GR interpretation of the log
data

interface = [1000, 1275, 1430, 1520, 1625, 1770, 20101];

Q

% Finding Location index of the array

for i = 1l:length(interface)
pos (i) = find(abs(z-interface(i)) == min (abs(z-
interface(i))));
end
locl = [1,pos,length(z)]; % Upper limit for the interface
loc2 = [1,pos-1,length(z)]; % Lower limit for the interface

%% Calculate Cij for every point in VTI medium
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Cij = zeros(6,6,length(z));

[

% Formulas are following Thomsen Parameter for VTI medium

for i = 1l:length(z)
Cij(3,3,1i) = (vpO(i) ~2)~*dens (i) ;
Cij(4,4,1i) = (vsO0(i) "2)~*dens (i) ;
Cij(5,5,1) = Cij(4,4, (1));
Cij(1l,1,i) = (l+2xeps(i))*xCij(3,3,1);
Cij(6,6,1) = (l+2xgam(i))*Cij(4,4, l),
Cij(1,3,1) = sqgrt(2+«del(i)*«Cij(3,3,1)~*(C (3,3,1)-Cij

(5,5,1)) + (Ci3(3,3,1) Clj(5,5,l)) )
- Cij(5,5,1);

cij(1,2,1) = Ccij(1,1,i) - 2xCij(6,6,1);
Cij(2,2,1) = Cij(1,1,1);
Cij(2,1,i) = Cij(1,2,1);
Cij(3,1,i) = Ci3(1,3,1);
Cij(3,2,1i) = Cij(1,3,1);
Cij(2,3,1i) = Cij(1,3,1);

end

%% Backus Averaging - Classic Upscaling VTI
zone_number = length(interface)+1l ;

% Individual Layers are assumed to be VTI

Cb = zeros (6, 6, zone_number) ;

efdens = zeros (zone_number,1);

for i = l:length(locl)-1
Cb(3,3,1) = mean(Cij(3,3,1locl(i):1loc2(i+1)). " (=1))."(-1);
Cb(4,4,1) = mean(Cij(4,4,locl(i):1loc2(i+1l)). " (=1))."(-1);
Cb(6,6,1) = mean(Cij(6,6,locl(i):loc2(i+1)));

Cb(1,3,1) = mean(Cij(1,3,locl(i):1loc2(i+1))./Cij(3,3,1locl
(i) :loc2(i+1))) ...
.+ Cb(3,3,1);
Cb(l,1,i) = mean(Cij(1l,1,locl(i):1loc2(i+l))) +
(mean (Cij(1,3,locl(i):1loc2(i+1))./Cij(3,3,
locl(i):loc2(i+1)))."2 )...
.x Cb(3,3,1) - .
(mean ((Cij(1,3,locl(i):loc2(i+1))."2)./Cij
(3,3,1locl (i) :1loc2(i+1))));
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Cb(1,2,i) = Cb(1,1,1) - 2.%xCb(6,6,1);

Cb(2,2,i) = Cb(1,1,1);
Cb(2,3,1) = Cb(1,3,1);
Cb(5,5,1) = Cb(4,4,1);
Cb(2,1,1) = Cb(1,2,1);
Cb(3,1,1) = Cb(2,3,1);
Cb(3,2,1) = Cb(2,3,1);
efdens (i) = mean(dens(locl (i) :loc2(i+1l)));

% Effective parameter of the Anisotropy

EvpO (i) = sqrt(Cb(3,3,1)/efdens(i));

Evs0 (i) = sqrt(Cb(4,4,1)/efdens(i));

Ee (1) = (Cb(1,1,1i) - Cb(3,3,1))/(2+xCb(3,3,1));

Eg (i) = (Cb(6,6,1) — Cb(4,4,1))/(2%Cb(4,4,1));

Ed (i) = ((Cb(1,3,1)+Cb(4,4,1))"2 - (Cb(3,3,1
)"2) /

(2+xCb (3,3,1)*(Cb(3,3,1) — Cb(4,4,1)));
end

% Set the effective parameters into every data point

depth)

Cbef = zeros(6,6,length(z));

for 1 = l:size(z,1)

if 1 < locl(2)
j=1;

elseif i > locl(2)-1 && i < locl (3)
j = 2;

elseif 1 > locl(3)-1 && 1 < locl (4)
Jj=3;

elseif 1 > locl(4)-1 && 1 < locl (D)
j =4

elseif i > locl(5)-1 && i < locl (6)
j =5

elseif 1 > locl(6)-1 && 1 < locl(7)
j = 6;

elseif 1 > locl(7)-1 && i < locl (8)
j=7;

else
j = 8;
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end

Cbef (3,3,1) =
Cbef (4,4,1i) =
Cbef(5,5,1i) =

Cbef (1,3,1) =
Cbef (2,3,1) =
Cbef (6,6,1i) = Cb(6,6,7);

Cbef (1,1,1) =
Cbef (2,2,1) =

Cb(1,1,3);
Cb(2!21j);

Cbef(1,2,1i) = Cb(1,2,3);

% Effective parameters
vpOef (i) = Evp0(j);
vsOef (i) = Evs0(Jj);

densef (i) = efdens (j);

epsef (i) = Ee(J);

gamef (1) = Eg(j);

delef (i) = Ed(3);
end

%% FRACTURE PARAMETER (ORT)

C_ort = zeros(6,6,length(z));
for i = l:size(z,1)

if 1 > locl(3)-1 && i < locl(4) % BLOCK 3-A
dn = 0.15;
dh = 0.2;
dv = 0.2;

elseif i > locl(4)-1 && i < locl(5) %$BLOCK 3-B
dn = 0.4;
dh = 0.2;
dv = 0.2;

elseif i > locl(5)-1 && i < locl(6) %BLOCK 3-C
dn = 0.2;
dh = 0.2;
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elseif i > locl(6)-1 && i < locl(7) %BLOCK 3-D

dn = 0.5;
dh = 0.2;
dv = 0.2;
else
dn = 0;
dh = 0;
dv = 0;
end
% ORT Cij

C_ort(l,1,i) = Cbef(1,1,1)*(1-dn);

C_ort(2,2,i) = Cbef(l,1,1i)-(dn=*(Cbef(1,2,1)"2)/Cbef
(1,1,1));

C_ort(2,3,i) = Cbef(1l,3,1i)* (1-dn*Cbef(1,2,1i)/Cbef(1,1,1
)) i

C_ort(l,2,i) = Cbef(1,2,1i)*(1l-dn);

C_ort(1,3,i) = Cbef(1,3,1)*(1-dn);

C_ort(4,4,i) = Cbef(4,4,1);

C_ort(3,3,1) = Cbef(3,3,1)-dn=*(Cbef(1,3,1)"2)/Cbef (1,1,
i);

C_ort(5,5,1) = Cbef (4,4,1i)*(1-dv);

C_ort(6,6,i) = Cbef(6,6,1)*(1-dh);

)

% ORT Anisotropy Parameters

VpO_or (i) = sqrt(C_ort(3,3,1i)/densef(i));
VsO0_or (i) = sqrt(C_ort(5,5,1)/densef (i));

% Plane is Perpendicular to fractures [x1,x3]

el3 (1) = (C_ort(l,1,i) - C_ort(3,3,1))/(2+xC_ort (3,3,
i));

gl3 (i) = (C_ort(6,6,1) — C_ort(4,4,1))/(2+xC_ort (4,4,
i));

dl3 (i) = ((C_ort(1,3,i) + C_ort(5,5,1))"2 - (C_ort

(3,3,1i) - C_ort(5,5,1))72) /
(2«C_ort (3,3,1i)*(C_ort(3,3,1i) - C_ort(5,5,1
)))
% Plane is Paralel to fractures [x2,x3]
(C_ort(2,2,1) - C_ort(3,3,1))/(2xC_ort (3,3,

e23 (1)
i));
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g23 (i) = (C_ort(6,6,1i) - C_ort(5,5,1i))/(2+C_ort (5,5,

d23 (1) = ((C_ort(2,3,i) + C_ort(4,4,1))"2 - (C_ort
(3,3,1) — C_ort(4,4,1))"2) /
(2+%C_ort (3,3,1i)*(C_ort(3,3,1i) — C_ort(4,4,1i
))) i
Horizontal Plane
dl2 (i) ((C_ort(1,2,i) + C_ort(6,6,1i))"2 - (C_ort
(1,1,i) - C_ort(6,6,1))"2) /
(2«C_ort(1,1,i)*(C_ort(1,1,i) - C_ort(6,6,1i
)) )i

Il oe

end
%% KINEMATIC PARAMETERS OF PURE MODE WAVES
VP = zeros(length(z),3); %$Vertical;NMO[x1l,x3];NMO[x2,x3]

VSl zeros (length(z),3);
VS2 = zeros(length(z),3);

anelP = zeros(length(z),3); S%etal[xl,x3];eta2[x2,x3];etaxy
[x1,x2]

anelSl = zeros(length(z),3);

anelS2 = zeros(length(z),3);

for i = l:size(z,1)

% Component for anelliptic parameter on Pure mode wave
r0 = sqgrt(C_ort(5,5,1)/C_ort(3,3,1));

rl = sqrt((1-(r072))* (1+2xd13(1)-(xr072)));
r2 = sqrt ((1+2%gl3(i)—-(r072) % (1+2%xg23(1))) * ...
((1+2xd23 (1)) * (1+2%xgl3(i))—(r0"2) * (1+2%xg23 (i)
)))
r3 = sqrt ((1+2%el3(i)—-(r072) % (1+2xg23(1i))) =

((1+2xd12 (1)) * (1+2%el3(i))—(r0"2) * (1+2%xg23 (1)
)) )i

% Component for anelliptic parameter on P-wave
b0 = 2% (14+2+d13 (1)) * (1+2+xd23 (1)) * (1+2*gl3(i));
b2 = —(142+*d13 (1)) * (1+2xg23 (1)) - (14+2+d23 (1)) * (1+2xgl3(
i))...
2% (14+2%d13 (1)) *x (1+2xd23 (1)) » (1+gl3 (i) +g23 (1)) ...
2% (1+2%gl3 (1)) *» (1+2xg23 (1)) * (L+d13 (i) +d23(1));
bd = (1+2%g23 (1)) * (4+2xd13 (1) +2xd23 (1) +2xgl3 (1) +2xg23(
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+(14+2%d13 (1)) * (1+2%g23 (1) )+ (1+2+d23 (i) ) * (1+2+g13(
i)));

b6 = -2 ((1+2%g23 (1)) "2);
( ;1) = VpO_or(i);
, 2) = sqgrt ((VpO_or (i) . Lk (1+2.%d13(1)));
( ; 3) = sqrt ((VpO_or (i) . ) * (142 .xd23(1)));
anelP(l,l) = ((el3(1i)-d13(i))*(1+2+d13(1i)—-(xr0"2))).
/(((142%d13 (1)) "2) x (1-(x072)));
anelP (i,2) = ((e23(1)-d23(i))* ((1+2+d23 (1)) * (1+2*gl3 (1)

