
A Secure Multi-Party Computation
Protocol Suite Inspired by Shamir's
Secret Sharing Scheme

Tiina Turban

Master in Security and Mobile Computing

Supervisor: Stig Frode Mjølsnes, ITEM
Co-supervisor: Dan Bogdanov, Cybernetica, Estonia

Sven Laur, University of Tartu

Department of Telematics

Submission date: May 2014

Norwegian University of Science and Technology

A Secure Multi-Party Computation Protocol Suite
Inspired by Shamir’s Secret Sharing Scheme

Tiina Turban

Submission date: May 2014
Responsible professor: Stig Frede Mjølsnes, NTNU
Supervisor: Sven Laur, UT
Instructor: Dan Bogdanov, Cybernetica AS

Norwegian University of Science and Technology
Department of Telematics

Abstract

The world today is full of secrets. Sometimes, we would like to know
something about them without revealing the secrets themselves. For
example, whether I have more money than my friend or whether two
satellites would collide without publishing their moving trajectories. Se-
cure multi-party computation allows us to jointly compute some functions
while keeping the privacy of our inputs. Sharemind is a practical frame-
work for performing secure multi-party computations. In this work, we
added a protocol suite to Sharemind. This protocol suite was inspired
by Shamir’s secret sharing scheme, which describes a way to divide a
secret into pieces. We describe algorithms for addition, multiplication,
equality-testing and less-than comparison. We also give correctness and
security proofs for the protocols. The resulting implementations were
compared to an existing protocol suite inspired by additive secret sharing.
The initial complexities and benchmarking results are promising, but
there is room for improvement.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiv

List of Symbols xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution of the author . 2
1.3 Outline . 2

2 Preliminaries 3
2.1 Secret sharing . 3
2.2 Secure multi-party computation based on secret sharing 6
2.3 Sharemind . 7

2.3.1 The Sharemind secure computing framework 7
2.3.2 Protection domain deployment configuration 9
2.3.3 SecreC 2 . 9

2.4 Other SMC frameworks . 11

3 A protection domain kind based on Shamir’s secret sharing 15
3.1 Protection domain setup . 15
3.2 Data types supported by the protection domain kind 15

3.2.1 Unsigned integers . 15
3.2.2 Implementing calculations modulo p 16
3.2.3 Signed integers . 17
3.2.4 Booleans . 19

3.3 Security model . 20

v

4 Basic protocols 23
4.1 Classification . 23
4.2 Resharing . 24
4.3 Declassification . 26

5 Arithmetic protocols 29
5.1 Addition and subtraction with a public value 29
5.2 Multiplication with a public value 30
5.3 Addition and subtraction for two shared values 30
5.4 Multiplication of two shared values 31
5.5 Boolean arithmetic . 33

6 Comparison operations 35
6.1 Sub-protocols . 36

6.1.1 Secret-sharing a random value 36
6.1.2 Sharing a random bit . 37
6.1.3 Conjunction of bits . 39
6.1.4 Prefix-AND . 40
6.1.5 Less-than for bitwise secret-shared values 41
6.1.6 Bit composition . 43
6.1.7 Bit decomposition . 44
6.1.8 Bitwise sharing of a random number 44
6.1.9 Least significant bit . 45
6.1.10 Comparison to half prime for unsigned integers 47

6.2 Equality . 48
6.2.1 Equality with a public result 48
6.2.2 Equality with bit decomposition 49
6.2.3 Equality without bit decomposition 50

6.3 Less-than . 52
6.3.1 Less-than with bit decomposition 52
6.3.2 Less than without bit decomposition 52

7 Comparison of protection domains 57
7.1 Complexity . 57
7.2 Practical performance . 60

8 Conclusion 63

References 65

List of Figures

2.1 Classifying a secret value with Shamir’s secret sharing scheme 4
2.2 A failed attempt to reconstruct a secret knowing k − 1 shares. 5
2.3 Reconstructing the secret with Shamir’s secret sharing scheme 5
2.4 Sharemind 3 deployment model . 8

3.1 Sharemind in the real world setting . 20
3.2 Sharemind in the ideal world setting . 21
3.3 Perfect simulation . 21

6.1 Protocol hierarchy . 35

7.1 Multiplication performance comparison 61
7.2 Equality performance comparison . 61

vii

List of Tables

2.1 Multiple protection domains deployment configuration 9

3.1 Unsigned integers for Shamir secret sharing on Sharemind 16
3.2 Signed integers based on the most significant bit 18
3.3 Signed integers centered around zero . 19

6.1 Bitwise less-than execution for a = b . 42
6.2 Bitwise less-than execution for a < b . 42
6.3 Bitwise less-than execution for a > b . 43
6.4 Less-than for unsigned integers . 53
6.5 Less-than for signed integers in centered around zero representation . . 53
6.6 Less-than for integers in modified two’s complement representation . . . 54

7.1 Complexities for protocols in this work 58
7.2 Complexities comparison . 59

ix

List of Algorithms

1 Implementing addition in Zp on native types 17

2 Implementing subtraction in Zp on native types 17

3 Protocol for classifying a secret value Classify(s) 24

4 Protocol for classifying a signed integer 24

5 Protocol for resharing a classified value Reshare(JsK) 26

6 Protocol for reconstructing the secret Declassify(JsK) 27

7 Protocol for declassifying a signed integer 27

8 Addition of a public value JsK + v (subtraction JsK− v) 29

9 Multiplication with a public value vJsK 30

10 Addition of two secret values JqK + JrK (subtraction JqK− JrK) 31

11 Multiplication of two secret values JqK · JrK 32

12 Secret-sharing a random value Random() 36

13 Sharing a random bit RandomBit() . 38

14 Conjunction of bits Conjunct(JaK) . 39

15 Prefix-AND of bits PrefixAND(JaK) 40

16 Less-than for bitwise secret-shared values BLT(JaK, JbK) 41

17 Bit composition BitComposition(JaK) 43

xi

18 Bitwise sharing of a random number RandomBitwise() 44

19 Least significant bit LSB(JaK) . 45

20 Compare to half prime LTHalfPrime(JaK) 47

21 Equality with a public result EQPublic(JaK, JbK) 49

22 Equality with bit decomposition EQbd(JaK, JbK) 50

23 Equality without bit decomposition EQ(JaK, JbK) 51

24 Less-than with bit decomposition LTbd(JaK, JbK) 52

25 Less than LT(JaK, JbK) . 54

List of Symbols

n number of computing parties.
k threshold in Shamir’s secret sharing scheme.
F finite field we are working in.
p prime indicating the finite field Zp we are work-

ing in.
JaK secret-shared value a.
JaKi share of secret-shared a, that party CPi sees

publicly.
a vector of booleans containing bits of a.
JaK vector of secret-shared values (containing secret-

shared bits of a).
ai i-th bit of a.
JaiK secret-shared i-th value from the vector a

(secret-shared bit i of a).
` length in bits for current datatype in algorithms.
b length in bits for current datatype in complexity

analysis.

xiii

List of Acronyms

CP Computing Party.

IP Computing Party.

RP Computing Party.

BLT Bitwise Less-Than.

CPU Central Processing Unit.

EQ Equality.

FairplayMP Fairplay Multy-Party.

GB Gigabyte.

GHz Gigahertz.

GNU LGPL GNU Lesser General Public License.

IP Internet Protocol.

LSB Least Significant Bit.

LT Less-Than.

MEVAL Multi-party EVALuator.

NTNU Norwegian University of Science and Technology.

PD Protection Domain.

PDK Protection Domain Kind.

xv

RAM Random-Access Memory.

SEPIA Security through Private Information Aggregation.

SFDL Secure Function Definition Language.

SMC Secure Multy-Party Computation.

TASTY Tool for Automating Secure Two-partY computations.

TASTYL TASTY input Language.

UT University of Tartu.

VIFF Virtual Ideal Functionality Framework.

Chapter1Introduction

1.1 Motivation

In today’s world, we have a huge amount of information. That data could be used to
figure out trends which could, for example, allow us to make wiser business decisions.
If we would live in a world without secrets and where everyone trusts each other,
then we could simply publish all the information and analyse it. In the real world,
however, there are many things, that people consider private, such as their medical
or financial details. Companies have business secrets, which they do not want to
reveal either. Therefore, it would be great, if there would be a way to analyse data
without compromising anyone’s privacy. The latter is exactly what secure multi-party
computation (SMC) allows us to do.

One of the frameworks that can be used in practice for secure multi-party
computation is Sharemind [Bog13]. There are different cryptographic primitives,
that secure multi-party computation can rely on, such as homomorphic encryption,
additive or Shamir’s secret sharing. So far, all the protocol suites implemented on
Sharemind fix the number of participants in the computation. Also, if any of the
participants would disappear, then we cannot access the results. Protocols using
Shamir’s secret-sharing, which have not been implemented on Sharemind so far,
would provide more flexibility. In theory we could allow more corrupted parties.

Most of the research that exists about SMC using Shamir’s scheme only focuses
on unsigned integers, especially when dealing with equality testing or comparison
operators. We on the other hand are interested in a more universal framework, that
allows protocols to be used on both unsigned and signed integers as well as boolean
data types.

1

2 1. INTRODUCTION

1.2 Contribution of the author

The goal of this work is to create a new protocol suite for Sharemind and compare it
to the existing additive three-party protocols. The implementation shall use Shamir’s
secret sharing scheme. The implemented protocol suite consists of classification,
declassification, resharing, addition, subtraction, multiplication, equality testing
and less-than comparison with the necessary sub-protocols. There were various
alternatives to be considered for each algorithm. The author developed an exper-
imental implementation on Sharemind. In addition, the author wrote down the
algorithms with correctness and security proofs. Finally, the author benchmarked
the performance between the new and an existing comparable protocol suite.

1.3 Outline

The List of Symbols on page xv defines the notation used in this thesis. Section 2 gives
an overview of the background information. This includes explaining secret-sharing
and, more in depth, the Shamir’s secret sharing scheme. We describe what secure
multi-party computation is and how Sharemind works. There is also a subsection
that talks about other SMC frameworks.

Section 3 focuses on the details of implementing a protocol suite on Sharemind.
This section shows how to use the result of this work. We also describe how our
different data types are represented and the concepts used in proofs.

Section 4 shows how our private information can be taken into pieces and divided
among computing parties. The declassification subsection, on the other hand, shows
how the computed result, that is still in secret-shared form, can be reconstructed to
publish the value.

The arithmetic protocols are given in Section 5 and algorithms for comparison
operations in Section 6. The latter includes various sub-protocols, such as least
significant bit, that were needed for equality testing or less-than comparison.

Section 7 sums up the complexities and brings out the benchmarking results with
comparison to the additive three-party protocol suite. The final Section concludes
this thesis and provides ideas for further work.

Chapter2Preliminaries

2.1 Secret sharing

Secret sharing [Sha79, Bla79] is a technique for protecting confidential data. The
secret is divided into parts — shares. These shares will then be distributed among
a number of parties. In order to reconstruct the secret, a certain predefined set of
shares must be combined. For example, unique shares are divided to n participants,
but any k of them together can retrieve the original secret. This structure is also
known as k-out-of-n threshold scheme. Gaining access to less than that threshold k

of distinct shares shall give no information about the secret.

Definition 1. Let s be a secret value and JsK1, JsK2, ..., JsKn shares. We have a
k-out-of-n secret sharing scheme, if the following conditions hold [Sha79]:

Correctness: knowledge of any k or more shares of s makes the secret easily
computable;

Privacy: knowledge of any k− 1 or fewer shares of s leaves the secret completely
undetermined (in the sense that all its possible values are equally likely).

Additive secret sharing scheme is a form of secret sharing. It is a scheme, where
one needs to know all the shares to discover the original value, i.e. an n-out-of-n
threshold scheme. The algorithm divides shares by first uniformly choosing n − 1
values JsK1, JsK1, ..., JsKn−1 and then calculating JsKn = s− JsK1 − ...− JsKn−1. The
secret s can be reconstructed by adding all the shares together s = JsK1 + ... + JsKn,
but knowing n− 1 or less shares gives a malicious entity (adversary) no information
about s.

Shamir’s secret sharing scheme [Sha79] is a form of secret sharing, which uses

3

4 2. PRELIMINARIES

the idea that k points are needed to uniquely define a polynomial of degree k − 1.
With this scheme, a threshold k can be chosen, which defines the number of shares
needed for reconstructing the secret, i.e. it is a k-out-of-n scheme.

Shares in Shamir’s secret sharing scheme have two values - an index and the
evaluation of the randomly generated polynomial on that index – (i, f(i)). The indices
have to be unique to each party and we cannot use zero as that would reveal the
secret f(0) = s. To create the shares, we choose n random points on the polynomial
(x, f(x)). These points we then distribute to the parties. Coefficients will be chosen
randomly and the free member is equal to the secret. To illustrate how it works, we
can look at Figure 2.1. In reality, Shamir’s scheme uses polynomials over a finite
field and not a two dimensional plane. In this example, we use a 2-out-of-4 threshold
scheme, where JsK1, ..., JsK4 represent the shares for a secret value s. The constant c1
is random and hence f(x) = s + c1x is a random 1-degree polynomial.

x

f(x)

f(x) = s + c1x

f(0) = s

1

JsK1

2

JsK2

3

JsK3

4

JsK4

Figure 2.1: Classifying a secret value with Shamir’s secret sharing scheme

Figure 2.2 illustrates the situation, where we know less than k shares. If we know
only one point for a 1-degree polynomial, we can draw an infinite number of lines
covering all the possible values (s, s′, s′′, ... on Figure 2.2) and there is no way to
know which one is the right one.

