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Introduction
New sources of geospatial data, such as the Internet of Things (IoT), Volunteered Geo-
graphic Information (VGI), and Open Geospatial Data, are becoming increasingly 
popular. This shift creates a demand for new ways to collect, manage, store, and analyse 
geospatial data. These challenges are mirrored in the general computer science concept 
of big data, a term describing datasets that are too large to be managed and processed by 
traditional technologies [1].

Laney [2] characterizes big data using the 3 Vs; Volume, Velocity, and Variety. These 
properties relate to geospatial data as well. Massive geospatial datasets originating from 
sensors are characterized by both high Volume and high Velocity, and open geospatial 
datasets from disparate sources comes with a high degree of Variety. This means that 
geospatial big data can be treated as a subset of big data, and opens up the possibility 
of using big data techniques to handle geospatial data [3, 4]. NoSQL (or Not Only SQL) 
data stores is one proposed solution to some of the challenges posed by big data. These 
data stores offer ways to handle the 3 Vs utilizing new techniques and architectures.
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However, most new technology is no silver bullet. The promises of NoSQL may seem 
tempting, but there are several negative consequences of this approach as well. Chan-
dra [5] uses the acronym Basically Available, Soft state, Eventual consistency (BASE) 
to describe NoSQL databases and contrast them with the ACID principle of relational 
databases. BASE also points to some of the drawbacks of NoSQL databases, such as the 
possibility of temporary inconsistencies. Another aspect is the lack of a universal query 
language. In light of this, we want to heed the advice from Stonebraker and Hellerstein 
[6] and examine if we really need to abandon the principles of Relational Database Man-
agement Systems (RDBMSes). In particular, we want to investigate if a combination of 
automated import routines and RDBMSes can offer the same advantages as NoSQL 
solutions when it comes to management and storage of heterogenous geospatial data.

In order to achieve this, we have implemented the Heterogeneous Open Geodata Stor-
age (HOGS) system. This is a command line utility, written in Python, that leverages the 
open source GDAL/OGR geospatial library to automate imports of heterogenous geo-
spatial data to a PostgreSQL/PostGIS database. By using both a traditional relational 
database layout and a NoSQL document-store layout we are able to benchmark both the 
import and query performance of the two storage layouts.

Background

RDBMSes dates back to the 1970′s [6], and Spatial database systems has been a term for 
about 30 years [7]. Today several of the best-known RDBMSes offer spatial capabilities 
according to the OGC Simple Feature Access specification. These spatial capabilities are 
often provided through an extension, such as PostGIS for PostgreSQL or Oracle Spatial 
for Oracle. In this paradigm, data types for spatial geometries are available alongside tra-
ditional data types and special SQL operators are available for spatial queries and oper-
ations. This means that a geometry can be treated as a normal column in a relational 
database table [8].

NoSQL data stores emerged in the late 2000 along with the “Web 2.0” movement [9]. 
The rise of these “not only SQL” systems was triggered by the need to handle “big data”, 
or datasets that are too large to be managed and processed by traditional technologies 
[1]. This typically involves sacrificing or weakening the Atomicity, Consistency, Isolation, 
and Durability (ACID) principle underlining traditional RDBMSes [10].

There is no entirely agreed upon definition of NoSQL, but Cattell [9] offers six key fea-
tures of such systems:

•	 Horizontal scaling.
•	 Replication and distribution over many servers.
•	 Simple call interface.
•	 Weakening of the ACID principle.
•	 Distributed indexes and RAM.
•	 The ability to add new attributes to records dynamically.

