NTNU - Trondheim
Norwegian University of

Science and Technology

A Secure Multi-Party Computation
Protocol Suite Inspired by Shamir’s
Secret Sharing Scheme

Tiina Turban

Master in Security and Mobile Computing
Submission date: May 2014
Supervisor: Stig Frode Mjglsnes, ITEM

Co-supervisor: Dan Bogdanov, Cybernetica, Estonia
Sven Laur, University of Tartu

Norwegian University of Science and Technology
Department of Telematics

NTNU - Trondheim
Norwegian University of

Science and Technology

A Secure Multi-Party Computation Protocol Suite
Inspired by Shamir’s Secret Sharing Scheme

Tiina Turban

Submission date: May 2014

Responsible professor: Stig Frede Mjglsnes, NTNU
Supervisor: Sven Laur, UT

Instructor: Dan Bogdanov, Cybernetica AS

Norwegian University of Science and Technology
Department of Telematics

Abstract

The world today is full of secrets. Sometimes, we would like to know
something about them without revealing the secrets themselves. For
example, whether I have more money than my friend or whether two
satellites would collide without publishing their moving trajectories. Se-
cure multi-party computation allows us to jointly compute some functions
while keeping the privacy of our inputs. Sharemind is a practical frame-
work for performing secure multi-party computations. In this work, we
added a protocol suite to Sharemind. This protocol suite was inspired
by Shamir’s secret sharing scheme, which describes a way to divide a
secret into pieces. We describe algorithms for addition, multiplication,
equality-testing and less-than comparison. We also give correctness and
security proofs for the protocols. The resulting implementations were
compared to an existing protocol suite inspired by additive secret sharing.
The initial complexities and benchmarking results are promising, but
there is room for improvement.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiv

List of Symbols XV

List of Acronyms xvii

1 Introduction 1
1.1 Motivation e 1
1.2 Contribution of the author 2
1.3 Outline e e e 2
Preliminaries

3
2.1 Secret sharing L 3
2.2 Secure multi-party computation based on secret sharing 6
2.3 Sharemind 7
2.3.1 The Sharemind secure computing framework 7
2.3.2 Protection domain deployment configuration 9
2.3.3 SecreC 2. 9

2.4 Other SMC frameworks 11
A protection domain kind based on Shamir’s secret sharing 15
3.1 Protection domain setup oo oL 15
3.2 Data types supported by the protection domain kind 15
3.2.1 Unsigned integerso oL 15
3.2.2 Implementing calculations modulop 16
3.2.3 Signed integers o 17
3.24 Booleans e 19
3.3 Security model 20

4 Basic protocols
4.1 Classification
4.2 Resharing
4.3 Declassification

5 Arithmetic protocols

5.1 Addition and subtraction with a public value
5.2 Multiplication with a public value
5.3 Addition and subtraction for two shared values
5.4 Multiplication of two shared values

5.5 Boolean arithmetic . .

6 Comparison operations
6.1 Sub-protocols

6.1.1 Secret-sharing a random value
6.1.2 Sharing a random bit
6.1.3 Conjunction of bits

6.1.4 Prefix-AND . .

6.1.5 Less-than for bitwise secret-shared values

6.1.6 Bit composition

6.1.7 Bit decomposition Lo Lo
6.1.8 Bitwise sharing of a random number
6.1.9 Least significant bit 000
6.1.10 Comparison to half prime for unsigned integers

6.2 Equality

6.2.1 Equality with a publicresult
6.2.2 Equality with bit decomposition
6.2.3 Equality without bit decomposition

6.3 Less-than

6.3.1 Less-than with bit decomposition
6.3.2 Less than without bit decomposition

7 Comparison of protection domains

7.1 Complexity
7.2 Practical performance

8 Conclusion

References

23
23
24
26

29
29
30
30
31
33

35
36
36
37
39
40
41
43
44
44
45
47
48
48
49
50
52
92
92

57
57
60

63

65

2.1
2.2
2.3
24

3.1
3.2
3.3

6.1

7.1
7.2

List of Figures

Classifying a secret value with Shamir’s secret sharing scheme 4
A failed attempt to reconstruct a secret knowing k — 1 shares.. 5
Reconstructing the secret with Shamir’s secret sharing scheme 5
Sharemind 3 deployment model L. 8
Sharemind in the real world setting 20
Sharemind in the ideal world setting 21
Perfect simulation o 21
Protocol hierarchy L 35
Multiplication performance comparison 61
Equality performance comparison 61

vii

2.1

3.1
3.2
3.3

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

List of Tables

Multiple protection domains deployment configuration 9
Unsigned integers for Shamir secret sharing on Sharemind 16
Signed integers based on the most significant bit 18
Signed integers centered around zero 19
Bitwise less-than execution fora=5b 42
Bitwise less-than execution fora <b 42
Bitwise less-than execution fora>b 43
Less-than for unsigned integers 53
Less-than for signed integers in centered around zero representation . . 53
Less-than for integers in modified two’s complement representation . . . 54
Complexities for protocols in thiswork 58
Complexities comparison Lo 59

ix

10

11

12

13

14

15

16

17

List of Algorithms

Implementing addition in Z, on native types 17
Implementing subtraction in Z,, on native types 17
Protocol for classifying a secret value Classify(s) 24
Protocol for classifying a signed integer 24
Protocol for resharing a classified value Reshare([s]) 26
Protocol for reconstructing the secret Declassify([[s]) 27
Protocol for declassifying a signed integer 27
Addition of a public value [s] + v (subtraction [s] —v) 29
Multiplication with a public value v[s] 30
Addition of two secret values [q] + [r] (subtraction [¢] —[]) 31
Multiplication of two secret values [¢] - [r] 32
Secret-sharing a random value Random() 36
Sharing a random bit RandomBit() 38
Conjunction of bits Conjunct(a])) 39
Prefix-AND of bits PrefixAND([a]) 40
Less-than for bitwise secret-shared values BLT([a],[b]) 41
Bit composition BitComposition(fa]) 43