)= (r072) x (1+2%g23(i)))) ...
/(((142%d23 (1)) "2) * (1+2*gl3(1i)—-(r0~2)
* (14+2%g23(1))));
anelP (i,3) = (b0+b2x (r07°2)+b4d* (r074)+b6* (r0"6) —2«rl+xr2+*
r3)...
/(2% (142xd13 (1)) * (1+2+d23 (1)) » (1+2+gl3 (1
)= (r072) * (1+2%g23(1))));

% Component for anelliptic parameter on Sl-wave (C55)

b0 = ((1+2%xgl3(i)) "2)x( (1+2xd13 (1)) *(1+2%d23(i)) ...
+(1+2+d12 (1)) * ((1+2xel3 (1)) "2));
b2 = —(1+2%gl3(i))* ((1+2+d13 (1)) * (1+2xg23 (1)) +(1+2%d23
(1)) * (14+42%g13(i)) ...
+(1+24gl3 (1)) * ((1+2xd13 (1)) » (1+2%d23 (1) )+ (1+2xel3

(1)) * (1+2%g23(1))) ...
+2% (1+2%xe13 (1)) * (1+2xg23 (1) ) » (1+2%d12 (i) ) » (1+el3(
1)+913(1)));
bd = (1+2xg13 (1)) * (1+2%xg23 (1)) * (3+2*d13 (1) +2+xd23 (1)
2% (1+2%d23 (1)) *(g23(1)-gl3(i)) ...
+2% (1+2%g23 (1)) * (1+el3 (1) +gl3 (1)) + (1+2xd1l2 (1))
* (1+2xel3 (1)) x (1+2xg23(1)));
i

b6 = 2% ((1+2xg23 (1)) "2)* (1+2xgl3 (1) +2xgl3 (i) *g23(i));

Vs10 (1) = sqrt (C_ort (5,5,1)/densef (i));

VS1(i,1) = Vsl0(1i);

VSl (i, 2) = sqgrt ((Vsl0 (i) . 2) .« (1+2.%x((el3(i)-d13 (1))
./ (x072))));

VSl (i, 3) = sqrt ((Vsl0 (i) .7 2) . (1+2.%xg23(1)));

anelS1(i,1l) = — ((el3(i)-d1l3(1i))*(r0"2)*(1+2+xd13(i)—-(xr0

“2))) ...
J/(((1+2% (el3(1)-d13(1))/(r0"2)) " 2) % (1—(
r0°2)));
anelSl(i,2) = 0;
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end

anelS1(i,3) = - (L0+b2%x (r072)+b4dx (r074)+b6x (r0"6) —2xrl«
r2+«r3) ...
/( 4x(r074)x (1-r072) * (1+2x (el3 (i) -d13 (1
))/(r072))*(g23(1)—-gl3(i)) * (1+2%xg23(
i)));
% Component for anelliptic parameter on S2-wave (C44)
b0 = (1+2xg13(1))*( (1+2xd13(1i))* (1+2%d23 (1)) ...
+(1+2xd12 (1)) * ((1+2xe13 (1)) "2));
b2 = —(1+42%d13 (1)) * (1+2xg23 (1)) - (1+2%d23 (1)) * (1+2xgl3(
i)) ...
—(142%g23 (1)) * ((14+2+d13 (1)) * (1+2%xd23 (i) )+ (1+2%el3
(1)) * (14+2xg13(i))) ...
2% (14+2%el13 (1)) *» (1+2+xgl3 (1)) (1+2xd1l2 (1)) * (1+el3(
1)+923 (1)) ;
bd = (1+2%g23 (1)) *(3+2xd13 (1) +2+xd23 (i) +2% (1+2xd13 (1))
*(g23(1i)-gl3(i))...
+2% (14+2%gl3 (1)) * (1+el3(i)+g23 (1)) ...
+(1+2+d12 (1)) * (1+2xel3 (1)) » (1+2%gl3(1i)));
b6 = —-2x(1+2%g23 (1)) * (1+2xg23(1)+2*xgl3 (1) *g23(i));
VS20 (1) = sqrt (C_ort (5,5,1)/densef (1));
VS2 (i, 1) = VS20 (1) *sgrt ((1+2+xg23 (1)) / (1+2%xgl3(i)));
VS22 (i, 2) = sqgrt ((VS20 (1) .72) .x (1+2.%g23(1)));
VS22 (i, 3) = sqrt ((VS20 (1) .7 2) .%
( ((1+2. *g23( 1))/ (1+2xgl3(1)))+2* (e23 (i
)-d23(i))/(xr072) ) );
anelS2(i, 1) = 0;
anelS2(i,2) = (( 3(1)-d23 (1)) *x(x072) » ((1+2%d23 (1))
- ((1+2%g23 (1 )/ (1+2%xg13(i)))*(r0"2))) ...
/((1+2%g13 (1)) "2) * ((((1+2xg23 (1))
/(1+2xgl3 (1)) ) +2* (€23 (i)—-d23(1))/ (r0
“2))72) ...
* (1= ((14+2%g23 (1)) / (1+2xgl3(i))) *x(r072))
)
anelS2(i,3) = (b0+b2* (r0"2)+bdx (r0"4)+b6* (r0"6) —2+xrl*r2
*r3) ...
/(4% (r074) » (1+42+g13 (1)) * (1+2xgl3 (1)
—(1+2%g23(i))*(r0~2)) ...
* (((142%g23 (1)) / (14+42xgl3(i)))+2* (€23 (1)
~d23(1))/(r0°2)) * (g23 (i) -g13(i)));
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Appendix B: Matlab Code - Introducing Fracture After
Least Square Upscaling

clc,clear
%% Read Data
% Log Conditioning of bad data is performed on excel

load 'Databconditioned.txt'

x = readtable('Databconditioned', 'headerlines',0);

h = tableZarray(x(:,1)); % m

GR = tablelarray(x(:,2));

vp0 = tablel2array(x(:,3)); % m/s

vs0 = tablel2array(x(:,4)); % m/s

dens = table2array(x(:,5))*1000; % kg/m"3
eps = tableZarray (x(:,6));

del = tableZarray (x(:,7));

gam = tablelarray(x(:,8));

%% ———Defining Interface---

Q

% Interface decision based on GR interpretation of the log
data
interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];

[)

% Finding Location index of the array

for i = l:length(interface)
pos (i) = find(abs (h-interface(i)) == min (abs (h-
interface(i))));
end
locl = [1,pos,length(h)]; % Upper limit for the interface
loc2 = [1,pos-1,length(h)]; % Lower limit for the interface

%% ———Calculate Cij for every point in VTI medium---

c33 zeros (length(h),1);
c44 = zeros(length(h),1);
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c55 = zeros(length(h),1);
cll = zeros(length(h),1);
c66 = zeros(length(h),1l);
cl3 = zeros(length(h),1);
cl2 = zeros(length(h),1);

[

% Formulas are following Thomsen Parameter for VTI medium

4

(c33(i,1)-c55(i,1))

for 1 = l:length (h)
c33(i,1) = ((vpO(i)"2)=*dens(i))/10°9 ;
cdd (i, 1) ((vsO (i) "2)*dens (1)) /1079
c55(i, 1) = c44(1i,1);
cll(i,1) = ((1+2xeps (1)) *c33(i,1));
c66(1i,1) = ((l+2xgam(i))*c44(i,1));
cl3(i, 1) = sqgrt(2xdel (i) *c33(i,1) *
(c33(i,1)-c55(i,1))"2)
- ¢55(1,1);
cl2(i,1) = cll(i,1) — 2*c66(i,1);
end
%% ———Defining Block 3-——

% Define the designated zone

nl = length(locl(3):locl(4)-1); %
Block 3a
x1 = h(locl(3):1locl(4)-1); %
k = locl(3);
1 = locl (4);
% nl = length(locl (4) :1locl(5)-1);
% x1 = h(locl(4):1locl(5)-1);
% k = locl (4);
% 1 = locl(5);
% nl = length(locl(5):1locl(6)-1);
% x1 = h(locl(5):1locl(6)-1);
% k = locl (5);
% 1 = locl(6);
% nl = length(locl(6):1locl(7)-1);
% x1 = h(locl(6):1locl(7)-1);
% k = locl (6);
% 1 = locl (7);

total data

allocated depth points

% Block 3Db

% Block 3c

% Block 3d

+
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% Defining the unknown parameter 'a' and 'b' for least
square method
y1(:,1) = 1./c33(k:1-1,1); % 1/c33
y1l(:,2) = 1./cd44(k:1-1,1); % 1/c44
y1(:,3) = cl3(k:1- 1 1)./c33(k:1-1,1); % c13/c33
yl(:,4) = c66(k:1-1,1); % c66
y1(:,5 = (cl3(k:1-1,1).72)./c33(k:1-1,1); % c1372/c33
yl(:,6) = cll(k:1-1,1) % cll
yl(:,7) = dens(k:1-1,1); % density

al = zeros(1,7); % 1/c33 | 1/c44 | ¢cl13/c33 | c66 | cl372/
c33 | cll | dens
bl = zeros(1,7);

for i = 1:7

al(l,i) = ((nlssum(xl.*yl(:,1i)))—(sum(x1l)*sum(yl(:,1)))

)/ (nl*sum(x1. A2)—(sum(xl)A2));
bl(l,i) = (sum(yl(:,i))-al(l,i)*sum(xl))/nl;
end

%% ——— VTI BACKGROUND CALCULATION ——-—

o\

Least square calculation on VTI medium
Cij background and density function calculation from
least square

o\

C33a = Q@(z) 1./(al(1,1).%z + bl(1l,1));

Cdda = @(z) 1./(al(l,2).xz + bl(1,2));

Cl3a = @Q@(z) (al(l,3).*z + bl (1,3)).x(1./(al(l,1).+z + bl
(1,1)));

Céba = @(z) al(l,4).xz + bl(1,4);

Clla = @Q@(z) (al(l,6).xz + bl(l,6)) + ((al(l,3).*z + bl
(1,3)).72).xC33a(z) ...

