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Summary

Natural fractures are essential elements which can be commonly observed in reservoirs.
The saying that “All reservoirs should be considered fractured until proven otherwise.
(Narr et al., 2006)” is the best portrayal of its universality. The study of fracture systems is
of great importance since it has been proven to have a strong impact on reservoir charac-
teristics. The goal of this thesis is to figure out the relationship between seismic signatures
and vertically fractured media.

In this thesis, first the effective VTT medium is obtained from well log data by us-
ing Backus averaging theory. Then, the effective ORT medium is constructed based on
Schoenberg-Helbig model by embedding one vertical fracture set into VTI host medium.
By comparing the anisotropy parameters, it is possible to detect one single fracture set
between the host and effective media.

The combination of more vertical fracture sets (not parallel) and VTI background
medium is supposed to provide effective MONO medium. However, two perpendicular
fracture sets result in effective ORT medium. When summing up uniformly distributed
vertical fractures within azimuthal angle [—90°, 90°], the effective VTI medium is pro-
vided.

Numerical tests are performed to simulate more realistic fracture distributions by using
Gaussian functions. The results show that it is very hard to distinguish between different
fracture distributions through seismic signatures. However, for models in this study, cer-
tain geophysical methods can be applied to detect different distributions. This is very
model-dependent. Therefore, in the future, more work should be done to obtain further
correlation between seismic signatures and fracture systems.
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Chapter

Introduction

1.1 Background

The role of seismic anisotropy has significantly increased over the past two decades due
to progress in seismic acquisition and data processing (Tsvankin et al., 2010). It has con-
tributed to increasing the success-rates in geophysical exploration and exploitation. Seis-
mic anisotropy is defined to be "The dependence of seismic velocities upon angle” (Thom-
sen, 2014). Specifically, if the medium is anisotropic, the velocity of seismic waves vary
with respect to different propagation directions. By contrast, heterogeneity is defined to be
the dependence of physical properties upon spatial position (Tsvankin, 2012). In practice,
it is very difficult to distinguish between heterogeneity and anisotropy. The concepts of
these two properties are scale-dependent compared to seismic wavelength. The hetero-
geneity on a small scale can be transformed into homogeneous seismic anisotropy on a
larger scale (Tsvankin, 2012).

There are various mechanics that can contribute to the anisotropy of sedimentary rocks
(Thomsen, 1986).

- intrinsic anisotropy caused by the preferred orientation of anisotropic grains or the
shapes of isotropic minerals;

- effective anisotropy due to fine isotropic or anisotropic layers on a small scale com-
pared to seismic wavelength;

- Nonhydrostatic stresses;
- preferred orientation of fractures, microcracks or pores (fluids).

In reality, anisotropy is often the result of a certain combination of these factors (Tsvankin,
2012).

The hierarchy in seismic objects is going from crystals to minerals, then to rocks and
finally to seismic layers with an increasing complexity. When it comes to the origin of
anisotropy, it is considered to stem from crystals due to the crystal structure (Stovas and




Hao, 2015). Therefore, the minerals which consist of crystals naturally possess anisotropic
features, which results in anisotropy in rocks (Thomsen, 2014). Therefore, upscalling
methods are needed to develop anisotropy from crystals to seismic layers. In the hierarchy
model, from minerals to seismic layers, they are both anisotropic and heterogeneous.

Upscaling theory is of great importance for geophysical research. By doing this proce-
dure, heteorogenity is transformed into anisotropy. The number of model parameters are
reduced as the effective medium is homogeneous. Only one set of parameters is required
to describe the effective medium instead of one set for each layer.

1.2 Motivation

Well log data acquired over naturally fractured reservoirs often reveal the appearance of
vertical fracture systems. The work of this thesis is to simulate different fracture distribu-
tions and to observe how they can affect seismic signatures. The goal is to analyze how
the seismic anisotropy parameters of the medium can provide information to detect the
characteristics of subsurface fracture networks.

1.3 Outline

This thesis consists of a summary, six chapters (including this introduction) and three
appendices (Appendix A, Appendix B and Appendix C).

Chapter 1 provides the reader with a basic introduction to anisotropy. Then the moti-
vation and chapter descriptions of this thesis are presented.

Chapter 2 presents more detailed information about anisotropy classes, including Isotropic
(ISO), Transversely isotropic (TI), Orthorhombic (ORT) and Monoclinic (MONO) sym-
metries. The stiffness matrix, anisotropy parameters and the corresponding rock images
of each anisotropy symmetry are introduced.

Seismic upscaling is the subject of Chapter 3. Upscaling theory is introduced and the
application is stated. Additionally it brings up the concept of system matrix. Results from
my Specialization project are presented and discussed here to support and provide more
understanding of the theory.

Chapter 4 presents the workflow of the study. Each process from data quality control
to the addition of vertical fractures is explained in detail and the corresponding results are
elaborated upon. In this chapter, Backus theory is applied to obtain effective VTI media
and Schoenberg-Muir model is used to build equivalent ORT media. The corresponding
equations and matrices are listed.

Chapter 5 deals with fracture models. The fractures with various azimuthal angles are
embedded by rotating the original ORT medium. The results are generalized and discus-
sions are carried out on both analytical and numerical models.

Conclusions and continuations for future research are summarized in Chapter 6.

Appendix A presents the upscaling cases and model parameters taken from my Spe-
cialization project.

Appendix B provides the expressions of the elastic parameters in azimuthally rotated
ORT media.




Appendix C gives the computation codes used in this study. Data quality control and
upscaling process are done using Matlab R2018b while the fracture simulations are carried
out using Wolfram Mathematica 10.0.







Chapter

Anisotropy symmetry systems

In this chapter, four anisotropy symmetries, which are of most importance in seismological
applications, are described in detail. The definition, stiffness matrix and parameterization
of each anisotropy symmetry are presented.

2.1 Isotropic medium

Isotropy is a common assumption applied in current exploration seismology theory. If the
elastic properties in a medium do not change with direction, the medium is considered to be
isotropic (ISO). In ISO medium, all planes are symmetry planes and it provides relatively
simple computation procedures for seismic inversion and data processing. In reality, ISO
medium appears in the following cases: intrinsic ISO without fractures; rocks that con-
tain fractures distributed randomly and rocks that contain crystals or particles distributed
randomly (Liang, 2009).




Figure 2.1: Quartzose sandstone from the Precambrian of Minnesota, USA (left) Source:
https://www.flickr.com/photos/jsjgeology/23504564816; loose sedimentary sandstone (right)
Source: https://www.flickr.com/photos/jsjgeology/1617030683 [With the permission of James St.
John.]

To reveal the anisotropic properties of the medium, each anisotropic symmetry is char-
acterized by a stiffness matrix with the number of independent parameters increasing for
from high to low symmetries (Tsvankin, 2012). The stiffness matrix of isotropic medium
is given by:

A+2u A A0 0 0

A A+t A 0 0 0

R A A+20 0 0 0
Ciso— 0 0 0 L 0 0 (21)

0 0 0 0 u 0

0 0 0 0 0 u

It only contains two independent stiffness coefficients, here they are written in terms
of Lame constants: A and .

Based on the propagation and polarization directions, the body waves are categorized
into three types: primary waves (P-waves) and two kinds of shear waves (S-waves). S-
waves include Shear wave with vertical polarization (SV-wave) and Shear wave with hor-
izontal polarization (SH-wave). In order to describe the isotropic medium, the velocities
of P- and S-waves both independent on the propagation directions are defined:

A+2
V= +p“, 22)

2.2 Transversely isotropic medium

Although isotropy is a highly used model in exploration seismology theory, the fact that
anisotropy widely exists in subsurface medium can not be denied (Xu, 2018). Therefore,
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in seismic data processing, especially for the procedures highly sensitive to the accuracy
of the velocity field, the anisotropic models are introduced to overcome the limitation and
inadequacy of the ISO models.

The most common anisotropic model used in seismic analysis is transverse isotropy
(TD. TI medium is defined to be that the elastic properties do not change in any direc-
tions perpendicular to the symmetry axis. Shale formation is considered to have intrin-
sic TI symmetry. Most shale formations are horizontally layered, yielding a transversely
isotropic medium with a vertical symmetry axis (VTI). The periodic thin layering on a
small scale compared to seismic wavelength also behaves as VTI symmetry (Tsvankin,
2012) (Figure 2.2).

(symmetry plane)

2 (symmetry axis)

Figure 2.2: VTI model with symmetry planes and symmetry axis (left); Sand-
stone redbed samplle from the Triassic of Connecticut, USA (right) Source:
https://www.flickr.com/photos/jsjgeology/41158229254.  [With the permission of James St.
John.]

The stiffness matrix of VTT medium with five independent parameters is given by:

Cn Ci1 —2c6 Ci3 0 0 0
C1 — 2¢66 C11 Ci3 0 0 0
C C C: 0 0 0
T A
0 0 0 0 Cu 0
0 0 0 0 0 Cu

Although the stiffness matrix is convenient for forward modeling algorithms, Thomsen
(Thomsen, 1986) introduced another notation for anisotropic parameterization of VTI
medium which is convenient for reflection data processing (Tsvankin et al., 2010). With
the new notation, the medium is described by five Thomsen parameters:

Cs3
Voo = 4/ —,
P P
C
‘/SO = ﬁa
p




Ci1—C
= ”2?3333 (2.4)
(C13 4 Cuq)? — (Cs3 — Cug)?
2C33(C33 — Cua)

(5:

_ Cos — Cua

where V)0, Vi denote vertical P- and S-wave velocities, respectively. p is density, €, 6
and + are dimensionless parameters which characterize the degree of anisotropy.

As shown in Equation 2.5 and 2.7, the physical meaning of € and + is that they govern
the relation between horizontal propagation and vertical propagation of P and SH-waves,
respectively. J is defined by the second derivative of P-wave phase-velocity with vertical
incidence (Equation 2.6). It also influences the SV-wave velocity (Stovas and Hao, 2015),

Vi = V(1 + 2e), (2.5)
a2V,

d92p lo=0 = 2V}00, (2.6)
Vie = Vio (1 +27). 2.7)

2.3 Orthorhombic medium

A more complicated anisotropy is the orthorhombic (ORT) model with three mutually
orthogonal symmetry planes. It is common found in fractured reservoirs and is often used
to describe the azimuthal dependency of elastic properties. The corresponding stiffness
matrix with nine independent parameters is given by

Cii Ci2 Ciz O 0 0

Cia Ca Ciy3 0 0 0

_|Ciz Cas Cs33 0 0 0
Cot=1%0" 0 0 Cu 0 0 (28)

0 0 0 0 Css 0

0 0 0 0 0 Ces

There are various reasons accounting for orthorhombic symmetry. The combination of
VTI background medium with a set of vertical parallel fractures, the isotropic background
medium with two sets of mutually orthogonal vertical fractures or the isotropic background
medium with two non-orthogonal fracture sets having the same compliances, they all con-
tribute to the behavior of orthorhombic anisotropy for seismic wave propagation (Kumar,
2013). The schematic diagram is shown in Figure 2.3.

8



(symmetrv plane) g%
[x.z]

z

Figure 2.3: An ORT model caused by horizontal fine layers and vertical fractures (left); Geological
outcrop of orthogonal joint (right). Source: http://wap. sciencenet.cn/blog.php?mobile=1 [With the
permission of James St. John.]

The Thomsen-style paremeters were extended to orthorhombic medium by Tsvankin
in (Tsvankin, 1997) in order to analyze the wave propagation:

[C33

Voo = —,
p0 p

VsO = 055 )
\/ 0

o Ci1 —Cs3
2 2033 )
5y = (Ci3 + Cs5)* — (C33 — Css)?
2C33(C33 — Cs5) ’
Ny = —Cﬁg(;:‘*“, 2.9)
o Caz — C33
! 2053
5, = (Ca3 + Cyq)? — (Cs3 — Cy)?
2C33(C33 — Ca) ’
_ Co6 — Css
71 2055 )
5y = (C12 4 Ce6)* — (C11 — Cig)?

2C11(C11 — Ces) ’

where V), denotes vertical P-wave velocity. Vo denotes the vertical velocity of the faster
S-wave polirized in x-direction. €2, d2,y2 are identical to Thomsen parameters €, d, 7y in
symmetry plane [X,Z]. €1,61,71 are defined in symmetry plane [Y,Z], d3 is defined in
symmetry plane [X,Y], based on the coordinate system in Figure 2.3.




€2 controls the relation between P-wave velocities along x- and z-axes. €; controls the
relation between P-wave velocities along y- and z-axes. Likewise, 71 and 72 have similar
meaning as €; and ey but only for SH-wave. s is responsible for near-vertical P-wave
velocity variation in [X,Z] plane while §; is for plane [Y,Z]. d3 reveal the near-horizontal
P-wave velocity variation in plane [X,Y] (Tsvankin, 1997).

Tsvankins notation for ORT medium preserves the attractive features of Thomsen pa-
rameters in describing the elastic properties of the symmetry-plane of P- and S-waves. It
also provides a unified framework for treating ORT and TI models in parameter-estimation
methods.