However, if we know at least k shares, it is possible to reconstruct the originally
created polynomial f(x). Figure 2.3 illustrates, that there is only one straight line,
we can draw through two points on a two dimensional plane. We can use Lagrange
interpolation [WR67]. Let t1, ..., tk be the indices for any unique k shares (ti, f(ti)).
According to the Lagrange interpolation formula, we can evaluate a polynomial at

2.1. SECRET SHARING 5

x

f(x)

f(x) = s + c1x

f(0) = s

2

JsK2
s′

s′′

s′′′

Figure 2.2: A failed attempt to reconstruct a secret knowing k − 1 shares.

x

f(x)

f(x) = s + c1x

f(0) = s

2

JsK2

3

JsK3

Figure 2.3: Reconstructing the secret with Shamir’s secret sharing scheme

any given value by calculating

f(x) =
k∑

i=1
f(ti)bi(x),

6 2. PRELIMINARIES

where bi(x) is the Lagrange basis function

bi(x) =
k∏

j=1
i 6=j

x− tj

ti − tj
.

To find the secret we are only interested in the value of the polynomial in position
zero, i.e. f(0). Let bi denote the Lagrange basis function bi(0). Then,

bi = bi(0) =
k∏

j=1
i 6=j

0− tj

ti − tj
=

k∏
j=1
i6=j

−tj

ti − tj
. (2.1)

Hence, the secret can be found with

s = f(0) =
k∑

i=1
f(ti)bi. (2.2)

Note that the Lagrange basis function does not depend on the polynomial, which
means that bi’s can be pre-calculated.

Alternatives. Homomorphic encryption [Gen09] can be used instead of secret
sharing, however the latter has been shown to be less efficient in practice [KBdH09].
Another alternative is Yao’s garbled circuit construction [Yao86].

2.2 Secure multi-party computation based on secret sharing

With secret sharing we can protect our data, but often we would still like to process the
protected data without compromising privacy. That is exactly what secure multi-party
computation allows us to do – compute various functions without giving away any
information about their own shares. Some real-life use cases include benchmarking,
where several companies want to compare themselves to each other [BTW12], various
forms of auctions and private biddings [BCD+09].

Secure Multy-Party Computation (SMC) was initially introduced in 1982 by
Yao [Yao82]. In his paper, Yao brings the example of two millionaires wanting to
know who is richer without revealing their wealth. More generally, we have any
number of input parties IP1, IP2, ..., IPm, computing parties CP1, CP2, ..., CPn

and result parties RP1, RP2, ..., RPr. The computing parties wish to compute
f(JxK1, JxK2, ...JxKn) = (JyK1, JyK2, ...JyKn). Initially, each party CPi knows JxKi, but
no other JxKj , i 6= j. After jointly computing the function f , each party learns their
output JyKi and nothing else. Some, or all of the output values can be equal. For

2.3. SHAREMIND 7

example, in the millionaires’ problem, we wish to compute

f(JxK1, JxK2) =
{

1 if JxK1 < JxK2,

0 otherwise

where both parties get the same result (JyK1 = JyK2).

There are different security requirements that may be needed for different applica-
tions. Cheating in the context of secret sharing and secure multi-party computation
can be seen as having an adversary, who may corrupt some subset of computing
parties [CD05]. Corruption can either be passive or active. In the first case the
adversary can see all the data the corrupted parties have. Active adversary can,
in addition to seeing everything, also manipulate the messages sent or even stop
sending anything altogether. Adversaries may additionally be divided into static and
adaptive. If there is a constant set of corrupted players over the course of running
the protocol then we are dealing with a static adversary. Adaptive adversaries, on
the other hand, can choose at any point in time to corrupt a different set of players.
In this thesis, we are considering protocols with static, passive adversaries. This is
also known as the honest-but-curious security model. We can have at most k − 1
corrupt parties, otherwise the adversary has enough shares to reconstruct the secret.

2.3 Sharemind

2.3.1 The Sharemind secure computing framework

Sharemind is a framework for building data processing applications that use se-
cure multi-party computation. It is designed with the intention to be efficient
enough for practical applications, but at the same time to be usable by non-
cryptographers [BLW08, Bog13]. The practical part of this thesis is implemented on
the Sharemind SMC framework and more specifically on version 3 of Sharemind.

An example system setting is illustrated on Figure 2.4. There are three different
kinds of parties: input parties (IP), computing parties (CP) and result parties (RP).
Participants are not restricted to belonging to only one of these groups, but can also
be all of the above or just an input party, who wants to learn results. There can be
any number of input and result parties, but the number of computing parties might
be restricted by the protocols used. IPs use secret sharing or other techniques to
distribute their confidential data between the CPs. RPs make queries and initiate
computations, that are performed by CPs on the shared data. In the end, RPs get
the public computation results without anyone seeing the original confidential data.

We could, for example, run 2-out-of-4 Shamir’s secret sharing scheme on Share-
mind 3. Figure 2.4 shows an IP classifying a secret s1 by giving each CP one share.

8 2. PRELIMINARIES

Input
parties

Computing parties

Result
parties

s1

r
s2

a share of s1
a share of s2
a share of r

classification of s1
classification of s2
declassification of r
secure multi-party

computation

Figure 2.4: Sharemind 3 deployment model

Another IP can secret-share another secret s2. Via secure multi-party computation
we can then calculate s1 < s2, where each CP has only one share of the result. To
reconstruct the secret-shared result r, at least two CPs must send their shares to the
RP (because we were using 2-out-of-4 scheme).

Computing parties perform computations by executing algorithms, which consist
of addition, multiplication or other operations. These operations are evaluated
by running protocols, that are described using some cryptographic primitives. A
Protection Domain Kind (PDK) defines a set of data representations for storing and
protocols for computing on protected data [BLR13]. A PDK can be designed for
any secure computation techniques with different security guarantees and different
PDKs can support different operations. Each PDK can have several Protection
Domains (PD), which are concrete initialisations of a PDK. For example, in this
work we will create a PDK that uses the k-out-of-n Shamir’s secret sharing scheme.
For that PDK, we can define a PD with concrete n and k values, e.g. a 2-out-of-4
scheme. The first PDK that was designed for Sharemind uses additive secret sharing
with three CPs and it is secure in the semi-honest model [BLW08, Bog13]. In 2013,
another PDK using additive secret sharing was described for two computing parties
that offers security against active adversaries [Pul13]. Another example of a PD is

2.3. SHAREMIND 9

fully homomorphic encryption scheme with addition and multiplication protocols,
and a pair of keys. We can have another PD of the same PDK that differs only in
protection keys, i.e. its configuration.

Sharemind has been used for various practical applications. A recent example
demonstrates, how secure multi-party computation can be used for calculating the
probability of a collision between two satellites [KW13]. Countries do not want to
reveal exact information about their satellites nor do they want to lose them. But
a collision in 2009 demonstrates, that knowing only approximate data about the
orbits is not enough. It was shown, that SMC can be used as a possible solution.
Another example comes from Estonian Association of Information Technology and
Telecommunications, who wished to calculate benchmarking results based on their
economic indicators [Tal11, BTW12]. Their initial solution had some security-related
shortcomings and a new solution with stronger privacy guarantees using Sharemind
was proposed. This was the first time where SMC computation on real data was done
over the internet with geographically apart computing nodes. The bioinformatics
field offers a third example, where secure multi-party computation could be used to
protect the privacy of individuals participating in a study [KBLV13].

2.3.2 Protection domain deployment configuration

To make the deployment easily configurable, we have separate files, that define
parameters for each protection domain and each computing party [AS11]. They
contain addresses and encryption keys of other CPs. The configuration files can also
have constants, such as fragment size for controlling parallelism. These constants
can then be used in the protocols described in that protection domain kind. There
can be any number of computing parties, of which some can be non-computing
nodes for certain PDs. The deployment configuration is not limited to having only
one protection domain, but we can describe and use PDs in parallel. For example,
see Table 2.1, where we have three protection domains defined on our four CPs.
Computing nodes are denoted with a star (*) in the table.

Protection domain CP1 CP2 CP3 CP4

Additive 3-party * * *
FHE *
Shamir 2-out-of-4 * * * *

Table 2.1: Multiple protection domains deployment configuration

2.3.3 SecreC 2

SecreC [Jag10] is a privacy-aware programming language inspired by C. Its second
version SecreC 2 [BLR13] is used in the Sharemind 3 SMC framework. It is used

10 2. PRELIMINARIES

to describe algorithms that run on CPs to calculate results for RPs. The language
is designed to be easy to use and the programmer can just call the PDK protocols
and operations as predefined functions, i.e. he/she does not need to understand
the underlying cryptographic primitives. To make the developers life easier, there
is an integrated development environment for the SecreC programming language
(SecreCIDE) [Reb10].

SecreC 2 is strongly typed, where the type has a data type and a PD. There
is a predefined PD for public types and it can be omitted when defining public
variables, i.e. int x; would define a public integer. It is a polymorphic language
that allows to write code not specific to a certain PDK. Obviously, that PDK must
define the protocols used in the code. Being domain-polymorphic allows for an easy
integration of new PDs or re-usage of code for different deployment scenarios or
common functionality. The latter is also the reason, why it makes sense to have
a standard library for SecreC 2. The standard library includes functions, such as
minimum, maximum and absolute value. Additionally, if for a specific PDK, there is
a more efficient version, it is possible to implement a special version aside the general
function.
import addi t ive3pp ;
import shamirnpp ;
domain a3pp addi t ive3pp ;
domain s2o f 4 shamirnpp ;

template <domain D, type T>
D T abs (D T x) {

return x < 0 ? - x : x ;
}

void main {
a3pp uint x = 5 ;
a3pp uint ax = abs (x) ;
assert (declassi fy (ax) == (5 : : uint)) ;

s 2o f 4 int y = - 5 ;
s 2o f 4 int ay = abs (y) ;
assert (declassi fy (ax) == (5 : : int)) ;

}

Listing 2.1: SecreC 2 example – Absolute value

In order to use protection domains in SecreC 2, we need to define them. We have
additive secret sharing for three parties against passive adversary implemented for
Sharemind, so the module additive3pp can simply be defined or imported. The
latter provides us additionally the possibility to use additive3pp’s standard library.
After which we can define a protection domain a3pp that can be used in a domain-
polymorphic function. Listing 2.1 gives an example of SecreC 2 code with two PDs.

2.4. OTHER SMC FRAMEWORKS 11

The PDK shamirnpp will be created with this thesis and PD s2of4 can be defined
for it. The function abs can be used with any domain and any type as long as there
is less-than and additive inverse defined on D T types. The main function calls abs
on both PDs on different types and then checks that the value was as expected.

2.4 Other SMC frameworks

Even though the theory of secure computations has been around since the eight-
ies [Yao82], the first practical implementations were introduced after the millennium.
Several frameworks, such as Fairplay [MNPS04], SEPIA [BSMD10], VIFF [Gei10],
TASTY [HKS+10], VMCrypt [Mal11], MEVAL [CMF+14] and PICCO [ZSB13]
have been developed since.

Fairplay1 was the first practical implementation of SMC and it was introduced in
2004. The initial version used Yao’s garbled circuits [Yao86] and supported secure
communication between two parties. In 2006 Ben-David, Nisan and Pinkas created
an extension of the system called FairplayMP, for Fairplay Multi-Party. This version
uses Yao circuits and (bn

2 c+1)-out-of-n secret sharing. They have their own high-level
programming language called Secure Function Definition Language (SFDL), in which
users can write code, that will then be compiled into a low-level representation as
a Boolean circuit. To run secure multi-party computation, users must also write a
configuration file with IP addresses and other settings.

FairplayMP is implemented in Java, focusing on performance in terms of message
sizes and the number of communication rounds. To check whether the system could
be used for real life problems, the authors experimented with protocols for voting
and computing auctions. More specifically, they ran a second-price auction [Vic61]
(winner pays the amount of second-highest bid) between bidders, where everyone
learns the second-highest bid, but only the seller learns the identity of the winner.
In total, there were five computing parties, for each a computer with two Intel Xeon
3 GHz CPU processors and 4 GB of RAM was used. Running the experiment for
8-bit bids took about 8 seconds [BDNP08].

VIFF2 was originally developed in the Secure Computing Economy and Trust (SCET)
and the Secure Information Management And Processing (SIMAP)3

projects [BDJ+06]. The technology developed during those projects was deployed to
run the first large-scale SMC in 2008 [BCD+09]. The practical experiment was ran

1Fairplay – http://www.cs.huji.ac.il/project/Fairplay/
2VIFF – http://viff.dk
3SIMAP Project – http://www.alexandra.dk/uk/projects/pages/simap.aspx

http://www.cs.huji.ac.il/project/Fairplay/
http://viff.dk
http://www.alexandra.dk/uk/projects/pages/simap.aspx

12 2. PRELIMINARIES

with Danish farmers trading sugar beet contracts using a secure double auction. The
Virtual Ideal Functionality Framework (VIFF) is implemented in Python and is Free
Software, licensed under the GNU LGPL4. It uses Shamir and pseudo-random secret
sharing [CDI05]. Various protocols have been implemented of VIFF. In addition
to passive, it is also possible to write protocols that are secure against active and
adaptive adversaries. For example, they implemented multiplication that is secure
against malicious adversary and, for 7 computing parties, it took 2.7 seconds to
prepare 1000 multiplications, but only 2 seconds to execute all of them [Gei10].

SEPIA5, which is short for Security through Private Information Aggregation is
a Java library for SMC. It is also Free Software, licensed under the GNU LGPL.
SEPIA uses Shamir’s secret sharing and, similarly to Sharemind’s additive3pp
protection domain, it is secure against static passive adversaries. In 2010, SEPIA
outperformed VIFF and FairplayMP for running multiplication and comparison
operations in parallel. Compared with Sharemind version 2 however, performance
was similar [BSMD10].

