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Abstrat

We present moleular dynamis simulations of pseudo hard sphere �uid (generalized WCA po-

tential with exponents (50, 49) proposed by Jover et al. J. Chem. Phys 137, (2012)) using GRO-

MACS pakage. The equation of state and radial distribution funtions at ontat are obtained

from simulations and ompared to the available theory of true hard spheres (HS) and available

data on pseudo hard spheres. The omparison shows agreements with data by Jover et al. and

the Carnahan-Starling equation of HS. The shear visosity is obtained from the simulations and

ompared to the Enskog expression and previous HS simulations. It is demonstrated that using the

PHS potential reprodue the HS shear visosity aurately.
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I. INTRODUCTION

Hard Sphere (HS) models have been widely used as a basi approximation of a spherial

atom or moleule (See, for example [1℄), beause of the simpliity of the interation potential

and the instantaneous elasti ollision dynamis. Although the HS model is an idealized

model, it still aptures the essential physis of marosopi behavior of real �uids, both

in and out of equilibrium. Consequenly, HS-based models are often used to study and

understand the thermodynamis and transport properties of liquids. Nevertheless, beause

HS models are highly idealised, it is di�ult to make quantitative preditions for more

omplex moleules based on purely theoretial alulations. This is why theory based hard

sphere models is often used as a basis for empirial approahes to �uid properties that go

far beyond spherial moleules [2, 3℄. This type of approah, however, requires analytial

theory that an be hallenging to develop, espeially for more ompliated models.

Beause of the simple instantaneous dynamis, there are a great deal of analytial results

for HS models for properties of liquids, suh as equations of state [4℄ and transport oe�-

ients [1, 5℄. These kinds of results an still be hallenging to obtain, but they provide a

powerful basis for ontinuing development of �uid theory [6℄. There are also a number of

extensions of HS model that still retain the instantaneous ollision dynamis and therefore

are still somewhat tratable when it omes to analytial approahes. Examples are spero-

ylinders [7℄, rough hard spheres [5℄, loaded hard spheres [8℄, and dipolar hard spheres [9, 10℄.

In supporting this development moleular dynamis (MD) simulations are tools that

have beome muh more ommonplae, for example as numerial experiments to verify

the theoretial results. Although there are available MD studies on transport oe�ients

of HS �uids, for example a omprehensive one by Sigurgeirsson et al. [11℄, it is not

possible to diretly use the state of art simulations pakages like LAMMPS, GROMACS or

NAMD whih provide high-speed simulations of omplex and large systems [12�14℄. These

simulation pakages rely on approximately smooth dynamis, and thus do not support the

HS model's instantaneous ollision dynamis.

To get around this, Jover et al. proposed a pseudo hard sphere (PHS) model whih is a

ut and shifted version of a Mie potential with exponents (50,49) [15℄. Using this nearly hard,

but smooth potential, Jover et al. have been able to reprodue strutural and thermodynami

properties aurately ompared with available simulation data for the original HS system.
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It has also been shown to provide reliable results for studying liquid-solid oexistene [16℄.

The fous of the PHS researh mentioned above has been primarily on equilibrium prop-

erties. However, non-equilibrium properties suh as transport oe�ients are muh more

sensitive to hanges in the dynamis than equilibrium properties. Beause of this, a good

reprodution of equilibrium properties does not diretly imply that non-equilibrium prop-

erties would be desribed as well. So far, only the self-di�usion was brie�y tested in [15℄.

The performane of the PHS potential for non-equilibrium properties has therefore not been

su�iently established.

In this work, we test in detail the reliability of the (50,49) PHS potential for alulating

the visosity. We investigate the density dependene of the visosity, and ompare it to

both analytial results for HS and previous MD simulations of true HS [11℄.