2.4 Monoclinic medium

Monoclinic (MONO) model is rather commonly being found in fractured reservoirs, but
it is not widely used in seismic processing due to the large number (13) of independent
parameters in the stiffness matrix:

Cii Cip Ciz O 0 Ci6
012 022 023 0 0 026
Ciz Oy C33 0 0 Cs6
0 0 0 Cu Csis O
0 0 0 Cu Css 0
Cis Cyp C36 0 0  Ces

(2.10)

Multiple vertical fracture sets, possibly combined with horizontal fine layering (Figure
2.4), tilt fractures embedded in the ORT host medium and the ISO background medium
with one set of micro-corrugated fractures, all produce an equivalent medium of MONO
symmetry with a horizontal symmetry plane. In MONO symmetry, two vertical symmetry
planes in ORT medium are gone.

Figure 2.4: An MONO model of fractured reservoir (left); jointed rock near hosteria, South Amer-
ica(right). Source: https://www.flickr.com/photos/ jsjgeology/39608069664. [With the permission
of James St. John]

The Thomsen-style parameterization of MONO medium was derived in (Grechka et al.,
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2000):

o C11 — Css
? 2033
(Ci3 + Cs5) — (C33 — C5)?
2C33(C33 — Css) ’
_ Cos —Cua
2 2C44 )
o Coy — Cs3
! 2033
(Ca3 + Cus)? — (C33 — Cuy)?
2C33(C33 — Cua) 7
_ Cos — Css
2Cs5
(C12 + Cg6)? — (C11 — Ces)?
2C11(C11 — Cée) ’
¢ = C16(C33 — Cs5) — C36(C13 — Css)
1 — )
Cs55(C33 — Css)
_ C96(Cs3 — Caa) — C36(Ca3 — Cua)
C14(C33 — Cua) ’
Cs6
<3 = 077
33
Ci= Cy5(Cys + Css)
2C44Cs5
where V0, Vo denote vertical P- and S-wave velocities, respectively. The parameteriza-
tion of MONO medium is similar to Tsvankin parameters mentioned in 2.3, but introduces
four more parameters. €1 2, 01,2 and 7y 2 are responsible for the pure-mode normal move-
out (NMO) velocities along the x- and y- axes. d3 is not controlled by conventional-spread
reflection traveltimes in a horizontal monoclinic layer. (; 2 3 cause the corresponding rota-
tion of the S1, S2, and P-wave NMO ellipses with respect to the horizontal axes (Grechka
et al., 2000). In addition, {4 controls polarization of S1 and S2-waves in vertical direc-
tion. Note that there is shear-wave splitting phenomenon in anisotropic formation. When
Cy4 # Css, a vertical propagation field caused by a horizontal source oriented aslant with
respect to the x- and y-axes will split into two different shear waves with distinct speeds

and polarizations (Schoenberg and Helbig, 1997). It is common to consider the faster
shear-wave to be S1-wave which polarizes along x-axis.

5y =

01 =

@2.11)

71

03 =

G2
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Chapter

Seismic upscaling

This Chapter mainly talks about the knowledge of upscaling theory and brings up the con-
cept of system matrix of the medium. From the view of system matrix, the equations which
are used for upscaling are presented. Partial numerical tests performed in specialization
project (Zhang, 2018) are selected and presented here in order to demonstrate upscaling
theory.

3.1 Upscaling theory

Seismic waves do not have enough resolution to detect the reflections of fine layers when
the thickness of the sequence (length of averaging) is smaller than the seismic wavelength,
the signals received can be regarded from a single averaged medium (Bandyopadhyay,
2009), as Figure 3.1 shows.

— — = t
o L A D S P PO DAL DR PR DL D DL DL ]
g !
& - - . . . . = 1
0 |
> * 8 * 3 s = ¢ = % 3 9 = 3 8 o8+ 8
o .- 8 ®* 2 s s * L L I T I I R ]
G
© - - = — — — — — — — Y a
= _— — = == == = — 1
-n} * 8 % 3 e e 8 e & ® 8 e = 02 8 s b e o 1
5 * ® ® 4 e s 4 e 8 e + e e g @ v " 8 X
= - —— — — |
_ —_— — — — —_— —_— — — 1
- - - L - . - . - L] - & 9 & & 0 a8 - I
L * 8 ® s s s 4 = ¢ = 4 = = 3 8t 0 8 = 1
z
+

Figure 3.1: A stack of fine strata consisting of periodical VTI (shale) and ISO (sand) layers. A is
the wavelength. Practically the periodicity of layers is not required.
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The equivalent medium is homogeneous and anisotropic. The symmetry of the equiva-
lent medium is given by the lowest symmetry of the constituent layers (Zhang, 2018). The
procedure of calculating the effective medium parameters is called upscaling. Backus aver-
aging (Backus, 1962) is one of a specific method of upscaling which only deals with finely
layered ISO or VTI constituents. However, more complicated anisotropies are present
in the subsurface, especially fractured reservoirs. Schoenberg and Muir (Schoenberg and
Muir, 1989) expanded the equations for arbitrary anisotropic constituent layers, which
facilitates the research of reservoir characteristics. The assumptions which upscaling the-
ory is based on are fine layers and stationarity (Schoenberg and Muir, 1989). Fine-layers
means the length of averaging should not be more than one-third of seismic wavelength A
(Liner and Fei, 2006) and the individual layer thickness should be at least ten times smaller
than A (Mavko et al., 2009).

3.2 System matrix

3.2.1 MONO medium

Schoenberg and Muir (Schoenberg and Muir, 1989) theory can be used to compute the pa-
rameters for effective MONO media. For media with horizontal symmetry planes, the sim-
plification can be done by averaging the corresponding system matrix (Fryer and Frazer,
1987).

First, the equation of motion in 1D medium is defined as:

@ = iwAbD, (3.1
dz

where b is the vector of stress-strain projections, w is the frequency and A is the system
matrix of the medium.

0 M
A—[N 0} (3.2)

where M and N are symmetric matrices and defined by:

—pP —gl E’pQ
_ 44 45
M= ©iaCos—Ch)  (CusCop—OF) 3.3)
55

(C14Cs55—C7%y)

_ 1 _ (p1Ci3+p2Cs6) _ (P1C36+p2Cas)
Cs3 Cs3 Cs3
N= S11 S19 (3.4
522
with
C? C3C: C?
s11 = (C11 — Cill)p% + 2p1p2(Cre6 — 1C3’ 2) 4 (Ces — C—%)pé - p
33 33 33

14



C13C C13C C? Cy3C
s12 = (Ci6 — %)P% + (Ci2 + Ce6 — 163’3323) 026 )p2p1 + (Cag — 263,3336 )P
3.5
C%. 5 C23C36 C3s\ - >
892 = (Cop — —22)p} + 2p1p2(Cog — ———) + (Coa — =22)p3 — p,
C33 Cs3 C3

note that p1, po are the horizontal slownesses in two orthogonal directions; C};; denotes
medium stiffness coefficients; p is medium density.

Based on Eq. 3.3, 3.4 and 3.5, the independent elements for monoclinic medium are
obtained:

Ay = (o) Ao = (), 4 = (G20, s = (G2,
85 = gz Ao = (G em) A = o er
Ag = (C11 — g23> Ag = (C6 — 0157;’36%/110 = (Cy — 020373?% (3.6)
A1 = (Co6 — gfg%fhz = (C22 — gfz%Aw = (Ch2 + Cg6 — 015733 - gfg -

where () denotes the averaged values. Cj; is the elastic parameters of each layer. In
addition, the effective density can be calculated as,

Pe = <p> (3.7)

By doing upscaling, the system matrix A of the medium is arithmetic averaged. In other
words, all the independent elements of matrix A are averaged.

After the averaging properties listed in Eq.3.6 are obtained, the symmetric stiffness
matrix of the effective monoclinic medium can be computed as follows:

AZ+A1As A1(A13—An)+A2A, Ao 0 0 A Az+A1Ag
A, A, A, A,
A2+ A A0 Ay 0 0 AgAz3+A1 A0
A1 A1 Al
_ 1 0 0 As
C= Ay Ay
As Az 0
AsAg—AZ  AjAg—AZ
__As 0
A5 A A2
A2+ A1 AN
L Ay i
(3.8)

Upscaling results: MONO+MONO

The model is composed of a stack of a repeating sequence of two different thin interbed-

ding layers of MONO symmetry. « is introduced as volume fraction to represent the
proportion of the second layer. When o = 0, the model is equivalent to the first layer
in composite while & = 1 means the model is equivalent to the second layer. Model pa-
rameters can be found in Appendix A (Table 1). Figure 3.2 shows the result of how the
anisotropy parameters change with respect to a.
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Figure 3.2: Anisotropy parameters of the effective MONO medium. (case: MONO+MONO)

With the increasing of «, €1 and ¢, first increase then decrease, which results in a single
peak for each curve. ¢; is more affected by variation of « than €5. The maximum of ¢; is
0.33 when « is 0.90 and the maximum of €5 is 0.27 when « is 0.66.

61 and d3 are both increasing. ¢; increases from negative to positive values and d3 is
always negative over the entire range of a. do decreases from positive to negative val-
ues. d; and J are close to linear while J3 is obviously nonlinear. J3 is more affected by
variation of o compared to §; and Js.

Both ~; and ~» are increasing nonlinearly from negative to positive values with in-
creasing o and y; is always larger than ~y,.

With the increasing of «;, (; is increasing and close to the intersection with (5. Mean-
time, (3 and (4 cross each other and increase gently. (7 and (, are always negative; oppo-
site of this, (5 and (4 are always positive.

Upscaling results: ORT+ORT¢

This model is composed of a stack of a repeating sequence of two thin interbedding
layers of ORT symmetry. The properties of these two layers are completely the same. But
one of the constituents is azimuthally rotated with an angle ¢ with respect to x-axis. Since
the parameters of rotated ORT medium are defined with ¢, a table showing the parame-
ter values can not be presented. However, the normal ORT medium parameters and the
expressions of the parameters in the rotated ORT medium are shown in Appendix B.
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Figure 3.3: Anisotropy parameter € of the effective MONO medium. (case: ORT+ORT¢)

In Figure 3.3, €; and €2 show a nearly symmetric trend about ¢ is 45 degrees and show
a decreasing trend with increasing «. The minimum values of €¢; and €5 are both 0.08 at

(¢ =45 degrees, a = 1.0).
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Figure 3.4: Anisotropy parameter ¢ of the effective MONO medium. (case: ORT+ORT )

Figure 3.4 shows that §; increases with respect to ¢ and «. The maximum value is
0.03 at (¢ = 90 degrees, o = 1.0). &5 decreases with respect to ¢ and . The minimum
value is -0.01 at (¢ = 90 degrees, o = 1.0). J3 shows a nearly symmetric trend about ¢ is

45 degrees and shows an increasing trend with «. The maximum value is about 0.6 around
(¢ =45 degrees, a = 1.0)
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From Figure 3.5, 71 and 7» are similar to €; and €5 but with a completely opposite
trend. 1 is approximately symmetric about ¢ is 42 degrees and shows an increasing trend
with ae. The maximum value is 0.5 at(¢ = 42 degrees, o = 1.0). v, has a approximately
similar trend with ~;. The maximum value is 0.5 at (¢ = 47 degrees, a = 1.0).

In Figure 3.6, (7 and (2 show an interesting phenomenon. When ¢ is equal to 39
degrees, (; is 0 regardless of . (7 shows negative when ¢ is smaller than 39 degree and
positive when ¢ is larger than 39 degrees. Likewise, when ¢ is equal to 52 degrees, (5
is 0 regardless of . (2 shows positive when ¢ is smaller than 52 degrees and negative
when ¢ is larger than 52 degrees. (3 is nearly symmetric about ¢ is 45 degrees and shows
a decreasing trend with increasing o. The minimum value is -0.07 at (¢ = 45 degrees, o =
1.0). ¢4 shows an opposite trend with (3. The maximum value is 0.1 at (¢ = 45 degrees, o
=1.0).

3.2.2 ORT medium

For the ORT case, C14=0, C23=0, C36=0, C45=0 are substituted into Eq. (3.3), (3.4) and
(3.5). Therefore, the averaging properties are:

1 013 C23 1
Ay =(+ ’A =\~ 7A =\~ aA =\~
! <033> ? <C33> ° 033> * 044>
A5 = (), g = (Coo), A7 = (0 — S8 (3.9)
5 — 0557 6 — 66/, 417 — 11 0337 .
C2 C13C
A8:<022_ 23>7A9:<012+066_ 13 23>.