-(al(l,5) .z + bl(1,5));
Cl2a = (@(z) Clla(z)-2.xCbo6a(z);
Densa = @(z) al(l,7).%xz + bl (1,7);

[

% Anisotropy Parameter function calculation

VpOa = @(z) sgrt(C33a(z).x(1079)./Densa(z));
VsOa = @(z) sqgrt(C4d4a(z).»(1079)./Densa(z));
epsa = @(z) (Clla(z)-C33a(z))./(2.xC33a(z));
gama = @(z) (Cé66a(z)-Cd4da(z))./(2.+«Cdda(z));
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dela = @(z) ((Cl3a(z)+C44a(z))."2-(C33a(z)-Cd4da(z

./ (2.%xC33a(z) .x(C33a(z)-Cd4a(z)));

%% ——— ORT CALCULATION ——-

o\

Cij when fractures are introduced

% Normal Fracture weakness
dn = 0.15; %3a
dn = 0.4; %$3b
dn = 2; %$3c
dn = 0.5; %3d

o° oo

o\

o\

Tangential Fracture weaknesses

dh = 0.2;

dv = 0.2;
Coll = @(z) Clla(z).*x(1-dn);
Co22 = @(z) Clla(z)-(dn.*(Cl2a(z ).A2)) /Clla(z);
Co23 = Q(z) Cl3a(z).*(l-(dn.*Cl2a(z)./Clla(z)));
Col2 = @(z) Cl2a(z).x(1-dn);
Col3 = @(z) Cl3a(z).x(1-dn);
Co44 = @(z) Cddal(z);
Co33 = Q@(z) C33a(z)-(dn.*(Cl3a(z)."2))./Clla(z);
Co55 = @(z) Cdda(z).x(1-dv);
Cob6 = (@ (z) C66a(z).x(1-dh);

[

% Anisotropy Parameter Function Calculation

VpOoa = @(z) sqgrt(Co33(z).x(1079)./Densa(z));
VsOoa sqgrt (Co55(z) .+ (1079) ./Densa(z));

Il
@
-

[)

% Plane is Perpendicular to fractures [x1,x3]

el = @(z) (Coll(z)-Co33(z))./(2.%Co33(z));

gl = @(z) (Co66(z)—-Cod4d(z))./(2.%Cod4d(z));

dl = @(z) ((Col3(z)+Cob55(z)). " 2- (Co33(z) —Co55(z
./ (2.%C033(z) .x(Co33(z)-Cob55(z)));

% Plane is Parallel to fractures [x2,x3]

e2 = @(z) (Co22(z)-Co33(z))./(2.%Co33(z));
g2 = Q(z) (Cob66(z)—-Co55(z))./(2.%Co55(z));
d2 = @(z) ((Co23(z)+Co044(z)). " 2-(Co33(z)—-Co4d4d(z

))."2)

))."2)

))."2)
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./ (2.%Co033(z) .*(Co33(z)—-Co4d4(z)));

o)

% Horizontal Plane

d3 = @(z) ((Col2(z)+Co066(z)). " 2-(Coll(z)-Cob66(z))."2)
./ (2.%xColl(z) .+ (Coll(z)-Co66(z)));

%$% ——— AVERAGE VALUE ANISO PARAMETER USING INTEGRAL ——-

VP0_or = integral (VpOoa,x1(1),x1(end))/ (x1(end)-x1(1));
VS0_or = integral (VsOoa,x1(1l),x1(end))/ (x1(end)-x1(1));

epsl = integral(el,x1(1l),x1(end))/ (x1l(end)-x1(1));
gaml = integral (gl,x1(1l),x1(end))/ (x1l(end)-x1(1));
dell = integral(dl,x1(1),x1(end))/ (x1(end)-x1(1));

eps2 = integral (e2,x1(1l),x1(end))/ (x1(end)-x1(1));
gam2 = integral (g2,x1(1l),x1(end))/ (x1(end)-x1(1));
del2 = integral (d2,x1(1l),x1(end))/ (x1l(end)-x1(1));
del3 = integral (d3,x1(1),x1(end))/ (x1(end)-x1(1));
%% ——— KINEMATIC PARAMETER ——-—

[

% Component for anelliptic parameter on Pure mode wave

r0 =@ (z) sqrt(Co55(z)./Co33(z));

rl =Q@(z) sgrt((1-(r0(z)."2)).*x(1+2.xd1l(z)—-(x0(z)."2)));

r2 =@ (z) sqrt ((1+2.+gl(z)-(r0(z)."2).%(1+2.%g2(z))) .=*
((

)
1+2.xd2(z)) .* (1+2.xgl(z)) - (r0(z) ."2)
* (1+2.%x92(2))) ) ;
r3 =@(z) sqgrt ((1+2.xel(z)-(r0(z)."2).x(1+2.xg2(z))
((1+2.%xd3(2z)) .*(1+2.xel(z))—-(r0(z)."2)
* (1+2.%g2(2))));

% Component for anelliptic parameter on P-WAVE

(z) 2.%x(1+2.%d1l(z)) .x(1+2.%d2(z)) .x(1+2.xgl(z));
(z) —(1+2.%d1(z)) .*(1+2.xg2(2)) = (1+2.%d2(z)) .x (1+2.%
z)

—2.%(1+2.xd1l(z)) .*x(1+2.%d2(z)) .* (1+gl (z)+g2(z))

—2.%x(1+2.xgl(z)) .x(1+2.%xg2(z)) .* (1+d1l (z)+d2(z));




b4  =Q(z) (142.%g2(z)) .+ (4+2.xd1l(z)+2.%d2(z)+2.%gl (z)+2.%g2
(z) ...
+(1+2.%d1l(z)) .* (1+2.%xg2(z) )+ (1l+2.%d2(z)) .* (1+2. %
gl(z)));
b6 =@(z) -2.x((1+2.xg2(z))."2);

[

% Kinematic Parameter

VPO =@ (z) VpOoa(z);
VP1 =@ (z) sqgrt((Vploa(z). 2).x(1+2.%d1l(z)));
VP2 =@ (z) sqrt((Vploa(z). 2).x(1+2.%xd2(z)));
anelPl =Q@(z) ((el(z)-dl(z)). *(1+2 *d1l(z)—-(xr0(z)."2))) ...
./(((1+2 *dl( ))."2) .x(1-(x0(z).72)));
anelP2 =@(z) ((e2(z)-d2(z)).*x((1+2.xd2(z)) .*x(1+2.%xgl(z))—(
2.

r0(z)."2) .x (1+ *g2( z)))) ...
(

L/ (((142.%d2(2)) .72) . % (1+2.%gl (z) - (r0(z) ."2)
L+ (1+2.%g2(2))));
anelP3 =@ (z) (b0(z)+b2(z).*(xr0(z). 2)+b4d(z).*(xr0(z) . 4)+b6(
z) .x(r0(z)."6)=2.%xrl(z) .*r2(z) .*r3(z)).
L/ (2.%x(142.%d1 (2)) . * (142, *d2(z)).*(l+2.*gl(z)
—(r0(z).72) .*(1+2.x92(z))));

4

[

% Component for anelliptic parameter on S1-WAVE (C55)
b0 =@(z) ((1+2.%gl(z))."2).x( (1+2.%d1l(z)) .*x(1+2.xd2(z))

+(1+2.%d3(z)) .*((1+2.%el(z))."2));
b2 =@(z) —(1+2.%gl(z)).*x((1+2.xd1l(z)) .x (L+2.xg2(z))+(1+2.%
d2(z)) .« (1+2.xgl(z)) ...
+(1+2.%gl(z)) .*x ((1+2.%d1(z)) .* (L+2.xd2(z) )+ (1+2. %
el(z)) .x(1+2.xg2(z))) ...
+2.x (1+2.%xel(z)) .x (1+2.%g2(z)) .x (1+2.xd3(z)) .x (1+
el(z)+gl(z)));

(z) (1+2.xgl(z)) .*x(1+2. *g2(z
* (1+2.xd2(z)) .x(g2(z)-gl(z)) .
+2.x (1+2.%g2(z)) . (1+e1( )+gl( z))+(1+2.%d3(z))

*(1+2.%xel(z)) .*(1+2.%xg2(z)));
b6 =@(z) —-2.%((14+2.%g2(z))."2) . (1+2.%gl (z)+2.xgl (z) .*g2 (z

b4 @

= )) o x (3+2.%xd1l (z)+2.xd2 (z)
-2.

VS10 =@ (z) sqgrt(Co55(z).»(1079)./Densa(z));

VsS1ll =@(z sgrt ((VS10(z) . 2) .« (1+2.% ((el(z)—-dl(z)) ./ (r0(
z).72))));

VS12 =Q@(z) sqrt((VS10(z)."2).x(1+2.%g2(z)));
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anelS1ll =Q@(z) - ((el(z)-dl(z)).»(r0(z). 2).*+(1+2.+xd1l(z)—-(xr0
(z).72)))
(((142.% (el (z)-dl(z))/(r0(z)."2))."2)
* (1-(x0(z)."2)));
anelSl2 =0;
anelS13 =@ (z) - (bO(z)+b2(z) .+ (r0(z). 2)+bd(z) .x(xr0(z). 4)+
b6(z) . (r0(z)."6)-2.xrl(z).+r2(z).xxr3(z)) ...
4.+ (r0(z)."4) o+ (1-r0(z).72) . % (1+2.% (el (
z)—dl(z))./(r0(z)."2)).x(g2(z)-gl(z))
* (1+2.%xg2(z)));

[

% Component for anelliptic parameter on S2-wave (C44)

b0 =@(z) (1+2.%gl(z)).*x( (1+2.%xd1l(z)). (1+2 *d2(z)) .
+(1+2.%d3(z)) .*((1+2.%xel(z))."2));
b2 =0@(z) —(1+2.%xd1(z)) .*(1+2.%xg2(z))—(1+2.xd2(z)) .* (1+2.%
gl(z))

—(142.%g2(2z)) .+ ((1+2.%d1(2z)) .* (1+2.xd2 (2) )+ (1+2. %
el(z)) .x(1+2.%gl(z))) ...
—2.%(1+2.xel(z)) .x(1+2.%gl(z)) .* (1+2.xd3(z)) .x (1+
el(z)+g2(z));
b4 =0@(z) (1+2.xg2(z)) .*x(3+2.xd1l(z)+2.%d2(z)+2.x(1+2.xd1l (z)
) .x(g2(z)-gl(z))...
+2.% (1+2.%gl(z)) .x (1+el (z)+g2(z)) ...
+(1+2.%d3(z)) .* (1+2.%xel(z)) .x (1+2.xgl(z)));
b6 =@(z) -2.x(1l+2.%g2(z)) .*x(1+2.%g2(z)+2.%gl(z).*xg2(z));

Vs20 =@ (z) sqrt(Co55(z).~(1079)./Densa(z));

VS20 =Q(z) Vs20(z) .xsqrt ((1+2.%g2(z)) ./ (1+2.%gl(z)));
vVS21 =@ (z) sqgrt((vs20(z). 2) (1+2.*g2(z)));

VS22 =@ (z) sgrt ((Vs20(z ) 2) .

