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Summary

Anisotropy in large parts of the earth’s crust, particularly in sedimentary basins is well
modeled by orthorhombic (ORT) symmetry. Schoenberg and Helbig (1997) introduced the
orthorhombic medium as a combination of vertical fractures and horizontal fine layering,
which resembles quite much of a petroleum reservoir. Hence understanding the behavior
of the seismic response for this particular medium has become quite popular for this past
years.

A well data is provided in this study for observing the seismic signature of a fractured
reservoir, which known as ORT medium. The kinematic parameters derived by Stovas
(2016) are utilized in this study. Polar plot of azimuthal dependence of these kinematic
parameters is conducted in order to observe the difference signature of a fractured and non-
fractured medium. Furthermore, the effect of considering overburden above the fractured
reservoir is also discussed.

Since well data and seismic wavelength work in a slightly different frequency domain,
a process that helps to transfer a series of a thin layered model that match with seismic
wavelength is required. Upscaling is commonly known to handle this issue. Two methods
of upscaling, which are classic or famously known as Backus average and least square,
are conducted, and the results are compared. In addition to that, in a fractured reservoir
observation, two approaches to introducing fractures are also discussed and compared.
These approaches are to introduce the fractures before and after the upscaling process.

This study aims to observe the seismic signature in the form of kinematic parameters that
are azimuthally dependent for a fractured reservoir with the condition, as stated before.
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Chapter 1
Introduction

1.1 Background

Anisotropy is a real life scenario that contribute in petroleum exploration activities. It is
there in most parts of the earth’s crust, particularly in sedimentary basins. Anisotropy can
be defined into several medium which depend on the condition of the earth’s layer itself.
For example, if the layers are homogeneous in one of the symmetry axis, then the medium
is called Transversely Isotropic. This case mainly can be found in shale lithology where
it’s properties appear to be homogeneous along the axis that perpendicular to the vertical
axis. This type of lithology is classified as Vertical Transverse Isotropic (VTI) medium.
Another common condition is in a fractured reservoir where the lithologies are consist of
several stacks of thin layers of sandstone and shale with vertical fractures embedded in it.
Such condition is classified as Orthorhombic medium which become an interest of study
for the past years.

Schoenberg and Helbig (1997) introduced the orthorhombic medium as a combination
of vertical fractures and horizontal fine layering that is equivalent to a long wavelength.
Such condition is relevant to a fractured reservoir that is commonly found in petroleum
exploration. The approach for analyzing this medium requires knowledge from anisotropy
in VTI medium, fracture weaknesses and a method to transform a stack of several thin
layers into one effective medium that fit with seismic wavelength.

Along with understanding the anisotropy parameters, kinematic properties help us to un-
derstand how the seismic signature behaves in anisotropic media. Stovas (2016) derived
the kinematic properties for P-wave and S-wave velocity in orthorhombic media for both
pure-mode and converted waves. This study however, will only be focused to pure-mode
waves only. Additionally, the responds of azimuth dependent of this kinematic properties
will also be conducted.
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Chapter 1. Introduction

In a matter of observing seismic signature in a fractured reservoir, one needs to consider
how it will be observed from the surface. It brings to a condition where the overburden
layers above the fractured reservoir need to be included in the calculation of the kinematic
parameters. This will come to a series of reflections being recorded in the function of time
and recorded on a seismogram. Then, these travel time can be computed and converted
into layer parameters, famously known as Dix (1955) inversion.

1.2 Objectives

The objectives of this study are listed as:

1. To work with anisotropy concept that focuses on Schoenberg-Helbig Orthorhombic
model.

2. Comparing Backus Average and Least Square as an upscaling method to acquire
effective medium properties.

3. Comparing two different approaches of introducing fractures to the medium. They
will be introduced before and after upscaling methods.

4. To observe kinematic properties on pure-mode waves based on the designated ap-
proaches.

5. To perform a dix-type equation in order to simulate how the kinematic parameters
of a medium at certain depth are observed from the surface.

1.3 Outline

In this study, nine chapters will be presented, including this introduction. Each chapter is
presented, and there will be a brief explanation about it at the beginning of each chapter.
A summary of the chapters is given below.

Chapter one gives background information, objectives, and the outline of this study. This
content is provided for giving a brief explanation of what this study is all about.

Chapter two explains the anisotropy models that are mainly discussed for this study. Two
anisotropy models will be highlighted, Vertical Transverse Isotropic or VTI medium and
Orthorhombic or ORT medium. A brief discussion about symmetry class is also discussed
beforehand.

Chapter three discusses the averaging or upscaling methods, which is used to obtain an
effective parameter that is gathered from well log data. Two upscaling methods will be
compared, the first one is classic upscaling or commonly known as Backus Averaging,
and the second one is least square upscaling. These methods are conducted in both VTI
and ORT media.

2



1.3 Outline

Chapter four explains about Dix-type equations. A discussion about these equations that
is intended to calculate the effective parameters with several layers to be accounted for is
provided. This approach illustrates how a specific layer’s parameters at a certain depth are
observed from the surface.

Chapter five contains the observation of well log data that is used in this study. General
interpretation regarding this data is also provided. Furthermore, how the methods are
going to be performed are also defined in this chapter.

Chapter six discusses the fracturing effect in a medium. Preliminary consideration that
state any necessary assumption and notation are discussed at the beginning. The condi-
tion of the medium before fracturing will be calculated and observed beforehand, along
with that, upscaling methods will also be performed in this chapter. The effect of the frac-
tures when they are introduced to a medium will be the main observation in the form of
kinematic parameters.

Chapter seven mainly focused on a comparison of the methods and approaches that are
conducted in this study. These will relate to upscaling comparison and fracturing approach
comparison. Whether these methods give significant different to the kinematic parameters
or not will be explained at the end of this chapter.

Chapter eight is involving an overburden effect on the study. The kinematic parameters
of a layer at a certain depth will be observed when the overburden layers are included.
Chapter nine summarizes the work of what has been done in this project. There will be a
conclusion based on analyzing the results.
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Chapter 2

Anisotropy Models

Anisotropy is commonly defined as the variation of a physical property depending on the
direction in which it is measured (Sheriff, 2002). Therefore, in term of seismic anisotropy,
it refers to the directional variation of a layer’s response to the path of seismic waves.
Specifically, it can be referred to as the dependence of seismic velocity upon angle. In here,
velocity is commonly described as the speed of a seismic wave. It is the physical property
that affects traveltime, amplitude, frequency, attenuation, and many other properties which
are measured from seismic data. The angle is commonly described as directions including
polar or incident angle (offset) and source-receiver azimuth (Liu and Martinez, 2012).

In some occasions, the term anisotropy and heterogeneity may lead to confusion. A sim-
ilar case such as isotropic and homogeneous may also lead to some misunderstanding.
Figure 2.1 can give clarity about these terms. The figure illustrates how each medium
is affecting the seismic velocity. Note that the arrow represents the velocity value and
direction.

5



Chapter 2. Anisotropy Models

Figure 2.1: Illustration of how velocity behave given different model of medium. The value of the
velocity is represented by the length of the arrow.

2.1 Symmetry Class

The symmetry of a medium is reflected in the structure of the elastic stiffness tensor Cijkl.
In anisotropic media, stiffness tensor is related to stress σij and strain εij through Hooke’s
law.

Hooke’s law states that for sufficiently small stresses, the strain is proportional to the stress.
For an anisotropic medium, Hooke’s law can be written as:

εij = Sijklσkl (2.1)

where εij and σij denote components of the second-rank strain tensor and the stress tensor
respectively. Sijkl denotes the component of the fourth-rank elastic compliance tensor.

Equation 2.1 can be inverted to express the components of the stress tensor in terms of the
components of the strain tensor, hence:

σij = Cijklεkl (2.2)

WhereCijkl denotes a component of the fourth-rank elastic stiffness tensor, C. The second
rank tensor ε and σ possess the following symmetries:

εij = εji, σij = σji (2.3)

6



2.2 Vertical Transverse Isotropic Medium

The fourth-rank tensors S and C possess the following symmetries:

Sijkl = Sijlk, Sijkl = Sjikl, Cijkl = Cijlk, Cijkl = Cjikl (2.4)

The relationship shown in Equation 2.3 and Equation 2.4 reduce the number of indepen-
dent elements of Sijkl and Cijkl and therefore make it possible to introduce the Voight
notation in which pairs of subscript ij and kl are abbreviated by single subscripts.

11→ 1, 22→ 2, 33→ 3, 44→ 4, 31&13→ 5, 12&21→ 6 (2.5)

Combining the Hooke’s law in Equation 2.2 with equation of motion below:

ρ
∂2ui
∂t2

=
∂σij
∂xj

(2.6)

will give result in wave equation such that:

ρ
∂2ui
∂t2

= Cijkl
∂u2k

∂xl∂xj
(2.7)

Using Equation 2.5, the stiffness tensor Cijkl can be written as a matrix Cab which can be
shown below:

Cab =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

 (2.8)

From the symmetry in matrix Cab, it follows that the maximum number of independent
stiffness coefficients is 21 in an anisotropic medium. These independent stiffness coeffi-
cients range in term of complexity from Isotropic medium with two independent stiffness
coefficient to the most complex Triclinic medium with 21 independent stiffness coeffi-
cient. In this study, VTI and ORT medium that have five and nine independent stiffness
coefficient will be mainly discussed.

2.2 Vertical Transverse Isotropic Medium

Vertical Transverse Isotropic (VTI) medium is one of the class which belonged to trans-
versely isotropic medium that has one single rotational symmetry axis, so that, in direc-
tions perpendicular to this, the material’s properties appear to be directionally invariant.
As in VTI case, it has the vertical rotational symmetry axis.

7



Chapter 2. Anisotropy Models

Figure 2.2: Illustration of VTI medium.

The common cause for VTI anisotropy in the subsurface are thin horizontal bedding or
the preferential alignment of minerals and grains during deposition. An example of a VTI
medium is a fine layering of shale.

2.2.1 Stiffness Coefficients

VTI is described by five independent stiffness coefficients (C11, C33, C44, C66, and C13)
which have the following matrix form:

Cij =


C11 C11 − 2C66 C13 0 0 0

C11 − 2C66 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

 (2.9)

Individual components of the stiffness matrix which representing individual layers are
shown below, following (Thomsen, 1986).

C33 = V2
p0 ρ,

C55 = C44 = V2
s0 ρ,

C11 = (1 + 2ε) C33,

C66 = (1 + 2γ) C44, and

C13 =
√

2δC33(C33 − C55) + (C33 − C55)2 − C55

(2.10)

where ρ is density, Vp0 and Vs0 are vertical velocity of P-wave and S-wave respectively. ε,
γ, and δ are the anisotropy parameters which will be discussed later on.
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2.2 Vertical Transverse Isotropic Medium

2.2.2 Anisotropy Parameters

For seismic applications, it is not convenient to use parameterization in terms of stiffness
coefficients. It is best to split the parameters relevant to velocities and anisotropy itself
which concisely characterize a wide range of seismic signatures.

In VTI effective medium where there are several isotropic layers stacked together, pa-
rameterization is referred to (Thomsen, 1986), in which there are two vertical velocities
explained as,

Vp0 =

√
C33

ρ

Vs0 =

√
C44

ρ

(2.11)

and three anisotropy parameters described as,

ε =
C11 − C33

2C33
,

γ =
C66 − C44

2C44
,

δ =
(C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)

(2.12)

Here, ε and γ are controlling the horizontal propagation of P-wave and SH-wave, re-
spectively. Note that, S-wave has two different polarization, vertical and horizontal to its
propagation, and they are equal while propagating vertically in VTI medium. For horizon-
tal velocities, the equations are provided below and note that the horizontal velocity for
SV-wave is equal to vertical S-wave velocity.

V2
p

(
π

2

)
= V2

p0(1 + 2ε)

V2
SH

(
π

2

)
= V2

s0(1 + 2γ)

(2.13)

For parameter δ, it is responsible for NMO velocity of P-wave,

V2
p(nmo) = V2

p0(1 + 2δ) (2.14)

Parameter σ is introduced when dealing with SV-waves,

9



Chapter 2. Anisotropy Models

σ =
V2

p0

V2
s0

(ε− δ) (2.15)

σ is responsible for SV-wave NMO velocity,

V2
SV(nmo) = V2

s0(1 + 2σ) (2.16)

2.3 Schoenberg & Helbig: Orthorhombic Medium

Vertical fractures and horizontal fine layering combine to form a long-wavelength equiv-
alent orthorhombic medium (Schoenberg and Helbig, 1997). Such media can also be de-
scribed as vertical fractures which are embedded into a transversely isotropic background
medium with a vertical axis of symmetry (VTI) as illustrated in Figure 2.3. Note that
symmetry planes are defined in such a way according to the axis, which is defined in the
figure.

Figure 2.3: Schematic diagram of vertical fractures embedded in VTI medium adopted from
(Schoenberg and Helbig, 1997). (a) VTI medium, (b) Vertical fractures set, and (c) ORT medium.

Here, an agreement to the symmetry planes are set, where [x1,x2] and [x2,x3] are the
vertical symmetry planes that perpendicular to the fractures and parallel to the fractures
respectively. As for the [x1,x2], it is the horizontal symmetry plane.

2.3.1 Stiffness Coefficients

There are nine independent stiffness coefficients in ORT medium: six diagonal elements
that relate specifically to velocities along the coordinate axes and three independent off-
diagonal elements.

The stiffness matrix C of such medium can be described as follow:

10



2.3 Schoenberg & Helbig: Orthorhombic Medium

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 =

[
c̃1 0
0 c̃2

]
, (2.17)

Here, the velocities along the coordinate axes are illustrated in the Table 2.1 based on how
the propagation and polarization are from. The P-waves in the x1, x2, and x3 directions
are given by

√
C11,

√
C22, and

√
C33 respectively. The S-waves are expressed on the

off-diagonal elements.

Propagation
Polarization x1 x2 x3
x1

√
C11

√
C66

√
C55

x2

√
C66

√
C22

√
C44

x3

√
C55

√
C44

√
C33

Table 2.1: Axial Propagation

Now, returning to Equation 2.17, the 0 is the 3 x 3 zero matrix and c̃1 and c̃2 are given by:

c̃1 =



C11b(1−∆N ) C12b(1−∆N ) C13b(1−∆N )

C12b(1−∆N ) C11b

(
1−∆N

C2
12b

C2
11b

)
C13b

(
1−∆N

C12b

C11b

)

C13b(1−∆N ) C13b

(
1−∆N

C12b

C11b

)
C33b

(
1−∆N

C2
13b

C11bC33b

)


(2.18)

and

c̃2 =

C44b 0 0
0 C44b(1−∆V ) 0
0 0 C66b(1−∆H)

 (2.19)

Here, Cijb are the stiffness coefficients of the VTI background explained in Equation 2.10.
∆N , ∆V , and ∆H are the dimensionless weakness of the fractures which change from
zero (no fracture) to unity (extreme fracturing). ∆V and ∆H correspond to vertical and
horizontal tangential fracture weaknesses respectively, and ∆N corresponds to normal
fracture weakness.

11



Chapter 2. Anisotropy Models

Fracture weaknesses also provide another definition term. The tangential weaknesses ∆V

and ∆H provide a measure of crack density, whereas the normal weakness ∆N provides
information regarding fluid content of the fractures and possible fluid flow between the
fractures and pore space, ∆N = 0 indicates wet fractures and ∆N = 0.5 indicates dry
fractures (Bakulin et al., 2000).

Note again that matrix in (2.17) describes a particular type of orthorhombic medium with
the stiffness satisfying the relation (Schoenberg and Helbig, 1997):

C13(C22 + C12) = C23(C11 + C12) (2.20)

The existence of this additional constraint (2.20) come from the fact that while the general
orthorhombic medium is described by nine independent values of Cij , the vertical fracture
induced mode considered in this model is defined by only eight quantities. Those are five
stiffness coefficients of the VTI background medium (2.10) and three fracture weaknesses
(∆N , ∆V , and ∆H ).

Recollecting all the matrix shown in (2.18) and (2.19), individual components of the stiff-
ness matrix can be written in the following form:

C11 = C11b(1−∆N ), C44 = C44b ,

C22 = C11b −∆N

C2
12b

C11b

, C33 = C33b −∆N

C2
13b

C11b

,

C23 = C13b

(
1−∆N

C12b

C11b

)
, C55 = C44b(1−∆V ),

C12 = C12b(1−∆N ), C66 = C66b(1−∆H),

C13 = C13b(1−∆N )

(2.21)

2.3.2 Anisotropy Parameters

In ORT effective medium, where there is a set of vertical fractures embedded in VTI
medium as the background, anisotropy parameters are defined for each symmetrical plane
accordingly. Those consist of two vertical symmetry planes and one horizontal symmetry
plane (Tsvankin, 1997).

First of all, the vertical velocities of the P and S waves are still following the Thomsen’s
recipe in VTI medium. However, the preference of using S-wave polarized in x1-direction
is used for defining the S-wave vertical velocity (Tsvankin, 1997). The reason for that is
due to C44 and C55 values are no longer the same as it is introduced in VTI medium. As the
vertical fractures are embedded in VTI medium, the vertical S-wave velocity that polarized

12



2.3 Schoenberg & Helbig: Orthorhombic Medium

in [x1] direction (C55) will have different velocity compared to the one that polarized in
[x2] direction (C44). Therefore the vertical velocities are expressed as:

Vp0 =

√
C33

ρ
(2.22)

Vs0 =

√
C55

ρ
(2.23)

For anisotropy parameters in the [x1,x3] vertical symmetry plane, they are defined as:

ε1 =
C11 − C33

2C33
(2.24)

γ1 =
C66 − C44

2C44
(2.25)

δ1 =
(C13 + C55)2 − (C33 − C55)2

2C33(C33 − C55)
(2.26)

Note that in the definition of δ for VTI media in Equation 2.12, C44 is used rather than C55.
The reason for that is since both values are the same in VTI medium as the vertical S-waves
that polarized in [x1] and [x2] direction are identical. However, those two stiffness coeffi-
cients differ for orthorhombic media. Hence, C55 is always used in Equation 2.26 which
correspond to vertical S-wave that polarized in [x1] direction. For anisotropy parameters
in the [x2,x3] vertical symmetry plane, they are defined as:

ε2 =
C22 − C33

2C33
(2.27)

γ2 =
C66 − C55

2C55
(2.28)

δ2 =
(C23 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
(2.29)

As the two vertical velocities and six anisotropy parameters introduced above can be used
instead of eight original stiffness coefficient: C11, C22, C33, C44, C55, C66, C23, and
C13. The only remaining stiffness C12 can be replaced with a dimensionless anisotropic
parameter analogous to the δ coefficients in the vertical planes of symmetry.

δ3 =
(C12 + C66)2 − (C11 − C66)2

2C11(C11 − C66)
(2.30)

The coefficient δ3 plays the role of Thomsen’s δ for [x1,x2] horizontal symmetry plane.
Note that the quantities for ε and γ in this horizontal symmetry plane would be redundant
(Tsvankin, 1997).

13



Chapter 2. Anisotropy Models

2.3.3 Kinematic Parameters

In recent years, full azimuth seismic data processing and interpretation in ORT medium
have earned popularity. ORT medium requires more attention on both parameterization
and kinematic properties. Hence, experimenting on pure mode waves with azimuth depen-
dent will be conducted in this study, and they will be defined in phase and group domain
should they behave differently in the anisotropic medium.

Two kinematic parameters will be analyzed, and those are NMO velocity and anellipticity.
These parameters are azimuthally dependent, and they can be expressed in phase and group
domains. These parameters are related to the curvatures of the slowness surface computed
at the point where both horizontal projections of the slowness vector are zero in the phase
domain. In the group domain, these parameters are related to similar curvatures calculated
from the travel time surface at zero offsets.

NMO velocity ellipses are known as the first order of curvatures in the group domain
(Grechka and Tsvankin, 1998), while anellipticity is the second order of curvatures that
responsible for the anelliptic behavior of either slowness or the traveltime surface in the
phase domain (nonhyperbolic in the group domain). Here, they will be explained in sys-
tematic ways, and all the following formulas are referred to (Stovas, 2016) that has done
the research in kinematic parameters of pure- and converted-mode waves for elastic or-
thorhombic medium.

First of all, P-wave kinematic parameters are calculated. Here, three properties are needed
to obtain, those are V0, V1, and V2 which correspond to vertical P-wave velocity and
P-wave NMO velocity in the vertical symmetry plane of [x1,x3] and [x2,x3] respectively.
Note that notation 1 and 2 in anisotropy parameters ε, γ, δ also represent those in [x1,x3]
and [x2,x3] symmetry plane respectively.