Cas Cs3

where () denotes the averaged values. C;; are the elastic parameters of each layer. In
addition, the effective density can be calculated as:

pe = (p). (3.10)

Thus the symmetric stiffness matrix of the effective ORT medium is obtained:

rAS+A1A7 AxAz Az
A, Ag — A6 + A, A,
A+ A As Ag

A A
' 1

Ay

@3.11)

oo o
rooco o
cocooco o

Upscaling results: ORT+ORT

This model is composed of a stack of a repeating sequence of two different thin interbed-
ding layers of ORT symmetry. Model parameters are presented in Appendix A (Table
2).
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Figure 3.7: Anisotropy parameter of the effective ORT medium. (case: ORT+ORT)

Fracllon a,

It is obvious from the results that the effective medium is still of ORT symmetry. In
the effective medium, the behavior of the Tsvankin parameters is similar to case 3.2.1
as discussed above. In this case, maximum of €; is equal to 0.33 when « is 0.90 and
maximum of e is equal to 0.27 when « is 0.66.

3.2.3 VTI medium

For the transversely isotropic (VTI) medium, Equations Cy3 = Ci3, Cog = Cy1, Cs5 =
Cy4, C12 = C11 — 2C44 are substituted into Eq. (3.3), (3.4) and (3.5). Therefore, the
averaging properties are obtained as:

1 C 1 2
Al <033> AQ <C;2> A = 0755%144 = <Cll — Fz) A5 = <CGG>~ (312)

where () denotes the averaged values. C;; are the elastic parameters of each layer. In
addition, the effective density can be calculated as:

pe = (p)- (3.13)
Thus, the symmetric stiffness matrix of the effective VII medium is shown as below:

_A§+A1A4 A§+A1A4—2A1A5

Ay

A R A A
AS+A1 Ay Ao

Aq A1

1

A

(3.14)

oo o
rooco o
cooo ©

Upscaling Results: ISO+ISO and VTI+VTI

First, the most basic model which is composed of a stack of periodical strata of two differ-
ent ISO layers (Table 4) is tested. Then, both layers are VTI materials in the second model
(Table 3). Model parameters are presented in Appendix A.
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Figure 3.8: Anisotropy parameter of the effective VTI medium. (left case: ISO+ISO); (right case:
VTI+VTI).

For the left case, Backus averaging of ISO layers results in the effective anisotropic
(VTI) model. For increasing o, Thomsen parameters first increase then decrease. Note
that at the two ends of «, all Thomsen parameters are equal to 0. That is because when
a is 0, the model is equivalent to the first ISO medium in composite and when « is 1, the
model is equivalent to the second ISO medium. In ISO medium, anisotropy parameters
are always 0. Due to the feature of the figure, there are maximum values for ¢, § and «. In
this case, the maximum of e is equal to 0.038 when « is 0.5. The maximum of v is equal
to 0.018 when « is also 0.5. The estimated maximum of d is 0.023 when « is around 0.55
based on Figure 3.8. € is the most affected by « of the three parameters while + is the least.

For the case on the right, Thomsen parameters are no longer 0, which indicates that
the effective medium is always VTIL. With the increasing of «, € and v show a nonlinear
decreasing tendency but they are always above 0. The maximum of  is equal to 0.156
when « is 0.254. § shows an nonlinear increasing tendency from negative value up to
about 0.1.
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Chapter

Data and methodology

The entire work of this thesis is presented in both Chapter 4 and 5. This chapter involves
each step from the input data to the construction of orthorhombic (ORT) medium. A
complete workflow is shown in methodology in order to give an overall impression about
what has been done in this thesis.

4.1 Methodology

<% r

' . ' | » Segments | | » Select
» Data input o ;
2 edit division ‘ reservoir
> VTl _ | > ORT
‘ ) [ » Selectvarious |

S—

' ™
» Medium

properties
S——

Figure 4.1: Workflow of the work in this thesis.

» Rotated
ORT

» Upscalling }-7 weight functions }——{
W ($) \ y

~

The workflow of this study is summarized in Figure 4.1. First, it is of great importance
to edit the log data before all the calculations. Based on the information of Gamma-ray
logs, the subsurface medium is divided into 7 blocks. With the help of Backus averaging,
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each block is transformed into a homogeneous transversely isotropic (VTIT) medium. One
of the blocks which is considered to be the reservoir which composed of shale and sand
laminations is chosen to carry out the following steps. The other 6 blocks are temporarily
neglected. Afterwards, Schoenberg & Helbig (Schoenberg and Helbig, 1997) model is
applied in order to build the equivalent ORT medium by adding vertical fractures. These
steps are illustrated in green part of Figure 4.1.

All the blue part shows the work carried out in Chapter 5. The rotation of the ORT
medium is done after the introduction of an azimuthal angle ¢. Through selecting distinct
intensity functions W (¢), fractures with different orientations are embedded. After apply-
ing upscaling, the stiffness matrix and anisotropy parameters of the effective medium can
be computed.

4.2 Quality control

The study is performed on well log data acquired from the North Sea. There are 12165
samples in total with the depth ranging from 366.8m to 2220.6m. The interval of two
neighbouring depths is 0.1524m. It contains the information of Gamma-ray, vertical P-
wave velocity (vp0), vertical S-wave velocity (vso), bulk density (p) and anisotropy pa-
rameters €, 6 and 7.

First of all, a quality control is done to the raw data. Due to some well logging factors,
there are a lot of anomalies spread along the data with unrealistic negative values. Here
two ways are used to fix the wrong points: in each column, if one point is bad, but its
neighbouring data (in previous and following depths) are correct, it can be replaced by
the averaged value of its neighbours; if several continuous data are all wrong, all the bad
points will be removed. Figure 4.2 shows the full view of the log data used in this study
(after removing unrealistic negative points).

gamma ray (AP) VB0 (m/s) VS0 (m/s) rho (g/em?) eps deta gamma
0 100 200 2000 4000 6000 0 2000 4000 1 2 3 2 0 2 Bl o 1 4 2 0 2 4

Figure 4.2: Well log data visualization after removing unrealistic negative points.
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Through a general view of the data, the log condition is noted as following. For the
Gamma-ray curve, there is an interruption at 1250-1252m depth due to the anomalies
removing mentioned above. However, it does not affect the calculation in this study. For
the P-wave velocity curve, data was not recorded until 400m depth while not until 452m
depth for the S-wave and all three anisotropy parameters. From depth 452-455m, ¢, ¢ and
~ show 0 values, which indicates isotropic media. Last but not least, there are many spikes
showing on the curves, which can probably affect the following steps, especially for v,
vs0, €, 0 and ~y. Note that most spikes appearing at the same depths (1315m, 1386m,
1586m, 1629m, 1812m) for all three anisotropy parameters.

Based on the feature of the data, for €, § and -, a cutoff at 0.6 is set in order to remove
all the anomalies above 0.6 using averaged value of neighbouring depths. For v,0, vs0,
the cutoff are set at 4500m/s, 2500m/s, respectively. The result is shown below, note that
Figure 4.3 is in the same scale as Figure 4.2 in order to be more suitable for comparison.

gamma ray (AP) VB0 (m/s) Vs0 (m/s) rho (glem’) defta gamma
100 200 2000 4000 6000 0 2000 4000 1 2 2 Bl o 1 4 2 0 2 4

1o8

0

Figure 4.3: Well log data after removal of spikes.

4.3 Construction of the effective VTI medium

The Gamma-ray tools measure the natural gamma radiation in the formation and show a
high value (80-300 API) in shale and a low value (30 API) in sandstone. Therefore, based
on the Gamma-ray log, the data is divided into 7 blocks. (Table 4.1).

Figure 4.4 shows the block division. Block4 and Block6 are most likely sand-shale
interbeds judging from the Gamma-ray log.
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Table 4.1: Block depth intervals.

Blocks | Depth Interval
Blockl 366-1016m
Block2 1016-1271m
Block3 1271-1433m
Block4 1433-1538m
BlockS5 1538-1650m
Block6 1650-1790m
Block7 1790-2220m

w|ms deita ‘gamma
B 1&{ Y —F S )
Block1 1 } S‘; !
a0 t % ]
% ’ é-
o i L Aot 1 i
Block 2 ! }\ i} § } } }
< 1200 ‘L' e | 1
Block3§ [ = = = 1(_ ; }T—
0| = : = ¥ = . £
Block 4 —— e 3 = = S =
Block 5 o[ i = 3 E = = =
Block 6 __-:_f-i i = E i E 3 4 £ £
b Fl i ? T | i H
£ /
Block 7 2| _ % | E =
) 2 ; Il X[ 3] ] =
ko = e 5] = = | < =

Figure 4.4: Block division.

Since all the values (vp0, Uso, €, 0, 7y) of each depth are provided, by using the inverse
form of Eq.2.4 (as shown in Eq.4.1), all the stiffness coefficients for each depth can be
obtained. Then, Eq. 3.12 is applied to calculate 5 independent elements of each depth.

Cs3 = ‘/;;20/77
Cu = Vsz()pa
C11 = 2eC33 + Cs3, 4.1

Ci3 = /(20(Cs3 — Cuyg) + (C33 — C44)?) — Cuy,
Co = 27Cyq + Cua,

where V,,0, Vo denote vertical P- and S-wave velocities, respectively. p is layer den-

sity, €, 6 and v are dimensionless anisotropy parameters which characterize the degree of
anisotropy.
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In the unit of each block, since each of the layers are weighted equally, arithmetic
averaging equations (Eq.4.2) are applied to get the averaging properties A; to A5 and p..

block.

— 1 < '
Ai = HzlAi’j’Z = 1,2,..57
j=

1 n
j=1

where E represents the averaging properties of each block; n denotes the number of data
in each block; A; ; is the independent element for each layer; j means the j-th layer. p. is
the effective density of each block, p; means the density of each layer.

Using Eq.3.14 and Eq.2.4, stiffness coefficients (Table 4.2) and Thomsen parameters
(Table 4.3) of the effective VTI medium are obtained. Initially, each depth is considered
to be a homogeneous isotropic (ISO) or VTI layer. By doing Backus averaging, all the
layers are divided into 7 effective homogeneous VTI media and the parameters (there are
Upo, Us0, Ps € 0, 7y data for each depth) are reduced to 7 parameter sets, one set for each

Table 4.2: Stiffness coefficients after Backus averaging

Cll CI3 | C33 | C44 | C66

(GPa) | (GPa) | (GPa) | (GPa) | (GPa)
Blockl | 11.756 | 6.217 | 10.824 | 2.405 | 2.595
Block2 | 22.776 | 11.453 | 17.680 | 3.488 | 5.065
Block3 | 20.157 | 7.784 | 23.682 | 7.504 | 6.035
Block4 | 29.958 | 11.406 | 26.670 | 7.892 | 9.159
Block5 | 22.924 | 8.961 | 25.091 | 7.767 | 6.878
Block6 | 30.265 | 11.963 | 28.533 | 8.384 | 9.095
Block7 | 36.452 | 13.000 | 30.541 | 9.257 | 1.168

Table 4.3: Thomsen parameters after Backus averaging

Upo Us0 P € v
(km/s) | (km/s) | (g/cm™3)
Blockl | 2.242 1.057 1.154 0.043 | 0.019 | 0.040
Block2 | 2.701 1.200 2.423 0.144 | 0.042 | 0.226
Block3 | 3.237 1.823 2.255 -0.075 | -0.036 | -0.099
Block4 | 3.374 1.835 2.343 0.062 | 0.020 | 0.080
Block5 | 3.365 1.872 2.216 -0.043 | -0.023 | -0.057
Block6 | 3.472 1.882 28.367 0.030 | 0.007 | 0.042
Block7 | 3.559 1.960 2.410 0.097 | 0.033 | 0.131

Figure 4.5 shows the result of Backus averaging:

4.2)
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Figure 4.5: Backus averaging of vertical P-wave velocity, S-wave velocity, bulk density, anisotropy
parameters €, § and . Red lines indicate the averaged values for each block. For Gamma-ray curve,
red horizontal lines indicate the block division.

4.4 Construction of the effective ORT medium

Since Block4 is probably sand-shale interbed, it is common to be regarded as reservoir.
Based on Backus theory introduced in Chapter 3, the equivalent medium after upscaling is
transversely isotropic medium with a vertical symmetry axis (VTI). The stiffness tensor is

29.958 11.640 11.406 0 0 0
29.958 11.406 0 0 0
26.670 0 0 0

Co = 7.892 0 0 @3)
7.892 0
9.159

Here C;, means the tensor of the background medium.

Both horizontal fine layering and vertical fractures combined can contribute to a equiv-
alent ORT medium under the long-wavelength limit (Schoenberg and Helbig, 1997). There-
fore, referring to the Schoenberg-Helbig model, with the VTI medium as background, one
vertical fracture set is embedded by introducing three fracture weakness elements. They
are Oy, Oy, O0g. Oy is the strain that resulting from the normal fracture compliance;
dy is the strain that resulting from the vertical tangential fracture compliance, and p is
the strain that is the result of the horizontal tangential fracture compliance. Schoenberg-
Muir (Schoenberg and Muir, 1989) derived the expression showing the equivalent medium
properties by adding the fracture compliance matrix to the background compliance matrix
(Schoenberg and Helbig, 1997). The expression of stiffness matrix of effective medium is
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given by:

~ [a o
a5 &

Ci1p(1 —0on) Chap(1 — 5N2) Cisp(1 —0w)
¢ = Cip(1 —dn g%ii) Cigp(1—onge) |
2
C33b(1 —on CllbéhSSb)
Cuaap 0 0
Cy = Cuap(1 — 0y) 0 . 4.4
Coob(1 — dm)
The values of three fracture weaknesses are selected (Schoenberg and Helbig, 1997):
1 1 3

0N =—,0y = —,0g = —. 4.5
N 10 , OV 5 s OH 11 ( )

Substituting Eq. 4.3 and 4.5 into expressions 4.4, the density-normalized symmetric stiff-
ness matrix of the effective ORT medium is given by:

26.987 10.500 10.265 0 0 0
29.531 10.962 0 0 0
=~ 26.239 0 0 0
Ce= 7.892 0 0 (4.6)
6.314 0
6.661

The result will be used in Chapter 5 for further study.