TASTY6 is a Tool for Automating Secure Two-partY computations. This tool uses
homomorphic encryption or garbled circuits or their combinations to automatically
generate efficient protocols from their high-level description. They have their own
specification language called TASTY input language (TASTYL), which is based on
Python, as TASTY itself is implemented in Python. TASTY’s Runtime Environment
also provides the possibility to automatically analyse, run, test, and benchmark
the two-party secure function evaluation protocol. Comparing the performance
to original Fairplay, which also uses Yao’s garbled circuits construction, TASTY
requires less memory, communication and online time, though the setup time is
slower. Henecka, Kögl, Sadeghi, Schneider, and Wehrenberg assume that this is due
to their implementation language choices (Python versus Java) [HKS+10].

VMCrypt is a software library created with a goal to be modular and scalable. It is
implemented in Java and uses Yao’s garbled circuits. They noticed that in order to
make the system scalable, they need to look at memory consumption, as holding large
circuits in memory would take too much RAM. Hence, VMCrypt takes a streaming
approach to generating circuits. It streams the circuit gate by gate, i.e. when a part
of the circuit is ready, it will be passed to the evaluator and the computation process
can already begin. This allowed Malka to run performance tests on circuits with

4GNU LGPL – https://www.gnu.org/licenses/lgpl.html
5SEPIA – http://sepia.ee.ethz.ch
6TASTY – https://code.google.com/p/tastyproject/

https://www.gnu.org/licenses/lgpl.html
http://sepia.ee.ethz.ch
https://code.google.com/p/tastyproject/

2.4. OTHER SMC FRAMEWORKS 13

hundreds of millions of gates [Mal11].

PICCO [ZSB13] is a general-purpose compiler for private distributed computation.
Input for the compiler is a program, written in a C language extension, that provides a
way to annotate private data. The output will be its secure distributed implementation
in C. The resulting code can then be compiled with a native C compiler and executed
by a number of computation nodes. Zhang, Steele and Blanton also concentrated
on performance and making the secure computation scalable. To do that, they
implemented multiple types of parallelism, e.g. over loops and arrays. Internally,
PICCO uses Shamir’s secret sharing.

MEVAL [CMF+14], which is short for Multi-party EVALuator is a SMC system. It
uses Shamir’s secret sharing scheme and provides security against passive adversaries.
For better performance, they use asynchronous processing and a Mersenne prime
field to get optimised field operations. At the Applied Multi-Party Computation
workshop at Microsoft Research, Hamada gave the following performance results
in his presentation [Ham14]. 8.7 multiplications of 61-bit integers can be done per
second and sorting 1 million 20-bit items takes 6.9 seconds. MEVAL uses R7 with
an add-on as a front-end client application.

7R - http://www.r-project.org

Chapter3A protection domain kind based on
Shamir’s secret sharing

3.1 Protection domain setup

The goal of this work is to provide a way to use Shamir’s secret sharing on Sharemind.
We will create a new protection domain kind shamirnpp, that can be used with
various number of CPs. Previously, the PDKs have defined the number of computing
parties, e.g. additive3pp has three CPs. The protection domain specifies n and k

values, for k-out-of-n Shamir’s secret sharing scheme. The threshold is needed for
the classification protocol, as we need to know what degree random polynomial to
create. To achieve that our PD configuration files also contain the constant k, that
is used in the PDK protocols.

3.2 Data types supported by the protection domain kind

3.2.1 Unsigned integers

We have different unsigned types, such as uint8, uint16, uint32 and uint64. We
could only have one type, but there are trade-offs here – it is cheaper for network
communication and memory to calculate using uint8, but 256 values is often not
enough.

Shamir’s secret sharing is done on a field, so we shall work in a finite field. That
means there should be prime number possible values. Our default data types in the
computer for integers however have powers of two values.

To make life easier we just use the largest prime value in the finite field, that
fits in n bits as the maximum value, that an n-bit integer type can have. Table 3.1
shows, for each unsigned type, its size (the number of values a certain type can hold),
the largest prime, i.e. how many values our type will be able to hold and the last
column contains the number of lost values. If one goes over the maximum value then
overflow happens, e.g. 200 + 55 = 5.

15

16 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

Type sizeof(uintX) largest prime (p) difference (d)
uint8 256 251 5
uint16 65536 65521 15
uint32 4294967296 4294967291 5
uint64 18446744073709551616 18446744073709551557 59

Table 3.1: Unsigned integers for Shamir secret sharing on Sharemind

We know that our uintX is not a real X-bit unsigned integer, but our goal is to
achieve comparability with other PDKs. Aside from the fact, that last few values
cannot be used, it does not influence the developer’s life.

3.2.2 Implementing calculations modulo p

In order to more comfortably do operations in our finite field, i.e. modulo a prime p,
we created our own types. Internally they still use default types supported by the
processor and have 2n values, which means that in case of an overflow, the result
would be wrong. There are multiple solutions available here, for example

1. performing the operations in a bigger type and using modulo p in the end,

2. making corrections, i.e. adding or subtracting the difference from the result
when needed.

Upcasting the type and performing operations there might not be so efficient if
we run out of bigger default types, for example for uint64.

Addition is done by making corrections, see Algorithm 1. The result of addition
can end up in three different regions: [0, p), [p, 2n) or [2n, 2p− 2). The last one result
in an overflow in the native type and we need to add d to correct it for our uintX.
The middle region, on the other hand, should have been overflown.

Subtraction is done by making corrections, see Algorithm 2. The result of sub-
traction can end up in two different regions: (−p, 0) or [0, p). In the first case, we
subtract d to correct the overflow.

3.2. DATA TYPES SUPPORTED BY THE PROTECTION DOMAIN KIND 17

Algorithm 1: Implementing addition in Zp on native types
Input: Prime p, values a, b ∈ Zp, difference d
Result: c ∈ Zp

1 c = a + b
2 if c < a then
3 c = c + d
4 else if c ≥ p then
5 c = c− p

Algorithm 2: Implementing subtraction in Zp on native types
Input: Prime p, values a, b ∈ Zp, difference d
Result: c ∈ Zp

1 c = a− b
2 if c > a then
3 c = c− d

Multiplication is simply done by converting to a larger type and applying the
modulus after multiplication.

Multiplicative inverse is found using the Extended Euclidean algorithm.

3.2.3 Signed integers

When thinking about signed integers for secret sharing, we can look at a somewhat
similar problem of how negative numbers are represented in computer hardware.
There are four best-known methods: sign and magnitude notation, one’s complement,
two’s complement and excess-K representation. Even though two’s complement
is most widely used, there are advantages and disadvantages to each representa-
tion [Flo63]. In this section, we will be considering three different ideas for signed
integers notation, each having its own benefits and drawbacks.

Sign and magnitude. When keeping the sign separately from magnitude we can
use the first bit, but we can also just use a separate boolean value, which might
make things easier later. For example, we do not need to extract the most significant
bit which, in secret sharing, is not that trivial and can use the separate boolean

18 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

value instead. This representation makes it easy to perform multiplication, but for
addition and subtraction, getting the sign right is not so trivial.

Modified two’s complement. Another idea is to split the value range into
positive and negative parts. We got the idea from two’s complement notation for
signed integers in hardware. Since we do not use the full range of values in unsigned
integers, e.g. uint8 maximum value is 250 (111110102), we need to modify the
notation by adding or subtracting the difference d. Otherwise, we do not have small
negative numbers as they would result in an overflow, e.g. −1 = 111111112 =
000001012 = 5. Hence, to convert the negative signed integer i to the internal
unsigned representation u we find the two’s complement and subtract d. Vice versa,
i.e. from u to i, we add d to the negative value found by taking the two’s complement
of u.

Table 3.2 shows the mapping between unsigned and signed integers. Additionally,
the corresponding values and the bitwise representation are given for 8-bit integer
types (p = 251).

unsigned signed uint8 int8 Binary(uint8/int8)
0 0 0 0 00000000
1 1 1 1 00000001
...
bp

2c − 1 bp
2c − 1 124 124 01111100

bp
2c bp

2c 125 125 01111101
bp

2c+ 1 bp
2c+ 1 126 126 01111110

...
bp

2c+ bd
2c bp

2c+ bd
2c 127 127 01111111

bp
2c+ bd

2c+ 1 bd
2c − b

p
2c 128 -123 10000000

bp
2c+ bd

2c+ 2 1 + bd
2c − b

p
2c 129 -122 10000001

...
p− 2 −2 249 -2 11111001
p− 1 −1 250 -1 11111010

Table 3.2: Signed integers based on the most significant bit

Centered around zero. The third idea also splits the value range into positive
and negative parts. Algesheimer, Camenish and Shoup [ACS02] described how it can
be done by keeping the values centered around zero. Hence, to convert the signed
integer i to the internal unsigned representation, we simply add p, if i < 0. Getting
the signed value back would mean subtracting p from u ∈ Zp if u > bp

2c. Notice that
we cannot only look at the most significant bit to determine if the value is negative,

3.2. DATA TYPES SUPPORTED BY THE PROTECTION DOMAIN KIND 19

since our unsigned types do not use all the values compared to the native types
in computer, see Section 3.2.1. This might make it difficult to use bits in various
algorithms. However, we can use the comparison a < bp

2c to determine if a contains
a negative value as an alternative to looking up the most significant bit in two’s
complement.

Table 3.3 shows the mapping between unsigned and signed integers. Additionally,
the corresponding values and the bitwise representation are given for 8-bit integer
types (p = 251).

unsigned signed uint8 int8 Binary (uint8/int8)
0 0 0 0 00000000
1 1 1 1 00000001
...
bp

2c − 1 bp
2c − 1 124 124 01111100

bp
2c bp

2c 125 125 01111101
bp

2c+ 1 −bp
2c 126 -125 01111110

bp
2c+ 2 1− bp

2c 127 -124 01111111
bp

2c+ 3 2− bp
2c 128 -123 10000000

...
p− 2 −2 249 -2 11111001
p− 1 −1 250 -1 11111010

Table 3.3: Signed integers centered around zero

Conclusion. The sign and magnitude separation makes it easy to understand what
value is represented, but this does not overcome the increased complexity for addition
and subtraction. Hence, the choice is left between our modified two’s complement
or centering around zero. For both options, the basic arithmetic protocols simply
work on the underlying unsigned representations. When we think about comparison
operators, and more specifically the less than operation, initially it seems, that we
need to perform bitwise operations. In that case, having the most significant bit
denote the sign becomes useful. But as it turns out, there is a more efficient way to
compute less-thans using a comparison to half of the prime (see Section 6.3). This
makes centering around zero a better choice for the protocols implemented in this
work.

3.2.4 Booleans

It is tempting to use a finite field Z2 to represent booleans. However, this would
restrict us to only having two unique shares. For example, for k = 2, n = 3 we would

20 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

create a polynomial f(x) = s + cx (see Section 4.1 for information on how values
are classified). Now being in Z2 would mean that p = 2 and f(x) = s + cx mod 2.
Hence the odd number shares are equal

f(1) = s + c

f(2k + 1) = s + (2k + 1)c = s + c mod 2.

Then, in our example 2-out-of-3 scheme, we cannot reconstruct the secret having CP1
and CP3 (see Section 2.1 for information about declassification with Shamir’s secret
sharing scheme). What is even worse, the even number shares reveal the secret s.

f(2) = s + 2c = s mod 2

Our solution is to just use 8-bit unsigned integers to represent booleans, having
s ∈ {0, 1}.

3.3 Security model

honest party corrupted party

Figure 3.1: Sharemind in the real world setting

To prove the security of our protocols we will use the security proof framework
described for additive3pp [Bog13]. We have the real world (see Figure 3.1), where
CPs exchange messages between each other to calculate some function f . We define
an ideal world (see Figure 3.2), where there is a trusted third party, that collects the
inputs and calculates f . To prove security, we show, that any real world attack also
exists in the ideal world. We do that using perfect simulatability, which ensures that

3.3. SECURITY MODEL 21

honest party corrupted partytrusted third party

Figure 3.2: Sharemind in the ideal world setting

simulatorhonest party corrupted partytrusted third party

Figure 3.3: Perfect simulation

the adversary cannot distinguish between its views of the protocol in the real and
the ideal world. Perfect simulatability guarantees that the adversary does not learn
anything except what can be derived from corrupted parties’ inputs and outputs. To
do that, we construct a simulator (see Figure 3.3), that can simulate our protocol

22 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

in the real and ideal world indistinguishably. The simulator cannot rewind the
algorithm to an earlier state. Notice that this is not the standard definition used in
cryptographic proofs for simulatability. A protocol, that consists only of perfectly
simulatable sub-protocols and has their outputs used only either as inputs to another
sub-protocol or outputs of the main protocol, is itself perfectly simulatable [Bog13,
Theorem 4]. But if we re-use the output of a perfectly simulatable protocol it may
leak information. More precisely, if output shares depend on input shares, then we
cannot achieve better security than perfect simulatability. If they are independant,
then we have universal composability. The latter can be achieved by resharing (see
Section 4.2) in the end of a perfectly simulatable protocol. In 2014, a more detailed
version of the security model was published [BLLP14]. In this thesis, we present
security proofs in the model of [Bog13]. This means, that we show, that the protocols
are correct and either perfectly simulatable or universally composable.

Chapter4Basic protocols

In this and the following sections, we shall use F = Zp to denote the finite field we
are operating on. The letter b shall represent the bit-length of p, i.e. the bit-length
of value s ∈ F . In the following algorithms, a share of JsK for CPt is denoted
as JsKt. When analysing the complexities of our protocols, we notice that some
things can be pre-computed and others depend on the inputs. Therefore, we shall
separate the offline and online phase. In both phases, we are mainly interested in
two things – the number of times a CP needs to wait for input (rounds) and bits of
data transferred (communication cost). Generally, we prioritise minimising rounds
over communication costs [Reb12].

4.1 Classification

As mentioned previously, shares in Shamir’s secret sharing scheme consist of two
values – input to the polynomial and the corresponding output. We have decided to
use the CP’s node number t as the first part of the share and then calculate f(t).
This way, we do not need to use network resources to communicate them. More-over,
the numbers are guaranteed to be unique per protection domain and there is no
node number zero. To classify the secret value s, we must first create a random
polynomial with degree k − 1, where the free term is the secret value, e.g. k = 3,
f(x) = s + 12x− 43x2. Algorithm 3 is given for an input party wanting to classify a
secret value, but any CPt (computing party with node number t) can classify a value
by sending f(x) to all other CPs and keeping f(t) as their own share. This is also
the case when a participant is an IP and a CP at the same time.