V0 = Vp0 ,

V2
1 = V2

p0(1 + 2δ1),

V2
2 = V2

p0(1 + 2δ2),

(2.31)

Next is to define how to calculate the anellipticity for P-wave,

η1 =
(ε1 − δ1)(1 + 2δ1 − r20)

(1 + 2δ1)2(1− r20)
,

η2 =
(ε2 − δ2)

[
(1 + 2δ2)(1 + 2γ1)− r20(1 + 2γ2)

]
(1 + 2δ2)2

[
1 + 2γ1 − r20(1 + 2γ2)

]
ηxy =

b0 + b2r
2
0 + b4r

4
0 + b6r

6
0 − 2r1r2r3

2(1 + 2δ1)(1 + 2δ2)
[
1 + 2γ1 − r20(1 + 2γ2)

]
(2.32)

where,

14



2.3 Schoenberg & Helbig: Orthorhombic Medium

b0 = 2(1 + 2δ1)(1 + 2δ2)(1 + 2γ1),

b2 = −(1 + 2δ1)(1 + 2γ2)− (1 + 2δ2)(1 + 2γ1)

− 2(1 + 2δ1)(1 + 2δ2)(1 + γ1 + γ2)

− 2(1 + 2γ1)(1 + 2γ2)(1 + δ1 + δ2),

b4 = (1 + 2γ2)
[
4 + 2δ1 + 2δ2 + 2γ1 + 2γ2

+ (1 + 2δ1)(1 + 2γ2) + (1 + 2δ2)(1 + 2γ1)
]
,

b6 = −2(1 + 2γ2)2

(2.33)

For S-wave kinematic properties, the term of S1 and S2 is used instead of saying faster
or slower S-waves. They correlate with either C55 or C44. The S1-wave is related to the
vertical velocity of

√
C55, and the kinematic properties are following the formula below.

Note that the notations being used here are also the same as those in P-wave.

V0 = Vs0 ,

V2
1 = V2

s0

(
1 + 2

ε1 − δ1
r20

)
,

V2
2 = V2

s0(1 + 2γ2),

(2.34)

Next is to define how to calculate anellipticity for S1-wave,

η1 = − (ε1 − δ1) r20 (1 + 2δ1 − r20)(
1 + 2 (ε1−δ1)

r20

)2
(1− r20)

,

η2 = 0,

ηxy = − b0 + b2r
2
0 + b4r

4
0 + b6r

6
0 − 2r1r2r3

4r40(1− r20)
(

1 + 2 (ε1−δ1)
r20

)
(γ2 − γ1)(1 + 2γ2)

(2.35)

where,

b0 = (1 + 2γ1)2
[
(1 + 2δ1)(1 + 2δ2) + (1 + 2δ3)(1 + 2ε1)2

]
,

b2 = −(1 + 2γ1)
[
(1 + 2δ1)(1 + 2γ2) + (1 + 2δ2)(1 + 2γ1)

+ (1 + 2γ1)
(
(1 + 2δ1)(1 + δ2)(1 + ε1)(1 + 2γ2)

)
+ 2(1 + 2ε1)(1 + 2γ2)(1 + δ3)(1 + ε1 + γ1)

]
,

b4 = (1 + 2γ1)(1 + 2γ2)
[
3 + 2δ1 + 2δ2 − 2(1 + 2δ2)(γ2 − γ1)

+ 2(1 + 2γ2)(1 + ε1 + γ1) + (1 + 2δ3)(1 + 2ε1)(1 + 2γ2)
]
,

b6 = −2(1 + 2γ2)2(1 + 2γ1 + 2γ1γ2)

(2.36)
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Chapter 2. Anisotropy Models

The last one that need to be calculated is S2-wave kinematic properties. The S2-wave is
related to the vertical velocity of

√
C44, and the kinematic properties are defined below.

And again the notation in here is also the same as the other two kinematic properties
explained above.

V0 = Vs0

√
1 + 2γ2
1 + 2γ1

,

V2
1 = V2

s0(1 + 2γ2),

V2
2 = V2

s0

(
1 + 2γ2
1 + 2γ1

+ 2
(ε2 − δ2)

r20

)
,

(2.37)

And finally to define the anellipticity of S2 wave,

η1 = 0,

η2 = −
(ε2 − δ2) r20

[
(1 + 2δ2)− (1+2γ2)

(1+2γ1)
r20

]
(1 + 2γ1)2

[
(1+2γ2)
(1+2γ1)

+ 2
(ε2−δ2)
r20

]2[
1− (1+2γ2)

(1+2γ1)
r20

] ,
ηxy = −

b0 + b2r20 + b4r40 + b6r60 − 2r1r2r3

4r40(1 + 2γ1)
[
1 + 2γ1 − (1 + 2γ2)r20

][ (1+2γ2)
(1+2γ1)

+ 2
ε2−δ2)
r20

]
(γ2 − γ1)

(2.38)

where,
b0 = (1 + 2γ1)

[
(1 + 2δ1)(1 + 2δ2) + (1 + 2δ3)(1 + 2ε1)2

]
,

b2 = −(1 + 2δ1)(1 + 2γ2)− (1 + 2δ2)(1 + 2γ1)

− (1 + 2γ2)
[
(1 + 2δ1)(1 + 2δ2) + (1 + 2ε1)(1 + 2γ1)

]
− 2(1 + 2ε1)(1 + 2γ1)(1 + 2δ3)(1 + ε1 + γ2),

b4 = (1 + 2γ2)
[
3 + 2δ1 + 2δ2 + 2(1 + 2δ1)(γ2 − γ1)

+ 2(1 + 2γ1)(1 + ε1 + γ2)

+ (1 + 2δ3)(1 + 2ε1)(1 + 2γ1)
]
,

b6 = −2(1 + 2γ2)(1 + 2γ2 + 2γ1γ2)

(2.39)

And for all the equations for the kinematic parameters above, r1, r2, r3, and r0 are defined
as:

r1 =
√

(1− r20)(1 + 2δ1 − r20),

r2 =
√[

1 + 2γ1 − r20(1 + 2γ2)
][

(1 + 2δ2)(1 + 2γ1)− r20(1 + 2γ2)
]
,

r3 =
√[

1 + 2ε1 − r20(1 + 2γ2)
][

(1 + 2δ3)(1 + 2ε1)− r20(1 + 2γ2)
]
,

r20 =
V2
s0

V2
p0

=
C55

C33

(2.40)
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2.3 Schoenberg & Helbig: Orthorhombic Medium

When all the kinematic parameters are obtained, they can be observed in term of az-
imuthal dependent, and since the study is in anisotropic media, they need to be distin-
guished between phase and group domain. The difference for these domains can be seen
in Figure 2.4. The wavefront has become ellipse and no longer circle comparing with
the isotropic medium. The ray path that comes directly from the source is called group
velocity, and normal to the wavefront point is called phase velocity.

Figure 2.4: Illustration of group and phase velocity in anisotropic media.

The azimuthal kinematic properties in phase domain can be calculated as:

v2n(φ) = V2
1cos2φ+ V2

2sin2φ

η(φ) =
η1V4

1cos4φ+ η2V4
2sin4φ+ ηxyV2

1V2
2sin2φcos2φ

(V2
1cos2φ+ V2

2sin2φ)2
,

=
η1V4

1cos4φ+ η2V4
2sin4φ+ ηxyV2

1V2
2sin2φcos2φ

v4n(φ)

(2.41)

While the azimuthal kinematic properties in group domain can be calculated as:

1

V2
n(θ)

=
cos2θ

V2
1

+
sin2θ

V2
2

η(θ) =

η1cos4θ
V4

1
+ η2sin4θ

V4
2

+
ηxysin2θcos2θ

V2
1V2

2(
cos2θ

V2
1

+ sin2θ
V2

2

)2 ,

= V4
n(θ)

(
η1cos4θ

V4
1

+
η2sin4θ

V4
2

+
ηxysin2θcos2θ

V2
1V2

2

)
(2.42)
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Chapter 3
Upscaling

Consider a series of thin layered model properties correspond to isotropic velocity model
that is much smaller than the seismic wavelength. Such a circumstance will make the
seismic wavelength to be unable to detect all those layers individually. However, all those
thin layers can be estimated as an effectively homogeneous medium, hence translating it
into anisotropy. This procedure to compute the parameters of an effective medium is what
is called as an upscaling.

In this study, two ways of performing an upscaling will be tested. Both are used to calculate
the effective stiffness coefficient ’C’ for each medium, VTI, and ORT. The first one is
called classic upscaling that operate by taking the mean value of the data by averaging
them. It is often known as Backus Average for calculating effective medium in VTI which
can also be applied in ORT. The second one is Least Square, which finds a line that best
fits the data trend.

3.1 Classic

Classic upscaling is often known as Backus Average for calculating in VTI medium. It
mathematically explained that a stack of homogeneous isotropic layers is equivalent to a
homogeneous VTI medium in a long wavelength limit.

From the figure above, H is the length of Backus averaging, which represents the thickness
that should be less than one-third of the dominant seismic wavelength (Kumar, 2013). The
small thickness of each layer is represented by hi. λ illustrates how the seismic wavelength
is unable to represent several thin layers individually.

In term of math, Backus averaging can be explained in the following way. Consider a stack
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Chapter 3. Upscaling

Figure 3.1: A stack of thin layers consisting of two rock types.

of thin layers of VTI symmetry. Then, define the equation of motion in 1D medium,

db

dz
= iωAib (3.1)

where b is the vector displacement and particle velocity projections, ω is the frequency and
Aj is the 4x4 matrix of the medium parameters (for layer j) with the following symmetry,

Ai =

[
0 Mj

Nj 0

]
(3.2)

with matrices Mj and Nj expressed as 2x2 matrix. Upscaling results in arithmetic aver-
aging of matrix A, assuming that each of the layers is weighted equally, it can be written
as,

Ã = 〈Ai〉 =
1

H

N∑
i=1

hiAi (3.3)

where H and h represent the stack of layers and individual layers respectively. The i
represent the -th layer, which is being calculated.
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3.1 Classic

3.1.1 Classic Upscaling for VTI

These equations are used to calculate the effective ’C’ for VTI medium (Kumar, 2013).

Ce33 =

〈
1

C33

〉−1

,

Ce44 = Ce55 =

〈
1

C44

〉−1

,

Ce13 = Ce23 =

〈
C13

C33

〉〈
1

C33

〉−1

, (3.4)

Ce66 = 〈C66〉,

Ce11 = Ce22 = 〈C11〉+

〈
C13

C33

〉2〈
1

C33

〉−1

−
〈

C2
13

C33

〉
, and

Ce12 = Ce11 − 2 Ce66

3.1.2 Classic Upscaling for ORT

The following equations are used to calculate the effective ’C’ for ORT medium (Kumar,
2013).

Ce
33 =

〈
1

C33

〉−1

,

Ce
44 =

〈
1

C44

〉−1

,

Ce
55 =

〈
1

C55

〉−1

,

Ce
13 =

〈
C13

C33

〉〈
1

C33

〉−1

,

Ce
23 =

〈
C23

C33

〉〈
1

C33

〉−1

, (3.5)

Ce
66 = 〈C66〉,

Ce
11 = 〈C11〉+

〈
C13

C33

〉2〈
1

C33

〉−1

−
〈

C2
13

C33

〉
,

Ce
22 = 〈C22〉+

〈
C23

C33

〉2〈
1

C33

〉−1

−
〈

C2
23

C33

〉
, and

Ce
12 = 〈C12〉+

〈
C13

C33

〉〈
C23

C33

〉〈
1

C33

〉−1

−
〈

C13C23

C33

〉
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3.2 Least Square

The method of Least Square is a form of mathematical regression analysis which finds the
line of best fit for a set of data. It provides the overall rationale for the placement of the
line of best fit among the data points being studied.

Suppose there are ’n’ data points that can be modeled by first-degree polynomial,

y = ax+ b, (3.6)

Here, there are unknown coefficients of a and b that need to be solved. A ’F’ function can
be written as a system of ’n’ simultaneous linear equations in two unknowns of ’a’ and
’b’,

F =

n∑
i=1

(yi − axi − b)2 (3.7)

Since the Least Square fitting process minimize the summed square of the residuals, the
coefficients are determined by differentiating ’F’ with respect to each parameter and setting
the result equal to zero,

∂F

∂a
= 2

n∑
i=1

−xi(yi − axi − b) = 0 (3.8)

∂F

∂b
= 2

n∑
i=1

−1 (yi − axi − b) = 0 (3.9)

Hence, equation (3.8) and (3.9) become:

n∑
i=1

xi(yi − axi − b) = 0 (3.10)

n∑
i=1

(yi − axi − b) = 0 (3.11)

where the summation run from i = 1 to n. The normal equation are defined as:∑
xiyi = a

∑
x2i + b

∑
xi (3.12)∑

yi = a
∑

xi + bn (3.13)
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From here, elimination process can be done to solve ’a’:

a =
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2i −

(∑
xi
)2 (3.14)

Finally, ’b’ can be solved using the ’a’ value, such that:

b =
1

n

(∑
yi − a

∑
xi

)
(3.15)

3.2.1 Least Square Upscaling for VTI

In this study, ’a’ and ’b’ will be solved for every data of stiffness coefficients. First, every
calculation for stiffness coefficients is gathered as a new curve in log data. For example,
1

C33
will be calculated first and stored as a new curve in log data. Then, ’a’ and ’b’ are

calculated at a targeted interval for solving Ce33 using the data points from curve 1
C33

.

Since each Ceij have different requirements to be solved, new ’a’ and ’b’ needs to be
calculated which depend on the new curve that is required to solve certain Ceij .

The following formulas are used to obtain the Ceij for VTI medium as a function of x
(depth):

Ce33 =

〈
1

C33

〉−1

=
1

a1x + b1
,

Ce44 = Ce55 =

〈
1

C44

〉−1

=
1

a2x + b2
,

Ce13 = Ce23 =

〈
C13

C33

〉〈
1

C33

〉−1

=
a3x + b3

a1x + b1
,

Ce66 = 〈C66〉 = a4x + b4, (3.16)

Ce11 = Ce22 = 〈C11〉+

〈
C13

C33

〉2〈
1

C33

〉−1

−
〈

C2
13

C33

〉
= (a5x + b5) +

(a3x + b3)2

a1x + b1
− (a6x + b6),

Ce12 = Ce11 − 2Ce66

3.2.2 Least Square Upscaling for ORT

For ORT medium, the concept of obtaining the ’a’ and ’b’ are the same as it explained
in VTI medium. The following formula are used to obtain the Ceij for VTI medium as a
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function of x (depth):

Ce33 =

〈
1

C33

〉−1

=
1

a1x + b1
,

Ce44 =

〈
1

C44

〉−1

=
1

a2x + b2
,

Ce55 =

〈
1

C55

〉−1

=
1

a3x + b3
,

Ce13 =

〈
C13

C33

〉〈
1

C33

〉−1

=
a4x + b4
a1x + b1

,

Ce23 =

〈
C23

C33

〉〈
1

C33

〉−1

=
a5x + b5
a1x + b1

,

Ce66 = 〈C66〉 = a6x + b6, (3.17)

Ce11 = 〈C11〉+

〈
C13

C33

〉2〈
1

C33

〉−1

−
〈

C2
13

C33

〉
= (a7x + b7) +

a4x + b4

a1x + b1
− (a8x + b8),

Ce22 = 〈C22〉+

〈
C23

C33

〉2〈
1

C33

〉−1

−
〈

C2
23

C33

〉
= (a9x + b9) +

a5x + b5

a1x + b1
− (a10x + b10),

Ce12 = 〈C12〉+

〈
C13

C33

〉〈
C23

C33

〉〈
1

C33

〉−1

−
〈

C13C23

C33

〉
,

= (a11x + b11) +
(a4x + b4)(a5x + b5)

a1x + b1
− (a12x + b12)
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Dix-Type Equations

In practice of seismic acquisition, several reflections are recorded on seismic seismogram
in the function of time. If a horizontally layered mediums are considered, these travel
time functions can be processed and converted into layer parameters. Such procedure is
famously known as (Dix, 1955) inversion.

(Stovas, 2015) derived the effective properties formulas in ORT medium that can be com-
puted by the Dix-type equations. In this study, the ORT medium that is about to introduced
is assumed to have the same azimuthal orientation in each layers. The effective NMO ve-
locity can be computed as,

V2
0 T0 =

∑
v2
0j t0j ,

V2
1 T0 =

∑
v2
1j t0j ,

V2
2 T0 =

∑
v2
2j t0j ,

(4.1)

where t0j is the interval travel time in layer j that calculated along the zero-offset ray.
T0 is the total travel time for the accounted layers. v0, v1, and v2 are the vertical and
NMO velocities for each layer. V1 and V2 are the effective NMO velocities. Note that the
subscript 1 and 2 on the NMO velocities are relevant to those discussed in subsection 2.3.3.
The t0j and T0 can be defined as,

t0j =
2zj
v0j

,

T0 =
∑

t0j
(4.2)

For anelliptic parameters, they are defined as,
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N1 =
1

8

(
1

V4
1T0

∑
(1 + 8η1)v41j t0j − 1

)
,

N2 =
1

8

(
1

V4
2T0

∑
(1 + 8η2)v42j t0j − 1

)
,

Nxy =
1

4

(
1

V2
1V2

2T0

∑
(1 + 4ηxy)v2

1jv
2
2j t0j − 1

)
,

(4.3)

Further explanation is given through Figure 4.1 to illustrate the notation for performing
Dix calculations.

Figure 4.1: A horizontally layered model. The capital letters on the right side that are attached next
to the reflector stand for kinematic parameters computed from corresponding reflector. Small letters

inside the layers describe the kinematic parameters related to the individual layers.
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Chapter 5
Data

In this chapter, the information about the data that is used in this study is provided. The
first section is going to discuss the type of data that is available for this study, followed by
the condition of the data itself, whether if it is a good data or should there be any necessary
steps required to condition the data that seems to be logically impossible to exist.

Afterward, general observation and interpretation regarding the available data are dis-
cussed, followed by selecting the interval of the data that is going to be the main target
of the study. Lastly, the methods that are conducted in this data will be defined.

5.1 Data Availability

In this study, log data is provided with a measurement that is reaching 2220 m deep. It can
be seen in Figure 5.1 and consists of GR, density, Vp, Vs, and anisotropy parameters of
epsilon, gamma, and delta. In total, the data sample for each curve reaches 12165 samples.

5.2 Log Conditioning

Log conditioning is done before some data that seems to be unrealistic. These unrealistic
data are often observed as spike, which mostly caused as a miscalculation from the tool
itself. However, the approach to removing this spike is limited to any number that contains
-999 value and anisotropy parameters with value reach above one. This is due to the lack
of information about lithology or well report.

Figure 5.2 are the log data after conditioning. Some of the data samples are removed,
leaving to 11461 samples left.
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Figure 5.1: Original log data.

Figure 5.2: Log data after conditioning.
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Figure 5.3: Zonation of the log data. The highlighted light yellow area is assume to be the
reservoir which interpreted based on the GR and other log data. Dark yellow area represent the

main target for this study.

5.3 Defining the Method

Here in this section, the methods that are performed on the log data set are explained. Two
subsection are discussed, the first one is creating zonation that divide the log data set into
several blocks is conducted. Following with that, a general observation regarding to the
data availability in the targeted zone is also executed. The second one is to illustrate how
classic and least square upscaling are performed in the log data set.

5.3.1 Zonation and Data Observation

Dividing the log into several blocks is done by observing the trend of log data, mainly
focusing on GR. The target block for this study is the interval that resembles reservoir
characteristic, which consists of sand and shale lithology, and it is highlighted in Figure 5.3
marked in the yellow area.

The thickness of the study interval reaches 495 m that start from the depth of 1275 m to
1770 m. Further zonation is done prior to changes in data trend. Here, block A with a
depth interval of 1275 m to 1430 m is the main target of this study to be experimented
with, and it is highlighted in the dark yellow area.

In data observation, anisotropy parameters obtained from the log are calculated for the
highlighted area. By analyzing the anisotropy parameters obtained from the log in Fig-
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Figure 5.4: Data observation for anisotropy parameters in the area of study.

ure 5.4, one can notice that the value of ε− δ < 0. This condition is actually not common
for VTI condition that is dominated by shale, which corresponds to laboratory data ex-
perimented by (Wang, 2002). However, in this experiment, such condition is possible to
appear in brine-saturated reservoir sand where essentially the reservoir is clay-free. Such
condition indicates a very little intrinsic anisotropy exists in unfractured or clay free reser-
voir rocks such as sandstone.

