
Implementing Open flow switch using
FPGA based platform

Ting Liu

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Yuming Jiang, ITEM
Co-supervisor: Ameen Chilwan, ITEM

Kashif Mahmood, Telenor

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology

Title: Implementing OpenFlow Switch using FPGA based platform
Student: Ting Liu

Problem description:

Network infrastructure has become critical in our schools, homes and business.
However, current network architecture is static and unprogrammable. Recently,
SDN (Software-Defined Networking) is appealed to make network programmable.
OpenFlow is a typical protocol of SDN, which has gained attention because of its
flexibility in managing networks. Control plane and data plane are separated in
OpenFlow Switch. The intelligence of the network is OpenFlow controller and the
traffic forwarding is done in the data plane based on the input from the control
plane. One of OpenFlow benefits is that researchers and developers can develop
intelligent new service rapidly and independently without waiting for new features to
be released from equipment vendors. Additionally, OpenFlow Switch has already been
implemented on NetFPGA [1]. This implementation has high latency to insert a new
flow into OpenFlow Switch, which is still bottleneck. However the implementation
of distributed multimedia plays (DMP) network nodes indicates lower latency and
scalability features on FPGA based platform [2]. Therefore, this project is motivated
to implement OpenFlow Switch (data plane and control plane) using FPGA based
platform (Xilinx Virtex6) and also to analyse the performance to figure out whether
it is better than current implemented OpenFlow Switch.

Planned tasks:
- Reviewing literatures about SDN (Software-Defined Networking) and OpenFlow
Switch
- Learning the FPGA-based platform for SDN (OpenFlow Switch), especially hard-
ware architecture in NTNU (Xilinx Virtex6)
- Implementing OpenFlow Switch (data plane and control plane) by VHDL using
FPGA based platform (Xilinx Virtex6)
- Performance analysis of OpenFlow Switch implemented on FPGA based plat-
form(Xilinx Virtex6) (e.g, delay, latency, loss)

Responsible professor: Yuming Jiang, Telematics
Supervisor: Ameen Chilwan, Telematics
External Collaborator: Kashif Mahmood, Telenor

Abstract

OpenFlow based SDN, is currently implemented in various networking
devices and software, providing high-performance and granular traffic
control across multiple vendors network devices. OpenFlow, as the first
standard interface designed specifically for SDN, has gained popularity
with both academic researchers and industry as a framework for both net-
work research and implementation. OpenFlow technology separates the
Control Plane from the Data Path and this allows the network managers
to develop their own algorithms to control data flows and packets. Several
vendors have already added OpenFlow to their features such as HP Labs,
Cisco researchers, NEC, etc. Currently, OpenFlow Switch is already
implemented on several different platforms e.g, in software (Linux, Open-
WRT) and hardware (NetFPGA). More and more researchers implement
the switch on FPGA-based platform, because FPGA-based platform is
flexible, fast and reprogrammable. However, there are limited number of
studies about the performance of the OpenFlow switch, which motivates
this project. In order to do the research of OpenFlow performance, the
simulation model of OpenFlow system is implemented in this project.
The main objective of this project has two sides. On one hand, it is to
implement OpenFlow system (switch and controller) using a hardware lan-
guage on FPGA-based platform. On the other hand, it is also to measure
the performance metrics of the OpenFlow switch, especially the service
time (switch and controller) and the sojourn time. More specifically, data
plane and control plane are both implemented on FPGA-based platform.
It is designed in VHDL language by ISE design tools. FPGA-platform is
Virtex6 type from Xilinx. It is observed from the results that the service
time and the sojourn time both have almost linear increase with the
increase in payload size. Moreover, the results indicate that the switch
takes 2 clock cycles to respond to the writing request of the controller.

Contents

List of Figures v

List of Tables vii

List of Algorithms ix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Objectives . 3
1.4 Methodology . 3
1.5 Outline . 3

2 Theoretical Background and Related Work 5
2.1 Software-defined Networking (SDN) 5
2.2 Advantages of OpenFlow-based SDN 6
2.3 OpenFlow Architecture . 7

2.3.1 OpenFlow Controller . 8
2.3.2 OpenFlow Switch . 10

2.4 Components of OpenFlow Switch . 10
2.4.1 OpenFlow protocol . 10
2.4.2 OpenFlow flow tables . 11
2.4.3 OpenFlow Channel . 15

2.5 FPGA-based platform . 15
2.6 Related Work . 18

3 OpenFlow Switch Design Framework 21
3.1 OpenFlow Switch Framework . 21

3.1.1 Brief description . 21
3.2 Flow Table Entry Composer . 23

3.2.1 Queue block . 24
3.2.2 Header parser block . 25
3.2.3 Lookup entry composer . 31

iii

3.2.4 Signals . 35
3.2.5 Simulation test . 36

3.3 Flow Table Controller . 39
3.3.1 Flow table controller module 39
3.3.2 Signals . 41
3.3.3 Simulation test . 43

3.4 Action Processor . 46
3.4.1 Action processor module . 46
3.4.2 Signals . 48
3.4.3 Simulation test . 49

3.5 Controller Policy . 49
3.5.1 Controller policy module . 50
3.5.2 Signals . 51
3.5.3 Simulation test . 52

4 Performance Simulation 53
4.1 Resources utilization . 53
4.2 Service time and Sojourn time . 54

5 Conclusions and Future Work 59

References 61

Appendices
A OpenFlow Switch Top Level Module i

B Pre-processor Module ix

C Header Parser Block xvii

D Lookup Entry Composer Block xxix

E Flow Table Controller Top Module xxxv

F Flow Table Lookup Block xxxix

G Controller Policy Module lv

H Packet Forwarding Module lvii

List of Figures

2.1 OpenFlow Switch [3] . 7
2.2 OpenFlow Reactive Module [4] . 9
2.3 OpenFlow Proactive Module [4] . 9
2.4 Pipeline processing [3] . 12
2.5 FPGA-based platform [5] . 16
2.6 Xilinx Virtex 6 block digram [6] . 17
2.7 FPGA plugged in PC . 18

3.1 OpenFlow System Architecture . 21
3.2 Output Port Lookup . 22
3.3 Flow Table Entry Composer . 24
3.4 Ethernet Packet . 26
3.5 L2 parser state machine . 26
3.6 IP header . 27
3.7 ICMP header . 27
3.8 TCP header . 28
3.9 UDP header . 28
3.10 SCTP header . 28
3.11 L3/L4 (IPv4) parser state machine . 29
3.12 ARP header . 30
3.13 ARP parser state machine . 30
3.14 MPLS header . 31
3.15 MPLS parser state machine . 31
3.16 Lookup entry composer . 32
3.17 Header parser simulation test result . 36
3.18 Lookup entry composer simulation test result 37
3.19 Flow entry composer simulation test result 37
3.20 Flow table controller module . 39
3.21 Flow table controller state machine . 40
3.22 Flow table lookup simulation test results 45
3.23 Writing flow entry simulation test results 45
3.24 Action processor . 46

v

3.25 Action processor simulation test results 49
3.26 Controller policy module . 50
3.27 Policy state machine . 50
3.28 Controller policy simulation test result 52

4.1 Switch service time . 56
4.2 Sojourn time . 57
4.3 Controller service time . 57

List of Tables

2.1 The top 5 Controllers available today and the main features 8
2.2 Symmetric messages . 10
2.3 Asynchronous messages . 11
2.4 Controller-to-switch messages . 11
2.5 Main match fields . 12
2.6 Main match fields description . 13
2.7 Main match fields lengths . 14
2.8 OpenFlow actions description . 14
2.9 Set-field action . 15
2.10 XC6VLX240T main features . 17

3.1 Match fields . 25
3.2 Ethernet type . 27
3.3 IP protocol type . 27
3.4 Flow tables and action lists size storage 40
3.5 The ‘match’ value description . 44
3.6 Action . 47
3.7 Action flag . 47

4.1 Design summary/reports . 53
4.2 Comparison of OpenFlow switch implementations on three FPGA boards 54
4.3 Performance simulation results . 55

vii

List of Algorithms

3.1 Ethernet fields (no L3/L4 fields), program in VHDL. 33
3.2 ARP Ethernet type, program in VHDL. 33
3.3 MPLS Ethernet type, program in VHDL. 34
3.4 IPv4 Ethernet type, program in VHDL. 34
3.5 Header parser testbench, program in VHDL. 38
3.6 Flow table lookup testbench example, program in VHDL. 43

ix

Chapter1Introduction

1.1 Background and Motivation

Network infrastructure has become critical in the Internet and enterprise network.
However, with the explosion of mobile devices and the rise of cloud services but with
limited available bandwidth, network architecture has become complex which results
in that current network capacity can not match users’ requirements. Networking
technologies exert limitations such as complexity, inconsistent policies, inability
to scale and vendor dependence, which can’t satisfy high requirements of network
architecture in enterprises, homes and schools [7]. At the same time, changing traffic
patterns, “IT consumerization”, the rise of cloud services and bandwidth limitation
trigger the need of new network architecture [7]. Moreover, some network vendors
are unhappy that researchers run experiments or test new protocols in their Internet
environment, because it may lower or interrupt production traffic. Thus, the network
innovation is needed to satisfy more users’ requirements and also to optimize the
current network.

Recently, Software-Defined Networking (SDN) created by Open Networking Foun-
dation (ONF) attracted many academic researchers and vendors. ONF, a non-profit
organization, is responsible to control and publish the different OpenFlow specifica-
tions and gives the trademark license “OpenFlow Switching” to companies that adopt
this standard. OpenFlow is a new technology based on the SDN concept where is
the switch that decides the actions that have to do. OpenFlow technology separates
the control plane from the data path and this allows network managers to develop
their own algorithms to control data flows and packets, resulting in more efficient
network management, more flexibility in response to demands and faster innovation
[7]. Furthermore, it implements the control logic on an external controller (typically
an external PC) and this controller is responsible for deciding the actions that the
switch must perform. The communication between the controller and the data path
is made on the network itself, using the protocol that provides OpenFlow (OpenFlow

1

2 1. INTRODUCTION

Protocol) via Secure Socket Layer (SSL) [7]. Now the researchers are not required to
wait for new features to be released from equipment vendors and they can develop
intelligent new services rapidly and independently in multiple-vendor environment [8].
Thus, OpenFlow has gained popularity with both academic researchers and industry
as a framework for both network research and implementation, due to its advantages
(decouple data and controller path, and routing intelligence).

Actually, OpenFlow switch has already been implemented on several different
platforms (Linux, OpenWRT and NetFPGA). There are many studies about the
OpenFlow switch implementation on FPGA-based platform. Because FPGA-based
switches are open-source hardware, which are faster than software-based switch.
Besides, FPGA hardware is reprogrammable so that researchers can develop their
own OpenFlow switches. And OpenFlow switch prototypes on FPGA-based platform
can forward packets at 1-10Gbps. Thus, More and more people care about the
OpenFlow switch implementation on FPGA-based platform and try to improve the
OpenFlow switch.However, only a few works on the performance analysis of the
OpenFlow switch are done. The implementation of OpenFlow Switch on NetFPGA
has high latency to insert a new flow into OpenFlow Switch, which is still bottleneck
[1]. However, the implementation of distributed multimedia plays (DMP) network
nodes indicates lower latency and scalability features on FPGA based platform [2].
Therefore, this project is motivated to implement simulation model of OpenFlow
system (data plane and control plane) on FPGA-based platform and also measure the
performance metrics of the OpenFlow switch. However, our switch is designed only
for research, not for the market. It is observed from the results that the service time
and the sojourn time both have almost linear increase with the increase in payload
size. Moreover, the results indicate that the switch takes only 2 clock cycles to
respond to the writing request of the controller, which decreases the communication
time between the switch and the controller.

1.2 Problem Statement

Current network architecture is static and non-programmable. Recently, SDN is
appealed to make network programmable. OpenFlow is a typical protocol for SDN,
which has gained attention because of its flexibility in managing networks. Many
OpenFlow switch implementations have already been done on different platforms,
but few works of performance analysis are available. Thus, this project is meant to
implement both data plane and control plane on FPGA in order to do the performance
simulation.

1.3. OBJECTIVES 3

1.3 Objectives

The main objective of this project has two sides. On one hand, it is to implement
OpenFlow Switch (data plane and control plane) using hardware language on FPGA-
based platform. The OpenFlow specification v1.1 [3] is implemented in our switch.
More specifically, the OpenFlow switch and controller are both implemented on
FPGA due to lack of enough Ethernet ports and PCIe communication problem.
On the other hand, the performance metrics of the OpenFlow switch are measured,
especially the service time (switch and controller) and the sojourn time.

1.4 Methodology

It is implemented on hardware using Xilinx Virtex6 which is plugged into a Linux
PC. Additionally, it is designed in VHDL language using ISE design tool. More
specifically, flow table entry composer module, flow table controller, action processor,
controller policy are implemented on FPGA. Besides, the analysis of the performance
metrics is done from the data obtained from the hardware. In order to measure
metrics, the method used is to generate packets with different sizes.

1.5 Outline

In Chapter 2, the theoretical background (e.g, SDN, OpenFlow Switch, OpenFlow
controller, FPGA-based platform) is introduced in details and previous related
works are described briefly. Chapter 3 depicts the details of the OpenFlow switch
components (i.e, flow table entry composer module, flow table controller module,
action processor module) and the controller (controller policy module). Chapter 4 is
dedicated to show the results of performance simulation and comparison of resource
utilization with other OpenFlow switches implemented on other platforms . Chapter 5
gives a conclusion, and highlights limitations and suggestions for future research.

Chapter2Theoretical Background and
Related Work

In this chapter, related theoretical concepts such as software-defined networking
(SDN), OpenFlow switch, OpenFlow controller and FPGA-based platform are de-
scribed in details. It also gives the overview of previous related works.

2.1 Software-defined Networking (SDN)

Current network architecture is static and non-programmable. Network designers
can not add new services into current network architecture arbitrarily because of the
limitation of networking technologies (e.g, complexity, inconsistent policies, inability
to scale and vendor dependence) [7]. Vendor dependence is the main reason of
creating Software-Defined Networking (SDN). Recently, SDN has become popular in
both academia and industry. Because of it, researchers and developers develop a new
service or a new protocol without waiting many years for new features to be released
from equipment vendors. More details of SDN can be found in [7].

SDN, created by non-profit ONF (open networking foundation) solved the problem,
resulting in more efficient network management, more flexibility in response to
demands and faster innovation. SDN in [7] is defined as “an emerging network
architecture where network control is decoupled from forwarding and is directly
programmable”. The main characteristics of SDN include

• Control and data planes are decoupled and abstracted from each other

• Intelligence is logically centralized, resulting in having a global view of network
and changing demands

• Underlying network infrastructure abstracted from applications, which makes
it possible to develop different applications

• Programmable data plane brings automation and flexibility to networks

5

6 2. THEORETICAL BACKGROUND AND RELATED WORK

• Faster innovation [9]

Besides, SDN simplifies the network design and operations. For example, re-
searchers and network vendors can program the network without disrupting pro-
duction traffic and also develop new services rapidly and independently. Moreover,
the flexibility of SDN allows network managers to configure, manage, secure, and
optimize network resources automatically [7]. With SDN, the static network can
evolve into an extensible service delivery platform capable of responding rapidly
to changing business, end-user, and market needs. Thus, a variety of networking
devices and software currently have adapted OpenFlow-based SDN which delivers
substantial benefits to both enterprises and carriers, including

• Centralized management and control

• Improved automation and management

• Rapid innovation

• Programmability

• Increased network reliability and security

• More granular network control

• Better end-user experience [7].

2.2 Advantages of OpenFlow-based SDN

In [10], many advantages of SDN for network administrators are indicated. Firstly,
network administrations expand SDN to the network, so network resources can be
shared safely by multiple groups of users [10]. Secondly, through SDN, administrators
can easily maintain entire virtual networks with their associated compute and
storage resources even when VMs are migrated to different hosts [10]. Thirdly, with
SDN, administrators can implement load-balancing with an OpenFlow switch and a
commodity server [10]. This high cost-effective solution lets administrators better
control traffic flow throughout the network to improve network performance. In
addition, because administrators strive to expand the benefits of server and storage
virtualization to the network, they are limited by the physical network infrastructure
itself. However, a virtualized OpenFlow network removes these limitations, allowing
administrators to create a flow-based virtual network abstraction that expands the
benefits of virtualization to the network level.

2.3. OPENFLOW ARCHITECTURE 7

2.3 OpenFlow Architecture

Figure 2.1: OpenFlow Switch [3]

OpenFlow, as the first standard interface for SDN, has gained popularity within
both academia and industry as a framework for both network research and imple-
mentation. It provides high-performance and granular traffic control across multiple
vendors network devices. Flexibility is the key advantages of OpenFlow compared to
existing protocols such as IP and Ethernet. Generally, using OpenFlow results in
the following advantages: network virtualization and route distribution [11].

The communication procedure between OpenFlow switch and OpenFlow controller
is described briefly here. The OpenFlow switch mainly consists of two flow tables
(exact match table and wildcard table) and an interface for modifying flow table
entries (e.g, adding, deleting) [3]. The OpenFlow controller decides the path of new
packet (unmatched packet). Figure 2.1 describes the OpenFlow Switch briefly. The
controller connects to OpenFlow switch via Secure Socket Layer (SSL) and modifies
flow table entries through interface. The communication procedure between them is
easily understood. For example, unmatched packet is encapsulated and sent to the
controller over SSL. Then controller examines it, updates flow table entries and sends
it back to the switch. The next arriving packet belonging to the same flow is then
forwarded through the switch without consulting the controller. Several vendors have
already added OpenFlow to their features such as HP Labs, Cisco researchers, NEC
etc. More information about the OpenFlow architecture is described in the OpenFlow

8 2. THEORETICAL BACKGROUND AND RELATED WORK

Standard[3]. The OpenFlow switch and OpenFlow controller are introduced in detail
continually in the following subsection.

2.3.1 OpenFlow Controller

The controller is the main device, responsible for maintaining all of the network
rules and distributing the appropriate instructions for the network devices. In other
words, the OpenFlow controller is responsible for determining how to handle packets
without valid flow entries, and it manages the switch flow table by adding and
removing flow entries over the secure channel using the OpenFlow protocol. The
controller essentially centralizes the network intelligence, while the network maintains
a distributed forwarding plane through OpenFlow switches and routers. For this
reason the controller provides an interface to manage, control and administrate the
switch’s flow tables. Because the network control plane is implemented in software,
rather than the firmware of hardware devices, network traffic can be managed more
dynamically and at a much more granular level [4]. The controller is able to program
a switch through reactive behaviour and proactive behaviour, shown in Figure 2.2
and Figure 2.3. The reactive behaviour takes advantage of the flow table efficiently.
In other words, the first packet of flow triggers controller to insert flow entries and
the switch limits the utility if control connection lost [12]. While proactive behaviour
means that the controller pre-populates flow table in switch and loss of control
connection does not disrupt traffic [12]. More information about the OpenFlow
controller can be found in the OpenFlow Standard [3]. There are different controller
implementations available today, shown in the following Table 2.1.

Table 2.1: The top 5 Controllers available today and the main features

Controllers Main characteristic

Beacon
A fast, cross-platform, modular, Java-based controller
supporting both event-based and threaded operation

NOX Open-source, a simplified platform written in C++ or Python
Trema Full-Stack OpenFlow Framework for Ruby/C
Maestro scalable, written in Java which supports OpenFlow switches
SNAC using a web-based policy manager to manage the network

2.3. OPENFLOW ARCHITECTURE 9

Figure 2.2: OpenFlow Reactive Module [4]

Figure 2.3: OpenFlow Proactive Module [4]

10 2. THEORETICAL BACKGROUND AND RELATED WORK

2.3.2 OpenFlow Switch

The theory of OpenFlow switch is introduced briefly here. As shown in Figure 2.1,
OpenFlow switch mainly consists of three parts: OpenFlow table, OpenFlow secure
channel and OpenFlow protocol [3]. Packets are forwarded based on flow tables and
controller can modify these flow tables via secure channel using OpenFlow protocol.
The flow tables consist of a set of flow entries and each flow entry is associated with
actions [3]. When OpenFlow switch receives a packet, it looks up the flow table
(comparing received packet header with entries of the flow tables). If the packet
header matches the flow table, associated actions are executed. According to the
OpenFlow specification [3], actions include packet forwarding, packet modification
and addition, removing packet header, dropping packet etc. On the other hand, if
the packet doesn’t match, it is transmitted to controller and the controller builds a
new flow table. More information about the OpenFlow switch is explained in the
OpenFlow Standard [3]. The details of OpenFlow components are described in the
following section.

