
Generalized approach for multi-response machining process optimization using 
machine learning and evolutionary algorithms 

Tamal Ghosh, Kristian Martinsen 

Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Teknologivegen 22, 2815 Gjøvik, Norway 

 

1. Introduction 

Recent Manufacturing Process Optimization Problems (MPOP) are 
challenging since these are complex, constrained, non-convex, multi-
response, and dependent on many process variables (dependent and 
independent). Developing optimal, correlational, or functional models 
for MPOP would be the most demanding task. It is not easy to obtain 
optimized conditions for the MPOP since many design variables are 
involved, which are to be correctly selected for the improved responses. 
Due to the nonlinear relationships among the dependent and 
independent process variables, complicated design space is required 
for the MPOP, which makes the process more difficult to frame using 
mathematics or simulation 1. Accuracy of certain machining processes 
are subject to the expensive experimental machining data, which is 
directly or indirectly connected with the machining costs, tool cost, labor 
costs, overhead costs, and scrap costs etc. Therefore, the data driven 
models, machine-learning techniques, meta-model or deep-learning 
approaches could be appropriate in such scenarios 2. 

Since late 90s, Multi-Objective Evolutionary Algorithms (MOEAs) 
have been an evolving topic of research for solving real-world 
combinatorial problems 3,4. These problems do not always portray 
process specific mathematical or simulation framework, which are 
computationally expensive. Empirical data obtained from laboratorial 
experiments or expensive simulations are employed to evaluate 
performance characteristics for such problems. MPOP is classified as 
data-driven or surrogate-assisted optimization problems 5.  

When MOEAs are employed to solve the MPOPs, data-driven 
surrogate models are generally used as the objective functions, which 
potentially eradicates the need of performing computationally complex 
mathematical model, Finite Element Method (FEM) approach, or 
expensive empirical experiments 6,7. It often facilitates the use of the 
traditional or existing optimization algorithms, such as, exact methods, 
evolutionary algorithms, and bio-inspired techniques as the optimal 
solution searching components. Surrogate modeling could also be 
classified as the black-box modeling when there would be little or no 
information available about the machining process under consideration 
8. Data-driven surrogate modeling approaches are capable of 
approximating functional relationships among the process variables 

——— 
 Corresponding author. Tel.: +47-909-12-002 

e-mail: tamal.ghosh@ntnu.no 

based on the sampled data obtained using Design of Experiment (DOE) 
techniques 9. Accuracy of the solution approximation would be crucial 
while training the models. For that matter Mean Square Error (MSE), 
Root Mean Square Error (RMSE), Normalized Mean Square Error 
(NMSE) could be used as the performance measures for the models. 
The lower is the performance measure score, the better is the accuracy 
of the model. Once the surrogate model is trained, an appropriate 
optimization algorithm, e.g. Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO), and Bat Inspired 
Algorithm (BA), Teaching-Learning Based Optimization (TLBO), 
Reference Vector Guided Evolutionary Algorithm (RVEA), Pareto 
Efficient Global Optimization (ParEGO) etc. could be employed to find 
good solutions, which would be the global (Pareto) optimum 10. The 
data-driven surrogate models are substantially prompt and efficient; 
therefore, these are computationally inexpensive. DOE based tools, 
such as the central composite design (CCD), Box-Behnken De-sign 
(BBD), D-Optimal Design (DOD), Latin Hypercube Sampling (LHS), Full 
Factorial Design (FFD), and Orthogonal Array Design (OA) etc. are 
generally used to define the trial sample points as the initial population 
for the surrogate-assisted MOEAs. DOE methods are also used as the 
input data to the trained surrogate models. DOE methods generally 
maximize the process information obtained from the restricted number 
of trials 11. Depending on the applications, some of the approximation 
approaches have become popular and practiced in recent past. These 
are, Response Surface Methods (RSM), Gaussian process (GP), Redial 
Basis Functions (RBF), Support Vector Machines (SVM), Multi-Layer 
Perceptron (MLP), Gaussian Kernel Regression (GKR), Artificial Neural 
Network (ANN), Generalized Regression Neural Network (GRNN) etc. 
12. 