Given the condition stated above and with the interval dominated by low GR value, block
3-A represents much of a sandstone reservoir with little clay-bearing. This situation leads
to an interpretation of a sandstone reservoir, which is intrinsically isotropic, and it explains
why the value of ε− δ is less than zero.

5.3.2 Classic and Least Square Upscaling

Two methods for upscaling are introduced, classic and least square upscaling. An illus-
tration of those is provided in Figure 5.5. The log data are within the interval of block 3,
and P-wave velocities are shown to illustrate how the upscaling work in the data. Starting
from the left, (a) is the original Vp after log conditioning is performed, (b) is the classic
upscaling of Backus average in VTI background for the entire block 3, (c) is the classic
upscaling in ORT medium, and (d) is the least square upscaling in ORT medium. The log
data in (a) represents the raw data measured from the log while (b), (c), and (d) represent
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5.3 Defining the Method

Figure 5.5: Upscaling illustration in log data. (a) Original Vp after conditioned, (b) Classic
upscaling in VTI medium, (c) Classic upscaling in ORT medium, (d) Least square upscaling in

ORT medium. Scale are adjusted to emphasize the differences.

the effective parameter measured after upscaling method is performed.

Note that there is a significant difference when upscaling is performed for the entire block
3 and when it is implemented in each divided interval that is based on the different data
trendline. The latest approach suggests the better way of performing upscaling as the log
data shows different trendline for each interval in block 3.

5.3.3 Fracturing After and Before Upscaling

Two approaches to introducing the fractures are suggested. The first one is to perform
upscaling on VTI layers at the beginning in order to get the effective parameters of stiffness
coefficients according to Equation 3.4 or Equation 3.16. Afterward, fracture parameters
are introduced to the obtained effective stiffness matrix that makes the medium become
ORT by using Equation 2.21.
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Figure 5.6: Illustration for fracturing approaches. a) Fractures are introduced later b) Fractures are
introduced first.

The second one is to introduce fracture parameters at the beginning for every data sample
of stiffness coefficients, which creates ORT layers by using Equation 2.21. After that,
upscaling on ORT layers are computed in order to get the effective parameters of stiffness
coefficients according to Equation 3.5 or Equation 3.17. Once each of the approaches
is done, anisotropy parameters of the ORT medium can be obtained, and the kinematic
parameters calculation for P- and S-waves will proceed.

Illustration for this approach is given in Figure 5.6. A similar approach has been conducted
by (Ivanov and Stovas, 2016) for investigating the influence of fracturing on P-wave anel-
lipticity parameters in full azimuth surveys.
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Fracturing

This chapter explains how fracturing in a targeted zone is done. In addition to that, the
respond of a medium before fracturing is introduced is also observed beforehand. Frac-
turing is introduced based on Schoenberg-Helbig model that is explained in section 2.3.
There are two approaches to be tested for introducing the fractures. The first one is to
introduce the fractures after upscaling method is performed, and the second one is to in-
troduce the fractures before upscaling method is performed. Furthermore, the calculation
of two upscaling methods, classic and least square, are also provided in this chapter.

All of the calculations from upscaling and fracturing are shown here. The calculations in-
clude stiffness coefficients Cij , anisotropy parameters in the effective medium, and kine-
matic parameters in group and phase domain.

6.1 Preliminary Consideration

First and foremost, in order to get not confused, preliminary consideration will be deter-
mined in defining the symmetry plane of the anisotropy medium. Such is required because
some sources also have their own consideration that is different from others.

When fractures are introduced following Schoenberg-Helbig model, the fractures will be
set as vertical fractures that aligned parallel to one of the vertical symmetry plane, as
shown in Figure 6.1.

Here, [x1,x3], [x2,x3], represent vertical symmetry plane that is parallel to the fractures
and perpendicular to the fractures respectively while [x1,x2] represent horizontal symme-
try plane. [x1,x3], [x2,x3], and [x1,x2] are short noted as 1,2, and 3 respectively in any
necessary equation.
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Figure 6.1: Notation agreement.

6.2 Upscaling for VTI Medium

It is known that the log data from chapter 5 are the VTI parameters. Hence, upscaling in a
VTI medium is the first step that needs to be calculated. This step is needed to acquire the
background medium that will be fractured later on and become ORT medium. The steps
of this process can be listed as follow:

1. Calculate Cij for every sample in log data using the known vertical velocity of P-
wave and S-wave, anisotropy parameters, and density. The formulas for calculating
this are referred to Equation 2.9 and Equation 2.10.

2. Perform upscaling of Cij that have been obtained including density. The formu-
las for this calculation are referred to Equation 3.4 for classic upscaling and Equa-
tion 3.5 for least square upscaling.

3. Calculate the anisotropy parameters for effective medium following Thomsen’s pa-
rameters, effective Cij that have been obtained previously is used. The formula is
referred to Equation 2.11 and Equation 2.12.

4. Lastly, kinematic parameters are calculated to observe how pure mode waves behave
when fractures are not introduced yet and compared later on with fractured medium.

The first step is done in order to obtain background parameters which represented as stiff-
ness coefficient and the results of this calculation can be seen in Figure 6.2.

6.2.1 Classic Upscaling in VTI

Once all the required Cij are obtained, upscaling process is conducted and in this section,
classic upscaling or also known as Backus averaging is used. The calculation for this step
is done in block 3-A and the results can be seen in the matrix 6.1 below.
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Figure 6.2: Cij calculation for every sample in log data which highlighted the interval of block 3.
The scale of Cij are in Giga Pascal (GPa).

Ce
b =


20.32 8.140 7.762 0 0 0
8.140 20.320 7.762 0 0 0
7.762 7.762 24.008 0 0 0

0 0 7.644 0 0
0 0 0 7.644 0
0 0 0 0 6.090

 (6.1)

Notice that some of the Cij have the same values. These results are an indication that the
medium is homogeneous in one of the axis; for this case, it is homogeneous horizontally.
For example, C11 and C22 are the stiffness coefficients that correspond to a P-wave velocity
that is propagating in x1 and x2 direction respectively. The same value for these two Cij
indicate that the medium is invariant in the horizontal axis, causing the velocities of P-wave
in these directions to become equal.

By utilizing the upscaled Cij for calculating anisotropy parameters as referred to Equa-
tion 2.11 and Equation 2.12, it gives the effective parameters for this medium. Hence, the
effective parameters for the background medium in this study are acquired and shown in
Table 6.1.

After obtaining the effective medium parameters, kinematic parameters are calculated with
formulas referred to those explained in subsection 2.3.3. However, as this calculations are
now currently in VTI medium, the anisotropy parameters in both vertical symmetry plane
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Block 3-A ρe (g/cc) Vep0 (km/s) Ves0 (km/s) εe γe δe

VTI effective 2.249 3.267 1.843 -0.0768 -0.1017 -0.0387

Table 6.1: Effective anisotropy parameters for VTI as background medium, block 3-A. The results
are calculated using classic upscaling.

VTI 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2670 3.1380 3.1380 -0.0397 -0.0397 -0.0794

S1 wave 1.8436 1.6079 1.6079 -0.1197 -0.1197 -0.2394

S2 wave 1.8436 1.6455 1.6455 0 0 0

Table 6.2: Kinematic parameters for VTI as background medium, block 3-A. The results are
calculated using classic upscaling.

are equal. Hence, ε1 = ε2 = εe; γ1 = γ2 = γe; and δ1 = δ2 = δe. Furthermore, as
in VTI medium the layers are isotropic horizontally, δ3 is then become 0 and it is proven
by calculating it from Ceb in matrix 6.1 by applying Equation 2.30. The results of this
kinematic parameters are shown in Table 6.2.

Once the kinematic parameters are obtained, they are plotted in a polar plot which illus-
trates the azimuthal dependence for given quantity with the azimuth angle measured from
the horizontal axis. These are all applied for any polar plot figures presented in this study.

Figure 6.3 shows the results of the azimuth-dependent of kinematic parameters which cal-
culated using classic upscaling. The results are presented in phase and group domain. Note
that there are no changes given in phase or group domain and the NMO velocities wave-
front are appear to be circle rather than an ellipse. Such results correspond to homogeneity
along the horizontal axis in the VTI medium.

6.2.2 Least Square Upscaling in VTI

A similar procedure is presented in this section with the difference in the upscaling method
being used. Here, in matrix 6.2, the effective stiffness coefficients are very similar to those
computed using classic upscaling. Similar results also appear in the effective anisotropy
parameters and kinematic parameters when computed using classic upscaling. Such results
suggest that least square upscaling provide similar results with an insignificant difference
that can be negligible when compared with classic upscaling.
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6.2 Upscaling for VTI Medium

Figure 6.3: Azimuth dependent of kinematic parameters of pure mode waves using classic
upscaling on VTI medium. Left images are Vnmo and right images are anellipticity. (a) Parameters

on phase domain (b) Parameters on group domain.
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ρe (g/cc) Vep0 (km/s) Ves0 (km/s) εe γe δe

VTI effective 2.249 3.267 1.845 -0.0762 -0.1014 -0.0375

Table 6.3: Effective anisotropy parameters for VTI as background medium. The results are
calculated using least square upscaling.

VTI 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2670 3.1421 3.1421 -0.0402 -0.0402 -0.0804

S1 wave 1.8459 1.6065 1.6065 -0.1202 -0.1202 -0.2404

S2 wave 1.8459 1.6454 1.6454 0 0 0

Table 6.4: Kinematic parameters for VTI as background medium. The results are calculated using
least square upscaling.

Ce
b =


20.341 8.160 7.753 0 0 0
8.160 20.341 7.753 0 0 0
7.753 7.753 24.011 0 0 0

0 0 7.663 0 0
0 0 0 7.663 0
0 0 0 0 6.090

 (6.2)

Figure 6.4 shows further evidence and illustrations of kinematic parameters that is again
similar to those calculated using classic upscaling in Figure 6.3. In Figure 6.5, a polar plot
of both calculations from classic and least square upscaling in VTI medium are provided to
be compared. The plot suggests that both methods are applicable for performing upscaling
as they are overlapping with each other.

6.3 Introducing Fracture After Upscaling

Once the stiffness coefficients from VTI medium are obtained, they are used as background
parameters for further calculation in ORT medium. Here, a set of vertical fractures are
added after upscaling of stiffness coefficients in VTI medium are done.

For placing the fractures in the area of study, normal fracture weakness (∆N ) is set to
0.15, and tangential (vertical, ∆V and horizontal, ∆H ) weaknesses are set to 0.2 assuming
the fractures are rotationally invariant. As it already discussed, once the VTI medium is
introduced with fractures, it will become ORT medium, and matrix (6.3) and (6.4) shows
the stiffness coefficient of the effective ORT medium that is obtained by using classic (U2)
and least square (U3) upscaling.
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Figure 6.4: Azimuth dependent of kinematic parameters of pure mode waves using least square
upscaling on VTI medium. Left images are Vnmo and right images are anellipticity. (a) Parameters

on phase domain (b) Parameters on group domain.
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Figure 6.5: Polar plot of upscaling comparison in VTI medium block 3-A. Dash and dot line
represent classic and least square upscaling respectively.
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FU2 Ce
ort =


17.272 6.919 6.598 0 0 0
6.919 19.831 7.295 0 0 0
6.598 7.295 23.563 0 0 0

0 0 7.644 0 0
0 0 0 6.116 0
0 0 0 0 4.872

 (6.3)

FU3 Ce
ort =


17.289 6.936 6.590 0 0 0
6.936 19.849 7.285 0 0 0
6.590 7.285 23.566 0 0 0

0 0 7.663 0 0
0 0 0 6.130 0
0 0 0 0 4.872

 (6.4)

Once the stiffness coefficients are obtained, effective anisotropy parameters can be calcu-
lated and they are shown in Table 6.5:

ORT | 3-A FU2 FU3

Vp0 (km/s) 3.2366 3.2367

Vs0 (km/s) 1.6489 1.6504

ε1 -0.1335 -0.1329

γ1 -0.1813 -0.1811

δ1 -0.1737 -0.1727

ε2 -0.0792 -0.0786

γ2 -0.1017 -0.1014

δ2 -0.0403 -0.0390

δ3 -0.0344 -0.0344

Table 6.5: Effective anisotropy parameters for ORT medium when fractures are introduced after
upscaling.

After all the anisotropy parameters are known, calculation of kinematic parameters for
ORT medium is performed for both of the parameters obtained by classic and least square
upscaling. The results are shown on the Table 6.6 for classic upscaling and Table 6.7 for
least square upscaling.

Looking at Figure 6.6 and Figure 6.7, one can see that both upscaling methods give quite
similar results for both NMO velocity and anellipticity. The noticeable difference is spot-
ted between phase and group domain for both NMO velocity and anellipticity, indicating
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ORT FU2 | 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2366 2.6148 3.1036 0.0501 -0.0406 0.0535

S1 wave 1.6489 1.8869 1.4717 -0.0032 0 4.7219

S2 wave 1.8435 1.4717 1.6071 0 0.0243 -0.2175

Table 6.6: Kinematic parameters for ORT medium when fractures are introduced after classic
upscaling.

ORT FU3 | 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2367 2.6181 3.1075 0.0495 -0.0412 0.0540

S1 wave 1.6504 1.8861 1.4717 -0.0033 0 4.7072

S2 wave 1.8452 1.4717 1.6046 0 0.0281 -0.2324

Table 6.7: Kinematic parameters for ORT medium when fractures are introduced after least square
upscaling.

Figure 6.6: Azimuth dependent of kinematic parameters using classic upscaling on ORT medium
when fractures are introduced after upscaling. (a) Parameters on phase domain (b) Parameters on

group domain.
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Figure 6.7: Azimuth dependent of kinematic parameters using least square upscaling on ORT
medium when fractures are introduced after upscaling. (a) Parameters on phase domain (b)

Parameters on group domain.
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anisotropy effect that is affected by fracturing. The concentration of clay content has prob-
ability in contributing small effect to anisotropy due to low GR condition in this area, and
reasons stated in chapter 5.

Concerning to fractures orientation, the observation from NMO velocity can explain it.
Notice that the velocity for P-wave is slower in x-axis than in y-axis. Such condition
indicates that P-wave is slower when it travels through the fractures as fractures can be
considered as an empty space where the density is smaller compared to the surrounding.
S2-wave travel slower in x-axis compared to S1-wave due to S2-wave polarization that
goes through the fractures. The same explanation is relevant to what happened in y-axis
when S1-wave and S2-wave behave in the opposite way than in x-axis.

6.4 Introducing Fracture Before Upscaling

In this approach, fracture parameters are introduced when the stiffness coefficients for
every data sample in VTI layers are obtained. The fracture weaknesses are remain the same
as before (∆N = 0.15 and ∆V = ∆H = 0.2). Once the fractures are introduced, every
data sample is no longer VTI medium anymore but ORT medium, hence the upscaling
is performed under ORT condition. The stiffness matrix for this calculation is shown in
matrix (6.5) for classic upscaling and matrix (6.6) for least square upscaling.

U2F Ce
ort =


17.306 6.933 6.613 0 0 0
6.933 19.823 7.297 0 0 0
6.613 7.297 23.548 0 0 0

0 0 7.644 0 0
0 0 0 6.116 0
0 0 0 0 4.872

 (6.5)

U3F Ce
ort =


17.321 6.949 6.604 0 0 0
6.949 19.840 7.287 0 0 0
6.604 7.287 23.553 0 0 0

0 0 7.663 0 0
0 0 0 6.130 0
0 0 0 0 4.872

 (6.6)

Once the stiffness coefficients for ORT effective medium are obtained, anisotropy param-
eters for the effective ORT medium can be calculated, and they are shown in Table 6.8.
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ORT | 3-A U2F U3F

Vp0 (km/s) 3.2356 3.2359

Vs0 (km/s) 1.6489 1.6504

ε1 -0.1325 -0.1320

γ1 -0.1813 -0.1811

δ1 -0.1728 -0.1720

ε2 -0.0791 -0.0785

γ2 -0.1017 -0.1014

δ2 -0.0396 -0.0385

δ3 -0.0355 -0.0354

Table 6.8: Effective anisotropy parameters for ORT medium when fractures are introduced before
upscaling.

After anisotropy parameters are obtained, the calculation for kinematic parameters of
NMO velocity and anellipticity are performed, and the results can be seen in Table 6.9
when using classic upscaling and Table 6.10 when using least square upscaling.

ORT U2F | 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2356 2.6175 3.1048 0.0501 -0.0411 0.0540

S1 wave 1.6489 1.8873 1.4717 -0.0032 0 4.7360

S2 wave 1.8435 1.4717 1.6036 0 0.0249 -0.2229

Table 6.9: Kinematic parameters for ORT medium when fractures are introduced before classic
upscaling.

ORT U3F | 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2359 2.6205 3.1085 0.0496 -0.0415 0.0540

S1 wave 1.6504 1.8866 1.4717 -0.0033 0 4.7193

S2 wave 1.8452 1.4717 1.6013 0 0.0244 -0.2604

Table 6.10: Kinematic parameters for ORT medium when fractures are introduced before least
square upscaling.
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Figure 6.8: Azimuth dependent of kinematic parameters using classic upscaling on ORT medium
when fractures are introduced before upscaling. (a) Parameters on phase domain (b) Parameters on

group domain.
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Figure 6.9: Azimuth dependent of kinematic parameters using least square upscaling on ORT
medium when fractures are introduced before upscaling. (a) Parameters on phase domain (b)

Parameters on group domain.

Looking at Figure 6.8 and Figure 6.9, one can see similar observation with those done in
section 6.3. Both upscaling methods have no significant difference at the selected interval.
Notice the difference of NMO velocity and anellipticity when plotted in group and phase
domain, which indicating an anisotropic medium. Also notice that the difference can be
seen more obvious for anelliptic parameters, meaning that anelliptic parameters are more
sensitive in domain changes.

Same explanation regarding to fractures orientation is discussed in section 6.3. By observ-
ing the P-wave NMO velocity only, and noticing that the NMO velocity is slower in the
x-axis, the fracture orientation is vertically parallel at [x1,x3] symmetry plane.

47



Chapter 6. Fracturing

48



Chapter 7
Methods Comparison

In this chapter, the discussions are highlighted in comparing the results of the two upscal-
ing methods and the two fracturing approaches that are performed in the interval of block
3-A of the given well log data.

7.1 Upscaling Comparison

In this section, the two methods of upscaling, as explained in subsection 5.3.2 for gaining
the kinematic parameters will be further discussed with fractures being introduced before
upscaling is performed.

Figure 7.1 shows the polar plot of the kinematic parameters that are going to be compared.
The plots are only drawn in one quadrant since the kinematic parameters plot is symmetric
with respect to origin in term of azimuth dependent in ORT medium. U2 stands for classic
upscaling and U3 stands for least square upscaling. Both cases have fractures that are
introduced before upscaling is conducted.

It is observed that both upscaling methods, classic and least square that are represented by
a dash and dot lines respectively are overlapping with each other in NMO velocities and
anellipticity of S1-wave. Small changes can be observed in anellipticity of P-wave and
S2-wave.

These outcomes suggest that the impact of choosing different methods for upscaling only
appeared at the second order of curvatures while they are less affecting the first order of
curvatures.
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Figure 7.1: Polar plot of upscaling comparison of kinematic parameters when fractures are
introduced before upscaling. Parameters are plotted in group domain.

50



7.2 Fracturing Approach Comparison

7.2 Fracturing Approach Comparison

In this section, the two approaches of introducing the fractures, as explained in subsec-
tion 5.3.3 for obtaining the kinematic parameters will be observed further. Least square
method is used for conducting the upscaling process in order to retrieve the effective pa-
rameters.

Figure 7.2 shows the polar plot that is about to be compared. FU3 stands as fracturing after
least square upscaling is done, and U3F stands as fracturing before least square upscaling
is performed. Similar results are observed as those in Figure 7.1, which suggest both
approaches for introducing fractures are working either way. However, minor changes in
S2-wave anellipticity can still be observed that affect the second order of curvatures.

Figure 7.2: Polar plot of fracturing comparison of kinematic parameters with least square
upscaling. Parameters are plotted in group domain.
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Chapter 8
Overburden Effect

This chapter explains how the kinematic parameters of the ORT medium react when the
overburden layers above it are included in the calculation. The NMO velocity and anellip-
ticity for P-wave and S-wave are observed in order to see how these parameters actually
behave given the seismic acquisition is performed from the surface.

