
Building Intelligent Transport Systems 
with Reactive Blocks and OSGi

Eivind Sandstad

Master of Science in Communication Technology

Supervisor: Frank Alexander Krämer, ITEM

Department of Telematics

Submission date: June 2014

Norwegian University of Science and Technology



 



Problem Description

Intelligent transport systems enable applications within public and
private transport. Making it possible for vehicles to communicate with
each other and roadside installations. It also makes for the possibility
of making the traditional equipment, such as traffic lights, smarter by
providing them with more data to base their behavior on. Within this
task, an ITS application should be built using Reactive Blocks and OSGi.
The overall goal of the project is to research and report the potential
benefits of using Reactive Blocks and OSGi in ITS applications.

i



Abstract

Traffic systems are the cause of both significant carbon emissions and
injuries in our world today. In an effort to better the traffic systems,
a large amount of work is being put into making them intelligent. By
increased information sharing and decision-making based on better data,
intelligent traffic systems (ITS) hope to increase efficiency and safety on
the roads. Making ITS can be quite complex as the systems are already
complex and large, it is therefore important to make the development
and quality of ITS as good as possible.

This thesis aims to find out whether Reactive Blocks and OSGi, a
modelling based tool and a component system run in Java, is the right
platform on which to build an ITS, specifically in the Norwegian traffic
system environment. Simply put, the question the thesis aims to answer
is: To what degree is Reactive Blocks and OSGi a good platform for ITS
development?

To answer the aforementioned question, a literature study has been
conducted, as well as making and testing a prototype application. From
the results of the literature study and the prototype a theoretical evalua-
tion of the platform has been made.

The results indicate that Reactive Blocks and OSGi is a very good
fit to the platform of ITS. It is in all likelihood a right choice when
developing ITS. It has beneficial features that the competition lacks, that
make up for its respective drawbacks.

Based on the results, Reactive Blocks and OSGi is recommended for
developing ITSs.



Sammendrag

Trafikksystemer står for både en signifikant del av klimautslipp og skader
på verdensbasis. For å forbedre trafikksystemene jobbes det med å gjøre
dem smarte. Ved å øke informasjonsdeling og å tilføre bedre data til
styringssystemer, håper man at intelligente trafikksystemer (ITS) kan øke
både effektivitet og sikkerhet på veiene. Siden trafikksystemer allerede
er store komplekse samtidssystemer kan det å lage et ITS være veldig
komplekst. For å møte så få vegger som mulig er det derfor viktig at man
bruker en utviklingsplattform som passer til systemet og gir mest mulig
støtte i utviklingsprosessen.

Denne oppgaven gjør et forsøk på å finne ut om Reactive Blocks og
OSGi, et modellbasert verktøy og et komponentsystem som bygger på
Java, er den rette plattformen for ITS-bygging, spesifikt i Norge. Kort
sagt er målet til oppgaven å finne ut hvorvidt Reactive Blocks og OSGi
er en god plattform for ITS-utvikling, og i hvor stor grad.

For å finne ut av dette har det blitt gjort en litteraturstudie, og en
prototype er laget og testet. Basert på resultatene fra litteraturstudien
og prototypen er det gjort en teoretisk evaluering av plattformen.

Resultatene i oppgaven peker mot at Reactive Blocks og OSGi passer
veldig godt for ITS-utvikling. Det er i høy grad sannsynlig at Reactive
Blocks og OSGi er et rett valg for ITS-utvikling i Norge. Platformen
har fordeler som mangler hos konkurrentene, som mer enn gjør opp for
ulempene.

Basert på resultatene funnet i oppgaven kan Reactive Blocks og OSGi
anbefales for utvikling av ITS.





Preface

This thesis is written as a conclusion to my 5-year MSc in Communica-
tion Technology at the Norwegian University of Science and Technology
(NTNU). The thesis is the contents of the 10th and final semester (spring
of 2014) of my MSc, awarding 30 ECTS credits. It is focused on the
process of deducing whether Reactive Blocks and OSGi is well suited for
building intelligent transport systems (ITS).

The process has given me an insight into the world of ITS, and the
details of Reactive Blocks and OSGi, all of which I have found to be very
interesting. Hopefully, some of the same insights will be offered to the
reader, sparking a similar interest.

I would like to thank my professor Frank Alexander Kraemer for his
assistance and insights during the work, it has been of great help. In
addition to that I’ve found a lot of value in communications with Eric
Olsen at Statens Vegvesen and Jo Skjermo at SINTEF, who helped me
get an understanding of the world of ITS.

I would also like to thank my parents, Helle Frisak Sem and Olav
Sandstad, who were kind enough to read through my thesis, and offer
pointers from an outsiders point of view.

Eivind Sandstad





Contents

vii





List of Figures

ix









Chapter1Introduction

Technology is getting integrated in more and more of the world we live in. The
increased information communication is making our surroundings smart. One of the
fields that stand to benefit greatly on information communication, both in efficiency
and safety, are the traffic systems. Statens Vegvesen, the state-owned organization
that manages the road network in Norway, is currently in the starting phase of
transitioning their traffic system into an intelligent traffic system (ITS). Though
some of the technologies of the ITS to some extent already is decided, the software
development platform is not.

1.1 Problem Description and Scope

Does Reactive Blocks with OSGi, a modelling based tool and a component system
based on Java, provide a good platform for intelligent transport system (ITS) develop-
ment? This thesis aims to answer exactly that. Finding the right platform on which
to build a solution can save a great amount of work later in the process. Technologies
that don’t fit well to the system they are used to design can not only bring more
complexity than needed, but can also make avoiding errors very difficult. Designing
concurrent systems are, for example, notoriously difficult to get right without being
extremely aware of the possible pitfalls. This can be almost completely remedied by
the use of a good runtime system and a state machine structure. Seeing as an ITS
will almost certainly have to have concurrency, the platform choice matters.

With this in mind the thesis aims to figure out whether Reactive Blocks with
OSGi, a relatively new development platform, is a good platform for ITS-systems.
Reactive Blocks with OSGi is a graphical modelling based tooling to create robust,
concurrent and scalable systems. There are many benefits to the platform, and it is
on the cutting edge of new development tools.

1



2 1. INTRODUCTION

1.1.1 Scope

The scope of the thesis is strictly in the field of ITS. The performance and benefits
of using Reactive Blocks with OSGi are considered only in this field. Implications on
how well the platform works in general may be deduced, but the focus, and aim of
the thesis is specific to ITS.

1.2 Structure of the Thesis

This thesis reaches its conclusion based on a combination of the evaluation of a
prototype, literature study, and theoretical evaluation. The structure of the theses is
a follows:

1.2.1 Technologies

Chapter ?? introduces the technologies that are in focus in the research question. the
ultimate goal of the thesis is to evaluate the technologies introduced in the chapter.

1.2.2 Current ITS at Statens Vegvesen

Chapter ?? explores the status quo of ITS development at Statens Vegvesen’s ITS
project. It aims to bring a better understanding of the situation as it is, so as to get
a grasp on what is the best step forwards.

1.2.3 Challenges in ITS

Chapter ?? describes the challenges of building an ITS. The chapter bases its
evaluation of ITS challenges upon information from Statens Vegvesen, both technology
specifications and the interviews with ITS workers from Statens Vegvesen and
SINTEF.

1.2.4 Building ITS-blocks with Reactive Blocks and OSGi

Chapter ?? aims to find the capability of the technologies explored in chapter ?? to
make ITS systems. The chapter includes the description and analysis of a prototype.

1.2.5 Alternative Technologies

Chapter ?? presents a set of rivalling technologies that would also be strong choices
for building ITS. The aim of the chapter is to examine the competition, to get an
understanding of where the main technologies are lacking and exceeding compared
to the state of the art.



1.2. STRUCTURE OF THE THESIS 3

1.2.6 Discussion

Chapter ?? analyses the results found in chapter ?? with respects to meeting the
challenges in chapter ??, and how the technologies in chapter ?? measures up to the
rivalling technologies of chapter ??.

1.2.7 Conclusion and Further Work

Chapter ?? attempts to provide an answer to the problem description, based on the
analysis in chapter ??. It also suggests some further works to build upon the work
done in the thesis.





Chapter2Technologies

This chapter consists of a small introduction to the technologies used later in the
thesis. The focus is mostly on the general layout of the technologies and their
respective benefits.

2.1 Intelligent Transport Systems

Intelligent transport systems (ITS) are all systems for communications between
vehicles (car-to-car), and between vehicles and ITS-stations (car-to-infrastructure).
ITS also cover ICT for rail, water and air transport, including navigation systems[?
]. In an ITS data communications would be much more widespread than that of the
situation today. In Figure ?? we can see the communication channels that could be
utilized for traffic systems for improved traffic management. In today’s society, with
the amount of time and resources that go into transportation of both people and
goods there is an enormous potential for improvement. Not only is transportation
costly, it is also dangerous. According to the World Health Organization road injury
is responsible for 2.2 percent of deaths world wide [? ], and that’s not counting the
effects of the CO2 emissions, which for cars are 33 percent of the total emissions in
the US [? ]. This means that even small improvements in the traffic systems we are
currently using could potentially be worth a lot. And this is where ITS comes in,
by gathering and using data from the road, and adding communication between the
entities in the traffic system there is a huge potential for improvements both in safety
and efficiency. This can be anything from improving the traffic flow by controlling
traffic lights smarter to temporarily closing unsafe roads based on road friction and
wind speed measurements.

5



6 2. TECHNOLOGIES

Figure 2.1: Visualization of ITS, in this traffic system all the entities are connected
in a wireless manner. Image from [? ]

The practical part of this project will work with road transport (cars), though
implications might be made for ITS covering other types of transport.

2.2 OSGi

The Open Source Gateway initiative (OSGi) technology is a dynamic component
system for Java. OSGi enables a development model where applications are composed,
dynamically, of many different reusable components [? ]. The goal of the specifications
described in OSGi is to enable components to hide their inner workings, so that
the implementation of a subsystem does not matter to the rest of the system, and
only communicate through OSGi services that share only what needs to be shared.
It is hard to be wrong about things you have no knowledge about and make no
assumptions of[? ]. And following this principle, OSGi aims to make systems more
scalable, and decrease complexity. There have been talk of component systems for a
while in the JVM-community, but the most prominent, and successful of these has
thus far been OSGi, as testified by its use in large scale applications such as Eclipse
and Spring.