II. SIMULATION SETUP

The Mie (λr, λa) potential (the generalized Lennard-Jones) an be hanged to a repulsive

potential by shifting it by its well-depth value and equating the larger distanes interations

to zero. WCA potential is one of this ut-and-shift potential whih has the form

UWCA(r) =
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(1)

The WCA potential an be used to present a HS system in an approximate manner. However,

the reliability of the approximation depends on (λr, λa) and on the temperature of the

system. Jover et al. [15℄ have studied the e�et of the exponents of λr and λa on the steepness

and the shape of the potential. They have hosen the pair (50,49) as a ompromise between

�delity of the representation of the HS and the size of the time step in MD simulations. The

steeper the potential the greater the �delity, but the smaller the time step that is required.

The PHS potential proposed by Jover et al. [15℄ has the following form

U50,49(r) =
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In addition the e�et of temperature on U50,49(r) potential is studied in ref. [15℄ and is

onluded that at a redued temperature of T ∗ = ǫ
kBT

= 2/3 the potential produes better
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FIG. 1: (Left) Redued pressure versus redued number density from MD simulation of PHS in

this work (blak diamond data) is ompared to earlier work by Jover et al. [15℄ (red square data)

and theoretial Carnahan-Starling equation of state (solid line). (Right) The same as left plot,

but resaled with the Carnahan-Starling pressure, in order to enhane details. The errors in the

urrent work data of P ∗
are less than 4%, so are not well visible.

agreement with the true HS. They have examined this in terms of thermodynamis and

strutural properties.

In order to simulate the PHS model, we have used GROMACS version 5. The potential is

implemented as a tabular form. The �rst goal was to obtain the equation of state (pressure

versus density). We have simulated a box of N = 1000 partiles with LJ parameters σ, ǫ at

di�erent pressures orresponding to di�erent densities, at redued temperature T ∗ = 2/3.

We limit ourselves to this temperature beause aording to Refs. [15, 16℄ the equilibrium

properties of the PHS and HS models are similar at this temperature. In what follows,

all quantities are given in redued units: t∗ = t
√

kBT
σ2m

, r∗ = r
σ
, ρ∗ = ρσ3

and P ∗ = Pσ3

kBT
,

η∗ = η(
√
mkBT
σ2 ), where ρ, P and η denote the number density, the pressure, and the visosity

respetively. The equilibrated systems are simulated in NPT ensemble for t∗ = 20000

with time-step of δt∗ = 0.0011 using a Parrinello-Rahman barostat and a veloity-resale

thermostat.

Simulation results for the equation of state are shown in Fig. 1. The relative errors in the

pressure P ∗
are less than 4%. The results agree with the results by Jover et al. [15℄. They
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are also in good agreement with the Carnahan-Starling equation of state (solid line) [17℄

P ∗ = (6/π)
ξ(1 + ξ + ξ2 − ξ3)

(1− ξ)3
, (3)

ξ = (π/6)ρ∗. (4)

Ref. [16℄ also reports similar results using GROMACS pakage.

A. Shear visosity

The shear visosity an be determined both by equilibrium moleular-dynamis (EMD)

or non-equilibrium moleular-dynamis (NEMD) simulations. EMD methods are based on

pressure or momentum �utuations, for example the Transverse-Current Autoorrelation

Funtion (TCAF) method or Green-kubo method. The TCAF method is the easiest to

implement and has several advantages over the Green-kubo relation. The �rst advantage is

that any non-hydrodynami behavior is easy to identify in the TCAF. The seond advantage

of the TCAF method is that it provides a natural way to estimate the magnitude of �nite-

size e�ets. This an be done in a single simulation and the results extrapolated to the

in�nite system limit in a straightforward alulation, (see [18℄ and referene therein). In

NEMD methods suh as periodi perturbation (PP) method, instead of measuring intrinsi

�utuations an external fore is applied to the system. The magnitude of this fore is hosen

suh that the e�ets are muh easier to detet than the internal �utuations [19�22℄.