Xi

18

19

20

21

22

23

24

25

Bitwise sharing of a random number RandomBitwise(). 44

Least significant bit LSB([a])« . L 45
Compare to half prime LTHalfPrime([a]) 47
Equality with a public result EQPublic(a],[0]) 49
Equality with bit decomposition EQbd([a], [0]) . . - 50
Equality without bit decomposition EQ([a],[o]) 51
Less-than with bit decomposition LTbd([a], [0]) 52

Less than LT([a], [B]) - - - - - -« o o v v i i e i 54

ASTEE S

a;

[a:]

List of Symbols

number of computing parties.

threshold in Shamir’s secret sharing scheme.
finite field we are working in.

prime indicating the finite field Z, we are work-
ing in.

secret-shared value a.

share of secret-shared a, that party CP; sees
publicly.

vector of booleans containing bits of a.

vector of secret-shared values (containing secret-
shared bits of a).

i-th bit of a.

secret-shared i-th value from the vector a
(secret-shared bit ¢ of a).

length in bits for current datatype in algorithms.

length in bits for current datatype in complexity
analysis.

xiii

List of Acronyms

CP Computing Party.
IP Computing Party.

RP Computing Party.

BLT Bitwise Less-Than.

CPU Central Processing Unit.

EQ Equality.

FairplayMP Fairplay Multy-Party.

GB Gigabyte.
GHz Gigahertz.

GNU LGPL GNU Lesser General Public License.

IP Internet Protocol.

LSB Least Significant Bit.

LT Less-Than.

MEVAL Multi-party EVALuator.

NTNU Norwegian University of Science and Technology.

PD Protection Domain.

PDK Protection Domain Kind.

XV

RAM Random-Access Memory.

SEPIA Security through Private Information Aggregation.
SFDL Secure Function Definition Language.

SMC Secure Multy-Party Computation.

TASTY Tool for Automating Secure Two-partY computations.

TASTYL TASTY input Language.
UT University of Tartu.

VIFF Virtual Ideal Functionality Framework.

Introduction

1.1 Motivation

In today’s world, we have a huge amount of information. That data could be used to
figure out trends which could, for example, allow us to make wiser business decisions.
If we would live in a world without secrets and where everyone trusts each other,
then we could simply publish all the information and analyse it. In the real world,
however, there are many things, that people consider private, such as their medical
or financial details. Companies have business secrets, which they do not want to
reveal either. Therefore, it would be great, if there would be a way to analyse data
without compromising anyone’s privacy. The latter is exactly what secure multi-party
computation (SMC) allows us to do.

One of the frameworks that can be used in practice for secure multi-party
computation is Sharemind [Bogl3]. There are different cryptographic primitives,
that secure multi-party computation can rely on, such as homomorphic encryption,
additive or Shamir’s secret sharing. So far, all the protocol suites implemented on
Sharemind fix the number of participants in the computation. Also, if any of the
participants would disappear, then we cannot access the results. Protocols using
Shamir’s secret-sharing, which have not been implemented on Sharemind so far,
would provide more flexibility. In theory we could allow more corrupted parties.

Most of the research that exists about SMC using Shamir’s scheme only focuses
on unsigned integers, especially when dealing with equality testing or comparison
operators. We on the other hand are interested in a more universal framework, that
allows protocols to be used on both unsigned and signed integers as well as boolean
data types.

2 1. INTRODUCTION

1.2 Contribution of the author

The goal of this work is to create a new protocol suite for Sharemind and compare it
to the existing additive three-party protocols. The implementation shall use Shamir’s
secret sharing scheme. The implemented protocol suite consists of classification,
declassification, resharing, addition, subtraction, multiplication, equality testing
and less-than comparison with the necessary sub-protocols. There were various
alternatives to be considered for each algorithm. The author developed an exper-
imental implementation on Sharemind. In addition, the author wrote down the
algorithms with correctness and security proofs. Finally, the author benchmarked
the performance between the new and an existing comparable protocol suite.

1.3 Outline

The List of Symbols on page xv defines the notation used in this thesis. Section 2 gives
an overview of the background information. This includes explaining secret-sharing
and, more in depth, the Shamir’s secret sharing scheme. We describe what secure
multi-party computation is and how Sharemind works. There is also a subsection
that talks about other SMC frameworks.

Section 3 focuses on the details of implementing a protocol suite on Sharemind.
This section shows how to use the result of this work. We also describe how our
different data types are represented and the concepts used in proofs.

Section 4 shows how our private information can be taken into pieces and divided
among computing parties. The declassification subsection, on the other hand, shows
how the computed result, that is still in secret-shared form, can be reconstructed to
publish the value.

The arithmetic protocols are given in Section 5 and algorithms for comparison
operations in Section 6. The latter includes various sub-protocols, such as least
significant bit, that were needed for equality testing or less-than comparison.

Section 7 sums up the complexities and brings out the benchmarking results with
comparison to the additive three-party protocol suite. The final Section concludes
this thesis and provides ideas for further work.