The application of Dix-type equations is implemented for this case. Block 1 and block 2
are defined as the overburden layers, while block 3-A is the ORT medium. For calculating
the effective parameters in each zone, both of upscaling methods can be used in this case
as their results have no significant difference.

8.1 Effective Parameters of the Overburden

In order to see the seismic signature of the fractured reservoir with overburden being in-
cluded in the scenario, the effective anisotropy parameters for the layers above the frac-
tured reservoir need to be calculated. Looking back at Figure 5.3, two blocks; block 1 and
block 2 are defined as the overburden and their effective parameter are calculated as VTI
parameter. The upscaling process for these calculations is using least square upscaling.

VTI effective ρe (g/cc) Vep0 (km/s) Ves0 (km/s) εe γe δe

Block 1 2.1739 2.3619 1.0886 -0.0043 0.0035 -0.0063

Block 2 2.4200 2.7087 1.2086 0.1340 0.2002 0.0447

Block 3-A 2.2493 3.2672 1.8452 -0.0762 -0.1014 -0.0375

Table 8.1: Effective anisotropy parameters for VTI as background medium for block 1, 2, and 3-A.
The results are calculated using least square upscaling.
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Chapter 8. Overburden Effect

Table 8.1 shows the calculation of the anisotropy parameters in VTI medium, including
block 3-A that has not introduced with the fractures yet. Notice that on block 1, the
anisotropy parameters are rather small compared to block 2. These results correspond to
the GR log data in block 1, where they are relatively low that resembles more to a layer
that is more sandstone dominated. Hence, indicating very little intrinsic anisotropy exist
in this particular layer.

VTI | 1
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 2.3619 2.3478 2.3478 0.0025 0.0025 0.0049

S1 wave 1.0886 1.0514 1.0514 0.0266 0.0266 0.0532

S2 wave 1.0886 1.0793 1.0793 0 0 0

Table 8.2: Kinematic parameters for VTI of block 1. The results are calculated using least square
upscaling.

VTI | 2
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 2.7087 2.8212 2.8212 0.0840 0.0840 0.1681

S1 wave 1.2086 1.6655 1.6655 0.4494 0.4494 0.8988

S2 wave 1.2086 1.4300 1.4300 0 0 0

Table 8.3: Kinematic parameters for VTI of block 2. The results are calculated using least square
upscaling.

Table 8.2 and Table 8.3 shows the calculation for kinematic parameters of NMO veloc-
ity and anellipticity parameters for block 1 and block 2 respectively. Notice that those
parameters are represented as a circle if they are plotted with azimuth dependent, which
corresponds to VTI medium characteristic.

ORT FU3 | 3-A
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 3.2367 2.6181 3.1075 0.0495 -0.0412 0.0540

S1 wave 1.6504 1.8861 1.4717 -0.0033 0 4.7072

S2 wave 1.8452 1.4717 1.6046 0 0.0281 -0.2324

Table 8.4: Kinematic parameters for ORT medium when fractures are introduced after least square
upscaling.

Table 8.4 shows the calculation for the kinematic parameters of NMO velocity and anel-
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lipticity of a vertically fractured VTI medium of block 3-A. All the calculations steps and
fracture weaknesses are the same as those discussed earlier in chapter 6.

8.2 Fractured Reservoir with Overburden Effect

Once all the kinematic parameters on each of the effective medium are gathered, Dix-
type equation is performed to observe how the seismic signature behaved for the fractured
reservoir given with overburden layers to be accounted for.

As for the calculations of Dix, they are referred to those described in chapter 4. Effective
vertical velocity (V0) and NMO velocity (V1 and V2) are obtained by using Equation 4.1.
While effective anelliptic parameters (η1, η2, and ηxy) are obtained by using Equation 4.3.
The results of the effective kinematic parameters from the combination of block 1, 2, and
3-A are shown in Table 8.5.

Effective Medium with Overburden
V0 (km/s) V1 (km/s) V2 (km/s) η1 η2 ηxy

P wave 2.5811 2.5164 2.5854 0.0474 0.0286 0.0876

S1 wave 1.1985 1.3584 1.2987 0.3180 0.3670 2.0042

S2 wave 1.2210 1.2304 1.2474 0.0108 0.0218 -0.0328

Table 8.5: Kinematic parameters for ORT medium with overburden effect.

After the kinematic parameters of this Dix-effective medium are obtained, they are plotted
along with the kinematic parameters from the fractured reservoir (ORT medium) only.
Plots are done with azimuth dependent in group domain, and the results are provided in
Figure 8.1.

The outcome in this figure suggests that the elliptic characteristic that once clearly seen in
ORT medium is changing to more circle-wise when the overburden is introduced, particu-
larly in NMO velocities. This situation implies that the effect of overburden layers, which
are known to be VTI gives a significant impact on the seismic signature on the first order
of curvatures. Elliptic characteristic of a fractured reservoir will be harder to observe due
to this overburden effect.

On the contrary, anelliptic parameters also seem to be changing but not close to a circle
shape as the NMO velocities have displayed. It implies that the fractured reservoir char-
acteristics remain observable from the second order of curvatures even though overburden
layers are accounted for.
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Chapter 8. Overburden Effect

Figure 8.1: Polar plots with azimuth dependent of kinematic parameters of ORT medium with and
without overburden effect. a) NMO velocities b) Anelliptic parameters for P and S-2 waves c)

Anelliptic parameters for S1-wave. Solid and dot lines represent ORT with and without overburden
respectively.
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Chapter 9
Conclusion

In this study, the signature of a seismic response on a fractured and non-fractured reservoir
from a given well data set at a target interval has been observed. Two methods of upscaling
are conducted and compared within that window interval. Two approaches for introducing
the fractures at the reservoir are also suggested and put as a comparison. Lastly, the appli-
cation of Dix-type equations is performed for observing the kinematic parameters of the
pure-mode waves when overburden layers are introduced above the fractured reservoir.

In a non-fractured reservoir, the azimuthal dependent of kinematic parameters shows as a
circle for both NMO velocities and anellipticities. Such conditions suggest homogeneous
materials are present on an axis that is perpendicular to the vertical axis. Furthermore,
these responses remain the same when observed in group and phase domain, which implies
the characteristic of a VTI medium.

On the contrary, the fractured reservoir observed in the block 3-A of a given well log
data shows an elliptic behavior on its kinematic parameters. Both NMO velocities and
anellipticities display a different behavior when plotted in phase and group domain with
azimuth dependent, which implies the characteristic of an ORT medium. Moreover, the
orientation of the vertical fractures can be observed from NMO velocities in either phase
or group domain. One can observe the fracture orientation easily by looking in which
axis does the P-wave NMO velocity is slower, which correspond to fractures are located
vertically perpendicular to that axis.

Two upscaling methods, classic and least square that are tested in the block 3-A show
insignificant differences. A possible explanation for this result is due to the data samples
that are not drifted too much from each other within the targeted interval. Hence, either
of the methods can be safely used to perform upscaling in this particular data. Similar
results showing insignificant differences are observed for two approaches of introducing
the fractures on before or after upscaling.

Overburden layers that are suggested as a VTI medium give a tremendous effect on the
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Chapter 9. Conclusion

seismic signature of the fractured reservoir. Once the overburden layers are included in the
calculations, the response of kinematic parameters is changing towards VTI characteristic.
The NMO velocities are more affected by the overburden effect, which leads to difficulties
to distinguish it with VTI characteristic. However, the second order of curvatures seems to
be more sensitive as the differences are more distinguished when it is compared to those
in VTI medium only.
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Appendix A: Matlab Code - Introducing Fracture After
Classic Upscaling

1 clc,clear
2
3 %% Read Data
4
5 % Log Conditioning of bad data is performed on excel
6
7 load 'Data5conditioned.txt'
8
9 x = readtable('Data5conditioned','headerlines',0);

10
11 z = table2array(x(:,1)); % m
12 GR = table2array(x(:,2));
13 vp0 = table2array(x(:,3)); % m/s
14 vs0 = table2array(x(:,4)); % m/s
15 dens = table2array(x(:,5))*1000; % kg/mˆ3
16 eps = table2array(x(:,6));
17 del = table2array(x(:,7));
18 gam = table2array(x(:,8));
19 epsx = table2array(x(:,6))-table2array(x(:,7)); %e-d
20
21 %% Defining Interface
22
23 % Interface decision based on GR interpretation of the log

data
24 interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];
25
26 % Finding Location index of the array
27
28 for i = 1:length(interface)
29 pos(i) = find(abs(z-interface(i)) == min(abs(z-

interface(i))));
30 end
31
32 loc1 = [1,pos,length(z)]; % Upper limit for the interface
33 loc2 = [1,pos-1,length(z)]; % Lower limit for the interface
34
35
36
37 %% Calculate Cij for every point in VTI medium
38
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39 Cij = zeros(6,6,length(z));
40
41 % Formulas are following Thomsen Parameter for VTI medium
42
43 for i = 1:length(z)
44 Cij(3,3,i) = (vp0(i)ˆ2)*dens(i) ;
45 Cij(4,4,i) = (vs0(i)ˆ2)*dens(i) ;
46 Cij(5,5,i) = Cij(4,4,(i));
47 Cij(1,1,i) = (1+2*eps(i))*Cij(3,3,i);
48 Cij(6,6,i) = (1+2*gam(i))*Cij(4,4,i);
49 Cij(1,3,i) = sqrt(2*del(i)*Cij(3,3,i)*(Cij(3,3,i)-Cij

(5,5,i)) + (Cij(3,3,i)-Cij(5,5,i))ˆ2) ...
50 - Cij(5,5,i);
51 Cij(1,2,i) = Cij(1,1,i) - 2*Cij(6,6,i);
52
53 Cij(2,2,i) = Cij(1,1,i);
54 Cij(2,1,i) = Cij(1,2,i);
55 Cij(3,1,i) = Cij(1,3,i);
56 Cij(3,2,i) = Cij(1,3,i);
57 Cij(2,3,i) = Cij(1,3,i);
58 end
59
60 %% Backus Averaging - Classic Upscaling VTI
61
62 zone_number = length(interface)+1 ;
63
64 % Individual Layers are assumed to be VTI
65
66 Cb = zeros(6,6,zone_number);
67 efdens = zeros(zone_number,1);
68
69 for i = 1:length(loc1)-1
70 Cb(3,3,i) = mean(Cij(3,3,loc1(i):loc2(i+1)).ˆ(-1)).ˆ(-1);
71 Cb(4,4,i) = mean(Cij(4,4,loc1(i):loc2(i+1)).ˆ(-1)).ˆ(-1);
72 Cb(6,6,i) = mean(Cij(6,6,loc1(i):loc2(i+1)));
73
74 Cb(1,3,i) = mean(Cij(1,3,loc1(i):loc2(i+1))./Cij(3,3,loc1

(i):loc2(i+1)))...
75 .* Cb(3,3,i);
76 Cb(1,1,i) = mean(Cij(1,1,loc1(i):loc2(i+1))) + ...
77 (mean(Cij(1,3,loc1(i):loc2(i+1))./Cij(3,3,

loc1(i):loc2(i+1))).ˆ2 )...
78 .* Cb(3,3,i) - ...
79 (mean((Cij(1,3,loc1(i):loc2(i+1)).ˆ2)./Cij

(3,3,loc1(i):loc2(i+1))));
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80 Cb(1,2,i) = Cb(1,1,i) - 2.*Cb(6,6,i);
81
82 Cb(2,2,i) = Cb(1,1,i);
83 Cb(2,3,i) = Cb(1,3,i);
84 Cb(5,5,i) = Cb(4,4,i);
85 Cb(2,1,i) = Cb(1,2,i);
86 Cb(3,1,i) = Cb(2,3,i);
87 Cb(3,2,i) = Cb(2,3,i);
88
89 efdens(i) = mean(dens(loc1(i):loc2(i+1)));
90
91 % Effective parameter of the Anisotropy
92
93 Evp0(i) = sqrt(Cb(3,3,i)/efdens(i));
94 Evs0(i) = sqrt(Cb(4,4,i)/efdens(i));
95
96 Ee(i) = (Cb(1,1,i) - Cb(3,3,i))/(2*Cb(3,3,i));
97 Eg(i) = (Cb(6,6,i) - Cb(4,4,i))/(2*Cb(4,4,i));
98 Ed(i) = ((Cb(1,3,i)+Cb(4,4,i))ˆ2 - (Cb(3,3,i)-Cb(4,4,i)

)ˆ2) / ...
99 (2*Cb(3,3,i)*(Cb(3,3,i) - Cb(4,4,i)));

100 end
101
102 % Set the effective parameters into every data point (

depth)
103
104 Cbef = zeros(6,6,length(z));
105
106 for i = 1:size(z,1)
107 if i < loc1(2)
108 j = 1;
109 elseif i > loc1(2)-1 && i < loc1(3)
110 j = 2;
111 elseif i > loc1(3)-1 && i < loc1(4)
112 j = 3;
113 elseif i > loc1(4)-1 && i < loc1(5)
114 j = 4;
115 elseif i > loc1(5)-1 && i < loc1(6)
116 j = 5;
117 elseif i > loc1(6)-1 && i < loc1(7)
118 j = 6;
119 elseif i > loc1(7)-1 && i < loc1(8)
120 j = 7;
121 else
122 j = 8;
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123 end
124
125 Cbef(3,3,i) = Cb(3,3,j);
126 Cbef(4,4,i) = Cb(4,4,j);
127 Cbef(5,5,i) = Cb(5,5,j);
128
129 Cbef(1,3,i) = Cb(1,3,j);
130 Cbef(2,3,i) = Cb(2,3,j);
131
132 Cbef(6,6,i) = Cb(6,6,j);
133
134 Cbef(1,1,i) = Cb(1,1,j);
135 Cbef(2,2,i) = Cb(2,2,j);
136
137 Cbef(1,2,i) = Cb(1,2,j);
138
139 % Effective parameters
140
141 vp0ef(i) = Evp0(j);
142 vs0ef(i) = Evs0(j);
143
144 densef(i) = efdens(j);
145
146 epsef(i) = Ee(j);
147 gamef(i) = Eg(j);
148 delef(i) = Ed(j);
149
150 end
151
152 %% FRACTURE PARAMETER (ORT)
153
154 C_ort = zeros(6,6,length(z));
155
156 for i = 1:size(z,1)
157 if i > loc1(3)-1 && i < loc1(4) % BLOCK 3-A
158 dn = 0.15;
159 dh = 0.2;
160 dv = 0.2;
161 elseif i > loc1(4)-1 && i < loc1(5) %BLOCK 3-B
162 dn = 0.4;
163 dh = 0.2;
164 dv = 0.2;
165 elseif i > loc1(5)-1 && i < loc1(6) %BLOCK 3-C
166 dn = 0.2;
167 dh = 0.2;
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168 dv = 0.2;
169 elseif i > loc1(6)-1 && i < loc1(7) %BLOCK 3-D
170 dn = 0.5;
171 dh = 0.2;
172 dv = 0.2;
173 else
174 dn = 0;
175 dh = 0;
176 dv = 0;
177 end
178
179 % ORT Cij
180
181 C_ort(1,1,i) = Cbef(1,1,i)*(1-dn);
182 C_ort(2,2,i) = Cbef(1,1,i)-(dn*(Cbef(1,2,i)ˆ2)/Cbef

(1,1,i));
183 C_ort(2,3,i) = Cbef(1,3,i)*(1-dn*Cbef(1,2,i)/Cbef(1,1,i

));
184 C_ort(1,2,i) = Cbef(1,2,i)*(1-dn);
185 C_ort(1,3,i) = Cbef(1,3,i)*(1-dn);
186
187 C_ort(4,4,i) = Cbef(4,4,i);
188 C_ort(3,3,i) = Cbef(3,3,i)-dn*(Cbef(1,3,i)ˆ2)/Cbef(1,1,

i);
189 C_ort(5,5,i) = Cbef(4,4,i)*(1-dv);
190 C_ort(6,6,i) = Cbef(6,6,i)*(1-dh);
191
192 % ORT Anisotropy Parameters
193
194 Vp0_or(i) = sqrt(C_ort(3,3,i)/densef(i));
195 Vs0_or(i) = sqrt(C_ort(5,5,i)/densef(i));
196
197 % Plane is Perpendicular to fractures [x1,x3]
198 e13(i) = (C_ort(1,1,i) - C_ort(3,3,i))/(2*C_ort(3,3,

i));
199 g13(i) = (C_ort(6,6,i) - C_ort(4,4,i))/(2*C_ort(4,4,

i));
200 d13(i) = ((C_ort(1,3,i) + C_ort(5,5,i))ˆ2 - (C_ort

(3,3,i) - C_ort(5,5,i))ˆ2) / ...
201 (2*C_ort(3,3,i)*(C_ort(3,3,i) - C_ort(5,5,i

)));
202 % Plane is Paralel to fractures [x2,x3]
203 e23(i) = (C_ort(2,2,i) - C_ort(3,3,i))/(2*C_ort(3,3,

i));
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204 g23(i) = (C_ort(6,6,i) - C_ort(5,5,i))/(2*C_ort(5,5,
i));

205 d23(i) = ((C_ort(2,3,i) + C_ort(4,4,i))ˆ2 - (C_ort
(3,3,i) - C_ort(4,4,i))ˆ2) / ...

206 (2*C_ort(3,3,i)*(C_ort(3,3,i) - C_ort(4,4,i
)));

207 % Horizontal Plane
208 d12(i) = ((C_ort(1,2,i) + C_ort(6,6,i))ˆ2 - (C_ort

(1,1,i) - C_ort(6,6,i))ˆ2) / ...
209 (2*C_ort(1,1,i)*(C_ort(1,1,i) - C_ort(6,6,i

)));
210 end
211
212 %% KINEMATIC PARAMETERS OF PURE MODE WAVES
213
214 VP = zeros(length(z),3); %Vertical;NMO[x1,x3];NMO[x2,x3]
215 VS1 = zeros(length(z),3);
216 VS2 = zeros(length(z),3);
217
218 anelP = zeros(length(z),3); %eta1[x1,x3];eta2[x2,x3];etaxy

[x1,x2]
219 anelS1 = zeros(length(z),3);
220 anelS2 = zeros(length(z),3);
221
222 for i = 1:size(z,1)
223
224 % Component for anelliptic parameter on Pure mode wave
225 r0 = sqrt(C_ort(5,5,i)/C_ort(3,3,i));
226 r1 = sqrt((1-(r0ˆ2))*(1+2*d13(i)-(r0ˆ2)));
227 r2 = sqrt((1+2*g13(i)-(r0ˆ2)*(1+2*g23(i))) * ...
228 ((1+2*d23(i))*(1+2*g13(i))-(r0ˆ2)*(1+2*g23(i)

)));
229 r3 = sqrt((1+2*e13(i)-(r0ˆ2)*(1+2*g23(i))) * ...
230 ((1+2*d12(i))*(1+2*e13(i))-(r0ˆ2)*(1+2*g23(i)

)));
231
232 % Component for anelliptic parameter on P-wave
233 b0 = 2*(1+2*d13(i))*(1+2*d23(i))*(1+2*g13(i));
234 b2 = -(1+2*d13(i))*(1+2*g23(i))-(1+2*d23(i))*(1+2*g13(

i))...
235 -2*(1+2*d13(i))*(1+2*d23(i))*(1+g13(i)+g23(i))...
236 -2*(1+2*g13(i))*(1+2*g23(i))*(1+d13(i)+d23(i));
237 b4 = (1+2*g23(i))*(4+2*d13(i)+2*d23(i)+2*g13(i)+2*g23(

i)...
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238 +(1+2*d13(i))*(1+2*g23(i))+(1+2*d23(i))*(1+2*g13(
i)));

239 b6 = -2*((1+2*g23(i))ˆ2);
240
241 VP(i,1) = Vp0_or(i);
242 VP(i,2) = sqrt((Vp0_or(i).ˆ2).*(1+2.*d13(i)));
243 VP(i,3) = sqrt((Vp0_or(i).ˆ2).*(1+2.*d23(i)));
244 anelP(i,1) = ((e13(i)-d13(i))*(1+2*d13(i)-(r0ˆ2)))...
245 /(((1+2*d13(i))ˆ2)*(1-(r0ˆ2)));
246 anelP(i,2) = ((e23(i)-d23(i))*((1+2*d23(i))*(1+2*g13(i)

)-(r0ˆ2)*(1+2*g23(i))))...
247 /(((1+2*d23(i))ˆ2)*(1+2*g13(i)-(r0ˆ2)

*(1+2*g23(i))));
248 anelP(i,3) = (b0+b2*(r0ˆ2)+b4*(r0ˆ4)+b6*(r0ˆ6)-2*r1*r2*

r3)...
249 /(2*(1+2*d13(i))*(1+2*d23(i))*(1+2*g13(i

)-(r0ˆ2)*(1+2*g23(i))));
250
251
252 % Component for anelliptic parameter on S1-wave (C55)
253 b0 = ((1+2*g13(i))ˆ2)*( (1+2*d13(i))*(1+2*d23(i))...
254 +(1+2*d12(i))*((1+2*e13(i))ˆ2));
255 b2 = -(1+2*g13(i))*((1+2*d13(i))*(1+2*g23(i))+(1+2*d23

(i))*(1+2*g13(i))...
256 +(1+2*g13(i))*((1+2*d13(i))*(1+2*d23(i))+(1+2*e13

(i))*(1+2*g23(i)))...
257 +2*(1+2*e13(i))*(1+2*g23(i))*(1+2*d12(i))*(1+e13(

i)+g13(i)));
258 b4 = (1+2*g13(i))*(1+2*g23(i))*(3+2*d13(i)+2*d23(i)

-2*(1+2*d23(i))*(g23(i)-g13(i))...
259 +2*(1+2*g23(i))*(1+e13(i)+g13(i))+(1+2*d12(i))

*(1+2*e13(i))*(1+2*g23(i)));
260 b6 = -2*((1+2*g23(i))ˆ2)*(1+2*g13(i)+2*g13(i)*g23(i));
261
262 Vs10(i) = sqrt(C_ort(5,5,i)/densef(i));
263 VS1(i,1) = Vs10(i);
264 VS1(i,2) = sqrt((Vs10(i).ˆ2).*(1+2.*((e13(i)-d13(i))

./(r0ˆ2))));
265 VS1(i,3) = sqrt((Vs10(i).ˆ2).*(1+2.*g23(i)));
266 anelS1(i,1) = - ((e13(i)-d13(i))*(r0ˆ2)*(1+2*d13(i)-(r0

ˆ2)))...
267 /(((1+2*(e13(i)-d13(i))/(r0ˆ2))ˆ2)*(1-(

r0ˆ2)));
268 anelS1(i,2) = 0;
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269 anelS1(i,3) = - (b0+b2*(r0ˆ2)+b4*(r0ˆ4)+b6*(r0ˆ6)-2*r1*
r2*r3)...