AB ST RACT  

Contemporary manufacturing processes are substantially complex due to the involvement of a sizable number of correlated process variables. Uncovering the 

correlations among these variables would be the most demanding task in this scenario, which require exclusive tools and techniques. Data-driven surrogate-

assisted optimization is an ideal modeling approach, which eliminates the necessity of resource driven mathematical or simulation paradigms for the manufacturing 

process optimization. In this paper, a data-driven evolutionary algorithm is introduced, which is based on the improved Non-dominated Sorting Genetic Algorithm 

(NSGA-III). For objective approximation, the Gaussian Kernel Regression is selected. The multi-response manufacturing process data are employed to train this

model. The proposed data-driven approach is generic, which could be evaluated for any type of manufacturing process. In order to verify the proposed methodology, 

a comprehensive number of cases are considered from the past literature. The proposed data-driven NSGA-III is compared with the Multi-Objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) and shown to attain improved solutions within the imposed boundary conditions. Both the algorithms are shown to 

perform well using statistical analysis. The obtained results could be utilized to improve the machining conditions and performances. The novelty of this research 

is twofold, first, the surrogate-assisted NSGA III is implemented and second, the proposed approach is adopted for the multi-response manufacturing process 

optimization. 
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In this paper a novel data-driven surrogate-assisted optimization 

approach is introduced, which is based on the improved Non-dominated 
Sorting Genetic Algorithm (NSGA-III) and Multi-objective Evolutionary 
Algorithm based on Decomposition (MOEA/D). The proposed technique 
is developed using the data-driven surrogate function. Gaussian Kernel 
Regression (GKR) is used as the surrogate function. Further eleven 
published case studies of real-world MPOPs are employed to validate 
the proposed approach. The rest of this paper is structured as follows; 
Section #2 provides a detailed review of the recent literature; Section 
#3 demonstrates the proposed multi-response data-driven surrogate-
assisted optimization; Section #4 presents the results and analyses; 
Section #5 concludes this work. 

2. Literature Review 

The classical MOEA is an iterative procedure, which starts with a 
randomly generated population of solutions initially. It evolves in each 
iteration using two genetic operators, known as crossover and mutation, 
in search of the Pareto solutions. The quality of the obtained solutions 
is evaluated by some suitable objective functions. Depending on the 
quality of the solutions, the offspring (new solutions) are selected (using 
selection operator) and passed on to the next iteration while converging 
towards optimality. For the data-driven MOEA, the empirical data or 
process knowledge are obtained from the manufacturing processes and 
used in the MOEA framework to improve the convergence speed and 
performance (Figure 1). 

 This in turn generates the optimal cutting conditions for the 
machining. Graning et al. 13 portrayed some complex large-scale real-
world problem, which utilizes historical data to guide the search. Ref. 
Jin 14 demonstrated knowledge integration with evolutionary search, 
which is a process of information recycle obtained in past. Wang et al. 
5 recently categorized the data-driven surrogate-assisted optimization 
based on the off-line and on-line modes. In off-line mode, no new data 
would be available during the optimization process. Therefore, the 
surrogate modeling is solely dependent on the empirical process data 
or simulation results obtained beforehand. Whereas, in on-line mode, 
new incremental data could be generated and added to the surrogate 
control during the optimization. The MPOP is considered as the former 
type. According to Guo et al. 15 these types of data-driven optimization 
approaches would be extremely challenging since the amount of data 
could be small with large approximation errors. Therefore, the obtained 
solutions could possibly be deviated from the actual values. This 
phenomenon suggests some validations or confirmatory tests on the 
solutions obtained 16. 