By using Eq.2.9, the Tsvankin parameters of the effective ORT medium are com-
puted. Here the anisotropy parameters of the background VTI medium and effective ORT
medium are listed below:

Table 4.4: Parameter comparison of background and effective media.

Upo Vso €1 €2 01 02 3 71 Y2

Model b | 3.374 | 1.835 | 0.062 | 0.062 | 0.020 | 0.020 0 0.080 | 0.080

Model e | 3.347 | 1.642 | 0.063 | 0.014 | 0.020 | -0.117 | -0.108 | 0.028 | -0.078

Note that "Model b” and "Model e” denote the background VTI medium and the ef-
fective ORT medium, respectively. From Table 4.4, notice that both P and S-wave vertical
velocities decrease when the vertical fracture set is added in the VTI background medium.
As for other parameters, part of them are observed different between the media, as seen
from es, d2, 03, 1 and 7o. It seems that by adding one set of vertical fractures, parame-
ters in symmetry plane [X,Z] are more affected. It is probably because the fractures bring
more effects to the perpendicular plane [X,Z] compared to the parallel plane. J3 appears
in the equivalent ORT medium while in background VTI medium it is always 0. These
observations provide a way of distinguishing between these two media and by extension
detecting one set of vertical fractures.
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Chapter

Effective media with fractures

The equivalent orthorhombic (ORT) medium obtained in Chapter 4 is rotated with an
azimuthal angle varying from -90 degrees to 90 degrees. Through selecting diverse weight
functions, different fracture orientations are simulated. The goal is to test and reveal how
the fracture orientations affect the effective medium properties.

5.1 Analytical tests

In this section, four occasions of different fracture orientations are tested and the results
are discussed.

51.1 ORT+ORT¢

The model ORT+ORT¢ mentioned in case 3.2.1 in Chapter 3 is composed of a stack
of a repeating sequence of two ORT interbedding layers with the same properties. One
constituent is azimuthally rotated with an angle ¢ with respect to x-axis. Note that in this
chapter, both the original ORT medium and the rotated ORT medium are in the same layer,
as shown in Figure 5.1
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‘ X
Figure 5.1: Schematic diagram of fracture orientations (above); Schematic diagram of fractured
media (case: ORT+ORT¢ are in the same layer)(below).

In this case, the weight function is set as the Figure 5.2 shows. It only contains two
sets of fractures: one is vertical whose normal is x-axis, the other is vertical with rotated
azimuthal angle ¢,,.

W@l

0 On

Figure 5.2: Weight function showing fracture orientations. The azimuthal angles of two fracture
sets are 0 and ¢,,, respectively.

Since the two fracture sets are in the same layer, the volume fraction of each medium
is equal to % Therefore, the averaging properties listed in Eq. 3.6 are changed into

1 1
(Ag) = iAil + §Ai2,i =1,2,.....13, (5.1

where () denotes the averaged values. A;; represents the averaging properties of the
medium embedded with a vertical fracture set; similarly, A;o represents the averaging
properties of the same fractured medium rotated with an azimuthal angle ¢,,. The effec-
tive density p is defined to be

pe = (p) (5.2

In Schoenberg-Helbig (Schoenberg and Helbig, 1997) model, the medium density is not
affected by fractures.
By using Eq.3.8 and 2.11, the results of ORT+ORT¢ are illustrated in Figure 5.3
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Figure 5.3: Anisotropy properties (four extra MONO parameters) of the effective MONO medium.

The vertical P-wave velocity (vpo) is constant. That is due to the effective stiffness
coefficient 6’; does not depend on ¢. The vertical S-wave velocity (vsg) is slightly in-
creasing with the increasing of angle ¢.

€1 and e show a similar trend where they first decrease and then increase, which
provides a minimum value. ~; and 7, similarly increase and then decrease, which can
provide a maximum value. It shows an opposite trend compared to €; and es.

61 and §5 are close to symmetric about around -0.06. J3 first increases and then de-
creases with a single peak. The behavior of d5 is quite different from §; and J5.

(1 and (y are close to symmetric about around ¢ = 45°, they are highly affected by
the changing of ¢. (4 is also obviously affected. It first increases and then decreases with
a single peak at around ¢ = 45°. However, (3 shows similar tread as (4 but only slightly
changes with the increasing of ¢, the peak is also around ¢ = 45°.
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Based on Figure 5.3, when ¢,, = 0, it represents there is only one set of vertical
fractures, the equivalent medium is ORT; when ¢,, € (0,90), it represents there is an
azimuthal angle between two fracture sets, the equivalent medium is MONO.

Additionally, an interesting observation that should be noted is that ¢,, = 90°, ¢; and
€o reach the same value. Likewise, 71 is equal to 72, &1 is equal to §, indicated by the
yellow dots. (; 2,3 4 are all 0 while d3 is not. More details will be analyzed in the following
case.

5.1.2 ORT+ORT ¢ = 90°

. . ya
/ . = — @=0

‘ *+ P =907

@F 90°
z

Figure 5.4: Schematic diagram of the fractured medium (case: ORT+ORTggo are in the same layer).

When ¢,, = 90°, there are two orthogonal vertical fracture sets, the symmetric effective
stiffness matrix is obtained

Cn Cia Ciz 0 0 0
= Cys 0 0 0
C= Cut 0 0 (5.3)
Clya 0
Ces

It is a special case of ORT symmetry which contains six independent parameters. It in-
dicates the two vertical symmetry planes are the same but the horizontal symmetry plane
has azimuthal variation. Eq.5.4 show the expressions of each parameter:

Css = Css,
— = Ci3 — Co3)2 — 2055(C11 + C.
Cri = Coy = _(Cu3 23) - 33(C11 22)7
33
(0
Ci3 = Ca3 = %)
—— = 20uCss
Cp=Cs5 = ——, 5.4
“ ° Cys + Css 4
A (Ch3 — Ca3)?
Cor = 4 13 = C23)7
12 12 + 1Ca

34



Ces = Cés,

where sz represents the elastic parameters of the effective ORT medium. Cj; represents
the elastic parameters coming from the original ORT medium without rotation. From
Eq. 5.4, we can see the horizontal propagation coefficients (C11, Ci2, Ca2) are mainly
governed by the difference between Ci3 and Ca3. Effective (323 correspond to the
averaged properties of the two vertical symmetry planes. With the help of Eq. 5.4 and
2.11, the anisotropy parameters are given by

1 (Cy3—Ca3)* —2(C1y + C22)Cls
aTe=5" 8C2, ’

=7 =-(-24 "+ =), (5.5)

(Ci3 + Cas + 2C33)((Ch3 + Cag — 2C33)Cas + (C13 + Cag — 2C33 + 8C44)Css)

01 = do = R
e 8C33(—2C44Cs5 + C33(Cas + Css))

2(C11 + Caz + 2C12)Cs3(—(Ch3 — Ca3)? + C33(Ch1 + Cag — 2C12 — 4C66))

03 = ,
° ((Ciz — Ca3)? — 2C33(C11 + C22))((Cr3 — Ca3)? — 2C33(Ch1 + Caa — 2C6g))

€1,2 are governed by the difference between two vertical symmetry planes and P-wave
propagation in both vertical and horizontal directions. y; o are governed by the S-wave
propagation in both vertical and horizontal directions. s is related to the difference be-
tween two vertical symmetry planes and some horizontal parameters.

513 W=1(¢:—n/2 = 7/2)

In this case, the weight function is set as Figure 5.5 (left) shows. It is constant and equal to
1, which indicates the medium contains fractures with all azimuthal angles. When the x,y-
axes turn clockwise the angle is negative while it is positive when turning counterclockwise
as illustrated in Figure 5.5 (right).

Wion

Figure 5.5: Weight function showing fracture orientations (left); Schematic diagram of rotated az-
imuthal angles from —90° to 90° (right).
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Since the fractures oriented in all the directions and are equally dense, the integral
Eq.5.6 is taken to get the averaging properties of the effective medium.

JE W(9)Apde
(WAy) = —20——— i=1,2,..13, (5.6)
J2: W(g)dg

Since W (¢) = 1, the integral turns into

f_gg A(Mdd) .

(WAg) = i=1,2,..13, (5.7)

s

where W is the weight function, Ag; is the averaging properties. It has 13 items in total
as listed in Eq.3.6, the concrete expressions of Ag; are listed in Appendix B. ¢ is the
azimuthal angle of fractures. The effective density p is defined to be

pe = (p) (5.3)

where () denotes the averaged values. In Schoenberg-Muir model, the medium density is
not affected by fractures.
By using Eq.3.8 and 2.11, the effective stiffness matrix is obtained

Ci1 Cii—2Cs Ciz 0 0 0
Ci Ci3 0 0 0
- Ciz 0 0 0
C= Cut 0 0 5.9
Claa 0
Céee

The result shows the effective medium is VTI medium with 5 independent parameters.
That is probably because between —90° to 90°, the fracture orientations are also symmet-
ric. Considering the fracture intensity is the same, the averaged effect results in that there
is no azimuthal variation. Eq.5.10 show the expressions of each parameter:

Css = Css,
O = o= — (Ch3 — Ca3)? — C33(3C11 + 2C12 + 3C22 + 4C56)
1 22 SCis ;
. ou+c
Ci3 =Ca3 = %’
—— o 2CuCss
Cug = Cs5 = —— 22 5.10
44 5 = Cs + Con (5.10)
o (C13 — C33)? + C33(Ch1 + 6C12 + Cog — 4C6)
12 — 80,33 9
o (Cis— Ca3)® — C33(C11 — 2012 + Cag + 4C66)
66 8033 )
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where Cﬁ’; represents the elastic parameters of the effective ORT medium. Cj; represents
the elastic parameters coming from the original ORT medium without rotation. Eq. 5.10
shows the expressions of C44 55, C13,23 are the same as the previous case 5.1.2. The
horizontal propagation coefficients C'1 22 and Cgg have the similar form, they are mainly
governed by the difference between the C3 and Cas.

Considering Eq. 5.10 and 2.11, the velocities are

Css 2C55C 44
g = 1|98 o= 2050 (5.11)
»o pe Cus +Css ),

where v, vso are vertical P-wave and S-wave velocity, respectively. p. is density of the
effective medium. Cj; denotes the elastic parameters of the ORT medium without rotation.
The anisotropy parameters are given by:

(C13 — O93)? — O33(3C11 + 2C12 + 3Cas — 8C33 + 4C40)

€1 — € = —

16C3, ’
—_ 27 J—
I (S T e e i— re—
4C44Cs5 '
5y = 6y — (C13 + O3 + 2033)((C13 4 Ca3 — 2C33)Cyuy + (C13 + Ca3 — 2C33 + 8C44)Css5)

8C'33(—2C44Cs5 + C33(Caa + Cs5))

The expressions of d; 5 are the same as it in Case 5.1.2. €; 2 are controlled by the difference
between C'y3 and Cos. 71 2 are also controlled by the difference between C'y3 and Cy3. In
addition, they also depend on S-wave propagation coefficients Cyy and C'ss.

514 W=1(¢p:0— 7/2)

In this case, the weight function is set as Figure 5.6 (left) shows. It is constant and equal
to 1, which indicates the medium contains fractures with all azimuthal angles. On the
right side of Figure 5.6, it explains when the x,y-axes turn counterclockwise the angle is
positive.

Wion

90°

0 "¢ z

Figure 5.6: Weight function showing fracture orientations (left); Schematic diagram of rotated az-
imuthal angle from 0 to 90° (right).
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Since the fractures oriented in all the directions and are equally dense, the integral
(Eq.5.13) is taken to get the averaging properties of the effective medium.