2.2. OSGI 7

2.2.1 The OSGi Architecture

OSGi follows a layered architecture model, consisting of modules and services. The
modules is what carries the modularity of OSGi. Simply put, modularity in this
context is not sharing. This is to some extent what the private and public declarations
in Java are meant for, though they are a lot harder to use correctly. In OSGi a unit of
modularity is referred to as a Bundle. The service model of the architecture provides
the functionality that is usually handled by factories in Java. Though in a slightly
different way. The way to communicate between bundles is to use services, by the
use of a service registry, shown in Figure ??. Bundles create objects and register
them with the service registry, where other bundles can get the services registered.
Bundles can listen for types of services and get them once they are registered. This
also means that bundles can be switched while registering similar services so that
bundles can swap and update without it killing the rest of the system.[? ]

Figure 2.2: The layered model of the OSGi architecture [? ]

Figure 2.3: The OSGi service model. A bundle can register services, and listen for
service types. [? ]



8 2. TECHNOLOGIES

2.2.2 Bundles

The physical manifestation of an OSGi component is called a bundle, and it manifests
in the form of a JAR file. These are the meat of any OSGi-application. Though a
bundle might seem like any Jar file, it has some subtle details that makes it different.
Bundles have essential OSGi metadata in their manifest, detailing the bundle version,
the packages within the bundle that should be visible outwards and what packages
need be imported. Using this information the OSGi framework does not need to load
all the classes in every bundle to find the classes it needs, as is the norm when using
normal JARs, adding a great deal to the speed of the system.

Definition of a Bundle
"A physical unit of modularity in the form of a JAR file containing code, resources,

and metadata, where the boundary of the JAR file also serves as the encapsulation
boundary for logical modularity at execution time." [? ]

Figure 2.4: A bundle can contain all the usual artifacts you expect in a standard
JAR file. The only major difference is that the manifest file contains information
describing the bundle’s modular characteristics[? ].

2.2.3 Services

In OSGi a service is an external resource that does some work. They are in essence
implementations of interfaces available through the service registry ??. This is, in a
way, OSGi’s response to factories. In Java it is quite common to solve the problems
of class sharing in large applications by using factories, and this is by all means a
valid solution. The problem is that with factories the implementation is specified by
the factory, and there is not a lot of room for customization from the requesters side



2.2. OSGI 9

on which implementation should be used. This is not the case with services in OSGi,
here one can be specific or non-specific as to what kind of implementation is wanted,
and the service registry will provide the services that are suited to the request. This
opens up the possibility of for example having different implementations for different
versions of bundles, and due to the dynamic nature of OSGi these can be added and
removed while the system is running without causing any harm.

2.2.4 Service registry

The service registry keeps track of the services in an OSGi application and provides
these to the bundles running in the system. The use of services in OSGi follows
a listen-model, where bundles registers listeners with the service registry, which
updates when services become available. This is what makes dynamic communication
between services and bundles possible, and relatively simple at that.

2.2.5 Benefits of OSGi

OSGi has many benefits, but the one that is most important with respect to ITS
is its ability to update components without downtime. Bundles can be updated
without the application ever having to restart or turn off. In systems that need to
be running at any given time, such as traffic lights, this is an argument in favour of
OSGi. In addition to this main point of interest OSGi offers a lot of other desirable
traits, some of the more important ones, with respect to ITS follows. [? ]

Reduced Complexity
The division into components that focus inwards rather than on the system

surrounding them makes subsystems of large and complex systems relatively simple[?
]. This is a trait of all component systems, and it is often the main reason why
such systems are made. With systems that are already of a complex nature, such
as road-traffic systems the more simplistic each subsystem needs to be, the better.
The keep it simple stupid (KISS) principle is well known throughout the software
world, as well as most other markets. The more simple you can make a problem,
the faster it will be solved. The relative simplicity of your code also makes software
easier to maintain, more flexible, easier to modify and has a smaller entry cost for
new developers [? ].

Reuse
Because OSGi is in the moment of writing the most popular component system,

and there is an increasingly large community of open-source projects working with
the OSGi technology, there are good opportunities for the reuse of already written
applications and components that can be integrated into any system[? ]. Since OSGi
is a component system, the possibility for third-party developed components and



10 2. TECHNOLOGIES

application in the future is also there. So in the case of the ITS application platform
being relatively open to outside developers the component structure of OSGi is not a
bad structure.

Security
OSGi provides a security model that is an improved version of Java’s own, in

theory very strong, security model. The problem with the security model used in
Java is that it is very hard to configure in the real world. This means that most
secure Java applications have two choices: no security, or limited capabilities[? ]. In
OSGi a fine grained security model, like the one in Java, is used, but the usability
is improved by having the bundle specifying the security details requested, while
the system operator remains fully in charge. OSGi claims to in all likeliness provide
one of the most secure usable application environments short of hardware protected
such[? ]. Needless to say, security is very important when working with a system
where lethal accidents are as prone as with roadside traffic.

2.3 Reactive Blocks

Reactive Blocks is a visual tool for building robust and flexible Java applications
[? ]. Boiled down, Reactive Blocks is a Java code generator with a graphical
interface comparable to SDL. As opposed to traditional coding, Reactive Blocks has
a visual representation that focuses to a larger extent on the flow of a program, for
making event-driven and concurrent systems. The only requirement for running a
Reactive Blocks application is the capability of running Java. This means it can run
applications on a wide array of hardware, though it may need some more resources
than what is available on small embedded systems.

2.3.1 The Reactive Blocks Architecture

Systems, and subsystems, in Reactive Blocks are designed using reactive building
blocks and connecting these to each other. A reactive building block consists of three
parts described as follows [? ]:

– An activity diagram that describes the internal behaviour of a block, the
internal flow and logic. In Figure ?? we can see the activity diagram of a block
called Send Email. In this case, the block starts with the input "send" which
triggers the operation "send". After "send" has started the block either gets
a "SUCCEED" event, a "FAILED" event or goes through a timout timer. If
the "SUCCEED" event happens the block outputs ok, and if "FAILED" or the
timeout timer runs out(and triggers the timeout method) the block outputs a
string "failed".



2.3. REACTIVE BLOCKS 11

– Java methods that describes the logic of operations.

– An external state machine (ESM) which works as an interface to the rest of
the system, describing the legal sequence in which its features can be used. In
Figure ?? an ESM is shown. The ESM shows what inputs can be received
and outputs can be sent in which states. In the case of the Send Email block
shown in the figure, in the initial state it can receive a "send" signal through
the "send" pin, which transitions it to the state "active". From state "active"
either output "ok" or "failed" are possible, both of which causes the transition
to the final state of the block.

Figure 2.5: A generic reactive building block in Reactive Blocks (a local block).
The Top-right view shows the ESM of the block, and the bottom-left view shows the
activity diagram. Image from http://reference.bitreactive.com/reference/types-of-
blocks.html

In addition to the normal parts of an activity diagram a reactive building block
can contain reactive building blocks. There can therefore be multiple layers of
reactive blocks in a single system. On the topmost level the block is called a system
block, and it differs slightly from other blocks in that it does not allow for input or
output parameters, instead it has initial nodes and activity final nodes that marks
the start and termination of the system. In Figure ?? we can see an example of a
system block. In the example block the initial node is the one in the top-left corner
leading to the makeTrigger-operation, and the activity final nodes are the ones that
follows the startFailed output and the stopped output. Notification Listener and



12 2. TECHNOLOGIES

Send Emails Buffered are both local blocks. Every application needs a system block
to be complete.

Figure 2.6: An example of a system block in Reactive Blocks. Image from
http://reference.bitreactive.com/reference/types-of-blocks.html

2.3.2 Benefits of Reactive Blocks

There are a lot of benefits to using Reactive Blocks for system development. Some of
the strongest ones are as follows.

Concurrent The inherent concurrent and event driven design of Reactive
Blocks systems makes designing concurrent systems a lot less complex than it does
with pure code. A lot of development problems come from the complexity of handling
concurrent behaviour without utilizing the power of state machines. This is simplified
with Reactive Blocks, with its built-in runtime system and modelling being part of
the implementation instead of a precursor to it.

Reuse In a similar manner to that of the OSGi platform, Reactive Blocks is
built from small dividable parts, though instead of modules, there are blocks. These
blocks are very suitable for reuse. The reason why Reactive Blocks are more reusable
than the norm, as normal Java is also to some extent reusable, is because of their



2.3. REACTIVE BLOCKS 13

improved interfaces. The problem with traditional reuse is that there isn’t really
a good way to inform systems that wants to reuse code what the flow and thread
compatibility is through APIs. In Reactive Blocks on the other hand, these are well
defined for blocks so there can be reuse with no fear of deadlocks even if the actual
implementation encapsulated by a block is unknown[? ].

Figure 2.7: Reactive Blocks provide more information through their interfaces than
traditional APIs. This ensures that they work together very well, and have a good
disposition for reuse. Image from http://reference.bitreactive.com/papers/secret-
twists.html

Visually represented Since modelling is an intrinsic part of producing code
with Reactive Blocks, there will always be visual representation of the applications
that are being made, that describe the actual system. In application development
where the modelling is not part of the implementation it self, there is no guarantee
that it actually represents the system it is meant to represent. In Reactive Blocks
this is not the case. The benefits of this are significant, the flow of the system can
be shown in a clean manner, shown in Figure ??, and structuring the code is much
easier. Instead of ending up with a giant complicated code base you have a hierarchy
of building blocks.

Figure 2.8: The flow of a program is illustrated, where the left side shows code,
and the right side shows graphical building blocks. The dotted arrows would not be
visible in most editors. Image from http://reference.bitreactive.com/papers/secret-
twists.html



14 2. TECHNOLOGIES

Verification Reactive Blocks has a built-in verification tool that does a formal
analysis of blocks and systems uncovering problems such as starvation, deadlocks
and race conditions that are not revealed with traditional testing. The information
contained by the visual design of the blocks, and their behavioural contracts is what
makes this possible. In Reactive Blocks an analysis of all possible scenarios an
application goes through is done with the click of a button, and in most all cases it
takes less than a second to perform[? ].