270 /( 4*(r0ˆ4)*(1-r0ˆ2)*(1+2*(e13(i)-d13(i
))/(r0ˆ2))*(g23(i)-g13(i))*(1+2*g23(
i)));

271
272 % Component for anelliptic parameter on S2-wave (C44)
273 b0 = (1+2*g13(i))*( (1+2*d13(i))*(1+2*d23(i))...
274 +(1+2*d12(i))*((1+2*e13(i))ˆ2));
275 b2 = -(1+2*d13(i))*(1+2*g23(i))-(1+2*d23(i))*(1+2*g13(

i))...
276 -(1+2*g23(i))*((1+2*d13(i))*(1+2*d23(i))+(1+2*e13

(i))*(1+2*g13(i)))...
277 -2*(1+2*e13(i))*(1+2*g13(i))*(1+2*d12(i))*(1+e13(

i)+g23(i));
278 b4 = (1+2*g23(i))*(3+2*d13(i)+2*d23(i)+2*(1+2*d13(i))

*(g23(i)-g13(i))...
279 +2*(1+2*g13(i))*(1+e13(i)+g23(i))...
280 +(1+2*d12(i))*(1+2*e13(i))*(1+2*g13(i)));
281 b6 = -2*(1+2*g23(i))*(1+2*g23(i)+2*g13(i)*g23(i));
282
283 VS20(i) = sqrt(C_ort(5,5,i)/densef(i));
284 VS2(i,1) = VS20(i)*sqrt((1+2*g23(i))/(1+2*g13(i)));
285 VS2(i,2) = sqrt((VS20(i).ˆ2).*(1+2.*g23(i)));
286 VS2(i,3) = sqrt((VS20(i).ˆ2).*...
287 ( ((1+2.*g23(i))/(1+2*g13(i)))+2*(e23(i

)-d23(i))/(r0ˆ2) ) );
288 anelS2(i,1) = 0;
289 anelS2(i,2) = -((e23(i)-d23(i))*(r0ˆ2)*((1+2*d23(i))

-((1+2*g23(i))/(1+2*g13(i)))*(r0ˆ2)))...
290 /(((1+2*g13(i))ˆ2)*((((1+2*g23(i))

/(1+2*g13(i)))+2*(e23(i)-d23(i))/(r0
ˆ2))ˆ2)...

291 *(1-((1+2*g23(i))/(1+2*g13(i)))*(r0ˆ2))
);

292 anelS2(i,3) = (b0+b2*(r0ˆ2)+b4*(r0ˆ4)+b6*(r0ˆ6)-2*r1*r2

*r3)...
293 /(4*(r0ˆ4)*(1+2*g13(i))*(1+2*g13(i)

-(1+2*g23(i))*(r0ˆ2))...
294 *(((1+2*g23(i))/(1+2*g13(i)))+2*(e23(i)

-d23(i))/(r0ˆ2))*(g23(i)-g13(i)));
295
296 end

68



Appendix B: Matlab Code - Introducing Fracture After
Least Square Upscaling

1 clc,clear
2
3 %% Read Data
4
5 % Log Conditioning of bad data is performed on excel
6
7 load 'Data5conditioned.txt'
8
9 x = readtable('Data5conditioned','headerlines',0);

10
11 h = table2array(x(:,1)); % m
12 GR = table2array(x(:,2));
13 vp0 = table2array(x(:,3)); % m/s
14 vs0 = table2array(x(:,4)); % m/s
15 dens = table2array(x(:,5))*1000; % kg/mˆ3
16 eps = table2array(x(:,6));
17 del = table2array(x(:,7));
18 gam = table2array(x(:,8));
19
20 %% ---Defining Interface---
21
22 % Interface decision based on GR interpretation of the log

data
23 interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];
24
25 % Finding Location index of the array
26
27 for i = 1:length(interface)
28 pos(i) = find(abs(h-interface(i)) == min(abs(h-

interface(i))));
29 end
30
31 loc1 = [1,pos,length(h)]; % Upper limit for the interface
32 loc2 = [1,pos-1,length(h)]; % Lower limit for the interface
33
34
35 %% ---Calculate Cij for every point in VTI medium---
36
37 c33 = zeros(length(h),1);
38 c44 = zeros(length(h),1);
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39 c55 = zeros(length(h),1);
40 c11 = zeros(length(h),1);
41 c66 = zeros(length(h),1);
42 c13 = zeros(length(h),1);
43 c12 = zeros(length(h),1);
44
45 % Formulas are following Thomsen Parameter for VTI medium
46
47 for i = 1:length(h)
48 c33(i,1) = ((vp0(i)ˆ2)*dens(i))/10ˆ9 ;
49 c44(i,1) = ((vs0(i)ˆ2)*dens(i))/10ˆ9 ;
50 c55(i,1) = c44(i,1);
51 c11(i,1) = ((1+2*eps(i))*c33(i,1));
52 c66(i,1) = ((1+2*gam(i))*c44(i,1));
53 c13(i,1) = sqrt(2*del(i)*c33(i,1)*(c33(i,1)-c55(i,1)) +

(c33(i,1)-c55(i,1))ˆ2) ...
54 - c55(i,1);
55 c12(i,1) = c11(i,1) - 2*c66(i,1);
56
57 end
58
59 %% ---Defining Block 3---
60
61 % Define the designated zone
62 n1 = length(loc1(3):loc1(4)-1); % total data

Block 3a
63 x1 = h(loc1(3):loc1(4)-1); % allocated depth points
64 k = loc1(3);
65 l = loc1(4);
66
67 % n1 = length(loc1(4):loc1(5)-1); % Block 3b
68 % x1 = h(loc1(4):loc1(5)-1);
69 % k = loc1(4);
70 % l = loc1(5);
71 %
72 % n1 = length(loc1(5):loc1(6)-1); % Block 3c
73 % x1 = h(loc1(5):loc1(6)-1);
74 % k = loc1(5);
75 % l = loc1(6);
76 %
77 % n1 = length(loc1(6):loc1(7)-1); % Block 3d
78 % x1 = h(loc1(6):loc1(7)-1);
79 % k = loc1(6);
80 % l = loc1(7);
81
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82 % Defining the unknown parameter 'a' and 'b' for least
square method

83
84 y1(:,1) = 1./c33(k:l-1,1); % 1/c33
85 y1(:,2) = 1./c44(k:l-1,1); % 1/c44
86 y1(:,3) = c13(k:l-1,1)./c33(k:l-1,1); % c13/c33
87 y1(:,4) = c66(k:l-1,1); % c66
88 y1(:,5) = (c13(k:l-1,1).ˆ2)./c33(k:l-1,1); % c13ˆ2/c33
89 y1(:,6) = c11(k:l-1,1); % c11
90 y1(:,7) = dens(k:l-1,1); % density
91
92 a1 = zeros(1,7); % 1/c33 | 1/c44 | c13/c33 | c66 | c13ˆ2/

c33 | c11 | dens
93 b1 = zeros(1,7);
94
95 for i = 1:7
96 a1(1,i) = ((n1*sum(x1.*y1(:,i)))-(sum(x1)*sum(y1(:,i)))

)/(n1*sum(x1.ˆ2)-(sum(x1)ˆ2));
97 b1(1,i) = (sum(y1(:,i))-a1(1,i)*sum(x1))/n1;
98 end
99

100 %% --- VTI BACKGROUND CALCULATION ---
101
102 % Least square calculation on VTI medium
103 % Cij background and density function calculation from

least square
104
105 C33a = @(z) 1./(a1(1,1).*z + b1(1,1));
106 C44a = @(z) 1./(a1(1,2).*z + b1(1,2));
107 C13a = @(z) (a1(1,3).*z + b1(1,3)).*(1./(a1(1,1).*z + b1

(1,1)));
108 C66a = @(z) a1(1,4).*z + b1(1,4);
109 C11a = @(z) (a1(1,6).*z + b1(1,6)) + ((a1(1,3).*z + b1

(1,3)).ˆ2).*C33a(z)...
110 -(a1(1,5).*z + b1(1,5));
111 C12a = @(z) C11a(z)-2.*C66a(z);
112 Densa = @(z) a1(1,7).*z + b1(1,7);
113
114 % Anisotropy Parameter function calculation
115
116 Vp0a = @(z) sqrt(C33a(z).*(10ˆ9)./Densa(z));
117 Vs0a = @(z) sqrt(C44a(z).*(10ˆ9)./Densa(z));
118 epsa = @(z) (C11a(z)-C33a(z))./(2.*C33a(z));
119 gama = @(z) (C66a(z)-C44a(z))./(2.*C44a(z));

71



120 dela = @(z) ((C13a(z)+C44a(z)).ˆ2-(C33a(z)-C44a(z)).ˆ2)
...

121 ./(2.*C33a(z).*(C33a(z)-C44a(z)));
122
123 %% --- ORT CALCULATION ---
124
125 % Cij when fractures are introduced
126
127 % Normal Fracture weakness
128 dn = 0.15; %3a
129 % dn = 0.4; %3b
130 % dn = 0.2; %3c
131 % dn = 0.5; %3d
132
133 % Tangential Fracture weaknesses
134 dh = 0.2;
135 dv = 0.2;
136
137 Co11 = @(z) C11a(z).*(1-dn);
138 Co22 = @(z) C11a(z)-(dn.*(C12a(z).ˆ2))./C11a(z);
139 Co23 = @(z) C13a(z).*(1-(dn.*C12a(z)./C11a(z)));
140 Co12 = @(z) C12a(z).*(1-dn);
141 Co13 = @(z) C13a(z).*(1-dn);
142 Co44 = @(z) C44a(z);
143 Co33 = @(z) C33a(z)-(dn.*(C13a(z).ˆ2))./C11a(z);
144 Co55 = @(z) C44a(z).*(1-dv);
145 Co66 = @(z) C66a(z).*(1-dh);
146
147 % Anisotropy Parameter Function Calculation
148
149 Vp0oa = @(z) sqrt(Co33(z).*(10ˆ9)./Densa(z));
150 Vs0oa = @(z) sqrt(Co55(z).*(10ˆ9)./Densa(z));
151
152 % Plane is Perpendicular to fractures [x1,x3]
153
154 e1 = @(z) (Co11(z)-Co33(z))./(2.*Co33(z));
155 g1 = @(z) (Co66(z)-Co44(z))./(2.*Co44(z));
156 d1 = @(z) ((Co13(z)+Co55(z)).ˆ2-(Co33(z)-Co55(z)).ˆ2) ...
157 ./(2.*Co33(z).*(Co33(z)-Co55(z)));
158
159 % Plane is Parallel to fractures [x2,x3]
160
161 e2 = @(z) (Co22(z)-Co33(z))./(2.*Co33(z));
162 g2 = @(z) (Co66(z)-Co55(z))./(2.*Co55(z));
163 d2 = @(z) ((Co23(z)+Co44(z)).ˆ2-(Co33(z)-Co44(z)).ˆ2) ...
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164 ./(2.*Co33(z).*(Co33(z)-Co44(z)));
165
166 % Horizontal Plane
167
168 d3 = @(z) ((Co12(z)+Co66(z)).ˆ2-(Co11(z)-Co66(z)).ˆ2) ...
169 ./(2.*Co11(z).*(Co11(z)-Co66(z)));
170
171
172 %% --- AVERAGE VALUE ANISO PARAMETER USING INTEGRAL ---
173
174 VP0_or = integral(Vp0oa,x1(1),x1(end))/(x1(end)-x1(1));
175 VS0_or = integral(Vs0oa,x1(1),x1(end))/(x1(end)-x1(1));
176
177 eps1 = integral(e1,x1(1),x1(end))/(x1(end)-x1(1));
178 gam1 = integral(g1,x1(1),x1(end))/(x1(end)-x1(1));
179 del1 = integral(d1,x1(1),x1(end))/(x1(end)-x1(1));
180
181 eps2 = integral(e2,x1(1),x1(end))/(x1(end)-x1(1));
182 gam2 = integral(g2,x1(1),x1(end))/(x1(end)-x1(1));
183 del2 = integral(d2,x1(1),x1(end))/(x1(end)-x1(1));
184
185 del3 = integral(d3,x1(1),x1(end))/(x1(end)-x1(1));
186
187 %% --- KINEMATIC PARAMETER ---
188
189 % Component for anelliptic parameter on Pure mode wave
190
191 r0 =@(z) sqrt(Co55(z)./Co33(z));
192 r1 =@(z) sqrt((1-(r0(z).ˆ2)).*(1+2.*d1(z)-(r0(z).ˆ2)));
193 r2 =@(z) sqrt((1+2.*g1(z)-(r0(z).ˆ2).*(1+2.*g2(z))) .* ...
194 ((1+2.*d2(z)).*(1+2.*g1(z))-(r0(z).ˆ2)

.*(1+2.*g2(z))));
195 r3 =@(z) sqrt((1+2.*e1(z)-(r0(z).ˆ2).*(1+2.*g2(z))) .* ...
196 ((1+2.*d3(z)).*(1+2.*e1(z))-(r0(z).ˆ2)

.*(1+2.*g2(z))));
197
198 % Component for anelliptic parameter on P-WAVE
199
200 b0 =@(z) 2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+2.*g1(z));
201 b2 =@(z) -(1+2.*d1(z)).*(1+2.*g2(z))-(1+2.*d2(z)).*(1+2.*

g1(z))...
202 -2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+g1(z)+g2(z))

...
203 -2.*(1+2.*g1(z)).*(1+2.*g2(z)).*(1+d1(z)+d2(z));
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204 b4 =@(z) (1+2.*g2(z)).*(4+2.*d1(z)+2.*d2(z)+2.*g1(z)+2.*g2
(z)...

205 +(1+2.*d1(z)).*(1+2.*g2(z))+(1+2.*d2(z)).*(1+2.*
g1(z)));

206 b6 =@(z) -2.*((1+2.*g2(z)).ˆ2);
207
208 % Kinematic Parameter
209
210 VP0 =@(z) Vp0oa(z);
211 VP1 =@(z) sqrt((Vp0oa(z).ˆ2).*(1+2.*d1(z)));
212 VP2 =@(z) sqrt((Vp0oa(z).ˆ2).*(1+2.*d2(z)));
213
214 anelP1 =@(z) ((e1(z)-d1(z)).*(1+2.*d1(z)-(r0(z).ˆ2)))...
215 ./(((1+2.*d1(z)).ˆ2).*(1-(r0(z).ˆ2)));
216 anelP2 =@(z) ((e2(z)-d2(z)).*((1+2.*d2(z)).*(1+2.*g1(z))-(

r0(z).ˆ2).*(1+2.*g2(z))))...
217 ./(((1+2.*d2(z)).ˆ2).*(1+2.*g1(z)-(r0(z).ˆ2)

.*(1+2.*g2(z))));
218 anelP3 =@(z) (b0(z)+b2(z).*(r0(z).ˆ2)+b4(z).*(r0(z).ˆ4)+b6(

z).*(r0(z).ˆ6)-2.*r1(z).*r2(z).*r3(z))...
219 ./(2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+2.*g1(z)

-(r0(z).ˆ2).*(1+2.*g2(z))));
220
221 % Component for anelliptic parameter on S1-WAVE (C55)
222
223 b0 =@(z) ((1+2.*g1(z)).ˆ2).*( (1+2.*d1(z)).*(1+2.*d2(z))

...
224 +(1+2.*d3(z)).*((1+2.*e1(z)).ˆ2));
225 b2 =@(z) -(1+2.*g1(z)).*((1+2.*d1(z)).*(1+2.*g2(z))+(1+2.*

d2(z)).*(1+2.*g1(z))...
226 +(1+2.*g1(z)).*((1+2.*d1(z)).*(1+2.*d2(z))+(1+2.*

e1(z)).*(1+2.*g2(z)))...
227 +2.*(1+2.*e1(z)).*(1+2.*g2(z)).*(1+2.*d3(z)).*(1+

e1(z)+g1(z)));
228 b4 =@(z) (1+2.*g1(z)).*(1+2.*g2(z)).*(3+2.*d1(z)+2.*d2(z)

-2.*(1+2.*d2(z)).*(g2(z)-g1(z))...
229 +2.*(1+2.*g2(z)).*(1+e1(z)+g1(z))+(1+2.*d3(z))

.*(1+2.*e1(z)).*(1+2.*g2(z)));
230 b6 =@(z) -2.*((1+2.*g2(z)).ˆ2).*(1+2.*g1(z)+2.*g1(z).*g2(z

));
231
232 VS10 =@(z) sqrt(Co55(z).*(10ˆ9)./Densa(z));
233 VS11 =@(z) sqrt((VS10(z).ˆ2).*(1+2.*((e1(z)-d1(z))./(r0(

z).ˆ2))));
234 VS12 =@(z) sqrt((VS10(z).ˆ2).*(1+2.*g2(z)));

74



235 anelS11 =@(z) - ((e1(z)-d1(z)).*(r0(z).ˆ2).*(1+2.*d1(z)-(r0
(z).ˆ2)))...