2.4 Components of OpenFlow Switch

This section explains three components of OpenFlow Switch: OpenFlow protocol,
OpenFlow flow tables and OpenFlow channel.

2.4.1 OpenFlow protocol

Three message types are defined in the OpenFlow protocol: controller-to-switch,
asynchronous and symmetric [3]. Symmetric messages (see Table 2.2) are used to
keep connection between the controller and the switch. Asynchronous messages (see
Table 2.3) are sent from the switch to the controller to denote a packet arrival, switch
state change, or error [3]. While controller-to-switch message (see Table 2.4) is sent
from controller to switch. Controller can manage and modify the state of OpenFlow
switch through those messages.

Table 2.2: Symmetric messages

Symmetric messages Description
Hello Exchanged upon connection startup

Echo
Request/reply messages from the switch or the controller

Measures the latency or bandwidth of a connection
Experimenter Offer additional functionality

2.4. COMPONENTS OF OPENFLOW SWITCH 11

Table 2.3: Asynchronous messages

Asynchronous messages Description
Packet-in Sent to the controller for unmatched packets

Flow-Removed Remove as an idle timeout or a hard timeout occurs
Port-status Send to the controller as port state changes

Error Notify the controller of problems

Table 2.4: Controller-to-switch messages

Controller-to-switch messages Description
Features Query capabilities of a switch

Configurations Set and Query configuration parameters

Modify-State
Add/delete and modify flows/groups table

Set switch port properties
Read-State Collect statistics

Packet-out
Send packets out of a specified port

Forward packets received via Packet-in
Barrier Ensure message dependencies

2.4.2 OpenFlow flow tables

This subsection introduces components of OpenFlow tables, along with the
mechanics of matching and action handling. OpenFlow switch has two flow tables:
exact match table and wildcard match table. Each flow table includes many flow
entries. Main components of a flow entry in a flow table include the match fields
(matching against packets), counters (updating for matching packets) and instructions
(modifying action set) [3]. Packet flow through the pipeline processing is shown in
Figure 2.4. The incoming packet is looked up orderly through each flow table. If
the packet matches a flow entry, pipeline processing stops and the corresponding
action is executed. If the packet does not match, the default is to send the packet to
the controller. In our design, two match fields associated with actions are designed
(exact match table and wild card table), which is described further in Chapter 3.

12 2. THEORETICAL BACKGROUND AND RELATED WORK

Figure 2.4: Pipeline processing [3]

Table 2.5: Main match fields

Fields When applicable
Ingress port All packets
Metadata All packets

Ethernet source address All packets on enabled ports
Ethernet destination address All packets on enabled ports

Ethernet type All packets on enabled ports
VLAN id packets with VLAN tags

VlAN priority packets with VLAN tags
MPLS label packets with MPLS tags

MPLS traffic class packets with MPLS tags
IPv4 source address IPv4 and ARP packets

IPv4 destination address IPv4 and ARP packets
IPv4 protocol/ARP opcode IPv4, IPv4 over Ethernet, ARP packets

IPv4 ToS bits IPv4 packets
Transport source port/ICMP Type TCP, UDP,SCTP, and ICMP packets

Transport destination port/ICMP Code TCP, UDP,SCTP, and ICMP packets

2.4. COMPONENTS OF OPENFLOW SWITCH 13

As for match fields, it is used to lookup the flow table depending on the packet
type. Each entry in flow table contains a specific value. Table 2.5, Table 2.6 and
Table 2.7 list the contents of the required match fields and details on the properties
of each field of the OpenFlow specification v1.1 [3]. It can be seen from those tables
that each header field has fixed size and is placed in the specific position of the match
field. Flow table design procedure is explained further in Chapter 3.

Table 2.6: Main match fields description

Fields When applicable
Ingress port a physical or switch-defined virtual port
Metadata

Ethernet source address Can use arbitrary bitmask
Ethernet destination address Can use arbitrary bitmask

Ethernet type after VLAN tags
VLAN id VLAN identifier

VlAN priority VLAN PCP field
MPLS label MPLS tags

MPLS traffic class MPLS tags
IPv4 source address subnet mask or arbitrary bitmask

IPv4 destination address subnet mask or arbitrary bitmask
IPv4 protocol/ARP opcode ARP opcode (lower 8 bits)

IPv4 ToS bits upper 6 bits
Transport source port/ICMP Type ICMP Type(lower 8 bits)

Transport destination port/ICMP Code ICMP Type(lower 8 bits)

As for instructions, it mainly consists of action set which is associated with each
packet. Supported instructions include Apply-Actions, Clear-Actions, Write-
Actions, Write-Metadata and Goto-Table [3]. The action list (see Table 2.8) is
included in the Apply-Actions as well as in the Packet-out message. The matched
packets are forwarded and also modified according to the action list. After matching,
the header field shown in Table 2.9 is required to be updated in the packets. How-
ever, only Output action is implemented in our OpenFlow switch. More details of
forwarding action are introduced in Chapter 3.

14 2. THEORETICAL BACKGROUND AND RELATED WORK

Table 2.7: Main match fields lengths

Fields Bits
Ingress port 32
Metadata 64

Ethernet source address 48
Ethernet destination address 48

Ethernet type 16
VLAN id 12

VlAN priority 3
MPLS label 20

MPLS traffic class 3
IPv4 source address 32

IPv4 destination address 32
IPv4 protocol/ARP opcode 8

IPv4 ToS bits 6
Transport source port/ICMP Type 16

Transport destination port/ICMP Code 16

Table 2.8: OpenFlow actions description

Actions Description
Output (Required) Forwards to a specific port

Set-Queue (Optional) Sets queue id
Drop (Required) Drop packets with no output actions
Group (Required) Process the packet through the specified group

Push-Tag/Pop-Tag (Optional) Push and pop VLAN, MPLS, PBB tags
Set-Field (optional) Modify the values of the packet header field

2.5. FPGA-BASED PLATFORM 15

Table 2.9: Set-field action

Set-field Actions
Set Ethernet source MAC address

Set Ethernet destination MAC address
Set VLAN ID

Set VLAN priority
Set MPLS label

Set MPLS traffic class
Set MPLS TTL

Decrement MPLS TTL
Set IPv4 source address

Set IPv4 destination address
Set IPv4 ToS bits
Set IPv4 ECN bits

Set IPv4 TTL
Decrement IPv4 TTL

Set transport source port
Set transport destination port

Copy TTL outwards
Copy TTL inwards

2.4.3 OpenFlow Channel

OpenFlow switch connects to the controller through the OpenFlow channel.
Through this interface, the controller can manage and modify the flow table. The
OpenFlow channel may be run over TCP, and is usually encrypted [3]. Moreover,
all OpenFlow channel messages between OpenFlow switch and controller must be
formatted according to the OpenFlow protocol [3].

2.5 FPGA-based platform

This section introduces a hardware architecture in NTNU. The board (XC6VLX240T
device) used in our OpenFlow switch is Virtex-6 from Xilinx, which is also used in
the implementation of distributed multimedia plays (DMP) network nodes, and it
indicates lower latency and scalability features on FPGA based platform [2]. Figure

16 2. THEORETICAL BACKGROUND AND RELATED WORK

2.5 is the picture of ML605 and Figure 2.6 illustrates the block diagram of ML605.
The Virtex-6 FPGAs are the programmable silicon foundation for Targeted Design
Platforms that deliver integrated software and hardware components to enable design-
ers to focus on innovation as soon as their development cycle begins, which provides
the newest, most advanced features [13]. The main features of ML605 are shown in
Table 2.10. It can be seen from Figure 2.6 that it has high speed interface (SFP),
200 MHz clock, compatible with 10/100/1000 Ethernet PHY (MII/GMII/RMII) and
supports PCIe ×8 edge connector [6]. In addition to the high-performance logic
fabric, Virtex-6 FPGAs contain many built-in system-level blocks. These features
allow designers to build the highest levels of performance and functionality into
FPGA-based systems. More features of the FPGA-platform are described in [13].

Figure 2.5: FPGA-based platform [5]

2.5. FPGA-BASED PLATFORM 17

Figure 2.6: Xilinx Virtex 6 block digram [6]

Table 2.10: XC6VLX240T main features

Logic cells
Configurable Logic Blocks BRAM

PCIe Ethernet port I/O
Slices DRAM (Kb) Max(Kb)

241,152 37,680 3,650 14,976 2 1 720

In the current work, PC and FPGA are the two hardware sections. FPGA board is
plugged into PC through PCI slots (see Figure 2.7). Our hardware platform only has
one Ethernet port, which limits the OpenFlow switch implementation. However, the
simulation model of OpenFlow switch is implemented on this FPGA-based paltform,
which is to test the performance of OpenFlow switch. In our OpenFlow switch
implementation, the design environment is as follows:

• ML605 board with XC6VLX240T FPGA

18 2. THEORETICAL BACKGROUND AND RELATED WORK

• Intel Core i7 CPU 2.8 GHz 930 (4 core, 8 thread processor)

• Linux Ubuntu 10.04 LTS (2.6.32-41-generic)

• Motherboard: Gigabyte, X58A–UD7

• Xilinx ISE 14.7

Figure 2.7: FPGA plugged in PC

2.6 Related Work

Many OpenFlow switches have already been implemented in different platforms
such as Linux (software), OpenWRT (software) and NetFPGA (hardware). Hard-
ware/commercial switches (e.g, HP ProCurve, NEC IP8800) and software/Test
switches (NetFPGA switch, OpenWRT) have been released and used in real network

2.6. RELATED WORK 19

environments. Switches are open sources and can be found on the website so that
everyone can download for using or modifying. This section briefly introduces some
related work about current OpenFlow switch implementations.

[1] describes the Type-0 OpenFlow switch implementation on the NetFPGA
platform. NetFPGA used in [1] is a Gigabit rate networking hardware, consisting
of a PCI card with an FPGA, memory, and four 1-Gig Ethernet ports. This
implementation could hold more than 32,000 exact-match flow entries running across
four ports and the exact-match flow table can be expanded to more than 65000
entries. The implementation enhances flexibility and reusability of hardware. The
performance results claim that it takes 11 µs to insert a new flow into switch due
to the PCI bus bottleneck [1]. At the same time, the bottleneck of their OpenFlow
switch is that it has 240 bits flow header entry currently along with the actions,
which can be aggravated when packet re-injected from controller into switch using
the same communication channel (PCI bus). Additionally, OpenFlow switch can
provide many functionalities at lower logic gate cost in comparison with IPv4 Router,
the NIC and the learning Ethernet switch [1].

While another OpenFlow switch implemented on NetFPGA can hold more
than 100000 flow entries and it is also capable of running at line-rate across the
four NetFPGA ports [14]. In the software plane, OpenFlow reference software
implementation is extended by using a new δFA data structure to create the rules
instead of hash function, which is more advanced than the switch implemented on
the NetFPGA. This switch provides a flexible packet forwarding architecture based
on regular expression [14]. Besides, it also enables the standard-compliant OpenFlow
switching, which can be easily reconfigured through its control plane to support other
kinds of applications [14]. Furthermore, the performance analysis is also done in this
article. The results of performance analysis indicate that the switch is able to process
all traffic data even in the case of a Gigabit link saturated with minimum-sized
packets [14].

Because low-level Verilog RTL severely limits the portability of OpenFlow switch,
the switch in [15] is implemented with Bluespec System Verilog (BSV) which is a
high-level HDL, and addresses the challenges of its flexibility and portability. The
design comprises of approximately 2400 lines of BSV code. This switch meets the
OpenFlow 1.0 specification and achieves a line rate of 10 Gbps, which is highly
modular and parameterized, and makes use of latency-insensitivity, split-transaction
interfaces and isolated platform-specific features [15]. In this article, the OpenFlow
Switch is also ported into NetFPGA-10G, the ML605 (Xilinx) and DE4 (Altera).
The exact match flow tables of this switch is implemented on both Block RAM
and DRAM. It is found that it has lower pipeline latency of 19 cycles for a packet
to go from ingress to egress when implementing exact flow tables on Block RAM

20 2. THEORETICAL BACKGROUND AND RELATED WORK

[15]. Furthermore, the switch is implemented in two configurations, one is in an
FPGA communication with controller via PCIe or the serial link, another is in an
FPGA-based MIPS64 softcore. It is found that the switch responds to controller
requests in less cycles used with the PCIe than serial link [15].

The related works about OpenFlow switch implementation have already mentioned
above and most of OpenFlow switches are implemented on the NetFPGA. Except
these related works, there is limited number of studies on performance analysis of
the OpenFlow switch.

In order to improve the OpenFlow switching performance, the mechanisms are
introduced in [16] and [17]. An architectural design is proposed to improve the lookup
performance of OpenFlow switching in Linux by using a standard commodity network
interface card. The results in [16] show a packet switching throughput increase of
up to 25 percent compared to the throughput of regular software-based OpenFlow
switching [16]. Instead, the results in [17] show a 20 percent reduction using network
processor based acceleration cards to perform OpenFlow switching [17]. However,
only one paper studies the performance measures of OpenFlow [18]. It is concluded
that the OpenFlow implementation in Linux systems can offer very good performance
and it shows good fairness capability in dealing with multiple flows [18]. Furthermore,
it is also found from the results that large forwarding tables are generated due to L2
switching [18]. [19] also studies the performance measurements of not only OpenFlow
switch but also OpenFlow controller. In [19], a performance model of an OpenFlow
system is provided, which is based on the results from queuing theory and is verified
by simulations and measurement experiments with a real OpenFlow switch and
controller. The results in this article show that the sojourn time mainly depends on
the processing speed of the OpenFlow controller [19]. Moreover, it indicates that
lower is the coefficient of variation when the probability of new flows arriving at the
switch is higher, but longer is the sojourn time [19].

Thus, it can be seen from the description above that OpenFlow-SDN has already
appealed to some attentions in both researchers and vendors. At the same time, the
increasing number of researchers gradually has implemented their own OpenFlow
switch on FPGA-based platform. The OpenFlow network implementation described
in this thesis is a little different from the related work. Our work is to do the
simulation test of OpenFlow performance so that data plane and control plane
are both implemented on FPGA (Virtex6). OpenFlow switch design framework is
explained in details in the following chapter.

Chapter3OpenFlow Switch Design
Framework

As it is mentioned in the previous chapter, the OpenFlow network architecture
includes the OpenFlow switch, the OpenFlow controller and a secure channel based
on the OpenFlow protocol which connects the OpenFlow switch to the OpenFlow
controller. In this chapter, the main modules of OpenFlow switch designed on FPGA
are described in detail, which are flow table entry composer, flow table controller,
action processor and controller policy.

3.1 OpenFlow Switch Framework

3.1.1 Brief description

Figure 3.1: OpenFlow System Architecture

21

22 3. OPENFLOW SWITCH DESIGN FRAMEWORK

In our OpenFlow switch design, OpenFlow datapath receives the packets via
packet generator. All peripherals share the same clocks (100MHz) and a reset.
However, only the composed flow entry goes to the flow table controller module. 64-
bit pipelines are beneficial for executing many tasks per clock and also for successful
FPGA implementation. Since there is the only one Ethernet port, four datapath
pipelines are designed to simulate more ports with using input queue and output
queue as a switching facility in the top level module. Incoming packets from each
physical input port go through dedicated pipeline. Figure 3.1 illustrates the OpenFlow
system architecture and the brief framework of the OpenFlow switch design. The
packets are generated, and have to stay in the output queue after being processed due
to only one Ethernet port. The main three parts of OpenFlow architecture are the
input queue module, the output port lookup module and the output queue module.
The input queue and the output queue both consist of generic modules generated
by two IP cores (FIFO generator [20] and Block RAM [21]) supported by Xilinx
design tools (ISE 14.7 [22]). Each input queue connects to each port and buffers the
received packets. And the sizes of both the FIFO queue block and buffer block are
64 (width)× 1024 (depth). The output port lookup module, clearly shown in Figure
3.2, is the most important part in the OpenFlow switch design framework, mainly
consisting of flow table entry composer, flow table controller and action processor.

Figure 3.2: Output Port Lookup

When new packets generated from the packet generator stream into the OpenFlow

3.2. FLOW TABLE ENTRY COMPOSER 23

switch, important header information is extracted and then composed into fixed
format which is compared with the flow table entries in two flow tables (exact match
table and wildcard table). At the same time, incoming packets are buffered in the
input FIFO buffer block, waiting for being forwarded. Then the matching results
associated with forwarding action are sent to the action processor in order to tell
the action processor how to deal with the packet (forwarding to the corresponding
output queue). If the packet matches, it is forwarded to the corresponding output
port according to the forwarding information in the action list. While if it doesn’t
match, the OpenFlow switch requests to the controller policy model to make decision
of this unmatched packet. The policy of the controller policy module is to add flow
entry information including the flow entry, the flow mask and the action. Here, both
matched packets and unmatched packets are forwarded to the output queues finally.
Output port lookup module and the policy module are depicted more in the following
section.

3.2 Flow Table Entry Composer

After going through the FIFO queue, the packet initially goes to the flow table
entry composer module. In this section, the implementation of flow table entry
composer is described.

The purpose of the flow table entry composer is to extract packet headers and
organizes them as a fixed form of the flow table entry. Figure 3.3 shows the process
of the flow table entry composer module. It can be seen from Figure 3.3 that it is
made up of the input FIFO queue block, header parser block, lookup entry composer
block. Here, input FIFO queue block is also generated by IP cores (FIFO generator
[20]). When a new flow comes in, the header fields are extracted. After being parsed,
these extracted header information are composed into the flow entry with the fixed
format in the lookup entry composer block. Then the composed flow entry is sent to
flow table table modules for matching.

24 3. OPENFLOW SWITCH DESIGN FRAMEWORK

Figure 3.3: Flow Table Entry Composer

3.2.1 Queue block

Input FIFO queue block is a common block for OpenFlow switch architecture
to reduce back pressure situation, also used in other modules. The FIFO block
and output buffer block generated by FIFO generator IP cores [20] both buffer the
incoming packets. The input FIFO block buffers incoming packets for parsing header.
While the output buffer block buffers the incoming packets for action processor and
also synchronous with parsed header. The buffer size (64 × 1024) is sufficient to
store data until finishing header parsing.

3.2. FLOW TABLE ENTRY COMPOSER 25

3.2.2 Header parser block

Table 3.1: Match fields

Field Bits
Match fields 256
Ingress port 8

Ethernet source address 48
Ethernet destination address 48

Ethernet type 16
VLAN id 12

VlAN priority 3
MPLS label 20

MPLS traffic class 3
IPv4 source address 32

IPv4 destination address 32
IPv4 protocol/ARP opcode 8

IPv4 ToS bits 6
IPv6 source address 128

IPv6 destination address 128
Transport source port/ICMP Type 16

Transport destination port/ICMP Code 16

Header parser module extracts L2 header information (dl_parser block) and also
L3/L4 header information (ip_tp_parser block, ipv6_tp_parser block, arp_parser,
mpls-parser block). Each header field has the exact position in the packet. Thus,
the important header fields can be extracted according to their exact positions in
Ethernet frame. Table 3.1 shows the header fields that are extracted from the packet
in our design according to the match fields described in OpenFlow specification v1.1
[3].

According to the Table 3.1, Ethernet source/destination address, VLAN ID,
priority (if VLAN tag) and Ethernet type need to be extracted from L2 header.
Figure 3.4 illustrates the structure of Ethernet frame with and without VLAN tag
(0x8100) or QinQ tag (0x8a88). Figure 3.5 illustrates the process of getting L2
header fields. When the Ethernet packets (64 bits per clock) come in, Ethernet
source/destination addresses are extracted firstly. At the same time, header parsing

26 3. OPENFLOW SWITCH DESIGN FRAMEWORK

signal is sent to lookup entry composer which waits for receiving the extracted fields.
If VLAN tag is found in the packet, VLAN ID and VLAN priority are obtained
from the packet. Different Ethernet types (see Table 3.2) are detected through
if statements. If one of those types is found, the corresponding header fields are
extracted further. Otherwise, header parser block stops to parse further.