Figure 2.9: The different type of errors in a system are found in different ways. Most
software technologies utilize all but the formal analysis, which means that some errors
might go unnoticed. Image from http://reference.bitreactive.com/papers/secret-
twists.html

2.3.3 OSGi-Reactive Blocks Integration

Reactive Blocks comes with built in OSGi integration. As seen earlier in the chapter,
both OSGi and Reactive Blocks bring a set not exclusively overlapping benefits to
the table. Fortunately there is no need to pick one of the two if one were to make an
application. Since Reactive Blocks is not a programming language in itself, but a
code generator with a graphical UI, it could, in theory generate code for any platform.
As of now, Reactive Blocks has support for both basic JAVA, and OSGi. That means
that with just a choice in the build options, see Figure ??, of Reactive Blocks the
application can be built as an OSGi bundle, or a Java project. This means we can
build applications with both the benefits of OSGi and Reactive Blocks with very
little extra cost compared to Reactive Blocks that builds to vanilla Java.



2.4. CHAPTER SUMMARY 15

Figure 2.10: To build OSGi bundles in Reactive blocks the only requirement is
to chose OSGi from the platform selections. If needed, any extra parameters for
the manifest can be added in the parameters menu. Image from a generic Reactive
Blocks project.

2.4 Chapter Summary

In this chapter the technologies that are being used in the thesis were explored. The
technological field of ITS, which is what the specific technologies of Reactive Blocks
and OSGi will be tested towards. ITS is a traffic system that incorporates technology
to add intelligence. This entails data gathering and communications as well ass more
well informed decision based signalling. The specific technologies explored in the
chapter are OSGi and Reactive Blocks. They are used together, where development
works mostly in Reactive Blocks, but the code generated builds to OSGi. OSGi is
a component system for Java that utilizes jar-files to create modules. The goal is
to have a scalable platform to build dynamic systems. Reactive Blocks is a visual
tool that builds code from blocks made of activity diagrams, state machines and
Java methods. Reactive Blocks utilizes architecture modelling that has a direct
relationship to the generated code, instead of an ideal architecture modelling that
may only exist on paper. Both OSGi and Reactive Blocks have their benefits, and
they are well integrated, so using both together is almost the same as using Reactive
Blocks that generates plain Java.





Chapter3Current ITS at Statens Vegvesen

Statens Vegvesen is allready in the process of developing their ITS in Norway. They
are working with Volvo and their ITS-project to make the roads safer and more
effective by making them smarter. The main testing site for Norway’s ITS-system
is located in Trondheim, and the project is currently in a Prototyping stage of
development. In this chapter the status quo of the ITS project at Statens Vegvesen
is explored, as well as why it is so.

3.1 Technology Specifications

Statens Vegvesen has made a specification for the roadside ITS that outlines the
requirements that must be fulfilled. In this section those specifications are summa-
rized roughly, with the goal of finding whether they are compatible with the main
technologies of the thesis.[? ]

3.1.1 System Architecture

The ITS architecture is divided into four subsystems, shown in Figure ??, they are
described as follows:

– The Roadside ITS sub-system, which consists of anything that’s on the side of
the road, including sensors, signs and ITS-stations.

– The central ITS sub-system, which is the brains of the operation, it is where
the data storage is located.

– The vehicle ITS sub-system, which is exactly what one would think, it is the
part of ITS that is in vehicles. This provides a vehicle-specific ITS-station that
communicates with the roadside ITS.

17



18 3. CURRENT ITS AT STATENS VEGVESEN

– The personal ITS sub-system, which is any ITS applications running in hand-
held devices of the everyday traffic user. This will be one of the ways to bring
the data from the ITS to the public.

Figure 3.1: The 4 ITS subsystems in the architecture of Statens Vegvesen. Image
from [? ]

The observant reader might have noticed that two of these are much more under
the control of the product owner of ITS on a national scale than the other two; the
central and the roadside sub-systems. Statens Vegvesen has little control over the
technology that’s included in cars. Though the implications of supporting some tech-
nology might make some vehicles superior to others by virtue of communications with
ITS-stations, the technology choices in the vehicles is mainly up to the manufacturer.
Fortunately there are some large projects working on a standardized interface and
communication protocol for vehicles in ITS, some of these will be explored further
in ??, and ??. This means that apart from communicating with vehicles the ITS
project at Statens Vegvesen really isn’t concerned with the structure on the inside of
the vehicle sub-system. This is also, but to a smaller degree true with the personal
sub-system, as this is not planned yet, and may well be open to the public in contrast



3.1. TECHNOLOGY SPECIFICATIONS 19

to the roadside and the central sub-systems. This means that the implementation
and building job for the ITS project at Statens Vegvesen lies almost exclusively in
the central and roadside sub-systems. These will be explored further in sections ??
and ??.

3.1.2 Central ITS sub-system

The central ITS sub-system handles the heavy loads. This is where the data storage
is, and it is also where any heavy duty calculations would be performed. The data
gathered at the roadside sub-system will be passed here, and any functionality that
relies on heavy data loads will be here.

3.1.3 Roadside ITS sub-system

The roadside ITS has direct communication with all the rest of the sub-systems, and
can work as a middleman for all cross-sub-system communications. The roadside
ITS station is the brains of the roadside subsystem, it controls signals and signs,
and gathers data from sensors. In addition to this it communicates with vehicles,
personal systems and the central ITS. The roadside ITS subsystem is the main
data-miner of the ITS, and it provides communication between the entire system. In
the prototyping part of the thesis, the prototype will be made for the roadside ITS
station.

Figure 3.2: The roadside ITS subsystems in the architecture of Statens Vegvesen.
The zig-zag lines denote wireless connections, the arrows denote continuously open
interfaces that can be either wired or wireless. Image from [? ]



20 3. CURRENT ITS AT STATENS VEGVESEN

In the rest of the section the focus will be on the Roadside sub-system, as that is
where the focus of this thesis lies.

3.1.4 Functional Requirements of the Roadside ITS-stations

The first step to finding out whether some technology is a good, or even a viable,
choice for a system is to see whether it can cover the functional requirements of said
system. The functional requirements of the roadside ITS-stations are as follows [? ]

– Road network management; manage road network information and quality.

– Utilisation management; monitor the traffic situation, perform traffic control,
provide traffic situation information.

– Vehicle Management: monitor vehicle and driver behaviour, support vehicle
operation and emergency management, and manage vehicle information.

– Provide information services: provide traffic situation-, road network-, travel-,
environmental-, and tourist information services.

These requirements effectively means that the roadside ITS-stations are responsi-
ble for data collection and distribution, as well as controlling signalling systems, with
some extra detail as to what has to be covered in these areas. These requirements
will be considered further in relation to Reactive Blocks and OSGi in ??.

3.1.5 Security Requirements of the Roadside ITS-stations

The integrity of the information gathered and used by any system is important.
When the system pertains to environments where errors can lead to fatalities, the
importance of trustworthiness and reliability does not lessen. Therefore it is required
that ITS-stations shall protect information collected, handled and stored from unau-
thorised access(confidentiality), protect information from unauthorised changes or
deletion (integrity), and provide the required information needed for processing ITS
applications(availability) [? ].

3.2 Vehicle-Roadside interface

Since the system that’s delivered by Statens Vegvesen only runs on hardware on
the roadside, central, and possibly personal ITS sub-systems there must be some
common interface to manage communications with vehicles. In this section one
such interface will be explored, in order to understand the context in which the
sub-systems operate. Since the functional requirements of Roadside ITS-stations [? ]



3.2. VEHICLE-ROADSIDE INTERFACE 21

include communications with vehicles, the interface between them is also an inherent
member of both sub-systems.

3.2.1 Cooperative Awareness Service

An integral part of ITS is communication between entities in the traffic system. One
of the ways to make that happen is through the Cooperative Awareness service. CAS
is an ETSI standard service that is used to share data on the roads, between entities
like ITS-stations and vehicles. The messages used in CAS are called Cooperative
Awareness Messages or CAMs. CAMs are sent over the 802.11p protocol, wifi for
vehicles. The goal of this service is to give further knowledge and information of the
situation on the road to, initially, the roadside stations. This in turn makes for a
better understanding of the roads and ideally gives the means for more secure and
better traffic flow. CAMs can contain information on the position of a vehicle and
basic status. CAS is part of the Access Technologies of the ITS architecture, and it
is the access technology that will be used for the purposes of this thesis. [? ]

3.2.2 The eCoMove Project

The eCoMove project is a European ITS initiative focused on the use of ITS for
energy efficiency. In contrast to other ITS projects, the focus of eCoMove is not with
safety concerns. The most important part of the eCoMove project with respect to
this thesis is their specialized CAMs called ecoMessages [? ]. The reason we mention
the eCoMove project is because with it comes some implications both to the possible
benefits of ITS in general, and some functionalities that will be part of a more final
ITS. The eCoMove project’s additions to CAS will have to be integrated in any
system that utilizes eCoMove. Ecomove is working towards standardisation, and
there is good reason to assume that it will be implemented in vehicles in the not too
distant future. Thus support for eCoMove is, if not vital, a good thing to either have
implemented in ITS, or to have a structure that is compatible with.



22 3. CURRENT ITS AT STATENS VEGVESEN

Figure 3.3: The eCoMove Project Vision. By applying optimisation of the traffic
with regards to fuel-use, the eCoMove project aims to reduce the carbon footprint of
the transportation sector drastically. Using data mining and path-optimization, etc.
the drivers will receive help to drive more eco-friendly. Image from [? ]

3.2.3 ecoMessages

ecoMessages are the packets, or messages, that replace CAMs when operating with
the eCoMove project. They all share a common header, and are based on CAMs
and the Distributed Environmental Notification Messages (DENM), both of which
are ETSI-standards [? ]. ecoMessages focus on location, intersection topology and
speed advice. If an ITS should integrate the eCoMove project it has to support
ecoMessages.