2.1. Multi-Response Machining Processes 

Most of the MPOPs are related to the manufacture of works in 
progress (WIP), semi-assemblies, which include multiple process 
variables (design parameters and performance characteristics). 
Therefore, multi-response optimisation plays a crucial role for the 
process quality improvement 17. Selection of optimal process 
parameters inexpensively is a challenge. Over the decades, the tools 

and techniques for the multi-response MPOPs have been evolved 
considerably. Mukherjee and Ray 18 presented a comprehensive study 
on the methodologies developed for the multi-response MPOPs. 
Further, Chandrasekaran et al. 19 reviewed 142 articles based on the 
soft-computing and machine learning techniques for the multi-response 
MPOPs. Authors stated that, despite using the ANN or EA based 
techniques few more improvements are expected in future based on the 
costs involved in the data acquisitions, filtration of noise in data, and 
statistical feature extraction from the data. Figure 2 depicts a taxonomic 
classification based on the optimization techniques, which could be 
used in this regard.  

The scope of this paper is limited to the off-line data-driven 
evolutionary algorithms. Various tools and techniques are being 
exploited for the data-driven MPOPs since decades. Cook et al. 20 have 
introduced an ANN based approximation model for particleboard 
manufacturing process. Authors then utilized a GA based algorithm to 
optimize the process parameters. Yarlagadda 21 proposed an ANN 
model to approximate the process parameters for the pressurized die 
casting process. This is an alternative way to replace the expensive 
experimental approach to obtain the process parameters by examining 
a physical model of the pressurized die casting process. Tabu Search 
(TS) and Simulated Annealing (SA) based approaches could also be 
found in literature 22-24. Vijayakumar et al. 25 proposed an ACO for the 
multi-pass turning, which determines the machining parameters and 
minimizes the unit production cost, while considering various process 
constraints. Shen et al. 26 introduced a back propagation ANN model to 
correlate the complex process conditions and quality indexes for the 
injection molding process, and a GA is coupled to optimize the process 
conditions successfully. Zhou and Turng 27 developed a special data-
driven model using GP for injection molding optimization. Thereafter, a 
hybrid GA is utilized to evaluate the model, which could yield the global 
optimal solutions within a pre-defined number of iterations. Ciurana et 
al. 28 proposed the modeling and optimization of the process parameters 
in pulsed laser based micromachining using the ANN and Multi-
Objective PSO (MOPSO) to obtain better surface roughness and 
minimum volume errors. Zhao et al. 29 introduced a fast strip analysis as 
a surrogate model for the optimisation of an injection molding process. 
Further a PSO based algorithm is employed, which effectively optimize 
the process parameters. Kadirgama et al. 30 proposed an ACO based 
technique to obtain the optimum surface roughness for milling 
operation. The proposed technique exploited the RSM as a surrogate 
function. The most crucial variables are determined as the cutting 
speed, feed rate, axial depth, and radial depth. Shi et al. 31 have also 
developed an approximation model for injection molding process using 
the ANN and DOE. Authors introduced the infilling sampling, which 
could improve the global search. Therefore, it is an on-line data-driven 
optimization, which adds new samples while learning from the observed 
data. Dereli et al. 32 introduced some system tool based GA to optimize 
the process parameters for the prismatic parts. The tool is used as a 
standalone software for the process planning system. Thombansen et 
al. 33 introduced self-optimisation based on the self-adaptive machines, 
which shows intelligent reasoning abilities. Authors demonstrated an 