NoSQL data stores can also be categorized by capabilities and intended uses. Ameya 
et al. [11] presents five different types of NoSQL data stores; Key-value stores, column-
oriented databases, document-stores, graph databases, and object-oriented databases.
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The most interesting NoSQL data store type in the context of collections of open geo-
spatial data is document-stores, with two well well-known examples being MongoDB 
and CouchDB. Document-stores store data as documents, reminiscent of records in a 
relational database, but without a pre-defined schema. Each document in the store has 
its own structure, and can include nested structures. A unique key is used for index-
ing the documents, which are usually stored using standard formats such as JSON 
(JavaScript Object Notation) or Extensible Markup Language (XML). The “no schema” 
approach of document-stores makes them popular to web developers. Partly due to their 
facilitation of quick integration of data from different sources, but also because they 
reduce the need for up-front database schema design [12].

These properties also make document-stores interesting for working with collections 
of open geospatial data. Such datasets originates from disparate sources and uses differ-
ent file formats, coordinate systems, and attribute schemas [13]. Collecting open geospa-
tial datasets in a traditional RDBMS requires a lot of work related to schema design and 
data import, where both attributes and geometries potentially have to be mapped, trans-
lated, and converted. The prospect of a “no schema”-solution that enable easy import 
of heterogenous datasets from a wide array of sources is intriguing. Maintaining an up-
to-date collection of open geospatial data carries a lot of potential for developing value-
added services and analyses, and the premise of NoSQL document-stores is that this can 
be achieved with less overhead. Both MongoDB and CouchDB offer spatial capabilities, 
using the JSON-based GeoJSON standard [14].

Another approach to tap into the benefits of a document-store is using an RDBMS 
that implements a document-store datatype. In these systems, a JSON or XML datatype 
with support for indexing and querying is made available to the RDBMS user. A docu-
ment-based JSON storage type is implemented by several well-known RDBMSes, such 
as MySQL, Oracle, and PostgreSQL [15, 16]. These solutions have proved comparable to 
the NoSQL data-stores. For instance, Linster [17] reports a benchmark where the Post-
greSQL document-store outperformed MongoDB on selecting, loading, and inserting a 
complex document dataset consisting of 50 million records.

Related work

Examples and benchmarks of NoSQL document-store datatypes for storing geospatial 
data are scarce in the existing literature. In the following we review the studies that most 
closely resembles the work we present.

A preliminary study by Navarro-Carrión et al. [18] examined the feasibility of using 
a NoSQL document-store to store EU land cover and land use data. In their experi-
mental set-up, they used two PostgreSQL/PostGIS instances. One implemented a 
relational model, while the other implemented a NoSQL document-store model. 
Using these instances, they evaluated the query times of a bounding box search clause 
iteratively run using varying cell sizes. Using a dataset of more than 10.4 million soil 
occupation observations for roughly 2.5 million polygon geometries, they found that 
the document-oriented model was about 19% faster than the relational model. The 
authors point out that for several workflows a document-oriented model should be 
considered, and specifically points to massive polygon retrievals. An issue worth 
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noting is that they found the query syntax for JSON queries “somewhat convoluted” 
(see Fig. 1 for an example of the syntax).

Amirian et al. [19] performed a benchmark of three different storage strategies for 
“geospatial big data” using Microsoft SQL Server 2012. Four geospatial datasets con-
taining 100,000, 1 million, 10 million, and 100 million polygons, was stored using a 
relational, a spatial, and an XML-based layout. Performance of these strategies where 
evaluated based on single feature and range query retrieval, as well as a scalability 
test. In their setup the XML document (NoSQL document-store) layout provided the 
best performance and scalability, but the authors recommend a polyglot geospatial 
data persistence approach for geospatial big data handling.

Maia et al. [20] evaluated the performance of storing VGI in the document-based 
NoSQL data store MongoDB. Their system stored geographic locations as points 
in MongoDB using the GeoJSON format. An important takeaway from their work 
is the fact that document-based NoSQL databases provide greater flexibility when 
storing heterogenous data and does not require any previous knowledge of the data 
schema. Their study also compared the performance of the NoSQL setup with a rela-
tional setup using PostgreSQL. While their results are considered preliminary, they 
“favoured the use of NoSQL in the persistence layer of a VGIS, especially when deal-
ing with large amounts of data”. It should however be noted that the read-time bench-
marks performed did not include any spatial filters.