2T (¢) Ayid
(WAg) = w i=1,2,..13, (5.13)
JoZ W(g)de
Since W (¢) = 1, the integral turns into
2 (2 Ayd
(WAy) = M,i =1,2,..13, (5.14)

™

where W is weight function, Ag; is the averaging properties. It has 13 items in total
as listed in Eq.3.6, the concrete expressions of Agy; are listed in Appendix B. ¢ is the
azimuthal angle of fractures. The effective density p is defined to be

pe = (p) (5.15)

where () denotes the averaged values. In Schoenberg-Muir model, the medium density is
not affected by fractures.
By using Eq.3.8 and 2.11, the effective stiffness matrix is obtained:

Cni Ci2 Ci3 0 0 Cie
Cn Cis 0 0 Cie
p Csz 0 0 Cse
C= 5.16
Cu Cy5 O (5-16)
Cya 0
Ces

The result shows the effective medium is MONO medium with 8 independent parameters.
Fractures in all the directions within 0 to 90° are summarized. Since the range is not
symmetric, it can lead to some azimuthal variations. It matches the result which Eq. 5.16
shows. Eq.5.17 show the expressions of each parameter:

Cs3 = Css,

(C13 — Ca3)? — C33(3C11 + 2C12 + 3C22 + 4Cs6)
8C733 ’
Ci3 + Cas
2 b
2C44C55(Cas + Cs5)m>
(Cyq — Cs5)2 + (Cyy + Cs5)%m2’
(C13 — C23)? + C33(C11 + 6C12 + Cag — 4C6g)
8C33 ’

— _ C33(C11 — 2C12 + Cag + 4Cs) — (0137C2:3)5(78+ﬂ2)

us

8C733 ’

Cri = Chp = —

Ci3 = Cos =

@:5%:_4 (5.17)

Cha = C11 — 2Cg6 =

66 —
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— 4C44C55(Cua — Css)m

O = — ,
% —4(Cag — Cs5)? + (Cy4 + Cs5) 272
. _ty+c
Ci6 = Oz = %,
G = G287 C13.
™

where sz represents the elastic parameters of the effective ORT medium. Cj; represents

the elastic parameters coming from the original ORT medium without rotation. Eq. 5.17

shows the expressions of C'1 22, Ch2, C13,23 are the same as the previous case 5.1.3.
Considering Eq. 5.17 and 2.11, the velocities are

S Cs3 o 2055C44(Cus + Cs5) (5.18)
P pe (—4(Cua — Cs5)? + (Cs5 + Caa)?*72)pe’ '

where vy, v40 are vertical P-wave and S-wave velocity, respectively. p. is the density of
the effective medium. C;; denotes the elastic parameters of the medium without rotation.
The anisotropy parameters are given by:

(C13 — Ca3)? — C33(3C11 + 2012 + 3Ca9 — 8C33 + 4Cs6)

€1 — € = —

16HC53(C3 — Ca3)? )
((C13 — C23)2 — C33(3C11 + 2C12 + 3Cas + 4Ce6)) (4(C13 — Ca3)2 — Ca3n2H

H = Ci + Cap +2C 9,

5y =

71 = V2,01 = 02,(1 = (o, (5.19)
Gy = Caz — C13
3 03371'
_ 2(Cyy — Cs5)
Cu =

(Cyq + Csp)7

The expressions of €1 o are the same as the previous case 5.1.3. «y; o are too complicated
to show in analytical form, similar for J; » and (; ». However, they are mainly controlled
by the combination of S-wave propagation parameters Cy4 and Css. 03 and (3 are related
to the difference between C13 and Css. (4 is governed by S-wave propagation parameters
C44 and 055.

5.2 Numerical tests
Subsurface formation is known to be more complicated. Usually the fractures are not

distributed uniformly. Therefore, Gaussion function (Eq. 5.20) is applied to simulate
more complex fracture orientations in subsurface media.

W (¢) = B1exp[—a1(¢ — ¢o1)?] + Baexp [—az (¢ — do2)?], (5.20)
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where W (¢) is weight function. 31 2, 1 2, 01,02 are the function parameters. 3; 5 control
the amplitude of the peak and 1 2 control the width. ¢ o2 decide the location of the peak.

In this section, four different parameter sets are selected to emerge various fracture
distributions caused by some possible crustal stress. The model parameters are shown in
Table 5.1 corresponding to Figure 5.7

Table 5.1: Parameters of Gaussion functions

Models 81 B2 o1  ax  ¢o1  do2
Wy 100 50 23 28 o %
W, 50 100 2 32 o =z
Ws 80 80 % %6 0 3
W, 100 100 &8 2% o =z
w
w1
w2
—_— W3
77777 wa
20 40 60 80 ¢.deg
Figure 5.7: Gaussion distributions with four different parameter sets.
The integral is taken to average all independent elements
5 W(p)Agid
(WAy) = w i=1,2,..13, (5.21)
Jo W(g)do
the effective density is
pe = (p) (5.22)

where () denotes the averaged values. In Schoenberg-Muir model, the medium density is
not affected by fractures.

After all the averaging properties are calculated, by using Eq.3.8, the effective medium
parameters are computed as.
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The stiffness matrix for model 1 is given by:

G

25.506 11.547

27.913

10.421
10.807
26.239

0 0

0 0

0 0
7.509 0.468
6.637

—0.050_
0.807
0.207

0
0

7.707

The following are the stiffness matrix for model 2,3 and 4, respectively

C,

Cs; =

26.577 12.035
26.871

26.990 11.565
27.398

10.574
10.654
26.239

10.558
10.670
26.239

26.434 11.396 10.359

28.292

10.868
26.239

0 0

0 0

0 0
7.161 0.618
6.980

0 0

0 0

0 0
7.177 0.488
6.926

0 0

0 0

0 0
7.660 0.407
6.510

By using Eq.2.11, the anisotropy parameters are obtained:

0.443]
0.558
0.274
0
0
8.195

0.498_
0.294
0.217
0
0
7.724

—0.306_
0.964
0.180

0
0

7.557

(5.23)

(5.24)

(5.25)

(5.26)
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Table 5.2: Tsvankin parameters of effective media

Upo Us0

o | €1 €9 o o 3 " V2
Original ORT | 3.347 | 1.683 | 0.032 | 0.005 | -0.016 | -0.091 | 0.017 | 0.081 | 0.013
Model 1 3.347 | 1.683 | 0.032 | 0.005 | -0.016 | -0.091 | 0.017 | 0.081 | 0.013
Model 2 3.347 | 1.726 | 0.012 | 0.006 | -0.047 | -0.062 | 0.073 | 0.087 | 0.072
Model 3 3.347 | 1.719 | 0.022 | 0.014 | -0.045 | -0.066 | 0.001 | 0.058 | 0.038
Model 4 3.347 | 1.667 | 0.039 | 0.004 | -0.002 | -0.101 | 0.003 | 0.080 | -0.007

Table 5.3: Four extra MONO parameters of effective media

G G € Ca
Original ORT 0 0 0 0

Model 1 -0.035 | 0.080 | 0.008 | 0.066
Model 2 0.028 | 0.042 | 0.101 | 0.087
Model 3 0.044 | 0.123 | 0.008 | 0.069
Model 4 -0.071 | 0.102 | 0.007 | 0.058

In Tables above, Original ORT represents the ORT medium without any azimuthal
rotation. The results are showing that in all the models, v, is a constant regardless of
model parameters. That is because v, is controlled by Cs3, C33 is defined on z-axis
and it is not affected by azimuthal rotation. Some of the other parameters are observed
obviously different from the original medium, as seen from the bold numbers in the Tables
above. These bold anisotropy parameters can help to distinguish between different fracture
intensity and orientations.
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Chapter

Conclusion

The main focus of this thesis is the seismic signatures of vertically fractured media. Up-
scaling theory and Schoenberg-Helbig model are the foundation throughout this study.

Effective ORT medium is constructed by combining fine layered background VTI
medium and one vertical fracture set. By comparing the anisotropy parameters between
the background and effective media, it is possible to detect the vertical fracture set in terms
of calculated anisotropy parameters.

Then the ORT medium is rotated based on various weight functions. When there
are more than one set of vertical fractures embedded, the effective medium appears to
be MONO. However, there are two special cases. The effective medium parameters for
special cases of the azimuthally rotated ORT medium are analytically derived, as seen in
Eq. 5.4, 5.5 for the effective ORT medium and Eq.5.10-5.12 for the effective VTI medium.

The non-uniform distribution of fractures (Gaussian function) are introduced and the
effective model parameters are numerically computed. From several examples, the con-
clusion can be drawn that it is very difficult to distinguish between the different fracture
distributions. However, this is the model dependent problem. In particular, the distribu-
tions related to model 2 and 3, can be detected by using 3D non-hyperbolic semblance
analysis and AVAZ method.

For the numerical tests, the values of the results are limited due to the model input.
The continuation of this thesis is suggested to perform similar fracture simulations with
Gaussian functions using variable-controlling approach to get more idea about how the
fracture distributions affect model parameters.
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Appendix A: Parameters of
effective medium

As presented in Chapter 3, the upscaling cases and model parameters shown below are
from specialization project (Zhang, 2018).

A.1 Effective MONO medium

MONO

----------- - MONO
MONO

Figure 1: Upscaling schematic diagram of MONO+MONO case.

Table 1: Parameters of periodical MONO+MONO model

Medium Cp; Caa C33 Cia Css Ciz Ca3
I 15.90 1550 11.10 2.89 234 6.80 5.13
17 9.00 9.84 5.94 2.00 1.60 225 240

Medium Cio Cse Cie Cay Cs6 Cus P (gcm_S)
1 4.68 2.28 1.10 1.90 280 050 2.319
II 3.60 2.18 0.90 1.20 220 0.80 2.439
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___________ - MONO

Figure 2: Upscaling schematic diagram of ORT+ORT¢ case.

Since the parameters of rotated ORT medium are defined with ¢, a table showing the
parameter values can not be presented. However, the parameters of normal ORT medium
and the definitions of parameters in rotated ORT medium are shown in Appendix B.

A.2 Effective ORT medium

ORT

----------- - ORT
ORT

Figure 3: Upscaling schematic diagram of ORT+ORT case.

Table 2: Parameters of periodical ORT+ORT Model

Medium Ciy Ca Cs3 Cia Cas Caa Cs5 Ciz  Ces

p (gem™?)
I 1590 1550 11.10 468 5.13 289 234 680 228 2319
I7 9.00 9.84 594 360 240 200 1.60 225 2.18 2.439
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A.3 Effective VTI medium

VTl
----------- - VTI

VTI

Figure 4: Upscaling schematic diagram of VTI+VTI case.

Table 3: Parameters of periodical VTI+VTI Model

Medium C1; Cs3  Cu Ciz Ces p(gem™)

I 1691 12.17 4.17 3.66 543 2319
11 3273 2743 6.08 1775 7.46 2439
ISO

----------- - VTI
ISO

Figure 5: Upscaling schematic diagram of ISO+ISO case

Table 4: Parameters of periodical ISO+ISO Model

Medium Ci; C3 Cy Cis Ces  p(gem™)

1 12.17 12.17 4.17 383 417 2319

11 2743 2743 6.08 1527 6.08 2439
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Appendix B: Azimuthally rotated
ORT medium

Model parameters of the original ORT medium without rotation in case ORT+ORT¢ are
shown in the table below:

Table 5: Parameters of periodical ORT+ORT¢ model

Medium 011 CQQ 033 C44 C55 C13 023
I 1590 1550 11.10 2.89 234 6.80 5.13

Medium (2 Ces Cie Cas C36 Cus  p(gem™)
I 4.68 2.28 0.00 0.00 0.00 0.00 2.439

The definitions of parameters in azimuthally rotated ORT medium are shown in Eq. 1

P2 =p1
Cs32 = C331
Cs62 = —(C131 — Cas1)cos|P]sin|@]
Caaz = Caarcos[d]? + Css1sin[o)?
Ca52 = (Caa1 — Css1)cos(¢]sin[¢]
Css52 = Css1c08[¢)* + Cuar sin[¢)?
Casy = Cazicos[d]? + Ciaisin[o)?
Ciz2 = Cizicos[¢]? + Cagsin[¢]? ey
Chi2 = Cii1c0s[@]* + 2C121c0s(¢)*sin[¢]* + Coarsin[@]* + Coer15in[2¢]>

1
Ciao = g(clll + 6C121 + Ca21 — 4C61 — (Cr11 — 2C121 + Ca1 — 4Cs61)cos[4¢)])
1 .
Cie2 = 1(0111 — Ca21 + (C111 — 2C121 + Caz1 — 4Cs61)cos[2¢)])sin[2¢])
Caza = Caa1c08[]* + 2C121c0s[p)*sin[¢)> + Cri1sin]¢]* + Ceersin[26)

1 .
Cap2 = Z(—Cul + Ca21 + (C111 — 2C121 + Caz1 — 4Cg61)c0s[2¢])sin[2¢])
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1 .
Coe2 = 1(40661608[2¢}2 + (0111 —2C191 + 0221)81n[2¢]2)

where p; o represent the density of medium 1 (original ORT medium) and medium 2
(rotated ORT medium), respectively. Cj;1,;jo meansthe elatstic parameters of medium
1 and medium 2, respectively. ¢ is the azimuthal angle with respect to x-direction.