Figure 3.4: Ethernet Packet

Figure 3.5: L2 parser state machine

3.2. FLOW TABLE ENTRY COMPOSER 27

Table 3.2: Ethernet type

Ethernet type IPv4 ARP MPLS unicast MPLS multicast
Content 0x0800 0x0806 0x8847 0x8848

If Ethernet type is IPv4, ip_tp_parser starts to work. The structure of IP, ICMP,
TCP/UDP and SCTP headers are described in Figure 3.6, Figure 3.7, Figure 3.8
and Figure 3.9 respectively. In L3, IP source/destination address, IPv4 protocol and
IPv4 TOS need to be extracted from the IP header. Moreover, source/destination
ports (TCP/UDP/SCTP) or ICMP type and ICMP code need to be extracted
from L4 header. Figure 3.11 illustrates the procedure of ip_tp_parser. Besides, IP
protocol type is also detected through if statements. If IP protocol is TCP, UDP,
SCTP or ICMP (see Table 3.3), the packet is parsed further in order to extract the
corresponding header fields. Otherwise, the match fields of L4 are put null.

Table 3.3: IP protocol type

IP protocol type TCP UDP SCTP ICMP
Content 0x06 0x11 0x84 0x01

Figure 3.6: IP header

Figure 3.7: ICMP header

28 3. OPENFLOW SWITCH DESIGN FRAMEWORK

Figure 3.8: TCP header

Figure 3.9: UDP header

Figure 3.10: SCTP header

3.2. FLOW TABLE ENTRY COMPOSER 29

Figure 3.11: L3/L4 (IPv4) parser state machine

If Ethernet type is ARP, arp_parser (Figure 3.13) starts to work. The ARP
opcode, sender IP address and target IP address in the ARP header fields (Figure
3.12) are extracted.

30 3. OPENFLOW SWITCH DESIGN FRAMEWORK

Figure 3.12: ARP header

Figure 3.13: ARP parser state machine

It can be seen from Figure 3.14, MPLS label length is 20 bits and MPLS traffic

3.2. FLOW TABLE ENTRY COMPOSER 31

class is 3 bits in MPLS header fields. If Ethernet type is MPLS, mpls_parser state
machine (Figure 3.15) starts to extract MPLS label and MPLS traffic class.

Figure 3.14: MPLS header

Figure 3.15: MPLS parser state machine

3.2.3 Lookup entry composer

The lookup entry composer block is ready to compose when the header parser
block begins to work (dl_start <= ‘1’). The lookup entry composer block organizes
all the parsed fields received from the header parser block into a specific format. All
extracted fields have their own specific position in the lookup entry (lu_entry). This

32 3. OPENFLOW SWITCH DESIGN FRAMEWORK

block consists of three state machines shown in Figure 3.16: parsing-status check,
request-latch and flow-table module interface. Parsing-status checks state machine is
to communicate with the preceding header parser block. Request-latch state machine
is used to compose these extracted header fields into lookup entry format. Finally,
flow table controller interface state machine is to transfer signals to the following
flow table controller module.

Figure 3.16: Lookup entry composer

The content of the flow entry is different due to the different Ethernet types and
IP protocol types. Each extracted field is put into the exact position in the flow entry.
The structure of the flow entry these header fields defined in our design is shown in
the following algorithms. It can be seen from these algorithms (see Algorithm 3.1,
Algorithm 3.2, Algorithm 3.3 and Algorithm 3.4) that the extracted fields are put in
the exact positions of the flow entry.

3.2. FLOW TABLE ENTRY COMPOSER 33

Algorithm 3.1 Ethernet fields (no L3/L4 fields), program in VHDL.
if (dl_done=‘1’ and ip_tp_done=‘0’ and arp_don =‘0’ and mpls_done=‘0’)then

int_entry <= src_port --input port
& dl_src --Ethernet source address
& dl_dst --Ethernet destination address
& dl_ethtype --Ethernet type
& dl_vlantag --Ethernet VLAN
& X"00000000" --IPv4 source address
& X"00000000" --IPv4 destination address
& X"00" --IPv4 protocol type
& X"00" --IPv4 TOS
& X"0000" --transport layer source port
& X"0000" --transport layer destination port
& X"00";

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

Algorithm 3.2 ARP Ethernet type, program in VHDL.
elsif (dl_done = ‘1’ and arp_done = ‘1’) then

int_entry <= src_port --input port
& dl_src --Ethernet source address
& dl_dst --Ethernet destination address
& dl_ethtype --Ethernet type
& dl_vlantag --Ethernet VLAN
& arp_ip_src --ARP source address
& arp_ip_dst --ARP destination address
& arp_opcode --ARP operation code
& X"00" --IPv4 TOS
& X"0000" --transport layer source port
& X"0000" --transport layer destination port
& X"0000000000";

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

34 3. OPENFLOW SWITCH DESIGN FRAMEWORK

Algorithm 3.3 MPLS Ethernet type, program in VHDL.
elsif (dl_done = ‘1’ and mpls_done = ‘1’) then
int_entry <= src_port --input port

& dl_src --Ethernet source address
& dl_dst --Ethernet destination address
& dl_ethtype --Ethernet type
& dl_vlantag --Ethernet VLAN
& mpls_lable --MPLS label
& mpls_tc --MPLS traffic class
& X"00000000"
& X"00000000"
& X"0000"
& X"0000"
& B"0";

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

Algorithm 3.4 IPv4 Ethernet type, program in VHDL.
elsif (dl_done = ‘1’ and ip_tp_done = ‘1’) then
int_entry <= src_port --input port

& dl_src --Ethernet source address
& dl_dst --Ethernet destination address
& dl_ethtype --Ethernet type
& dl_vlantag --Ethernet VLAN
& ip_src --IPv4 source address
& ip_dst --IPv4 destination address
& ip_tos --IPv4 TOS
& tp_src --transport layer source port
& tp_dst --transport layer destination port
& X"00";

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

3.2. FLOW TABLE ENTRY COMPOSER 35

3.2.4 Signals

The signals transferred between modules are listed and described here.
(1) Signals to the flow table controller module

lu_entry (3-0) (256 bits, output):

• Flow table entry (256 bits) organized by lookup composer block for matching
against flow table

• Latched when a request (lu_req) to flow table controller is active and released
when an acknowledgement (lu_ack) from flow table controller is received

lu_req (3-0) (output):

• Lookup request generated by lookup composer block to flow table controller

• Action processor also uses it to start reading packet out of output_pkt_buf

• Active until an acknowledgement (lu_ack) from flow table controller is received

(2) Signals from the flow table controller

lu_ack (3-0) (input):

• Generated by flow table controller module

• The flow table lookup request is accepted but not finished when asserted

• Releasing lu_req and lu_entry

(3) Signals to the action processor module

packet (64 bits, output):

• Sent when FIFO read_enable is asserted that means a matching field is found

• Sent 64 bits per clock

36 3. OPENFLOW SWITCH DESIGN FRAMEWORK

3.2.5 Simulation test

The testbench in VHDL is written to test that the functions of header parser
block, lookup entry composer block and the whole flow table entry composer module.
The testing packet (1024 bits) is written in the testbench files for the simulation
and the packet is generated every 64 bits per clock. The simulation test result is
shown in Figure 3.17. Algorithm 3.5 shows the example of the testbench. Figure 3.17
shows that the important header fields are extracted correctly and these fields are
composed correctly into lu_entry (see Figure 3.18). Figure 3.19 shows the simulation
results of the top module of these two main blocks, which also indicates that this
module works correctly.

Figure 3.17: Header parser simulation test result

3.2. FLOW TABLE ENTRY COMPOSER 37

Figure 3.18: Lookup entry composer simulation test result

Figure 3.19: Flow entry composer simulation test result

38 3. OPENFLOW SWITCH DESIGN FRAMEWORK

Algorithm 3.5 Header parser testbench, program in VHDL.
process

begin
wait for 100 ns;
fifo_empty <=‘0’;
tx_data <= X"989898989898e4e4";
wait for 10 ns;
tx_data <= X"e4e4e4e481007577";
wait for 10 ns;
tx_data <= X"0800855808008806";
wait for 10 ns;
tx_data <= X"1111111111111111";
wait for 10 ns;
tx_data <= X"2222222222222222";
wait for 10 ns;
tx_data <= X"3333333333333333";
wait for 10 ns;
tx_data <= X"4444444444444444";
wait for 10 ns;
tx_data <= X"1111111111111111";
wait for 10 ns;
tx_data <= X"2222222222222222";
wait for 10 ns;
tx_data <= X"3333333333333333";
wait for 10 ns;
tx_data <= X"4444444444444444";
wait for 10 ns;
tx_data <= X"5555555555555555";
wait for 10 ns;
tx_data <= X"6666666666666666";
wait for 10 ns;
tx_data <= X"7777777777777777";
wait for 10 ns;
tx_data <= X"2222222222222222";
wait for 10 ns;
almost_empty <= ‘1’;
tx_data <= X"3333333333333333";
wait for 10 ns;
fifo_empty <=‘1’;
almost_empty <= ‘0’;
wait for 10 ns;

end process;
END;

3.3. FLOW TABLE CONTROLLER 39

3.3 Flow Table Controller

The lookup entry is looked up in flow table controller module after being parsed and
being extracted. This section explains the entire procedure of looking up flow tables
and writing flow entries.

3.3.1 Flow table controller module

Figure 3.20: Flow table controller module

Figure 3.20 illustrates the main components of the flow table controller module
including the request selection, the exact match table, the wildcard match table, the
action, the comparator and also the controller policy. Flow table controller module
manages the flow tables and handles all the requests (lookup requests from the flow
table composer module and the writing request from the controller policy).

The process of looking up flow table and writing the flow entry is described
in Figure 3.21. When a port queries if there is a matching field, it consults both
exact match table and wildcard table. Round Robin scheduling is used in request
selection block in order to schedule all the requests fairly. Exact match table and
wildcard match table are flow entries storage and flow masks storage respectively.
While action stores the action information. Table 3.4 shows the storage size of two
flow tables and the action (16 bits). Moreover, the mask field is defined to include

40 3. OPENFLOW SWITCH DESIGN FRAMEWORK

Ethernet source address and Ethernet destination address in our implementation.
Exact match table, wildcard match table and the action are implemented by BRAM
[21]. Then the lookup entry (lu_entry) is sent to the comparator block when lookup
request (lu_req = ‘1’) is handled. In the comparator block, the received lookup entry
is compared with the flow entries read from the exact match table and masks read
from the wildcard match table through ‘for-loop’ statements. If a matching entry is
found, the corresponding action is grabbed from the action storage and is also sent
to the action processor module. Besides, if it matches both exact match table and
wildcard match table, then the action for the exact match table is used. If there
is no matching field, a policy request is sent to the controller policy module. The
controller policy module is explained further in the following subsection.

Table 3.4: Flow tables and action lists size storage

BRAM Exact match table Wildcard match table Action
width (bits) × depth 256 × 1024 256 × 1024 256 × 1024

Figure 3.21: Flow table controller state machine

3.3. FLOW TABLE CONTROLLER 41

3.3.2 Signals

The signals transferred between modules are listed and described following:
(1) Signals of the flow entry composer module query and respond

lu_req (3-0) (input):

• This port has a lookup query when asserted one and it is set to zero when
lu_ack is consumed by flow entry composer

lu_entry (3-0) (256 bits, input):

• It is parsed header information (256 bits) to be matched against two flow tables

lu_ack (3-0) (output):

• Sent from this module when lu_req is accepted and lu_entry is started to be
looked up, but the process hasn’t been done or action is ready

• It is asserted to one for one-clock period

lu_done (3-0) (output):

• Sent from this module when the lookup process is finished and action is ready

• It is asserted to one also for one-clock period

(2) Signals to the controller policy module

add_entry_reply (input):

• It is same as lu_req and an entry information is ready to be written when
asserted to one

• Keep asserting 0 or 1 until add_entry_done is asserted

add_entry (256 bits, input):

• Flow entry to be written

42 3. OPENFLOW SWITCH DESIGN FRAMEWORK

add_mask (256 bits, input):

• Flow mask to be written

action (256 bits, input):

• Action list to be written

no_match_entry (256 bits, output):

• Lookup entry is sent to the controller policy when no matching field is found

policy_req (output):

• Asserted to one when no matching field is found

add_entry_done (output):

• It is same as lu_done and asserted to one when flow entry and flow mask are
written successfully

(3) Signals to the action processor module

match (output):

• Notify signal is sent to the action processor to tell it that it is ready to forward
the matching packet

action_out (256 bits, output):

• Sent to the action processor when matching field is found

3.3. FLOW TABLE CONTROLLER 43

3.3.3 Simulation test

Algorithm 3.6 Flow table lookup testbench example, program in VHDL.
stim_proc1: process
begin
wait for 100 ns;
lu_req1<= ‘1’;
lu_entry1<=X"01222222222222675467548e3122220000000000000000000000000000000000";
lu_req2<= ‘1’;
lu_entry2<=X"02e4e4e4e4e4e498989898989808007577111122222222222211582222333300";
lu_req3<= ‘1’;
lu_entry3<=X"0333333333333376767676767633330000000000000000000000000000000000";
lu_req4<= ‘1’;
lu_entry4<=X"0411111111111155555555555511110000000000000000000000000000000000";
add_entry_reply <= ‘1’;
add_entry<=X"02e4e4e4e4e4e498989898989808007577111122222222222211582222333300";
add_mask<=X"02e4e4e4e4e4e498989898989800000000000000000000000000000000000000";
wait for 10 ns;
lu_req1 <= ‘0’;
lu_entry1<=X"00";
wait for 10 ns;
lu_req2 <= ‘0’;
lu_entry2<=X"00";
wait for 10 ns;
lu_req3 <= ‘0’;
lu_entry3<=X"00";
wait for 10 ns;
lu_req4 <= ‘0’;
lu_entry4<=X"00";
wait for 10 ns;
add_entry_reply <= ‘0’;
wait for 10 ns;
add_entry_reply <= ‘1’;
add_entry<=X"01222222222222675467548e3122220000000000000000000000000000000000";
add_mask<=X"01222222222222675467548e3100000000000000000000000000000000000000";
lu_req2<= ‘1’;
lu_entry2<=X"02e4e4e4e4e4e498989898989808007577111122222222222211582222333300";
end process;
END;

44 3. OPENFLOW SWITCH DESIGN FRAMEWORK

The Algorithm 3.6 illustrates the example of the flow table lookup testbench. In
this testbench, four lookup requests with four entries and one write request with the
flow entry information (flow entry, mask and action) are generated. This testbench is
to test two results in two conditions. One, it is to test the lookup function when the
new flow entry enters. If four new requests come in at the same time, one request
is handled per clock using Round Robin schedule. It can be seen from Figure 3.22
that policy_req is asserted to one and no_match_entry is sent out orderly when no
matching fields (match <= ‘0000’).

Table 3.5: The ‘match’ value description

match description
0000 no matching is found
0001 packet sent from the first port matches
0010 packet sent from the second port matches
0100 packet sent from the third port matches
1000 packet sent from the fourth port matches

The description of different ‘match’ values is shown in Table 3.5. Thus, the
simulation results show that the flow table lookup function works correctly. And two,
the add_entry_reply is asserted to one and the flow entry information of the second
port is generated (add_entry and add_mask) in the testbench for testing the function
of the writing flow entry. It can be seen from Figure 3.23 that the same lookup entry
(lu_entry2 <= X"02e4e4e4e4e4e4989898989898080075771111222222222222115822223
33300") from the second port is sent again to this module after a few time. And the
result of ‘match’ is ‘0010’ which means it has the matching field. In other words, it
indicates that the flow entry information has already been written into flow tables
successfully when the previous writing request comes.

3.3. FLOW TABLE CONTROLLER 45

Figure 3.22: Flow table lookup simulation test results

Figure 3.23: Writing flow entry simulation test results

46 3. OPENFLOW SWITCH DESIGN FRAMEWORK

3.4 Action Processor

3.4.1 Action processor module

The role of the action processor module (see Figure 3.24) is to specify forwarding
ports and to update header fields and length of the packets according to the OpenFlow
switch specification. Due to the limited time, only output forwarding action is
executed in our action processor module. Packets are sent to the corresponding port
queues referring to the action received from the flow table controller.

Figure 3.24: Action processor

The action (see Table 3.6) includes the information such as output port, action
flag, VLAN ID, etc. Table 3.7 lists these OpenFlow actions. Action flag is to give
the exact instructions to execute these actions. The length of action fag is 16 bits
and each bit is assigned to an OpenFlow action, and if the value for a field is one, it
means this action is expected to be performed.

3.4. ACTION PROCESSOR 47

Table 3.6: Action

Contents bits
Forward bitmap 16

Action flag 16
VLAN ID 16
VLAN PCP 8

Ethernet source address 48
Ethernet destination address 48

IPv4 source address 32
IPv4 destination address 32

IPv4 TOS 8
Transport layer source port 16

Transport layer destination port 16

Table 3.7: Action flag

Bit Action
0 Output
1 Set VLAN ID
2 Set VLAN PCP
3 Pop VLAN
4 Set Ethernet source address
5 Set Ethernet destination address
6 Set IPv4 source address
7 Set IPv4 destination address
8 Set IPv4 TOS
9 Set transport layer source port
10 Set transport layer destination port
11 Set IPv4 ECN
12 Push VLAN
13 Set IPv4 TTL
14 Decrement IPv4 TTL
15 Reserved

48 3. OPENFLOW SWITCH DESIGN FRAMEWORK

3.4.2 Signals

(1) Signals from the flow table composer

packet_in (64 bits, input):

• Sent from output packet buffer block of flow entry composer module only when
action is valid.

• Sent per 64 bits per clock

(2) Signals from the flow table controller

match (input):

• Sent from flow table controller notify to forward packets

lu_done (input):

• Sent from flow table controller when lookup process is done and action is ready

• Action is gotten and stored until the next lu_done when it is asserted to one.

• Asserted to one for one-clock period

action (256 bits, input):

• Sent from flow table controller

• Valid only when lu_done and match are both asserted to one

• All zero means to drop this packet

(3) Signals to the output queue

packet_out (64 bits, output):

• Packet is sent to the corresponding port queue after action processing

• Sent per 64 bits per clock

3.5. CONTROLLER POLICY 49

3.4.3 Simulation test

Figure 3.25 shows the simulation results of the action processor module. Since
only the forwarding action is implemented in this module, this simulation is to check
whether the packets are forwarded to the corresponding output port queues. In our
design, the forwarding strategy is that the packet from the current port is forwarded
to the queue of next port. For example, the packets from the first port are forwarded
to the second port, the packets from the second port are forwarded to the third
port and the packets from the third port are forwarded to the fourth port. The
packets from the fourth port are forwarded to the first port. It can be seen from
Figure 3.25 that these packets received from the different ports are forwarded to the
corresponding ports correctly.

Figure 3.25: Action processor simulation test results

3.5 Controller Policy

It is supposed to install the controller in PC or different FPGA-platforms. However,
the controller policy module is done in the same FPGA. If no matching field is found,
controller policy module starts to work to make a decision about how to deal with the

50 3. OPENFLOW SWITCH DESIGN FRAMEWORK

unmatched packet. However, this module is just to imitate the controller function,
but not implementing the complete functions of the controller. The policy defined in
our implementation is to write new flow entry, new mask and new action when no
matching happens.

3.5.1 Controller policy module

Figure 3.26 and Figure 3.27 illustrate the controller policy module and the process
of writing the new flow entry respectively. It can be seen from the state diagram
that the controller policy starts to work when the request signal sent from the flow
table controller module is asserted to one. Then ‘0’ bit of action flag in ‘action’ is set
to one, which means to execute the forwarding action. At the same time, new flow
entry, mask and forwarding port number are generated and sent to the flow table
controller module. The state goes back to the waiting state for the next request
when the writing process is done.