Bartoszewski et  al. [21] compared the spatial query performance of MongoDB 
and PostgreSQL/PostGIS. Using point and polygon data, they performed point-in-
polygon-, radius-, and composite nearest neighbour and intersection queries. Their 
results show that MongoDB outperforms PostGIS in the point-in-point (3× faster) 
and compound (6× faster) queries. However, with increasing radii, PostGIS outper-
forms MongoDB by a factor of about 3× in the radius queries. The authors also note 
that NoSQL databases are lacking in terms of available geospatial operations com-
pared to RDBMSes, but postulate that this will change in the future.

Santos et  al. [22] evaluated relational (PostGIS), document-based (MongoDB), 
and graph-based (Neo4J) databases with a focus on the needs of mobile users that 
involve constant spatial data traffic. Their goal is to “highlight aspects in which differ-
ent spatial DBMS architectures behave differently”, rather than provide a benchmark. 
They defined four query sets, based on operations typically performed in mobile spa-
tial applications: Nearby Points of Interest, Map View, Urban Routing, and Position 
Tracking. For each set they defined a set of database queries. Their results show that 
PostGIS in general provides the best performance, and “provides the most spatial 

1. SELECT
2. column->>'key' as key
3. FROM
4. tablename
5. WHERE
6. column->>'key' = 'value';

Fig. 1  PostgreSQL json query example
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features”. However, they note that MongoDB outperformed PostGIS in radius and 
k-NN queries. In addition, MongoDB is easy to scale horizontally.

Methodology
This section covers the implementation of the HOGS system and the experimental setup 
for the benchmarks performed on the system. First some common terminology is pre-
sented, then the architecture and implementation of the HOGS system is presented, 
before the experimental setup is described.

In this context we consider geospatial data to be described by the atomic unit of a Fea-
ture. A feature is a geographic shape (e.g. point, linestring, or polygon) as well as a list of 
accompanying key-value attributes. An example of a feature is a building footprint rep-
resented by a vector geometry describing a polygon, accompanied by attributes such as 
address, name of the owner, the year it was built, etc. A collection of features of the same 
type is a Dataset (or Feature collection). To continue the example, all building footprints 
in a city, municipality, or country makes up a specific building footprint feature collec-
tion. All features in a dataset shares the same attribute schema. Features belonging to a 
dataset are distributed as one or more files in one of several file formats and coordinate 
systems.

The HOGS system should be able to import multiple feature collections without any 
prior knowledge about the schema apart from what can be inferred from the data itself. 
The user supplies a list of files and what target dataset they belong to, as well as infor-
mation about the database they are to be imported to. The Python programming lan-
guage was chosen to implement the system, due to its multi-platform availability and the 
integration with the open source geospatial libraries GDAL/OGR and GEOS. The use of 
existing tools for common operations ensures a reduction of complexity and allows the 
system to support a wide range of geospatial file formats.1

Three overarching guidelines was followed when designing the system. First, the sys-
tem should be simple. This is achieved by limiting the scope of the system, confining it 
to importing data. Second, the system should be fast. This is achieved by means of paral-
lelization, exploiting the data structure to split the import into smaller tasks. Third, the 
system should offer reproducibility. This means that there should be no manual steps in 
the update procedure, so subsequent imports will behave the same way. This is ensured 
by the use of a configuration file.

Storage layouts

The two different storage layouts offered by HOGS determine how features and datasets 
are stored in the database. In the traditional table-based layout we create one database 
table per dataset. Each feature is a row in this table, with a column for each attribute, a 
geometry column, and a feature id column. While this approach could allow us to spec-
ify the geometry type as well, we opted for the generic Geometry data type, as some of 
our datasets contains mixed-type geometries. An example of the table-based layout is 
provided in Fig. 2.