Preliminaries

2.1 Secret sharing

Secret sharing [Sha79, Bla79] is a technique for protecting confidential data. The
secret is divided into parts — shares. These shares will then be distributed among
a number of parties. In order to reconstruct the secret, a certain predefined set of
shares must be combined. For example, unique shares are divided to n participants,
but any k£ of them together can retrieve the original secret. This structure is also
known as k-out-of-n threshold scheme. Gaining access to less than that threshold &
of distinct shares shall give no information about the secret.

Definition 1. Let s be a secret value and [s]1, [s]2, .., [s]» shares. We have a
k-out-of-n secret sharing scheme, if the following conditions hold [Sha79]:

Correctness: knowledge of any k or more shares of s makes the secret easily
computable;

Privacy: knowledge of any k — 1 or fewer shares of s leaves the secret completely
undetermined (in the sense that all its possible values are equally likely).

Additive secret sharing scheme is a form of secret sharing. It is a scheme, where
one needs to know all the shares to discover the original value, i.e. an n-out-of-n
threshold scheme. The algorithm divides shares by first uniformly choosing n — 1
values [s]1, [s]1, -, [s]n—1 and then calculating [s], = s — [s]1 — ... — [s]n—1. The
secret s can be reconstructed by adding all the shares together s = [s]1 + ... + [$]n,
but knowing n — 1 or less shares gives a malicious entity (adversary) no information
about s.

Shamir’s secret sharing scheme [Sha79] is a form of secret sharing, which uses

3

4 2. PRELIMINARIES

the idea that k points are needed to uniquely define a polynomial of degree k — 1.
With this scheme, a threshold & can be chosen, which defines the number of shares
needed for reconstructing the secret, i.e. it is a k-out-of-n scheme.

Shares in Shamir’s secret sharing scheme have two values - an index and the
evaluation of the randomly generated polynomial on that index — (¢, f(¢)). The indices
have to be unique to each party and we cannot use zero as that would reveal the
secret f(0) = s. To create the shares, we choose n random points on the polynomial
(x, f(x)). These points we then distribute to the parties. Coefficients will be chosen
randomly and the free member is equal to the secret. To illustrate how it works, we
can look at Figure 2.1. In reality, Shamir’s scheme uses polynomials over a finite
field and not a two dimensional plane. In this example, we use a 2-out-of-4 threshold
scheme, where [s]1, ..., [s]4 represent the shares for a secret value s. The constant ¢
is random and hence f(z) = s+ cix is a random 1-degree polynomial.

f(z)

flx)=s+cx

Figure 2.1: Classifying a secret value with Shamir’s secret sharing scheme

Figure 2.2 illustrates the situation, where we know less than k shares. If we know
only one point for a 1-degree polynomial, we can draw an infinite number of lines
covering all the possible values (s, s’,s”, ... on Figure 2.2) and there is no way to
know which one is the right one.

However, if we know at least k shares, it is possible to reconstruct the originally
created polynomial f(x). Figure 2.3 illustrates, that there is only one straight line,
we can draw through two points on a two dimensional plane. We can use Lagrange
interpolation [WR67]. Let ¢y, ..., tx be the indices for any unique k shares (¢;, f(t;)).
According to the Lagrange interpolation formula, we can evaluate a polynomial at

2.1. SECRET SHARING

flz)=s+

flz) =s+

Figure 2.3: Reconstructing the secret with Shamir’s secret sharing scheme

any given value by calculating

5

6 2. PRELIMINARIES

where b;(z) is the Lagrange basis function

b xr—t;

bi(x):Ht.,tJ.'
g=1"
i#£j

To find the secret we are only interested in the value of the polynomial in position
zero, i.e. f(0). Let b; denote the Lagrange basis function b;(0). Then,

k k

0—t, —t;
b; = b;(0) = 1 — 1 2.1
o-T7=¢ -1 @
i#] i#£]

Hence, the secret can be found with

s=f(0) = f(ti)bs. (2.2)

Note that the Lagrange basis function does not depend on the polynomial, which
means that b;’s can be pre-calculated.

Alternatives. Homomorphic encryption [Gen09] can be used instead of secret
sharing, however the latter has been shown to be less efficient in practice [KBdHO09].
Another alternative is Yao’s garbled circuit construction [Yao86].

2.2 Secure multi-party computation based on secret sharing

With secret sharing we can protect our data, but often we would still like to process the
protected data without compromising privacy. That is exactly what secure multi-party
computation allows us to do — compute various functions without giving away any
information about their own shares. Some real-life use cases include benchmarking,
where several companies want to compare themselves to each other [BTW12], various
forms of auctions and private biddings [BCD*09].

Secure Multy-Party Computation (SMC) was initially introduced in 1982 by
Yao [Yao82]. In his paper, Yao brings the example of two millionaires wanting to
know who is richer without revealing their wealth. More generally, we have any
number of input parties ZPy, ZPs, ..., ZP,,, computing parties CPy, CPa, ..., CP,
and result parties RP1, RP3, ..., RP,. The computing parties wish to compute
F([=]1, [x]2s ---[2]n) = ([y]1, [¥l2s ---[¥]n)- Initially, each party CP; knows [z];, but
no other [z];, ¢ # j. After jointly computing the function f, each party learns their
output [y]; and nothing else. Some, or all of the output values can be equal. For