Figure 3.26: Controller policy module

Figure 3.27: Policy state machine

3.5. CONTROLLER POLICY 51

3.5.2 Signals

(1) Signals from the flow table controller module

policy_req (input):

• Sent from the flow table controller module

• Asserted to one when no matching filed is found

no_match_entry (256 bits, input):

• It is unmatched flow match fields (256 bits) sent from flow table controller

add_entry_done (input):

• Sent from the flow table controller module

• Asserted to one when the process of writing flow entry is done

(2) Signals to the flow table controller module

add_entry_reply (input):

• Sent to the flow table controller module

• It means that it wants to write the information when asserted to one and it
release a flow entry information (flow entry, mask and action)

• Asserted to one for one-clock period

add_entry (256 bits, input):

• It is the new flow entry and sent to the flow table controller module when
add_entry_reply is asserted to one

add_mask (256 bits, input):

• It is the new flow mask and sent to the flow table controller module when
add_entry_reply is asserted to one

52 3. OPENFLOW SWITCH DESIGN FRAMEWORK

action (256 bits, output):

• It is the new flow action and sent to the flow table controller module when
add_entry_reply is asserted to one

3.5.3 Simulation test

This simulation is to test the function of the controller policy module. The function
of this module is to generate the flow entry information (add_entry, add_mask,
action) and write them into the flow tables after receiving no matching request
(policy_req <= ‘1’). In addition, only forwarding bit (action(0) <= ‘1’) in action
flag is asserted to one. Figure 3.28 shows the simulation results of this module, which
indicates that the writing request with the flow entry information are generated
correctly.

Figure 3.28: Controller policy simulation test result

After implementing the OpenFlow switch implementation, the performance simu-
lation is done to measure the switch service time, sojourn time and controller service
time. The following chapter shows the results of performance simulation.

Chapter4Performance Simulation

In this chapter, the results of performance simulation are described, specifically the
service time (switch and controller) and sojourn time.

4.1 Resources utilization

Table 4.1: Design summary/reports

Device Utilization Summary (estimated values)
Logic Utilization Used Available Utilization

Number of Slice Registers 5330 301440 1%
Number of Slice LUTs 6870 150720 4%

Number of fully used LUTT-FF pairs 4604 7596 60%
Number of bonded IOBs 522 600 87%

Number of Block RAM/FIFO 31 416 7%
Number of BUFG/BUFGCTRLs 16 32 50%

Clock speed 100 MHz
Power 275 mW

Table 4.1 provides the device utilization used in our implementation such as
utilized resources, the operational clock speed, the consumed power of the switch etc.
The resource utilization is not very high according to Table 4.1. The utilization of slice
registers, slice LUTs and Block RAM/FIFO is low. Because our OpenFlow switch
design didn’t implement the complete functions of OpenFlow siwtch and controller,
it is not so complicated compared to current OpenFlow switches (Table 4.2). For
example, only forwarding function of switch is implemented and other functions
such as updating Ethernet source address, Ethernet destination address haven’t

53

54 4. PERFORMANCE SIMULATION

implemented. And only the function of adding flow entry is implemented. Thus, the
resource utilization is less compared other two implementation. Besides, OpenFlow
switches implemented on NetFPGA-10G and DE4 are designed in high-level hardware
language (BSV), while our switch is designed in VHDL that is low-level language.

Table 4.2: Comparison of OpenFlow switch implementations on three FPGA boards

NetFPGA-10G [15] DE4 [15] ML605
Ports 5×5 5×5 1×1
LUTs 24009 11131 6870

Flips Flops 29326 40287 4604
Block RAMs 159 1.1 Mb 31
Clock speed 160 MHz 100 MHz 100 MHz

Power 876 mW 442 mW 275 mW

4.2 Service time and Sojourn time

In order to do the performance simulation of the switch, the packet generator
is implemented to generate the packets into OpenFlow switch module. In the
performance simulation, performance metrics such as the controller service time,
the switch service time and sojourn time are observed and measured. The packet
generator is introduced briefly here. It is implemented in the OpenFlow switch
testbench file. The packets are generated continuously and periodically (64 bits per
50 ns). Table 4.3 shows the switch service time and sojourn time. It can be concluded
that the sojourn time in this case is end-to-end packet delay.

The switch service time (µSwitch) is the time that packets spend in the switch.
Because the queue modules are implemented inside the switch, the waiting time is
included in the switch service time. The forwarding time for different packet sizes
between 64 bytes and 1514 bytes is measured and the mean switch service time
µSwitch is estimated based on the results, shown in Table 4.3. In order to measure
the time, the method introduced in [19] is used. The method is that the OpenFlow
switch needs to forward the packets without the controller interaction [19]. Bursts of
one hundred identical packets are generated in the packet generator module. A rule
matching these packets is pre-written into the switch.

4.2. SERVICE TIME AND SOJOURN TIME 55

Table 4.3: Performance simulation results

Packet size (bytes) Switch service time (µs) Sojourn time (µs)
64 0.48 0.51
128 0.88 0.93
192 1.3 1.34
256 1.68 1.75
320 2.08 2.12
384 2.58 2.62
448 2.88 2.91
512 3.38 3.41
576 3.70 3.73
640 4.08 4.12
704 4.48 4.51
768 5.00 5.03
832 5.28 5.34
896 5.68 5.71
960 6.08 6.11
1024 6.50 6.54
1088 6.88 6.93
1152 7.28 7.31
1216 7.68 7.71
1280 8.08 8.11
1344 8.48 8.51
1408 8.90 8.93
1536 9.30 9.33

Figure 4.1 plots the simulation results of the switch service time. It can be seen
that there is an almost linear increase of the mean switch service time from about
0.48 µs to about 9.3 µs with the increase in payload size.

56 4. PERFORMANCE SIMULATION

Figure 4.1: Switch service time

The sojourn time (µSojourn) consists of the switch service time (µSwitch), the
controller service time (µController) and the communication time between the switch
and the controller (µS−C). The sojourn time for different packet sizes between 64
bytes and 1514 bytes is measured and it is estimated the mean sojourn time (µSojourn)
based on the results, shown in Table 4.3. As the similar method introduced in last
section. In order to measure the time, the switch forwards the packets with the
controller interaction this time. The mean sojourn time also has almost linear increase
as shown in Figure 4.2. It shows the similar linear increasing trend from about 0.51
µs to about 9.33 µs with the increase in payload size. Besides, it is also found that
the switch responses to the writing request from the controller with the fixed latency
2 cycles in our implementation. This time is shorter than the the comparison with the
result (9 cycles) in [19]. In order to measure the controller service time, 10 new flows
of each packet size are inserted to the switch. The arrival rate of these new flows are
same with that used in the switch service time and the sojourn time measurements.
The controller service time plotted in Figure 4.3 is calculated by the following formula:

µSwitch + µController + µS−C= µSojourn

µSwitch: Switch service time
µController: Controller service time

4.2. SERVICE TIME AND SOJOURN TIME 57

µSojourn: Sojourn time
µS−C : Communication time between switch and controller

Figure 4.2: Sojourn time

Figure 4.3: Controller service time

58 4. PERFORMANCE SIMULATION

It can be seen from Figure 4.3 above that the controller service times of different
packet sizes are a little bit variable. The average of the controller service time is
0.045µs.

Chapter5Conclusions and Future Work

In this master thesis, the details of OpenFlow system model is described and
results of performance simulation are shown. Our goal is to do the performance
simulation of OpenFlow system (switch and controller policy). On one hand, it is
to implement the OpenFlow system model on the FPGA-based platform. On the
other hand, the performance simulation is done in order to measure the sojourn time
and the service time (switch and controller). In order to simulate the performace,
data plane and control plane are both implemented on our FPFA-platform (Xilinx
Virtex6) using ISE design tools. As the switch is for research, not for the market,
four mainly components of the OpenFlow switch are implemented in our design,
which are the flow entry composer module, the flow table controller module, the
action processor module and the controller policy module. Besides, the packets are
generated by the packet generator for measuring the performance metrics through
the performance simulation test, specifically the switch service time, sojourn time
and controller service time. As a major result, it is found that the sojourn time
and the switch service time both have an almost linear increase with the increase in
payload size. Moreover, the switch responds to the writing request from the controller
policy module with the fixed latency of 2 cycles. Thus, it can be concluded that the
communication time between the switch and the controller decreases in comparison
with another FPGA-based OpenFlow switch, when the controller is also implemented
on the FPGA-platform.

It is important to underline that findings above only apply to the study presented
in this master thesis and cannot be generalized. Because there are some limitations
about the OpenFlow switch implementation, which can prompt to the future work.
Firstly, the FPGA-platform used in the OpenFlow switch implementation has only
one Ethernet port. Secondly, the whole functions of OpenFlow switch doesn’t
completely be implemented as well as the entire functions of the controller. For
example, only the forwarding action is implemented in OpenFlow switch part and
only writing the flow entry is designed in the controller policy module. Finally,

59

60 5. CONCLUSIONS AND FUTURE WORK

the performance metrics are measured under simulation test environment through
generating the packets on the board, not real-time Internet environment.

According to the limitation discussed above, there are lots of to do the future
work. The performance metrics (e.g, switch service time, sojourn time and controller
service time) of the OpenFlow switch can be measured under the real-life Internet
environment in the future, and more performance metrics can be measured such as
the lost rate, etc. Also, OpenFlow switch and controller can be implemented on the
FPGA-platform with more Ethernet ports.

References

[1] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown,
“Implementing an openflow switch on the netfpga platform,” in Proceedings of the
4th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’08, (New York, NY, USA), pp. 1–9, ACM, 2008. http://doi.acm.
org/10.1145/1477942.1477944.

[2] M. Wielgosz, M. Panggabean, J. Wang, and L. A. Rønningen, “An fpga-
based platform for a network atchitecture with delay guarantee,” Journal of
Circuits, Systems and Computers, vol. 22, no. 06, p. 1350045, 2013. http:
//www.worldscientific.com/doi/abs/10.1142/S021812661350045X.

[3] ONF, “OpenFlow Switch Specification,” Dec. 2011. http://goo.gl/tKo6r.

[4] K. Shahmir Shourmasti, “Stochastic switching using openflow,” Master’s thesis,
Norwegian University of Science and Technology, Department of Telematics, 2013.

[5] Xilinx, Getting Started with the Xilinx Virtex-6 FPGA ML605 Evaluation Kit,
Octorber 2011. http://www.xilinx.com/support/documentation/boards_and_
kits/ug533.pdf.

[6] Xilinx, ML605 Hardware User Guide, 1.2.1 ed., January 2010. http://www.xilinx.
com/support/documentation/boards_and_kits/ug534.pdf.

[7] O. Fundation, “Software-Defined Networking: The New Norm of Networks,”
2012. https://www.opennetworking.org/images/stories/downloads/sdn-resources/
white-papers/wp-sdn-newnorm.pdf.

[8] H. Hata, “A study of requirements for sdn switch platform,” in Intelligent
Signal Processing and Communications Systems (ISPACS), 2013 International
Symposium on, pp. 79–84, Nov 2013.

[9] NICIRA, “It’s time to virtualize the network,” White Paper, 2012. http:
//www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%
20the%20Network%20White%20Paper.pdf.

[10] IBM, “Software defined networking,” IBM Systems and TechnologyThought Lead-
ership White Paper, Octorber 2012. http://ict.unimap.edu.my/images/doc/SDN%
20IBM%20WhitePaper.pdf.

61

http://doi.acm.org/10.1145/1477942.1477944
http://doi.acm.org/10.1145/1477942.1477944
http://www.worldscientific.com/doi/abs/10.1142/S021812661350045X
http://www.worldscientific.com/doi/abs/10.1142/S021812661350045X
http://goo.gl/tKo6r
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20the%20Network%20White%20Paper.pdf
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20the%20Network%20White%20Paper.pdf
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20the%20Network%20White%20Paper.pdf
http://ict.unimap.edu.my/images/doc/SDN%20IBM%20WhitePaper.pdf
http://ict.unimap.edu.my/images/doc/SDN%20IBM%20WhitePaper.pdf

62 REFERENCES

[11] NEC, OpenFlow Feature Guide (IP8800/S3640), May 2010. http://support.
necam.com/kbtools/sdocs.cfm?id=fcbdcb3e-45fa-4ec4-9311-215bd9ab9f81.

[12] G. Romero de Tejada Muntaner, “Evaluation of openflow controllers,” Master’s
thesis, KTH, School of Information and Communication Technology (ICT), 2012.

[13] Xilinx, Virtex-6 Family Overview, January 2012. http://www.xilinx.com/support/
documentation/data_sheets/ds150.pdf.

[14] G. Antichi, A. Di Pietro, S. Giordano, G. Procissi, and D. Ficara, “Design
and development of an openflow compliant smart gigabit switch,” in Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–5, Dec
2011.

[15] A. Khan and N. Dave, “Enabling hardware exploration in software-defined net-
working: A flexible, portable openflow switch,” in Field-Programmable Custom
Computing Machines (FCCM), 2013 IEEE 21st Annual International Symposium
on, pp. 145–148, April 2013.

[16] V. Tanyingyong, M. Hidell, and P. Sjödin, “Improving pc-based openflow switching
performance,” in Proceedings of the 6th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS ’10, (New York, NY, USA),
pp. 13:1–13:2, ACM, 2010. http://doi.acm.org/10.1145/1872007.1872023, doi =
10.1145/1872007.1872023.

[17] Y. Luo, P. Cascon, E. Murray, and J. Ortega, “Accelerating openflow switching
with network processors,” in Proceedings of the 5th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS ’09, (New York,
NY, USA), pp. 70–71, ACM, 2009. http://doi.acm.org/10.1145/1882486.1882504.

[18] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching: Data plane
performance,” in Communications (ICC), 2010 IEEE International Conference
on, pp. 1–5, May 2010.

[19] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an openflow architecture,” in Proceedings
of the 23rd International Teletraffic Congress, ITC ’11, pp. 1–7, International
Teletraffic Congress, 2011. http://dl.acm.org/citation.cfm?id=2043468.2043470.

[20] Xilinx, LogiCORE IP FIFO Generator v9.2 Product Guide, July 2012.
http://www.xilinx.com/support/documentation/ip_documentation/fifo_
generator/v9_2/pg057-fifo-generator.pdf.

[21] Xilinx, LogiCORE IP Block Memory Generator v7.3 Product Guide, December
2012. http://www.xilinx.com/support/documentation/ip_documentation/blk_
mem_gen/v7_3/pg058-blk-mem-gen.pdf.

[22] Xilinx, ISE Design Suite 14: Release Notes, Installation, and Licensing.

http://support.necam.com/kbtools/sdocs.cfm?id=fcbdcb3e-45fa-4ec4-9311-215bd9ab9f81
http://support.necam.com/kbtools/sdocs.cfm?id=fcbdcb3e-45fa-4ec4-9311-215bd9ab9f81
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://doi.acm.org/10.1145/1872007.1872023
http://doi.acm.org/10.1145/1882486.1882504
http://dl.acm.org/citation.cfm?id=2043468.2043470
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v9_2/pg057-fifo-generator.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v9_2/pg057-fifo-generator.pdf
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/pg058-blk-mem-gen.pdf
http://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v7_3/pg058-blk-mem-gen.pdf

AppendixAOpenFlow Switch Top Level
Module

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY openflow_switch IS
GENERIC (

OPENFLOW_MATCH_SIZE: INTEGER:= 256;
OPENFLOW_MASK_SIZE: INTEGER:= 256;
OPENFLOW_ACTION_SIZE: INTEGER:= 256
);

PORT (
clk:IN STD_LOGIC;
reset:IN STD_LOGIC;
input_wr_en1:IN STD_LOGIC;
input_wr_en2: IN STD_LOGIC;
input_wr_en3: IN STD_LOGIC;
input_wr_en4: IN STD_LOGIC;
inputfifo_full1: OUT STD_LOGIC;
inputfifo_full2: OUT STD_LOGIC;
inputfifo_full3: OUT STD_LOGIC;
inputfifo_full4: OUT STD_LOGIC;
inputfifo_empty1: OUT STD_LOGIC;
inputfifo_empty2: OUT STD_LOGIC;
inputfifo_empty3: OUT STD_LOGIC;
inputfifo_empty4: OUT STD_LOGIC;
packet_in_port1: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in_port2: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in_port3: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in_port4: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out_port1: OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out_port2: OUT STD_LOGIC_VECTOR (63 DOWNTO 0);

i

ii A. OPENFLOW SWITCH TOP LEVEL MODULE

packet_out_port3: OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out_port4: OUT STD_LOGIC_VECTOR (63 DOWNTO 0)
);

END openflow_switch;

ARCHITECTURE openflow_switch of openflow_switch IS
. Pre-processor 1 .
COMPONENT pre_processor

PORT(
asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
input_wr_en : IN STD_LOGIC;
output_rd_en : IN STD_LOGIC;
lu_ack : IN STD_LOGIC;
packet_in : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
lu_req : INOUT STD_LOGIC;
lu_entry : OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
outputbuffer_data : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
inputfifo_full : OUT STD_LOGIC;
output_buffer_full : OUT STD_LOGIC;
output_buffer_empty : OUT STD_LOGIC
);

END COMPONENT;
. Pre-processor 2 .
COMPONENT pre_processor2

PORT(
asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
input_wr_en : IN STD_LOGIC;
output_rd_en : IN STD_LOGIC;
lu_ack : IN STD_LOGIC;
packet_in : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
lu_req : INOUT STD_LOGIC;
lu_entry : OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
outputbuffer_data : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
inputfifo_full : OUT STD_LOGIC;
output_buffer_full : OUT STD_LOGIC;
output_buffer_empty : OUT STD_LOGIC
);

iii

END COMPONENT;
. Pre-processor 3 .
COMPONENT pre_processor3

PORT(
asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
input_wr_en : IN STD_LOGIC;
output_rd_en : IN STD_LOGIC;
lu_ack : IN STD_LOGIC;
packet_in : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
lu_req : INOUT STD_LOGIC;
lu_entry : OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
outputbuffer_data : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
inputfifo_full : OUT STD_LOGIC;
output_buffer_full : OUT STD_LOGIC;
output_buffer_empty : OUT STD_LOGIC
);

END COMPONENT;
. Pre-processor 4 .
COMPONENT pre_processor4

PORT(
asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
input_wr_en : IN STD_LOGIC;
output_rd_en : IN STD_LOGIC;
lu_ack : IN STD_LOGIC;
packet_in : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
lu_req : INOUT STD_LOGIC;
lu_entry : OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
outputbuffer_data : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
inputfifo_full : OUT STD_LOGIC;
output_buffer_full : OUT STD_LOGIC;
output_buffer_empty : OUT STD_LOGIC
);

END COMPONENT;
. Flow Table Controller .
COMPONENT flow_table_controller

PORT(
asclk : IN STD_LOGIC;

iv A. OPENFLOW SWITCH TOP LEVEL MODULE

asresetn : IN STD_LOGIC;
lu_req1 : IN STD_LOGIC;
lu_req2 : IN STD_LOGIC;
lu_req3 : IN STD_LOGIC;
lu_req4 : IN STD_LOGIC;
lu_entry1 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
lu_entry2 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
lu_entry3 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
lu_entry4 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
lu_done1 : INOUT STD_LOGIC;
lu_done2 : INOUT STD_LOGIC;
lu_done3 : INOUT STD_LOGIC;
lu_done4 : INOUT STD_LOGIC;
lu_ack1 : OUT STD_LOGIC;
lu_ack2 : OUT STD_LOGIC;
lu_ack3 : OUT STD_LOGIC;
lu_ack4 : OUT STD_LOGIC;
action: OUT STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 downto

0);
match : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);

END COMPONENT;
. -Packet forwarding .
COMPONENT packet_forwarding

PORT(
asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
match : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
action:IN STD_LOGIC_VECTOR (OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
output_buffer_empty1 : IN STD_LOGIC;
output_buffer_empty2 : IN STD_LOGIC;
output_buffer_empty3 : IN STD_LOGIC;
output_buffer_empty4 : IN STD_LOGIC;
packet_in1 : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in2 : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in3 : IN STD_LOGIC_VECTOR (63 DOWNTO 0);

v

packet_in4 : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
lu_done1 : IN STD_LOGIC;
lu_done2 : IN STD_LOGIC;
lu_done3 : IN STD_LOGIC;
lu_done4 : IN STD_LOGIC;
rd_en1 : OUT STD_LOGIC;
rd_en2 : OUT STD_LOGIC;
rd_en3 : OUT STD_LOGIC;
rd_en4 : OUT STD_LOGIC;
packet_out1 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out2 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out3 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out4 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0)
);