3.2. VEHICLE-ROADSIDE INTERFACE 23

Figure 3.4: ecoMessages in the ITS are passed on all the channels that CAM’s are
passed on. They are can be used on all communications where at least one of the
ends are a vehicle. Image from [? ]

3.2.4 eCoMap

The eCoMap is one of the functionalities that eCoMove has been working on. It is a
weighted graph where the weights are fuel consumption based on data gathered by
roadside ITS-stations, and the edges are roads. This is one of the most important eco-
friendly oriented functionalities in the eCoMove project, and serves as an indication
to what can be done with big data in ITS.[? ]

Figure 3.5: The eCoMap illustrated graphically, the weight is illustrated by color
shade. Image from [? ]



24 3. CURRENT ITS AT STATENS VEGVESEN

3.3 Example Application: ecoMessage Logger

For the prototype in this project an application running in the ITS system already
will be remade with Reactive Blocks, to compare it to the current system and evaluate
the benefits of using this alternative strategy.

3.3.1 ecoMessage Logger Description

The ecoMessage Logger logs incoming ecoMessages. The platform of the logger is
ITS stations on the roadside, though it is conceivable that it could run in vehicles
as well. The logger has the capabilities to send the received ecoMessages out to an
external server, though it relies on services within the OSGi bundle context for this.

3.3.2 Analysis of ecoMessage Logger

The Logger consists of two relatively big classes, with a few methods. The majority
of the code in the classes are in a minority of the methods, with the longest method
being more than a seventh of the application.

Table 3.1: Data from the ecoMessage Logger Classes

Activator ServAdvItsItem Total
Lines of code 592 178 770
Methods 17 14 31

Average Method Lines 31 9 21
Longest Method 120 67 120

The ecoMessage Logger is integrated in the ITS station system as a bundle that
advertises itself as an EventHandler Service, meaning that any events that should
be handled by an event handler within the bundle context will be passed to the
logger. They may be passed to other event handlers as well. Upon receiving events
the logger checks whether the event is one that it should handle, and does so if it is.
If it receives an incoming ITS event it will start the process of logging it Figure ??.



3.4. INTERVIEWS WITH STATENS VEGVESEN 25

Figure 3.6: The ecoMessage Logger in the Vegvesen ITS[? ]

ecoMessage Logger Module Summary The ecoMessage Logger is a quite
simple application that illustrates the communication between modules in OSGi. It
does not know much of its surroundings, but relies on some other module handling
incoming ecoMessages and using the eventAdmin to publish these to any modules
that have shown an interest in these. In this case the module does not do much with
the data apart from exclaiming to any actor listening for test purposes. Though
the ecoMessage Logger does not have any important functionality beyond testing,
it could easily be feeding the messages either after parsing or before to some server
via any number of protocols. By logging messages it shows that the inner OSGi
communication works as it should, at least in this case. The ecoMessage Logger will
be expanded upon in ??

3.4 Interviews with Statens Vegvesen

This section aims to give an overview of the problems and workings of ITS from the
perspective of the people working on the Statens Vegvesen ITS Project in Trondheim.
To get a better introduction to the actual routines and inner workings at Statens
Vegvesen, a handful of interviews were conducted. The subjects of the interviews
included developers, and product owners at Statens Vegvesen, as well as a researcher
working with Statens Vegvesen at SINTEF. All information following in this section
is based on the answers given in interviews.

The Greatest Challenges in ITS

In essence an ITS is doing two things. It is collecting data, and using that data in
some way. One of these must be done in order to be able to do anything of the other.



26 3. CURRENT ITS AT STATENS VEGVESEN

That is collecting data. This seems to be the focus, and also the largest challenge
when it comes to ITS at Statens Vegvesen’s side of the operations. In the first place
Statens Vegvesens task is to collect data, and make that data available. With this
comes the challenges of handling big data, and of getting data that is good enough to
be reliable, and usable. This is the first step and may be the greatest ITS challenge
for Statens Vegvesen.

For the best use of the data, once data collection is there, the hope is that
research institutes such as universities and SINTEF will take part in the work.
Statens Vegvesen’s part in this would be funding research projects, and implementing
applications based on the results.

The Largest Costs in Transitioning to an ITS

On Statens Vegvesen side of things the largest cost seems to be perceived as lying
in the development side. The impression is that once the system is running, it will
be robust enough not to need as much upkeep as it needed development, and that
the planning of it would not measure up to the cost of implementation. On the
cost of development being much higher than the planning the product owner made
an insightful commented on how this may be due to being used to too optimistic
planning phases.

3.4.1 The Requirements of an ITS

The ability to provide data that is trustworthy and valuable is the top priority for
most of the interviewees. The focus of Statens Vegvesen’s ITS-project is data, which
was made even more evident from the answers to what requirements are needed for
an ITS. What this entails is both a secure channel, making the data trustworthy, as
well as having the robustness to support almost non-existent downtime for continuous
real-time data gathering. In addition to this, the product owner especially was
interested in an easily expandable and patchable solution that would not suffer from
legacy problems and extreme complexity once the first iteration was done.

3.5 Chapter Summary

The ITS project at Statens Vegvesen is currently in a planning phase. They are
working with the industries to get to the point where they can provide the roadside
equipment capable of communicating with vehicles over a standard protocol. At
the moment of writing work is done on standardizing both with Volvo and with the
eCoMove project. They are also working with SINTEF where OSGi is already in
use for prototyping. The focus for ITS now, as seen from Statens Vegvesen is to get
to a point where data is continuously gathered, stored, and made available. This



3.5. CHAPTER SUMMARY 27

way they can apply the results being found by transportation research projects. The
future holds roadside-vehicle communication and data storing, as well as funding and
cooperation with research organizations.





Chapter4Challenges in ITS

In this section the main challenges, bottlenecks and most important requirements
for an ITS are explored. To find the right way to solve a problem, one of the first
things to do should be to identify and understand the problem as well as possible.
In this case the problem is what is the best platform on which to build an ITS. To
find an answer to this, there are two parts of the problem that we need to familiarize
ourselves with, namely the nature of an ITS and the technologies under evaluation.
This chapter is dedicated to the former.

4.1 ITS Requirements

To evaluate the challenges of a task, one must first explore what is needed to complete
that task. In this section the requirements for a complete ITS, and their importance
are explored. The section is divided into areas of responsibility such as functionality
and robustness. This is to isolate as small requirements as possible, so that they can
be easily identified and expanded upon in section ??

4.1.1 Functionality

There are two groups of functionality in an ITS, namely data gathering and traffic
control/guiding. As mentioned in chapter ?? there can be no informed controlling
functionality without data. Even traffic lights in the traffic system currently in use
uses data from button presses or sensors to know if pedestrians or vehicles are waiting
to cross. There can however be data collection without traffic control applications.
Because of this the first, and arguably the most important part of an ITS is the
gathering and storing of structured data. Data gathering in ITS can be done in many
different ways. One that has been mentioned earlier is through vehicle-to-roadside
communication, but in addition to this there are lots of valuable data that can be
gathered from sensors in roadside ITS sub-system. In the end we are left with the
ability to collect data as the most important functionality requirement for ITS. In
sum the functionality requirements are:

29



30 4. CHALLENGES IN ITS

– Reliable gathering of real-time structured data.

– Controlling and informing traffic by use of the data.

4.1.2 Robustness

Though robustness is very important in an ITS, there are different levels to which it
is important in different parts of the system. It can for example be detrimental, and
possibly dangerous if the control for a traffic light, or a road barrier stops functioning.
There are already some handling for this without the extra data and intelligence
soon to be available, a traffic light will for example typically just blink orange if
something is wrong, and the traffic should treat it as if the crossing had no signals.
For calculating the most energy efficient paths, for example, the uptime might not
be as instrumental. Most of the time, the data used for this does not change very
quickly, at least not in a way that makes large differences. So applications that
gather data for this may not need to be as robust as the control applications. There
still needs to be a good amount of robustness, even in the applications that are not
the most time-sensitive. In sum the robustness requirements are:

– Robust enough applications to run continuously enough to support reliable
real-time data.

– Robust and error-safe control functions to avoid creating dangerous situations.

4.1.3 Security

Security is important when the integrity of data is important. There are different
aspects to the security in systems such as an ITS, and they serve different purposes.
On one side security is there to make sure all the data that’s collected is right, and
that it comes from where it is supposed to come from, and on the other side it is
making sure that the data does not end up in the wrong hands. The last part is really
only an issue when there is personal data involved, at least in the ITS at Statens
Vegvesen. This is because most of the data will be open to anyone and everyone
anyway, and is therefore not sensitive. What is important for all the data however,
is that it is trustworthy. If it is not, then it is useless, and does not guarantee a good
representation of the reality. Additionally all control systems must be secure. If
control systems in Norway were to be hacked, it would not be the first time something
like that had happened [? ]. The security requirements can be boiled down to the
basic principles of information security[? ]:

– Integrity. For the data that is used and gathered to guarantee accuracy and
correctness, it must not have been tampered with anywhere in its life cycle.



4.1. ITS REQUIREMENTS 31

It must therefore be protected from modification by unauthorized actors. For
integrity we therefore need to fulfil:

◦ Authenticity. It is important that the sources of data are what they say
they are, in order to be sure that the data reflects the reality. That means
that authentication is needed.

◦ Non-repudiation. The origin and endpoints of actions on the system must
be non-reputable in that after it is done, the actor can not deny having
acted and the receiver can not deny having received.

– Availability. Since the data is to be used in real time, and be available at all
times, the system providing the data must be safe from denial-of-service-attacks
that could shut it down.

– Confidentiality. When there is personal data involved, which may well be the
case when communicating with vehicles, the data privacy must be kept. If not
because it could be dangerous if it came in to the wrong hands, then because
confidentiality is often required by law when dealing with most personal data.

4.1.4 Light-weight

For some applications the requirement of being light-weight is very important, for
most ITS applications this is probably not the case. The functionality that needs to
run on a roadside station or in a vehicle is already pretty light-weight by nature. And
with the way pocket sized computers have come in later years there is tremendous
computing power available in small and cheap units. A raspberry pi for example is
cheap and has the power to run a system that would have been considered heavy
not too long ago[? ]. Most heavy applications can be running in the central ITS
sub-system, very sensibly. In short there is not much concern for making extremely
light weight solutions, this off course does not mean that optimization is a waste of
time.