 
Figure 1. Data-Driven MOEA Framework 

 
Figure 2. Taxonomical Classifications of Multi-Objective optimization techniques 



automatic parameters adaptation by machines while dealing with the 
uncertainty. Farahnakian et al. 34 experimented with a statistical tool, 
ANN, and PSO algorithm to optimize the data obtained from the 
nanoclay content on PA-6 with reduced cutting forces. The results show 
that the satisfactory modeling of the cutting forces and surface 
roughness. Yusup 35 have portrayed a detailed survey on the EAs and 
Bio-Inspired techniques based applications for parametric designs of 
the machining processes during 2007 to 2011. Authors concluded that 
the GA based optimization approaches are heavily exploited and 
surface roughness is the most explored performance criterion during 
that period. Šibalija and Majstorovic 36 developed a three-stage expert 
system based on the design space planning using the OA, data 
processing using the factor effects approach and optimization using the 
ANN and EAs. Authors presented four case studies based on the non-
conventional processes. Shakeri et al. 37 portrayed a regression based 
process model and ANN based predictive model for the Wire Electro-
Discharge Machining (WEDM) to obtain better surface Roughness (Ra) 
and Material Removal Rate (MRR). Process variables considered are, 
pulse current, frequency of pulse, wire and servo speed. The ANN 
based method shows better performance. Arnaiz-González et al. 38 
demonstrated the ball-end milling process models using the MLP and 
RBF, where RBF outperformed the MLPs. Xiang and Zhang 39 depicted 
a prediction model based on the ANN and SVM for the milling process 
modeling and proposed an optimization technique using the SVM and 
NSGA II. Zhou et al. 40 proposed an integrated multi-response technique 
based on the Grey Relational Analysis (GRA), RBF, and PSO for ball 
end milling. While compared with the classical GRA, it produces 
continuous space for optimality. Authors considered several design 
variables such as the inclination angle, cutting speed, feed, surface 
roughness, and compressive residuals stress. Khorasani and Yazdi 41 
proposed some surface roughness monitoring system for the milling 
process considering the cutting speed, rate of feed, cut depth, type of 
materials, and coolant fluid, mechanical vibrations, white noise, and Ra. 
Thereafter testing and recall/verification procedures are utilized to 
achieve the higher accuracy. Sangwan and Kant 42 demonstrated an 
RSM based predictive model for the turning operation and optimize the 
model using GA. The results show that the depth of cut is the most 
influential parameter. D’Addona et al. 43 developed an application of 
ANN and DNA-based computing (DBC) to model the tool-wear. Tool-
wear images are processed as data to train the ANN. The DBC can 
distinguish the image similarity or dissimilarity. Recent research trend 
shows that ANN based methods are very popular and useful as 
predictive models and being used heavily by the researchers. However, 
very few studies are proposed on the development of the surrogate 
models that can be used as a replacement of the empirical or 
mathematical functions for optimization. Pfrommer et al. 10 recently 
introduced a surrogate-based optimisation to a composite textile 
draping process, which is a deep ANN and it could predict the shear 
angle of a large number of textile elements. It is shown to minimize the 
number of FEM simulations to attain the optimum parameters. From the 
above discussion some interesting facts could be pointed out and the 
direction of this research could be determined, 

 Data-driven optimization is an important area to be explored 
more for the MPOPs due to its capability to obtain the Pareto 
solutions 2. 

 Most of the multi-objective research works considered two to 
four objectives, whereas more than four objectives are rarely 
considered, which make the problem more complicated 44. 

 Mostly multi-objective algorithms based on the GA, PSO, 
ACO, and ABC are used for MPOPs, but many-objective 
algorithms such as NSGA-III, MOEA/D are rarely found in 
literature 43. Even in the literature of generalized optimization, 
data-driven NSGA-III is not yet available. 

 While discussing the surrogate-assisted optimization, 
comparative analyses based on the different surrogate 
models are performed rarely 40.  

 Most of the research works are based on the empirical real-
world data; however, the systematic MPOP test data or 
published data are not yet available in cumulative forms for 
the algorithmic testing. Eleven test data are identified and 
grouped with the Best Solutions Found (BSF) and made 
available in the online data repository 45. 