2.3. SHAREMIND 7

example, in the millionaires’ problem, we wish to compute

1 if [z]1 < [z]2,

0 otherwise

f(l=]s, [2]2) :{

where both parties get the same result ([y]1 = [y]2)-

There are different security requirements that may be needed for different applica-
tions. Cheating in the context of secret sharing and secure multi-party computation
can be seen as having an adversary, who may corrupt some subset of computing
parties [CDO05]. Corruption can either be passive or active. In the first case the
adversary can see all the data the corrupted parties have. Active adversary can,
in addition to seeing everything, also manipulate the messages sent or even stop
sending anything altogether. Adversaries may additionally be divided into static and
adaptive. If there is a constant set of corrupted players over the course of running
the protocol then we are dealing with a static adversary. Adaptive adversaries, on
the other hand, can choose at any point in time to corrupt a different set of players.
In this thesis, we are considering protocols with static, passive adversaries. This is
also known as the honest-but-curious security model. We can have at most k& — 1
corrupt parties, otherwise the adversary has enough shares to reconstruct the secret.

2.3 Sharemind

2.3.1 The Sharemind secure computing framework

Sharemind is a framework for building data processing applications that use se-
cure multi-party computation. It is designed with the intention to be efficient
enough for practical applications, but at the same time to be usable by non-
cryptographers [BLWO08, Bogl13]. The practical part of this thesis is implemented on
the Sharemind SMC framework and more specifically on version 3 of Sharemind.

An example system setting is illustrated on Figure 2.4. There are three different
kinds of parties: input parties (ZP), computing parties (CP) and result parties (RP).
Participants are not restricted to belonging to only one of these groups, but can also
be all of the above or just an input party, who wants to learn results. There can be
any number of input and result parties, but the number of computing parties might
be restricted by the protocols used. ZPs use secret sharing or other techniques to
distribute their confidential data between the CPs. RPs make queries and initiate
computations, that are performed by CPs on the shared data. In the end, RPs get
the public computation results without anyone seeing the original confidential data.

We could, for example, run 2-out-of-4 Shamir’s secret sharing scheme on Share-
mind 3. Figure 2.4 shows an ZP classifying a secret s; by giving each CP one share.

8 2. PRELIMINARIES

a share of s;

a share of s,

a share of r

’ ‘ classification of s;

classification of s;

J

~ K declassification of r

secure multi-party
computation

2
!

. |— (e

Input Result

\ parties \ parties J

_ Computing parties)

Figure 2.4: Sharemind 3 deployment model

Another ZP can secret-share another secret so. Via secure multi-party computation
we can then calculate s; < s, where each CP has only one share of the result. To
reconstruct the secret-shared result r, at least two CPs must send their shares to the
RP (because we were using 2-out-of-4 scheme).

Computing parties perform computations by executing algorithms, which consist
of addition, multiplication or other operations. These operations are evaluated
by running protocols, that are described using some cryptographic primitives. A
Protection Domain Kind (PDK) defines a set of data representations for storing and
protocols for computing on protected data [BLR13]. A PDK can be designed for
any secure computation techniques with different security guarantees and different
PDKs can support different operations. Each PDK can have several Protection
Domains (PD), which are concrete initialisations of a PDK. For example, in this
work we will create a PDK that uses the k-out-of-n Shamir’s secret sharing scheme.
For that PDK, we can define a PD with concrete n and k values, e.g. a 2-out-of-4
scheme. The first PDK that was designed for Sharemind uses additive secret sharing
with three CPs and it is secure in the semi-honest model [BLW08, Bogl13]. In 2013,
another PDK using additive secret sharing was described for two computing parties
that offers security against active adversaries [Pull3]. Another example of a PD is

2.3. SHAREMIND 9

fully homomorphic encryption scheme with addition and multiplication protocols,
and a pair of keys. We can have another PD of the same PDK that differs only in
protection keys, i.e. its configuration.

Sharemind has been used for various practical applications. A recent example
demonstrates, how secure multi-party computation can be used for calculating the
probability of a collision between two satellites [KW13]. Countries do not want to
reveal exact information about their satellites nor do they want to lose them. But
a collision in 2009 demonstrates, that knowing only approximate data about the
orbits is not enough. It was shown, that SMC can be used as a possible solution.
Another example comes from Estonian Association of Information Technology and
Telecommunications, who wished to calculate benchmarking results based on their
economic indicators [Talll, BTW12]. Their initial solution had some security-related
shortcomings and a new solution with stronger privacy guarantees using Sharemind
was proposed. This was the first time where SMC computation on real data was done
over the internet with geographically apart computing nodes. The bioinformatics
field offers a third example, where secure multi-party computation could be used to
protect the privacy of individuals participating in a study [KBLV13].

2.3.2 Protection domain deployment configuration

To make the deployment easily configurable, we have separate files, that define
parameters for each protection domain and each computing party [AS11]. They
contain addresses and encryption keys of other CPs. The configuration files can also
have constants, such as fragment size for controlling parallelism. These constants
can then be used in the protocols described in that protection domain kind. There
can be any number of computing parties, of which some can be non-computing
nodes for certain PDs. The deployment configuration is not limited to having only
one protection domain, but we can describe and use PDs in parallel. For example,
see Table 2.1, where we have three protection domains defined on our four CPs.
Computing nodes are denoted with a star (*) in the table.