4.1.5 Extensibility

An ITS is by its nature a system of high and dynamic granularity, and will therefore
have to be changeable, and hospitable for added functionality. There will be no
final implementation of the road network in Norway, or the technology that runs on
it, in the foreseeable future. Any ITS must therefore have the ability to host new
functionality without revamping the entire system for each add-on. This means an
ITS needs to be patchable, and extensible. In short the extensibility requirements
are as follows:



32 4. CHALLENGES IN ITS

– Adding on extra functionality must be as trivial as possible, to a reasonable
degree.

– Patching old functionality should be as simple as possible, and not cause issues
when put into production

4.2 ITS Challenges

In this section the challenges of making an ITS, or rather fulfilling the requirements
of an ITS are explored. The section builds upon the points from the previous section,
with focus on what barriers need to be broken to support the existing requirements.
The section, as the rest of the thesis, focuses on software, not hardware challenges.

4.2.1 Functionality

The functionality challenges of an ITS are the challenges that must be overcome to
fulfil the requirements. The first and foremost requirement, as discussed in ??, is to
provide gathering of real-time structured data.

Gathering data To make this happen, there are multiple steps that need be taken:
Setting up the infrastructure needed, namely road-side stations, sensors, and a central
data station. And building applications that communicate over the infrastructure.
Quite possibly the largest challenge here is to get vehicle ITS-stations that work
interchangeably in most-to-all cars. As car manufacturers are somewhat individually
responsible for what a car is equipped with, projects with the goal to standardize such
equipment are probably the best approach to solve this problem. As for producing
roadside ITS-stations there is a whole other thesis to be made for which choices are
best suited, be they cheap single-board computers or larger more expensive and more
powerful computers. Once the infrastructure is there, the gathering of data should
be quite possible to achieve with software systems.

Control applications To be able to make control applications is not much different
from being able to collect data. There just needs to be some output device to use
as output, and somewhere to run an application. Some such applications will most
likely run on the same stations that gather data, only with a different output.

4.2.2 Robustness

To meet the robustness requirements there are two things that must be supported,
up-time, and error-handling and -avoidance. To maintain up-time there are a lot of
factors that needs to be taken into account, such as hardware-failure, denial-of-service
attacks(see ??), and patching related down-time. To some extent all of these must
be handled by the software system, and will have to be solved.



4.3. CHAPTER SUMMARY 33

4.2.3 Security

For the security requirements to be fulfilled there are tons of research done in the
sciences as to what would be the best solutions, in this section they will be run
through on a very general and shallow manner. To reach the goals of the core
principles, section ??, the following steps must be taken:

– Integrity. To maintain integrity there must be some form of authentication,
that maintains non-repudiation.

– Availability. As with any data center that is to be open to the public it needs
to be protected from DoS-attacks or other malicious actions that can bring it
down.

– Confidentiality. Sensitive data has to be encrypted, and protected. This
involves authorization as well as authentication.

4.2.4 Light Weight

Seeing as the applications don’t really need to be running on sparse resources making
them as light weight as possible is more of an optimization point than a basic
requirement. There is therefore not a large barrier to pass in the light-weight area of
ITS in the time of writing.

4.2.5 Extensibility

Making applications that don’t get more and more complex the more it is worked
with is very difficult, and has cost countless man-hours for projects that have not
been doing a good enough job of it. There are a few ways to go about getting
an understandable and workable code-base. One is to have very strict clean code
standards and practices [? ]. Another is to work with modular programming, so that
to change one part of the system there is no need to know the rest of it. An even
better way to achieve extensibility is to follow both the aforementioned practices.

4.3 Chapter Summary

In this chapter the challenges and requirements of an ITS have been explored. In
short, there are two main challenges, gathering data, and finding the best way to use
said data. The first part, gathering data is not an abstract task, and can be started
and to some extent finished in the near future. As for the best ways to use the data
that will be available, the best approach may be to fund and create an environment
for research projects in the field of traffic research.





Chapter5Building ITS-blocks with Reactive
Blocks and OSGi

In this chapter the process of making a module for ITS are explored. The goal of
the chapter is to find out whether it is possible, conceivable, and practical to use
Reactive Blocks and OSGi for ITS. This will be based on the prototype module
made with Reactive Blocks and OSGi. The results of the chapter will be used in the
discussion chapter to further explore the viability of Reactive Blocks and OSGi in
ITS.

5.1 Prototype

In this section two small modules that could run on a completed roadside ITS station
that has been made are explained. The modules are a logger that could replace
the one described in ??, and an input simulator that simulates input to the station
from the outside environment. The goal of the prototype is to highlight some of the
strengths of both Reactive Blocks and OSGi, and how modules interact in a scalable
system. The modules use the event communications in OSGi to cooperate. The
input module simulates data from the outside environment, and shares that data
with the rest of the system without knowing how the data will be handled after it is
made available to the global context. The logger module logs data via emails once it
is made available to the system. The Events are passed via the EventAdmin running
in the OSGi context. First the EventAdmin will be explored, and then the modules.
The code for the prototype can be found in appendix ??.

35



36 5. BUILDING ITS-BLOCKS WITH REACTIVE BLOCKS AND OSGI

Figure 5.1: The conceptual architecture of the prototype modules in the ITS station
environment

5.1.1 communications

To make an OSGi application as dynamic and extensible as possible, there are
some global ways of communicating between modules. This is most commonly done
through the service register, described in section ??. To make the communication in
OSGi available for Reactive Blocks modules two blocks were built. Their description
follows, as well as an introduction to the OSGi EventAdmin.

EventAdmin
To understand how and why the modules work, and work in a very integrable

way, we must first understand the event-handling of global events in OSGi. The
EventAdmin in OSGi is used to pass global events to the rest of the OSGi context,
and it is one of the main communication buses in an OSGi system. This means that
events that one module receives can be made available to the rest of the system



5.1. PROTOTYPE 37

by use of the EventAdmin service. That sounds very much like the perfect way to
distribute received messages from vehicles and sensors at a roadside ITS-station.
This way any socket, or other listener, can be concerned only about listening to
incoming messages and pass them to the rest of the system to be dealt with by some
other module. This utilizes the power of modularity by dividing responsibilities and
functionality in small modules that are easily replaceable or improvable even in a
large system.

Figure 5.2: The event communications in OSGi, the arrows shows the flow of events

Event Publisher
For the communication model through the EventAdmin to work, there must be a

publisher, and a receiver of events. In theory, there could be only one of the two, but
in that application not much would be done. The event publisher is a fairly simple
module that publishes events to the EventAdmin. It is simply a straight forward way
to pass global events to the rest of the system. This way, any input module, such as
a listener for CAMs or sensor data can worry only about listening, and nothing else.

The EventPublisher block, shown in Figure ??, has two inputs. They are two
different ways of publishing events to the system, the only difference is that one
publishes asynchronously, and the other one does not. An alternative implementation,
to simplify the use of the block, would be to only use one of the two ways of publishing
events. The ESM of the EventPublisher block Figure ?? shows us that it goes from
its initial state to its final state with one input, so a new block gets started for
every published event. This means that the block has its own flow no matter if
the publishing utilizes asynchronism or not, therefore having the option for both is
unnecessary.



38 5. BUILDING ITS-BLOCKS WITH REACTIVE BLOCKS AND OSGI

Figure 5.3: The EventPublisher Block

Figure 5.4: The external state machine of the EventPublisher Block

Event Listener
On the receiving end of the global event communications in OSGi are Event

Listeners, or Event Handler Services. To make an as generic event listener as possible,
a block that takes event topics as input was made, that subscribes to all global
events of the topics. The Event Listener block is shown in Figure ??. After being
initialized the EventListener block outputs all events that match the topics given
on initialization, until it is terminated. This behaviour follows the state transitions
described in Figure ??.



5.1. PROTOTYPE 39

Figure 5.5: The EventListener Block

Figure 5.6: The external state machine of the EventListener Block

5.1.2 ITS prototype modules

Now that the communications have been made available for Reactive Blocks modules,
we can move on to an illustration of a real world system. In this system, there is one
module that listens for incoming CAMs, and one that processes them once they have
been passed to the rest of the bundle.

Reactive Blocks and OSGi message publisher module
The message publisher module, shown in Figure ?? is a module that publishes

CAM and ecoMessage events to the OSGi system. In the case of the prototype,
these messages don’t come from an outside source, but are simply made in the



40 5. BUILDING ITS-BLOCKS WITH REACTIVE BLOCKS AND OSGI

MessageMocker block and passed to the EventPublisher. Though this design does
not receive input from outside sources, the same design would in all likelihood work
well with for example a socket listener listening on a port reserved for 802.11p
communications receiving CAMs from vehicles on the road.

Figure 5.7: The system block of the message publisher module

Reactive Blocks and OSGi logger module
The Reactive Blocks logger module Figure ?? is a module that simply uses the

EventListener ?? to catch any events with topics matching that of ecoMessages and
CAMs. This module is the Reactive Blocks counterpart to the ecoMessage Logger
analysed in ??. Apart from using the Event class of OSGi, all its OSGi related
activity is confined to the EventListener Block. The module consists of a system
block with one local block, the message handler. There could well be many more,
but since the functionality of the module is fairly simple this is all that is needed.
The block is the MessageHandler block, shown in Figure ??.



5.1. PROTOTYPE 41

Figure 5.8: The system block of the MessageLogger module

The MessageHandler block, Figure ??, Starts an EventListener with the topics of
CAMs and ecoMessages as parameters, and runs the handleMessageEmail every time
the EventListener outputs an event. Because of the lack of a central ITS sub-system
available at the time of making the logger, it sends an email for every received
message. The emails contain the message type, and the data attached to the OSGi
event. The messageLogger continues handling message events until it is terminated.



42 5. BUILDING ITS-BLOCKS WITH REACTIVE BLOCKS AND OSGI

Figure 5.9: The MessageHandler Block

5.1.3 Prototype Results

When running both the bundles in the prototype the output from the message logger
module corresponded to all messages made in the message publisher module. Though
this does not come as a surprise, it does show that using the EventAdmin as a
communications bus in an application opens for a simple and extensible design. Any
number of modules utilizing the incoming messages could be running side by side,
and any number of modules listening for incoming messages from input devices could
be running similarly.