( ((1+2.xg2( A 1+2 *gl(z)))+2.x(e2(z)-d2(z
)) ./ (r0(z 2) ) )i
anelS21 = 0;
anelS22 =@ (z) —-((e2(z)-d2(z)).*x(xr0(z). “2) * ((1+2.%d2(z))
—((142.%g2(2)) ./ (1+2.%xgl(z))) .x (x0(z) .72))) .
L/ (((1+2.%g1(2)) . "2) . ((((1+2 *g2( z)) ./ (1+2.%
gl(z)))+2.%(e2(z)-d2(z))./(r0(z)."2))."2)

(1 ((1+2 *g2(z)) ./ (1+2.%xgl(z))) .« (r0(z)."2)

) r

z)+b2(z) .x(r0(z) . 2) +b4 (

—2.xr1(z).*xr2(z) .xxr3(z)) .
*(r0(z) . 4) .x(1+2. *gl(z)). (142.xgl1 (z)

(1+2.*g2(2)) *(r0(z)."2)).

anelS23 =Q@(z) (b0
(z).»(r0(z)."6
./ (4

)
( z) .%(r0(z) . 4)+b6
)
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o (

((14+2.xg2(z)) ./ (1+2.xgl (z)))+2.% (e2 (z)—-d2(
z))./(x0(z).72)) .x(g2(z)-gl(z)));

%% ——— AVERAGE VALUE KINEMATIC PARAMETERS USING INTEGRAL
% P-WAVE

VPO = integral (VP0O,x1(1),x1(end))/ (x1l(end)-x1(1));

VP1 = integral (VP1,x1(1l),x1l(end))/ (x1l(end)-x1(1));

VP2 = integral (VP2,x1(1),x1(end))/ (x1(end)-x1(1));
anelPl = integral (anelP1l,x1(1),x1(end))/ (x1 (end)-x1(1));
anelP2 = integral (anelP2,x1(1),x1(end))/ (x1 (end)-x1(1));
anelP3 = integral (anelP3,x1(1),x1(end))/ (x1(end)-x1(1));

% S1-WAVE

VS10 = integral (VS10,x1(1),x1(end))/ (x1 (end)-x1(1));
VS1l1l = integral (VS11l,x1(1),x1(end))/ (x1(end)-x1(1));
VsS12 = integral (VS12,x1(1),x1(end))/ (x1(end)-x1(1));
anelSll = integral (anelS11l,x1(1),x1(end))/ (x1 (end)-x1(1));
anelSl2 = anelSl1l2;

anelSl3 = integral (anelS13,x1(1),x1(end))/ (x1(end)-x1(1));
% S2-WAVE

VS20 = integral (VS20,x1(1),x1(end))/ (x1(end)-x1(1));
vVS21 = integral (VS21,x1(1),x1(end))/ (x1(end)-x1(1));
VS22 = integral (VS22,x1(1),x1(end))/ (x1(end)-x1(1));
anelS21 = anelS21;

anelS22 = integral (anelS22,x1(1),x1(end))/ (x1 (end)-x1(1));
anelS23 = integral (anelS23,x1(1),x1(end))/ (x1 (end)-x1(1));
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Appendix C: Matlab Code - Introducing Fracture Before
Classic Upscaling

clc,clear
%% Read Data
% Log Conditioning of bad data is performed on excel

load 'Databconditioned.txt'

x = readtable('Databconditioned', 'headerlines',0);

z = tableZarray(x(:,1)); % m

GR = tablelarray(x(:,2));

vp0 = tablel2array(x(:,3)); % m/s

vs0 = tablel2array(x(:,4)); % m/s

dens = table2array(x(:,5))*1000; % kg/m"3
eps = tableZarray (x(:,6));

del = tableZarray (x(:,7));

gam = tablelarray(x(:,8));

%% Defining Interface

% Interface decision based on GR interpretation of the log
data

interface = [1000, 1275, 1430, 1520, 1625, 1770, 20101];

[)

% Finding Location index of the array

for i = l:length(interface)
pos (i) = find(abs(z-interface(i)) == min (abs(z-
interface(i))));
end
locl = [1,pos,length(z)]; % Upper limit for the interface
loc2 = [1,pos-1,1length(z)]; % Lower limit for the interface

%% Calculate Cij for every point in VTI medium
Cij = zeros(6,6,length(z));

[

% Formulas are following Thomsen Parameter for VTI medium
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Cij(3,3, (vp0 (i) "2) *dens (1) ;
Cij(4,4, (vs0 (i) "2) xdens (1) ;
Cij (5,5, = Cij(4,4,(1));

4

= (1+2xeps(i))*Cij(3,3,1)
(1+2+xgam (1)) *Cij(4,4,1);
= sqgrt (2xdel (1) *Cij(3,3,1)*(Ci3(3,3,1)-Cij
;1)) + (Ci3(3,3,1)-Cij(5,5,1))"2)

- Cij(5,5,1);
Cij(1,2,i) = Cij(1,1,1) - 2%xCij(6,6,1);

VVVVVVLQ
I

Cij(2,2,1i) = Cij(1,1,1);
Ccij(2,1,i) = Cij(1,2,1);
Cij(3,1,i) = Cij(1,3,1);
Cij(3,2,i) = Cij(1,3,1);
Cij(2,3,i) = Cij(1,3,1);

end
%% FRACTURE PARAMETER (ORT)

C_ort = zeros(6,6,length(z));

% x1l = z(locl(3):1locl(4)-1);
% k = locl(3);
% 1 = locl (4);
for i = l:size(z,1)
if 1 > locl(3)-1 && i < locl(4) %BLOCK 3-A
dn = 0.15;
dh = 0.2;
dv = 0.2;
elseif i > locl(4)-1 && i < locl(5) %BLOCK 3-B
dn = 0.4;
dh = 0.2;
dv = 0.2;
elseif 1 > locl(5)-1 && 1 < locl(6) S%$BLOCK 3-C
dn = 0.2;
dh = 0.2;
dv = 0.2;
elseif 1 > locl(6)-1 && i < locl(7) %BLOCK 3-D
dn = 0.5;
dh = 0.2;
dv = 0.2;
else
dn = 0;
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C_ort(l,1,i) = Cij(1,1,1i)+(1-dn);
C_ort(2,2,i) = Cij(1,1,4i)-(dn*(Cij(1,2,1i)"2)/Cij(1,1,1)

C_ort(2,3,1) = Cij(1,3,1i)*(1-dn*Cij(1,2,1)/Cij(1,1,1));
C_ort(l,2,i) = Cij(1,2,1)*(1-dn);
C_ort(1,3,i) = Cij(1,3,1)*(1-dn);
C_ort(4,4,1) = Cij(4,4,1);
C_ort(3,3,1) = Cij(3,3,1i)-dn*x(Cij(1,3,1i)"2)/Cij(1,1,1);
C_ort(5,5,1i) = Cij(4,4,1)*(1-dv);
C_ort(6,6,1i) = Cij(6,6,1)*(1-dh);
end
%% Backus Averaging (ORT)
zone_number = length (interface)+1 ;

Q

% Individual Layers are assumed to be ORT

Cb = zeros (6, 6, zone_number) ;
efdens = zeros (zone_number,1l);

for 1 = l:length(locl)-1

Cb(3,3,1) = mean(C_ort (3,3,1locl(i):loc2(i+1))."(-1))
(=1

Cb(4,4,1) = mean(C_ort(4,4,locl(i):loc2(i+1)). (1))
(=1

Cb(5,5,1) = mean(C_ort (5,5,1locl(i):loc2(i+1)). " (-1))
(=1

Cb(6,6,1)

mean (C_ort (6,6, locl (i) :1loc2(i+1)));

Cb(1,3,1) = mean(C_ort (1,3,locl(i):1loc2(i+1l))./C_ort (3,3,
locl (i) :loc2(i+1))) ...
.% Cb(3,3,1);

Cb(2,3,1) = mean(C_ort (2,3,locl(i):loc2(i+1))./C_ort (3,3,
locl (i) :loc2(i+1))) ...
.% Cb(3,3,1);
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Cb(l,1,1) = mean(C_ort(1l,1,locl(i):loc2(i+1))) + ...
(mean (C_ort (1,3,1locl (i) :loc2(i+1l))./C_ort
(3,3,1locl(i):loc2(i+1)))."2 )...
.x Cb(3,3,1) -
(mean ((C_ort (1,3,locl (i) :loc2(i+1)).72)./
C_ort (3,3,1locl (i) ::loc2(i+l1))));
Cb(2,2,1) = mean(C_ort (2,2,locl(i):loc2(i+1))) +
(mean (C_ort (2,3,1locl (i) :1loc2(i+1l))./C_ort
(3,3,1locl(i):loc2(i+1)))."2 )...
.x Cb(3,3,1) - .
(mean ( (C_ort (2,3,1locl (i) :loc2(i+1)).72)./
C_ort (3,3,1locl(i):1loc2(i+1))));

Cb(l1,2,1i) = mean(C_ort(1l,2,locl(i):loc2(i+1))) + ...

mean (C_ort (1,3,locl(i):loc2(i+1l))./C_ort (3,3,
locl(i):loc2(i+1))) ...

.* mean (C_ort (2,3,locl(i):1loc2(i+1))./C_ort
(3,3,1locl(i):1loc2(i+1))) ...

.% Cb(3,3,1) - ...

mean ( (C_ort (1,3,1locl (i) :1loc2(i+1l)) .»C_ort
(2,3,1ocl(i):loc2(i+1))) ...

./C_ort(3,3,1locl(i):1loc2(i+1l)));

efdens (i) = mean (dens(locl (i) :1loc2(i+1)));

[

% Effective parameter of the Anisotropy

EvpO (i) = sqrt(Cb(3,3,1i)/efdens(1i));
Evs0 (i) = sqrt(Cb(5,5,1)/efdens(i));

[

% Plane is Perpendicular to fractures

epsl3 (i) = (Cb(1l,1,1) - Cb(3,3,1))/(2*Cb(3,3,1));
gaml3 (1) = (Cb(6,6,1) — Cb(4,4,1))/(2+«Cb(4,4,1));
dell3 (1) = ((Cb(1,3,1i) + Cb(5,5,1))"2 - (Cb(3,3,1) -
Cb(5,5,1))"2) /
(2*xCb (3,3,1)*(Cb(3,3,1) — Cb(5,5,1)));
% Plane is Paralel to fractures
eps23 (1) = (Cb(2,2,1) - Cb(3,3,1))/(2*Cb(3,3,1));
gam23 (1) = (Cb(6,6,1) — Cb(5,5,1))/(2+xCb(5,5,1));
del23 (1) = ((Cb(2,3,1) + Cb(4,4,1))"2 - (Cb(3,3,1) -

Cb(4,4,1))"2) /
2xCb(3,3,1)*(Cb(3,3,1) — Cb(4,4,1)));
orizontal Plane

o\
T~




end

o

°

for

dell2 (1) = ((Cb(1,2,1)
Cb (6 i))” ) /
(2xCb(1,1,1) *

+ Cb(6,6,1)) "2 -

(Cb(1,1,1)

Set the effective parameters

depth)

Cef = zeros(6,6,length(z)
l:size(z,1)
if 1 < locl(2)
j=1
elseif 1 > locl(2)-1

i =

locl(3)-1
locl (4)-1
locl(5)-1
locl(6) -1
elseif 1 > locl(7)-1
j=7;
else
j=8;
end

Cef(3,3,1) =
Cef(4,4,1) =
Cef (5,5,1) =

Cef (1,
cef (2,3,
Cef(6,6,1i) = Cb(6,6,73);

Cef(1,1,1) =
cef (2,2,

Cb(1,1,3);
i) = Cb(2,2,73);

Cef(1,2,i) = Cb(1,2,73);

o)

% Effective parameters

)i

&&

&&

&&

&&

&&

&&

into every data point

locl (3)

locl (4)

locl (5)

locl (6)

locl (7)

locl (8)

(Cb(1,1,1)

(
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vpOef (i) = Evp0(3);
vsOef (i) = EvsO0(3);

densef (i) efdens (J);

el3 (1) = epsl3(3);
gl3(i) = gaml3(J);
dl3 (i) = dell3 (j);
e23 (i) = eps23(J);
g23 (i) = gam23(J);
d23 (1) = del23(J);
dl2 (i) = dell2 (j);

end
%% Kinematic Parameter
VP = zeros(length(z),3);% Vertical NMO[x1l,x3] NMO[x2,x3]