END COMPONENT;
SIGNAL rd_en1_nxt,rd_en2_nxt,rd_en3_nxt,rd_en4_nxt: STD_LOGIC;
SIGNAL lu_req1_nxt,lu_req2_nxt,lu_req3_nxt,lu_req4_nxt: STD_LOGIC;
SIGNAL lu_done1_nxt,lu_done2_nxt,lu_done3_nxt,lu_done4_nxt: STD_LOGIC;
SIGNAL lu_ack1_nxt,lu_ack2_nxt, lu_ack3_nxt, lu_ack4_nxt: STD_LOGIC;
SIGNAL output_buffer_full1,output_buffer_full2, output_buffer_full3,
output_buffer_full4: STD_LOGIC;
SIGNAL output_buffer_empty1_nxt, output_buffer_empty2_nxt,output_buffer_empty3_nxt,output_buffer_empty4_nxt:
STD_LOGIC;
SIGNAL match_nxt: STD_LOGIC_VECTOR (3 DOWNTO 0);
SIGNAL lu_entry1_nxt, lu_entry2_nxt, lu_entry3_nxt, lu_entry4_nxt: STD_LOGIC_VECTOR
(OPENFLOW_MATCH_SIZE-1 DOWNTO 0);
SIGNAL outputbuffer_data1,outputbuffer_data2,outputbuffer_data3,outputbuffer_data4:
STD_LOGIC_VECTOR (63 DOWNTO 0);
SIGNAL action_nxt : STD_LOGIC_VECTOR (OPENFLOW_ACTION_SIZE-1
DOWNTO 0);
BEGIN
. Pre-processor 1 .
Inst_pre_processor: pre_processor PORT MAP(

asclk => clk,
asresetn => reset,
input_wr_en => input_wr_en1,
output_rd_en => rd_en1_nxt,
lu_entry => lu_entry1_nxt,
lu_req => lu_req1_nxt,
lu_ack => lu_ack1_nxt,
packet_in => packet_in_port1,

vi A. OPENFLOW SWITCH TOP LEVEL MODULE

outputbuffer_data => outputbuffer_data1,
inputfifo_full => inputfifo_full1,
output_buffer_full => output_buffer_full1,
output_buffer_empty => output_buffer_empty1_nxt
);

. Pre-processor 2 .
Inst_pre_processor2: pre_processor2 PORT MAP(

asclk => clk,
asresetn => reset,
input_wr_en => input_wr_en2,
output_rd_en => rd_en2_nxt,
lu_entry => lu_entry2_nxt,
lu_req => lu_req2_nxt,
lu_ack => lu_ack2_nxt,
packet_in => packet_in_port2,
outputbuffer_data => outputbuffer_data2,
inputfifo_full => inputfifo_full2,
output_buffer_full => output_buffer_full2,
output_buffer_empty => output_buffer_empty2_nxt
);

. Pre-processor 3 .
Inst_pre_processor3: pre_processor3 PORT MAP(

asclk => clk,
asresetn => reset,
input_wr_en => input_wr_en3,
output_rd_en => rd_en3_nxt,
lu_entry => lu_entry3_nxt,
lu_req => lu_req3_nxt,
lu_ack => lu_ack3_nxt,
packet_in => packet_in_port3,
outputbuffer_data => outputbuffer_data3,
inputfifo_full => inputfifo_full3,
output_buffer_full => output_buffer_full3,
output_buffer_empty => output_buffer_empty3_nxt
);

. Pre-processor 4 .
Inst_pre_processor4: pre_processor4 PORT MAP(

asclk => clk,
asresetn => reset,
input_wr_en => input_wr_en4,
output_rd_en => rd_en4_nxt,

vii

lu_entry => lu_entry4_nxt,
lu_req => lu_req4_nxt,
lu_ack => lu_ack4_nxt,
packet_in => packet_in_port4,
outputbuffer_data => outputbuffer_data4,
inputfifo_full => inputfifo_full4,
output_buffer_full => output_buffer_full4,
output_buffer_empty => output_buffer_empty4_nxt
);

. Flow Table Controller .
Inst_flow_table_controller: flow_table_controller PORT MAP(

asclk => clk,
asresetn => reset,
lu_req1 => lu_req1_nxt,
lu_req2 => lu_req2_nxt,
lu_req3 => lu_req3_nxt,
lu_req4 => lu_req4_nxt,
lu_entry1 => lu_entry1_nxt,
lu_entry2 => lu_entry2_nxt,
lu_entry3 => lu_entry3_nxt,
lu_entry4 => lu_entry4_nxt,
lu_done1 => lu_done1_nxt,
lu_done2 => lu_done2_nxt,
lu_done3 => lu_done3_nxt,
lu_done4 => lu_done4_nxt,
lu_ack1 => lu_ack1_nxt,
lu_ack2 => lu_ack2_nxt,
lu_ack3 => lu_ack3_nxt,
lu_ack4 => lu_ack4_nxt,
action => action_nxt,
match => match_nxt
);

. Packet Forwarding .
Inst_packet_forwarding: packet_forwarding PORT MAP(

asclk => clk,
asresetn => reset,
match => match_nxt,
action => action_nxt,
lu_done1 => lu_done1_nxt,
lu_done2 => lu_done2_nxt,
lu_done3 => lu_done3_nxt,

viii A. OPENFLOW SWITCH TOP LEVEL MODULE

lu_done4 => lu_done4_nxt,
output_buffer_empty1 => output_buffer_empty1_nxt,
output_buffer_empty2 => output_buffer_empty2_nxt,
output_buffer_empty3 => output_buffer_empty3_nxt,
output_buffer_empty4 => output_buffer_empty4_nxt,
rd_en1 => rd_en1_nxt,
rd_en2 => rd_en2_nxt,
rd_en3 => rd_en3_nxt,
rd_en4 => rd_en4_nxt,
packet_in1 => outputbuffer_data1,
packet_in2 => outputbuffer_data2,
packet_in3 => outputbuffer_data3,
packet_in4 => outputbuffer_data4,
packet_out1 => packet_out_port1,
packet_out2 => packet_out_port2,
packet_out3 => packet_out_port3,
packet_out4 => packet_out_port4
);

END openflow_switch;

AppendixBPre-processor Module

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY pre_processor is
GENERIC (

OPENFLOW_MATCH_SIZE : integer := 256
);

PORT (
asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
input_wr_en: IN STD_LOGIC;
output_rd_en: IN STD_LOGIC;
lu_entry : OUT std_logic_vector (OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_req: INOUT STD_LOGIC;
lu_ack : IN STD_LOGIC;
packet_in: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
outputbuffer_data: OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
inputfifo_full : OUT STD_LOGIC;
inputfifo_empty : OUT STD_LOGIC;
output_buffer_full: OUT STD_LOGIC;
output_buffer_empty: OUT STD_LOGIC
);

END pre_processor;
ARCHITECTURE pre_processor of pre_processor is
. FIFO-input QUEUE .
COMPONENT input_fifo_exdes

PORT (
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;

ix

x B. PRE-PROCESSOR MODULE

din : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC
);

END COMPONENT;
. .Output Buffer .
COMPONENT output_pkt_buffer_exdes

PORT(
CLK : IN STD_LOGIC;
RST : IN STD_LOGIC;
WR_EN : IN STD_LOGIC;
RD_EN : IN STD_LOGIC;
DIN : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
DOUT : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
FULL : OUT STD_LOGIC;
EMPTY : OUT STD_LOGIC
);

END COMPONENT;
. Header Parser .
COMPONENT header_parser

PORT(
asclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
tx_data : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
fifo_empty : IN STD_LOGIC;
almost_empty : IN STD_LOGIC;
compose_done : IN STD_LOGIC;
fifo_rd_en : OUT STD_LOGIC;
dl_start : OUT STD_LOGIC;
dl_done : OUT STD_LOGIC;
src_port : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
dl_dst : OUT STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_src : OUT STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_ethtype : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
dl_vlantag : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
ip_tp_done : OUT STD_LOGIC;
ipv6_tp_done : OUT STD_LOGIC;

xi

arp_done : OUT STD_LOGIC;
mpls_done : OUT STD_LOGIC;
ip_proto : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_tos : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_src : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
ip_dst : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
arp_opcode : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
arp_ip_src : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
arp_ip_dst : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
mpls_label : OUT STD_LOGIC_VECTOR (19 DOWNTO 0);
mpls_tc : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
ipv6_src : OUT STD_LOGIC_VECTOR (127 DOWNTO 0);
ipv6_dst : OUT STD_LOGIC_VECTOR (127 DOWNTO 0);
tp_src : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
tp_dst : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);

END COMPONENT;
. Lookup Entry Composer .
COMPONENT lu_entry_composer

PORT(
asclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
dl_start : IN STD_LOGIC;
dl_done : IN STD_LOGIC;
src_port : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
dl_dst : IN STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_src : IN STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_ethtype : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
dl_vlantag : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
ip_tp_done : IN STD_LOGIC;
ipv6_tp_done : IN STD_LOGIC;
arp_done : IN STD_LOGIC;
mpls_done : IN STD_LOGIC;
ip_proto : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_tos : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_src : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
ip_dst : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
arp_opcode : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
arp_ip_src : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
arp_ip_dst : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
mpls_label : IN STD_LOGIC_VECTOR (19 DOWNTO 0);

xii B. PRE-PROCESSOR MODULE

mpls_tc : IN STD_LOGIC_VECTOR (2 DOWNTO 0);
ipv6_src : IN STD_LOGIC_VECTOR (127 DOWNTO 0);
ipv6_dst : IN STD_LOGIC_VECTOR (127 DOWNTO 0);
tp_src : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
tp_dst : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
lu_ack : IN STD_LOGIC;
compose_done : INOUT STD_LOGIC;
lu_req : INOUT STD_LOGIC;
lu_entry : OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0)
);

END COMPONENT;

–input signals to pre_processor
SIGNAL rd_en_nxt, fifo_empty_nxt, almost_empty_nxt: STD_LOGIC;
–signals between pre_processor and lu_composer
SIGNAL dl_start_nxt, dl_done_nxt,ip_tp_done_nxt,arp_done_nxt,mpls_done_nxt,
ipv6_tp_done_nxt, compose_done_nxt : STD_LOGIC;
SIGNAL src_port_nxt: STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ip_proto_nxt,ip_tos_nxt, arp_opcode_nxt: STD_LOGIC_VECTOR (7
DOWNTO 0);
SIGNAL dl_dst_nxt, dl_src_nxt: STD_LOGIC_VECTOR (47 DOWNTO 0);
SIGNAL dl_ethtype_nxt, dl_vlantag_nxt,arp_ip_src_nxt,arp_ip_dst_nxt, tp_src_nxt,
tp_dst_nxt: STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL ip_src_nxt, ip_dst_nxt: STD_LOGIC_VECTOR (31 DOWNTO 0);
SIGNAL ipv6_src_nxt, ipv6_dst_nxt: STD_LOGIC_VECTOR (127 DOWNTO
0);
SIGNAL tx_data_nxt : STD_LOGIC_VECTOR (63 DOWNTO 0);
SIGNAL mpls_label_nxt : STD_LOGIC_VECTOR (19 DOWNTO 0);
SIGNAL mpls_tc_nxt : STD_LOGIC_VECTOR (2 DOWNTO 0);

BEGIN
. FIFO-input QUEUE .
Inst_input_fifo_exdes : input_fifo_exdes PORT MAP (

clk => asclk,
rst => asresetn,
din => packet_in,
wr_en => input_wr_en,
rd_en => rd_en_nxt,

dout => tx_data_nxt,

xiii

full => inputfifo_full,
empty => fifo_empty_nxt,
almost_empty => almost_empty_nxt
);

. Header Parser .
Inst_header_parser: header_parser PORT MAP(

asclk => asclk,
aresetn => asresetn,
tx_data => tx_data_nxt,
fifo_empty => fifo_empty_nxt,
almost_empty => almost_empty_nxt,
fifo_rd_en => rd_en_nxt,
dl_start => dl_start_nxt,
dl_done => dl_done_nxt,
src_port =>src_port_nxt,
dl_dst => dl_dst_nxt,
dl_src => dl_src_nxt,
dl_ethtype => dl_ethtype_nxt,
dl_vlantag => dl_vlantag_nxt,
ip_tp_done => ip_tp_done_nxt,
arp_done => arp_done_nxt,
mpls_done => mpls_done_nxt,
ipv6_tp_done => ipv6_tp_done_nxt,
ip_proto => ip_proto_nxt,
ip_tos => ip_tos_nxt,
ip_src => ip_src_nxt,
ip_dst => ip_dst_nxt,
arp_opcode => arp_opcode_nxt,
arp_ip_src => arp_ip_src_nxt,
arp_ip_dst => arp_ip_dst_nxt,
mpls_label => mpls_label_nxt,
mpls_tc => mpls_tc_nxt,
ipv6_src => ipv6_src_nxt,
ipv6_dst => ipv6_dst_nxt,
tp_src => tp_src_nxt,
tp_dst => tp_dst_nxt,
compose_done => compose_done_nxt
);

. Lookup Entry Composer .
Inst_lu_entry_composer: lu_entry_composer PORT MAP(

asclk => asclk,

xiv B. PRE-PROCESSOR MODULE

aresetn => asresetn,
dl_start => dl_start_nxt,
dl_done => dl_done_nxt,
src_port => src_port_nxt,
dl_dst => dl_dst_nxt,
dl_src => dl_src_nxt,
dl_ethtype => dl_ethtype_nxt,
dl_vlantag => dl_vlantag_nxt,
ip_tp_done => ip_tp_done_nxt,
arp_done => arp_done_nxt,
mpls_done => mpls_done_nxt,
ipv6_tp_done => ipv6_tp_done_nxt,
ip_proto => ip_proto_nxt,
ip_tos => ip_tos_nxt,
ip_src => ip_src_nxt,
ip_dst => ip_dst_nxt,
arp_opcode => arp_opcode_nxt,
arp_ip_src => arp_ip_src_nxt,
arp_ip_dst => arp_ip_dst_nxt,
mpls_label => mpls_label_nxt,
mpls_tc => mpls_tc_nxt,
ipv6_src => ipv6_src_nxt,
ipv6_dst => ipv6_dst_nxt,
tp_src => tp_src_nxt,
tp_dst => tp_dst_nxt,
lu_ack => lu_ack,
compose_done => compose_done_nxt,
lu_entry => lu_entry,
lu_req => lu_req
);

. .Output Buffer .
Inst_output_pkt_buffer_exdes: output_pkt_buffer_exdes PORT MAP (

clk => asclk,
rst => asresetn,
din => packet_in,
wr_en => input_wr_en,
rd_en => output_rd_en,
dout => outputbuffer_data,
full => output_buffer_full,
empty => output_buffer_empty
);

xv

END pre_processor;

AppendixCHeader Parser Block

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY header_parser IS
GENERIC (

C_AXIS_DATA_WIDTH: INTEGER :=64;
TYPE_VLAN: STD_LOGIC_VECTOR (15 DOWNTO 0):= X"8100";
TYPE_VLAN_QINQ: STD_LOGIC_VECTOR (15 DOWNTO 0):= X"88a8";
TYPE_IP: STD_LOGIC_VECTOR (15 DOWNTO 0):= X"0800";
TYPE_IPV6: STD_LOGIC_VECTOR (15 DOWNTO 0):= X"86dd";
TYPE_ARP: STD_LOGIC_VECTOR (15 DOWNTO 0):= X"0806";
TYPE_MPLS: STD_LOGIC_VECTOR (15 DOWNTO 0):= X"8847";
TYPE_MPLS_MU: STD_LOGIC_VECTOR(15 DOWNTO 0):= X"8848"
);

PORT (
asclk: IN STD_LOGIC;
aresetn: IN STD_LOGIC;
tx_data: IN STD_LOGIC_VECTOR (C_AXIS_DATA_WIDTH-1 DOWNTO

0);
fifo_empty: IN STD_LOGIC;
almost_empty: IN STD_LOGIC;
fifo_rd_en: OUT STD_LOGIC;
dl_start: OUT STD_LOGIC;
dl_done: OUT STD_LOGIC;
src_port: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
dl_dst: OUT STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_src: OUT STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_ethtype: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
dl_vlantag: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
ip_tp_done: OUT STD_LOGIC;

xvii

xviii C. HEADER PARSER BLOCK

ipv6_tp_done: OUT STD_LOGIC;
arp_done: OUT STD_LOGIC;
mpls_done: OUT STD_LOGIC;
ip_proto: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_tos: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_src: OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
ip_dst: OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
arp_opcode: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
arp_ip_src: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
arp_ip_dst: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
mpls_label: OUT STD_LOGIC_VECTOR (19 DOWNTO 0);
mpls_tc: OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
ipv6_src: OUT STD_LOGIC_VECTOR (127 DOWNTO 0);
ipv6_dst: OUT STD_LOGIC_VECTOR (127 DOWNTO 0);
tp_src: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
tp_dst: OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
compose_done: IN STD_LOGIC
);

END header_parser;

ARCHITECTURE header_parser of header_parser IS
TYPE dt_td_type is (DT_RD_1ST, DT_RD_REST, DT_RD_WAIT);
TYPE parse_type is (DL_WAIT_TVALID, DL_PARSE_2ND, DL_SFT16_1ST,
DL_SFT48_1ST, DL_PARSE_MORE, IP_TP_PARSE_16_1ST,IP_TP_PARSE_16_2ND,
IP_TP_PARSE_16_3RD, IPV6_TP_PARSE_16_1ST,IPV6_TP_PARSE_16_2ND,
IPV6_TP_PARSE_16_3RD, IPV6_TP_PARSE_16_4TH, IPV6_TP_PARSE_16_5TH,
IP_TP_PARSE_48_1ST, IP_TP_PARSE_48_2ND, IP_TP_PARSE_48_3RD,
IPV6_TP_PARSE_48_1ST, IPV6_TP_PARSE_48_2ND, IPV6_TP_PARSE_48_3RD,
IPV6_TP_PARSE_48_4TH, ARP_PARSE_16, ARP_PARSE_48, DL_SFT_MORE,
DL_SFT_LAST);

SIGNAL dt_rd_state, dt_rd_state_nxt :dt_td_type;
SIGNAL parse_state, parse_state_nxt: parse_type;

BEGIN
. Data Reading Process .
PROCESS(asclk, aresetn, fifo_empty, dt_rd_state)
BEGIN

IF (aresetn = ‘1’) THEN

xix

fifo_rd_en <= ‘0’;
dt_rd_state <= DT_RD_1ST;

ELSIF (asclk’event and asclk = ‘1’) THEN
dt_rd_state <= dt_rd_state_nxt;

END IF;
CASE dt_rd_state IS

WHEN DT_RD_1ST =>
IF (fifo_empty =‘0’) THEN

fifo_rd_en <= ‘1’;
dt_rd_state_nxt <= DT_RD_REST;

END IF;
WHEN DT_RD_REST =>

IF (fifo_empty =‘0’) THEN
fifo_rd_en <= ‘1’;
IF (almost_empty =‘1’) THEN

dt_rd_state_nxt <= DT_RD_WAIT;
END IF;

END IF;
WHEN DT_RD_WAIT =>

dt_rd_state_nxt <= DT_RD_1ST;
END CASE;

END PROCESS;
. L2 Parser Process .
packet_parsing: PROCESS(asclk, aresetn,parse_state)
VARIABLE ip_hlen_nxt :STD_LOGIC_VECTOR(3 DOWNTO 0);
VARIABLE ip_proto_nxt,ipv6_proto_nxt : STD_LOGIC_VECTOR(7 DOWNTO
0);
VARIABLE dl_ethtype_nxt: STD_LOGIC_VECTOR (15 DOWNTO 0);
BEGIN