5.2 Compatibility of Reactive Blocks and OSGi with ITS

The prototype shows the power of the modular structure of OSGi and Reactive Blocks,
as well as the communication bus for Events via the EventAdmin. After building
the framework of a very simple ITS-station with the prototypes, it is fairly straight
forward to see how additional modules utilizing the same functionality through reuse
of the communication blocks could be added with relative ease. This fits particularly
well within a system where there could be any number of input and output devices
available. There is no problem in using this same design for controlling traffic lights
or speed sensor stations, the only difference is how the events are handled in the
corresponding handler module. Using OSGi these modules can even be added in



5.3. CHAPTER SUMMARY 43

runtime, with no down-time at all. The implications of this is that Reactive Blocks
and OSGi are a very good match, at the very least with the roadside ITS sub-system.

5.2.1 Reuse

The prototype uses two quite generic blocks that can be used for event communications
in any module that runs OSGi. The EventPublisher block and the EventListener
block. If the event communications of OSGi is used for context-wide communications
these can easily be reused in any new module. As shown by the modules of the
prototype, they don’t even need to be fully understood by the rest of the module in
which they would be placed. With Reactive Blocks this reuse is as simple as a drag
and drop and connecting the dots.

5.2.2 Extensibility

With the information being made available through system-wide communications
such as the EventAdmin new functionality can be added at any point. The modules
that were made in the prototype do not even need to know the implementation of the
others, with the exception of knowing the common event topics. Additional modules
adding to the same environment could be added without causing trouble. There is
no added complexity to the system by adding new externally simple modules, even if
the modules themselves were internally complex. As long as anything that does not
need to be shared outside of the modules are not, the system as a whole does not
increase more than it needs to in complexity when new modules are added, and can
be extended as long as the host has the power needed to run it.

5.2.3 Customizability

Roadside ITS-stations may very well be subject to varying environments, with
different kinds of sensor inputs and signal outputs. To make ITS-stations that can
host new technologies at any time when they arrive and are installed, the software
must be either customizable, or all-covering. The approach that is arguably best in
the long term is to make customizable software. With the use of a design such as the
one demonstrated in the prototype, modules that support different technologies can
be added or removed when said technologies are made available or unavailable to the
station. This makes an easily customizable solution that requires little work in order
to accommodate a plethora of varying environments in individual ITS-stations.

5.3 Chapter Summary

In this chapter a simple prototype consisting of two modules utilizing the OSGi
EventAdmin was explored. The prototype was built in Reactive Blocks and had one



44 5. BUILDING ITS-BLOCKS WITH REACTIVE BLOCKS AND OSGI

endpoint where data was generated, and one that handled said data. The modules
were running completely separately, and had no knowledge that the other module
existed. That means they did not add to the complexity of each other, and that any
number of other modules could be running and adding to the same functionality
provided by the two that were made. Not only did the prototype not show any
inclination that building an ITS-station with Reactive Blocks would be impossible,
it showed that it would aid the process with significant benefits. From the findings
in the chapter, Reactive Blocks and OSGi looks to be perfect fits with ITS, at the
very least in the roadside ITS sub-system.



Chapter6Alternative Technologies

The previous parts of the thesis have been focused mainly on how well Reactive Blocks
and OSGi works in the environment of ITS, but there are many other alternative
technologies to choose from when designing an ITS. To find out if a technology is
the right choice, it doesn’t just need to be a good match, but it must work as well or
better than other technologies that are also available. In this chapter the pros and
cons of some of the most popular technologies that could be considered instead of
OSGi and Reactive Blocks are discussed.

6.1 Java

Java is one of the most widely used object-oriented programming languages in the
world [? ]. It runs on the Java Virtual Machine (JVM), and is the basis for both
Reactive Blocks and OSGi. Its first version was released in 1995, and the community
around it has grown steadily since. In the latest version of Java as of 2014, Java 8,
support for functional programming and improved security and parallelization has
been added, making a better version of an already popular language.

6.1.1 Benefits of Java

Community Java has an enormous amount of 3rd party libraries available for use.
In many cases of generic functionality, code has already been written, and there is
no need to write it again. Through reuse of libraries the power of a community of
millions of programmers is available. In addition to having lots of libraries that can
be used in new applications, the large following of Java means that there are lots of
experienced programmers out there, that can work on Java projects.

Performance Java is relatively fast. Historically though, it was not always consid-
ered as a high performance language. It was just with the introduction of just-in-time
compilation [? ] in 1998 that Java started providing good performance. In addition
to the JIT support, other performance improvements has been done, mainly through

45



46 6. ALTERNATIVE TECHNOLOGIES

optimizations in the JVM. Java today performs well compared to other just-in-time
compiled languages, and even rivals C++ (a compiled language) in some numeric
benchmarks [? ].

Tools The developing tools for Java are many and varying in character. From light-
weight text editors to heavy-weight integrated development environments (IDE’s),
and continuous integration tools. Having lots of different tools, means developers
can work in the environment they prefer, which could increase productivity.

Platform Ubiquitous Java runs on a virtual machine, the Java Virtual Machine
(JVM), that is designed to run on any platform with the same Java code. Any
machine that can run the JVM can run Java programs, and that is quite close to any
machine. Because of the JVM, Java programs can run on any platform desirable.

6.1.2 Java summary

Java is a powerful object oriented programming language, that has high performance
and a large global following. There are a vast amount of resources to aid in Java
development projects, as well as many developers with great knowledge of the
language. A lot of projects choose to develop their systems in Java, and with good
reason.

6.2 Scala

Scala is a functional object-oriented programming language. It is statically typed and
meant for making components and component systems. It focuses on scalability, and
the name is derived from "Scalable Language", it is a fitting language for everything
from one-line expressions to large projects. It is chosen for use by companies such as
Twitter, LinkedIn and Intel.

6.2.1 Benefits of Scala

Scala is a language designed with the intention to fix the shortcomings of Java, so as
to make the building of component systems easier [? ]. This is done both by joining
functional programming and object-oriented structure, and by using statical typing.
This makes Scala shine in some areas, some of these are described in this subsection.

Scalable Scala is built to be scalable. Its mechanics concentrate on abstraction,
composition and decomposition, and not on having many primitives available for
some level of the scaling. It is also a lot closer to an architecture that is a component
system, which is a huge help to scalability.



6.3. AKKA 47

Functional Scala is functional, and has all the benefits that any functional language
has. Collection operations, for example are made a lot simpler, and quicker to code.
Less noise in your code base will also, in all probability, make it more readable.

6.2.2 Scala summary

Scala is a language that has been built as an improvement on Java, without having
to maintain backwards compatibility. It could therefore learn from the mistakes
of Java and improve upon it, both adding new functionality, and trimming the fat
that was not useful from it. It is a functional object-oriented language that is quite
popular, and has a strong following. Even though Java now has some support for
functional programming, it is much more likely that your Scala developers will know
how to utilize that power, than your Java developers since it is so new. To sum it
up, Scala is a viable choice for any project, with its strengths and weaknesses.

6.3 Akka

Akka is an open-source platform to aid in the making of concurrent and scalable
applications [? ]. It works with both Java and Scala, and utilizes the JVM for its
applications. Akka is a relatively new technology, with its first official release in
2010, though it has already created an impressive following. Akka has been used
by corporations such as Walmart, and LinkedIn [? ] and is by its own testimony a
good fit with automobile and traffic systems[? ]. Akka has even been used for ITS
sub-systems, in the Netherlands, with good results [? ].

6.3.1 Benefits of Akka

Akka is a new technology that shows many similarities to both OSGi and Reactive
Blocks. It is a platform that focuses on a reactive model, that is scalable and
simplifies concurrent operations. It has many benefits, some of which are explored in
the following paragraphs.

Scalable Akka is built to be scalable, and it is scalable. The use of an actor model,
where the actors are extremely light-weight compared to normal processes, and cluster
support makes scalability much better than that of many other technologies. The
way fault-tolerance is handled in Akka also helps towards making scalable systems.

Fault tolerant Akka uses the "Let it crash" model for fault tolerance. Instead of
focusing on fault avoidance, Akka assumes that faults happen anyway, and treat
them as a natural state of the system. By linking actors to each other Akka manages
to monitor the state of actors, to see if they are alive or not, and handle it if they



48 6. ALTERNATIVE TECHNOLOGIES

die. This makes Akka systems very fault tolerant, and deals with concurrent and
distributed systems in a closer to real-world way than for example Java [? ].

Tooling Like Java and Scala, Akka can be written both in powerful IDEs and
light weight text editors. Though an IDE is often very helpful, it does not hurt to
have the option of an approach even closer to the source, without all the heavy help
provided from IDEs like Eclipse or Intellij Idea.

6.3.2 Akka summary

In summary Akka is a platform that has lots in common with the Reactive Blocks
and OSGi duo, but differs in that it does not have the visualization aspect of Reactive
Blocks, and it does not have the dependency control of OSGi. It does however
support Scala, and does not need as specific tooling as Reactive Blocks or OSGi does.

6.4 Chapter Summary

In this chapter some development technologies, possible rivals to Reactive Blocks
and OSGi, have been explored. Their respective benefits and structure have been
reviewed, with the environment of ITS in mind. Two programming languages, Java
and Scala, and a component system, Akka, were considered. Many other languages
and tools are available for designing software systems, these may offer other benefits.
The exploration of the platforms described in this chapter is meant to offer an insight
to what else is out there. The findings in this chapter are used for the discussion in
chapter ??.



Chapter7Discussion

This chapter discusses the results found in chapter ?? with respect to meeting the
challenges explored in chapter ??. Reactive Blocks and OSGi is also measured against
the technologies in chapter ?? in an attempt to answer the core question of the thesis:
whether Reactive Blocks and OSGi is a good choice for developing ITS.

7.1 Meeting the challenges of ITS

The first and foremost priority when seeing if a technology is a good choice, is whether
or not it is capable of meeting the challenges that the task requires it to meet. In
this section the degree to which Reactive Blocks and OSGi can meet the challenges
of ITS is explored, with the goal of finding out whether they are a viable option for
making ITS, as well as a good one.