VSl = zeros(length(z),3);
VS2 = zeros(length(z),3);

anelP = zeros(length(z),3);% etal[xl,x3] eta2[x2,x3] etaxy
[x1,x2]

anelSl = zeros(length(z),3);

anelS2 = zeros(length(z),3);

n = size(z,1);

[VP,VS1,VS2,anelP,anelSl,anelS2] =
kinematic3 (vpOef,Cef,el3,g913,d13,e23,923,d23,d12,densef
() ;

Kinematic3 Function:

function [VP,VS1,VS2,anelP,anelSl,anelS2] =
kinematic3 (VpO_or,C_ort,el3,qgl3,d13,e23,g23,d23,d12,
densef, n)

for i = 1:n

% Component for anelliptic parameter on Pure mode wave
r0 = sqgrt(C_ort(5,5,1)/C_ort(3,3,1));
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rl = sqrt((1-(r072))* (1+2xd13(1)-(r072)));

r2 = sqrt ((1+2%gl3(i)—-(r072)x (1+2%xg23(1i))) *
((L+2%d23 (1)) * (1+2xgl3 (1)) —(xr0"2) x (1+2%g23(1))));
r3 = sqgrt ((1+2%el3(1)-(x072)x (1+2xg23(1))) =

((1+2%d12 (1)) * (1+2%el13(1))—(r0°2) * (1+2xg23 (i)
)))

% Component for anelliptic parameter on P-wave

b0 = 2x(1+2+d13 (1)) * (1+2xd23 (1)) * (1+2%gl3(i));
b2 = —(1+42%d13 (1)) * (1+2xg23 (1)) - (1+2%d23 (1)) * (1+2xgl3(
i)) ...
2% (1+2%d13 (1)) * (1+2%xd23 (1)) » (L+gl3(i)+g23(i)) ...
2% (1+2%gl3 (1)) * (1+2%xg23 (1) ) » (L+d13 (i) +d23(1i));
bd = (1+2%g23 (1)) * (4+2xd1l3 (1) +2xd23 (1) +2xgl3 (1) +2xg23(
i)...
+(1+2+d13 (1)) » (1+2%xg23 (1) )+ (1+2xd23 (1)) * (1+2xgl3(
i)));
b6 = 2% ((1+2%g23 (1)) "2);
P(i,1) = VpO_or(i);
( ,2) = sqgrt ((VpO_or (i) . ) * (1+2.+xd13(1)));
,3) = sqgrt ((VpO_or (i) . * (1+2.xd23(1)));
anelP(l,l) = ((el3 (1) d13(1))*(1+2*d13( y—(r072))) .
/(((142%d13 (1)) "2) x (1-(x072)));
anelP (i,2) = ((e23(1)-d23(i))* ((1+2+d23 (1)) * (1+2*gl3 (1)

)= (r072) % (1+2%xg23(i)))) ...
/(((1+2xd23 (1)) "2) * (1+2xgl3 (i) -(r0"2)
* (142%xg23(1))));
anelP (i,3) = (b0+b2x (r072)+b4d* (r074)+b6* (r0"6) —2+rlxr2+
r3) ...
/(2% (1+2%d13 (1)) » (1+2+d23 (1)) * (1+2%xgl3 (i
)= (r072) « (1+2%g23(1))));

% Component for anelliptic parameter on Sl-wave (C55)

b0 = ((1+2%xgl3 (1)) "2)x( (14+2xd13 (1)) *(1+2%xd23 (1)) ...
+(1+2%d12 (1)) * ((1+2xel13 (1)) "2));
b2 = —(1+2%gl3 (1)) *((1+2xd13 (1)) * (1+2%xg23(i))+(1+2%d23
(1)) *x(1+2xgl3 (1)) ...
+(1+2%g1l3 (1)) * ((1+2xd13 (1)) * (L+2xd23 (1)) +(1+2%el3

(1)) * (L+2%g23 (1)) ...
+2% (142xe13 (1)) (14+2%g23 (1)) * (1+2+d12 (1)) * (1+el3(
1)+gl3(i)));
b4 = (1+2+gl3(i))* (1+2%g23 (1)) * (3+2+d13 (i) +2+d23 (i)
—2% (1+2%d23 (1)) * (g23 (1) -g13(i)) ...
+2% (142%923 (1)) » (1+e13 (1) +gl3 (i) + (1+2+d12 (1))
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* (1+2xel13 (1)) *» (1+2%g23(1i)));

b6 = 2% ((1+2xg23 (1)) "2) * (1+2xgl3 (1) +2xgl3 (1) *g23(i));

Vs10 (1) = sqrt (C_ort (5,5,1)/densef (i));

VSl (i, 1) = Vsl0(1);

VS1(i,2) = sqgrt ((Vs10(i)."2) . (14+2.%((el3(1)-d13(i))
./ (x072))));

VSl (i, 3) = sqgrt ((Vs1l0(i)."2) .+ (1+2.%g23(1)));

anelS1(i,1l) = - ((el3(i)-dl3(1i))*(r0"2)*(1+2xd13(i)-(r0

“2))) ...
/(((142%(e13(1)-d13(1))/(r072)) "2) % (1-(
r0°2)));
anelS1(i,2) = 0;
anelSl1 (i, 3) - (b0+b2* (r072) +bd* (r0"4)+b6x (r0"6) —2*rlx*
r2xr3) ...

/( 4% (r074)*x (1-r0"2) x (1+2* (el3 (1) -d13 (1
))/(xr072)) x(g23 (1) —gl3 (1)) * (1+2%g23(
i)));

% Component for anelliptic parameter on S2-wave (C44)

PO = (142xg13 (1)) ( (142xd13 (1)) (1+2%d23 (1)) ...
+(1+2%d12 (1)) * ((1+2%el3(i)) "2));
b2 = —(1+2%d13 (1)) * (1+2%g23 (1))~ (1+2+d23 (1)) * (1+2%g13(

—(1+2%g23 (1)) * ((1+2xd13 (1)) » (1+2%d23 (1) )+ (1+2xel3
(1)) * (1+2%g1l3(1i))) ...

2% (1+2%el3 (1)) » (1+2%gl3 (i) ) *» (1+2xd12 (1)) * (1+el3(
1)+923 (1)) ;

bd = (1+2%g23 (1)) *(3+2xd13 (1) +2xd23 (1) +2% (1+2xd13 (1))
*(g23(1)-gl3 (1)) ...

+2% (1+2%gl3 (1)) *x (1+el3 (i) +g23 (1)) ...

+(1+2+d12 (1)) » (1+2%xel3 (1)) * (1+2xgl3(i)));

b6 = —2x(14+2+g23 (1)) * (1+2xg23(1)+2+gl3 (1) *g23(i));
VS20 (1) = sqrt (C_ort (5,5,1)/densef (i));
VS2 (i, 1) = VS20 (i) *sqrt ((1+2+g23 (1)) / (1+2%gl3(i)));
VS2 (i, 2) = sqgrt ((VS20 (i) ."72) .« (1+2.%xg23(1)));
VS2 (i, 3) = sqgrt ((VS20 (1) .72) .%...
( ((142.%g23 (1)) / (1+2xgl3 (1)) )+2* (e23 (i
)

-d23(1))/(x072) ) );

anelS2(i, 1) = 0;

anelS2 (i, 2) (
—((142%g23 (1

3(1)-d23 (1)) *(r0"2)* ((1+2xd23 (1))
/ (1+2%gl13(i)))*(r0~2))) ...
(((1+2%g13 (1)) "2) * ( (((1+2%g23 (1))
/(1+2xgl3 (1)) ) +2* (€23 (1)-d23(1))/ (x0

(e
))
/
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end

anelS2 (i, 3)
*r3) ...

“2))°2) ...
* (1 (
)

(142%g23 (1)) / (1+2%gl3 (1)) ) * (r0°2))

(b0+b2+ (r072) +bd* (r074) +b6* (r0"6) —2*rl*r2

/(4% (r074) » (14+42+g13 (1)) * (1+2+xgl3 (1)
—(1+2%g23(i))*(r0~2)) ...

* (((142%g23 (1)) / (14+2xgl3(i)))+2* (€23 (1)

—d23(1))/(r072)) % (923 (1)-gl3(1)));
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Appendix D: Matlab Code - Introducing Fracture Before
Least Square Upscaling

clc,clear
%% Read Data
% Log Conditioning of bad data is performed on excel

load 'Databconditioned.txt'

x = readtable('Databconditioned', 'headerlines',0);

h = tableZarray(x(:,1)); % m

GR = tablelarray(x(:,2));

vp0 = tablel2array(x(:,3)); % m/s

vs0 = tablel2array(x(:,4)); % m/s

dens = table2array(x(:,5))*1000; % kg/m"3
eps = tableZarray (x(:,6));

del = tableZarray (x(:,7));

gam = tablelarray(x(:,8));

%% Defining Interface

% Interface decision based on GR interpretation of the log
data

interface = [1000, 1275, 1430, 1520, 1625, 1770, 20101];

[)

% Finding Location index of the array

for i = l:length(interface)
pos (i) = find(abs (h-interface(i)) == min (abs (h-
interface(i))));
end
locl = [1,pos,length(h)]; Upper limit for the interface

loc2 [1,pos-1,1length(h)]; % Lower limit for the interface

%% Calculate Cij for every point in VTI medium

c33 zeros (length(h),1);
c44 = zeros(length(h),1);
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c55
cll
c66
cl3
cl2

% Fo

for

end

zeros (length
zeros (length
zeros (length
(
(

14 14

(h),1);
(h),1);
(h),1);
(h),1);
(h),1)

4

zeros (length
length

4

zZeros ;

4

rmulas are following Thomsen Parameter for VTI medium

i = 1l:1length(h)
c33(i,1) = ((vp0 (i) "2)xdens(i))/(1079) ;
c44 (i, 1) ((vsO (i) "2)*dens(1))/(1079) ;
c55(i,1) = c44(i,1);
cll(i,1) = ((1+2xeps (1)) *c33(i,1));
c66(1i,1) = ((l+2xgam(i))*c44(i,1));
cl3(i,1) = sqgrt(2xdel (i) *c33(i,1)*(c33(1i,1)-c55(i,1))
(c33(i,1)-c55(i,1))"2)
- ¢c55(1,1);
cl2(i,1) = cll(i,1) — 2*c66(i,1);

%% FRACTURE PARAMETER (ORT)

co33 =

co44
co55
coll
cob66
col3
col2
co22
co23

for

zeros (length
zeros (length
zeros (length
zeros (length
zeros (length

(

(

(

(

zeros (length
zeros (length
zeros (length
zeros (length

i = 1l:size(h,1)
if i > locl(3)-1 && i < locl(4)

dn = 0.15;
dh = 0.2;
dv = 0.2;
elseif 1 > locl(4)-1 && 1 < locl(b)
dn = 0.4;
dh = 0.2;
dv = 0.2;
elseif i > locl(5)-1 && i < locl(6)
dn = 0.2;
dh = 0.2;