Appendix C: Computational code

C.1 Matlab code

Data manipulating, quality control and upscaling process are done using Matlab R2018b.
The codes are shown as following:

WITTTTTbackus averaging function
function [vpO, vsO,eps, delta, gamma,ral ,clla,cl3a,c33a,
c44a ,c66a] = average(Data, i, j)

¢33 = Data(:,3).72 .xData(:,5);
c44 = Data(:,4)."2 .xData(:,5);
cll = 2«Data(:,6).%c33 + c33;

cl3 = (2«Data(:,7).%c33.%(c33—c44) + (c33—c44).72).7(0.5) —
cd4
c66 = 2«Data(:,8).%xcd44 + c44;

Al=1./c33;
A2=c13./c33;
A3=1./c44;
Ad=cll—cl13.72./c33;
A5=c66;

Alal = nanmean(Al(i:j));
A2al nanmean (A2(i:j));
A3al nanmean (A3(i:j));
Adal = nanmean(A4(i:j));
AS5al = nanmean(AS5(i:j));
ral=nanmean(Data((i:j),5));

c33a=1/Alal;

c44a=1/A3al;

cl3a=A2al/Alal;
clla=(A2al"2+Alal«Adal)/Alal;
c66a=A5al;
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29

30

31

32

33

34

20

21

22

23

24

25

26

27

28

29

30

31

32

33

vpO (c33a/ral)"(0.5);

vsO (c44a/ral)”(0.5);

eps = (clla—c33a)/(2%c33a);

delta = ((cl3a + c44a)"2 — (c33a—c44a)”2)/(2xc33a=x(c33a—

cd4da));
gamma = (c66a—cd44a)/(2xcdda);
end
clear;
G Timporting the file
filename = ’/Users/HP/Documents/MATLAB/ Data5 .TXT’ ;
delimiter = ~ 7

formatSpec = "%f%(%t%t%t %t %%t %[ \n\1] " ;
fileID = fopen(filename , 'r’);
dataArray = textscan (fileID , formatSpec, 'Delimiter’,

delimiter , "MultipleDelimsAsOne’, true, 'TextType’ ,
string >, *EmptyValue’, NaN, "ReturnOnError’, false);

bl

fclose (filelD);
Data5 = [dataArray {l:end —1}];
clearvars filename delimiter formatSpec fileID dataArray

ans;
9997 ofunction of replacing 7,7 by 7.7
function commaZ2point_overwrite( filespec )
file = memmapfile( filespec , “writable’, true );
comma = uint8(’,");
point = uint8(’.");
file .Data( transpose( file.Data==comma) ) = point;
end
W I om anipulating data and quality control
y = 0;

for i = 2 : (length(Data5(:,1))—1)
for j =2 : 8

if (Data5 (i, j) < —100) && (Data5(i+1,j) >—100) && (Data5(

i—1,j) >—100)
Data5(i,j) = (Data5(i+1,j) + Data5(i—1,j))/2
y = y+1;

end

end

end

x = 0;
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34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

66

67

68

for k = l:length(Data5S(:,1))
for 1 = 1:8
if Data5(k,1) <—100
Data5(k,1) = NaN;
X = x+1;
end
end
end
while max(Data5(:,6)) > 0.6
for i = 2:(length(Data5(:,1))—1)
if Data5(i,6) > 0.6
for j = 6:8
Data5(i,j) = (Data5(i—1,j)+Data5(i+1,j))/2;
end
end
end
end

for i = 3:(length(Data5(:,1))—-2)
if Data5(i,3) > 4500 && Data5(i—1,3) < 4500 &&
Data5(i+1,3) <4500
Data5(i,3) = (Data5(i+1,3) + Data5(i—1,3))/2;
elseif Data5(i,3) > 4500
Data5(i,3) = NaN;
end
if Data5(i,4) > 2500 && Data5(i—1,4) < 2500 &&
Data5(i+1,4) <2500
Data5(i,4) = (Data5(i+1,4) + Data5(i—1,4))/2;
elseif Data5(i,4) >2500
Data5(i,4) = NaN;
end

end

W75 creating blocks and backus averaging

[vpO(l), vsO(l), eps(l), delta(l), gamma(l), r(l),clla(l),
cl3a(l),c33a(l),cd44a(l),c66a(l)] = average(DataS, 1,
4261);

[vpO(2), vsO(2), eps(2), delta(2), gamma(2), r(2),clla(2),
cl3a(2),c33a(2),c44a(2),c66a(2)] = average(Data5, 4261,
5934);

[vpO(3), vsO(3), eps(3), delta(3), gamma(3),r(3),clla(3),
cl3a(3),c33a(3),c44a(3),c66a(3)] = average(Data5, 5934,
6997);

[vpO(4), vsO(4), eps(4), delta(4), gamma(4),r(4),clla(4),
cl3a(4),c33a(4),cd44a(4),c66a(4)] = average(Data5, 6997,
7686);
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[vpO(5), vsO(5), eps(5), delta(5), gamma(5),r(5),clla(5),
cl3a(5),c33a(5),cd44a(5),c66a(5)] = average(Data5, 7686,
8421);

[vpO(6), vsO(6), eps(6), delta(6), gamma(6),r(6),clla(6),
cl3a(6),c33a(6) ,c44a(6) ,c66a(6)] = average (Data5, 8421,
9340);

[vpO(7), vsO(7), eps(7), delta(7), gamma(7),r(7),clla(7),
cl3a(7),c33a(7),cd44a(7),c66a(7)] = average(Data5, 9340,
12165);

z1lvp0 = [ones(1,4261)*vp0O(1l) ones(1,1673)*vp0(2) ones
(1,1063)+vp0(3) ones(1,689)xvp0(4) ones(1,735)xvp0(5)
ones (1,919)xvp0(6) ones(1,2825)xvp0(7) ];

z1vsO = [ones(1,4261)xvsO(1) ones(1,1673)xvs0(2) ones
(1,1063)*%vs0(3) ones(1,689)xvs0(4) ones(1,735)*xvs0(5)
ones(1,919)*vs0(6) ones(1,2825)*vs0(7)1];

zleps = [ones(1,4261)xeps(1l) ones(1,1673)xeps(2) ones
(1,1063)xeps(3) ones(1,689)xeps(4) ones(1,735)=xeps(5)
ones (1,919)xeps(6) ones(1,2825)xeps(7)1;

zldelta = [ones(1,4261)=xdelta (1) ones(1,1673)=xdelta(2) ones
(1,1063)«delta(3) ones(1,689)xdelta(4) ones(1,735)=«delta
(5) ones(1,919)xdelta(6) ones(1,2825)«xdelta(7)];

zlgamma = [ones(1l,4261)+gamma(l) ones(1,1673)xgamma(2) ones
(1,1063)+*gamma(3) ones(1,689)xgamma(4) ones(1l,735)+«gamma
(5) ones(1,919)xgamma(6) ones(1,2825)xgamma(7) ];

zlr = [ones(1,4261)*r (1) ones(1,1673)*r(2) ones(1,1063)x*r
(3) ones(1,689)xr(4) ones(1,735)*r(5) ones(1,919)x*r(6)
ones (1,2825)xr(7) 1;

99777 eplotting log curves

figure;

subplot(1,7,1);

plot(Data5(:,2) ,Data5(:,1),’g’7);

linel = line([0,200],[1016,1016], linestyle’ ,’ =",  Color’,’
red’,’LineWidth’ ,1.5);

line ([0,200],[1271,1271], linestyle’,’—", Color’, red’,”’
LineWidth’ ,1.5);

line ([0,200],[1433,1433], linestyle’,’—", Color’, red”,”’
LineWidth” ,1.5);

line ([0,200],[1538,1538], linestyle’,’—", Color’, red’,’
LineWidth’ ,1.5);

line ([0,200],[1650,1650], linestyle’,—", Color”, red’,”’
LineWidth’ ,1.5);

line ([0,200],[1790,1790], linestyle’,’ =", Color’, red’,”’
LineWidth’ ,1.5);

hold on;
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YDogrid
ylabel (" Depth (m)’);
%flip the axes

set(gca,’ XAxisLocation’, top’,  YAxisLocation’,’ left’,

, reverse’);
grid on
grid minor
%set the Y range
ylim ([365,2220]);
title ("gamma ray (API)’);
subplot(1,7,2);
plot(Data5(:,3) ,Data5(:,1),’g’);
hold on
plot(zlvpO,Data5S(:,1), r’, Linewidth’, 1.5);
ylim ([365,2220]);

set(gca,’ XAxisLocation’, top’,’ YAxisLocation’, left’

, reverse’ , yticklabel’ ,[]);
title ("Vp0 (m/s)’);
grid on
grid minor
subplot(1,7,3);
plot(Data5(:,4) ,Data5(:,1),°g");
hold on
plot(zlvsO,Data5(:,1), r’, Linewidth’, 1.5);
ylim ([365,2220]);
grid on
grid minor

set(gca,’  XAxisLocation’, top’,  YAxisLocation’,’  left’

, reverse’ ,  yticklabel’ ,[]);
title ("VsO (m/s)’);
subplot(1,7,4);
plot(Data5(:,5) ,Data5(:,1),°g");
hold on
plot(zlr,DataS(:,1), r’, Linewidth’, 1.5);
ylim ([365,2220]) ;
grid on
grid minor

set(gca,’ XAxisLocation’, top’,  YAxisLocation’, left’

, reverse’ , yticklabel’ ,[]);
title ('rho (g/cm”™3)7);
subplot(1,7,5);
plot(Data5(:,6) ,Data5(:,1),’g");
hold on
plot(zleps,Data5(:,1), r’, Linewidth’, 1.5);
ylim ([365,2220]);

Tydir’

,7ydir’

, ydir”’

L ydir’
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xlim([—-1,1]);
grid on
grid minor

set(gca,’ XAxisLocation’, top’,’ YAxisLocation’,  left’,’ ydir’

, reverse’ , yticklabel’ ,[]);
title (“eps’);
subplot(1,7,6);
plot(Data5(:,7) ,Data5(:,1),’g’);
hold on
plot(zldelta ,Data5(:,1), r’, Linewidth’, 1.5);
ylim ([365,2220]);
xlim ([ —=0.5,0.5]);
grid on
grid minor

set(gca,’ XAxisLocation’, top’,’ YAxisLocation’,  left’,’ ydir’

, reverse’ , yticklabel’ ,[]);
title ("delta’);
subplot(1,7,7);
plot(Data5(:,8) ,Data5(:,1),’g’);
hold on
plot(zlgamma, Data5(:,1), r’, Linewidth’, 1.5);
ylim ([365,2220]);
xlim([—=1,1]);
grid on
grid minor

set(gca,’  XAxisLocation’, top’,’ YAxisLocation’,’ left’,’ ydir’

, reverse’);
title ("gamma’);

C.2 Mathematica code

The construction of the effective orthorhombic (ORT) and fracture simulations are carried

out using Wolfram Mathematica 10.0.
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8 Testl: ORT+ORT¢

deltan = 1/10; deltav=1/5; deltah=3/11;
clll = cllb* (1 -deltan);

cl121 = cl2b* (1 -deltan);

c131 = c13b* (1 -deltan);

©221 = cllb (1 -deltanx (c12b”2/cllb*2));
c231 =cl3b* (1-deltan* (cl2b/cllb));

€331 = c33b* (1-deltanxcl3b”2/ (cllbxc33b));
c441 = c4db;

c551 = c44b * (1 -deltav);

€661 = c66b * (1 -deltah);

cllb = 29.985;
c13b = 11.406;
c33b = 26.673;
c44b = 7.8921;
c66b = 9.1594;
cl2b = 11.6662;

modelORT1 = {cl11l -» 26.9865, c221 -» 29.5311, c331 » 26.2391, c441 > 7.8921,
¢551 » 6.31368, c131 » 10.2654, c231 » 10.9622, c121 - 10.4996,
c661 » 6.66138, c161 » 0, c261 » 0, c361 » 0, c451 » 0, rhol » 2.3428};

modelORT2 =
{c112 ->clllCos[¢]*+2cl21Cos[¢]?Sin[¢]? +c221Sin[¢]% +c661Sin[2 ¢]2,
cl22 -> % (cl11+6cl21 +c221-4c661- (cl1l-2cl2l+c221-4c661) Cos[44]),
€132 -> c131 Cos [¢]? + c231 Sin[¢]?,
c162 -> - % (c111 - c221 + (c111-2cl21+c221-4c661) Cos[2¢]) Sin[2 ¢],

€222 -> c221 Cos[¢]* +2 cl21 Cos[$]? Sin[¢]2 +clll Sin[4]* + c661Sin[2 ¢]2,
232 -> c231 Cos[¢]% +c131 Sin[¢]?,

1
€262 -> — (-cl1l+c221+ (cl1l-2c121+c221-4c661) Cos[26]) Sin[2¢], ¢332 ->
4

€331, ¢362 -> - (c131 - c¢231) Cos[¢] Sin[¢], c442 -> c441 Cos[¢]? + c551 Sin[4]?,
c452 -> (c441 - c551) Cos[¢] Sin[¢], ¢552 -> c551 Cos [¢]2 + c441 Sin[¢]?,

1
©662 -> — (4c661Cos[2¢]%+ (c11l-2cl21+c221) Sin[2¢]?%), rho2 -» 2.3428};
4

alfa=1/2;

Al = (1-alfa) /c331+alfa/c332;

A2 = (1-alfa) c131/c331+alfacl32/c332;

A3 = (1-alfa) c361/c331+alfac362/c332;