7.1.1 Functionality

The most important functionality that needs to be covered in an ITS, as discovered
through interviews with the workers at Statens Vegvesen and the requirement speci-
fication of roadside ITS-stations, is to handle Data Gathering. This was virtually
what the prototype, ??, did, though on a very basic level. It defined a structure for
an entry point of data, and an exit point in a scalable and versatile manner. There
is no reason to doubt Reactive Blocks and OSGi on the point of data gathering, and
they in fact also support control functionality, the next step after data gathering in
ITS, with the shared and open data communications and modular structure. Making
control modules based on inputs is really the same as making data gathering output
modules with the exception of the way they handle the events. This is where the
component system with small modules start to shine, since it is not likely that all
ITS-stations will be in the same physical environment, or have the same input and
output devices, customizable stations is a lot better than hoping to make a system
that covers all fronts. Customization with Reactive Blocks and OSGi is as straight

49



50 7. DISCUSSION

forward as connecting to extra devices, but in stead of physically connecting wires
you just install the needed bundles on the station.

7.1.2 Robustness

Making robust and safe applications is one of the strongest sides of Reactive Blocks.
Because of its excellent verification tools, see section ??, applications made in Reactive
Blocks should in most cases be safer than those built with traditional tools. There
is a much smaller chance of hitting deadlocks and experiencing race conditions,
making the applications more robust. But though Reactive Blocks may be the
main contributor to increased robustness, OSGi is not without merits either. When
measuring experienced robustness, a requirement is often up-time. With OSGi’s
out of the box ability of updating components without experiencing any downtime
whatsoever, even a dynamic component system where new functionality is added,
and updated regularly can still support very good up-time. This is important when
the systems require real-time data, and in ITS, examples of these are numerous, and
include traffic lights, toll stations, etc.

7.1.3 Security

OSGi provides a security model that is based on the one in Java, that is strong.
Security can really be implemented in any language, but it is rarely a good idea to
do it yourself, since one small error can render the security useless and insecure. It
is therefore good to be able to use tried and tested security implementations that
are available in platforms with large communities. There would be few issues with
making use of reusable 3rd party security implementations in OSGi. And in the
unlikely event that there would not be OSGi bundles available, Java libraries are still
usable in OSGi and Reactive Blocks, and should be more than capable of providing
the security needed.

7.1.4 Extensibility

Component systems are made for extensibility. The use of a modular architecture
is a way to incorporate extensibility into the development process from the start.
Every module is an extension to a system, and following the principles of OSGi’s no
sharing when it is not absolutely necessary, extra modules add as little complexity
to a system as possible, giving as much room for extensions as is viable. As the
prototype, section ??, explored in architectural choices, extensibility can be included
from the first small modules.



7.2. COMPARISONS WITH RIVALLING TECHNOLOGY CHOICES 51

7.2 Comparisons with rivalling technology choices

In this section, Reactive Blocks and OSGi is measured against the technologies
explored in chapter ??. Though finding out whether or not Reactive Blocks and
OSGi are fit to solve a problem is important to whether or not they can be used, the
question of them being a good choice can not be answered without measuring them
up to their competitor. The goal of this section is to see Reactive Blocks and OSGi
holds up compared to other technologies.

7.2.1 Java

Java is a great language, that is used in projects all over the world all the time. It has
stood the test of time, and shows great merits. This is probably the main reason for
Reactive Blocks and OSGi to be built on it. OSGi and Reactive Blocks are in essence
a different way to write Java, as they both boil down to Java code, and bundles are
.jar files that are run on the JVM. Most of the benefits of Java are also present in
Reactive Blocks and OSGi, they benefit from the same performance, and the same
platform independence. There are downsides to choosing Reactive Blocks and OSGi
instead of vanilla Java however, there is not a lot of different tooling, and there is
not yet a large developer community. When making Reactive Blocks modules it is a
requirement that it is done in Eclipse, which is not a light-weight tool. Though in
all fairness, there are no lightweight graphic model based development tools. More
importantly than the tooling is the problem of a small community. It is not likely
that there will be a lot of developers that are already very familiar with Reactive
Blocks, and there will therefore have to be more time and resources allocated to
familiarizing the developers with the platform than there would have been with Java,
a higher initial cost.

7.2.2 Scala

Scala is a good scalable, and functional language, that incorporates the benefits of
component systems. It is however, arguably, done even better by Reactive Blocks
and OSGi, without the performance impairments from interpreting Scala for the
JVM [? ] [? ]. Scala has some of the benefits of Java, and were the choice between
the two, it would probably be very hard to say which was the best choice. Though
since the possible technology of choice is between Scala and Reactive Blocks and
OSGi the matter is different. Like with Java, Scala has the benefit of more diverse
tooling (to a lesser extent than Java, but there is still a significant difference) and
developers that don’t need extra training to start developing. It does however, like
Java, lack in the points of verification and support for building concurrent systems.
Though Scala is built to be scalable, so is Reactive Blocks and OSGi, and it is hard
to see that Scala does scalability any better.



52 7. DISCUSSION

7.3 Akka

Akka is probably the technology that is most similar to Reactive Blocks and OSGi
that has been considered in this thesis. It is a less complex way to gain some of
the benefits of OSGi, meaning less dependency issues, and the possibility of using
more lightweight tooling. But it comes at a cost. The benefits of Reactive Blocks
and OSGi, such as the improved verification, the visualization and the no down-time
updating are all missing from Akka. In return, it supports both Java and Scala, and
it can be used to make OSGi bundles[? ]. This means that using Reactive Blocks
and OSGi does not restrict future projects from choosing Akka, if Akka is not OSGi
enabled, switching to OSGi is not as trivial.

7.4 Chapter Summary

In this chapter, Reactive Blocks and OSGi were measured against the challenges
of ITS as well as against competing technologies. Both pros and cons have been
discussed, with the key question of the thesis in mind, whether or not Reactive Blocks
with OSGi is the right technology for developing an ITS. The points made in the
discussion are used in chapter ??.



Chapter8Conclusion and Further Work

In this chapter, an attempt to answer the main research question of the thesis is
made, based on the findings of the report. Is Reactive Blocks with OSGi a good
choice for developing ITS? What more can be done in the field is also elaborated
upon in section ??

8.1 Conclusion

In this section, an attempt to answer the research question of the thesis has been
made. The question of whether Reactive Blocks with OSGi is a good choice of
technology to build an ITS with will be answered by whether or not it is able to
meet the challenges of ITS, see section ??, and how it measures up to the rivalling
technologies that are used widely in the field, see section ??.

8.1.1 Meeting the Challenges

Reactive Blocks and OSGi are up to the task of meeting the challenges of ITS.
Through the results from the prototype, and the documentation of Reactive Blocks
and OSGi the capabilities of the technology has been evaluated. The prototype
showed how one implementation architecture that fits the OSGi structure could host
both data gathering applications at first, and traffic control applications as well once
the time for those comes, in the roadside ITS sub-system. It does not come as a
surprise that Reactive Blocks with OSGi is capable of meeting the challenges, but
in addition to meeting the challenges they also show promise of meeting them well.
There are in all likelihood better architectures than the one utilized in the prototype,
section ??, but even that one shows a scalable and simplistic system design that
could host a plethora of functionalities both complex and simple in the same system
without an exponential increase in complexity. There is great potential both for
extensibility and robustness in the Reactive Blocks and OSGi platform, and they are
more than capable of meeting the challenges of ITS.

53



54 8. CONCLUSION AND FURTHER WORK

8.1.2 Compared to the State of the Art

Reactive Blocks and OSGi are arguably a better choice of technology for ITS than
the competition. In chapter ?? a few alternative technologies fit for building ITS with
were explored, and in chapter ?? they were compared to Reactive Blocks and OSGi.
The defining features of Reactive Blocks and OSGi that were not matched by any
of the competitors were their visualization, verification and ability to update with
no down-time. These are huge benefits when making systems that should control
the potentially lethal traffic system where errors and down time in the worst case
could reduce traffic safety of real living people. The package does not, however, come
without its drawbacks. Reactive Blocks is a new technology that is fairly different
from the usual tools of software building. It does not have a large knowledgeable
following. It is therefore not likely that there will be as much possible reuse of 3rd
party code as there would be using any of the other technologies explored in ??.
It also means that it will probably be hard to find experienced Reactive Blocks
developers for the projects, so the ones to work on the project will probably need
more training than with Java or Akka. This means that building an ITS in Reactive
Blocks and OSGi will have a higher initial cost than if an ITS were to be built on
any of the other mentioned technologies. Even with this downside, the benefits seem
to outweigh the negatives. The cost of starting up is high, but it pays off by the
decreased cost of fixing concurrency problems, and the low down-time that would be
a likely result of using Reactive Blocks and OSGi.

8.1.3 Conclusion summarized

Reactive Blocks with OSGi is a very good technology for building an ITS. It is more
than up to the task of meeting the challenges that must be met to make the software
of a functioning ITS, and it rivals the competition in beneficial features. From the
results of the research in the thesis, there is reason to think that Reactive Blocks
with OSGi is a good, if not the best, choice for any ITS development project.

8.2 Further Work

In this thesis the platform of Reactive Blocks with OSGi has been explored and
analysed with respect to ITS. This is only an initial step in the field of ITS. In this
section, some further steps not yet taken are suggested.

8.2.1 Further Proof of Concept Research

The prototype described in the thesis shows a lot of promise, but it is not a complete
field test for the Reactive Blocks and OSGi platform. Though it may be used
as an indicator of how well Reactive Blocks and OSGi works in ITS, it can only
stretch as far as the prototype environment. A larger scale application working in a



8.2. FURTHER WORK 55

real-world environment, building upon the prototype of the thesis, would be a better
approximation to a working ITS. This could highlight any problems not found during
the work presented here.

8.2.2 Applying the Knowledge to a Working ITS

Another next step to this analysis is to put the results straight into practice. Making
an ITS that at first supports data gathering, and makes the data available for research
would be a natural next step to the work done in this project. Though some of the
technology on the roads are not there at this point, there is still room for making the
basics work, and updating with new and improved bundles as they come along. The
first cars that support CAMs are for example not on the roads at the time of writing,
but a module for CAM communication can be added to a roadside ITS-station at
any time if it runs an OSGi environment.

8.2.3 How to use Traffic Data

There is still a lot of progress to be made in the field of traffic research. Gathering
data in a traffic system is not of much value if the data is not used for anything.
There must therefore be made an effort to find the best possible ways to increase
traffic flow, safety, energy efficiency and the like using the data. This is what some
of the extra functionality of the ITS will consist of, and where the real power of an
ITS will lie.