+
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dv

0

.25

elseif 1 > locl(6)-1 && 1 < locl(7)
dn = 0.5;
dh = 0.2;
dv = 0.2;
else
dn = 0;
dh = 0;
dv = 0;
end
% ORT Cij
coll(i,1l) = cll1(i,1)+*(1l-dn);
co22(1i,1) = cll(i,1)-(dn*(cl2(i,1)"2)/cll(i,1));
co23(1i,1) = cl13(i,1)*(1l-dn*cl2(i,1)/cl1(i,1));
col2(i,1) = cl2(i,1)*(1l-dn);
col3(i,1l) = cl1l3(i,1)*(1l-dn);
cod4d (i,1) = c44(1i,1);
co33(i,1) = ¢33(1i,1)-dn*(cl3(i,1)"2)/cll(i,1);
co55(i,1) = cd44(i,1)*(1-dv);
co66(i,1l) = c66(i,1)*(1l-dh);
end
%% ——— Defining Block 3 ——-
nl = length(locl(3):1locl(4)-1); % total data
Block 3a
x1 = h(locl(3):1locl(4)-1); % allocated depth points
k = locl (3);
1 = locl (4);
% nl = length(locl(4):1locl(5)-1); % Block 3b
% x1 = h(locl(4):1locl(5)-1);
% k = locl(4);
% 1 = locl(5);
% nl = length(locl(5):1locl(6)-1); % Block 3c
% x1 = h(locl(5):1locl(6)-1);
% k = locl (5);
% 1 = locl(6);
% nl = length(locl (6):1locl(7)-1); % Block 3d
% x1 = h(locl(6):1locl(7)-1);
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k = locl (6);
1 = locl (7);

oe oo

o\

Calculating the unknown 'a' and 'b' for least square

yl(:,1) = 1./co33(k:1-1,1); % 1/c33

yl(:,2) = 1./cod44(k:1-1,1); % 1/c44

y1(:,3) = 1./co55(k:1-1,1); % 1/c55

yl(:,4) = col3(k:1-1,1)./co33(k:1-1,1); % cl13/c33

yl(:,5) = co23(k:1-1,1)./co33(k:1-1,1); % c23/c33

yl(:,6) = cob66(k:1-1,1); $ c66

yl(:,7) = coll(k:1-1,1); $ cll

y1(:,8) = (col3(k:1-1,1)."2)./co33(k:1-1,1); % cl1372/c33

yl(:,9) = co22(k:1-1,1); % c22

y1(:,10)= (co23(k:1-1,1)."2)./co33(k:1-1,1); % c2372/c33

yl(:,11)= col2(k:1-1,1); $ cl2

yl(:,12)= col3(k:1-1,1).xco23(k:1-1,1)./co33(k:1-1,1); %
cl3xc23/c33

yl(:,13) = dens(k:1-1,1); % density

al = zeros(1,13); % 1/c33 | 1/c44 | 1/c55 | ¢l13/ec33 | c23/
c33 | c66 | cll |
% ¢l1372/c33 | c22 | ¢2372/c33 | cl2 | c13
xc23/c33 | dens
bl = zeros(1,13);

for 1 = 1:13
al(l,i) = ((nls«sum(xl.*yl(:,1i)))—(sum(x1l)*sum(yl(:,1)))
)/ (nl*sum(x1. A2)—(sum(x1)A2));
bl(l,i) = (sum(yl(:,i))-al(l,i)*sum(xl))/nl;
end

%——— LEAST SQUARE CALCULATION on ORT Medium ——--—

% Cij and density function calculation

C33a = @(z) 1./(al(l,1) .z + bl(1l,1));

Cd44a = Q@(z) 1./(al(l,2).xz + bl(1,2));

C55a = @(z) 1./(al(1,3).%z + bl(1,3));

Cl3a = @(z) (al(l,4) .z + bl(1l,4)).xC33a(z);

C23a = @(z) (al(1l,5).*xz + bl(1l,5)).xC33a(z);

Céba = @(z) al(l,6).xz + bl(l,6),

Clla = @(z) (al(l,7).xz + b1(1,7)) + ((al(l,4).*z + bl
(1,4)).72) .xC33a(z) ...

-(al(1,8).*z + bl(1,8));
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C22a = @(z) (al(1l,9).*z + bl(1,9)) + ((al(l,5).xz + bl
(1,5)).72).%C33a(z) ...
-(al(l,10).xz + bl(1,10));
Cl2a = (@(z) (al(1l,11).xz + bl(1,11)) + (((al(l,4).*xz + bl
(1,4)) .x(al(1,5) .z + bl(1,5))).*C33a(z))...
- (al(l,12) .xz + bl1(1,12));
Densa = @ (z) 1(1,13) .z + bl(1,13);
% Anisotropy Parameter Function Calculation
Vploa = @(z) sqrt(C33a(z).x(1079)./Densa(z));
VsOoa = @(z) sqrt(C55a(z).x(1079)./Densa(z));
% Plane is Perpendicular to fractures [x1l,x3]
el = @(z) (Clla(z)-C33a(z))./(2.%C33a(z));
gl = @(z) (C6ba(z)-Cdda(z))./(2.+«Cdda(z));
dl = @(z) ((Cl3a(z)+C55a(z))."2-(C33a(z)-C55a(z))."2)
./ (2.+xC33a(z) .+ (C33a(z)-C55a(z)));
% Plane is Parallel to fractures [x2,x3]
e2 = @(z) (C22a(z)-C33a(z))./(2.%«C33a(z));
g2 = @(z) (C6ba(z)-Ch5a(z)). /(2.*C55a(z));
d2 = @(z) ((C23a(z)+C44a(z))."2-(C33a(z)-Cd4d4a(z))."2)
./ (2.%xC33a(z) . *(C33a( y—Cd4a(z)));
% Horizontal Plane
d3 = @(z) ((Cl2a(z)+C6ba(z))."2-(Clla(z)-Ce6ba(z))."2)
./ (2.%xClla(z) .x(Clla(z)-C66a(z)));
%% ————— AVERAGE VALUE ANISO PARAMETER USING INTEGRAL
VP0_or = integral (VpOoa,x1(1l),x1(end))/ (x1l(end)-x1(1));
VS0_or = integral (VsOoa,x1(1),x1(end))/ (x1l(end)-x1(1));
epsl = integral(el,x1(1l),x1(end))/ (x1l(end)- (1)) ;
gaml = integral (gl,x1(1l),x1(end))/ (x1l(end)-x1(1));
dell = integral(dl,x1(1l),x1(end))/ (x1l(end)-x1(1));
eps2 = integral (e2,x1(1),x1(end))/ (x1(end)-x1(1));
gam2 = integral (g2,x1(1l),x1(end))/ (x1(end)-x1(1));
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del2 = integral (d2,x1(1l),x1l(end))/ (x1l(end)-x1(1));

del3 = integral (d3,x1(1l),x1l(end))/ (x1(end)-x1(1));

o°

% ——— KINEMATIC PARAMETER ——-—

% Component for anelliptic parameter on Pure mode wave

r0 =@ (z) sgrt(C55a(z)./C33a(z));

rl =@(z) sgrt((l-(r (z) “2)) .+ (1+2.%d1(z)—-(xr0(z)."2)));

r2 =@(z) sqgrt ((1+2.xgl(z)-(r0(z)."2) . x(1+2.%g2(z))) .=*
((

)
142.%d2(z)) .* (14+2.%g1l (z))—(r0(z)."2)
*(1+2.%92(z))));
r3 =@(z) sgrt((l+2.xel(z)-(xr0(z)."2).x(1l+2.xg2(z))
((14+2.%xd3(z)) .« (1+2.%xel (z))—-(xr0(z)."2)
* (1+2.%x92(2))) ) ;

% Component for anelliptic parameter on P-WAVE

(z) 2.x(1+2.%d1l(z)) .x(1+2.xd2(z)) .x(1+2.xgl(z));
(z) —(1+2.xd1(z)) .*(1+2.%xg2(z))—(1+2.xd2(z)) .x (1+2.*
z)

—2.x(142.%xd1(z)) .*x (1+2.%xd2(z)) .*x (1+gl(z)+g2(z))

—2.% (1+2.%gl(z)) .x (1+2.%g2(z)) .+ (1+d1l (z)+d2(z));
b4 =0@(z) (1+2.xg2(z)) .*x(4+2.xd1l(z)+2.%d2(z)+2.xgl (z)+2.%g2

+(1+2.%d1(z)) .x(1+2.%xg2(z) )+ (1+2.xd2(z)) .* (1+2. %

gl(z)));
b6 =@ (z) -2.%((1+2.%g2(z))."2);

[

% Kinematic Parameter

VPO =@ (z) VpOoa(z);

VP1 =@ (z) sqgrt((Vploa(z). 2).x(1l+2.%xd1l(z)));

VP2 =@ (z) sqrt((Vploa(z). 2).x(1+2.%d2(z)));

anelPl =@ (z) ((el(z)-dl(z)).*(14+2.xd1(z)—-(xr0(z)."2)))...
/(142 *dl( )).72) .+ (1= (x0(z)."2)));

anelP2 =@(z) ((e2(z)-d2(z)).*x((1+2.xd2(z)) .*x(1+2.%xgl(z))—(

L/ (((1+2.%d2(2)) . "2) .+ (1+42.%xgl (z)—(x0(z) ."2)

(
(

(
r0(z)."2).%(1+2. *g2( z)))) ...
(((

.+ (142.%g2(2))));
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anelP3 =@ (z) (bO0(z)+b2(z).*(xr0(z). y+bd (z) .+ (r0(z) . 4)+bo (
z) .x(r0(z)."6)=-2.%rl(z).+xr2(z). *r3(z))
(20%x (142.%d1(z)) .+ (142, *d2(z)) * (1+2.xgl (z)
—(r0(z).72) .x(1+2.%x92(2))));

4

[

% Component for anelliptic parameter on S1-WAVE
b0 =@(z) ((1+2.%xgl(z))."2).x( (1+2.%xd1l(z)) .*x(1+2.xd2(z))

+(1+2.%d3(z)) .*((1+2.%xel(z))."2));
b2 =@(z) —(1+2.xgl(z)) .*((1+2.%d1l(z)) .*x(1l+2.%g2(z))+(1+2.%
d2(z)) .x(1+2.%gl(z)) ...
+(14+2.%g1l(z)) .*x ((1+2.%d1(z)) .* (1+2.xd2 (2) )+ (1+2. %
el(z)) .x(1+2.%g2(z))) ...
+2.%x (1+2.xel(z)) .*x (1+2.%g2(z)) . * (1+2.xd3(z)) . » (1+
el(z)+gl(z)));

(z) (1+2.xgl(z)) .x(1+2. *g2(z
* (1+2.%d2(z)) .+ (g2 (z) -gl(z)) .
+2.% (1+2.%g2(z)) . (1+e1( )+gl( z))+(1+2.+d3(z))

* (1+2.%xel(z)) .x (1+2.%g2(z2)));
b6 =@(z) -2.x((1+2.xg2(z))."2).*x(1+2.xgl(z)+2.xgl(z) .*xg2 (z

b4 @

= )) . *x(3+2.xd1l(z)+2.xd2(z)
-2.

vS10 =@ (z) sqgrt(C55a(z).»(1079)./Densa(z));

VSll =@ (z) sqgrt((VS10(z)."2).x(1+2.%((el(z)-dl(z)) ./ (r0(
z).72))));

VSsS12 =@ (z) sqgrt ((VS10(z). 2) .x(1+2.%g2(z)));

anelSll =@ (z) — ((el(z)-dl(z)).*(r0(z)." 2).%(1+2.%d1l(z)—(r0
(z).72))).