Protection domain ‘ CP1 CPy CP3 CPy4

Additive 3-party * * *
FHE *
Shamir 2-out-of-4 * * * *

Table 2.1: Multiple protection domains deployment configuration

2.3.3 SecreC 2

SecreC [Jagl0] is a privacy-aware programming language inspired by C. Its second
version SecreC 2 [BLR13] is used in the Sharemind 3 SMC framework. It is used

10 2. PRELIMINARIES

to describe algorithms that run on CPs to calculate results for RPs. The language
is designed to be easy to use and the programmer can just call the PDK protocols
and operations as predefined functions, i.e. he/she does not need to understand
the underlying cryptographic primitives. To make the developers life easier, there
is an integrated development environment for the SecreC programming language
(SecreCIDE) [Reb10].

SecreC 2 is strongly typed, where the type has a data type and a PD. There
is a predefined PD for public types and it can be omitted when defining public
variables, i.e. int x; would define a public integer. It is a polymorphic language
that allows to write code not specific to a certain PDK. Obviously, that PDK must
define the protocols used in the code. Being domain-polymorphic allows for an easy
integration of new PDs or re-usage of code for different deployment scenarios or
common functionality. The latter is also the reason, why it makes sense to have
a standard library for SecreC 2. The standard library includes functions, such as
minimum, maximum and absolute value. Additionally, if for a specific PDK, there is
a more efficient version, it is possible to implement a special version aside the general
function.

import additive3pp;
import shamirnpp;

domain a3pp additive3pp;
domain s20f4 shamirnpp;

template <domain D, type T>
DT abs (DT x) {
return x < 0 ? -x : x;

}

void main {
a3pp uint x = 5;
a3pp uint ax = abs(x);

assert (declassify (ax) = (5 :: uint));
s20f4 int y = -5;

s20f4 int ay = abs(y);

assert (declassify (ax) = (5 :: int));

Listing 2.1: SecreC 2 example — Absolute value

In order to use protection domains in SecreC 2, we need to define them. We have
additive secret sharing for three parties against passive adversary implemented for
Sharemind, so the module additive3pp can simply be defined or imported. The
latter provides us additionally the possibility to use additive3pp’s standard library.
After which we can define a protection domain a3pp that can be used in a domain-
polymorphic function. Listing 2.1 gives an example of SecreC 2 code with two PDs.

2.4. OTHER SMC FRAMEWORKS 11

The PDK shamirnpp will be created with this thesis and PD s20f4 can be defined
for it. The function abs can be used with any domain and any type as long as there
is less-than and additive inverse defined on D T types. The main function calls abs
on both PDs on different types and then checks that the value was as expected.

2.4 Other SMC frameworks

Even though the theory of secure computations has been around since the eight-
ies [Yao82], the first practical implementations were introduced after the millennium.
Several frameworks, such as Fairplay [MNPS04], SEPIA [BSMD10], VIFF [Geil0],
TASTY [HKS*10], VMCrypt [Malll], MEVAL [CMF*14] and PICCO [ZSB13|
have been developed since.

Fairplay' was the first practical implementation of SMC and it was introduced in
2004. The initial version used Yao’s garbled circuits [Yao86] and supported secure
communication between two parties. In 2006 Ben-David, Nisan and Pinkas created
an extension of the system called FairplayMP, for Fairplay Multi-Party. This version
uses Yao circuits and (| 5 | +1)-out-of-n secret sharing. They have their own high-level
programming language called Secure Function Definition Language (SFDL), in which
users can write code, that will then be compiled into a low-level representation as
a Boolean circuit. To run secure multi-party computation, users must also write a
configuration file with IP addresses and other settings.

FairplayMP is implemented in Java, focusing on performance in terms of message
sizes and the number of communication rounds. To check whether the system could
be used for real life problems, the authors experimented with protocols for voting
and computing auctions. More specifically, they ran a second-price auction [Vic61]
(winner pays the amount of second-highest bid) between bidders, where everyone
learns the second-highest bid, but only the seller learns the identity of the winner.
In total, there were five computing parties, for each a computer with two Intel Xeon
3 GHz CPU processors and 4 GB of RAM was used. Running the experiment for
8-bit bids took about 8 seconds [BDNPOS].

VIFF? was originally developed in the Secure Computing Economy and Trust (SCET)
and the Secure Information Management And Processing (SIMAP)?
projects [BDJ106]. The technology developed during those projects was deployed to
run the first large-scale SMC in 2008 [BCD'09]. The practical experiment was ran

IFairplay — http://www.cs.huji.ac.il/project/Fairplay/
2VIFF - http://viff.dk
3SIMAP Project — http://www.alexandra.dk/uk/projects/pages/simap.aspx

http://www.cs.huji.ac.il/project/Fairplay/
http://viff.dk
http://www.alexandra.dk/uk/projects/pages/simap.aspx

12 2. PRELIMINARIES

with Danish farmers trading sugar beet contracts using a secure double auction. The
Virtual Ideal Functionality Framework (VIFF) is implemented in Python and is Free
Software, licensed under the GNU LGPL?. It uses Shamir and pseudo-random secret
sharing [CDI05]. Various protocols have been implemented of VIFF. In addition
to passive, it is also possible to write protocols that are secure against active and
adaptive adversaries. For example, they implemented multiplication that is secure
against malicious adversary and, for 7 computing parties, it took 2.7 seconds to
prepare 1000 multiplications, but only 2 seconds to execute all of them [Geil0].

SEPIA®, which is short for Security through Private Information Aggregation is
a Java library for SMC. It is also Free Software, licensed under the GNU LGPL.
SEPIA uses Shamir’s secret sharing and, similarly to Sharemind’s additive3pp
protection domain, it is secure against static passive adversaries. In 2010, SEPTA
outperformed VIFF and FairplayMP for running multiplication and comparison
operations in parallel. Compared with Sharemind version 2 however, performance
was similar [BSMD10].