236 ./(((1+2.*(e1(z)-d1(z))/(r0(z).ˆ2)).ˆ2)
.*(1-(r0(z).ˆ2)));

237 anelS12 =0;
238 anelS13 =@(z) - (b0(z)+b2(z).*(r0(z).ˆ2)+b4(z).*(r0(z).ˆ4)+

b6(z).*(r0(z).ˆ6)-2.*r1(z).*r2(z).*r3(z))...
239 ./( 4.*(r0(z).ˆ4).*(1-r0(z).ˆ2).*(1+2.*(e1(

z)-d1(z))./(r0(z).ˆ2)).*(g2(z)-g1(z))
.*(1+2.*g2(z)));

240
241 % Component for anelliptic parameter on S2-wave (C44)
242
243 b0 =@(z) (1+2.*g1(z)).*( (1+2.*d1(z)).*(1+2.*d2(z))...
244 +(1+2.*d3(z)).*((1+2.*e1(z)).ˆ2));
245 b2 =@(z) -(1+2.*d1(z)).*(1+2.*g2(z))-(1+2.*d2(z)).*(1+2.*

g1(z))...
246 -(1+2.*g2(z)).*((1+2.*d1(z)).*(1+2.*d2(z))+(1+2.*

e1(z)).*(1+2.*g1(z)))...
247 -2.*(1+2.*e1(z)).*(1+2.*g1(z)).*(1+2.*d3(z)).*(1+

e1(z)+g2(z));
248 b4 =@(z) (1+2.*g2(z)).*(3+2.*d1(z)+2.*d2(z)+2.*(1+2.*d1(z)

).*(g2(z)-g1(z))...
249 +2.*(1+2.*g1(z)).*(1+e1(z)+g2(z))...
250 +(1+2.*d3(z)).*(1+2.*e1(z)).*(1+2.*g1(z)));
251 b6 =@(z) -2.*(1+2.*g2(z)).*(1+2.*g2(z)+2.*g1(z).*g2(z));
252
253 Vs20 =@(z) sqrt(Co55(z).*(10ˆ9)./Densa(z));
254 VS20 =@(z) Vs20(z).*sqrt((1+2.*g2(z))./(1+2.*g1(z)));
255 VS21 =@(z) sqrt((Vs20(z).ˆ2).*(1+2.*g2(z)));
256 VS22 =@(z) sqrt((Vs20(z).ˆ2).*...
257 ( ((1+2.*g2(z))./(1+2.*g1(z)))+2.*(e2(z)-d2(z

))./(r0(z).ˆ2) ) );
258 anelS21 = 0;
259 anelS22 =@(z) -((e2(z)-d2(z)).*(r0(z).ˆ2).*((1+2.*d2(z))

-((1+2.*g2(z))./(1+2.*g1(z))).*(r0(z).ˆ2)))...
260 ./(((1+2.*g1(z)).ˆ2).*((((1+2.*g2(z))./(1+2.*

g1(z)))+2.*(e2(z)-d2(z))./(r0(z).ˆ2)).ˆ2)
...

261 .*(1-((1+2.*g2(z))./(1+2.*g1(z))).*(r0(z).ˆ2)
));

262 anelS23 =@(z) (b0(z)+b2(z).*(r0(z).ˆ2)+b4(z).*(r0(z).ˆ4)+b6
(z).*(r0(z).ˆ6)-2.*r1(z).*r2(z).*r3(z))...

263 ./(4.*(r0(z).ˆ4).*(1+2.*g1(z)).*(1+2.*g1(z)
-(1+2.*g2(z)).*(r0(z).ˆ2))...
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264 .*(((1+2.*g2(z))./(1+2.*g1(z)))+2.*(e2(z)-d2(
z))./(r0(z).ˆ2)).*(g2(z)-g1(z)));

265
266 %% --- AVERAGE VALUE KINEMATIC PARAMETERS USING INTEGRAL

---
267
268 % P-WAVE
269
270 VP0 = integral(VP0,x1(1),x1(end))/(x1(end)-x1(1));
271 VP1 = integral(VP1,x1(1),x1(end))/(x1(end)-x1(1));
272 VP2 = integral(VP2,x1(1),x1(end))/(x1(end)-x1(1));
273
274 anelP1 = integral(anelP1,x1(1),x1(end))/(x1(end)-x1(1));
275 anelP2 = integral(anelP2,x1(1),x1(end))/(x1(end)-x1(1));
276 anelP3 = integral(anelP3,x1(1),x1(end))/(x1(end)-x1(1));
277
278 % S1-WAVE
279
280 VS10 = integral(VS10,x1(1),x1(end))/(x1(end)-x1(1));
281 VS11 = integral(VS11,x1(1),x1(end))/(x1(end)-x1(1));
282 VS12 = integral(VS12,x1(1),x1(end))/(x1(end)-x1(1));
283
284 anelS11 = integral(anelS11,x1(1),x1(end))/(x1(end)-x1(1));
285 anelS12 = anelS12;
286 anelS13 = integral(anelS13,x1(1),x1(end))/(x1(end)-x1(1));
287
288 % S2-WAVE
289
290 VS20 = integral(VS20,x1(1),x1(end))/(x1(end)-x1(1));
291 VS21 = integral(VS21,x1(1),x1(end))/(x1(end)-x1(1));
292 VS22 = integral(VS22,x1(1),x1(end))/(x1(end)-x1(1));
293
294 anelS21 = anelS21;
295 anelS22 = integral(anelS22,x1(1),x1(end))/(x1(end)-x1(1));
296 anelS23 = integral(anelS23,x1(1),x1(end))/(x1(end)-x1(1));
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Appendix C: Matlab Code - Introducing Fracture Before
Classic Upscaling

1 clc,clear
2
3 %% Read Data
4
5 % Log Conditioning of bad data is performed on excel
6
7 load 'Data5conditioned.txt'
8
9 x = readtable('Data5conditioned','headerlines',0);

10
11 z = table2array(x(:,1)); % m
12 GR = table2array(x(:,2));
13 vp0 = table2array(x(:,3)); % m/s
14 vs0 = table2array(x(:,4)); % m/s
15 dens = table2array(x(:,5))*1000; % kg/mˆ3
16 eps = table2array(x(:,6));
17 del = table2array(x(:,7));
18 gam = table2array(x(:,8));
19
20 %% Defining Interface
21
22 % Interface decision based on GR interpretation of the log

data
23 interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];
24
25 % Finding Location index of the array
26
27 for i = 1:length(interface)
28 pos(i) = find(abs(z-interface(i)) == min(abs(z-

interface(i))));
29 end
30
31 loc1 = [1,pos,length(z)]; % Upper limit for the interface
32 loc2 = [1,pos-1,length(z)]; % Lower limit for the interface
33
34 %% Calculate Cij for every point in VTI medium
35
36 Cij = zeros(6,6,length(z));
37
38 % Formulas are following Thomsen Parameter for VTI medium
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39
40 for i = 1:length(z)
41 Cij(3,3,i) = (vp0(i)ˆ2)*dens(i) ;
42 Cij(4,4,i) = (vs0(i)ˆ2)*dens(i) ;
43 Cij(5,5,i) = Cij(4,4,(i));
44 Cij(1,1,i) = (1+2*eps(i))*Cij(3,3,i);
45 Cij(6,6,i) = (1+2*gam(i))*Cij(4,4,i);
46 Cij(1,3,i) = sqrt(2*del(i)*Cij(3,3,i)*(Cij(3,3,i)-Cij

(5,5,i)) + (Cij(3,3,i)-Cij(5,5,i))ˆ2) ...
47 - Cij(5,5,i);
48 Cij(1,2,i) = Cij(1,1,i) - 2*Cij(6,6,i);
49
50 Cij(2,2,i) = Cij(1,1,i);
51 Cij(2,1,i) = Cij(1,2,i);
52 Cij(3,1,i) = Cij(1,3,i);
53 Cij(3,2,i) = Cij(1,3,i);
54 Cij(2,3,i) = Cij(1,3,i);
55
56 end
57
58 %% FRACTURE PARAMETER (ORT)
59
60 C_ort = zeros(6,6,length(z));
61 % x1 = z(loc1(3):loc1(4)-1);
62 % k = loc1(3);
63 % l = loc1(4);
64 for i = 1:size(z,1)
65 if i > loc1(3)-1 && i < loc1(4) %BLOCK 3-A
66 dn = 0.15;
67 dh = 0.2;
68 dv = 0.2;
69 elseif i > loc1(4)-1 && i < loc1(5) %BLOCK 3-B
70 dn = 0.4;
71 dh = 0.2;
72 dv = 0.2;
73 elseif i > loc1(5)-1 && i < loc1(6) %BLOCK 3-C
74 dn = 0.2;
75 dh = 0.2;
76 dv = 0.2;
77 elseif i > loc1(6)-1 && i < loc1(7) %BLOCK 3-D
78 dn = 0.5;
79 dh = 0.2;
80 dv = 0.2;
81 else
82 dn = 0;
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83 dh = 0;
84 dv = 0;
85 end
86
87 % ORT Cij
88
89 C_ort(1,1,i) = Cij(1,1,i)*(1-dn);
90 C_ort(2,2,i) = Cij(1,1,i)-(dn*(Cij(1,2,i)ˆ2)/Cij(1,1,i)

);
91 C_ort(2,3,i) = Cij(1,3,i)*(1-dn*Cij(1,2,i)/Cij(1,1,i));
92 C_ort(1,2,i) = Cij(1,2,i)*(1-dn);
93 C_ort(1,3,i) = Cij(1,3,i)*(1-dn);
94
95 C_ort(4,4,i) = Cij(4,4,i);
96 C_ort(3,3,i) = Cij(3,3,i)-dn*(Cij(1,3,i)ˆ2)/Cij(1,1,i);
97 C_ort(5,5,i) = Cij(4,4,i)*(1-dv);
98 C_ort(6,6,i) = Cij(6,6,i)*(1-dh);
99

100 end
101
102 %% Backus Averaging (ORT)
103
104 zone_number = length(interface)+1 ;
105
106 % Individual Layers are assumed to be ORT
107
108 Cb = zeros(6,6,zone_number);
109 efdens = zeros(zone_number,1);
110
111 for i = 1:length(loc1)-1
112 Cb(3,3,i) = mean(C_ort(3,3,loc1(i):loc2(i+1)).ˆ(-1))

.ˆ(-1);
113 Cb(4,4,i) = mean(C_ort(4,4,loc1(i):loc2(i+1)).ˆ(-1))

.ˆ(-1);
114 Cb(5,5,i) = mean(C_ort(5,5,loc1(i):loc2(i+1)).ˆ(-1))

.ˆ(-1);
115 Cb(6,6,i) = mean(C_ort(6,6,loc1(i):loc2(i+1)));
116
117 Cb(1,3,i) = mean(C_ort(1,3,loc1(i):loc2(i+1))./C_ort(3,3,

loc1(i):loc2(i+1)))...
118 .* Cb(3,3,i);
119 Cb(2,3,i) = mean(C_ort(2,3,loc1(i):loc2(i+1))./C_ort(3,3,

loc1(i):loc2(i+1)))...
120 .* Cb(3,3,i);
121
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122 Cb(1,1,i) = mean(C_ort(1,1,loc1(i):loc2(i+1))) + ...
123 (mean(C_ort(1,3,loc1(i):loc2(i+1))./C_ort

(3,3,loc1(i):loc2(i+1))).ˆ2 )...
124 .* Cb(3,3,i) - ...
125 (mean((C_ort(1,3,loc1(i):loc2(i+1)).ˆ2)./

C_ort(3,3,loc1(i):loc2(i+1))));
126 Cb(2,2,i) = mean(C_ort(2,2,loc1(i):loc2(i+1))) + ...
127 (mean(C_ort(2,3,loc1(i):loc2(i+1))./C_ort

(3,3,loc1(i):loc2(i+1))).ˆ2 )...
128 .* Cb(3,3,i) - ...
129 (mean((C_ort(2,3,loc1(i):loc2(i+1)).ˆ2)./

C_ort(3,3,loc1(i):loc2(i+1))));
130
131 Cb(1,2,i) = mean(C_ort(1,2,loc1(i):loc2(i+1))) + ...
132 mean(C_ort(1,3,loc1(i):loc2(i+1))./C_ort(3,3,

loc1(i):loc2(i+1)))...
133 .* mean(C_ort(2,3,loc1(i):loc2(i+1))./C_ort

(3,3,loc1(i):loc2(i+1)))...
134 .* Cb(3,3,i) - ...
135 mean((C_ort(1,3,loc1(i):loc2(i+1)).*C_ort

(2,3,loc1(i):loc2(i+1)))...
136 ./C_ort(3,3,loc1(i):loc2(i+1)));
137
138
139 efdens(i) = mean(dens(loc1(i):loc2(i+1)));
140
141 % Effective parameter of the Anisotropy
142
143 Evp0(i) = sqrt(Cb(3,3,i)/efdens(i));
144 Evs0(i) = sqrt(Cb(5,5,i)/efdens(i));
145
146 % Plane is Perpendicular to fractures
147 eps13(i) = (Cb(1,1,i) - Cb(3,3,i))/(2*Cb(3,3,i));
148 gam13(i) = (Cb(6,6,i) - Cb(4,4,i))/(2*Cb(4,4,i));
149 del13(i) = ((Cb(1,3,i) + Cb(5,5,i))ˆ2 - (Cb(3,3,i) -

Cb(5,5,i))ˆ2) / ...
150 (2*Cb(3,3,i)*(Cb(3,3,i) - Cb(5,5,i)));
151 % Plane is Paralel to fractures
152 eps23(i) = (Cb(2,2,i) - Cb(3,3,i))/(2*Cb(3,3,i));
153 gam23(i) = (Cb(6,6,i) - Cb(5,5,i))/(2*Cb(5,5,i));
154 del23(i) = ((Cb(2,3,i) + Cb(4,4,i))ˆ2 - (Cb(3,3,i) -

Cb(4,4,i))ˆ2) / ...
155 (2*Cb(3,3,i)*(Cb(3,3,i) - Cb(4,4,i)));
156 % Horizontal Plane
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157 del12(i) = ((Cb(1,2,i) + Cb(6,6,i))ˆ2 - (Cb(1,1,i) -
Cb(6,6,i))ˆ2) / ...

158 (2*Cb(1,1,i)*(Cb(1,1,i) - Cb(6,6,i)));
159
160 end
161
162 % Set the effective parameters into every data point (

depth)
163
164 Cef = zeros(6,6,length(z));
165
166 for i = 1:size(z,1)
167 if i < loc1(2)
168 j = 1;
169 elseif i > loc1(2)-1 && i < loc1(3)
170 j = 2;
171 elseif i > loc1(3)-1 && i < loc1(4)
172 j = 3;
173 elseif i > loc1(4)-1 && i < loc1(5)
174 j = 4;
175 elseif i > loc1(5)-1 && i < loc1(6)
176 j = 5;
177 elseif i > loc1(6)-1 && i < loc1(7)
178 j = 6;
179 elseif i > loc1(7)-1 && i < loc1(8)
180 j = 7;
181 else
182 j = 8;
183 end
184
185 Cef(3,3,i) = Cb(3,3,j);
186 Cef(4,4,i) = Cb(4,4,j);
187 Cef(5,5,i) = Cb(5,5,j);
188
189 Cef(1,3,i) = Cb(1,3,j);
190 Cef(2,3,i) = Cb(2,3,j);
191
192 Cef(6,6,i) = Cb(6,6,j);
193
194 Cef(1,1,i) = Cb(1,1,j);
195 Cef(2,2,i) = Cb(2,2,j);
196
197 Cef(1,2,i) = Cb(1,2,j);
198
199 % Effective parameters
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200
201 vp0ef(i) = Evp0(j);
202 vs0ef(i) = Evs0(j);
203
204 densef(i) = efdens(j);
205
206 e13(i) = eps13(j);
207 g13(i) = gam13(j);
208 d13(i) = del13(j);
209
210 e23(i) = eps23(j);
211 g23(i) = gam23(j);
212 d23(i) = del23(j);
213
214 d12(i) = del12(j);
215
216 end
217
218 %% Kinematic Parameter
219
220 VP = zeros(length(z),3);% Vertical NMO[x1,x3] NMO[x2,x3]
221 VS1 = zeros(length(z),3);
222 VS2 = zeros(length(z),3);
223
224 anelP = zeros(length(z),3);% eta1[x1,x3] eta2[x2,x3] etaxy

[x1,x2]
225 anelS1 = zeros(length(z),3);
226 anelS2 = zeros(length(z),3);
227
228 n = size(z,1);
229
230 [VP,VS1,VS2,anelP,anelS1,anelS2] = ...
231 kinematic3(vp0ef,Cef,e13,g13,d13,e23,g23,d23,d12,densef

,n);

Kinematic3 Function:

1 function [VP,VS1,VS2,anelP,anelS1,anelS2] = ...
2 kinematic3(Vp0_or,C_ort,e13,g13,d13,e23,g23,d23,d12,

densef,n)
3
4
5 for i = 1:n
6
7 % Component for anelliptic parameter on Pure mode wave
8 r0 = sqrt(C_ort(5,5,i)/C_ort(3,3,i));
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9 r1 = sqrt((1-(r0ˆ2))*(1+2*d13(i)-(r0ˆ2)));
10 r2 = sqrt((1+2*g13(i)-(r0ˆ2)*(1+2*g23(i)))* ...
11 ((1+2*d23(i))*(1+2*g13(i))-(r0ˆ2)*(1+2*g23(i))));
12 r3 = sqrt((1+2*e13(i)-(r0ˆ2)*(1+2*g23(i))) * ...
13 ((1+2*d12(i))*(1+2*e13(i))-(r0ˆ2)*(1+2*g23(i)

)));
14
15 % Component for anelliptic parameter on P-wave
16 b0 = 2*(1+2*d13(i))*(1+2*d23(i))*(1+2*g13(i));
17 b2 = -(1+2*d13(i))*(1+2*g23(i))-(1+2*d23(i))*(1+2*g13(

i))...
18 -2*(1+2*d13(i))*(1+2*d23(i))*(1+g13(i)+g23(i))...
19 -2*(1+2*g13(i))*(1+2*g23(i))*(1+d13(i)+d23(i));
20 b4 = (1+2*g23(i))*(4+2*d13(i)+2*d23(i)+2*g13(i)+2*g23(

i)...
21 +(1+2*d13(i))*(1+2*g23(i))+(1+2*d23(i))*(1+2*g13(

i)));
22 b6 = -2*((1+2*g23(i))ˆ2);
23
24 VP(i,1) = Vp0_or(i);
25 VP(i,2) = sqrt((Vp0_or(i).ˆ2).*(1+2.*d13(i)));
26 VP(i,3) = sqrt((Vp0_or(i).ˆ2).*(1+2.*d23(i)));
27 anelP(i,1) = ((e13(i)-d13(i))*(1+2*d13(i)-(r0ˆ2)))...
28 /(((1+2*d13(i))ˆ2)*(1-(r0ˆ2)));
29 anelP(i,2) = ((e23(i)-d23(i))*((1+2*d23(i))*(1+2*g13(i)

)-(r0ˆ2)*(1+2*g23(i))))...
30 /(((1+2*d23(i))ˆ2)*(1+2*g13(i)-(r0ˆ2)

*(1+2*g23(i))));
31 anelP(i,3) = (b0+b2*(r0ˆ2)+b4*(r0ˆ4)+b6*(r0ˆ6)-2*r1*r2*

r3)...
32 /(2*(1+2*d13(i))*(1+2*d23(i))*(1+2*g13(i

)-(r0ˆ2)*(1+2*g23(i))));
33
34 % Component for anelliptic parameter on S1-wave (C55)
35 b0 = ((1+2*g13(i))ˆ2)*( (1+2*d13(i))*(1+2*d23(i))...
36 +(1+2*d12(i))*((1+2*e13(i))ˆ2));
37 b2 = -(1+2*g13(i))*((1+2*d13(i))*(1+2*g23(i))+(1+2*d23

(i))*(1+2*g13(i))...
38 +(1+2*g13(i))*((1+2*d13(i))*(1+2*d23(i))+(1+2*e13

(i))*(1+2*g23(i)))...
39 +2*(1+2*e13(i))*(1+2*g23(i))*(1+2*d12(i))*(1+e13(

i)+g13(i)));
40 b4 = (1+2*g13(i))*(1+2*g23(i))*(3+2*d13(i)+2*d23(i)

-2*(1+2*d23(i))*(g23(i)-g13(i))...
41 +2*(1+2*g23(i))*(1+e13(i)+g13(i))+(1+2*d12(i))
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*(1+2*e13(i))*(1+2*g23(i)));
42 b6 = -2*((1+2*g23(i))ˆ2)*(1+2*g13(i)+2*g13(i)*g23(i));
43
44 Vs10(i) = sqrt(C_ort(5,5,i)/densef(i));
45 VS1(i,1) = Vs10(i);
46 VS1(i,2) = sqrt((Vs10(i).ˆ2).*(1+2.*((e13(i)-d13(i))

./(r0ˆ2))));
47 VS1(i,3) = sqrt((Vs10(i).ˆ2).*(1+2.*g23(i)));
48 anelS1(i,1) = - ((e13(i)-d13(i))*(r0ˆ2)*(1+2*d13(i)-(r0

ˆ2)))...
49 /(((1+2*(e13(i)-d13(i))/(r0ˆ2))ˆ2)*(1-(

r0ˆ2)));
50 anelS1(i,2) = 0;
51 anelS1(i,3) = - (b0+b2*(r0ˆ2)+b4*(r0ˆ4)+b6*(r0ˆ6)-2*r1*

r2*r3)...
52 /( 4*(r0ˆ4)*(1-r0ˆ2)*(1+2*(e13(i)-d13(i

))/(r0ˆ2))*(g23(i)-g13(i))*(1+2*g23(
i)));