(1425 (el (z)-dl(z))/(r0(z)."2))."2)
* (1-(r0(z)."2)));
anelS12 =0;
anelS13 =Q@(z) - (b0 (z)+b2(z).*(r0(z). 2)+bd(z).*(r0(z). 4)+
b6 (z) .x(r0(z)."6)-2.%rl(z).*xr2(z).+r3(z))...
4o x(r0(z) . "4) ox(1-r0(z2).72) .x (1+2.% (el (
z)—dl(z))./(x0(z)."2)).x(g2(z)-gl(z))
* (142.%xg2(z)));

[

% Component for anelliptic parameter on S2-wave

b0 =@(z) (1+2.%gl(z)).*x( (1+2.xd1l(z)). (1+2 *d2(z)) .
+(1+2.%d3(z)) .*((1+2.%xel(z))."2));
b2 =@(z) —(1+2.%xd1(z)) .*(1+2.%xg2(z))—(1+2.xd2(z)) .* (1+2.%
gl(z))
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—(142.%g2(2z)) .+ ((142.%d1(2z)) .* (1+2.xd2 (2) )+ (1+2.
el(z)) .x(1+2.xgl(z))) ...
—2.%x (1+2.xel(z)) .*x (1+2.%gl(z)) . * (1+2.xd3(z)) .x (1+
el (z)+g2(z));
b4 =@(z) (1+2.xg2(z)) .*x(3+2.xd1l(z)+2.%d2(z)+2.x(1+2.xd1l (z)
) .x(g2(z)-gl(z)) ...
+2.% (14+2.%gl(z)) .x (1+el (z)+g2(z)) ...
+(1+2.%d3(z)) .* (1+2.%xel(z)) .x (1+2.xgl (z)));
b6 =@(z) -2.x(1l+2.%g2(z)) .*x(1+2.%g2(z)+2.%gl(z).*xg2(z));

Vs20 =Q@(z) sqgqrt(C55a(z).~(1079)./Densa(z));

vsS20 =Q@(z) Vs20(z) .*sqgrt ((1+2.%g2(z)) ./ (1+2.xgl(z)));
vVsS21 =@ (z) sqgrt((vs20(z). 2) (1+2.*g2(z)));

VS22 =@ (z) sqrt((vs20(z ) 2).

( ((1+2.%xg2( /( 1+2 xgl(z)))+2.%(e2(z)-d2(z
)) ./ (x0(z ) 2) ) )i
anelS21 = 0;
anelS22 =Q@(z) —-((e2(z)-d2(z)).*x(x0(z). “2) *((1+2.xd2(z))

—((142.%g2(z)) ./ (1+2.%gl(z))) .*x (x0(z)."2))).
/(1420591 (2)) . 72) . ((((1+2 *g2( z)) ./ (1+2.%
gl(z)))+2.x(e2(z)~-d2(z))./(x0(z)."2))."2)

* ( ((1+2.*g2(z))./(1+2.*g1(z))).*(r0(z).A2)

14

)i
z)+b2 (z) .x (r0(z) . " 2)+b

l
)
anelS23 =@(z) (bO(
6)

4 (
(z) .x(xr0(z) . 2.%rl(z) .xr2(z) .*r3(z))
L/ (A.x(r0(z) .7 4) o+ (142.xg1l (2)) .« (1+2.%gl (2)
—(1+2.%g2(z)) .*(r0(z)."2)) ...
* (((1+2.%g2(2)) ./ (1+2.xgl(z)))+2.% (e2 (z)—-d2(
z))./(x0(z)."2)).%(g2(z)-gl(z)));
%% —————— AVERAGE VALUE KINEMATIC PARAMETERS USING INTEGRAL
$ P-WAVE
VPO = integral (VP0O,x1(1),x1(end))/ (x1(end)-x1(1));
VP1 = integral (VP1,x1(1),x1(end))/ (x1l(end)-x1(1));
VP2 = integral (VP2,x1(1),x1(end))/ (x1(end)-x1(1));

anelPl = integral (anelPl,x1(1),x1(end))/ (x1(end)-x1(1));

anelP2 = integral (anelP2,x1(1),x1(end))/ (x1(end)-x1(1));
anelP3 = integral (anelP3,x1(1),x1l(end))/ (x1 (end)-x1(1));
% S1-WAVE
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vS10
vSll
VvsS1lz2

anelSl1
anelS12
anelS13

% S2-WAVE

vsS20
vs21l
vs22

anelS21
anelS22
anelS23

integral (VS10,x1 (1), x1(end))/ (x1 (end)-x1(1));
integral (VS11,x1(1),x1(end))/ (x1 (end)-x1(1));
integral (VS12,x1(1),x1(end))/ (x1(end)-x1(1));

integral (anelS11,x1(1),x1(end))/ (x1 (end)-x1(1));
anelSl2;
integral (anelS13,x1(1),x1(end))/ (x1(end)-x1(1));

integral (VS20,x1(1),x1(end))/ (x1 (end)-x1(1));
integral (VS21,x1(1),x1(end))/ (x1 (end)-x1(1));
integral (VS22,x1(1),x1(end))/ (x1 (end)-x1(1));

anelS21;
integral (anelS22,x1(1),x1(end))/ (x1 (end)-x1(1));
integral (anelS23,x1(1),x1(end))/ (x1 (end)-x1(1));
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Appendix D: Matlab Code - Overburden Effect

Calculation for obtaining the effective VTI background parameter for block 1 and 2:

clc,clear
%% Read Data
% Log Conditioning of bad data is performed on excel

load 'Databconditioned.txt'

x = readtable('Databconditioned', 'headerlines',0);

h = tableZarray(x(:,1)); % m

GR = tablelarray(x(:,2));

vp0 = tablel2array(x(:,3)); % m/s

vs0 tableZ2array (x(:,4)); % m/s

dens = table2array(x(:,5))*1000; % kg/m"3
eps = tableZarray (x(:,6));

del = tableZarray (x(:,7));

gam = tablelarray(x(:,8));

%% Defining Interface

% Interface decision based on GR interpretation of the log
data

interface = [1000, 1275, 1430, 1520, 1625, 1770, 20101];

[)

% Finding Location index of the array

for i = l:length(interface)
pos (i) = find(abs (h-interface(i)) == min (abs (h-
interface(i))));
end
locl = [1,pos,length(h)]; % Upper limit for the interfac
loc2 = [1,pos-1,1length(h)]; % Lower limit for the interfac

%% Calculate Cij for every point in VTI medium

c33 zeros (length(h),1);
c44 = zeros(length(h),1);

e
e
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c55 = zeros(length(h),1)

cll = zeros(length(h),1)

c66 = zeros(length(h),1l);
( (h),1)
( (h),1)

14 14

4

4

cl3 = zeros(length
cl2 = zeros(length

4

14 4

[

% Formulas are following Thomsen Parameter for VTI medium

for 1 = l:length (h)

(
(

c33(i,1) = ((vpO(i)"2)=*dens(i))/10°9 ;

c44 (i, 1) ((vsO (i) "2)*dens(i))/10°9 ;

c55(i,1) = c44(i,1);

c11(i,1) = ((l42%eps(i))*c33(i,1));

c66(1i,1) = ((l+2xgam(i))*c44(i,1));

c13(i, 1) = sqgrt(2+del(i)*c33(i,1)*(c33(i,1)-c55(i,1)) +

(

(c33(i,1)-cb5(1i,1)

- ¢c55(1i,1);

cl2(i,1) = cl1(i,1) - 2%c66(i,1);

)" 2)

end
%% ——— Defining the Block —--—-
% nl = length(locl(l):1locl(2)-1); % total data
Block 1
% x1 = h(locl(l):1locl(2)-1); % allocated depth
points
% k = locl(1l);
% 1 = locl(2);
% nl = length(locl(2):1locl(3)-1); % total data
Block 2
% x1 = h(locl(2):1ocl(3)-1); % allocated depth
points
% k = locl(2);
% 1 = locl(3);
nl = length(locl(3):1locl(4)-1); % total data
Block 3a
x1 = h(locl(3):1locl(4)-1); % allocated depth points
k = locl(3);
1 = locl (4);
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yl(:,1) = 1./c33(k:1-1,1); % 1/c33
vy1(:,2) = 1./cd44(k:1-1,1); % 1/c44
y1(:,3) = ¢c13(k:1-1,1)./c33(k:1-1,1); % c13/c33
yl(:,4) = c66(k:1-1,1); % Cc66
yl(:,5) = (c13(k:1-1,1)."2)./c33(k:1-1,1); % cl1372/c33
yl(:,6) = cll(k:1-1,1); $ cll
yl(:,7) = dens(k:1-1,1); % density
al = zeros(1l,7); % 1/c33 | 1/c44 | cl13/c33 | c66 | cl1372/
c33 | c¢ll1 | dens
bl = zeros(1,7);
for i = 1:7
al(l,i) = ((nls«sum(xl.*xyl(:,1)))—(sum(xl)*sum(yl(:,1)))
Y/ (nl*xsum(x1l.”2)—(sum(x1)"2));
bl(1,1i) (sum(yl(:,1))-al(l,1i)*sum(xl))/nl;
end
= VTI BACKGROUND CALCULATION-———————————-—
% Cij background and density function calculation
C33a @Q(z) 1./(al(1l,1).*z + bl(1,1));
Cd4d4a = Q(z) 1./(al(l,2).xz + bl(1,2));
Cl3a = @Q@(z) (al(l,3).*z + bl (1,3)).x(1./(al(l,1).*z + bl
(1,1)));
Céba = @(z) al(l,4).xz + bl(1,4);
Clla = @Q@(z) (al(l,6).*xz + bl(1l,6)) + ((al(l,3).xz + bl
(1,3)).72).%C33a(z) ...
-(al(l,5).xz + bl(1,5));
Cl2a = (@(z) Clla(z)-2.xCo6o6a(z);
Densa = @(z) al(1l,7).*z + bl(1,7);
C55a = @(z) Cd4dal(z);
% Anisotropy Parameter function calculation
VpOa = @(z) sqgrt(C33a(z ) *(1079)./Densa(z));
VsOa = @(z) sqrt(C4d44a(z).x(1079)./Densa(z));
epsa = @(z) (Clla(z) C33a(z)) /(2.%C33a(z));
gama = @(z) (C66a(z)—-Cdda(z)). / 2 *C4da(z));
dela = @(z) ((Cl3a(z)+Cd44a(z)). 2-(C33a(z)—-Cd4da(z))."2)
./ (2.%xC33a(z) .+ (C33a(z)-Cd44a(z)));
el = Q(z) epsal(z);
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e?2 = @(z) epsal(z);

gl = Q@(z) gama(z);

g2 = Q@(z) gama(z);

dl = @(z) dela(z);

d2 = @(z) dela(z);

d3 = @(z) O;