TASTY? is a Tool for Automating Secure Two-partY computations. This tool uses
homomorphic encryption or garbled circuits or their combinations to automatically
generate efficient protocols from their high-level description. They have their own
specification language called TASTY input language (TASTYL), which is based on
Python, as TASTY itself is implemented in Python. TASTY’s Runtime Environment
also provides the possibility to automatically analyse, run, test, and benchmark
the two-party secure function evaluation protocol. Comparing the performance
to original Fairplay, which also uses Yao’s garbled circuits construction, TASTY
requires less memory, communication and online time, though the setup time is
slower. Henecka, Kogl, Sadeghi, Schneider, and Wehrenberg assume that this is due
to their implementation language choices (Python versus Java) [HKST10].

VMCrypt is a software library created with a goal to be modular and scalable. It is
implemented in Java and uses Yao’s garbled circuits. They noticed that in order to
make the system scalable, they need to look at memory consumption, as holding large
circuits in memory would take too much RAM. Hence, VMCrypt takes a streaming
approach to generating circuits. It streams the circuit gate by gate, i.e. when a part
of the circuit is ready, it will be passed to the evaluator and the computation process
can already begin. This allowed Malka to run performance tests on circuits with

4GNU LGPL - https://www.gnu.org/licenses/lgpl.html
SSEPIA - http://sepia.ee.ethz.ch
STASTY - https://code.google.com/p/tastyproject/

https://www.gnu.org/licenses/lgpl.html
http://sepia.ee.ethz.ch
https://code.google.com/p/tastyproject/

2.4. OTHER SMC FRAMEWORKS 13

hundreds of millions of gates [Malll].

PICCO [ZSB13] is a general-purpose compiler for private distributed computation.
Input for the compiler is a program, written in a C language extension, that provides a
way to annotate private data. The output will be its secure distributed implementation
in C. The resulting code can then be compiled with a native C compiler and executed
by a number of computation nodes. Zhang, Steele and Blanton also concentrated
on performance and making the secure computation scalable. To do that, they
implemented multiple types of parallelism, e.g. over loops and arrays. Internally,
PICCO uses Shamir’s secret sharing.

MEVAL [CMF*14], which is short for Multi-party EVALuator is a SMC system. It
uses Shamir’s secret sharing scheme and provides security against passive adversaries.
For better performance, they use asynchronous processing and a Mersenne prime
field to get optimised field operations. At the Applied Multi-Party Computation
workshop at Microsoft Research, Hamada gave the following performance results
in his presentation [Ham14]. 8.7 multiplications of 61-bit integers can be done per
second and sorting 1 million 20-bit items takes 6.9 seconds. MEVAL uses R” with
an add-on as a front-end client application.

"R - http://www.r-project.org

A protection domain kind based on
Shamir’s secret sharing

3.1 Protection domain setup

The goal of this work is to provide a way to use Shamir’s secret sharing on Sharemind.
We will create a new protection domain kind shamirnpp, that can be used with
various number of CPs. Previously, the PDKs have defined the number of computing
parties, e.g. additive3pp has three CPs. The protection domain specifies n and k
values, for k-out-of-n Shamir’s secret sharing scheme. The threshold is needed for
the classification protocol, as we need to know what degree random polynomial to
create. To achieve that our PD configuration files also contain the constant k, that
is used in the PDK protocols.

3.2 Data types supported by the protection domain kind

3.2.1 Unsigned integers

We have different unsigned types, such as uint8, uint16, uint32 and uint64. We
could only have one type, but there are trade-offs here — it is cheaper for network
communication and memory to calculate using uint8, but 256 values is often not
enough.

Shamir’s secret sharing is done on a field, so we shall work in a finite field. That
means there should be prime number possible values. Our default data types in the
computer for integers however have powers of two values.

To make life easier we just use the largest prime value in the finite field, that
fits in n bits as the maximum value, that an n-bit integer type can have. Table 3.1
shows, for each unsigned type, its size (the number of values a certain type can hold),
the largest prime, i.e. how many values our type will be able to hold and the last
column contains the number of lost values. If one goes over the maximum value then
overflow happens, e.g. 200 + 55 = 5.

15

16 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

Type | sizeof(uintX) largest prime (p) difference (d)
uint8 | 256 251)
uint16 | 65536 65521 15
uint32 | 4294967296 4294967291 5
uint64 | 18446744073709551616 | 18446744073709551557 | 59

Table 3.1: Unsigned integers for Shamir secret sharing on Sharemind

We know that our uintX is not a real X-bit unsigned integer, but our goal is to
achieve comparability with other PDKs. Aside from the fact, that last few values
cannot be used, it does not influence the developer’s life.

3.2.2 Implementing calculations modulo p

In order to more comfortably do operations in our finite field, i.e. modulo a prime p,
we created our own types. Internally they still use default types supported by the
processor and have 2" values, which means that in case of an overflow, the result
would be wrong. There are multiple solutions available here, for example

1. performing the operations in a bigger type and using modulo p in the end,

2. making corrections, i.e. adding or subtracting the difference from the result
when needed.

Upcasting the type and performing operations there might not be so efficient if
we run out of bigger default types, for example for uint64.

Addition is done by making corrections, see Algorithm 1. The result of addition
can end up in three different regions: [0, p), [p,2") or [2™,2p — 2). The last one result
in an overflow in the native type and we need to add d to correct it for our uintX.
The middle region, on the other hand, should have been overflown.