1  The list of supported vector formats in GDA/OGR at http://gdal.org/1.11/ogr/ogr_forma​ts.html currently lists 78 for-
mats.

http://gdal.org/1.11/ogr/ogr_formats.html
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In the NoSQL document-store inspired jsonb layout, we create a single database 
table that holds features for all datasets. Each row in this table is a feature, with the 
dataset id stored in a column. Geometry and feature id are also separate columns, 
similar to the table-based layout, as shown in Fig.  3. The main difference is that all 
the attributes are stored in a column of the jsonb type. The layout of the jsonb layout 
feature table is shown in Fig. 3. Another aspect of the jsonb layout is how it uses data-
base views to emulate the table-based layout. For each dataset stored in the feature 
table a database view that expose the attributes as individual columns is created. This 
is done since most GIS tools are designed to work with the traditional table-based 
layout. By hiding the underlying structure from these tools, we ensure that they still 
work as expected.

HOGS support dataset versioning by using incremental version numbers with asso-
ciated timestamps. When importing a dataset with an existing dataset id, this is con-
sidered a new version of the same dataset and the version number is increased. This 
means that an import can be run several times on the same database, but the storage 
layout of a previously initialized database cannot be changed.

Fig. 2  Illustration of the table-based layout. Each dataset has its own table, with each attribute as a separate 
column. The table name is referenced in the metadata-table

Fig. 3  Illustration of the jsonb layout. All datasets are stored in the common feature table, with their 
attributes in a jsonb-column. The dataset_sid-columns links features to a dataset in the metadata-table
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Import workflow

The actual import process consists of three phases: the initialization phase, the import 
phase, and the finalizing phase, as shown in the upper portion of Fig.  4. The content 
of these phases depends on the chosen storage layout and the previous state of the 
database.

In the initialization phase the configuration file is read and HOGS connects to the 
provided database. The first time HOGS connect to a database two metadata tables are 
created. These holds information about the stored datasets and determines the storage 
layout. If the jsonb layout is chosen, the aforementioned feature table is also created. 
The next initialization step is to parse the list of files associated with each dataset to 
be imported. The first file in each dataset is read using GDAL/OGR, to determine the 
attribute schema of the dataset. This information is stored in a metadata table. For the 
table-based layout the schema is used to create a temporary import table for each data-
set. For the jsonb layout this information is used to create or update the database views.

Fig. 4  An overview of the experimental setup. The import phase (top section) consists of three phases, and 
results in a database populated with the import dataset, using either the table-layout or the jsonb-layout, 
depending on the chosen storage strategy indicated in the config-file. The query phase is a separate process, 
which issues different queries depending on the storage layout
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In the import phase the files for each dataset is read and parsed, geometries are 
checked for errors and optionally transformed to geographic coordinates in the WGS84 
datum (EPSG:4326), and then data is written to the database using a COPY statement. 
This was found to be the fastest operation when writing a large number of rows to the 
database. The geometry is copied using the EWKB format, the jsonb-attributes as a json 
encoded string, and the other columns are copied as native data types. Since the COPY 
statement bypasses table constraints on the database the geometries are validated using 
the GEOS library before they are written to the database.

Since each file in an import is independent of the other files, this phase can be exe-
cuted in parallel. This can reduce the import time drastically and is an optimization 
worth implementing. HOGS achieve parallelization by creating a pool of import work-
ers using the Python multiprocessing module. The size of this pool is set by the user and 
should correspond to the number of available CPU cores. In principle this pool could be 
distributed on individual machines as well, with one machine acting as a master node, 
coordinating the work.

When all files belonging to a dataset is imported, the dataset import proceeds to the 
finalizing stage. The contents of this stage depend on the chosen storage layout. For the 
jsonb layout this phase consists of creating, or updating, the aforementioned views and 
updating the metadata table to point to the correct version. For the table-based layout 
the finalizing stage creates an index on the geometry column, swaps the current version 
of the table with the temporary table, and stores the previous table with an identifier 
including its version number. When all datasets have finished the finalizing phase the 
import is completed.