A4 = (1-alfa) c231/c331+alfac232/c332;

A5 = (1-alfa) c441/ (c441c551-c451"2) +alfac4d2/ (c442c552-c452"2);
A6 = (1-alfa) c551 / (c441c551 - c4517°2) +alfac552/ (c442 c552 - c452°2);
A7 = (1-alfa) c451/ (c441c551-c451"2) +alfac452/ (c442c552-c452"2);
A8 = (1-alfa) (clll-cl31"2/c331) +alfa (cl12-cl32"2/¢332);

A9 = (1-alfa) (cl61-cl31c361/c331) +alfa (c162-cl32c362/c332);
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Al0 = (1-alfa) (c261-c231c361/c331) +alfa (c262-c232c362/c332);
All = (1-alfa) (c661-c361"2/c331) +alfa (c662-c362"2/c332);
Al2 = (1-alfa) (c221-c¢231"2/c331) +alfa (c222-c232"2/¢332);

A13 = (1-alfa) (c121+c661-cl31c231/c331-c361°2/c331) +
alfa (c122 +c662 - c132 c232 / ¢332 - ¢362°2 / ¢332) ;

rho = (1 -alfa) rhol + alfarho2;
c33MONO = 1 /Al;

Cc11MONO = A8 +A2°2 /Al;
c12MONO = A13 - All +A2 A4 /Al;
c13MONO = A2 / Al;

Cc16MONO = A9 + A2 A3 / Al;
C22MONO = A12 +A4"2 /Al;
C23MONO = A4 / Al;

C26MONO = A10 + A4 A3 /Al;
c36MONO = A3 / Al;

C44MONO = A5 / (A5 A6 -A7"2);
C45MONO = A7 / (A5 A6 -A7"2);
Cc55MONO = A6 / (A5 A6 - A7"2);
Cc66MONO = A11 +A3"2 /Al;

vp0 = Sqrt [c33MONO / rho] ;

vs0 = Sqrt [c55MONO / rho] ;

eps2 = Simplify[ (c11MONO - c33MONO) / 2 / ¢33MONO] ;

delta2 =
( (c13MONO + c55MONO) ~ 2 - (c33MONO - c55MONO) “2) / 2 / (c33MONO - c55MONO) / c33MONO;

gamma2 = (c66MONO - c44MONO) / 2 / c44MONO;
epsl = Simplify[ (c22MONO - c33MONO) / 2 / ¢33MONO] ;

deltal =
( (c23MONO + c44MONO) ~ 2 - (c33MONO - c44MONO) " 2) / 2 / (c33MONO - c44MONO) / c33MONO;

gammal = (c66MONO - c55MONO) / 2 / c55MONO;

delta3 =
( (c12MONO + c66MONO) ~ 2 - (c11MONO - c66MONO) ~2) / 2 / (c11MONO - c66MONO) / c11MONO;

epl = (c16MONO (c33MONO - c55MONO) - c36MONO (c13MONO + c55MONO) ) / c55MONO /
(c33MONO - c55MONO) ;

ep2 = (C26MONO (c33MONO - c44MONO) - c36MONO (c23MONO + c44MONO) ) / c44MONO /
(c33MONO - c44MONO) ;

ep3 = ¢c36MONO / c33MONO;
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ep4 = c45MONO (c44MONO + c55MONO) / (2 c44MONO c55MONO) ;

Plot[{vp0 /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180,
vs0 /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180},
{fi, 0, 90}, PlotLegends » {"vp0", "vs0"},
PlotStyle » {Directive[Red, Thick], Directive[Blue, Thick]}, AxesLabel -
{Style["¢,deg", FontSize » 15], Style["Vp0,Vs0O, km/s", FontSize » 15]},
LabelStyle -» Directive[Black, Medium, Bold], ImageSize - 400]

Plot[{epsl /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180,
eps2 /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180},
{fi, 0, 90}, PlotLegends » {"el", "e2"},
PlotStyle » {Directive[Red, Thick], Directive[Blue, Thick]},
AxesLabel - {Style["¢,deg", FontSize -» 15], Style["el,e2", FontSize » 15]},
LabelStyle » Directive[Black, Medium, Bold], ImageSize - 400]

Plot[{deltal /. modelORT1 /. modelORT2 /. ¢ » Pi £fi / 180,
delta2 /. modelORT1 /. modelORT2 /. ¢ -» Pi fi /180,
delta3 /. modelORT1 /. modelORT2 /. ¢ » Pi £fi / 180},
{fi, 0, 90}, PlotLegends » {"61", "62", "63"}, PlotStyle -»
{Directive[Red, Thick], Directive[Blue, Thick], Directive[Black, Thick]},
AxesLabel - {Style["¢,deg", FontSize » 15], Style["561,62,53", FontSize » 15]},
LabelStyle » Directive[Black, Medium, Bold], ImageSize - 400]

Plot[{gammal /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180,
gamma2 /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180},
{fi, 0, 90}, PlotLegends -» {"y1", "y2"},
PlotStyle » {Directive[Red, Thick], Directive[Blue, Thick]},
AxesLabel - {Style["¢,deg", FontSize » 15], Style["yl,y2", FontSize -» 15]},
LabelStyle » Directive[Black, Medium, Bold], ImageSize - 400]

Plot[{epl /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180,

ep2 /. modelORT1 /. modelORT2 /. ¢ » Pi £i /180,

ep3 /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180,

ep4 /. modelORT1 /. modelORT2 /. ¢ » Pi £i / 180},
{fi, 0, 90}, PlotLegends » {"&1", "&2", "£3", "&4"},
PlotStyle » {Directive[Red, Thick], Directive[Blue, Thick],

Directive[Black, Thick], Directive[Black, Dashed]},

AxesLabel - {Style["¢,deg", FontSize » 15], Style["&1,§2,£3,54", FontSize -» 15]},
LabelStyle » Directive[Black, Medium, Bold], ImageSize - 400]

8 Test Il: ORT+ORT (¢=90 degrees), the codes for effective elastic parameters and anisotropy parameters
need to be modified in order to get the expressions:

c33MONO = 1 /Al /. modelORT2 /. ¢ » Pi/ 2;

c11MONO = A8 +A2"2 /Al /. modelORT2 /. ¢ » Pi/2;
C12MONO = A13 - All +A2A4 /Al /. modelORT2 /. ¢ » Pi/2;
C13MONO = A2 /Al /. modelORT2 /. ¢ » Pi/2;

C16MONO = A9 + A2 A3 /Al /. modelORT2 /. ¢ » Pi/ 2;
C22MONO = A12 +A4"72 /Al /. modelORT2 /. ¢ » Pi/ 2;
©23MONO = A4 /Al /. modelORT2 /. ¢ » Pi/ 2;

C26MONO = A10 + A4 A3 / Al;

c36MONO = A3 / Al;

C44MONO = A5 / (A5 A6 -A7"2) /. modelORT2 /. ¢ > Pi/2 /. c451 - 0;
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C45MONO = A7 / (A5 A6 - AT"2);

Cc55MONO = A6 / (A5 A6 - A7"2) /. modelORT2 /. ¢ »Pi/2 /. c451 - 0;

Cc66MONO = A11+A3"2 /Al /. modelORT2 /. ¢ »>Pi/2 /. c361-0;

©66MONO /. modelORT2 /. ¢ »Pi/2 /. c361-0;

vp0 = Sqrt [c33MONO / rho] ;

vs0 = Sqrt [c55MONO / rho] /. c451 » 0;

eps2 = Simplify[ (c11MONO - c33MONO) / 2 / ¢33MONO] /. modelORT2 /. ¢ » Pi / 2;

delta2 = ((c13MONO + c55MONO) ~2 - (c33MONO - c55MONO) ~2) /2 / (c33MONO - c55MONO) /
©33MONO /. modelORT2 /. ¢ » Pi /2 /. c451 - 0;

gamma2 =
(c66MONO - c44MONO) / 2 / c44MONO /. c451 50 /. ¢361 > 0 /. modelORT2 /. ¢ » Pi/2;

epsl = Simplify[ (c22MONO - c33MONO) / 2 / ¢c33MONO] /. modelORT2 /. ¢ » Pi/2;

deltal = ((c23MONO + c44MONO) "2 - (c33MONO - c44MONO) “2) / 2 / (c33MONO - c44MONO) /
©33MONO /. modelORT2 /. ¢ »Pi /2 /. c451 - 0;

gammal = (c66MONO - c55MONO) / 2 / c55MONO;

delta3 = ((c12MONO + c66MONO) ~2 - (c11MONO - c66MONO) ~2) /2 / (c11MONO - c66MONO) /
c11MONO /. modelORT2 /. ¢ »Pi/2 /. c361-0;

epl = (c16MONO (c33MONO - c55MONO) - c36MONO (c13MONO + c55MONO) ) / c55MONO /
(c33MONO - c55MONO) ;

epl /. modelORT2 /. ¢ >Pi/2/.c451 50 /.c36150/.cl6l->0;

ep2 = (C26MONO (c33MONO - c44MONO) - c36MONO (c23MONO + c44MONO) ) / c44MONO /
(c33MONO - c44MONO) ;

ep3 = c36MONO / c33MONO;
ep4 = c45MONO (c44MONO + c55MONO) / (2 c44MONO c55MONO) ;

ep4 /. modelORT2 /. ¢ »Pi/2/.c45150/.¢c361-50/.cl6l->0;
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B Testin: W=1, ¢: [-7, 7]
Pi/2
BO = (1/Pi) (1/c33)j 1d¢;
-Pi/2
Pi/2
Bl=(1/Pi) (1 /cas)j (c13 cos[¢]% +c23 8in[6]%) dé;
-Pi/2

Pi/2

B2 = (1/Pi) (1 /c33)j (- (c13 - c23) Cos[¢] Sin[¢]) dé;
-Pi/2
Pi/2

B3 = (1/Pi) (1/c33) (c23 cos[4]% +c138in[¢]?) d¢;

-Pi/2

B4 =

(1/Pi) J'H‘/Zz ((c44 cos[¢]? +c555in[¢]?) / ((c44 Cos[#]? + c55 Sin[$]?) (c55 Cos[4]% +
lmc‘m Sin[¢]?) - ((c44 - c55) Cos[¢] Sin[¢]) *2) ) dé;

B5 =

(1/Pi) J://ZI ((c55 cos[¢]? + ca4 Sin[¢]?) / ((c44 Cos[4]% +c55 Sin[¢]?) (c55 Cos[4]% +

c448in[6¢]%) - ((c44 - c55) Cos[¢] Sin[4]) “2)) dé;

Pi/2
B6 = (1/Pi) J (((c44 - c55) Cos[¢] Sin[¢]) / ((c44 cos[¢]? +c55 sin[¢]?)
-Pi/2

(c55 Cos [¢]% + c44 Sin[6]%) - ((c44 - c55) Cos[¢] Sin[4]) “2) ) dé;

Pi/2
B7 = (1/Pi) j ((c11cos[¢1* +2c12Cos[¢]” Sin[¢]” + c22 Sin[¢]* + c66 Sin[2 ¢]?) -
-Pi/2

(c13 cos[¢]% +c23 sin[¢]%) "2/ (c33)) d¢;

Pi/2 1
B8 = (1/1:1)J~ ((—— (c11-¢22+ (cll-2cl2+c22-4c66) Cos[2¢]) Sin[2¢]) -
-Pi/2 4

(c13 cos[¢]% +c23 8in[6]%) (- (c13 - c23) Cos[4] Sin[¢]) / (c33)] dé;
Pi/2 1
B9 = (1/Pi) [(— (-cll+c22+ (cll-2cl2+c22-4c66) Cos[2¢]) Sin[2 ¢]] -
-pi/2\\ 4
(c23 cos[¢]% +c13 8in[¢]?) (- (c13 - c23) Cos[4] Sin[¢]) / (c33)] de¢;
Pi/2 1
B10 = (1/Pi) ((Z (4 c66Cos[26]%+ (c11-2cl2+c22) Sin[2 ¢]2)] -
-Pi/2
(- (€13 - c23) Cos[¢] Sin[¢]) *2/ (c33)] de;
Bll = (1/Pi)
Pi/2
J ((c22 cos[¢1* + 2 c12 Cos[¢]” Sin[¢]? + c11 Sin[¢]* + c66 Sin[2 ¢]?) - (c23

Pi/2

Cos[¢]%+c138in[¢]?) "2/ (c33)) d¢;
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Pi/2 (1
Bl1l2 = (1/Pi) [(— (cll1+6cl2+c22-4c66- (cll-2cl2+c22-4c66) Cos[4¢]) |+
-pi/2\\ 8

1
(— (4 c66 Cos[2¢]%+ (c11-2cl2+c22) Sin[2 ¢]2)) -
4
(c13 cos[¢]% +c23 Sin[¢]?) (c23 Cos[¢]* +c13 Sin[]?) / (c33) -
(- (c13 - c23) Cos[¢] Sin[¢]) "2/ (c33)] dé;
E) TestIv: w=1, ¢: [0, ;]
Pi/2
BO = (2/Pi) (1/c33)j 1d¢;
(]