For boolean values, the same algorithm is used, we just know that s ∈ {0, 1}.
For signed integers, the secret s is first converted to an unsigned integer u and then
classification protocol is run on u. For centering around zero representation, the
conversion can be done by adding p to negative inputs. Because then, assuming
correct input range, the positive values are in {0, ..., bp

2c} and negative values are in

23

24 4. BASIC PROTOCOLS

Algorithm 3: Protocol for classifying a secret value \cmdClassify(s)
Input: Finite field F , threshold k, IP has an unsigned integer secret s ∈ F
Result: All CPs have a share of JsK.

1 IP uniformly chooses c1, . . . , ck−1
u← F

2 IP constructs the polynomial f(x) = s + c1x + c2x2 + · · ·+ ck−1xk−1

3 IP sends f(x) to CPx

4 Each CPx receives f(x)

{−bp
2c+ p, ...,−1 + p} = {−p−1

2 + p, ..., p− 1} = {dp
2e, ..., p− 1}, see Algorithm 4.

Algorithm 4: Protocol for classifying a signed integer
Input: Prime p, IP has a signed integer secret s ∈ {−bp

2c, ..., bp
2c}

Result: All CPs have a share of JsK.
1 IP calculates:
2 if s ≥ 0 then
3 u = s
4 else
5 u = s + p

6 IP runs Classify(u)

If the input party does not spread the polynomial constants and we assume that
there is a secure connection from IP to each CP, then the protocol is secure. Com-
plexity for both unsigned or signed integers requires one round and communication
of one unsigned integer to each CP, i.e. nb bits of information. Remember that, for
booleans, b = 8.

4.2 Resharing

The simplest way for refreshing a secret is by adding a secret-shared zero [NN05].

Secret-sharing a zero. One of the CP ’s could use the classify protocol to secret-
share zero, but the entity, who does the sharing, would know every CP ’s share. There
is, however a possibility, using more communication, to secret-share zero without
anyone knowing other CP’s shares. To do that, every CPt first classifies zero, which

4.2. RESHARING 25

means that each CPt creates a polynomial gt

g1(x) = 0 + c11x + c12x2 + · · ·+ c1k−1xk−1

g2(x) = 0 + c21x + c22x2 + · · ·+ c2k−1xk−1

...

gn(x) = 0 + cn1x + cn2x2 + · · ·+ cnk−1xk−1.

Secondly CPs sum up their own share and the ones received from others

g(x) =
n∑

i=1
gi(x) =

n∑
i=1

0 +
n∑

i=1
ci1x +

n∑
i=1

ci2x2 + · · ·+
n∑

i=1
cik−1xk−1

= 0 + c′1x + c′2x2 + · · ·+ c′k−1xk−1.

In the end, we get a secret-shared zero JzeroK. The coefficients are unknown to
everyone as each CPt only knows its own addends (cti

, i ∈ {1, k − 1}). Hence, the
shares are only known to their holders. Notice that this part of the protocol does
not depend on the value we want to reshare and so it can be precomputed during
the offline phase. It is also independent of the data type to use this for, as zero is
represented the same way for booleans, unsigned and signed integers. Complexity-
wise, secret-sharing a zero takes one round and n(n − 1)b bits of communication
between CPs.

Adding zero. Once we have a share for JzeroK, we can simply locally add it to
our share of the secret value JsK. In the following g represents the polynomial for
secret-shared zero, f for JsK and h for Js′ = s + 0K.

g(x) = 0 + c′1x + c′2x2 + · · ·+ c′k−1xk−1

f(x) = s + cf 1x + cf 2x2 + · · ·+ cf k−1xk−1

h(x) = g(x) + f(x)
= 0 + s + c′1x + cf 1x + cf 2x2 + c′2x2 + · · ·+ c′k−1xk−1 + cf k−1xk−1

= s + c′′1x + c′′2x2 + · · ·+ c′′k−1xk−1.

The result represents the same secret s with different coefficients. These coefficients
are unknown to all CPs as the coefficients of a secret-shared zero are unknown.
This part of the protocol also clearly works on all data types, but JzeroK must be
secret-shared over the same field as is JsK, otherwise we might end up with a different
secret value. Say we have k = n = 2, s = 10 and we share zero as an 8-bit unsigned
integer, then the following polynomials could be created with calculations for shares

g(x) = 0 + 200x

g(1) = 200
g(2) = 400 mod 251 = 149

f(x) = 10 + 3x

f(1) = 13
f(2) = 16

h(1) = 213
h(2) = 165.

26 4. BASIC PROTOCOLS

Now, depending on the type of s and s′, we get

for 8-bit values

213 = s′ + c (mod 251)
165 = s′ + 2c (mod 251)
48 = −c (mod 251)

c = 203
s′ = 10

for 16-bit values

213 = s′ + c (mod 65521)
165 = s′ + 2c (mod 65521)
48 = −c (mod 65521)

c = 65473
s′ = 261 6= 10.

Algorithm 5 summarises the protocol for resharing a secret-shared value. As the
second part – adding zero – does not require any communication, the total complexity
is one round and n(n−1)b bits of data is transferred between computing parties. There
are multiple reasons, why we might need to reshare our values, for instance before
declassifying a value, as otherwise reusing that share somewhere else leaks information.
For more information on the importance of resharing, see [Bog13, BLLP14]

Algorithm 5: Protocol for resharing a classified value Reshare(JsK)
Input: JsK
Result: Js′K with different shares, where s = s′

1 foreach computing party CPt do
2 Classify(0) // keeps gt(t) to oneself
3 Receive shares gi(t) from other CPs
4 Js′Kt = JsKt +

∑n
i=1 gi(t)

4.3 Declassification

After calculating a function using SMC on our secret-shared data, we may want to
declassify the result. This result is also secret-shared with Shamir’s secret sharing
scheme. To reconstruct the secret, we first reshare the value and then everyone
reveals their share. Published shares can be combined together using polynomial
interpolation, see Section 2.1. In the formulae (2.1) and (2.2), ti refers to the partici-
pating CPs node numbers. Algorithm 6 describes the protocol for reconstructing a
secret value.

This protocol has two rounds, however as mentioned before reshare can be pre-
computed and so we have only one online round. Communication costs between CPs
and RP are kb bits. Resharing required n(n− 1)b bits, however we only need the
reshared shares for our k participating CPs so we get the cost k(k − 1)b instead for
the offline phase.

4.3. DECLASSIFICATION 27

Algorithm 6: Protocol for reconstructing the secret Declassify(JsK)
Input: JsK, threshold k, participating CPs node numbers ti ∈ {1, . . . , n}
Result: Secret s

1 foreach computing party CPti do
2 Js′K = Reshare(JsK)
3 CPti

sends Js′Kti
to RP

4 RP calculates s =
∑

ti
Js′Kti

bti

If we want to use declassification inside other protocols so that all CPs know
the value, then the RP (one of the CPs can act as the RP) sends the values back,
i.e. we would have two rounds and kb + nb. If we prioritise minimising the round
count, then k CPs can send their values to everyone and then all CPs reconstruct
themselves. This would lead to one round, but (n − 1)kb communication cost. It
would be possible to do load balancing and have k−1 previous CPs send their shares,
however in that case we need to reshare all the shares and offline communication
cost would be n(n− 1)b.

Booleans as 8-bit unsigned integers run the same algorithm. Signed integers, on
the other hand, require some post-processing. More precisely, we revert, what we did
in Algorithm 4. After declassification, if s > p

2 , i.e. it is a negative value represented
as a large positive one, we subtract p, see Algorithm 7.

Algorithm 7: Protocol for declassifying a signed integer
Input: Prime p, JsK
Result: Signed secret value s

1 RP runs u = Declassify(JsK)
2 RP calculates:
3 if u < p

2 then
4 s = u
5 else
6 s = u− p

Chapter5Arithmetic protocols

In this section, we shall give protocols for addition, subtraction and multiplication.
They will be described for unsigned integers, however they can be used to implement
boolean arithmetic, as booleans were internally 8-bit unsigned integers. Signed
integers also work without any extra effort due to their underlying representation.

5.1 Addition and subtraction with a public value

We can just add the public value to, or subtract from, each share. This protocol, see
Algorithm 8, is done locally. We can see the additive inverse as the secret-shared
value subtracted from zero, i.e. −JsK = 0− JsK

Algorithm 8: Addition of a public value JsK + v (subtraction JsK− v)
Input: JsK, public value v
Result: JrK, where r = s + v (subtraction r = s− v)

1 foreach computing party CPt do
2 compute JrKt = JsKt + v // subtraction JrKt = JsKt − v

Theorem 1. The addition and subtraction of a public value protocols in Algorithm 8
are correct.

Proof. For correctness, we need to show that r = s+v and r = s−v, correspondingly.
Let f(x) denote the polynomial for shares of s.

g(x) = f(x) + v = s + v + c1x + c2x2 + · · ·+ ck−1xk−1

g(x) = f(x)− v = s− v + c1x + c2x2 + · · ·+ ck−1xk−1

The polynomial g(x) clearly represents shares of r and even the coefficients have not
changed.

29

30 5. ARITHMETIC PROTOCOLS

Theorem 2. The addition and subtraction of a public value protocols in Algorithm 8
are perfectly simulatable against a passive adversary.

Proof. As there is no communication, the protocol run is perfectly simulatable.
But the output shares depend on the input shares, hence it is not universally
composable.

5.2 Multiplication with a public value

We can just locally multiply each share with the public value, see Algorithm 9.

Algorithm 9: Multiplication with a public value vJsK
Input: JsK, public value v
Result: JrK, where r = vs

1 foreach computing party CPt do
2 compute JrKt = JsKtv

Theorem 3. The multiplication with a public value protocol in Algorithm 9 is
correct.

Proof. For correctness, we need to show that r = vs. Let f(x) denote the polynomial
for shares of s.

g(x) = f(x) · v = sv + vc1x + vc2x2 + · · ·+ vck−1xk−1

= sv + c′1x + c′2x2 + · · ·+ c′k−1xk−1,

The coefficients are changed for all shares, but we can see that polynomial g(x)
represents the Shamir secret-shared sv.

Theorem 4. The multiplication with a public value protocol in Algorithm 9 is
perfectly simulatable against a passive adversary.

Proof. Similarly to Theorem 2, the protocol is perfectly simulatable, but not univer-
sally composable.

5.3 Addition and subtraction for two shared values

This simple local protocol is given in Algorithm 10.

Theorem 5. The addition and subtraction protocols in Algorithm 10 are correct.

5.4. MULTIPLICATION OF TWO SHARED VALUES 31

Algorithm 10: Addition of two secret values JqK + JrK (subtraction JqK− JrK)
Input: JqK, JrK
Result: JsK, where s = q + r (subtraction s = q − r).

1 foreach computing party CPt do
2 compute JsKt = JqKt + JrKt // subtraction JsKt = JqKt − JrKt

Proof. For correctness, we need to show that s = q + r and s = q− r correspondingly.
Let fq(x) denote the polynomial for shares of q and fr(x) for shares of r.

fq(x) = q + cq1x + cq2x2 + · · ·+ cqk−1xk−1

fr(x) = r + cr1x + cr2x2 + · · ·+ crk−1xk−1

g(x) = fq(x) + fr(x) = q + r + cq1cr1x + cq2cr2x2 + · · ·+ cqk−1crk−1xk−1

= q + r + c′1x + c′2x2 + · · ·+ c′k−1xk−1

Again the coefficients are different, but g(x) represents the secret-shared q + r.
Subtraction works similarly.

Theorem 6. The addition and subtraction protocols in Algorithm 10 are perfectly
simulatable against a passive adversary.

Proof. Similarly to Theorem 2, the protocol is perfectly simulatable, but not univer-
sally composable.

5.4 Multiplication of two shared values

Let fq(x) denote the polynomial for shares of q and fr(x) for shares of r. If we simply
multiply the shares locally, we end up with a secret-shared polynomial fqr, where
fqr(0) = qr, but the degree is 2(k − 1):

fqr(x) = fq(x)fr(x)
= (q + cq1x + cq2x2 + · · ·+ cqk−1xk−1)(r + cr1x + cr2x2 + · · ·+ crk−1xk−1)
= qr + (qcr1 + rcq1)x + (qcr2 + rcq2)x2 + · · ·+ (qcrk−1 + rcqk−1)xk−1

+ (cq1x + cq2x2 + · · ·+ cqk−1xk−1)(cr1x + cr2x2 + · · ·+ crk−1xk−1)
= qr + c′1x + c′2x2 + ... + c′2(k−1)x

2(k−1).

We need to somehow reduce the result to a polynomial with degree k−1, as otherwise
the secrets are no longer using k-out-of-n, but 2k-out-of-n threshold scheme. This
is the reason why multiplication of two shares cannot be done locally. Note also
that the polynomial we got is not a random one, hence we also need to perform

32 5. ARITHMETIC PROTOCOLS

randomization. Gennaro, Rabin and Rabin [GRR98] showed how we can achieve
both in a single step. If we had a trusted entity, we could use the Lagrange’s formula
to declassify the multiplication result,

qr = fqr(0) =
n∑

i=1
fqr(ti)bi,

and then secret-share it to get shares for a polynomial with degree k − 1,

JqK · JrK = Classify(fqr(0)).

Notice that we need to have at least 2k − 1 participants, i.e. 2k − 1 ≤ n, to get
something useful from fqr. We can change the order of operations to eliminate the
need for a trusted entity. Each computing party ti first creates a random polynomial

fqri(x) = fqr(ti)bi + c1ix + c2ix
2 + ... + ck−1ix

k−1,

then shares it to other CPs, i.e. sends fqri
(x) to CPx. Finally, the CPs add all

their shares together. The full protocol is described in Algorithm 11. Multiplication
consists of one round and the only network usage comes from every CP running the
classification protocol. In total, the communication cost is n(n− 1)b bits.