Experimental setup

The HOGS system implements both a NoSQL storage approach and a traditional table-
based storage layout. Therefore, we utilize HOGS in our laboratory setup to examine if 
there are any differences in import speed and query performance between the two lay-
outs. We performed a quantitative analysis consisting of a series of imports and database 
queries. Using the same collection of datasets, we measured three features of each data 
storage layout: import speed, query speed, and database size.

All benchmarks where performed using an open geospatial dataset from the Norwe-
gian Mapping authority known as N50. This is a 1:50,000 scale topological dataset of 
the Norwegian mainland, containing eight sub-datasets (feature collections), covering 
features such as area cover, transportation networks, place names, and height contours. 
Each of these sub-datasets have different attribute schemas and use different geometry 
types. The dataset is delivered in the Norwegian text-based geospatial file format SOSI, 
divided by dataset type and municipality. In total, the complete dataset contains 3415 
files, totalling 7.9 GB on disk after extraction. This corresponds to approximately 15 mil-
lion features, more specifically 2 million point features, 10 million linestring features, 
and 3 million polygon features. An overview of the N50-dataset is provided in Fig. 5.

The experimental setup consisted of a standard enterprise hardware setup, equipped 
with an Intel Core i7-4710MQ Processor, 32  GB RAM, and a 300  GB HDD, running 
Windows 10. PostgreSQL 9.6.3 with PostGIS 2.3 was installed using a Docker-image. 
The installation used the default configuration and was wiped between each run. HOGS 
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itself was run using Python 2.7 on the Windows Subsystem for Linux. This means that 
the complete experiment was run on a single machine, with no network speed and 
latency to consider.

Results
Timing from the experiments are affected by several factors. We have chosen to focus on 
the relative difference between the two storage layouts, not the elapsed time on its own. 
The results of the actual benchmarks are summarized in Table 1 and presented in detail 
in the following sections.

Import benchmark

Import speed is calculated as the time it takes from HOGS is provided with a configura-
tion file containing a list of datasets and associated files until the data in these files are 
available in the provided database in the specified layout. This is the upper portion of 
Fig. 4. In our case this means the time it takes to read the 3415 SOSI files from disk and 
store their contents in the database.

Fig. 5  Overview of the N50 dataset

Table 1  Benchmark results for the two examined storage layouts

The better results for each metric are emphasized

Import Query—intersect Query—intersect/
attribute

Disk size

Speed (m) SD Speed (s) SD Speed (s) SD (GB)

Table-based 79 3.57 19 0.54 99 3.24 12.29

Jsonb 179 4.50 25 1.00 162 3.30 17.50

Difference 100 6 63 5.21
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We relied on the built-in logging capabilities of HOGS, noting the time an import 
started and finished. The import was run five times for each storage layout, with HOGS 
presented with a new database instance on each run.

Our benchmarks show that the average import speed for the table-layout is 1 h and 
19 min, while the jsonb layout on average took 3 h. The results indicate that the table-
based layout is 56% faster than the jsonb layout with regard to the import phase.

Query benchmark

Database query optimization is complex and it is impossible to provide a benchmark 
that covers all usage patterns of a generalized geospatial data storage such as the one 
described here. However, we chose to base our query benchmarks on the usage pattern 
of a known system and use data gathered from the logs of this system.

The system in question performs a series of intersection queries using a query poly-
gon against a series of datasets in order to find areas of interest. From the query logs of 
this system we extracted 840 query geometries. These polygons cover areas in the range 
1–100 m2 on the Norwegian mainland and are distributed according to the needs of the 
users of the system. The query benchmark is depicted in the lower portion of Fig. 4, and 
is independent of the design of the import phase, as it only relates to the resulting data-
base contents and layout.