IF (aresetn = ‘1’) THEN
src_port(7 DOWNTO 0)<= (others =>‘0’);
dl_dst(47 DOWNTO 0) <= (others =>‘0’);
dl_src(47 DOWNTO 0)<= (others =>‘0’);
dl_ethtype(15 DOWNTO 0) <= (others =>‘0’);
dl_start <=‘0’;
dl_done <= ‘0’;
dl_vlantag <= (others =>‘0’);
ip_proto (7 DOWNTO 0)<= (others =>‘0’);
ip_tos (7 DOWNTO 0)<= (others =>‘0’);
ip_src(31 DOWNTO 0)<= (others =>‘0’);
ip_dst(31 DOWNTO 0)<= (others =>‘0’);

xx C. HEADER PARSER BLOCK

ipv6_src(127 DOWNTO 0)<= (others =>‘0’);
ipv6_dst(127 DOWNTO 0)<= (others =>‘0’);
arp_ip_src <= (others =>‘0’);
arp_ip_dst <= (others =>‘0’);
arp_opcode <= (others =>‘0’);
mpls_label <= (others =>‘0’);
mpls_tc <= (others =>‘0’);
tp_src(15 DOWNTO 0)<= (others =>‘0’);
tp_dst(15 DOWNTO 0)<= (others =>‘0’);
ip_tp_done <= ‘0’;
ipv6_tp_done <= ‘0’;
arp_done <= ‘0’;
mpls_done <= ‘0’;
parse_state <= DL_WAIT_TVALID;

ELSIF (asclk’event and asclk =‘1’) THEN
parse_state<=parse_state_nxt;

END IF;
CASE parse_state IS

WHEN DL_WAIT_TVALID =>
IF (fifo_empty = ‘0’) THEN

src_port <= X"01";
. Get Ethernet destination and source

dl_dst(47 DOWNTO 0) <= tx_data(63 DOWNTO 16);
dl_src(47 DOWNTO 32)<= tx_data(15 DOWNTO 0);
dl_start <= ‘1’;
parse_state_nxt <= DL_PARSE_2ND;

ELSE
parse_state_nxt <= DL_WAIT_TVALID;

END IF;
WHEN DL_PARSE_2ND =>

IF (fifo_empty = ‘0’) THEN
dl_src(31 DOWNTO 0)<= tx_data (63 DOWNTO 32);
IF (tx_data(31 DOWNTO 16) = TYPE_VLAN_QINQ or tx_data(31

DOWNTO 16) = TYPE_VLAN) THEN
. Get Ethernet Type and VLAN Tag

dl_vlantag <= tx_data(15 DOWNTO 0);
parse_state_nxt <= DL_PARSE_MORE;

ELSE
dl_ethtype(15 DOWNTO 0) <= tx_data(31 DOWNTO 16);
dl_ethtype_nxt(15 DOWNTO 0) := tx_data(31 DOWNTO 16);
mpls_tc <= tx_data(6 DOWNTO 4);

xxi

mpls_label(19 DOWNTO 16)<= tx_data(3 DOWNTO 0);
ip_hlen_nxt:= tx_data(11 DOWNTO 8);
ip_tos <= tx_data(7 DOWNTO 0);
parse_state_nxt <= DL_SFT16_1ST;
END IF;

ELSE
parse_state_nxt <= DL_WAIT_TVALID;

END IF;
WHEN DL_PARSE_MORE =>

IF (fifo_empty = ‘0’) THEN
IF (tx_data(63 DOWNTO 48) = TYPE_VLAN_QINQ or tx_data(63

DOWNTO 48) = TYPE_VLAN) THEN
dl_vlantag <= tx_data(47 DOWNTO 32);
dl_ethtype <= tx_data(31 DOWNTO 16);
dl_ethtype_nxt := tx_data(31 DOWNTO 16);
ip_hlen_nxt:= tx_data(11 DOWNTO 8);
ip_tos <= tx_data(7 DOWNTO 0);
mpls_tc <= tx_data(6 DOWNTO 4);
mpls_label(19 downto 16)<= tx_data(3 DOWNTO 0);
parse_state_nxt <= DL_SFT16_1ST;

ELSE
dl_ethtype <= tx_data(63 DOWNTO 48);
dl_ethtype_nxt := tx_data(63 DOWNTO 48);
ip_hlen_nxt:= tx_data(43 DOWNTO 40);
ip_tos <= tx_data(39 DOWNTO 32);
mpls_tc <= tx_data(38 DOWNTO 36);
mpls_label(19 DOWNTO 0) <= tx_data(35 DOWNTO 16);
parse_state_nxt <= DL_SFT48_1ST;

END IF;
ELSE

parse_state_nxt <= DL_WAIT_TVALID;
END IF;
WHEN DL_SFT16_1ST =>

IF (fifo_empty = ‘0’) THEN
IF (dl_ethtype_nxt = TYPE_IP) THEN

. .Get IP Protocol, SRC, DST .
ip_proto(7 DOWNTO 0) <= tx_data (7 DOWNTO 0);
ip_proto_nxt(7 DOWNTO 0) := tx_data (7 DOWNTO 0);
parse_state_nxt <= IP_TP_PARSE_16_1ST;

ELSIF (dl_ethtype_nxt = TYPE_IPV6) THEN
ip_proto (7 DOWNTO 0) <= tx_data(31 DOWNTO 24);

xxii C. HEADER PARSER BLOCK

ip_proto_nxt (7 DOWNTO 0) := tx_data(31 DOWNTO 24);
ipv6_src (127 DOWNTO 112) <= tx_data (15 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_16_1ST;

. .Get ARP opcode .
ELSIF (dl_ethtype_nxt = TYPE_ARP) then

arp_opcode <= tx_data (23 DOWNTO 16);
parse_state_nxt <= ARP_PARSE_16;

. .Get MPLS label .
ELSIF (dl_ethtype_nxt = TYPE_MPLS or dl_ethtype_nxt = TYPE_MPLS_MU)

THEN
mpls_label (15 DOWNTO 0)<= tx_data (63 DOWNTO 48);
dl_done <=‘1’;
mpls_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

ELSE
dl_done <=‘1’;
ip_tp_done <= ‘0’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IF;

WHEN ARP_PARSE_16 =>
IF (fifo_empty = ‘0’) THEN

. .Get ARP SRC,DST .
arp_ip_src <= tx_data (47 DOWNTO 32);
arp_ip_dst <= tx_data (15 DOWNTO 0);
dl_done <=‘1’;
arp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
WHEN IP_TP_PARSE_16_1ST =>

IF (fifo_empty = ‘0’) then
ip_src (31 downto 0) <= tx_data(47 DOWNTO 16);
ip_dst (31 downto 16) <= tx_data(15 DOWNTO 0);
parse_state_nxt <= IP_TP_PARSE_16_2ND;

END IF;
WHEN IPV6_TP_PARSE_16_1ST =>

IF (fifo_empty = ‘0’) then
ipv6_src (111 DOWNTO 48)<= tx_data (63 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_16_2ND;

END IF;
WHEN IP_TP_PARSE_16_2ND =>

xxiii

IF (fifo_empty = ‘0’) THEN
ip_dst(15 DOWNTO 0) <= tx_data(63 DOWNTO 48);
IF (ip_proto_nxt = X"06" or ip_proto_nxt = X"11" or ip_proto_nxt

= X"84") THEN
IF (ip_hlen_nxt = B"0101") THEN

. Get L4 header information .
tp_src(15 DOWNTO 0) <= tx_data(47 DOWNTO 32);
tp_dst(15 DOWNTO 0) <= tx_data(31 DOWNTO 16);
dl_done <=‘1’;
ip_tp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

ELSE
tp_src(15 DOWNTO 0) <= tx_data (15 DOWNTO 0);
parse_state_nxt <= IP_TP_PARSE_16_3RD;

END IF;
ELSIF (ip_proto_nxt = X"01") then

IF (ip_hlen_nxt = B"0101") then
. .Get L4 header information .

tp_src (15 DOWNTO 0) <= X"00" & tx_data (47 DOWNTO
40);

tp_dst (15 DOWNTO 0) <= X"00" & tx_data (39 DOWNTO
32);

dl_done <=‘1’;
ip_tp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

ELSE
. .Get L4 header information .

tp_src(15 downto 0) <= X"00" & tx_data(15 DOWNTO 8);
tp_dst(15 downto 0) <= X"00" & tx_data(7 DOWNTO 0);
dl_done <=‘1’;
ip_tp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
ELSE

tp_src <= X"0000";
tp_dst <= X"0000";
dl_done <=‘1’;
ip_tp_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IF;

xxiv C. HEADER PARSER BLOCK

WHEN IPV6_TP_PARSE_16_2ND =>
IF (fifo_empty = ‘0’) THEN

ipv6_src (47 DOWNTO 0) <= tx_data(63 DOWNTO 16);
ipv6_dst (127 DOWNTO 112) <= tx_data(15 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_16_3RD;

END IF;
WHEN IP_TP_PARSE_16_3RD =>

IF (fifo_empty = ‘0’) THEN
tp_dst (15 DOWNTO 0) <= tx_data (63 downto 48);
dl_done <=‘1’;
ip_tp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
WHEN IPV6_TP_PARSE_16_3RD =>

IF (fifo_empty = ‘0’) then
ipv6_dst (111 DOWNTO 48) <= tx_data(63 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_16_4TH;

END IF;
WHEN IPV6_TP_PARSE_16_4TH =>

IF (fifo_empty = ‘0’) then
ipv6_dst(47 DOWNTO 0) <= tx_data(63 DOWNTO 16);
IF (ip_proto_nxt = X"06" or ip_proto_nxt = X"11") THEN

tp_src(15 DOWNTO 0) <= tx_data(15 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_16_5TH;

ELSE
tp_src <= X"0000";
tp_dst <= X"0000";
dl_done <=‘1’;
ipv6_tp_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IF;

WHEN IPV6_TP_PARSE_16_5TH =>
tp_dst (15 downto 0) <= tx_data(63 DOWNTO 48);
dl_done <=‘1’;
ipv6_tp_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

WHEN DL_SFT48_1ST =>
IF (fifo_empty = ‘0’) THEN

IF (dl_ethtype_nxt = TYPE_IP) THEN
ip_proto_nxt := tx_data (39 DOWNTO 32);

xxv

ip_proto(7 DOWNTO 0) <= tx_data (39 DOWNTO 32);
ip_src(31 DOWNTO 16) <= tx_data(15 DOWNTO 0);
parse_state_nxt <= IP_TP_PARSE_48_1ST;

ELSIF (dl_ethtype_nxt = TYPE_IPV6) THEN
ip_proto_nxt := tx_data(63 DOWNTO 56);
ip_proto(7 DOWNTO 0) <= tx_data(63 DOWNTO 56);
ipv6_src(127 DOWNTO 80) <= tx_data(47 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_48_1ST;

ELSIF (dl_ethtype_nxt = TYPE_ARP) then
arp_opcode <= tx_data(53 DOWNTO 46);
arp_ip_src <= tx_data(31 DOWNTO 16);
parse_state_nxt <= ARP_PARSE_48;

ELSIF (dl_ethtype_nxt = TYPE_MPLS or dl_ethtype_nxt = TYPE_MPLS_MU)
THEN

dl_done <=‘1’;
mpls_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

ELSE
dl_done <=‘1’;
ip_tp_done <= ‘0’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IF;

WHEN ARP_PARSE_48 =>
IF (fifo_empty = ‘0’) THEN

arp_ip_dst <= tx_data(63 DOWNTO 48);
dl_done <=‘1’;
arp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
WHEN IP_TP_PARSE_48_1ST =>

IF (fifo_empty = ‘0’) then
ip_src(15 DOWNTO 0) <= tx_data(63 DOWNTO 48);
ip_dst(31 DOWNTO 0) <= tx_data(47 DOWNTO 16);
IF (ip_proto_nxt = X"06" or ip_proto_nxt = X"11" or ip_proto_nxt

= X"84") THEN
IF (ip_hlen_nxt = B"0101") THEN

tp_src(15 DOWNTO 0) <= tx_data(15 DOWNTO 0);
parse_state_nxt <= IP_TP_PARSE_48_2ND;

ELSE
parse_state_nxt <= IP_TP_PARSE_48_3RD;

xxvi C. HEADER PARSER BLOCK

END IF;
ELSIF (ip_proto_nxt = X"01") then

IF (ip_hlen_nxt = B"0101") then
tp_src(15 DOWNTO 0) <= X"00" & tx_data(15 DOWNTO

8);
tp_dst(15 DOWNTO 0) <= X"00" & tx_data(7 DOWNTO 0);
dl_done <=‘1’;
ip_tp_done <= ‘1’;

ELSE
parse_state_nxt <= IP_TP_PARSE_48_3RD;

END IF;
ELSE

tp_src<= X"0000";
tp_dst <= X"0000";
dl_done <=‘1’;
ip_tp_done<=’1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IFf;

WHEN IPV6_TP_PARSE_48_1ST =>
IF (fifo_empty = ‘0’) THEN

ipv6_src (79 DOWNTO 16) <= tx_data(63 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_48_2ND;

END IF;
WHEN IP_TP_PARSE_48_2ND =>

IF (fifo_empty = ‘0’) THEN
tp_dst(15 DOWNTO 0) <= tx_data(63 DOWNTO 48);
dl_done <=‘1’;
ip_tp_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
WHEN IPV6_TP_PARSE_48_2ND =>

IF (fifo_empty = ‘0’) then
ipv6_src(15 DOWNTO 0) <= tx_data(63 DOWNTO 48);
ipv6_dst(127 DOWNTO 80) <= tx_data(47 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_48_3RD;

END IF;
WHEN IP_TP_PARSE_48_3RD =>

IF (fifo_empty = ‘0’) THEN
IF (ip_proto_nxt = X"06" or ip_proto_nxt = X"11" or ip_proto_nxt

= X"84") THEN

xxvii

tp_src(15 DOWNTO 0) <= tx_data(47 DOWNTO 32);
tp_dst(15 DOWNTO 0) <= tx_data(31 DOWNTO 16);
dl_done <=‘1’;
ip_tp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

ELSIF (ip_proto_nxt = X"01") then
tp_src(15 DOWNTO 0) <= X"00" & tx_data(47 DOWNTO 40);
tp_dst(15 DOWNTO 0) <= X"00" & tx_data(39 DOWNTO 32);
dl_done <=‘1’;
ip_tp_done <= ‘1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IF;

WHEN IPV6_TP_PARSE_48_3RD =>
IF (fifo_empty = ‘0’) THEN

ipv6_dst (79 DOWNTO 16) <= tx_data (63 DOWNTO 0);
parse_state_nxt <= IPV6_TP_PARSE_48_4TH;

END IF;
WHEN IPV6_TP_PARSE_48_4TH =>

IF (fifo_empty = ‘0’) THEN
ipv6_dst (15 DOWNTO 0) <= tx_data (63 DOWNTO 48);
IF (ip_proto_nxt = X"06" or ip_proto_nxt = X"11") THEN

tp_src (15 DOWNTO 0) <= tx_data (47 DOWNTO 32);
tp_dst (15 DOWNTO 0) <= tx_data (31 DOWNTO 16);
dl_done <=‘1’;
ipv6_tp_done <=‘1’;
parse_state_nxt <= DL_SFT_MORE;

ELSE
tp_src <= X"0000";
tp_dst <= X"0000";
dl_done <=‘1’;
ipv6_tp_done <=’1’;
parse_state_nxt <= DL_SFT_MORE;

END IF;
END IF;

WHEN DL_SFT_MORE =>
IF (fifo_empty = ‘0’ and almost_empty = ‘1’) THEN

parse_state_nxt <= DL_SFT_LAST;
ELSIF (fifo_empty = ‘0’ and almost_empty = ‘0’) THEN

parse_state <= DL_SFT_MORE;
ELSIF (fifo_empty = ‘1’) then

xxviii C. HEADER PARSER BLOCK

parse_state_nxt <= DL_WAIT_TVALID;
END IF;

WHEN DL_SFT_LAST =>
IF (compose_done = ‘1’) THEN

parse_state_nxt <= DL_WAIT_TVALID;
ELSE

parse_state_nxt <= DL_SFT_LAST;
END IF;

END CASE;
END process packet_parsing;
END header_parser;

AppendixDLookup Entry Composer Block

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY lu_entry_composer IS
GENERIC(

OPENFLOW_MATCH_SIZE : INTEGER := 256
);

PORT (asclk : IN STD_LOGIC;
aresetn : IN STD_LOGIC;
dl_start : IN STD_LOGIC;
dl_done : IN STD_LOGIC;
src_port : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
dl_dst : IN STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_src : IN STD_LOGIC_VECTOR (47 DOWNTO 0);
dl_ethtype : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
dl_vlantag : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
ip_tp_done : IN STD_LOGIC;
ipv6_tp_done : IN STD_LOGIC;
mpls_done: IN STD_LOGIC;
arp_done : IN STD_LOGIC;
arp_opcode: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
arp_ip_src: IN STD_LOGIC_VECTOR (15 DOWNTO 0);
arp_ip_dst: IN STD_LOGIC_VECTOR (15 DOWNTO 0);
ip_proto : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_tos :IN STD_LOGIC_VECTOR (7 DOWNTO 0);
ip_src : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
ip_dst : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
ipv6_src: IN STD_LOGIC_VECTOR (127 DOWNTO 0);
ipv6_dst: IN STD_LOGIC_VECTOR (127 DOWNTO 0);
mpls_label : IN STD_LOGIC_VECTOR (19 DOWNTO 0);

xxix

xxx D. LOOKUP ENTRY COMPOSER BLOCK

mpls_tc : IN STD_LOGIC_VECTOR (2 DOWNTO 0);
tp_src : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
tp_dst : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
lu_ack : IN STD_LOGIC;
compose_done : INOUT STD_LOGIC;
lu_entry : OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
lu_req : INOUT STD_LOGIC);

END lu_entry_composer;

ARCHITECTURE lu_entry_composer of lu_entry_composer IS
. parsing-status check state machine
TYPE sc_type IS (SC_WAIT_PARSE_START, SC_WAIT_CMP_DONE);
SIGNAL sc_state, sc_state_nxt : sc_type;
SIGNAL parse_started: STD_LOGIC;
. request latch state machine
TYPE req_latch_type is (RL_WAIT_PARSE_DONE, RL_WAIT_REQ);
SIGNAL req_latch_state, req_latch_state_nxt :req_latch_type;
SIGNAL parse_result : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL int_entry : STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1
DOWNTO 0);
SIGNAL lu_req_prev : STD_LOGIC;
SIGNAL int_req, lu_req_pre : STD_LOGIC;
. flowtable interface state machine
TYPE lookup_inf_type is (LU_WAIT_INT_REQ, LU_WAIT_ACK);
SIGNAL lookup_inf_state, lookup_inf_state_nxt : lookup_inf_type;

BEGIN
. parsing status check .
PROCESS (aresetn, asclk, dl_start,compose_done,sc_state, sc_state_nxt)
BEGIN

IF (aresetn = ‘1’) THEN
parse_started <= ‘0’;
sc_state <= SC_WAIT_PARSE_START;

ELSIF (asclk’event and asclk = ‘1’) THEN
sc_state <= sc_state_nxt;

END IF;
CASE sc_state IS

WHEN SC_WAIT_PARSE_START =>
IF (dl_start = ‘1’) THEN

xxxi

parse_started <= ‘1’;
sc_state_nxt <= SC_WAIT_CMP_DONE;

ELSE
sc_state_nxt <= SC_WAIT_PARSE_START;

END IF;
WHEN SC_WAIT_CMP_DONE =>

IF (compose_done = ‘1’) THEN
parse_started <= ‘0’;
sc_state_nxt <= SC_WAIT_PARSE_START;

ELSE
sc_state_nxt <= SC_WAIT_CMP_DONE;

END IF;
END CASE;

END PROCESS;

. Request-latch state machine
. Only one state machine will reply during one packet parsing process
PROCESS (asclk, aresetn)
BEGIN

IF (aresetn = ‘1’) THEN
lu_req_prev <= ‘0’;

ELSIF (asclk’event and asclk = ‘1’) THEN
lu_req_prev <= lu_req;

END IF;
END PROCESS;
PROCESS (asclk, aresetn, dl_done,ip_tp_done,lu_req,req_latch_state, req_latch_state_nxt,
parse_started, lu_req_prev)
VARIABLE int_req_nxt:STD_LOGIC;
BEGIN

IF (aresetn = ‘1’) THEN
int_req <= ‘0’;
int_entry <= (others =>‘0’);
compose_done <= ‘0’;
req_latch_state <= RL_WAIT_PARSE_DONE;