53
54 % Component for anelliptic parameter on S2-wave (C44)
55 b0 = (1+2*g13(i))*( (1+2*d13(i))*(1+2*d23(i))...
56 +(1+2*d12(i))*((1+2*e13(i))ˆ2));
57 b2 = -(1+2*d13(i))*(1+2*g23(i))-(1+2*d23(i))*(1+2*g13(

i))...
58 -(1+2*g23(i))*((1+2*d13(i))*(1+2*d23(i))+(1+2*e13

(i))*(1+2*g13(i)))...
59 -2*(1+2*e13(i))*(1+2*g13(i))*(1+2*d12(i))*(1+e13(

i)+g23(i));
60 b4 = (1+2*g23(i))*(3+2*d13(i)+2*d23(i)+2*(1+2*d13(i))

*(g23(i)-g13(i))...
61 +2*(1+2*g13(i))*(1+e13(i)+g23(i))...
62 +(1+2*d12(i))*(1+2*e13(i))*(1+2*g13(i)));
63 b6 = -2*(1+2*g23(i))*(1+2*g23(i)+2*g13(i)*g23(i));
64
65 VS20(i) = sqrt(C_ort(5,5,i)/densef(i));
66 VS2(i,1) = VS20(i)*sqrt((1+2*g23(i))/(1+2*g13(i)));
67 VS2(i,2) = sqrt((VS20(i).ˆ2).*(1+2.*g23(i)));
68 VS2(i,3) = sqrt((VS20(i).ˆ2).*...
69 ( ((1+2.*g23(i))/(1+2*g13(i)))+2*(e23(i

)-d23(i))/(r0ˆ2) ) );
70 anelS2(i,1) = 0;
71 anelS2(i,2) = -((e23(i)-d23(i))*(r0ˆ2)*((1+2*d23(i))

-((1+2*g23(i))/(1+2*g13(i)))*(r0ˆ2)))...
72 /(((1+2*g13(i))ˆ2)*((((1+2*g23(i))

/(1+2*g13(i)))+2*(e23(i)-d23(i))/(r0
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ˆ2))ˆ2)...
73 *(1-((1+2*g23(i))/(1+2*g13(i)))*(r0ˆ2))

);
74 anelS2(i,3) = (b0+b2*(r0ˆ2)+b4*(r0ˆ4)+b6*(r0ˆ6)-2*r1*r2

*r3)...
75 /(4*(r0ˆ4)*(1+2*g13(i))*(1+2*g13(i)

-(1+2*g23(i))*(r0ˆ2))...
76 *(((1+2*g23(i))/(1+2*g13(i)))+2*(e23(i)

-d23(i))/(r0ˆ2))*(g23(i)-g13(i)));
77 end
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Appendix D: Matlab Code - Introducing Fracture Before
Least Square Upscaling

1 clc,clear
2
3 %% Read Data
4
5 % Log Conditioning of bad data is performed on excel
6
7 load 'Data5conditioned.txt'
8
9 x = readtable('Data5conditioned','headerlines',0);

10
11 h = table2array(x(:,1)); % m
12 GR = table2array(x(:,2));
13 vp0 = table2array(x(:,3)); % m/s
14 vs0 = table2array(x(:,4)); % m/s
15 dens = table2array(x(:,5))*1000; % kg/mˆ3
16 eps = table2array(x(:,6));
17 del = table2array(x(:,7));
18 gam = table2array(x(:,8));
19
20 %% Defining Interface
21
22 % Interface decision based on GR interpretation of the log

data
23 interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];
24
25 % Finding Location index of the array
26
27 for i = 1:length(interface)
28 pos(i) = find(abs(h-interface(i)) == min(abs(h-

interface(i))));
29 end
30
31 loc1 = [1,pos,length(h)]; % Upper limit for the interface
32 loc2 = [1,pos-1,length(h)]; % Lower limit for the interface
33
34
35 %% Calculate Cij for every point in VTI medium
36
37 c33 = zeros(length(h),1);
38 c44 = zeros(length(h),1);
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39 c55 = zeros(length(h),1);
40 c11 = zeros(length(h),1);
41 c66 = zeros(length(h),1);
42 c13 = zeros(length(h),1);
43 c12 = zeros(length(h),1);
44
45 % Formulas are following Thomsen Parameter for VTI medium
46
47 for i = 1:length(h)
48 c33(i,1) = ((vp0(i)ˆ2)*dens(i))/(10ˆ9) ;
49 c44(i,1) = ((vs0(i)ˆ2)*dens(i))/(10ˆ9) ;
50 c55(i,1) = c44(i,1);
51 c11(i,1) = ((1+2*eps(i))*c33(i,1));
52 c66(i,1) = ((1+2*gam(i))*c44(i,1));
53 c13(i,1) = sqrt(2*del(i)*c33(i,1)*(c33(i,1)-c55(i,1)) +

(c33(i,1)-c55(i,1))ˆ2) ...
54 - c55(i,1);
55 c12(i,1) = c11(i,1) - 2*c66(i,1);
56 end
57
58 %% FRACTURE PARAMETER (ORT)
59
60 co33 = zeros(length(h),1);
61 co44 = zeros(length(h),1);
62 co55 = zeros(length(h),1);
63 co11 = zeros(length(h),1);
64 co66 = zeros(length(h),1);
65 co13 = zeros(length(h),1);
66 co12 = zeros(length(h),1);
67 co22 = zeros(length(h),1);
68 co23 = zeros(length(h),1);
69
70
71 for i = 1:size(h,1)
72 if i > loc1(3)-1 && i < loc1(4)
73 dn = 0.15;
74 dh = 0.2;
75 dv = 0.2;
76 elseif i > loc1(4)-1 && i < loc1(5)
77 dn = 0.4;
78 dh = 0.2;
79 dv = 0.2;
80 elseif i > loc1(5)-1 && i < loc1(6)
81 dn = 0.2;
82 dh = 0.2;
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83 dv = 0.2;
84 elseif i > loc1(6)-1 && i < loc1(7)
85 dn = 0.5;
86 dh = 0.2;
87 dv = 0.2;
88 else
89 dn = 0;
90 dh = 0;
91 dv = 0;
92 end
93
94 % ORT Cij
95
96 co11(i,1) = c11(i,1)*(1-dn);
97 co22(i,1) = c11(i,1)-(dn*(c12(i,1)ˆ2)/c11(i,1));
98 co23(i,1) = c13(i,1)*(1-dn*c12(i,1)/c11(i,1));
99 co12(i,1) = c12(i,1)*(1-dn);

100 co13(i,1) = c13(i,1)*(1-dn);
101
102 co44(i,1) = c44(i,1);
103 co33(i,1) = c33(i,1)-dn*(c13(i,1)ˆ2)/c11(i,1);
104 co55(i,1) = c44(i,1)*(1-dv);
105 co66(i,1) = c66(i,1)*(1-dh);
106
107 end
108 %% --- Defining Block 3 ---
109
110 n1 = length(loc1(3):loc1(4)-1); % total data

Block 3a
111 x1 = h(loc1(3):loc1(4)-1); % allocated depth points
112 k = loc1(3);
113 l = loc1(4);
114
115 % n1 = length(loc1(4):loc1(5)-1); % Block 3b
116 % x1 = h(loc1(4):loc1(5)-1);
117 % k = loc1(4);
118 % l = loc1(5);
119 %
120 % n1 = length(loc1(5):loc1(6)-1); % Block 3c
121 % x1 = h(loc1(5):loc1(6)-1);
122 % k = loc1(5);
123 % l = loc1(6);
124 %
125 % n1 = length(loc1(6):loc1(7)-1); % Block 3d
126 % x1 = h(loc1(6):loc1(7)-1);
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127 % k = loc1(6);
128 % l = loc1(7);
129
130 % Calculating the unknown 'a' and 'b' for least square
131
132 y1(:,1) = 1./co33(k:l-1,1); % 1/c33
133 y1(:,2) = 1./co44(k:l-1,1); % 1/c44
134 y1(:,3) = 1./co55(k:l-1,1); % 1/c55
135 y1(:,4) = co13(k:l-1,1)./co33(k:l-1,1); % c13/c33
136 y1(:,5) = co23(k:l-1,1)./co33(k:l-1,1); % c23/c33
137 y1(:,6) = co66(k:l-1,1); % c66
138 y1(:,7) = co11(k:l-1,1); % c11
139 y1(:,8) = (co13(k:l-1,1).ˆ2)./co33(k:l-1,1); % c13ˆ2/c33
140 y1(:,9) = co22(k:l-1,1); % c22
141 y1(:,10)= (co23(k:l-1,1).ˆ2)./co33(k:l-1,1); % c23ˆ2/c33
142 y1(:,11)= co12(k:l-1,1); % c12
143 y1(:,12)= co13(k:l-1,1).*co23(k:l-1,1)./co33(k:l-1,1); %

c13*c23/c33
144 y1(:,13) = dens(k:l-1,1); % density
145
146 a1 = zeros(1,13); % 1/c33 | 1/c44 | 1/c55 | c13/c33 | c23/

c33 | c66 | c11 |
147 % c13ˆ2/c33 | c22 | c23ˆ2/c33 | c12 | c13

*c23/c33 | dens
148 b1 = zeros(1,13);
149
150 for i = 1:13
151 a1(1,i) = ((n1*sum(x1.*y1(:,i)))-(sum(x1)*sum(y1(:,i)))

)/(n1*sum(x1.ˆ2)-(sum(x1)ˆ2));
152 b1(1,i) = (sum(y1(:,i))-a1(1,i)*sum(x1))/n1;
153 end
154
155 %--- LEAST SQUARE CALCULATION on ORT Medium ---
156
157 % Cij and density function calculation
158
159 C33a = @(z) 1./(a1(1,1).*z + b1(1,1));
160 C44a = @(z) 1./(a1(1,2).*z + b1(1,2));
161 C55a = @(z) 1./(a1(1,3).*z + b1(1,3));
162 C13a = @(z) (a1(1,4).*z + b1(1,4)).*C33a(z);
163 C23a = @(z) (a1(1,5).*z + b1(1,5)).*C33a(z);
164 C66a = @(z) a1(1,6).*z + b1(1,6);
165 C11a = @(z) (a1(1,7).*z + b1(1,7)) + ((a1(1,4).*z + b1

(1,4)).ˆ2).*C33a(z)...
166 -(a1(1,8).*z + b1(1,8));
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167 C22a = @(z) (a1(1,9).*z + b1(1,9)) + ((a1(1,5).*z + b1
(1,5)).ˆ2).*C33a(z)...

168 -(a1(1,10).*z + b1(1,10));
169 C12a = @(z) (a1(1,11).*z + b1(1,11)) + (((a1(1,4).*z + b1

(1,4)).*(a1(1,5).*z + b1(1,5))).*C33a(z))...
170 -(a1(1,12).*z + b1(1,12));
171 Densa = @(z) a1(1,13).*z + b1(1,13);
172
173 % Anisotropy Parameter Function Calculation
174
175 Vp0oa = @(z) sqrt(C33a(z).*(10ˆ9)./Densa(z));
176 Vs0oa = @(z) sqrt(C55a(z).*(10ˆ9)./Densa(z));
177
178 % Plane is Perpendicular to fractures [x1,x3]
179
180 e1 = @(z) (C11a(z)-C33a(z))./(2.*C33a(z));
181 g1 = @(z) (C66a(z)-C44a(z))./(2.*C44a(z));
182 d1 = @(z) ((C13a(z)+C55a(z)).ˆ2-(C33a(z)-C55a(z)).ˆ2) ...
183 ./(2.*C33a(z).*(C33a(z)-C55a(z)));
184
185 % Plane is Parallel to fractures [x2,x3]
186
187 e2 = @(z) (C22a(z)-C33a(z))./(2.*C33a(z));
188 g2 = @(z) (C66a(z)-C55a(z))./(2.*C55a(z));
189 d2 = @(z) ((C23a(z)+C44a(z)).ˆ2-(C33a(z)-C44a(z)).ˆ2) ...
190 ./(2.*C33a(z).*(C33a(z)-C44a(z)));
191
192 % Horizontal Plane
193
194 d3 = @(z) ((C12a(z)+C66a(z)).ˆ2-(C11a(z)-C66a(z)).ˆ2) ...
195 ./(2.*C11a(z).*(C11a(z)-C66a(z)));
196
197
198 %% ----- AVERAGE VALUE ANISO PARAMETER USING INTEGRAL

------
199
200 VP0_or = integral(Vp0oa,x1(1),x1(end))/(x1(end)-x1(1));
201 VS0_or = integral(Vs0oa,x1(1),x1(end))/(x1(end)-x1(1));
202
203 eps1 = integral(e1,x1(1),x1(end))/(x1(end)-x1(1));
204 gam1 = integral(g1,x1(1),x1(end))/(x1(end)-x1(1));
205 del1 = integral(d1,x1(1),x1(end))/(x1(end)-x1(1));
206
207 eps2 = integral(e2,x1(1),x1(end))/(x1(end)-x1(1));
208 gam2 = integral(g2,x1(1),x1(end))/(x1(end)-x1(1));
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209 del2 = integral(d2,x1(1),x1(end))/(x1(end)-x1(1));
210
211 del3 = integral(d3,x1(1),x1(end))/(x1(end)-x1(1));
212
213 %% --- KINEMATIC PARAMETER ---
214
215 % Component for anelliptic parameter on Pure mode wave
216
217 r0 =@(z) sqrt(C55a(z)./C33a(z));
218 r1 =@(z) sqrt((1-(r0(z).ˆ2)).*(1+2.*d1(z)-(r0(z).ˆ2)));
219 r2 =@(z) sqrt((1+2.*g1(z)-(r0(z).ˆ2).*(1+2.*g2(z))) .* ...
220 ((1+2.*d2(z)).*(1+2.*g1(z))-(r0(z).ˆ2)

.*(1+2.*g2(z))));
221 r3 =@(z) sqrt((1+2.*e1(z)-(r0(z).ˆ2).*(1+2.*g2(z))) .* ...
222 ((1+2.*d3(z)).*(1+2.*e1(z))-(r0(z).ˆ2)

.*(1+2.*g2(z))));
223
224
225 % Component for anelliptic parameter on P-WAVE
226
227 b0 =@(z) 2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+2.*g1(z));
228 b2 =@(z) -(1+2.*d1(z)).*(1+2.*g2(z))-(1+2.*d2(z)).*(1+2.*

g1(z))...
229 -2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+g1(z)+g2(z))

...
230 -2.*(1+2.*g1(z)).*(1+2.*g2(z)).*(1+d1(z)+d2(z));
231 b4 =@(z) (1+2.*g2(z)).*(4+2.*d1(z)+2.*d2(z)+2.*g1(z)+2.*g2

(z)...
232 +(1+2.*d1(z)).*(1+2.*g2(z))+(1+2.*d2(z)).*(1+2.*

g1(z)));
233 b6 =@(z) -2.*((1+2.*g2(z)).ˆ2);
234
235 % Kinematic Parameter
236
237 VP0 =@(z) Vp0oa(z);
238 VP1 =@(z) sqrt((Vp0oa(z).ˆ2).*(1+2.*d1(z)));
239 VP2 =@(z) sqrt((Vp0oa(z).ˆ2).*(1+2.*d2(z)));
240
241 anelP1 =@(z) ((e1(z)-d1(z)).*(1+2.*d1(z)-(r0(z).ˆ2)))...
242 ./(((1+2.*d1(z)).ˆ2).*(1-(r0(z).ˆ2)));
243 anelP2 =@(z) ((e2(z)-d2(z)).*((1+2.*d2(z)).*(1+2.*g1(z))-(

r0(z).ˆ2).*(1+2.*g2(z))))...
244 ./(((1+2.*d2(z)).ˆ2).*(1+2.*g1(z)-(r0(z).ˆ2)

.*(1+2.*g2(z))));
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245 anelP3 =@(z) (b0(z)+b2(z).*(r0(z).ˆ2)+b4(z).*(r0(z).ˆ4)+b6(
z).*(r0(z).ˆ6)-2.*r1(z).*r2(z).*r3(z))...

246 ./(2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+2.*g1(z)
-(r0(z).ˆ2).*(1+2.*g2(z))));

247
248 % Component for anelliptic parameter on S1-WAVE
249
250 b0 =@(z) ((1+2.*g1(z)).ˆ2).*( (1+2.*d1(z)).*(1+2.*d2(z))

...
251 +(1+2.*d3(z)).*((1+2.*e1(z)).ˆ2));
252 b2 =@(z) -(1+2.*g1(z)).*((1+2.*d1(z)).*(1+2.*g2(z))+(1+2.*

d2(z)).*(1+2.*g1(z))...
253 +(1+2.*g1(z)).*((1+2.*d1(z)).*(1+2.*d2(z))+(1+2.*

e1(z)).*(1+2.*g2(z)))...
254 +2.*(1+2.*e1(z)).*(1+2.*g2(z)).*(1+2.*d3(z)).*(1+

e1(z)+g1(z)));
255 b4 =@(z) (1+2.*g1(z)).*(1+2.*g2(z)).*(3+2.*d1(z)+2.*d2(z)

-2.*(1+2.*d2(z)).*(g2(z)-g1(z))...
256 +2.*(1+2.*g2(z)).*(1+e1(z)+g1(z))+(1+2.*d3(z))

.*(1+2.*e1(z)).*(1+2.*g2(z)));
257 b6 =@(z) -2.*((1+2.*g2(z)).ˆ2).*(1+2.*g1(z)+2.*g1(z).*g2(z

));
258
259 VS10 =@(z) sqrt(C55a(z).*(10ˆ9)./Densa(z));
260 VS11 =@(z) sqrt((VS10(z).ˆ2).*(1+2.*((e1(z)-d1(z))./(r0(

z).ˆ2))));
261 VS12 =@(z) sqrt((VS10(z).ˆ2).*(1+2.*g2(z)));
262 anelS11 =@(z) - ((e1(z)-d1(z)).*(r0(z).ˆ2).*(1+2.*d1(z)-(r0

(z).ˆ2)))...
263 ./(((1+2.*(e1(z)-d1(z))/(r0(z).ˆ2)).ˆ2)

.*(1-(r0(z).ˆ2)));
264 anelS12 =0;
265 anelS13 =@(z) - (b0(z)+b2(z).*(r0(z).ˆ2)+b4(z).*(r0(z).ˆ4)+

b6(z).*(r0(z).ˆ6)-2.*r1(z).*r2(z).*r3(z))...
266 ./( 4.*(r0(z).ˆ4).*(1-r0(z).ˆ2).*(1+2.*(e1(

z)-d1(z))./(r0(z).ˆ2)).*(g2(z)-g1(z))
.*(1+2.*g2(z)));

267
268 % Component for anelliptic parameter on S2-wave
269
270 b0 =@(z) (1+2.*g1(z)).*( (1+2.*d1(z)).*(1+2.*d2(z))...
271 +(1+2.*d3(z)).*((1+2.*e1(z)).ˆ2));
272 b2 =@(z) -(1+2.*d1(z)).*(1+2.*g2(z))-(1+2.*d2(z)).*(1+2.*

g1(z))...
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273 -(1+2.*g2(z)).*((1+2.*d1(z)).*(1+2.*d2(z))+(1+2.*
e1(z)).*(1+2.*g1(z)))...

274 -2.*(1+2.*e1(z)).*(1+2.*g1(z)).*(1+2.*d3(z)).*(1+
e1(z)+g2(z));

275 b4 =@(z) (1+2.*g2(z)).*(3+2.*d1(z)+2.*d2(z)+2.*(1+2.*d1(z)
).*(g2(z)-g1(z))...

276 +2.*(1+2.*g1(z)).*(1+e1(z)+g2(z))...
277 +(1+2.*d3(z)).*(1+2.*e1(z)).*(1+2.*g1(z)));
278 b6 =@(z) -2.*(1+2.*g2(z)).*(1+2.*g2(z)+2.*g1(z).*g2(z));
279
280 Vs20 =@(z) sqrt(C55a(z).*(10ˆ9)./Densa(z));
281 VS20 =@(z) Vs20(z).*sqrt((1+2.*g2(z))./(1+2.*g1(z)));
282 VS21 =@(z) sqrt((Vs20(z).ˆ2).*(1+2.*g2(z)));
283 VS22 =@(z) sqrt((Vs20(z).ˆ2).*...
284 ( ((1+2.*g2(z))./(1+2.*g1(z)))+2.*(e2(z)-d2(z

))./(r0(z).ˆ2) ) );
285 anelS21 = 0;
286 anelS22 =@(z) -((e2(z)-d2(z)).*(r0(z).ˆ2).*((1+2.*d2(z))

-((1+2.*g2(z))./(1+2.*g1(z))).*(r0(z).ˆ2)))...
287 ./(((1+2.*g1(z)).ˆ2).*((((1+2.*g2(z))./(1+2.*

g1(z)))+2.*(e2(z)-d2(z))./(r0(z).ˆ2)).ˆ2)
...