Subtraction is done by making corrections, see Algorithm 2. The result of sub-
traction can end up in two different regions: (—p,0) or [0,p). In the first case, we
subtract d to correct the overflow.

3.2. DATA TYPES SUPPORTED BY THE PROTECTION DOMAIN KIND 17

Algorithm 1: Implementing addition in Z, on native types

Input: Prime p, values a,b € Z,, difference d
Result: c€ Z,

1c=a+b

2 if ¢ < a then

3 ‘ c=c+d

4 else if ¢ > p then
5 Lc:c—p

Algorithm 2: Implementing subtraction in Z, on native types

Input: Prime p, values a,b € Z,,, difference d
Result: c€ Z,

1c=a-">
2 if ¢ > a then
3 Lc:cfd

Multiplication is simply done by converting to a larger type and applying the
modulus after multiplication.

Multiplicative inverse is found using the Extended Euclidean algorithm.

3.2.3 Signed integers

When thinking about signed integers for secret sharing, we can look at a somewhat
similar problem of how negative numbers are represented in computer hardware.
There are four best-known methods: sign and magnitude notation, one’s complement,
two’s complement and excess-K representation. Even though two’s complement
is most widely used, there are advantages and disadvantages to each representa-
tion [Flo63]. In this section, we will be considering three different ideas for signed
integers notation, each having its own benefits and drawbacks.

Sign and magnitude. When keeping the sign separately from magnitude we can
use the first bit, but we can also just use a separate boolean value, which might
make things easier later. For example, we do not need to extract the most significant
bit which, in secret sharing, is not that trivial and can use the separate boolean

18 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

value instead. This representation makes it easy to perform multiplication, but for
addition and subtraction, getting the sign right is not so trivial.

Modified two’s complement. Another idea is to split the value range into
positive and negative parts. We got the idea from two’s complement notation for
signed integers in hardware. Since we do not use the full range of values in unsigned
integers, e.g. uint8 maximum value is 250 (111110102), we need to modify the
notation by adding or subtracting the difference d. Otherwise, we do not have small
negative numbers as they would result in an overflow, e.g. —1 = 11111111, =
00000101, = 5. Hence, to convert the negative signed integer ¢ to the internal
unsigned representation u we find the two’s complement and subtract d. Vice versa,
i.e. from u to 7, we add d to the negative value found by taking the two’s complement
of u.

Table 3.2 shows the mapping between unsigned and signed integers. Additionally,
the corresponding values and the bitwise representation are given for 8-bit integer
types (p = 251).

unsigned signed uint8 | int8 | Binary(uint8/int8)
0 0 0 0 00000000
1 1 1 1 00000001
18] -1 2] -1 124 124 | 01111100
12] 2] 125 125 | 01111101
5] +1 5] +1 126 126 | 01111110
2]+ |4 2]+ 4] 127 127 | 01111111
1B]+ 2] +1 | 4] -2 128 -123 | 10000000
(Bl + 2] +2 | 1+ 4] (2] 129 -122 | 10000001

249 -2 11111001
250 -1 11111010

k3
[
DN
[
— N

Table 3.2: Signed integers based on the most significant bit

Centered around zero. The third idea also splits the value range into positive
and negative parts. Algesheimer, Camenish and Shoup [ACS02] described how it can
be done by keeping the values centered around zero. Hence, to convert the signed
integer ¢ to the internal unsigned representation, we simply add p, if i < 0. Getting
the signed value back would mean subtracting p from u € Z,, if u > [£|. Notice that
we cannot only look at the most significant bit to determine if the value is negative,

3.2. DATA TYPES SUPPORTED BY THE PROTECTION DOMAIN KIND 19

since our unsigned types do not use all the values compared to the native types
in computer, see Section 3.2.1. This might make it difficult to use bits in various
algorithms. However, we can use the comparison a < |§] to determine if a contains
a negative value as an alternative to looking up the most significant bit in two’s
complement.

Table 3.3 shows the mapping between unsigned and signed integers. Additionally,
the corresponding values and the bitwise representation are given for 8-bit integer

types (p = 251).

unsigned | signed | uint8 | int8 | Binary (uint8/int8)
0 0 0 0 00000000
1 1 1 1 00000001
5] -1 |B]—1| 124 124 | 01111100
12] |2] 125 125 | 01111101
51 +1 -] 126 2125 | 01111110
5] +2 1—[2] | 127 |-124 | 01111111
51 +3 2— (2] | 128 123 | 10000000
p—2 -2 249 2 11111001
p—1 -1 250 -1 11111010

Table 3.3: Signed integers centered around zero

Conclusion. The sign and magnitude separation makes it easy to understand what
value is represented, but this does not overcome the increased complexity for addition
and subtraction. Hence, the choice is left between our modified two’s complement
or centering around zero. For both options, the basic arithmetic protocols simply
work on the underlying unsigned representations. When we think about comparison
operators, and more specifically the less than operation, initially it seems, that we
need to perform bitwise operations. In that case, having the most significant bit
denote the sign becomes useful. But as it turns out, there is a more efficient way to
compute less-thans using a comparison to half of the prime (see Section 6.3). This
makes centering around zero a better choice for the protocols implemented in this
work.

3.2.4 Booleans

It is tempting to use a finite field Z5 to represent booleans. However, this would
restrict us to only having two unique shares. For example, for k£ = 2,n = 3 we would

20 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

create a polynomial f(z) = s+ cx (see Section 4.1 for information on how values
are classified). Now being in Z; would mean that p = 2 and f(z) = s + ¢z mod 2.
Hence the odd number shares are equal

f)=s+te
f@Rk+1)=s+(2k+1)c=s+cmod?2.