Algorithm 11: Multiplication of two secret values JqK · JrK
Input: JqK, JrK
Result: JsK, where s = qr

1 foreach computing party CPt do
2 JzKt = JqKtJrKtbi

3 Classify(JzKt) // keeps fqrt
(t) to oneself

4 Receive shares fqri(t) from other CPs
5 JsKt =

∑
fqri(t)

Theorem 7. The multiplication protocol in Algorithm 11 is correct.

Proof. For correctness, we need to show that s = qr. The sum calculated as the
result is

n∑
i=1

fqri(x) =
n∑

i=1
(fqr(ti)bi + c1ix + c2ix

2 + ... + cnix
k−1)

=
n∑

i=1
fqr(ti)bi +

n∑
i=1

c1ix +
n∑

i=1
c2ix

2 + ... +
n∑

i=1
ck−1ix

k−1

= qr + c′1x + c′2x2 + ... + c′k−1xk−1.

The polynomial fqr(x) clearly represents shares of qr.

5.5. BOOLEAN ARITHMETIC 33

Theorem 8. The multiplication protocol in Algorithm 11 is secure against a passive
adversary.

Proof sketch. Algorithm 11 is symmetric for all the parties, hence we only need to
view one set of corrupt computing parties CPc1 , CPc2 , ..., CPck−1 (there were at most
k − 1 corrupt CPs). In total, the adversary sees values fqri

(t) for every i ∈ {1, ..., n}
and t ∈ {c1, ..., ck−1}, which are outputs from the classification algorithm and, hence,
are uniformly distributed and independent of the private inputs (shares of q and
r). We can build a perfect simulator by generating uniformly distributed values and
using them as honest parties’ outputs. The protocol is also universally composable
as simulator does not rewind adversary and input and output shares are independent.
Further details are out of the scope of this thesis.

5.5 Boolean arithmetic

As booleans are represented as 8-bit unsigned integers, we can use the same algorithms
for addition and multiplication.

Negation
¬JbK = 1− JbK

Using only subtraction makes negation a local operation.

Conjunction
JaK ∧ JbK = JaK · JbK

Disjunction
JaK ∨ JbK = JaK + JbK− JaK · JbK

Exclusive disjunction

JaK⊕ JbK = JaK + JbK− 2(JaK · JbK)

Conjunction, disjunction and exclusive disjunction use multiplication and some also
local operations such as addition or multiplying with a public value. Using the
multiplication protocol brings the complexity to one round and communication cost
up to n(n− 1)b = 8n(n− 1).

Theorem 9. The boolean arithmetic operations are correct.

34 5. ARITHMETIC PROTOCOLS

Proof. Correctness follows directly from the operations definitions and correctness of
addition, subtraction and multiplication shown before.

Theorem 10. The boolean arithmetic operations are secure against a passive
adversary.

Proof sketch. All the sub-protocols used are perfectly simulatable, hence the main
protocols are also perfectly simulatable. Conjunction is just one multiplication, hence
it is universally composable. Disjunction and exclusive disjunction protocols contain
a universally composable multiplication in the output share calculation. The shares
of JcK = JaK · JbK are uniformly distributed values, that are independent from JaKt

and JbKt. Therefore, the disjunction result for CPt becomes

JcKt = JaKt + JbKt − JrKt = JaKt + Jr′Kt = Jr′′Kt

where Jr′Kt, Jr′′Kt are uniformly distributed and independent from JaKt and JbKt. The
actual proof is more detailed and involves explicit construction of the simulator.
However, these technical details are out of the scope of this thesis.

Similarly, for exclusive disjunction, the resulting share for CPt is

JcKt = JaKt + JbKt − 2JrKt = JaKt + JbKt − Jr′Kt = JaKt + Jr′′Kt = Jr′′′Kt

where Jr′Kt, Jr′′Kt, Jr′′′Kt are uniformly distributed and independent from JaKt and
JbKt. Therefore, disjunction and exclusive disjunction are universally composable.

Chapter6Comparison operations

The algorithms for equality and less-than use various sub-protocols, which may
contain further sub-protocols. Figure 6.1 shows the dependencies between the
building blocks for comparison operations.

LT

LTHalfPrime

LSB

BLT

EQ

RandomBitwise

prefixAND

⟦a⟧⨁⟦b⟧ ⟦a⟧∧⟦b⟧

Conjunct

RandomBit

⟦a⟧·⟦b⟧ Random Declassify

Figure 6.1: Protocol hierarchy

In the following protocols, let ai represent the ith bit of a, i.e. a =
∑`−1

i=0 2iai,
where ` = b is the size of a in bits. Finding the ith bit for public values is trivial. Let

35

36 6. COMPARISON OPERATIONS

the vector of a’s bits JaK = {Ja`−1K, ..., Ja0K} represent a bitwise shared value. We
can get bitwise secret-shared values by running the bit decomposition protocol (see
Section 6.1.7) or bitwise sharing of a random number (see Section 6.1.8).

6.1 Sub-protocols

6.1.1 Secret-sharing a random value

Computing parties want to create a random value that no-one knows, but which is a
Shamir secret shared value, i.e. k parties can reconstruct it. This can be done using
Algorithm 12. First, every CP creates a random value si ← F and classifies that,
then all CPs add their random shares together.

Algorithm 12: Secret-sharing a random value Random()
Input: Finite field F
Result: JrK, where r ∈ F is uniformly distributed

1 foreach computing party CPt do
2 st

u← F
3 Classify(st) // keeps ft(t) to oneself
4 Receive shares fi(t) from other CPs
5 JrKt =

∑
fi(t)

This protocol cannot be used for booleans as it does not guarantee the secret
shared value to be in {0, 1}, see Section 6.1.2 for sharing a random bit. It does work
for signed integers as all the functionality used (classification, addition) we have
already described. Secret-sharing a random value requires one computation round
using one classification per CP . This results in total communication cost of n(n− 1)b
bits. As there are no inputs, random number sharing can be done during the offline
phase.

Theorem 11. The sharing a random value protocol in Algorithm 12 is correct.

Proof. To prove correctness, we need to show that r is a uniformly distributed
secret-shared value. During the classification step, each CPt creates a polynomial ft,

f1(x) = s1 + c11x + c12x2 + · · ·+ c1k−1xk−1

f2(x) = s2 + c21x + c22x2 + · · ·+ c2k−1xk−1

...

fn(x) = sn + cn1x + cn2x2 + · · ·+ cnk−1xk−1.

6.1. SUB-PROTOCOLS 37

Later, adding their own and all the random shares received together, we get

f(x) =
n∑

i=1
fi(x) =

n∑
i=1

si +
n∑

i=1
ci1x +

n∑
i=1

ci2x2 + · · ·+
n∑

i=1
cik−1xk−1

=
n∑

i=1
si + c′1x + c′2x2 + · · ·+ c′k−1xk−1.

The resulting polynomial f(x) clearly represents shares for a secret-shared value
J
∑n

i=1 siK. Adding together uniformly distributed values gives us a uniformly dis-
tributed value.

Theorem 12. The sharing a random value protocol in Algorithm 12 is secure
against a passive adversary.

Proof sketch. This sum J
∑n

i=1 siK is unknown to everyone, as each computing party
only knows its own addend si. Hence, no-one knows the value of r. No matter who
the corrupted parties are, the adversary only sees outputs from the classification
algorithm and hence uniformly distributed values. We can build a perfect simulator
by generating uniformly distributed values. As there are no input shares to depend
on and each CPt has their own uniformly distributed addend ft(t) that no-one else
knows in their resulting share, the protocol is universally composable.

6.1.2 Sharing a random bit

A straightforward way for getting a sharing of a random bit would be for all CPs to
share a random bit and then perform exclusive disjunction over those bits. There
is, however a more efficient way described by Damgård et al. [DFK+06]. We start
by randomly sharing a value JrK. Next, we compute JrK2 using the multiplication
protocol and declassify it. If r2 = 0 we are unlucky and have to start over, otherwise
we find its square root r′ =

√
r2, where 0 < r′ < p

2 . Finally, we find the random bit
by calculating 2−1(r′−1

r + 1). The protocol is given in Algorithm 13.

In the complexity analysis, we see secret-sharing of a random value, multiplication
and declassification. Note, that we do not need to reshare in the Declassify algo-
rithm, as multiplication is universally composable. Excluding the small probability
of 1
|F | having to start over, we get two rounds and communication cost of

n(n− 1)b + n(n− 1)b + k(n− 1)b = (2n + k)(n− 1)b.

As there are no inputs, these random bits can be precomputed.

Finding the square root x =
√

x2 mod p. For simplicity ,we look at only the case
where p mod 4 = 3. This works for uint8 and if we need to create bits for bigger

38 6. COMPARISON OPERATIONS

types, then we can just convert up. Note, that, for complexity, we ignore this and
assume we have an algorithm for finding square roots for any data type. For the
restricted case, Cohen [Coh93] provides a simple formula

x = a(p+1)/4.

Since we need x < p
2 , then if we get p

2 < x < p we can use −x mod p to get the x in
the required range, i.e. we use p− x to get the right value.

Algorithm 13: Sharing a random bit RandomBit()
Input: Finite field F
Result: JbK, where b ∈ {0, 1} is a uniformly distributed bit

1 repeat
2 JrK = Random()
3 r2 = Declassify(JrK · JrK)
4 until r2 6= 0
5 r′ =

√
r2 // where 0 < r′ < p

2
6 JbK = 2−1(r′−1JrK + 1)

Theorem 13. The sharing a random bit protocol in Algorithm 13 is correct.

Proof. To prove correctness, we need to show that r is a uniformly distributed
secret-shared bit. We have two cases:

r′ =
{

r if r < p
2

−r if r ≥ p
2 .

The result b = 2−1(r′−1
r + 1) is then

b =

 2−1(r−1r + 1) = 2−1(1 + 1) = 1 if r <
p

2
2−1((−r)−1

r + 1) = 2−1(−1 + 1)= 0 if r ≥ p

2 ,

hence b is in {0, 1}. Applying addition and multiplication with a (non-zero) public
value to a uniformly distributed value (r) results in a uniformly distributed value.
Uniformity of r additionally ensures that both cases from above are equally likely.

Theorem 14. The sharing a random bit protocol in Algorithm 13 is secure against
a passive adversary.

Proof sketch. First, we need to show that the published values do not leak any
information. We have two cases. Either the declassification result r2 = 0, in which

6.1. SUB-PROTOCOLS 39

case we forget r and go to the beginning of the protocol, therefore there is no
information to be leaked. In the other case r2 6= 0, we learn that r = ±

√
r2 is

either r′ or −r′, which is equally likely. We later get the final output bit based on
which one of those it happened to be, as we only need this one bit of unknown and
multiplication is universally composable, the declassification does not leak anything.

Secondly, no-one knows the value of b, because no-one knows r (Theorem 12).
Thirdly, after the loop there are only local operations and, in repeat, all the sub-
protocols used are perfectly simulatable. Hence, the main protocol is perfectly
simulatable. As there are no input shares, random is universally composable and
declassification does not leak anything, the protocol is universally composable.

6.1.3 Conjunction of bits

The simplest, but not very efficient way to find the conjunction is to just conjunct
bits one by one, see Algorithm 14. Disjunction or exclusive disjunction over all bits
can be performed similarly.

Algorithm 14: Conjunction of bits Conjunct(JaK)
Input: Bitwise shared value JaK
Result: JbK, where b ∈ {0, 1} is the conjunction of a’s bits, i.e. b = ∧`−1

i=0ai

1 JbK = Ja0K
2 for i = 0 to `− 1 do
3 JbK = JbK ∧ JaiK

It clearly works for any data type, however it would be unreasonable to run it
on booleans, as all the bits except the least significant bit are zero. Conjunction
is implemented via multiplication. This gives our naive solution the complexity of
`− 1 = b− 1 rounds and (b− 1)n(n− 1)b ≈ n(n− 1)b2 bits to transfer. It is trivial
to make this protocol better by doing operations in parallel and thus having log2 `

rounds with the same communication cost.

Theorem 15. The conjunction of bits protocol in Algorithm 14 is correct.

Proof. The result of this algorithm gives us

b = (((a0 ∧ a1) ∧ a2) ∧ · · · ∧ a`−2) ∧ a`−1

= a0 ∧ a1 ∧ a2 ∧ · · · ∧ a`−2 ∧ a`−1.

which is clearly conjunction of all bits.

40 6. COMPARISON OPERATIONS

Theorem 16. The conjunction of bits protocol in Algorithm 14 is secure against a
passive adversary.

Proof. Conjunction is universally composable, hence the conjunction of bits is also
universally composable.

6.1.4 Prefix-AND

The simplest, but not very efficient way to find prefix-AND is to just conjunct bits
one by one, keeping the intermediate values, see Algorithm 15. Prefix-OR and
prefix-XOR work analogically. Complexity is similar to conjunction of bits, b − 1
rounds and n(n− 1)b(b− 1) ≈ n(n− 1)b2 bits for communication.

Algorithm 15: Prefix-AND of bits PrefixAND(JaK)
Input: Bitwise shared value JaK
Result: JbK, where bi ∈ {0, 1} and bi = ∧`−1

j=i aj for all i < `

1 Jb`−1K = Ja`−1K
2 for i = `− 2 to 0 do
3 JbiK = Jbi+1K ∧ JaiK

Theorem 17. The prefix-AND protocol in Algorithm 15 is correct.