Two queries were designed to be run against each of the eight datasets in the n50 data-
set. One plain intersection query using the PostGIS ST_Intersect and one query consist-
ing of an intersection as well as an attribute query (see Figs. 6 and 7). For the attribute 
query we chose the attribute “objekttypenavn”, which is present for all our datasets, and 
for each dataset we used all the distinct values of this attribute. This means that both 
queries were executed about 7000 times. 

Each of these series of queries were run five times for each database layout, and the 
total query time for each layout was averaged. For the plain intersection queries the 
average time was 19  s for the table-based layout, and 25  s for the jsonb layout. This 

def get_intersects(self, table_name, geom):
with self.conn.cursor() as cur:

query = sql.SQL('''
SELECT * FROM {}
WHERE ST_Intersects(geom, ST_GeomFromWKB(%s, 4326))

''').format(
sql.SQL(table_name)

)

cur.execute(query, (psycopg2.Binary(geom),))
res = []
for record in cur:

res.append(record)
return res

Fig. 6  Intersect query used for benchmarking
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means that the plain intersection queries are 25% faster using the table-based layout. 
For the intersection queries with an additional attribute query the average query time 
in the table-based layout was 99  s, while the jsonb-layout took 162  s on average. This 
means that intersection queries with attribute queries are 39% faster using the table-
based layout.

Database size

This benchmark measures the actual size on disk used to store the datasets using the two 
different storage layouts. The size of the databases was measured using the PostgreSQL 
system table pg_database, and the operator pg_database_size. These numbers show that 
the table-layout database uses 12.29 GB on disk, while the jsonb-layout use 17.5 GB. This 
means that the table-based layout takes up 30% less space than the jsonb-layout.

Discussion
The performed benchmarks show that the table-based layout performs better than the 
NoSQL-inspired jsonb-layout on all metrics. Insertion speed is the metric with the larg-
est difference. Here, the table-based layout is able to insert the test-data more than twice 
as fast as the jsonb-layout. These findings contradicts similar studies found in literature 
[18, 23], which report that NoSQL document stores or data types outperform relational 
layouts.

However, many factors influence benchmark results, and while the setups in the 
related studies are similar there are several differences in design that may explain the 
difference in results. We suspect that the most important factor in our setup is table size. 
Since our two layouts are both implemented in PostgreSQL/PostGIS, and both layouts 
use the PostGIS geometry types, the main difference between them is the way attributes 
are stored, and how many tables are used. This difference holds the explanation to why 
the table-based layout performs better.

def get_intersects_with_objtype(self, table_name, geom, objtype):
with self.conn.cursor() as cur:

query = sql.SQL('''
SELECT * FROM {}
WHERE ST_Intersects(geom, ST_GeomFromWKB(%s, 4326))
AND objekttypenavn = %s

''').format(
sql.SQL(table_name)

)

cur.execute(query, (psycopg2.Binary(geom), objtype, ))
res = []
for record in cur:

res.append(record)
return res

Fig. 7  Intersect and attribute query used for benchmarking
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Both layouts use a spatial index for the geometry column. In the case of insertion, 
the way this is handled differs. For the table-based layout the index is created after data 
is inserted into the table. In the jsonb-layout this is not an option, as we are inserting 
data into a common table. This means that for the jsonb-layout, the spatial index has 
to be created in the initialization phase and updated in-place during the import, which 
is more time-consuming than creating an index after all data is added. In the case of 
data queries, the main difference is table size, with the common table in the jsonb-layout 
being larger. While this table is indexed on dataset id, it is still faster to directly query a 
table with just the relevant features than to select these using an index.