Then, in our example 2-out-of-3 scheme, we cannot reconstruct the secret having CP1
and CP3 (see Section 2.1 for information about declassification with Shamir’s secret
sharing scheme). What is even worse, the even number shares reveal the secret s.

f(2) =s+2c=smod?2

Our solution is to just use 8-bit unsigned integers to represent booleans, having
s € {0,1}.

3.3 Security model

m, honest party g corrupted party

Figure 3.1: Sharemind in the real world setting

To prove the security of our protocols we will use the security proof framework
described for additive3pp [Bogl3]. We have the real world (see Figure 3.1), where
CPs exchange messages between each other to calculate some function f. We define
an ideal world (see Figure 3.2), where there is a trusted third party, that collects the
inputs and calculates f. To prove security, we show, that any real world attack also
exists in the ideal world. We do that using perfect simulatability, which ensures that

3.3. SECURITY MODEL 21

L
— \!ﬁ\
SO

gl honest party ‘:’ trusted third party Q corrupted party

Figure 3.2: Sharemind in the ideal world setting

—
/ N

g; honest party N trusted third party b simulator Q corrupted party

Figure 3.3: Perfect simulation

the adversary cannot distinguish between its views of the protocol in the real and
the ideal world. Perfect simulatability guarantees that the adversary does not learn
anything except what can be derived from corrupted parties’ inputs and outputs. To
do that, we construct a simulator (see Figure 3.3), that can simulate our protocol

22 3. A PROTECTION DOMAIN KIND BASED ON SHAMIR’S SECRET SHARING

in the real and ideal world indistinguishably. The simulator cannot rewind the
algorithm to an earlier state. Notice that this is not the standard definition used in
cryptographic proofs for simulatability. A protocol, that consists only of perfectly
simulatable sub-protocols and has their outputs used only either as inputs to another
sub-protocol or outputs of the main protocol, is itself perfectly simulatable [Bogl13,
Theorem 4]. But if we re-use the output of a perfectly simulatable protocol it may
leak information. More precisely, if output shares depend on input shares, then we
cannot achieve better security than perfect simulatability. If they are independant,
then we have universal composability. The latter can be achieved by resharing (see
Section 4.2) in the end of a perfectly simulatable protocol. In 2014, a more detailed
version of the security model was published [BLLP14]. In this thesis, we present
security proofs in the model of [Bog13]. This means, that we show, that the protocols
are correct and either perfectly simulatable or universally composable.

Basic protocols

In this and the following sections, we shall use F' = Z, to denote the finite field we
are operating on. The letter b shall represent the bit-length of p, i.e. the bit-length
of value s € F. In the following algorithms, a share of [s] for CP; is denoted
as [s]:- When analysing the complexities of our protocols, we notice that some
things can be pre-computed and others depend on the inputs. Therefore, we shall
separate the offline and online phase. In both phases, we are mainly interested in
two things — the number of times a CP needs to wait for input (rounds) and bits of
data transferred (communication cost). Generally, we prioritise minimising rounds
over communication costs [Reb12].

4.1 Classification

As mentioned previously, shares in Shamir’s secret sharing scheme consist of two
values — input to the polynomial and the corresponding output. We have decided to
use the CP’s node number ¢ as the first part of the share and then calculate f(t).
This way, we do not need to use network resources to communicate them. More-over,
the numbers are guaranteed to be unique per protection domain and there is no
node number zero. To classify the secret value s, we must first create a random
polynomial with degree k — 1, where the free term is the secret value, e.g. k = 3,
f(x) = s+ 122 — 4322, Algorithm 3 is given for an input party wanting to classify a
secret value, but any CP; (computing party with node number t) can classify a value
by sending f(x) to all other CPs and keeping f(t) as their own share. This is also
the case when a participant is an ZP and a CP at the same time.

For boolean values, the same algorithm is used, we just know that s € {0,1}.
For signed integers, the secret s is first converted to an unsigned integer v and then
classification protocol is run on u. For centering around zero representation, the
conversion can be done by adding p to negative inputs. Because then, assuming
correct input range, the positive values are in {0, ..., | £]} and negative values are in

23

24 4. BASIC PROTOCOLS

Algorithm 3: Protocol for classifying a secret value \cmdClassify(s)

Input: Finite field F', threshold k, ZP has an unsigned integer secret s € F
Result: All CPs have a share of [s].

1 TP uniformly chooses ci,...,cp_1 < F
2 IP constructs the polynomial f(z) = s + ¢z + cow® + - - + ¢ 271
3 I'P sends f(x) to CP,

4 Each CP, receives f(z)

{=15]+p,., =1 +p} = {—prl +p,.p =1}y ={[§],...,p — 1}, see Algorithm 4.

Algorithm 4: Protocol for classifying a signed integer

Input: Prime p, TP has a signed integer secret s € {—|%],...,[§]}
Result: All CPs have a share of [s].

1 IP calculates:
2 if s > 0 then

3 | u=s
4 else
5 Lu:erp

6 ZP runs Classify(u)

If the input party does not spread the polynomial constants and we assume that
there is a secure connection from ZP to each CP, then the protocol is secure. Com-
plexity for both unsigned or signed integers requires one round and communication
of one unsigned integer to each CP, i.e. nb bits of information. Remember that,