ELSIF (asclk’event and asclk = ‘1’) THEN
int_req <= int_req_nxt;
req_latch_state <= req_latch_state_nxt;

END IF;
CASE req_latch_state IS

WHEN RL_WAIT_PARSE_DONE =>
IF (parse_started =‘1’) THEN

xxxii D. LOOKUP ENTRY COMPOSER BLOCK

IF (dl_done = ‘1’ and ip_tp_done = ‘0’) THEN
int_entry<=

src_port
& dl_src
& dl_dst
& dl_ethtype
& dl_vlantag
& X"00000000" –ipv4_src
& X"00000000" –ipv4_dst
& X"00" –ipv4_proto
& X"00"–ipv4_tos
& X"0000" –tp_src
& X"0000" –tp_dst
& X"00";–pad

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

ELSIF (dl_done = ‘1’ and arp_done = ‘1’) then
int_entry <=

src_port
& dl_src
& dl_dst
& dl_ethtype
& dl_vlantag
& arp_ip_src –arp_src
& arp_ip_dst –arp_dst
& arp_opcode –arp
& X"00"–ipv4_tos
& X"0000" –tp_src
& X"0000" –tp_dst
& X"0000000000";–pad

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

ELSIF (dl_done = ‘1’ and mpls_done = ‘1’) then
int_entry <=

src_port
& dl_src
& dl_dst
& dl_ethtype
& dl_vlantag

xxxiii

& mpls_label
& mpls_tc
& X"00000000" –ipv4_src
& X"00000000" –ipv4_dst
& X"0000" –tp_src
& X"0000"–tp_dst
& B"0";

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

ELSIF (dl_done = ‘1’ and ip_tp_done = ‘1’) then
int_entry <=

src_port
& dl_src
& dl_dst
& dl_ethtype
& dl_vlantag
& ip_src –ipv4_src
& ip_dst –ipv4_dst
& ip_proto –ipv4_proto
& ip_tos–ipv4_tos
& tp_src –tp_src
& tp_dst–tp_dst
& X"00";

compose_done <= ‘1’;
int_req_nxt := ‘1’;
req_latch_state_nxt <= RL_WAIT_REQ;

END IF;
ELSE

req_latch_state_nxt <= RL_WAIT_PARSE_DONE;
END IF;

WHEN RL_WAIT_REQ =>
IF (lu_req = ‘1’ and lu_req_prev = ‘0’) THEN

int_req_nxt := ‘0’;
req_latch_state_nxt <= RL_WAIT_PARSE_DONE;

ELSE
req_latch_state_nxt <= RL_WAIT_REQ;

END IF;
END CASE;

END PROCESS;
. Flow_table module Interface Process

xxxiv D. LOOKUP ENTRY COMPOSER BLOCK

PROCESS (aresetn, asclk, lookup_inf_state, lu_ack, int_req)
BEGIN

IF (aresetn = ‘1’) THEN
lu_req <= ‘0’;
lu_entry <= (others =>‘0’);
lookup_inf_state <= LU_WAIT_INT_REQ;

ELSIF (asclk’event and asclk = ‘1’) THEN
lookup_inf_state <= lookup_inf_state_nxt;

END IF;
CASE lookup_inf_state is

WHEN LU_WAIT_INT_REQ =>
IF (int_req = ‘1’) THEN

lu_req <= ‘1’;
lu_entry <= int_entry;
lookup_inf_state_nxt <= LU_WAIT_ACK;

ELSE
lookup_inf_state_nxt <= LU_WAIT_INT_REQ;

END IF;
WHEN LU_WAIT_ACK =>

IF (lu_ack = ‘1’) THEN
lu_req <= ‘0’;
lookup_inf_state_nxt <= LU_WAIT_INT_REQ;

ELSE
lookup_inf_state_nxt <= LU_WAIT_ACK;

END IF;
END CASE;

END PROCESS;
END lu_entry_composer;

AppendixEFlow Table Controller Top Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY flow_table_controller IS
GENERIC (OPENFLOW_MATCH_SIZE: INTEGER:= 256;
OPENFLOW_MASK_SIZE : INTEGER:= 256;
OPENFLOW_ACTION_SIZE :INTEGER:= 256
);
PORT (asclk : IN STD_LOGIC;

asresetn: IN STD_LOGIC;
lu_req1 : IN STD_LOGIC;
lu_req2 : IN STD_LOGIC;
lu_req3 : IN STD_LOGIC;
lu_req4 : IN STD_LOGIC;
lu_entry1 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry2 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry3 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry4 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_done1 : INOUT STD_LOGIC;
lu_done2 : INOUT STD_LOGIC;
lu_done3 : INOUT STD_LOGIC;
lu_done4 : INOUT STD_LOGIC;
lu_ack1 : OUT STD_LOGIC;
lu_ack2 : OUT STD_LOGIC;
lu_ack3 : OUT STD_LOGIC;
lu_ack4 : OUT STD_LOGIC;

xxxv

xxxvi E. FLOW TABLE CONTROLLER TOP MODULE

action: OUT STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO
0);

match : OUT STD_LOGIC_VECTOR (3 downto 0));
END flow_table_controller;

ARCHITECTURE flow_table_controller of flow_table_controller IS
SIGNAL add_entry_int, no_match_entry_int:std_logic_vector(OPENFLOW_MATCH_SIZE-
1 DOWNTO 0);
SIGNAL add_mask_int: std_logic_vector(OPENFLOW_MASK_SIZE-1 DOWNTO
0);
SIGNAL policy_req_int, add_entry_reply_int, add_entry_done_int :std_logic;
SIGNAL action_in_int :std_logic_vector(OPENFLOW_ACTION_SIZE-1 DOWNTO
0);

. Flow Table Lookup .
COMPONENT ft_lookup
PORT(

asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
lu_req1 : IN STD_LOGIC;
lu_req2 : IN STD_LOGIC;
lu_req3 : IN STD_LOGIC;
lu_req4 : IN STD_LOGIC;
lu_entry1 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry2 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry3 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry4 : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
add_entry : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
add_mask : IN STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-1 DOWNTO

0);
add_entry_reply : IN STD_LOGIC;
lu_done1 : INOUT STD_LOGIC;
lu_done2 : INOUT STD_LOGIC;
lu_done3 : INOUT STD_LOGIC;
lu_done4 : INOUT STD_LOGIC;

xxxvii

lu_ack1 : OUT STD_LOGIC;
lu_ack2 : OUT STD_LOGIC;
lu_ack3 : OUT STD_LOGIC;
lu_ack4 : OUT STD_LOGIC;
policy_req : OUT STD_LOGIC;
action_in : IN STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
action_out: OUT STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1

DOWNTO 0);
no_match_entry : OUT STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-

1 DOWNTO 0);
add_entry_done : OUT STD_LOGIC;
match : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);

END COMPONENT;
. Controller Policy .
COMPONENT policy
PORT(

asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
policy_req : IN STD_LOGIC;
no_match_entry : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
add_entry_done : IN STD_LOGIC;
add_entry : OUT STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
add_mask: OUT STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-1 DOWNTO

0);
action:out STD_LOGIC_VECTOR (OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
add_entry_reply : OUT STD_LOGIC);

END COMPONENT;
BEGIN
Inst_ft_lookup: ft_lookup PORT MAP(

asclk => asclk,
asresetn => asresetn,
lu_req1 => lu_req1,
lu_req2 => lu_req2,
lu_req3 => lu_req3,
lu_req4 => lu_req4,
lu_entry1 => lu_entry1,

xxxviii E. FLOW TABLE CONTROLLER TOP MODULE

lu_entry2 => lu_entry2,
lu_entry3 => lu_entry3,
lu_entry4 => lu_entry4,
add_entry => add_entry_int,
add_mask => add_mask_int,
lu_done1 => lu_done1,
lu_done2 => lu_done2,
lu_done3 => lu_done3,
lu_done4 => lu_done4,
lu_ack1 => lu_ack1,
lu_ack2 => lu_ack2,
lu_ack3 => lu_ack3,
lu_ack4 => lu_ack4,
policy_req => policy_req_int,
action_in => action_in_int,
action_out=> action,
no_match_entry => no_match_entry_int,
add_entry_reply => add_entry_reply_int,
add_entry_done => add_entry_done_int,
match => match
);

Inst_policy: policy PORT MAP(
asclk => asclk,
asresetn => asresetn,
policy_req => policy_req_int,
no_match_entry => no_match_entry_int,
add_entry => add_entry_int,
add_mask => add_mask_int,
action => action_in_int,
add_entry_done => add_entry_done_int,
add_entry_reply => add_entry_reply_int
);

END flow_table_controller;

AppendixFFlow Table Lookup Block

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;

ENTITY ft_lookup IS
GENERIC (OPENFLOW_MATCH_SIZE: INTEGER:= 256;

OPENFLOW_MASK_SIZE : INTEGER:= 256;
OPENFLOW_ACTION_SIZE: INTEGER:= 256
);

PORT (asclk : IN STD_LOGIC;
asresetn : IN STD_LOGIC;
lu_req1 : IN STD_LOGIC;
lu_req2 : IN STD_LOGIC;
lu_req3 : IN STD_LOGIC;
lu_req4 : IN STD_LOGIC;
lu_entry1 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry2 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry3 : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
lu_entry4: IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
add_entry : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

DOWNTO 0);
add_mask : IN STD_LOGIC_VECTOR (OPENFLOW_MASK_SIZE-1 DOWNTO

0);
lu_done1 : INOUT STD_LOGIC;
lu_done2 : INOUT STD_LOGIC;
lu_done3 : INOUT STD_LOGIC;

xxxix

xl F. FLOW TABLE LOOKUP BLOCK

lu_done4 : INOUT STD_LOGIC;
lu_ack1 : OUT STD_LOGIC;
lu_ack2 : OUT STD_LOGIC;
lu_ack3 : OUT STD_LOGIC;
lu_ack4 : OUT STD_LOGIC;
policy_req : OUT STD_LOGIC;
action_in: IN STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
action_out: OUT STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1

DOWNTO 0);
no_match_entry: OUT STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-

1 DOWNTO 0);
add_entry_reply : IN STD_LOGIC;
add_entry_done: OUT STD_LOGIC;
match : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);

END ft_lookup;

ARCHITECTURE ft_lookup of ft_lookup is
. Exact Match Table .
COMPONENT exact_match1_exdes
PORT(

RSTA : IN STD_LOGIC;
WEA : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
ADDRA : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
DINA : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
CLKA : IN STD_LOGIC;
RSTB : IN STD_LOGIC;
WEB : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
ADDRB : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
DINB : IN STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
CLKB : IN STD_LOGIC;
DOUTA : OUT STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0);
DOUTB : OUT STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO

0)
);

END COMPONENT;
. .Wildcard Match Table .

xli

COMPONENT wildcard_match1_exdes
PORT(

RSTA : IN STD_LOGIC;
WEA : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
ADDRA : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
DINA : IN STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-1 DOWNTO

0);
CLKA : IN STD_LOGIC;
RSTB : IN STD_LOGIC;
WEB : IN STD_LOGIC_VECTOR(0 to 0);
ADDRB : IN STD_LOGIC_VECTOR(9 downto 0);
DINB : IN STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-1 DOWNTO

0);
CLKB : IN STD_LOGIC;
DOUTA : OUT STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-1 DOWNTO

0);
DOUTB : OUT STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-1 DOWNTO

0)
);

END COMPONENT;
. Action Storage .
COMPONENT action
PORT (

clka : IN STD_LOGIC;
rsta : IN STD_LOGIC;
wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
addra : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
dina : IN STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
douta : OUT STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
clkb : IN STD_LOGIC;
rstb : IN STD_LOGIC;
web : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
addrb : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
dinb : IN STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
doutb : OUT STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-1 DOWNTO

0)
);

END COMPONENT;

xlii F. FLOW TABLE LOOKUP BLOCK

TYPE request_type IS (req_idle, req1, req2,req3,req4,req5);
TYPE flow_table_lookup_type is (flow_table_lookup_wait, write_entry_start,write_entry_done,
lu_entry_match_start,lu_entry_match_done, lu_entry_match_done_nxt);
SIGNAL flow_table_lookup_state, flow_table_lookup_state_nxt : flow_table_lookup_type;
SIGNAL request_state, request_state_nxt:request_type;
SIGNAL lu_entry: STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO
0);
SIGNAL exact_match_dina ,exact_match_dinb,exact_match_doutb,exact_match_douta:
STD_LOGIC_VECTOR(OPENFLOW_MATCH_SIZE-1 DOWNTO 0);
SIGNAL action_dina, action_dinb, action_doutb, action_douta:STD_LOGIC_VECTOR(OPENFLOW_ACTION_SIZE-
1 DOWNTO 0);
signal wildcard_match_dina, wildcard_match_douta,wildcard_match_doutb: STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-
1 DOWNTO 0);
SIGNAL exact_match_wea,wildcard_match_wea, action_wea: STD_LOGIC_VECTOR
(0 DOWNTO 0);
SIGNAL exact_match_addrb,exact_match_addra,wildcard_match_addra,wildcard_match_addrb,action_addra,action_addrb:
STD_LOGIC_VECTOR(9 DOWNTO 0);
SIGNAL flow_entry_req, controller_req:STD_LOGIC;
SIGNAL lu_done1_int,lu_done2_int,lu_done3_int,lu_done4_int:STD_LOGIC;
SIGNAL req_num:STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN

. Request Selection (Round Robin) .
PROCESS(asclk, asresetn, lu_done1_int, lu_done2_int, lu_done3_int, lu_done4_int,
lu_req1, lu_req2, lu_req3, lu_req4, add_entry_reply, request_state)
BEGIN

IF (asresetn = ‘1’) THEN
flow_entry_req <= ‘0’;
controller_req <= ‘0’;
lu_ack1 <= ‘0’;
lu_ack2 <= ‘0’;
lu_ack3 <= ‘0’;
lu_ack4 <= ‘0’;
lu_entry <= (others =>‘0’);
req_num <= (others =>‘0’);
request_state <= req_idle;

ELSIF (asclk’event and asclk = ‘1’) THEN
request_state <= request_state_nxt;

END IF;

xliii

CASE request_state IS
WHEN req_idle =>

IF (lu_req1 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack1 <= ‘1’;
lu_entry <= lu_entry1;
req_num <= B"0001";
request_state_nxt <= req1;

ELSIF (lu_req2 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack2 <= ‘1’;
lu_entry <= lu_entry2;
req_num <= B"0010";
request_state_nxt <= req2;

ELSIF (lu_req3 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack3 <= ‘1’;
lu_entry <= lu_entry3;
req_num <= B"0100";
request_state_nxt <= req3;

ELSIF (lu_req4 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack4 <= ‘1’;
lu_entry <= lu_entry4;
req_num <= B"1000";
request_state_nxt <= req4;

ELSIF (add_entry_reply = ‘1’) THEN
controller_req <= ‘1’;
flow_entry_req <= ‘0’;
req_num <= B"0000";
request_state_nxt <= req5;

ELSE
request_state_nxt <= req_idle;

END IF;
WHEN req1 =>

IF (lu_req2 = ‘1’ and lu_done1_int = ‘1’) THEN
flow_entry_req <= ‘1’;

xliv F. FLOW TABLE LOOKUP BLOCK

controller_req <= ‘0’;
lu_ack2 <= ‘1’;
lu_entry <= lu_entry2;
req_num <= B"0010";
request_state_nxt <= req2;

ELSIF (lu_req3 = ‘1’ and lu_done1_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack3 <= ‘1’;
lu_entry <= lu_entry3;
req_num <= B"0100";
request_state_nxt <= req3;

ELSIF (lu_req4 = ‘1’ and lu_done1_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack4 <= ‘1’;
lu_entry <= lu_entry4;
req_num <= B"1000";
request_state_nxt <= req4;

ELSIF (add_entry_reply = ‘1’ and lu_done1_int = ‘1’) THEN
controller_req <= ‘1’;
flow_entry_req <= ‘0’;
req_num <= B"0000";
request_state_nxt <= req5;

ELSIF (lu_req1 = ‘1’ and lu_done1_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack1 <= ‘1’;
lu_entry <= lu_entry1;
req_num <= B"0001";
request_state_nxt <= req1;

ELSE
request_state_nxt <= req_idle;

END IF;
WHEN req2 =>

IF (lu_req3 = ‘1’ and lu_done2_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack3 <= ‘1’;
lu_entry <= lu_entry3;
req_num <= B"0100";

xlv

request_state_nxt <= req3;
ELSIF (lu_req4 = ‘1’ and lu_done2_int = ‘1’) THEN

flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack4 <= ‘1’;
lu_entry <= lu_entry4;
req_num <= B"1000";
request_state_nxt <= req4;

ELSIF (add_entry_reply = ‘1’ and lu_done2_int = ‘1’) THEN
controller_req <= ‘1’;
flow_entry_req <= ‘0’;
req_num <= B"0000";
request_state_nxt <= req5;

ELSIF (lu_req1 = ‘1’ and lu_done2_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack1 <= ‘1’;
lu_entry <= lu_entry1;
req_num <= B"0001";
request_state_nxt <= req1;

ELSIF (lu_req2 = ‘1’ and lu_done2_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack2 <= ‘1’;
lu_entry <= lu_entry2;
req_num <= B"0010";
request_state_nxt <= req2;

ELSE
request_state_nxt <= req_idle;

END IF;
WHEN req3 =>

IF (lu_req4 = ‘1’ and lu_done3_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack4 <= ‘1’;
lu_entry <= lu_entry4;
req_num <= B"1000";
request_state_nxt <= req4;

ELSIF (add_entry_reply = ‘1’ and lu_done3_int = ‘1’) THEN
controller_req <= ‘1’;
flow_entry_req <= ‘0’;

xlvi F. FLOW TABLE LOOKUP BLOCK

req_num <= B"0000";
request_state_nxt <= req5;

ELSIF (lu_req1 = ‘1’ and lu_done3_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack1 <= ‘1’;
lu_entry <= lu_entry1;
req_num <= B"0001";
request_state_nxt <= req1;

ELSIF (lu_req2 = ‘1’ and lu_done3_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack2 <= ‘1’;
lu_entry <= lu_entry2;
req_num <= B"0010";
request_state_nxt <= req2;

ELSIF (lu_req3 = ‘1’ and lu_done3_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack3 <= ‘1’;
lu_entry <= lu_entry3;
req_num <= B"0100";
request_state_nxt <= req3;

ELSE
request_state_nxt <= req_idle;
END IF;

WHEN req4 =>
IF (add_entry_reply = ‘1’ and lu_done4_int = ‘1’) THEN

controller_req <= ‘1’;
flow_entry_req <= ‘0’;
req_num <= B"0000";
request_state_nxt <= req5;

ELSIF (lu_req1 = ‘1’ and lu_done4_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack1 <= ‘1’;
lu_entry <= lu_entry1;
req_num <= B"0001";
request_state_nxt <= req1;

ELSIF (lu_req2 = ‘1’ and lu_done4_int = ‘1’) THEN
flow_entry_req <= ‘1’;

xlvii

controller_req <= ‘0’;
lu_ack2 <= ‘1’;
lu_entry <= lu_entry2;
req_num <= B"0010";
request_state_nxt <= req2;

ELSIF (lu_req3 = ‘1’ and lu_done4_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack3 <= ‘1’;
lu_entry <= lu_entry3;
req_num <= B"0100";
request_state_nxt <= req3;

ELSIF (lu_req4 = ‘1’ and lu_done4_int = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack4 <= ‘1’;
lu_entry <= lu_entry4;
req_num <= B"1000";
request_state_nxt <= req4;

ELSE
request_state_nxt <= req_idle;

END IF;
WHEN req5 =>

IF (lu_req1 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack1 <= ‘1’;
lu_entry <= lu_entry1;
req_num <= B"0001";
request_state_nxt <= req1;

ELSIF (lu_req2 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack2 <= ‘1’;
lu_entry <= lu_entry2;
req_num <= B"0010";
request_state_nxt <= req2;

ELSIF (lu_req3 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack3 <= ‘1’;

xlviii F. FLOW TABLE LOOKUP BLOCK

lu_entry <= lu_entry3;
req_num <= B"0100";
request_state_nxt <= req3;