None of the examined related studies used data that could be logically segmented into 
sub-datasets, and thus the table sizes would have been similar in both cases. This may 
explain why our findings differ. However, many geospatial datasets can be segmented 
into separate datasets by partitioning on what types of features are being mapped. If this 
is the case, our results show that a table-based layout is favourable. A counterpoint is 
that the “one table per dataset” approach can be combined with the jsonb-layout as well. 
While this is technically true, a key feature of NoSQL data stores is that there is no need 
to logically separate data in tables. In order to keep with this philosophy, we chose to 
implement one common table for the jsonb-layout.

Another important aspect of a database used for managing open geospatial data is usa-
bility. Navarro-Carrión et al. [18] noted that the query syntax used for the PostgreSQL 
JSON data type is “somewhat convoluted”, an assessment we find to hold true (see Fig. 1 
for an example). In addition, we found that widely used desktop GIS packages such as 
QGIS are unable to read attributes stored as jsonb with the same ease as they read tradi-
tional tables. This was mitigated by creating database views that maps the jsonb-syntax 
to a traditional relational table-layout, with one dataset per table and one attribute per 
column.

We used the HOGS system to perform benchmarks on the Norwegian n50-dataset, 
delivered as files in the SOSI format. This does not imply that the system is limited to 
one file format. Due to the use of the GDAL/OGR library, a plethora of geospatial vector 
formats (78 at the time of writing) can be imported using HOGS. For example, we have 
successfully imported data downloaded from OpenStreetMap using HOGS.

Conclusions and further work
We have found that, for homogenous collections of spatial datasets, a traditional one-
table per-dataset layout outperforms a NoSQL document-store combined-table layout. 
The traditional layout performs better on both insertion and query speed, and it uses 
less storage space. We expected that the NoSQL approach would enable an easier inser-
tion routine, but with the HOGS system leveraging GDAL/OGR we found that the over-
head of creating individual tables for each dataset can be automated and introduces no 
extra complexity.

We also found that while a single table containing a heterogenous mix of features from 
different datasets intuitively sounds easier to work with, this kind of layout is not com-
patible with a range of off-the-shelf WMS-servers and desktop GIS packages. In prac-
tice this means that a NoSQL layout must emulate a traditional table-based layout using 
views in order to work with such applications.
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These findings differ from the other studies examined. While one explanation for 
this discrepancy may be the fact that we used data that could be segmented into sub-
datasets, this shows that further examination is required. A more thorough bench-
mark-setup, including a larger pool of datasets is a natural next step. Leveraging other 
sources of open geospatial data, such as OpenStreetMap, and European INSPIRE-
data, would enable us to verify our results on a wide selection of geometry types and 
attribute schemas. Another possible route is to enable a cloud-based lab-setup, where 
automation in used to create, run, and tear down the database and import environ-
ments between each test-run. This would enable us to exclude all possible side-effects 
of running the benchmarks on a single hardware setup, which would also allow for 
adjustment of additional parameters, such as processor speeds and available memory.

In terms of further work, a third storage layout worth examining is the so-called 
Data Lake [24]. In this concept, the data is stored “as is” in raw format, and only pro-
cessed when needed [25]. This allows for easy storage of vast amounts of data, but 
we envision this would present its own performance issues related to queries, where 
both geometries and attributes will have to be parsed and transformed. However, we 
find this concept interesting, and would like to investigate how it can be applied to 
geospatial data.

In conclusion, the results presented in this paper indicate that the NoSQL layout 
is slower, both in terms of import and query speed, when considering heterogenous 
geospatial data. In addition, the NoSQL layout does not offer any additional simpli-
fication of the import process. Based on these conclusions, we cannot recommend 
the use of the jsonb-datatype in PostgreSQL for storing geospatial data that can be 
segmented into homogenous datasets. This statement holds as long as the storage-
space requirements does not exceed the capabilities of a single database instance. 
This in turn means that relatively large amounts of open geospatial data can be effi-
ciently stored and queried using traditional RDBMS technologies. This approach is 
beneficial, as it enables the use of existing software integrations and does not require 
a weakening of the ACID-principle.
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