Pi/2
Bl= (2/Pi) (1 /caa)J’ (c13 cos[4]% +c23 Sin[4]?%) dd;
0

Pi/2
B2 = (2/Pi) (1/¢e33) j (- (c13 - c23) Cos[¢] Sin[¢]) d¢;
o

B3 = (2/Pi) (1/¢33) J:m (c23 cos[4]% +c13 Sin[¢]%) d¢;

B4 =

(2/Pi) J‘Pm ((c44 cos[¢]? + c55 Sin[¢]?) / ((c44 Cos[4]? + €55 Sin[¢]?) (c55 Cos[4]” +
’ c448in[¢]%) - ((c44 - c55) Cos[¢] Sin[4]) “2) ) dé;

BS =

(2/Pi) jpm ((c55Cos[¢1% + c44 Sin[¢]?) / ((c44 Cos[¢]” + c55 Sin[¢]*) (c55 Cos[4]” +
’ c44 Sin[¢]?) - ((c44 - c55) Cos[¢] Sin[¢]) "2)) dé;

B6 =

(2/Pi) J:m (((c44 - c55) Cos[¢] Sin[¢]) / ((c44 Cos[4]® +c55Sin[¢]?) (c55 Cos[4]% +

c448in[¢]%) - ((c44 - c55) Cos[¢] Sin[4]) “2) ) dé;
Pi/2
B7 = (2/Pi) j ((c11cos[¢]* +2cl2Cos[¢]” Sin[¢]” + c22 Sin[$]* + c66 Sin[2 ¢]?) -
0
(c13 cos[¢]* +c23 sin[¢]?) "2/ (c33)) d¢;
Pi/2 1
B8 = (2/Pi) J [[-— (c11-c22+ (cll-2cl2+c22-4c66) Cos[2¢]) sin[z¢]] -
0 4
(c13 cos[¢]% +c238in[6]?) (- (c13 - c23) Cos[4] Sin[¢]) / (c33)] do;

Pi/2 1
B9 = (2/Pi) [[— (-cll1+c22+ (cll-2cl2+c22-4c66) Cos[2¢]) Sin[2 ¢]] -
o 4

(c23 cos[¢]% +c13 Sin[¢]?) (- (c13 - c23) Cos[4] Sin[¢]) / (c33)] do;

62



model1l.ni | 3

B10 =
Pi/2 (1
(2/Pi) j ((— (4 c66 Cos[2¢]? + (c11 -2 cl2 +c22) Sin[2 ¢]’)] -
0 4
(- (c13 - c23) Cos[¢] Sin[¢]) “2/ (c33) | d¢;
Bll =
Pi/2
(2/Pi) j ((c22 cos[¢1* + 2 c12 Cos[¢]” Sin[¢]? + c11 Sin[¢]* + c66 Sin[2 ¢]?) - (c23
o

Cos[#]2 +c13Sin[¢]?) "2/ (c33)) d¢;
Pi/2 1

Bl2 = (2/Pi) J [[— (cll+6cl2+c22-4c66- (cll-2cl2+c22-4c66) Cos[4¢]) |+
0 8

1
(Z (4 c66 Cos[2¢]%+ (c11-2cl2+c22) Sin[2 ¢]2)) -
(c13 cos[¢]% +c238in[¢]%) (c23 Cos[¢]* +c13 Sin[6]%) / (c33) -

(- (c13 - c23) Cos [¢] Sin[¢]) "2/ (c33)] de;

[ both two cases share the same following codes
c33MONO = 1/ BO;

C11MONO = B7 + B1"2 / BO;
C12MONO = B12 - B10 + B1 B3 / BO;
©13MONO = Bl / BO;

Cc16MONO = B8 + B1 B2 / BO;
C22MONO = B11 +B3°2 / BO;
©23MONO = B3 / BO;

©26MONO = B9 + B3 B2 / BO;
©36MONO = B2 / BO;

C44MONO = B4 / (B4 B5 -B6"2) ;
C45MONO = B6 / (B4 B5 - B6°2) ;
C55MONO = B5 / (B4 B5 - B6"2) ;
C66MONO = B10 +B2°2 / BO;

vs0 = Sqrt [c55MONO / rhol] ;
eps2 = Simplify[ (c11MONO - c33MONO) / 2 / c33MONO] ;

delta2 =
( (c13MONO + c55MONO) ~ 2 - (c33MONO - c55MONO) “2) / 2 / (c33MONO - c55MONO) / c33MONO;

gamma2 = (c66MONO - c44MONO) / 2 / c44MONO;
epsl = Simplify[ (c22MONO - c33MONO) / 2 / c33MONO] ;

deltal =
( (c23MONO + c44MONO) ~ 2 - (c33MONO - c44MONO) "~ 2) / 2 / (c33MONO - c44MONO) / c33MONO;

gammal = (c66MONO - c55MONO) / 2 / c55MONO;

delta3 =
( (c12MONO + c66MONO) * 2 - (c11MONO - c66MONO) ~2) / 2 / (c11MONO - c66MONO) / c11MONO;

epl = (c16MONO (c33MONO - c55MONO) - c36MONO (c13MONO + c55MONO) ) / c55MONO /
(c33MONO - c55MONO) ;

ep2 = (C26MONO (c33MONO - c44MONO) - c36MONO (c23MONO + c44MONO) ) / c44MONO /
(c33MONO - c44MONO) ;

63



4 | model11.ni

ep3 =

ep4 =

©36MONO / c33MONO;

C45MONO (c44MONO + c55MONO) / (2 c44MONO c55MONO) ;
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E] Test V: weight function is set to be Gaussian distribution. ¢: [0, f]

modell = {betal -> 100, alfal -> 180"2/ (500Pi"2),
alfa2 -> 180°2/ (150 Pi*2), beta2 -> 50, ¢01 -> 0, ¢02 » Pi /4};

model2 = {betal » 50, alfal -> 1802/ (150 Pi"2),
alfa2 -> 180"2/ (500 Pi~2), beta2 - 100, ¢01 -> 0, ¢02 - Pi /4};

model3 = {betal » 80, alfal -> 180”2 / (500 Pi~2),
alfa2 -> 180°2/ (150 Pi*2), beta2 - 80, ¢01 -> 0, ¢02 - Pi /3};

model4 = {betal » 100, alfal -> 180"2/ (50 Pi"2),
alfa2 -> 180"2/ (15Pi"2), beta2 » 100, ¢01 -> 0, ¢02 » Pi/6};

W = betal Exp[-alfal (¢ - ¢01)°] + beta2 Exp[-alfa2 (¢ - ¢02)?];

Plot[{Wl /. ¢ >Pifi/ 180, W2 /. ¢ >Pifi/ 180, W3 /. ¢ »Pi £fi/ 180,
W4 /. ¢ - Pi fi/ 180}, {£i, 0, 90}, PlotLegends » {"W1", "W2", "W3", "W4"},
PlotStyle » {Directive[Red, Thick], Directive[Blue, Thick],
Directive[Black, Thick], Directive[Dashed, Thick]},
AxesLabel - {Style["¢,deg", FontSize -» 15], Style["W", FontSize » 15]},
LabelStyle - Directive[Black, Medium, Bold], ImageSize - 400]

cll = 26.9865; c12 = 10.4996; c13 = 10.2654; c22 = 29.5311;
€23 =10.9622; ¢33 = 26.2391; c44 = 7.8921; c55 = 6.31368; c66 = 6.66138;

=] i each weight ion (W1, W2,W3, W4) seperately into the following codes

J [ nae

(1/¢33) J wd¢

Pi/2 Pi/2
Bl = [(1/¢c33) j W2 (c13 Cos[¢]% +c23 Sin[¢]?) dl¢]/f w2 d¢;
o

B2 = [(1/033) j W2 (- (c13 - c23) Cos[¢] Sin[4]) dl¢]/j w2dé;
B3 - [

Pi/2
(1/c33)J w2 ( c23cos[¢]2+c13sin[¢]z)dhb)/j w2 dé;
0
B4 =
Pi/2
U W2 ((c44 Cos[¢]% +c558in[6]%) / ((c44 Cos[¢]? +c55 Sin[¢]?) (c55 Cos[¢]” + c4a4
(]
Pi/2
Sin[¢]?) - ((c44 - c55) Cos[4] Sin[¢]) *2) ) d¢]/J w2 do;
o
B5 =
Pi/2
U W2 ((c55 Cos[¢]% +c44Sin[6]%) / ((c44 Cos[¢]? +c55 Sin[¢]?) (c55 Cos[¢]? + ca4
(]
Pi/2
Sin[¢]?) - ((c44 - c55) Cos[¢] Sin[4]) "2)) dldz)/ j w2 dé;
0
B6 =

Pi/2
U W (((c44 - c55) Cos[¢] Sin[]) / ((c44 Cos[¢]* +c55 Sin[4]?) (c55 Cos[4]? + c44
(]

Pi/2
Sin[¢]?) - ((c44 - c55) Cos[4] Sin[¢]) *2) ) dl¢]/j wde;
o
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Pi/2
B7 = U W ((cllcos[¢]*+2cl2Cos[¢]” Sin[¢]? + c22 Sin[¢]" + c66 Sin[2 ¢]?) -
o

i/2
(c13 cos[4]% +c23 8in[¢]?) "2/ (c33)) d1¢]/ jp wdé;
o

B8 =

Pi/2 1
U W ((- — (c11-c22+ (cll-2cl2+c22-4c66) Cos[2¢]) Sin[2 m] - (c13cos[4]? +
0 4

Pi/2
c23 8in[¢]?) (- (c13 - c23) Cos[¢] Sin[¢]) / (c33)) dw]/j wde;
o

B9 =

Pi/2 1
U W ((— (-c1l+¢22+ (cll-2cl2+c22 -4 c66) Cos[2¢]) Sin[2 m] - (c23 cos[4]2 +
0 4

Pi/2
c138in[¢]?) (- (c13 - c23) Cos[¢] Sin[¢]) / (c33)) dw]/j wde;
o

B10O =

Pi/2 1
U W ((— (4 c66 Cos[2¢]%+ (c11-2cl2+c22) Sin[2 4:]2)) -
0 4
Pi/2
(- (€13 - c23) Cos[4] Sin[¢]) "2/ (c33)] dl¢]/j wde;
o
Pi/2
B1l = U W ((c22 Cos[4]*+2cl2Cos[¢]? Sin[¢]? + c11 Sin[¢]* + c66 Sin[2 ¢]?) - (c23
]
Pi/2
Cos[¢]* +c13 Sin[¢]%) ~2/ (33)) d1¢]/ j wdeé;
0
Pi/2 1
B12 = U W [(— (c11+6cl2+c22-4c66- (cll-2cl2+c22-4c66) Cos[4¢])] +
o 8

1
(: (4 c66Cos[26]%+ (c11-2cl2+c22) Sin[2 ¢]2)] -
(c13 cos[¢4]% +c23 Sin[¢]?) (c23 Cos[4]® +c13 Sin[¢]?) / (€33) -

Pi/2
(- (c13 - c23) Cos[¢] Sin[¢]) “2/ (c33)] d¢]/j wde;
0

c33MONO = 1/ BO;

cl1MONO = B7 +B1"2 /BO;
c12MONO = B12 - B10 + B1 B3 / BO;
c13MONO = B1 / BO;

c1l6MONO = B8 + B1 B2 / BO;
C22MONO = B11+B3"2/BO;
C©23MONO = B3 / BO;

C26MONO = B9 + B3 B2 / BO;
c36MONO = B2 / BO;

C44MONO = B4 / (B4B5-B6"2);
C45MONO = B6 / (B4 B5-B6"2);
c55MONO = B5 / (B4 B5 - B6°2) ;
c66MONO = B10 + B2"2 /BO;

eps2 = Simplify[ (c11MONO - c33MONO) / 2 / ¢33MONO] ;
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delta2 =
( (c13MONO + c55MONO) ~ 2 - (c33MONO - c55MONO) ~2) / 2 / (c33MONO - c55MONO) / c33MONO;

gamma2 = (c66MONO - c44MONO) / 2 / c44MONO;
epsl = Simplify[ (c22MONO - c33MONO) / 2 / c33MONO] ;

deltal =
( (c23MONO + c44MONO) ~ 2 - (c33MONO - c44MONO) ~2) / 2 / (c33MONO - c44MONO) / c33MONO;

gammal = (c66MONO - c55MONO) / 2 / c55MONO;

delta3 =
( (c12MONO + c66MONO) ~ 2 - (c11MONO - c66MONO) ~2) / 2 / (c11MONO - c66MONO) / c11MONO;

epl = (c16MONO (c33MONO - c55MONO) - c36MONO (c13MONO + c55MONO) ) / c55MONO /
(c33MONO - c55MONO) ;

ep2 = (C26MONO (c33MONO - c44MONO) - c36MONO (c23MONO + c44MONO) ) / c44MONO /
(c33MONO - c44MONO) ;

ep3 = ¢36MONO / c33MONO;

ep4 = c45MONO (c44MONO + c55MONO) / (2 c44MONO c55MONO) ;
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