% ————— AVERAGE VALUE ANISOTROPY PARAMETERS USING
INTEGRAL ————————-—

% P-WAVE

vpOef = integral (VpOa,x1(1l),x1(end))/ (x1 (end)-x1(1));

vsOef = integral (VsOa,x1(1),x1(end))/ (x1 (end)-x1(1));

epsef = integral (epsa,x1(1),x1(end))/ (x1 (end)-x1(1));

gamef = integral (gama, x1 (1), x1 (end))/ (x1(end)-x1(1));

delef = integral (dela,x1(1),x1(end))/ (x1(end)-x1(1));

densef = integral (Densa,x1(1),x1(end))/ (x1 (end)-x1(1));

%% KINEMATIC PARAMETERS OF PURE MODE WAVES in VTI Medium

[

% Component for anelliptic parameter on Pure mode wave

r0 =@ (z) sgrt(C55a(z)./C33a(z));

rl =@(z) sgrt((l-(r (Z) “2)) .+ (1+2.%d1(z)—-(xr0(z)."2)));

r2 =@ (z) sgrt((1+2.%gl(z)—-(x0(z)." 2).%(1+2.%xg2(z))) .=*
((

)

142.%d2(z)) .* (1+2.%gl(z))—(r0(z) ."2)
*(1+2.%92(2))));

r3 =@(z) sqgrt((1+2.xel(z)-(r0(z). 2) . x(1+2.%g2(z))) .=*

((142.%xd3(z)) .x(1+2.xel (z))—-(r0(z)."2)
*(1+2.%92(2))));

% Component for anelliptic parameter on P-WAVE

(z) 2.%x(1+2.%d1l(z)) .*(1+2.%xd2(z)) .x (1L+2.%xgl(z));
(z) —(1+2.%d1l(z)) .*x(1+2.xg2(z))—(1+2.%d2(z)) .*x (1+2.%
z)

=2.x(1+2.%d1l(z)) .x (1+2.%d2(z)) .x (1+gl(z)+g2(z))

1+dl(z)+d2(z));

“2.%x (142.xg1(2)) .*x (14+2.%xg2(2) ) . * (
(z)+2.xgl(z)+2.%g2

b4 =Q@(z) (1+2.%g2(z)) .*x(4+2.xdl(z)+2.%d2

+(1+2.xd1l(z)) .x(1+2.%xg2(z) )+ (1+2.%d2(z)) . > (1+2.%
gl(z)));
b6 =@ (z) -2.x((1+2.xg2(z))."2);
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o\

Kinematic Parameter
P wave vertical and nmo velocity

o\

VPO =@ (z) VpOlal(z);

VP1 =@ (z) sqgrt((Vpla(z). 2).x(1+2.%xd1(z)));

VP2 =@ (z) sqgrt ((Vpla(z). 2).x(1+2.%d2(z)));

anelPl =Q@(z) ((el(z)-dl(z)).*x(1+2.xd1l(z)-(r0(z)."2)))...
/012, *dl( )) . 72) ox(1-(xr0(z2)."2)));

anelP2 =@ (z) ((e2(z)-d2(z)) .x((1+2.xd2(z)) .*(1+2.xgl(z))—(

(

(

(

2. *92( z)))) ...
(1+2.%xd2(z)) . "2) .x(L+2.xgl(z)—-(xr0(z)."2)
*(1+2.%92(2))));

anelP3 =@ (z) 2.*anelPl(z);

r0(z)."2) .% (1+
-/«

o\

S1 wave (SV) vertical and nmo velocity

VS10 =@ (z) sqgrt(C55a(z).»(1079)./Densa(z));

VsS1l1l =@(z) sgrt ((VS10(z) . 2) .« (1+2.% ((el(z)—-dl(z)) ./ (xr0(
z).72))));

VS12 :@(Z) sgrt ((VS10(z) . 2) .« (1+2.% ((el(z)—-dl(z)) ./ (xr0(
z).72))));

anelSll =Q@(z) (el(z)-dl(z)).x(VP0(z)."2)./(VS10(z)."2);

anelSl12 =Q@(z) (el (z)-dl(z)).*x(VPO(z). 2)./(VS10(z)."2);

anelS13 =Q(z) 2. *anelSll(z)

% S2 wave (SH) vertical and nmo velocity

Vs20 =@ (z) sqgrt(C44a(z).»(1079)./Densa(z));
VS20 =@ (z) Vs20(z).*sqrt ((1+2.%g2(z)) ./ (1+2.%gl(z)));
vs21 =@ (z) sqrt ((Vs20(z)."2).*(1+2.%g2(z)));
VS22 =@ (z) sqgrt ((Vs20(z). 2) .x(1+2.%g2(z)));

anelS21 =0;
anelS22 =0;
anelS23 =0;

%% —————— AVERAGE VALUE KINEMATIC PARAMETERS USING INTEGRAL
% P-WAVE

VPO = integral (VP0O,x1(1),x1l(end))/ (x1l(end)-x1(1));

VP1 = integral (VP1,x1(1l),x1(end))/ (x1l(end)-x1(1));
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VP2

anelP1l
anelP2
anelP3

o

°

S1-WAVE

VS10
VS1ll
vsl2

anelS11
anelS12
anelS13

o

°

S2-WAVE

vs20
vszl
vs22

o\

anelS21
7

anelS22

o\

7
anelS23

4

o\

= integral (anelP1l,x1(1),x1

integral (VP2,x1(1),x1 (end))/ (x1 (end) -
(end)) / (x1 (end) —x1 (
integral (anelP2,x1(1),x1 (end))/ (x1 (end)-x1 (

integral (anelP3,x1(1),x1(end))/ (x1 (end) -

integral (VS10,x1(1),x1
integral (VS11, x1 (
integral (VS12, x1 (

(end) ) / (x1 (end) —x1 (
1),x1(end)) / (x1 (end) -
1),x1(end)) / (x1 (end) -
integral (anelS11,x1(1),x1
integral (anelS12,x1(1),x1
integral (anelS13,x1(1),x1

(end)) / (x1
(end)) / (x1
(end)) / (x1

(end) —
(end) —
(end) —

integral (VS20,x1(1),x1
integral (VS21,x1(1),x1
integral (VS22,x1 (1),

(end) ) / (x1 (end) -
(end) ) / (x1 (end) -
x1 (end) )/ (x1 (end) —

integral (anelS22,x1 (1)

integral (anelS22,x1 (1),x1(end))/ (x1 (end)

integral (anelS23,x1 (1)

,x1 (end) )/ (x1 (end)—

,x1 (end) )/ (x1(end)—

1(1))

-x1(1))

1(1))

Calculation for Dix-type equations:

clc,clear
oo
0

o
°

Read Data

Log Conditioning of bad data is performed on excel

load 'DatabSconditioned.txt'

x = readtable('Databconditioned', 'headerlines',0);
h = tableZarray(x(:,1)); % m

GR = tableZarray(x(:,2));

vp0 = table2array(x(:,3)); % m/s

vsO0 = tablel2array(x(:,4)); % m/s

dens = table2array(x(:,5))*1000; % kg/m"3
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eps = tablelarray(x(:,6));
del tableZ2array (x(:,7));
gam = tableZarray(x(:,8));

%% Defining Interface

% Interface decision based on GR interpretation of the log
data
interface

(1000, 1275, 1430, 1520, 1625, 1770, 2010];

[

% Finding Location index of the array

for i = 1l:length(interface)
pos (i) = find(abs (h-interface(i)) == min (abs (h-
interface(i))));
end
locl = [1,pos,length(h)]; % Upper limit for the interface
loc2 = [1,pos-1,length(h)]; % Lower limit for the interface
%% ————— NMO VELOCITY —-———-

% vertical velocity
%$Blockl Block2Z Block3A

v0(1l,:) = [2361.9; 2708.7; 3236.7]; % P wave
v0(2,:) = [1088.6; 1208.6; 1650.4]1; % S1 wave
v0(3,:) = [1088.6; 1208.6; 1845.2]; % S2 wave
for 1 = 1:3
for j = 1:3
z(j) = h(loc2(j+1)) - h(locl(j));
tO(lrj) = 2*2(])/\70(1,]);
end
TO(i,1) = sum(t0(i,:));

end

Q
[
{
N

I

(sum ((vO (i, :)."2).«t0(di,:)));

v0O(i,1) = sqrt(a(i,1)/TO(i,1));

end
% vnmol

$Blockl Block2 Block3A
vl(l,:) = [2347.8 2821.2 2618.1]; % P wave
vl(2,:) = [1051.4 1665.5 1886.1]; % S1 wave
v1(3,:) [1079.3 1430.0 1471.7]1; % S2 wave

101




for i = 1:3
b(i,l)=(sum((v1(i,:)."2).«t0(i,:)));
V1(i,1) = sqgrt(b(i,1)/TO0(i,1));

end

% vnmo?2

$Blockl Block2 Block3A

v2(l,:) = [2347.8 2821.2 3107.5];
v2(2,:) = [1051.4 1665.5 1471.7];
v2(3,1) [1079.3 1430.0 1604.6];

for 1 = 1:3
c(i,1)=(sum((v2(i,:)."2).xt0(1i,:)));

V2(i,1) = sqrt(c(i,1)/TO(i,1));
end

$% ———— ANELLIPTICITY —-————
$Blockl Block2 Block3A

etal (1, :) [0.0025 0.0840 0.0495]1; $ P —-wave
etal(2,:) = [0.0266 0.4494 -0.0033]; % Sl-wave
etal(3,:) = [0 0 0 1;
for i 1:3
d(i,1) = (sum((1+8.*xetal (i, :)).*x(vl(i,:)."4).«t0(i,:)))
YA
((V1(i,1).74).+xT0(1i,1)) ;
El1(i,1) = (d(i,1) - 1) / 8;

end

eta2(1,:) = [0.0025 0.0840 -0.04121; % P —-wave
eta2(2,:) = [0.0266 0.4494 07]; % Sl-wave
eta2(3,:) = [0 0 0.02811; % S2-wave
for i = 1:3
e(i,1) = (sum((1l+8.xetal2(i,:)) .*(v2(i,:)."4).xt0(i,:)))

((V2(i,1).74).+xT0(1i,1)) ;

E2(i,1) = (e(i,1) - 1) / 8;
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0]
&
©
w
N
N
Il

£(i,1) =

[0.0049 O.
[0.0532 0.
[0 0

(sum( (1+4

L72) oxt0 (1, :)))

E3(i, 1)
end

((V1(i,1)

(£(i,1)

1681 0.0540]; % P —-wave
8988 4.7072]; % Sl-wave
-0.2324];% S2-wave

*etal3 (i, :)).x(vl(i,:)."2).%x(v2(1,:
./

“2) % (V2(1i,1).72) .xTO(1,1)) ;

1) / 4;
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