ELSIF (lu_req4 = ‘1’) THEN
flow_entry_req <= ‘1’;
controller_req <= ‘0’;
lu_ack4 <= ‘1’;
lu_entry <= lu_entry4;
req_num <= B"1000";
request_state_nxt <= req4;

ELSIF (add_entry_reply = ‘1’) THEN
controller_req <= ‘1’;
flow_entry_req <= ‘0’;
req_num <= B"0000";
request_state_nxt <= req5;

ELSE
request_state_nxt <= req_idle;

END IF;
END CASE;

END PROCESS;

. .Write Flow Entry Process .
PROCESS (asclk,asresetn,controller_req,flow_entry_req,flow_table_lookup_state)
VARIABLE exact_match_addra_nxt,wildcard_match_addra_nxt,action_addra_nxt:
STD_LOGIC_VECTOR(9 DOWNTO 0);
VARIABLE exact_match_nxt,wildcard_match_nxt: STD_LOGIC;
VARIABLE lu_entry_nxt, exact_match_douta_nxt,exact_match_doutb_nxt: STD_LOGIC_VECTOR
(OPENFLOW_MATCH_SIZE-1 DOWNTO 0);
VARIABLE wildcard_match_douta_nxt,wildcard_match_doutb_nxt: STD_LOGIC_VECTOR(OPENFLOW_MASK_SIZE-
1 DOWNTO 0);
VARIABLE req_num_nxt : STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN

IF (asresetn = ‘1’) THEN
. .Write signals .

exact_match_wea <= (others =>‘0’);
wildcard_match_wea <= (others =>‘0’);
action_wea <= (others =>‘0’);
add_entry_done <= ‘0’;
exact_match_addra <= (others =>‘0’);
wildcard_match_addra <= (others =>‘0’);
action_addra <= (others =>‘0’);

xlix

exact_match_dina <= (others =>‘0’);
wildcard_match_dina <= (others =>‘0’);
action_dina <= (others =>‘0’);
exact_match_addra_nxt := (others =>‘0’);
wildcard_match_addra_nxt := (others =>‘0’);
action_addra_nxt := (others =>‘0’);

. Read signals .
exact_match_addrb <= (others =>‘0’);
exact_match_doutb <= (others =>‘0’);
wildcard_match_addrb <= (others =>‘0’);
wildcard_match_doutb <= (others =>‘0’);
action_addrb <= (others =>‘0’);
action_doutb <= (others =>‘0’);
lu_done1 <= ‘0’;
lu_done2 <= ‘0’;
lu_done3 <= ‘0’;
lu_done4 <= ‘0’;
match <= (others =>‘0’);
policy_req <= ‘0’;
no_match_entry <= (others =>‘0’);
action_out <= (others =>‘0’);
flow_table_lookup_state <= flow_table_lookup_wait;

ELSIF (asclk’event and asclk = ‘1’) THEN
flow_table_lookup_state <= flow_table_lookup_state_nxt;

END IF;
CASE flow_table_lookup_state IS

WHEN flow_table_lookup_wait =>
IF (controller_req = ‘1’) THEN

req_num_nxt := req_num;
add_entry_done <= ‘0’;
flow_table_lookup_state_nxt <= write_entry_start;

ELSIF (flow_entry_req = ‘1’) THEN
req_num_nxt := req_num;
flow_table_lookup_state_nxt <= lu_entry_match_start;

ELSE
flow_table_lookup_state_nxt <=flow_table_lookup_wait;

END IF;
. .Write Flow Entry Process .

WHEN write_entry_start =>
exact_match_wea <= B"1";
wildcard_match_wea <= B"1";

l F. FLOW TABLE LOOKUP BLOCK

action_wea <= B"1";
exact_match_dina <= add_entry;
wildcard_match_dina <= add_mask;
action_dina <= action_in;
wildcard_match_addra <= wildcard_match_addra_nxt;
wildcard_match_addra_nxt := wildcard_match_addra_nxt + "1";
exact_match_addra <= exact_match_addra_nxt;
exact_match_addra_nxt := exact_match_addra_nxt + "1";
action_addra <= action_addra_nxt;
action_addra_nxt := action_addra_nxt + "1";
IF (exact_match_addra_nxt = B"1111111111" or exact_match_addra =

B"1111111111") THEN
exact_match_addra_nxt := (others =>‘0’);
exact_match_addra <= (others =>‘0’);

END IF;
IF (wildcard_match_addra_nxt = B"1111111111" or wildcard_match_addra

= B"1111111111") THEN
wildcard_match_addra_nxt := (others =>‘0’);
wildcard_match_addra <= (others =>‘0’);

END IF;
IF (action_addra_nxt = B"1111111111" or action_addra = B"1111111111")

THEN
action_addra_nxt := (others =>‘0’);
action_addra <= (others =>‘0’);

END IF;
flow_table_lookup_state_nxt <= write_entry_done;

WHEN write_entry_done =>
add_entry_done <= ‘1’;
action_out <= action_in;
IF (flow_entry_req = ‘1’) THEN

req_num_nxt := req_num;
flow_table_lookup_state_nxt <=lu_entry_match_start;

ELSIF (controller_req = ‘1’) THEN
req_num_nxt := req_num;
flow_table_lookup_state_nxt <= write_entry_start;

ELSE
flow_table_lookup_state_nxt <=flow_table_lookup_wait;

END IF;
. Flow Table Lookup Process .

WHEN lu_entry_match_start =>
exact_match_wea <= B"0";

li

wildcard_match_wea <= B"0";
lu_entry_nxt := lu_entry;
FOR i IN 0 TO 1023 LOOP

exact_match_douta_nxt:= exact_match_douta;
IF (lu_entry_nxt = exact_match_douta_nxt) THEN

exact_match_nxt:= ‘1’;
ELSE

exact_match_nxt:= ‘0’;
END IF;
exact_match_addrb<= exact_match_addrb + "1";

END LOOP ;
FOR i IN 0 TO 1023 LOOP

wildcard_match_douta_nxt:= wildcard_match_douta;
IF(lu_entry_nxt(255 DOWNTO 152) = wildcard_match_douta_nxt(255

DOWNTO 152)) THEN
wildcard_match_nxt:= ‘1’;

EXIT;
ELSE

wildcard_match_nxt:= ‘0’;
END IF;

wildcard_match_addrb<= wildcard_match_addrb + "1";
END LOOP ;
flow_table_lookup_state_nxt <= lu_entry_match_done;

WHEN lu_entry_match_done =>
IF(req_num_nxt = B"0001") THEN

IF (exact_match_nxt=’1’ and wildcard_match_nxt = ‘1’) THEN
match <= B"0001";
policy_req <= ‘0’;

ELSIF (exact_match_nxt=’0’ and wildcard_match_nxt = ‘1’) THEN
match <= B"0001";
policy_req <= ‘0’;

ELSIF (exact_match_nxt=’0’ and wildcard_match_nxt = ‘0’) THEN
match<= B"0000";
policy_req <= ‘1’;
no_match_entry <= lu_entry_nxt;

END IF;
lu_done1_int <= ‘1’;
lu_done1 <= ‘1’;
ELSIF (req_num_nxt = B"0010") THEN

IF (exact_match_nxt=’1’ and wildcard_match_nxt = ‘1’) THEN
match <= B"0010";

lii F. FLOW TABLE LOOKUP BLOCK

policy_req <= ‘0’;
ELSIF (exact_match_nxt= ‘0’ and wildcard_match_nxt = ‘1’) THEN

match <= B"0010";
policy_req <= ‘0’;

ELSIF (exact_match_nxt= ‘0’ and wildcard_match_nxt = ‘0’) THEN
match <= B"0000";
policy_req <= ‘1’;
no_match_entry <= lu_entry_nxt;

END IF;
lu_done2_int <= ‘1’;
lu_done2 <= ‘1’;

ELSIF (req_num_nxt = B"0100") THEN
IF (exact_match_nxt= ‘1’ and wildcard_match_nxt = ‘1’) THEN

match <= B"0100";
policy_req <= ‘0’;

ELSIF (exact_match_nxt=’0’ and wildcard_match_nxt = ‘1’) THEN
match <= B"0100";
policy_req <= ‘0’;

ELSIF (exact_match_nxt= ‘0’ and wildcard_match_nxt = ‘0’) THEN
match <= B"0000";
policy_req <= ‘1’;
no_match_entry <= lu_entry_nxt;

END IF;
lu_done3_int <= ‘1’;
lu_done3 <= ‘1’;

ELSIF (req_num_nxt = B"1000") THEN
IF (exact_match_nxt= ‘1’ and wildcard_match_nxt = ‘1’) THEN

match <= B"1000";
policy_req <= ‘0’;

ELSIF (exact_match_nxt=’0’ and wildcard_match_nxt = ‘1’) THEN
match <= B"1000";
policy_req <= ‘0’;

ELSIF (exact_match_nxt= ‘0’ and wildcard_match_nxt = ‘0’) THEN
match <= B"0000";
policy_req <= ‘1’;
no_match_entry <= lu_entry_nxt;

END IF;
lu_done4_int <= ‘1’;
lu_done4 <= ‘1’;

END IF;
flow_table_lookup_state_nxt <= lu_entry_match_done_nxt;

liii

WHEN lu_entry_match_done_nxt=>
IF (controller_req = ‘1’) THEN

req_num_nxt := req_num;
flow_table_lookup_state_nxt <= write_entry_start;

ELSIF (flow_entry_req = ‘1’) THEN
req_num_nxt := req_num;
flow_table_lookup_state_nxt <=lu_entry_match_start;

ELSE
flow_table_lookup_state_nxt <=flow_table_lookup_wait;

END IF;
END CASE;

END PROCESS;
. Exact Match Table .
Inst_exact_match1_exdes: exact_match1_exdes PORT MAP(

RSTA => asresetn,
WEA => exact_match_wea,
ADDRA => exact_match_addra,
DINA => exact_match_dina,
DOUTA => exact_match_douta,
CLKA => asclk,
RSTB => asresetn,
WEB => B"0",
ADDRB => exact_match_addrb,
DINB => X"00",
DOUTB => exact_match_doutb,
CLKB => asclk
);

. .Wildcard Match Table .
Inst_wildcard_match1_exdes: wildcard_match1_exdes PORT MAP(

RSTA => asresetn,
WEA => wildcard_match_wea,
ADDRA => wildcard_match_addra,
DINA => wildcard_match_dina,
DOUTA => wildcard_match_douta,
CLKA => asclk,
RSTB => asresetn,
WEB => B"0",
ADDRB => wildcard_match_addrb,
DINB => X"00",
DOUTB => wildcard_match_doutb,
CLKB => asclk

liv F. FLOW TABLE LOOKUP BLOCK

);
. Action Storage .
Inst_action : action PORT MAP (

clka => asclk,
rsta => asresetn,
wea => action_wea,
addra => action_addra,
dina => action_dina,
douta => action_douta,
clkb => asclk,
rstb => asresetn,
web => B"0",
addrb => action_addrb,
dinb => X"00",
doutb => action_doutb
);

END ft_lookup;

AppendixGController Policy Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
ENTITY policy IS
GENERIC (OPENFLOW_MATCH_SIZE: integer:= 256;

OPENFLOW_MASK_SIZE: integer:=256;
OPENFLOW_ACTION_SIZE: integer:=256
);

Port (
asclk: IN STD_LOGIC;
asresetn: IN STD_LOGIC;
policy_req : IN STD_LOGIC;
no_match_entry : IN STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-

1 downto 0);
add_entry: OUT STD_LOGIC_VECTOR (OPENFLOW_MATCH_SIZE-1

downto 0);
add_mask: OUT STD_LOGIC_VECTOR (OPENFLOW_MASK_SIZE-1 downto

0);
action: OUT STD_LOGIC_VECTOR (OPENFLOW_ACTION_SIZE-1 downto

0);
add_entry_done : IN STD_LOGIC;
add_entry_reply : OUT STD_LOGIC);

END policy;

ARCHITECTURE policy of policy IS
TYPE policy_type IS (policy_wait, policy_add, policy_done);
SIGNAL policy_state, policy_state_nxt: policy_type;
BEGIN
PROCESS (asclk,asresetn, policy_req, add_entry_done,policy_state)
BEGIN

lv

lvi G. CONTROLLER POLICY MODULE

IF (asresetn = ‘1’) THEN
add_entry_reply <=‘0’;
add_entry(OPENFLOW_MATCH_SIZE-1 downto 0) <= (others =>‘0’);
add_mask (OPENFLOW_MASK_SIZE-1 downto 0)<=(others =>‘0’);
action <=(others =>‘0’);
policy_state <= policy_wait;

ELSIF (asclk’event and asclk = ‘1’) THEN
policy_state <= policy_state_nxt;

END IF;
CASE policy_state IS

WHEN policy_wait =>
IF (policy_req = ‘1’) THEN

policy_state_nxt <= policy_add;
ELSE

policy_state_nxt <= policy_wait;
END IF;

WHEN policy_add =>
action(224) <= ‘1’;
add_entry_reply <= ‘1’;
add_mask(255 DOWNTO 152) <= no_match_entry(255 downto 152);
policy_state_nxt <= policy_done;

WHEN policy_done =>
IF (add_entry_done = ‘1’) THEN

add_entry_reply <= ‘0’;
policy_state_nxt <= policy_wait;

ELSE
policy_state_nxt <= policy_done;

END IF;
END CASE;

END PROCESS;
END policy;

AppendixHPacket Forwarding Module

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

ENTITY packet_forwarding IS
GENERIC (

OPENFLOW_ACTION_SIZE: INTEGER :=256
);

PORT (asclk :IN STD_LOGIC;
asresetn: IN STD_LOGIC;
lu_done1: IN STD_LOGIC;
lu_done2: IN STD_LOGIC;
lu_done3: IN STD_LOGIC;
lu_done4: IN STD_LOGIC;
match: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
output_buffer_empty1: IN STD_LOGIC;
output_buffer_empty2: IN STD_LOGIC;
output_buffer_empty3: IN STD_LOGIC;
output_buffer_empty4: IN STD_LOGIC;
rd_en1: OUT STD_LOGIC;
rd_en2: OUT STD_LOGIC;
rd_en3: OUT STD_LOGIC;
rd_en4: OUT STD_LOGIC;
action:IN STD_LOGIC_VECTOR (OPENFLOW_ACTION_SIZE-1 DOWNTO

0);
packet_in1: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in2: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in3: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_in4: IN STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out1 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);

lvii

lviii H. PACKET FORWARDING MODULE

packet_out2 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out3 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0);
packet_out4 : OUT STD_LOGIC_VECTOR (63 DOWNTO 0)
);

END packet_forwarding;

ARCHITECTURE packet_forwarding of packet_forwarding IS
TYPE forwarding_type IS (forwarding_start, forwarding_1, forwarding_2, forward-
ing_3, forwarding_4);
SIGNAL forwarding_state, forwarding_state_nxt: forwarding_type;

BEGIN
PROCESS (asclk,asresetn, match, lu_done1,lu_done2, lu_done3, lu_done4, out-
put_buffer_empty1, output_buffer_empty2, output_buffe_empty3,output_buffer_empty4)
BEGIN

IF (asresetn = ‘1’) THEN
packet_out1 <= (others =>‘0’);
packet_out2 <= (others =>‘0’);
packet_out3 <= (others =>‘0’);
packet_out4 <= (others =>‘0’);
rd_en1 <= ‘0’;
rd_en2 <= ‘0’;
rd_en3 <= ‘0’;
rd_en4 <= ‘0’;
forwarding_state <= forwarding_start;

ELSIF (asclk’event and asclk = ‘1’) THEN
forwarding_state <= forwarding_state_nxt;

END IF;
CASE forwarding_state IS

WHEN forwarding_start =>
IF (output_buffer_empty1 =‘0’ and lu_done1 = ‘1’ and match = B"0001")

THEN
rd_en1 <= ‘1’;
packet_out2 <= packet_in1;
forwarding_state_nxt <= forwarding_1;

ELSIF (output_buffer_empty2 =‘0’ and lu_done2 = ‘1’ and match =
B"0010") THEN

rd_en2 <= ‘1’;
packet_out3 <= packet_in2;
forwarding_state_nxt <= forwarding_2;

lix

ELSIF (output_buffer_empty3 =’0’ and lu_done3 = ‘1’ and match =
B"0100") THEN

rd_en3 <= ‘1’;
packet_out4 <= packet_in3;
forwarding_state_nxt <= forwarding_3;

ELSIF (output_buffer_empty4 =’0’ and lu_done4 = ‘1’ and match =
B"1000") THEN

rd_en4 <= ‘1’;
packet_out1 <= packet_in4;
forwarding_state_nxt <= forwarding_4;

ELSIF (action(224)= ‘1’ and lu_done1 = ‘1’ and match =B"0000") THEN
rd_en1 <= ‘1’;
packet_out2 <= packet_in1;
forwarding_state_nxt <= forwarding_1;

ELSIF (action(224)= ‘1’ and lu_done2 = ‘1’ and match =B"0000") THEN
rd_en2 <= ‘1’;
packet_out3 <= packet_in2;
forwarding_state_nxt <= forwarding_2;

ELSIF (action(224)= ‘1’ and lu_done3 = ‘1’ and match =B"0000") THEN
rd_en3 <= ‘1’;
packet_out4 <= packet_in3;
forwarding_state_nxt <= forwarding_3;

ELSIF (action(224)= ‘1’ and lu_done4 = ‘1’ and match =B"0000") THEN
rd_en4 <= ‘1’;
packet_out1 <= packet_in4;
forwarding_state_nxt <= forwarding_4;

ELSE
forwarding_state_nxt <= forwarding_start;

END IF;
WHEN forwarding_1 =>

IF (output_buffer_empty1 = ‘0’) THEN
rd_en1 <= ‘1’;
packet_out2 <= packet_in1;
forwarding_state_nxt <= forwarding_1;

ELSE
rd_en1 <= ‘0’;
forwarding_state_nxt <= forwarding_start;

END IF;
WHEN forwarding_2 =>

IF (output_buffer_empty2 = ‘0’) THEN
rd_en2 <= ‘1’;

lx H. PACKET FORWARDING MODULE

packet_out3 <= packet_in2;
forwarding_state_nxt <= forwarding_2;

ELSE
rd_en2 <= ‘0’;
forwarding_state_nxt <= forwarding_start;

END IF;
WHEN forwarding_3 =>

IF (output_buffer_empty3 = ‘0’) then
packet_out4 <= packet_in3;
rd_en3 <= ‘1’;
forwarding_state_nxt <= forwarding_3;

ELSE
rd_en3 <= ‘0’;
forwarding_state_nxt <= forwarding_start;

END IF;
WHEN forwarding_4 =>

IF (output_buffer_empty4 = ‘0’) THEN
rd_en4 <= ‘1’;
packet_out1 <= packet_in4;
forwarding_state_nxt <= forwarding_4;

ELSE
rd_en4 <= ‘0’;
forwarding_state_nxt <= forwarding_start;

END IF;
END CASE;

END PROCESS;
END packet_forwarding;

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background and Motivation
	Problem Statement
	Objectives
	Methodology
	Outline

	Theoretical Background and Related Work
	Software-defined Networking (SDN)
	Advantages of OpenFlow-based SDN
	OpenFlow Architecture
	OpenFlow Controller
	OpenFlow Switch

	Components of OpenFlow Switch
	OpenFlow protocol
	OpenFlow flow tables
	OpenFlow Channel

	FPGA-based platform
	Related Work

	OpenFlow Switch Design Framework
	OpenFlow Switch Framework
	Brief description

	Flow Table Entry Composer
	Queue block
	Header parser block
	Lookup entry composer
	Signals
	Simulation test

	Flow Table Controller
	Flow table controller module
	Signals
	Simulation test

	Action Processor
	Action processor module
	Signals
	Simulation test

	Controller Policy
	Controller policy module
	Signals
	Simulation test

	Performance Simulation
	Resources utilization
	Service time and Sojourn time

	Conclusions and Future Work
	References
	OpenFlow Switch Top Level Module
	Pre-processor Module
	Header Parser Block
	Lookup Entry Composer Block
	Flow Table Controller Top Module
	Flow Table Lookup Block
	Controller Policy Module
	Packet Forwarding Module