Proof. The algorithm gives us

b`−1 = a`−1

b`−2 = b`−1 ∧ a`−2

= a`−2 ∧ a`−1

b`−3 = a`−3 ∧ a`−2 ∧ a`−1

...

b2 = a2 ∧ · · · ∧ a`−2 ∧ a`−1

b1 = b2 ∧ a1

= a1 ∧ a2 ∧ · · · ∧ a`−2 ∧ a`−1

b0 = b1 ∧ a0

= a0 ∧ a1 ∧ a2 ∧ · · · ∧ a`−2 ∧ a`−1,

which is clearly exactly what we want.

Theorem 18. The prefix-AND protocol in Algorithm 15 is secure against a passive
adversary.

6.1. SUB-PROTOCOLS 41

Proof. Similarly to Theorem 16, the protocol is universally composable thanks to
the composition of sub-protocols.

6.1.5 Less-than for bitwise secret-shared values

We have two bitwise secret-shared values JaK and JbK and we want to compute a
?
< b.

Idea of this protocol is to find the most significant different bit. This can be done
by, first, finding the exclusive disjunction. Then prefix-OR on the result and then
subtracting each bit from the previous one. For example, e only has set the most
significant bit that a and b differ by. Knowing that bit, we can multiply it with one
of the values and determine whether that bit is set.

equation bits
a 00001011
b 00001101

c = a⊕ b 00000110
di = ∨`−1

j=i cj 00000111
ei = di − di+1 00000100

equation bits
b 00001101
e 00000100

yi = ai · bi 00000100∑
yi 1

The Algorithm 16 is only designed for unsigned integers. With booleans, it simply
does not make sense and it would be enough to compare only the least significant bit.
For signed integers, it would be easier with the modified two’s complement version,
but it is possible to make it work for centering around zero too. However, as we did
not need bitwise less-than on signed integers in practice, we omit the details.

Algorithm 16: Less-than for bitwise secret-shared values BLT(JaK, JbK)
Input: Bitwise shared values JaK, JbK

Result: JxK, where x ∈ {0, 1} and x = (a
?
< b)

1 JcK = JaK⊕ JbK
2 JdK = PrefixOR(JcK)
3 Je`−1K = Jd`−1K
4 JeiK = JdiK− Jdi+1K for all i < `− 1
5 JxK =

∑`−1
i=0(JeiK · JbiK)

Analysing complexity, we can go line by line. First, the calculation of c requires
` = b parallel executions of the exclusive disjunction protocol, which gives us one
round and n(n− 1)b2 bits to transfer. Second, we use prefix-OR for d, gaining b− 1
rounds and n(n− 1)b(b− 1) communication cost. After some local operations, we
perform multiplication in parallel over all bits and get another round and n(n− 1)b2.

42 6. COMPARISON OPERATIONS

In total, that makes b + 1 rounds and

n(n− 1)b2 + n(n− 1)b(b− 1) + n(n− 1)b2 = n(n− 1)b(3b− 1) ≈ 3n(n− 1)b2

bits of communication.

Theorem 19. The bitwise less-than protocol in Algorithm 16 is correct.

Proof. We have three cases: a < b, a > b or a = b, see corresponding Tables 6.1, 6.2
and 6.3. Assume, that x is the most significant different bit if the values differ. If
the columns are merged, then there has to be the same value in that position in the
variables. The symbol ? denotes either 1 or 0. Clearly, only in the case of a < b, we
have a bit set in eb and hence x = 1.

Bit in position
Variable (`− 1) (`− 2)

...

1 0
a ? ? ? ?
b

c 0 0 0 0
d 0 0 0 0
e 0 0 0 0
eb 0 0 0 0

Table 6.1: Bitwise less-than execution for a = b

Bit in position
Variable (`− 1) (`− 2)

...

(x + 1) x (x− 1)

...

1 0
a ? ? ? 0 ? ? ?
b 1 ? ? ?
c 0 0 0 1 ? ? ?
d 0 0 0 1 1 1 1
e 0 0 0 1 0 0 0
eb 0 0 0 1 0 0 0

Table 6.2: Bitwise less-than execution for a < b

Theorem 20. The bitwise less-than protocol in Algorithm 16 is secure against a
passive adversary.

6.1. SUB-PROTOCOLS 43

Bit in position
Variable (`− 1) (`− 2)

...

(x + 1) x (x− 1)

...

1 0
a ? ? ? 1 ? ? ?
b 0 ? ? ?
c 0 0 0 1 ? ? ?
d 0 0 0 1 1 1 1
e 0 0 0 1 0 0 0
eb 0 0 0 0 0 0 0

Table 6.3: Bitwise less-than execution for a > b

Proof sketch. All the sub-protocols are perfectly simulatable, hence this protocol
is too. It is also universally composable, as the resulting shares come from the
summation of universally composable multiplication protocol outputs.

6.1.6 Bit composition

Sometimes, we have a bitwise secret-shared value and we want to get the secret-shared
value itself. We can do that for unsigned integers by locally calculating

r =
`−1∑
i=0

2iri,

see Algorithm 17. Boolean bit composition would mean r = r0. For signed integers
it simply works, because internally we have them as unsigned integers. For example,
for centering around zero representation, if the summation of bits would add up to
more than bp

2c, then it is seen as a negative value and the declassification for signed
integers (see Algorithm 7) would subtract p.

Algorithm 17: Bit composition BitComposition(JaK)
Input: Bitwise shared value JaK
Result: JaK, where ai ∈ {0, 1} represent the bits of a

1 JaK =
∑`−1

i=0 2iJaiK

Theorem 21. The bit composition protocol in Algorithm 17 is correct.

Proof. Correctness follows directly from the correctness of multiplication with public
value (Theorem 3) and addition (Theorem 5).

Theorem 22. The bit composition in Algorithm 17 is perfectly simulatable against
a passive adversary.

44 6. COMPARISON OPERATIONS

Proof. Similarly to Theorem 2, no communication but the outputs depend on the
input shares, therefore the protocol is only perfectly simulatable.

6.1.7 Bit decomposition

We have a secret-shared value JaK and we want to get its secret-shared bits JaK =
{Ja`−1K, ...Ja0K}, where ai denotes the i-th bit of a, i.e. a =

∑`−1
0 2iai. During this

work we did not implement the bit decomposition protocol BitDecomposition(JaK),
however we use it in some of the algorithms to show alternatives.

6.1.8 Bitwise sharing of a random number

We generate each bit separately in parallel and check that it is in bounds, i.e. compute
bitwise less-than r < p, reveal it. If it is false, then retry. The protocol is given in
Algorithm 18. It works for both signed and unsigned integers as both of them have
the same number of bits and internal representation. To create random booleans
we would simply use the RandomBit protocol. We can use bit composition from
Section 6.1.6 to also find JrK, which does not change the complexity.

There are no input shares, so we can generate bitwise random numbers during the
offline phase. Complexity-wise, we ignore the 1− |Zp|

|Z2b | probability for reruns. We do
not need to reshare in declassify as c comes from the universally composable bitwise
less-than protocol. There are the first two rounds, where we create the random bits
in parallel and b + 1 rounds for bitwise less-than. The declassification adds another
round, which makes total b + 4. Data communication adds up to

(2n + k)(n− 1)b2 + n(n− 1)b(3b− 1) + k(n− 1)b
= (n− 1)b((2n + k)b + n(3b− 1) + k)
= (n− 1)b(5nb + kb− n + k)
≈ (n− 1)b(5nb + kb) ≈ (n− 1)(5n + k)b2.

Algorithm 18: Bitwise sharing of a random number RandomBitwise()
Input: Prime p, bit-length `
Result: JrK, where r is uniformly distributed, ri ∈ {0, 1} and r =

∑`−1
i=0 2iri

1 repeat
2 JriK = RandomBit() for all i < `
3 JcK = BLT(JrK, p)
4 Declassify(JcK)
5 until c = 1

Theorem 23. The bitwise sharing of a random number protocol in Algorithm 18
is correct.

6.1. SUB-PROTOCOLS 45

Proof. If we would just create random bits for each position, then we would clearly
get a uniformly distributed number in Z2` . On that uniformly distributed number,
we use rejection sampling and hence get a uniformly distributed value in Zp.

Theorem 24. The bitwise sharing of a random number protocol in Algorithm 18
is secure against a passive adversary.

Proof sketch. Firstly, lets look at the declassification. As there are no input shares
it could only leak information about the output shares. As a result from bitwise
less-than protocol c is a boolean value. We can ignore the case, when it is false, as
then we would throw away all the work we did and start from the beginning. If c = 1
we learned that r < p, which does not say anything about r ∈ Zp as the maximum
value r can have is p− 1.

All the sub-protocols are perfectly simulatable, hence this protocol is too. The
output JrK comes from a universally composable protocol and is used only in a
universally composable protocol, hence this protocol is universally composable.

6.1.9 Least significant bit

The idea for least significant bit came from [NO07], see Algorithm 19, where

c0 ⊕ Jr0K =
{

Jr0K if c0 = 0
1− Jr0K if c0 = 1.

Algorithm 19: Least significant bit LSB(JaK)
Input: JaK
Result: JbK, where b ∈ {0, 1} and b = a0

1 JrK = RandomBitwise()
2 JrK = BitComposition(JrK)
3 JcK = JaK + JrK
4 c = Declassify(JcK)
5 JxK = c0 ⊕ Jr0K
6 JyK = BLT(c, JrK)
7 JbK = JxK⊕ JyK

It works on the internal representation and hence can be used for all data
types. Communication-demanding sub-protocols are bitwise random number sharing,
declassification, bitwise less-than and exclusive disjunction. Bitwise random number
sharing and resharing from declassify can be done in parallel during precomputation.

46 6. COMPARISON OPERATIONS

This gives us a round count of b + 4 and data communication cost of

(n− 1)b(5nb + kb− n + k) + k(k − 1)b
= (5n2b + nkb− n2 + nk − 5nb− kb + n− 2k + k2)b
= ((5n2 + nk − 5n− k)b− n2 + nk + k2 + n− 2k)b
= ((5n + k)(n− 1)b− n2 + nk + k2 + n− 2k)b
≈ (n− 1)(5n + k)b2.

In the online phase, we have 1 + (b + 1) + 1 = b + 3 rounds and communication

k(n− 1)b + n(n− 1)b(3b− 1) + n(n− 1)b
= (n− 1)(k + 3nb)b
≈ 3n(n− 1)b2.

Theorem 25. The least significant bit protocol in Algorithm 19 is correct.

Proof. For correctness, we need to show, that b = a0. The least significant bit of
c = a + r is

c0 =
{

a0 ⊕ r0 if c ≥ r

a0 ⊕ r0 ⊕ 1 if c < r,

as only an overflow would make c < r true, in which case p is subtracted from c. As
p is odd, it flips the least significant bit. Then we get

b = x⊕ y = c0 ⊕ r0 ⊕ (c
?
< r)

=
{

c0 ⊕ r0 ⊕ 0 if c ≥ r

c0 ⊕ r0 ⊕ 1 if c < r

=
{

a0 ⊕ r0 ⊕ r0 if c ≥ r

(a0 ⊕ r0 ⊕ 1)⊕ r0 ⊕ 1 if c < r

= a0.

Theorem 26. The least significant bit protocol in Algorithm 19 is secure against a
passive adversary.

Proof sketch. We need to show, that declassification does not leak any information.
The value r comes from a universally composable RandomBitwise, but JrK and JrK
depend on each other. We declassify a + r, where r is a random uniformly distributed
value, hence a + r is a random uniformly distributed value. Unless we reveal r later,

6.1. SUB-PROTOCOLS 47

we are safe. The only place r is later used non-locally is in the bitwise less-than
protocol, which is universally composable and therefore does not leak information
about r. Further details are out of the scope of this thesis.

All the sub-protocols used are perfectly simulatable and the resulting shares come
from universally composable exclusive disjunction, hence the protocol is universally
composable.

6.1.10 Comparison to half prime for unsigned integers

Something multiplied with two always has a least significant bit zero. However, if
there was an overflow, then the least significant bit will be one as p was subtracted.
Hence, we can find (a < p

2) = LSB(2a mod p). We only need to find the least
significant bit. Therefore, the round and communication complexities are equal.
Boolean values are clearly always less than half of the prime. For signed integers, the
Algorithm 20 finds the comparison to their internal representation. That is handy
for the centering around zero representation, where it shows if the value is positive
or negative.

Algorithm 20: Compare to half prime LTHalfPrime(JaK)
Input: JaK

Result: JbK, where b ∈ {0, 1} and b = (a
?
< p

2)
1 JbK = LSB(2JaK)

Theorem 27. The comparison to half prime protocol in Algorithm 20 is correct.

Proof. To prove correctness, we need to show that b is zero if a < p
2 and one otherwise.

We have two cases:

a ∈ {0, ...,
p− 1

2 } ⇐⇒ LSB(2a mod p) = LSB(2a) = 0

a ∈ {p− 1
2 + 1, ..., p− 1} ⇐⇒ LSB(2a mod p) = LSB(2a− p) = 1.

Theorem 28. The comparison to half prime protocol in Algorithm 20 is secure
against a passive adversary.

Proof. The least significant bit protocol is universally composable, hence this protocol
is universally composable too.

48 6. COMPARISON OPERATIONS

6.2 Equality

The first thing to notice about equality is that the problems JaK ?= JbK and JaK−JbK ?= 0
are equivalent. Hence, now we just need to check if the value is zero JzK ?= 0. Also,
we need to implement equality only on the underlying unsigned data type, as two
booleans or signed integers are equal iff their underlying unsigned values are equal.

6.2.1 Equality with a public result

Finding out equality to zero is easier, when the result can be public. We can share
a random value r using Algorithm 12 and multiply it with JzK. Now we declassify
JrK · JzK. This does not leak any information as r is an unknown value. If rz 6= 0,
then z 6= 0. Otherwise, either z and/or r was zero. We can now declassify r. As
the multiplication result was zero, we do not leak any information about z other
than z

?= 0. If we get r = 0, we just choose another random value and repeat the
algorithm, as we were unlucky and learned nothing (0z = 0). The protocol is given in
Algorithm 21 and its time complexity is probabilistic. We need to start over only if
our secret-shared random value happened to be zero. The value is uniformly chosen
from F , therefore the probability of going to the beginning of the loop is 1

|F | . Note,
that without revealing r, we could find equality with probability |F |−1

|F | (which can
be increased by performing it multiple times).