288 .*(1-((1+2.*g2(z))./(1+2.*g1(z))).*(r0(z).ˆ2)
));

289 anelS23 =@(z) (b0(z)+b2(z).*(r0(z).ˆ2)+b4(z).*(r0(z).ˆ4)+b6
(z).*(r0(z).ˆ6)-2.*r1(z).*r2(z).*r3(z))...

290 ./(4.*(r0(z).ˆ4).*(1+2.*g1(z)).*(1+2.*g1(z)
-(1+2.*g2(z)).*(r0(z).ˆ2))...

291 .*(((1+2.*g2(z))./(1+2.*g1(z)))+2.*(e2(z)-d2(
z))./(r0(z).ˆ2)).*(g2(z)-g1(z)));

292
293 %% ------ AVERAGE VALUE KINEMATIC PARAMETERS USING INTEGRAL

---------
294
295 % P-WAVE
296
297 VP0 = integral(VP0,x1(1),x1(end))/(x1(end)-x1(1));
298 VP1 = integral(VP1,x1(1),x1(end))/(x1(end)-x1(1));
299 VP2 = integral(VP2,x1(1),x1(end))/(x1(end)-x1(1));
300
301 anelP1 = integral(anelP1,x1(1),x1(end))/(x1(end)-x1(1));
302 anelP2 = integral(anelP2,x1(1),x1(end))/(x1(end)-x1(1));
303 anelP3 = integral(anelP3,x1(1),x1(end))/(x1(end)-x1(1));
304
305 % S1-WAVE
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306
307 VS10 = integral(VS10,x1(1),x1(end))/(x1(end)-x1(1));
308 VS11 = integral(VS11,x1(1),x1(end))/(x1(end)-x1(1));
309 VS12 = integral(VS12,x1(1),x1(end))/(x1(end)-x1(1));
310
311 anelS11 = integral(anelS11,x1(1),x1(end))/(x1(end)-x1(1));
312 anelS12 = anelS12;
313 anelS13 = integral(anelS13,x1(1),x1(end))/(x1(end)-x1(1));
314
315 % S2-WAVE
316
317 VS20 = integral(VS20,x1(1),x1(end))/(x1(end)-x1(1));
318 VS21 = integral(VS21,x1(1),x1(end))/(x1(end)-x1(1));
319 VS22 = integral(VS22,x1(1),x1(end))/(x1(end)-x1(1));
320
321 anelS21 = anelS21;
322 anelS22 = integral(anelS22,x1(1),x1(end))/(x1(end)-x1(1));
323 anelS23 = integral(anelS23,x1(1),x1(end))/(x1(end)-x1(1));
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Appendix D: Matlab Code - Overburden Effect

Calculation for obtaining the effective VTI background parameter for block 1 and 2:

1 clc,clear
2
3 %% Read Data
4
5 % Log Conditioning of bad data is performed on excel
6
7 load 'Data5conditioned.txt'
8
9 x = readtable('Data5conditioned','headerlines',0);

10
11 h = table2array(x(:,1)); % m
12 GR = table2array(x(:,2));
13 vp0 = table2array(x(:,3)); % m/s
14 vs0 = table2array(x(:,4)); % m/s
15 dens = table2array(x(:,5))*1000; % kg/mˆ3
16 eps = table2array(x(:,6));
17 del = table2array(x(:,7));
18 gam = table2array(x(:,8));
19
20 %% Defining Interface
21
22 % Interface decision based on GR interpretation of the log

data
23 interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];
24
25 % Finding Location index of the array
26
27 for i = 1:length(interface)
28 pos(i) = find(abs(h-interface(i)) == min(abs(h-

interface(i))));
29 end
30
31 loc1 = [1,pos,length(h)]; % Upper limit for the interface
32 loc2 = [1,pos-1,length(h)]; % Lower limit for the interface
33
34
35 %% Calculate Cij for every point in VTI medium
36
37 c33 = zeros(length(h),1);
38 c44 = zeros(length(h),1);
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39 c55 = zeros(length(h),1);
40 c11 = zeros(length(h),1);
41 c66 = zeros(length(h),1);
42 c13 = zeros(length(h),1);
43 c12 = zeros(length(h),1);
44
45 % Formulas are following Thomsen Parameter for VTI medium
46
47 for i = 1:length(h)
48 c33(i,1) = ((vp0(i)ˆ2)*dens(i))/10ˆ9 ;
49 c44(i,1) = ((vs0(i)ˆ2)*dens(i))/10ˆ9 ;
50 c55(i,1) = c44(i,1);
51 c11(i,1) = ((1+2*eps(i))*c33(i,1));
52 c66(i,1) = ((1+2*gam(i))*c44(i,1));
53 c13(i,1) = sqrt(2*del(i)*c33(i,1)*(c33(i,1)-c55(i,1)) +

(c33(i,1)-c55(i,1))ˆ2) ...
54 - c55(i,1);
55 c12(i,1) = c11(i,1) - 2*c66(i,1);
56
57 end
58
59 %% --- Defining the Block ---
60
61 % n1 = length(loc1(1):loc1(2)-1); % total data

Block 1
62 % x1 = h(loc1(1):loc1(2)-1); % allocated depth

points
63 % k = loc1(1);
64 % l = loc1(2);
65
66
67 % n1 = length(loc1(2):loc1(3)-1); % total data

Block 2
68 % x1 = h(loc1(2):loc1(3)-1); % allocated depth

points
69 % k = loc1(2);
70 % l = loc1(3);
71 %
72 n1 = length(loc1(3):loc1(4)-1); % total data

Block 3a
73 x1 = h(loc1(3):loc1(4)-1); % allocated depth points
74 k = loc1(3);
75 l = loc1(4);
76
77
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78 y1(:,1) = 1./c33(k:l-1,1); % 1/c33
79 y1(:,2) = 1./c44(k:l-1,1); % 1/c44
80 y1(:,3) = c13(k:l-1,1)./c33(k:l-1,1); % c13/c33
81 y1(:,4) = c66(k:l-1,1); % c66
82 y1(:,5) = (c13(k:l-1,1).ˆ2)./c33(k:l-1,1); % c13ˆ2/c33
83 y1(:,6) = c11(k:l-1,1); % c11
84 y1(:,7) = dens(k:l-1,1); % density
85
86 a1 = zeros(1,7); % 1/c33 | 1/c44 | c13/c33 | c66 | c13ˆ2/

c33 | c11 | dens
87 b1 = zeros(1,7);
88
89 for i = 1:7
90 a1(1,i) = ((n1*sum(x1.*y1(:,i)))-(sum(x1)*sum(y1(:,i)))

)/(n1*sum(x1.ˆ2)-(sum(x1)ˆ2));
91 b1(1,i) = (sum(y1(:,i))-a1(1,i)*sum(x1))/n1;
92 end
93
94 %---------VTI BACKGROUND CALCULATION-------------
95
96 % Cij background and density function calculation
97
98 C33a = @(z) 1./(a1(1,1).*z + b1(1,1));
99 C44a = @(z) 1./(a1(1,2).*z + b1(1,2));

100 C13a = @(z) (a1(1,3).*z + b1(1,3)).*(1./(a1(1,1).*z + b1
(1,1)));

101 C66a = @(z) a1(1,4).*z + b1(1,4);
102 C11a = @(z) (a1(1,6).*z + b1(1,6)) + ((a1(1,3).*z + b1

(1,3)).ˆ2).*C33a(z)...
103 -(a1(1,5).*z + b1(1,5));
104 C12a = @(z) C11a(z)-2.*C66a(z);
105 Densa = @(z) a1(1,7).*z + b1(1,7);
106 C55a = @(z) C44a(z);
107
108 % Anisotropy Parameter function calculation
109
110 Vp0a = @(z) sqrt(C33a(z).*(10ˆ9)./Densa(z));
111 Vs0a = @(z) sqrt(C44a(z).*(10ˆ9)./Densa(z));
112 epsa = @(z) (C11a(z)-C33a(z))./(2.*C33a(z));
113 gama = @(z) (C66a(z)-C44a(z))./(2.*C44a(z));
114 dela = @(z) ((C13a(z)+C44a(z)).ˆ2-(C33a(z)-C44a(z)).ˆ2)

...
115 ./(2.*C33a(z).*(C33a(z)-C44a(z)));
116
117 e1 = @(z) epsa(z);
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118 e2 = @(z) epsa(z);
119 g1 = @(z) gama(z);
120 g2 = @(z) gama(z);
121 d1 = @(z) dela(z);
122 d2 = @(z) dela(z);
123 d3 = @(z) 0;
124
125 %% ------ AVERAGE VALUE ANISOTROPY PARAMETERS USING

INTEGRAL ---------
126
127 % P-WAVE
128
129 vp0ef = integral(Vp0a,x1(1),x1(end))/(x1(end)-x1(1));
130 vs0ef = integral(Vs0a,x1(1),x1(end))/(x1(end)-x1(1));
131 epsef = integral(epsa,x1(1),x1(end))/(x1(end)-x1(1));
132 gamef = integral(gama,x1(1),x1(end))/(x1(end)-x1(1));
133 delef = integral(dela,x1(1),x1(end))/(x1(end)-x1(1));
134 densef = integral(Densa,x1(1),x1(end))/(x1(end)-x1(1));
135
136 %% KINEMATIC PARAMETERS OF PURE MODE WAVES in VTI Medium
137
138 % Component for anelliptic parameter on Pure mode wave
139
140 r0 =@(z) sqrt(C55a(z)./C33a(z));
141 r1 =@(z) sqrt((1-(r0(z).ˆ2)).*(1+2.*d1(z)-(r0(z).ˆ2)));
142 r2 =@(z) sqrt((1+2.*g1(z)-(r0(z).ˆ2).*(1+2.*g2(z))) .* ...
143 ((1+2.*d2(z)).*(1+2.*g1(z))-(r0(z).ˆ2)

.*(1+2.*g2(z))));
144 r3 =@(z) sqrt((1+2.*e1(z)-(r0(z).ˆ2).*(1+2.*g2(z))) .* ...
145 ((1+2.*d3(z)).*(1+2.*e1(z))-(r0(z).ˆ2)

.*(1+2.*g2(z))));
146
147 % Component for anelliptic parameter on P-WAVE
148
149 b0 =@(z) 2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+2.*g1(z));
150 b2 =@(z) -(1+2.*d1(z)).*(1+2.*g2(z))-(1+2.*d2(z)).*(1+2.*

g1(z))...
151 -2.*(1+2.*d1(z)).*(1+2.*d2(z)).*(1+g1(z)+g2(z))

...
152 -2.*(1+2.*g1(z)).*(1+2.*g2(z)).*(1+d1(z)+d2(z));
153 b4 =@(z) (1+2.*g2(z)).*(4+2.*d1(z)+2.*d2(z)+2.*g1(z)+2.*g2

(z)...
154 +(1+2.*d1(z)).*(1+2.*g2(z))+(1+2.*d2(z)).*(1+2.*

g1(z)));
155 b6 =@(z) -2.*((1+2.*g2(z)).ˆ2);

98



156
157 % Kinematic Parameter
158 % P wave vertical and nmo velocity
159
160 VP0 =@(z) Vp0a(z);
161 VP1 =@(z) sqrt((Vp0a(z).ˆ2).*(1+2.*d1(z)));
162 VP2 =@(z) sqrt((Vp0a(z).ˆ2).*(1+2.*d2(z)));
163
164 anelP1 =@(z) ((e1(z)-d1(z)).*(1+2.*d1(z)-(r0(z).ˆ2)))...
165 ./(((1+2.*d1(z)).ˆ2).*(1-(r0(z).ˆ2)));
166 anelP2 =@(z) ((e2(z)-d2(z)).*((1+2.*d2(z)).*(1+2.*g1(z))-(

r0(z).ˆ2).*(1+2.*g2(z))))...
167 ./(((1+2.*d2(z)).ˆ2).*(1+2.*g1(z)-(r0(z).ˆ2)

.*(1+2.*g2(z))));
168 anelP3 =@(z) 2.*anelP1(z);
169
170
171 % S1 wave (SV) vertical and nmo velocity
172
173 VS10 =@(z) sqrt(C55a(z).*(10ˆ9)./Densa(z));
174 VS11 =@(z) sqrt((VS10(z).ˆ2).*(1+2.*((e1(z)-d1(z))./(r0(

z).ˆ2))));
175 VS12 =@(z) sqrt((VS10(z).ˆ2).*(1+2.*((e1(z)-d1(z))./(r0(

z).ˆ2))));
176 anelS11 =@(z) (e1(z)-d1(z)).*(VP0(z).ˆ2)./(VS10(z).ˆ2);
177 anelS12 =@(z) (e1(z)-d1(z)).*(VP0(z).ˆ2)./(VS10(z).ˆ2);
178 anelS13 =@(z) 2.*anelS11(z);
179
180 % S2 wave (SH) vertical and nmo velocity
181
182 Vs20 =@(z) sqrt(C44a(z).*(10ˆ9)./Densa(z));
183 VS20 =@(z) Vs20(z).*sqrt((1+2.*g2(z))./(1+2.*g1(z)));
184 VS21 =@(z) sqrt((Vs20(z).ˆ2).*(1+2.*g2(z)));
185 VS22 =@(z) sqrt((Vs20(z).ˆ2).*(1+2.*g2(z)));
186 anelS21 =0;
187 anelS22 =0;
188 anelS23 =0;
189
190 %% ------ AVERAGE VALUE KINEMATIC PARAMETERS USING INTEGRAL

---------
191
192 % P-WAVE
193
194 VP0 = integral(VP0,x1(1),x1(end))/(x1(end)-x1(1));
195 VP1 = integral(VP1,x1(1),x1(end))/(x1(end)-x1(1));
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196 VP2 = integral(VP2,x1(1),x1(end))/(x1(end)-x1(1));
197
198 anelP1 = integral(anelP1,x1(1),x1(end))/(x1(end)-x1(1));
199 anelP2 = integral(anelP2,x1(1),x1(end))/(x1(end)-x1(1));
200 anelP3 = integral(anelP3,x1(1),x1(end))/(x1(end)-x1(1));
201
202 % S1-WAVE
203
204 VS10 = integral(VS10,x1(1),x1(end))/(x1(end)-x1(1));
205 VS11 = integral(VS11,x1(1),x1(end))/(x1(end)-x1(1));
206 VS12 = integral(VS12,x1(1),x1(end))/(x1(end)-x1(1));
207
208 anelS11 = integral(anelS11,x1(1),x1(end))/(x1(end)-x1(1));
209 anelS12 = integral(anelS12,x1(1),x1(end))/(x1(end)-x1(1));
210 anelS13 = integral(anelS13,x1(1),x1(end))/(x1(end)-x1(1));
211
212 % S2-WAVE
213
214 VS20 = integral(VS20,x1(1),x1(end))/(x1(end)-x1(1));
215 VS21 = integral(VS21,x1(1),x1(end))/(x1(end)-x1(1));
216 VS22 = integral(VS22,x1(1),x1(end))/(x1(end)-x1(1));
217
218 % anelS21 = integral(anelS22,x1(1),x1(end))/(x1(end)-x1(1))

;
219 % anelS22 = integral(anelS22,x1(1),x1(end))/(x1(end)-x1(1))

;
220 % anelS23 = integral(anelS23,x1(1),x1(end))/(x1(end)-x1(1))

;

Calculation for Dix-type equations:

1 clc,clear
2
3 %% Read Data
4
5 % Log Conditioning of bad data is performed on excel
6
7 load 'Data5conditioned.txt'
8
9 x = readtable('Data5conditioned','headerlines',0);

10
11 h = table2array(x(:,1)); % m
12 GR = table2array(x(:,2));
13 vp0 = table2array(x(:,3)); % m/s
14 vs0 = table2array(x(:,4)); % m/s
15 dens = table2array(x(:,5))*1000; % kg/mˆ3
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16 eps = table2array(x(:,6));
17 del = table2array(x(:,7));
18 gam = table2array(x(:,8));
19
20 %% Defining Interface
21
22 % Interface decision based on GR interpretation of the log

data
23 interface = [1000, 1275, 1430, 1520, 1625, 1770, 2010];
24
25 % Finding Location index of the array
26
27 for i = 1:length(interface)
28 pos(i) = find(abs(h-interface(i)) == min(abs(h-

interface(i))));
29 end
30
31 loc1 = [1,pos,length(h)]; % Upper limit for the interface
32 loc2 = [1,pos-1,length(h)]; % Lower limit for the interface
33
34 %% ----- NMO VELOCITY ------
35 % vertical velocity
36 %Block1 Block2 Block3A
37 v0(1,:) = [2361.9; 2708.7; 3236.7]; % P wave
38 v0(2,:) = [1088.6; 1208.6; 1650.4]; % S1 wave
39 v0(3,:) = [1088.6; 1208.6; 1845.2]; % S2 wave
40
41 for i = 1:3
42 for j = 1:3
43 z(j) = h(loc2(j+1)) - h(loc1(j));
44 t0(i,j) = 2*z(j)/v0(i,j);
45 end
46 T0(i,1) = sum(t0(i,:));
47 end
48
49 for i = 1:3
50 a(i,1) = (sum((v0(i,:).ˆ2).*t0(i,:)));
51
52 V0(i,1) = sqrt(a(i,1)/T0(i,1));
53 end
54 % vnmo1
55 %Block1 Block2 Block3A
56 v1(1,:) = [2347.8 2821.2 2618.1]; % P wave
57 v1(2,:) = [1051.4 1665.5 1886.1]; % S1 wave
58 v1(3,:) = [1079.3 1430.0 1471.7]; % S2 wave
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59
60 for i = 1:3
61 b(i,1)=(sum((v1(i,:).ˆ2).*t0(i,:)));
62
63 V1(i,1) = sqrt(b(i,1)/T0(i,1));
64 end
65
66 % vnmo2
67 %Block1 Block2 Block3A
68 v2(1,:) = [2347.8 2821.2 3107.5];
69 v2(2,:) = [1051.4 1665.5 1471.7];
70 v2(3,:) = [1079.3 1430.0 1604.6];
71
72 for i = 1:3
73 c(i,1)=(sum((v2(i,:).ˆ2).*t0(i,:)));
74
75 V2(i,1) = sqrt(c(i,1)/T0(i,1));
76 end
77
78 %% ----- ANELLIPTICITY -----
79 %Block1 Block2 Block3A
80 eta1(1,:) = [0.0025 0.0840 0.0495]; % P -wave
81 eta1(2,:) = [0.0266 0.4494 -0.0033]; % S1-wave
82 eta1(3,:) = [0 0 0 ];
83
84 for i = 1:3
85 d(i,1) = (sum((1+8.*eta1(i,:)).*(v1(i,:).ˆ4).*t0(i,:)))

./...
86 ((V1(i,1).ˆ4).*T0(i,1)) ;
87
88 E1(i,1) = (d(i,1) - 1) / 8;
89 end
90
91 eta2(1,:) = [0.0025 0.0840 -0.0412]; % P -wave
92 eta2(2,:) = [0.0266 0.4494 0]; % S1-wave
93 eta2(3,:) = [0 0 0.0281]; % S2-wave
94
95 for i = 1:3
96 e(i,1) = (sum((1+8.*eta2(i,:)).*(v2(i,:).ˆ4).*t0(i,:)))

./...
97 ((V2(i,1).ˆ4).*T0(i,1)) ;
98
99 E2(i,1) = (e(i,1) - 1) / 8;

100 end
101
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102 eta3(1,:) = [0.0049 0.1681 0.0540]; % P -wave
103 eta3(2,:) = [0.0532 0.8988 4.7072]; % S1-wave
104 eta3(3,:) = [0 0 -0.2324];% S2-wave
105
106 for i = 1:3
107 f(i,1) = (sum((1+4.*eta3(i,:)).*(v1(i,:).ˆ2).*(v2(i,:)

.ˆ2).*t0(i,:)))./...
108 ((V1(i,1).ˆ2).*(V2(i,1).ˆ2).*T0(i,1)) ;
109
110 E3(i,1) = (f(i,1) - 1) / 4;
111 end
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