There are many works studying shear visosity using MD simulations, both EMD and

NEMD methods [18�20, 22�27℄. Here we follow the work by B. Hess [20℄ whih studies shear

visosity determination using GROMACS. We obtain shear visosities of PHS model from

two methods: TCAF and PP. We explain both methods shortly below.

1. Transverse-urrent autoorrelation funtion

Consider an inompressible liquid with an initial veloity �eld generated for example by

equilibrium thermal �utuations. The veloity �eld an be deomposed into plane waves

of the form u(x, 0, 0) = u0 cos(kz). The solution to the Navier-Stokes equation for these

omponents is then of the form

ux(z, t) = u0e
−t/τr cos(kz); τr =

ρ

ηk2
. (5)
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The solution indiates that the plane waves deay exponentially with a time onstant whih

is inversely proportional to the visosity η. However, at mirosopi level and short time

sales the behavior is not purely exponential. To aount for this, a phenomenologial

orretion an be applied by inorporating a relaxation time, leading to di�erent solution to

Eq. 5 (for details see ref. [20℄);

ux(z, t) = u0e
−t/2τm

(

cosh(Ωt/2τm) +
1

Ω
sinh(Ωt/2τm)

)

cos(kz), (6)

where

Ω =

√

1− 4τm
η

ρ
k2. (7)

For large k equation (6) leads to a similar solution as equation (5). The visosity from this

method is given by [18℄

η(k) = η(0)(1− ak2) +O(k4). (8)

2. The periodi perturbation method

As mentioned earlier, in PP method an external fore is applied to the system. The

external �eld leads to development of a veloity �eld u throughout the system aording to

the Navier-Stokes equation. For a fore only in the x diretion, the applied aeleration ax

for a periodi system is given as

ax(z) = α cos(kz); k =
2π

lz
, (9)

where, lz is the height of the box and α is the amplitude of the aeleration. With the initial

value of uz(x) = 0, the resulting veloity pro�le has amplitude

ν(1 − e−t/τr), (10)

where

ν = α
ρ

ηk2
. (11)

Thus, at eah time step the average veloity an be measured and visosity an be obtained

from Eq. 11. In order to obtain aurate results e�iently, the parameters of the periodi

external fore must be hosen arefully. If the veloity pro�le does not have large �utu-

ations, less statistis needs to be olleted, and thus the simulation time is shorter. This
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FIG. 2: Shear visosity of PHS obtained from simulation at ρ∗ = 0.80 (data). The solid line shows

the �t to Eq. 8 (TCAF method). k∗ = kσ.

an be ahieved with a large amplitude. However, the shear rate should also not be so high

that the system moves too far from equilibrium. For more details about the method and

estimation of parameters see ref. [20℄.

III. SHEAR VISCOSITY FROM SIMULATIONS

We �rst disuss the TCAF method. We take the �nal on�gurations of the NPT simula-

tions explained in previous setion and simulate the system in NVT ensemble for t∗ = 3000

with δt∗ = 0.0011 time step. In the TCAF method the orret values of visosity are ob-

tained when the veloity pro�le is not oupled to a heat bath. Therefore, a Berendsen

thermostat with a long oupling time of t∗ = 11 is used in order to minimize the in�uene

of the thermostat, see details in ref. [20℄. The veloity and oordinates are stored every

δt∗ = 0.011. The neighbor list was updated every δt∗ = 0.005. The resulting k-dependent

visosities from the simulations are �tted to Eq. 8 to obtain the visosities. Fig. 2 shows an

example of simulation result at density ρ∗ = 0.8. The resulting visosity from the �t gives