Complexity-wise, we again ignore the rerun probability. Therefore, we have a
random number sharing, multiplication and two declassifications in the worst case.
Note, that resharing is not needed in declassifications and so only random is generated
in the offline phase. For the online phase, we get three rounds and

n(n− 1)b + 2k(n− 1)b = (n + 2k)(n− 1)b

bits communication cost.

Theorem 29. The equality with a public result protocol in Algorithm 21 is correct.

Proof. To prove correctness, we need to show that e is true if a = b and false
otherwise. In the first case, z = 0, next rz = 0. Finally, when r 6= 0, which with
probably |F |−1

|F | happens on the first run (if not, then some later loop execution),
then true is returned. When a 6= b, we get z 6= 0 and rz 6= 0, which return false.
Multiplication can only result in zero, if either or the values are zero, because we do
not have zero divisors in our prime groups, e.g. for uin8 we do not have any values
that zr = 251.

Theorem 30. The equality with a public result protocol in Algorithm 21 is secure
against a passive adversary.

6.2. EQUALITY 49

Algorithm 21: Equality with a public result EQPublic(JaK, JbK)
Input: JaK, JbK
Result: e = (a ?= b)

1 JzK = JaK− JbK
2 while true do
3 JrK = Random()
4 if Declassify(JrK · JzK) 6= 0 then
5 return false
6 else if Declassify(JrK) 6= 0 then
7 return true

// Else we didn’t learn anything as 0z = 0

Proof sketch. Firstly, we need to show, that published values do not leak any informa-
tion except the result of equality testing. Since r is a uniformly distributed random
value and all operations are in a finite field, declassification of rz does not reveal
anything about z. Lets examine the case, when we reach the second declassification.
If a = b then rz = 0 otherwise if a 6= b it is a random field element. If r = 0 then
we learn nothing. If r 6= 0 then z = 0, which can hold only if a = b. Consequently
the distribution of published results can be efficiently simulated knowing only the
output a = b.

Subtraction is perfectly simulatable and the other sub-protocols used are univer-
sally composable, therefore this protocol leaks nothing beyond public outputs. Since
public outputs can be simulated by knowing the output, this protocol is universally
composable.

6.2.2 Equality with bit decomposition

Damgård et al. [DFK+06] describe one way to check if a value is zero by performing
a bit decomposition and then finding the conjunction of negations of all those bits
(or negation of bits disjunction), see Algorithm 22. The total complexity becomes
the added complexity of bit decomposition and disjunction of bits. As we did not
implement bit decomposition, this protocol is also not implemented in this work.

Theorem 31. The equality with bit decomposition protocol in Algorithm 22 is
correct.

Proof. To prove correctness, we need to show that e is one, if a = b and zero,

50 6. COMPARISON OPERATIONS

Algorithm 22: Equality with bit decomposition EQbd(JaK, JbK)
Input: JaK, JbK
Result: JeK, where e = (a ?= b)

1 JzK = JaK− JbK
2 JzK = BitDecomposition(JzK)
3 JeK = ¬Disjunct(JzK)

otherwise. In the first case,

a = b

z = 0
zi = 0 for all i < l

e = ¬ ∨`−1
i=0 (zi) = ¬ ∨`−1

i=0 (0) = ¬0 = 1.

When the values are not equal,

a 6= b

z 6= 0
∃zi 6= 0

e = ¬ ∨`−1
i=0 (zi) = ¬(... ∨ 1 ∨ ...) = ¬1 = 0.

6.2.3 Equality without bit decomposition

Performing bit decomposition is not very efficient for Shamir’s secret sharing. There-
fore, Nishide and Ohta [NO07] created a simpler algorithm by randomizing z and
checking if it is equal to the random value used. We start by sharing bits for a
random value JrK, then add it to JzK and declassify the result JcK. Next, we check
the equality of each bit for c and r. Finally, we perform conjunction over all those
bits. The protocol is given in Algorithm 23, where

(ci
?= JriK) =

{
JriK if ci = 1
1− JriK if ci = 0.

This protocol allows some work to be done offline, namely bitwise sharing of
a random number and resharing from declassify. As it is done offline, it is clearly
independent and can be done in parallel, making the round count max(b+4, 1) = b+4
and the communication cost (same as LSB, see Section 6.1.9)

(n− 1)b((5n + k)b− n + k) + k(k − 1)b
≈ (n− 1)(5n + k)b2.

6.2. EQUALITY 51

The online phase requires b− 1 + 1 = b rounds and the communication cost is

k(n− 1)b + n(n− 1)(b− 1)b = (n− 1)(k + nb− n)b ≈ (n− 1)nb2.

Algorithm 23: Equality without bit decomposition EQ(JaK, JbK)
Input: JaK, JbK, bit-length `

Result: JeK, where e = (a ?= b)
1 JzK = JaK− JbK
2 JrK = RandomBitwise()
3 JrK = BitComposition(JrK)
4 JcK = JzK + JrK
5 c = Declassify(JcK)
6 JxiK = (ci

?= JriK) for all i < `
7 JeK = Conjunct(JxK)

Theorem 32. The equality without bit decomposition protocol in Algorithm 23 is
correct.

Proof. To prove correctness, we need to show that e is one if a = b and zero otherwise.
In the first case

a = b

z = 0
c = z + r = r

xi = (ci
?= ri) = 1 for all i < l

e = ∧`−1
i=0(xi) = ∧`−1

i=0(1) = 1.

When the values are not equal

a 6= b

z 6= 0
c = z + r 6= r

xi = (ci
?= ri) for all i < l

∃(ci 6= ri)⇐⇒ ∃xi 6= 0
e = ∧`−1

i=0(xi) = ... ∧ 0 ∧ ... = 0.

Theorem 33. The equality without bit decomposition protocol in Algorithm 23 is
secure against a passive adversary.

52 6. COMPARISON OPERATIONS

Proof. All the sub-protocol are perfectly simulatable and the resulting shares come
from conjunction, which is universally composable, hence this protocol is universally
composable too.

6.3 Less-than

For less-than comparison, we can again use bit decomposition [DFK+06], but a
better option was discovered by Nishide and Ohta [NO07], who used comparison to
p
2 . For the boolean datatype, less-than comparison does not make sense, so we do
not consider it at all.

6.3.1 Less-than with bit decomposition

Once we have the bitwise sharing of values, we can simply use bitwise less than
comparison, see Algorithm 24. Total complexity becomes the added complexity of
two parallel bit decompositions and a bitwise less-than protocol. As we did not
implement bit decomposition, this protocol is also not implemented during this work.

Algorithm 24: Less-than with bit decomposition LTbd(JaK, JbK)
Input: JaK, JbK

Result: JeK, where e = (a
?
< b)

1 JaK = BitDecomposition(JaK)
2 JbK = BitDecomposition(JbK)
3 JeK = BLT(JaK, JbK)

Theorem 34. The less-than with bit decomposition protocol in Algorithm 24 is
correct for unsigned integers.

Proof. Correctness follows directly from correctness of the bitwise less-than protocol,
which gives us one iff a < b.

6.3.2 Less than without bit decomposition

We first find w = a < p
2 , x = b < p

2 and y = a − b < p
2 . Then it is possible to

calculate less-than, see Tables 6.4 and 6.5 for unsigned and signed values respectively.
Merged cells indicate equal value and question mark in the tables represents either
zero or one.

6.3. LESS-THAN 53

a < p
2 b < p

2 a− b < p
2 a < b

1 0 ? 1
0 1 ? 0

? 0 1
? 1 0

Table 6.4: Less-than for unsigned integers

a < p
2 b < p

2 a− b < p
2 a < b

1 0 ? 0
0 1 ? 1

? 0 1
? 1 0

Table 6.5: Less-than for signed integers in centered around zero representation

For unsigned integers, our formula becomes

e = w(1− x) + wx(1− y) + (1− w)(1− x)(1− y)
= 1− x− y + xy + wx + wy − 2wxy

= 1− x− y + xy + w(x + y − 2xy).

For signed integers,

e = (1− w)x + wx(1− y) + (1− w)(1− x)(1− y)
= 1− w − y + xy + wx + wy − 2wxy

= 1− w − y + xy + w(x + y − 2xy).

The full protocol is given in Algorithm 25. There are three parallel executions of
bitwise less-than protocol and then two multiplications. Sadly no work can be done
during the offline phase, but the online phase has b + 1 + 2 · 1 = b + 3 rounds. The
communication cost is

3n(n− 1)b(3b− 1) + 2n(n− 1)b = (9b− 1)n(n− 1)b ≈ 9n(n− 1)b2.

If we want to use this algorithm with signed integers in the modified two’s
complement representation, we need to check if the values a and/or b are in the range
{bp

2c+ 1, ..., bp
2c+ bd

2c}. To do that, we compare a and a + bd
2c to half of the prime p.

Table 6.6 shows how less-than can be calculated for that signed value representation,
however, as this is not our chosen representation, we omit further details.

54 6. COMPARISON OPERATIONS

Algorithm 25: Less than LT(JaK, JbK)
Input: JaK, JbK

Result: JeK, where e = (a
?
< b)

1 JwK = BLT(JaK, p
2)

2 JxK = BLT(JbK, p
2)

3 JyK = BLT(JaK− JbK, p
2)

4 JxyK = JxK · JyK
5 Jx′K = JxK // (signed integers Jx′K = JwK)
6 JeK = 1− Jx′K− JyK + JxyK + JwK · (JxK + JyK− 2JxyK)

a b

< 0 [0, p
2) (p

2 , bp
2c+ bd

2c] < 0 [0, p
2) (p

2 , bp
2c+ bd

2c] a− b < p
2 a < b

1 0 0 0 ? ? ? 1
0 1 0 1 ? ? ? 0
0 1 0 0 0 1 ? 1
0 0 1 ? ? 0 ? 0
1 0 0 1 0 0

0 10 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0

1 00 1 0 0 1 0
0 0 1 0 0 1

Table 6.6: Less-than for integers in modified two’s complement representation

Theorem 35. The less-than without bit decomposition protocol in Algorithm 25
is correct.

Proof. To prove correctness, we need to show that e is one if a < b and zero otherwise.
First lets examine the situation, where either a or b is larger than half of the prime,
but not both of them, i.e. w 6= x. Now, the result for unsigned integers is

e = 1− x− y + xy + w(x + y − 2xy)

=
{

1− x− y + xy = 0 if w = 0 and x = 1 i.e. a ∈ [p
2 , p), b ∈ [0, p

2)
1− y + wy = 1 if w = 1 and x = 0 i.e. a ∈ [0, p

2), b ∈ [p
2 , p).

6.3. LESS-THAN 55

The result for signed integers is

e = 1− w − y + xy + w(x + y − 2xy)

=
{

1− y + xy = 1 if w = 0 and x = 1 i.e. a ∈ (−p
2 , 0), b ∈ [0, p

2)
1− w − y + wy = 0 if w = 1 and x = 0 i.e. a ∈ [0, p

2), b ∈ (−p
2 , 0).

The alternative situation, i.e. both a and b are in the same region, hence w = x gives
us

e = 1− x′ − y + xy + w(x + y − 2xy)
= 1− x′ − y + x′y + x′(x′ + y − 2x′y)
= 1− x′ − y + x′y + x′ + x′y − 2x′y

= 1− y

=
{

0 if y = 1 i.e. a− b did not overflow, hence a ≥ b

1 if y = 0 i.e. a− b overflowed, hence a < b.

Theorem 36. The less-than without bit decomposition protocol in Algorithm 25
is secure against a passive adversary.

Proof sketch. All the sub-protocols are perfectly simulatable, hence this protocol is
perfectly simulatable.

The resulting shares come from JwK, JxK, JyK and JxyK, which were created by
universally composable bitwise less-than and multiplication protocols. These shares,
which are uniformly distributed and independent from the input shares JaKt and JbKt

are then added or subtracted from each other. Therefore, similarly to Theorem 10,
this protocol is universally composable.

Chapter7Comparison of protection domains

7.1 Complexity

Table 7.1 summarises together all the complexities given in the previous sections of
the protocols implemented during this work. For some of the algorithms, such as
conjunction of bits and Prefix-AND, there are better solutions out there [DFK+06,
NO07]. Many of the latter algorithms, e.g. less-than for bitwise shared values,
depend on them, see Figure 6.1. Therefore, future work improving the complexity of
Prefix-Or also improves the complexities of equality testing and less-than comparison.