References

[1] V. Cózar, J. Poncela, M. Aguilera, M. Aamir, and B. Chowdhry, “Cooperative
vehicle-to-vehicle awareness messages implementation,” in Wireless Sensor
Networks for Developing Countries, ser. Communications in Computer and
Information Science, F. Shaikh, B. Chowdhry, H. Ammari, M. Uqaili, and
A. Shah, Eds. Springer Berlin Heidelberg, 2013, vol. 366, pp. 26–37. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-41054-3_3

[2] “Osgi alliance website.” [Online]. Available: http://www.osgi.org/Technology

[3] R. S. Hall, S. McCulloch, K. Pauls, and D. Savage, OSGi in Action. Manning
Publications Co.

[4] S. Vegvesen, “Roadside its station specification,” 2014.

[5] “Ecomove project.” [Online]. Available: http://www.ecomove-project.eu/
about-ecomove

[6] “Cooperative its messages for green mobility: An overview from the ecomove
project.” [Online]. Available: http://www.ecomove-project.eu/assets/Documents/
Presentations/ITSVienna/EU-00628AlesianiLykkjaFestagBaldessari-v0.2.2.pdf

[7] “ecomove core technology integration.” [Online]. Available: http://www.
ecomove-project.eu/about-ecomove/subprojects/sp2/

[8] “Intelligent transport systems.” [Online]. Available: http://www.etsi.org/
technologies-clusters/technologies/intelligent-transport

[9] W. H. Organization, “The top 10 causes of death,” 2014. [Online]. Available:
http://www.who.int/mediacentre/factsheets/fs310/en/

[10] Ecobridge, “Causes of global warming,” 2001. [Online]. Available: http:
//www.ecobridge.org/causes_of_global_warming.html

[11] “Osgi benefits.” [Online]. Available: http://www.osgi.org/Technology/WhyOSGi

[12] “Keep it simple stupid.” [Online]. Available: http://people.apache.org/~fhanik/
kiss.html

57

http://dx.doi.org/10.1007/978-3-642-41054-3_3
http://www.osgi.org/Technology
http://www.ecomove-project.eu/about-ecomove
http://www.ecomove-project.eu/about-ecomove
http://www.ecomove-project.eu/assets/Documents/Presentations/ITSVienna/EU-00628AlesianiLykkjaFestagBaldessari-v0.2.2.pdf
http://www.ecomove-project.eu/assets/Documents/Presentations/ITSVienna/EU-00628AlesianiLykkjaFestagBaldessari-v0.2.2.pdf
http://www.ecomove-project.eu/about-ecomove/subprojects/sp2/
http://www.ecomove-project.eu/about-ecomove/subprojects/sp2/
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
http://www.who.int/mediacentre/factsheets/fs310/en/
http://www.ecobridge.org/causes_of_global_warming.html
http://www.ecobridge.org/causes_of_global_warming.html
http://www.osgi.org/Technology/WhyOSGi
http://people.apache.org/~fhanik/kiss.html
http://people.apache.org/~fhanik/kiss.html


58 REFERENCES

[13] bitreactive, “Reactive blocks documentation: Essentials.” [Online]. Available:
http://reference.bitreactive.com/reference/essentials.html

[14] Bitreactive, “The secret twists to efficiently develop reactive systems,” 2012.
[Online]. Available: http://reference.bitreactive.com/papers/secret-twists.html

[15] “Etsi ts 102 637-2.” [Online]. Available: http://www.etsi.org/deliver/etsi_ts/
102600_102699/10263702/01.01.01_60/ts_10263702v010101p.pdf

[16] S. Bernstein and A. Blankstein. (2007) Key signals targeted, officials say. [Online].
Available: http://articles.latimes.com/2007/jan/09/local/me-trafficlights9

[17] M. E. Whitman and H. J. Mattord, Principles of Information Security. CEN-
GAGE Learning, 2012.

[18] Raspberry pi. [Online]. Available: http://en.wikipedia.org/wiki/Raspberry_Pi

[19] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship. Pearson
Education Inc, 2009.

[20] Programming language popularity. [Online]. Available: http://www.langpop.com/

[21] Java gets four times faster with new symantec just-in-time com-
piler. [Online]. Available: http://grnlight.net/index.php/programming-articles/
116-java-gets-four-times-faster-with-new-symantec-just-in-time-compiler

[22] The computer language benchmark game. [Online]. Available: http:
//benchmarksgame.alioth.debian.org/

[23] M. Odersky, P. Altherr, V. Cremet, D. I. Gilles Dubochet, B. Emir, S. McDirmid,
S. Michelout, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon, and M. Zenger,
“An overview of the scala programming language,” 2006. [Online]. Available:
http://www.scala-lang.org/docu/files/ScalaOverview.pdf

[24] What is akka? [Online]. Available: http://doc.akka.io/docs/akka/2.2-M2/intro/
what-is-akka.html

[25] Typesafe case studies. [Online]. Available: http://www.typesafe.com/company/
casestudies

[26] Why akka? [Online]. Available: http://doc.akka.io/docs/akka/2.2-M2/intro/
why-akka.html

[27] (2012) Keeping borders safe with akka. [Online]. Available: http://downloads.
typesafe.com/website/casestudies/Dutch-Border-Police-Case-Study-v1.3.pdf

[28] J. Bonér, “Introducing akka - simpler scalability, fault-tolerance, concurrency
& remoting through actors,” 2010. [Online]. Available: http://jonasboner.com/
2010/01/04/introducing-akka/

[29] J. Faerman. (2012) Scala or java? exploring myths and facts. [Online]. Available:
http://www.infoq.com/articles/scala-java-myths-facts

http://reference.bitreactive.com/reference/essentials.html
http://reference.bitreactive.com/papers/secret-twists.html
http://www.etsi.org/deliver/etsi_ts/102600_102699/10263702/01.01.01_60/ts_10263702v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/10263702/01.01.01_60/ts_10263702v010101p.pdf
http://articles.latimes.com/2007/jan/09/local/me-trafficlights9
http://en.wikipedia.org/wiki/Raspberry_Pi
http://www.langpop.com/
http://grnlight.net/index.php/programming-articles/116-java-gets-four-times-faster-with-new-symantec-just-in-time-compiler
http://grnlight.net/index.php/programming-articles/116-java-gets-four-times-faster-with-new-symantec-just-in-time-compiler
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
http://www.scala-lang.org/docu/files/ScalaOverview.pdf
http://doc.akka.io/docs/akka/2.2-M2/intro/what-is-akka.html
http://doc.akka.io/docs/akka/2.2-M2/intro/what-is-akka.html
http://www.typesafe.com/company/casestudies
http://www.typesafe.com/company/casestudies
http://doc.akka.io/docs/akka/2.2-M2/intro/why-akka.html
http://doc.akka.io/docs/akka/2.2-M2/intro/why-akka.html
http://downloads.typesafe.com/website/casestudies/Dutch-Border-Police-Case-Study-v1.3.pdf
http://downloads.typesafe.com/website/casestudies/Dutch-Border-Police-Case-Study-v1.3.pdf
http://jonasboner.com/2010/01/04/introducing-akka/
http://jonasboner.com/2010/01/04/introducing-akka/
http://www.infoq.com/articles/scala-java-myths-facts


REFERENCES 59

[30] (2012) Akka osgi support. [Online]. Available: http://doc.akka.io/docs/
akka-modules/1.3.1/modules/osgi.html

http://doc.akka.io/docs/akka-modules/1.3.1/modules/osgi.html
http://doc.akka.io/docs/akka-modules/1.3.1/modules/osgi.html




ChapterAAppendix I

A.1 The Prototype Modules

The prototype modules have been made available at github.com. They can be cloned
from the github repository:

https://github.com/eivisand/reactive-ITS.git

61


	List of Figures
	Introduction
	Problem Description and Scope
	Scope

	Structure of the Thesis
	Technologies
	Current ITS at Statens Vegvesen
	Challenges in ITS
	Building ITS-blocks with Reactive Blocks and OSGi
	Alternative Technologies
	Discussion
	Conclusion and Further Work


	Technologies
	Intelligent Transport Systems
	OSGi
	The OSGi Architecture
	Bundles
	Services
	Service registry
	Benefits of OSGi

	Reactive Blocks
	The Reactive Blocks Architecture
	Benefits of Reactive Blocks
	OSGi-Reactive Blocks Integration

	Chapter Summary

	Current ITS at Statens Vegvesen
	Technology Specifications
	System Architecture
	Central ITS sub-system
	Roadside ITS sub-system
	Functional Requirements of the Roadside ITS-stations
	Security Requirements of the Roadside ITS-stations

	Vehicle-Roadside interface
	Cooperative Awareness Service
	The eCoMove Project
	ecoMessages
	eCoMap

	Example Application: ecoMessage Logger
	ecoMessage Logger Description
	Analysis of ecoMessage Logger

	Interviews with Statens Vegvesen
	The Requirements of an ITS

	Chapter Summary

	Challenges in ITS
	ITS Requirements
	Functionality
	Robustness
	Security
	Light-weight
	Extensibility

	ITS Challenges
	Functionality
	Robustness
	Security
	Light Weight
	Extensibility

	Chapter Summary

	Building ITS-blocks with Reactive Blocks and OSGi
	Prototype
	communications
	ITS prototype modules
	Prototype Results

	Compatibility of Reactive Blocks and OSGi with ITS
	Reuse
	Extensibility
	Customizability

	Chapter Summary

	Alternative Technologies
	Java
	Benefits of Java
	Java summary

	Scala
	Benefits of Scala
	Scala summary

	Akka
	Benefits of Akka
	Akka summary

	Chapter Summary

	Discussion
	Meeting the challenges of ITS
	Functionality
	Robustness
	Security
	Extensibility

	Comparisons with rivalling technology choices
	Java
	Scala

	Akka
	Chapter Summary

	Conclusion and Further Work
	Conclusion
	Meeting the Challenges
	Compared to the State of the Art
	Conclusion summarized

	Further Work
	Further Proof of Concept Research
	Applying the Knowledge to a Working ITS
	How to use Traffic Data


	References
	Appendix I
	The Prototype Modules