η∗ = 2.11± .044 in redued unit, η∗ = η( σ2

√
mkBT

). The values of η∗ obtained for various pres-

sures/densities are given in Table. I (last olumn), and are shown in Figure. 3 as triangular

data. The errors in the given visosities from the TCAF method are obtained from blok

averaging over k-dependent visosities plus unertainty of the �ttings to Eq. 8.
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For the PP method, we simulate the system in NVT ensemble for t∗ = 3000 with an

addition of an externally imposed aeleration [20℄. The oupling time of the Berendsen

thermostat is set to t∗ = 2.84 in oder to remove the energy introdued in the system by

the external fore more rapidly. The optimal aeleration amplitude was estimated (see

Eqs. 22, 26, 27 in ref. [20℄) to be around α∗ = 0.054, whih is big enough to develop

su�ient shear, but also not so big that the system moves too far from equilibrium. One

disadvantage of this method is that the obtained visosities depend on the hosen amplitude

α [20℄, moreover, the hosen amplitude should be hanged with the density in the systems.

We have started the analysis at time 300 redued units after the start of applying the fore,

so that there is enough time to develop a steady shear amplitude. The obtained values of

η∗ from this method are given in Table. I (third olumn). The errors in the visosities are

obtained from blok averaging. The results are inluded in Figure. 3, along with the results

of the TCAF methods and the MD results of the true HS model reported by Sigurgeirsson

et al. [11℄. We give the simulation results for ρ∗ > 0.1, beause when the system is dilute

the mean-free-path of the partiles beomes large and the simulation box should be large

enough to make the ollisions to our enough. That is omputationally expensive.

The results from to the TCAF method show better agreement than the PP method. The

reason is that the hosen amplitude α has e�et on the visosity, as studied omprehensively

in ref. [20℄ and in order to obtain more aurate estimations from this method one should

try several amplitudes for eah density, whih is time-onsuming.

IV. COMPARISON WITH THEORY

The Enskog expression for the visosity of a �uid of hard spheres is [5, 28�31℄

η = η0

[

g−1(σ) + 0.8 Vexcl ρ+ 0.776 V 2

excl ρ
2 g(σ)

]

, (12)

where

η0 =
5

16σ2

√

mkBT

π
, (13)

and Vexcl is the exluded volume of HS, Vexcl =
2πσ3

3
, and g(σ) is the radial distribution

funtion (rdf) at ontat. η0 is the zero-density visosity. The rdf at ontat an be obtained

diretly from the Carnahan-Starling equation of state, whih yields,

g(σ) =
1− ξ/2

(1− ξ)3
, (14)
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P ∗
error in P ∗ ρ∗ error in ρ∗ η∗ (PP) error in η∗ (PP) η∗ (TCAF) error in η∗ (TCAF)

0.15978 0.00069 0.12286 0.00014 0.19115 0.01286 0.15894 0.00080

0.31944 0.00182 0.20395 0.00028 0.21134 0.01275 0.20263 0.00158

0.47930 0.00284 0.26531 0.00025 0.26418 0.01572 0.24035 0.00203

0.79872 0.00378 0.35532 0.00026 0.34591 0.01497 0.30003 0.00234

1.11829 0.00517 0.42067 0.00035 0.42858 0.01868 0.37814 0.00368

1.59719 0.00750 0.49526 0.00029 0.52196 0.02760 0.48749 0.00539

1.91703 0.00988 0.53465 0.00030 0.57531 0.02666 0.58406 0.00673

2.55643 0.01294 0.59829 0.00032 0.75286 0.02338 0.72918 0.00862

3.19444 0.01563 0.64875 0.00028 0.97986 0.03616 0.91150 0.01233

4.79239 0.02033 0.74088 0.00033 1.51894 0.05567 1.46623 0.02304

5.59744 0.03030 0.77666 0.00164 1.83790 0.04855 1.71697 0.03116

6.38936 0.02893 0.80720 0.00027 2.12458 0.04511 2.11137 0.04336

7.18685 0.02710 0.83400 0.00021 2.41335 0.07214 2.32994 0.05179

8.78463 0.03660 0.87911 0.00034 3.52977 0.09911 3.36685 0.08977

9.58201 0.04701 0.89880 0.00030 4.02040 0.09138 4.02834 0.12877

10.37838 0.04053 0.91643 0.00026 4.67897 0.09505 4.62323 0.15965

12.77719 0.04276 0.96250 0.00020 7.13797 0.11703 6.86586 0.30399

TABLE I: Shear visosity obtained from the simulations from the two di�erent methods, PP and