57

58 7. COMPARISON OF PROTECTION DOMAINS

Offline Online
Protocol name Rounds Data Rounds Data
Classify 0 0 1 nb

Reshare 1 n(n− 1)b 0 0
Declassify 1 k(k − 1)b 1 kb

JaK + JbK 0 0 0 0
cJaK 0 0 0 0
JaK · JbK 0 0 1 n(n− 1)b
¬JbK 0 0 0 0
JaK ∧ JbK

0 0 1 n(n− 1)bJaK ∨ JbK
JaK⊕ JbK
Random 1 n(n− 1)b 0 0
RandomBit 2 (2n + k)(n− 1)b 0 0
Conjunct

0 0 b− 1 ≈ n(n− 1)b2
Disjunct
PrefixAND
PrefixOR
PrefixXOR
BLT 0 0 b + 1 ≈ 3n(n− 1)b2

BitComposition 0 0 0 0
RandomBitwise b + 4 ≈ (n− 1)(5n + k)b2 0 0
LSB b + 4 ≈ (n− 1)(5n + k)b2 b + 3 ≈ 3n(n− 1)b2

LTHalfPrime b + 4 ≈ (n− 1)(5n + k)b2 b + 3 ≈ 3n(n− 1)b2

EQPublic 1 n(n− 1)b 3 (n + 2k)(n− 1)b
EQ b + 4 ≈ (n− 1)(5n + k)b2 b ≈ (n− 1)nb2

LT 0 0 b + 3 ≈ 9n(n− 1)b2

Table 7.1: Complexities for protocols in this work

7.1.
C

O
M

P
LE

X
IT

Y
59

additive3pp shamirnpp
Offline Online Offline Online

Protocol name Rounds Data Rounds Data Rounds Data Rounds Data
Classification 0 0 1 3b 0 0 1 3b

Resharing 1 6b 0 0 1 6b 0 0
Declassification 1 6b 1 3b 1 2b 1 2b

JaK + JbK 0 0 0 0 0 0 0 0
cJaK 0 0 0 0 0 0 0 0
JaK · JbK 1 12b 1 3b 0 0 1 6b

Equality 0 0 log2 b + 2 22b + 6 b + 4 34b2 b 6b2 − 2b

Less than 0 0 log2 b + 3 12b log2 b + 48b + 16 0 0 b + 3 54b2 − 6b

Table 7.2: Complexities comparison

60 7. COMPARISON OF PROTECTION DOMAINS

In order to better compare this work to the additive secret-sharing protocol suite,
we created a PD for our shamirnpp PDK. As the additive scheme uses three parties,
we also use three parties (n = 3), but as the multiplication protocol has a requirement
2k − 1 ≤ n, we need to make k = 2, hence 2-out-of-3 Shamir’s scheme. We split the
additive protocol suite complexities to online and offline phase. See Table 7.2 for
comparison of rounds and data communication costs. One of the things to notice
is that the multiplication and declassification protocols are theoretically better on
shamirnpp. The more complicated operations, however, do not look that promising.
We would like to stress, that this work is an initial attempt to implement a protocol
suite inspired by Shamir’s secret sharing scheme on Sharemind, while the protocol
suite inspired by additive secret sharing has gotten many optimisations over the
years.

7.2 Practical performance

To get the idea of how efficient our protocol implementations were, we benchmarked
them against the additive three-party protocol suite. Here we use the same 2-out-of-3
Shamir’s scheme as in complexities comparison. The initial benchmarking was done
on different sizes of arrays of uint8’s. For the testing, we used a single laptop
with 1.7 GHz processor for running all three CPs. Multiplication comparison can
be seen in Figure 7.1 and equality testing in Figure 7.2. The graphs additionally
show how fast operations on public data were. The multiplication protocols offer
similar performance, with our implementation being faster on smaller input sizes.
The trend, however, is not in our favour and our multiplication is becoming slower
as the input size increases. The Equality comparison graph, however, does not look
that promising. In Figure 7.2, we can see that our protocol is about three times
slower than the additive one.

7.2. PRACTICAL PERFORMANCE 61

●●● ●

● ● ●
● ● ●

● ● ●

0.00

0.02

0.04

0.06

0 2500 5000 7500 10000
Number of parallel operations

D
u
ra

ti
o
n
 i
n
 s

ec
o
n
d
s

label

● Additive

Public

Shamir

Figure 7.1: Multiplication performance comparison

●●● ● ● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0 2500 5000 7500 10000
Number of parallel operations

D
u
ra

ti
o
n
 i
n
 s

ec
o
n
d
s

label

● Additive

Public

Shamir

Figure 7.2: Equality performance comparison

Chapter8Conclusion

Secure multi-party computation allows us to perform analysis on private data without
compromising it. Therefore, practical solutions for SMC are very welcome and
Sharemind is one of the examples of such frameworks. There are already various
protocol suites implemented on Sharemind, such as an additive three-party protocol
suite. In this thesis, we designed and implemented a protocol suite, that was inspired
by Shamir’s secret sharing scheme. The latter is a popular way to divide a secret
into pieces, called shares.

The main result of this thesis are the implemented protocols with correctness and
security proofs. We created a new protection domain kind shamirnpp, that allows one
to create protection domains for various n-out-of-k Sharmir’s secret-sharing schemes.
This PDK can now be used to write secure applications in the SecreC language.
More specifically, we implemented protocols for addition, multiplication, boolean
arithmetic and comparison operations. These protocols are the building blocks for
various other functions one would want to possess, when analysing private data. As
Sharemind has a standard library and a possibility to write domain-polymorphic
code, many additional features, such as the absolute value function, can already be
used with our newly implemented PDK.

The goal of this work was to explore another SMC implementation option and
compare it to the existing one on Sharemind. Our new protection domain kind based
on Shamir’s scheme was compared to additive3pp. Looking at simpler protocols,
such as declassification or multiplication, we saw that our SMC algorithms offer
better theoretical complexity. That was also evident from the benchmarking results
for smaller input sizes. For larger inputs and more complicated operations, such as
equality testing and less-than comparison, we had to admit additive3pp being better.
One of the reasons, for the performance difference, is our naive implementations
for Conjunct and PrefixAND algorithms. Many other algorithms depend on their
performance, see Figure 6.1, and improving it would improve the speed of equality
testing and less-than comparison.

63

64 8. CONCLUSION

This brings us to future work. As mentioned before, some of the protocols from
this thesis could be improved. There are also other algorithms that could be added
to our protocol suite. For example, it may be useful, if we could convert shares into
a different PD’s shares. In this thesis, we in theory separated the offline and online
phase, in practice, we did not. Shamir’s k-out-of-n threshold scheme would allow to
handle some CPs disappearing or dealing with more corrupted parties. Exploring the
implementation specifics of protocol interruption is an interesting topic for further
research.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation
modulo a shared secret with application to the generation of shared safe-prime
products. In Moti Yung, editor, Advances in Cryptology — CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 417–432. Springer
Berlin Heidelberg, 2002.

[AS11] Cybernetica AS. Deliverable D3.1: Technology-independent secure virtual ma-
chine architecture, 2011. Secure Virtual Machines and Languages–Project Tech-
nical document for Sharemind 3.

[BCD+09] Peter Bogetoft, DanLund Christensen, Ivan Damgård, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, JanusDam Nielsen, JesperBuus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael Schwartzbach, and Tomas Toft. Secure multiparty com-
putation goes live. In Roger Dingledine and Philippe Golle, editors, Financial
Cryptography and Data Security, volume 5628 of Lecture Notes in Computer
Science, pages 325–343. Springer Berlin Heidelberg, 2009.

[BDJ+06] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter, and
Tomas Toft. A practical implementation of secure auctions based on multiparty
integer computation. In Giovanni Crescenzo and Avi Rubin, editors, Financial
Cryptography and Data Security, volume 4107 of Lecture Notes in Computer
Science, pages 142–147. Springer Berlin Heidelberg, 2006.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A System for
Secure Multi-party Computation. In Proceedings of the 15th ACM Conference
on Computer and Communications Security, CCS ’08, pages 257–266, New York,
NY, USA, 2008. ACM.

[Bla79] George R. Blakley. Safeguarding Cryptographic Keys. In Proceedings of the 1979
AFIPS National Computer Conference, volume 48, pages 313–317, June 1979.

[BLLP14] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From input private
to universally composable secure multi-party computation. In Proceedings of
the 2014 IEEE 27th Computer Security Foundations Symposium, CSF ’14. IEEE
Computer Society, 2014. To appear.

65

66 REFERENCES

[BLR13] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-Polymorphic Pro-
gramming of Privacy-Preserving Applications. In Proceedings of the First ACM
Workshop on Language Support for Privacy-enhancing Technologies, PETShop
’13, ACM Digital Library, pages 23–26. ACM, 2013.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Proceedings of the 13th European Symposium
on Research in Computer Security: Computer Security, ESORICS ’08, pages
192–206, Berlin, Heidelberg, 2008. Springer-Verlag.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with practical
applications. PhD thesis, University of Tartu, 2013.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: Privacy-preserving Aggregation of Multi-domain Network Events and
Statistics. In Proceedings of the 19th USENIX Conference on Security, USENIX
Security’10, pages 15–15, Berkeley, CA, USA, 2010. USENIX Association.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis (short paper). In Proceedings of the 16th
International Conference on Financial Cryptography and Data Security. FC’12,
pages 57–64, 2012.

[CD05] Ronald Cramer and Ivan Damgård. Multiparty computation, an introduction. In
Contemporary Cryptology, Advanced Courses in Mathematics - CRM Barcelona,
pages 41–87. Birkhäuser Basel, 2005.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In Joe Kilian, editor,
Theory of Cryptography, volume 3378 of Lecture Notes in Computer Science,
pages 342–362. Springer Berlin Heidelberg, 2005.

[CMF+14] Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko Fujimura,
Koki Hamada, Dai Ikarashi, and Ryuichi Yamamoto. Implementation and evalu-
ation of an efficient secure computation system using ’R’ for healthcare statistics.
Journal of the American Medical Informatics Association, 2014.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, JesperBuus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, volume 3876 of Lecture Notes in Computer Science,
pages 285–304. Springer Berlin Heidelberg, 2006.

[Flo63] Ivan Flores. The Logic of Computer Arithmetic. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1963.

REFERENCES 67

[Gei10] Martin Geisler. Cryptographic Protocols:: Theory and Implementation. PhD
thesis, Aarhus University, Faculty of Science, Department, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 169–178, New York, NY, USA, 2009. ACM.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fast-track
multiparty computations with applications to threshold cryptography. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’98, pages 101–111, New York, NY, USA, 1998. ACM.

[Ham14] Koki Hamada. MEVAL: A Practically Efficient System for Secure Multi-party
Statistical Analysis. Presented at Workshop on Applied Multi-Party Computation,
Microsoft Research, Redmond, February 2014.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: Tool for Automating Secure Two-party Computations.
In Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS ’10, pages 451–462, New York, NY, USA, 2010. ACM.

[Jag10] Roman Jagomägis. SecreC: a Privacy-Aware Programming Language with Appli-
cations in Data Mining. Master’s thesis, Institute of Computer Science, University
of Tartu, 2010.

[KBdH09] F. Kerschbaum, D. Biswas, and S. de Hoogh. Performance comparison of secure
comparison protocols. In Database and Expert Systems Application, 2009. DEXA
’09. 20th International Workshop on, pages 133–136, August 2009.

[KBLV13] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect
privacy in large-scale genome-wide association studies. Bioinformatics, 29(7):886–
893, 2013.

[KW13] Liina Kamm and Jan Willemson. Secure Floating-Point Arithmetic and Private
Satellite Collision Analysis. Cryptology ePrint Archive, Report 2013/850, 2013.
http://eprint.iacr.org/.

[Mal11] Lior Malka. VMCrypt: Modular Software Architecture for Scalable Secure
Computation. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 715–724, New York, NY, USA, 2011.
ACM.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a
secure two-party computation system. In In USENIX Security Symposium, pages
287–302, 2004.

[NN05] Ventzislav Nikov and Svetla Nikova. On proactive secret sharing schemes. In
Helena Handschuh and M.Anwar Hasan, editors, Selected Areas in Cryptography,
volume 3357 of Lecture Notes in Computer Science, pages 308–325. Springer
Berlin Heidelberg, 2005.

http://eprint.iacr.org/

68 REFERENCES

[NO07] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, Public Key Cryptography – PKC 2007, volume 4450 of
Lecture Notes in Computer Science, pages 343–360. Springer Berlin Heidelberg,
2007.

[Pul13] Pille Pullonen. Actively Secure Two-Party Computation: Efficient Beaver Triple
Generation. Master’s thesis, Institute of Computer Science, University of Tartu,
2013.

[Reb10] Reimo Rebane. An integrated development environment for the SecreC program-
ming language. Bachelor’s thesis. University of Tartu, 2010.

[Reb12] Reimo Rebane. A Feasibility Analysis of Secure Multiparty Computation De-
ployments. Master’s thesis, Institute of Computer Science, University of Tartu,
2012.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November
1979.

[Tal11] Riivo Talviste. Deploying secure multiparty computation for joint data analysis—
a case study. Master’s thesis, Institute of Computer Science, University of Tartu,
2011.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
The Journal of Finance, 16(1):8–37, 1961.

[WR67] E.T. Whittaker and G. Robinson. The Calculus of Observations: A Treatise
on Numerical Mathematics 4th ed. Dover Publications, New York, 1967. §17
"Lagrange’s Formula of Interpolation.".

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–
164, Washington, DC, USA, 1982. IEEE Computer Society.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science, SFCS ’86,
pages 162–167, Washington, DC, USA, 1986. IEEE Computer Society.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: A General-purpose
Compiler for Private Distributed Computation. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS ’13, pages
813–826, New York, NY, USA, 2013. ACM.

	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Acronyms
	Introduction
	Motivation
	Contribution of the author
	Outline

	Preliminaries
	Secret sharing
	Secure multi-party computation based on secret sharing
	Sharemind
	The Sharemind secure computing framework
	Protection domain deployment configuration
	SecreC 2

	Other SMC frameworks

	A protection domain kind based on Shamir's secret sharing
	Protection domain setup
	Data types supported by the protection domain kind
	Unsigned integers
	Implementing calculations modulo p
	Signed integers
	Booleans

	Security model

	Basic protocols
	Classification
	Resharing
	Declassification

	Arithmetic protocols
	Addition and subtraction with a public value
	Multiplication with a public value
	Addition and subtraction for two shared values
	Multiplication of two shared values
	Boolean arithmetic

	Comparison operations
	Sub-protocols
	Secret-sharing a random value
	Sharing a random bit
	Conjunction of bits
	Prefix-AND
	Less-than for bitwise secret-shared values
	Bit composition
	Bit decomposition
	Bitwise sharing of a random number
	Least significant bit
	Comparison to half prime for unsigned integers

	Equality
	Equality with a public result
	Equality with bit decomposition
	Equality without bit decomposition

	Less-than
	Less-than with bit decomposition
	Less than without bit decomposition

	Comparison of protection domains
	Complexity
	Practical performance

	Conclusion
	References