TCAF. The given shear visosities are dimensionless; η∗ = η( σ2

√
mkBT

).

where ξ = πρ
6
is the volume fration. It an also be found from the Perus-Yevik approxi-

mation, [32, 33℄.

g(σ) =
1 + ξ/2

(1− ξ)2
. (15)

The latter is more aurate at high density metastable �uid region [11℄.

In Figure. 3 we ompare the simulation results to the Enskog theory and to the previous

MD simulations of true HS simulations by Sigurgeirsson et al. [11℄. The �gures present a

qualitative agreement with both. Similar to the ref. [11℄ the Enskog theory produes good
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FIG. 3: (Left) Shear visosity of PHS model from TCAF method (triangular data) and from PP

method (diamond date). The red irle data are results of Sigurgeirsson et al. [11℄ and the solid

line is the Enskog expression, Eq. 12. (Right) The same as the left plot with the Enskog equation

as the base funtion.

agreements only for low- to mid-density ranges and fails at high densities, sine it does not

take into aount orrelated ollisions. That is the reason for deviations at high densities in

Fig. 3 [28�31℄.
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FIG. 4: Radial distribution funtions of PHS obtained from the simulations at several densities.
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with the theoretial expressions of Carnahan-Starling (dot-dashed line) and Perus-Yevik (solid

line). The irle data are MD simulations by Jover et al..

We also ompare the radial distribution funtion at ontat obtained from simulations

(only for several densities) to the theoretial predition from using the Carnahan-Starling

equation of state and the Perus-Yevik approximation. In order to obtain the ontat values

of the radial distribution funtions from simulations, we �rst obtain the rdf pro�les for eah

density, see Figure. 4 (the results are taken from the simulations explained in Setion. II).

The ontat values then are olleted at r∗ = 1. The values of the rdf at ontats are given

in blak square data in Fig. 5. Simulation results from ref. [15℄ are also inluded as irle

data set. Eqs. 14-15 are represented in this �gure by dot-dashed and solid lines, respetively.

As seen in the �gure, the simulation results agree well with the Perus-Yevik expression

and with results produed by Jover et al. [15℄. As expeted Carnahan-Starling's expression

deviates at higher densities, beause it does not aurately apture higher virial oe�ients.

V. CONCLUSIONS

We have tested the reliability of the pseudo hard sphere (PHS) potential for alulat-

ing the shear visosity of hard spheres. We have used moleular-dynamis simulations (with

GROMACS) for this purpose and obtained shear visosities of PHS from two di�erent meth-

ods; transverse-urrent autoorrelation funtion and the periodi perturbation method.

We have run simulations under the same onditions that have previously been on�rmed
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to represents the hard-sphere equilibrium properties as demonstrated by Jover et al. [15℄. We

have ompared the shear visosities from simulations to the Enskog theory and to available

MD simulation data [11℄. Similar to [11℄, the omparison with Enskog equation shows a

good agreement for densities up to ρσ3 ≤ 0.65. In addition, ontat values of the radial

distribution funtions agree with both Carnahan-Starling (at low densities) and Perus-

Yevik expression (up to ρσ3 ≈ 0.85).

The validation of shear visosity of PHS model helps to use it diretly into the state of

art simulations pakages like LAMMPS, GROMACS or NAMD (whih provide high-speed

simulations) in order to study omplex and large systems. This in turn greatly simpli�es its

use to support development of analytial theory for similar models based on hard spheres,

suh as dipolar hard spheres, whih will aid the development of transport theory as well as

empirial approahes to more omplex liquids.
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