Therefore, an aim is made in this research to develop a data-driven 
NSGA-III for multi-response MPOPs. The proposed approach exploits 
a deep-learning based surrogate model as the objective function. For 
that matter, three different deep-learning models based on MLP/Feed 
Forward ANN, GKR, and GRNN are employed and the best performing 
surrogate is picked. The proposed data-driven approach is verified with 
the MPOP test data from the repository and promising results are 
obtained. 

 
3. Data-Driven NSGA-III 

In order to develop the proposed technique, three different deep-
learning based approaches are studied, feed forward neural network 
(FFNN), GKR, and GRNN. These tools are substantially efficient in 
producing suitable approximation models for the machining processes. 

3.1. FFNN 

FFNN is an apt tool for surrogate modeling because it is naturally 
proficient in approximating outputs from the arbitrary input parameters 
38. The FFNN diagram is portrayed in Figure 3. It has n input neurons, 
m hidden layers neurons, and two output neurons. The output equation 
of the FFNN is stated as, 
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Where Zi
oa is the activation function for ith output yi, wji

oa is the weight 
from jth hidden layer node to ith output node, Zk

ha is the activation function 
for jth hidden layer neuron, wjk

ha is the weight from kth input to jth hidden 
layer neuron, and xk is kth input signal. Further, if some bias is added to 
input layer, the equation (1) becomes, 
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Where βi is the weight from the bias to the ith output node and βj is 
the weight from the bias to jth hidden layer neuron. 

3.2. GRNN 

GRNN estimates the responses using weighted average of the 
outputs of the training data. The weights are computed using the 
euclidean distance between the training and testing data, which are also 
termed as activation functions. Weights and computed distances are 
inversely proportional. GRNN contains the input layer, hidden layer, 
summation layer, and output layer nodes (Figure 4). Input layer takes 
the input data and pass on to the next layers, where the euclidean 
distances and activation functions are computed. In summation layer, 
two sub-components are integrated namely, the numerator (N) and 
denominator (D), which perform summation of the multiplication of the 
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 4
training data and activation function and summation of all the activation 
functions respectively. Finally, in output layer, one neuron is portrayed, 
which computes the overall response using the ratio of N and D from 
summation layer 46. The response equation of GRNN is, 

𝑦 =
∑ 𝑦௜௜ 𝑒
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Where 𝑑௜
ଶ = (𝑥 − 𝑥௜)

்(𝑥 − 𝑥௜) is the euclidean distance between x 
and xi, e-((d

i
^2)/(2σ^2 )) is the activation function and  is the spread constant, 

which could be adjusted to hold the optimal value using GRNN training 
so that the mean square error (MSE) value converges to zero. 

3.3. GKR 

GKR is based on the data mapping from the low dimensional space 
to high dimensional space. Since it is a linear regression model in high 
dimensional space, therefore, it is equivalent to the Gaussian 
regression in low dimensional space. The linear regression learner 
used, is based on the SVM regression. In this approach, the input 
parameters x are mapped onto an m-dimensional attribute space using 
specific nonlinear mapping, which further converts it to a linear model 
in the same attribute space. The linear model is expressed as, 

𝑓(𝑥, 𝜔) = ∑ 𝜔௝𝑔௝(𝑥)௠
௝ୀଵ + 𝛽                                            (4)  

Where gj(x) (j=1…m) is a non-linear transformation function and β is 
the bias. The performance of regression is analyzed using the ε-
insensitive loss function 47, 
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The abovementioned regression model can be transformed into an 
optimization problem using, 

min 𝑍 =
1
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Where γi and γi
* (i=1… n) are the positive slack variables, which can 

calculate the deviation of the input parameters beyond the ε-insensitive 
neighborhood. This optimization problem is known as primal. In exact 
SVM regression, this could be transformed into a dual and solved using 
an exact SVM kernel, whereas, in SVM assisted GKR model, the primal 
is solved using the high-dimensional attribute space. Therefore, the 
kernel function is approximated thereon 48. 

3.4. Performance Metric 

In this study, MSE is used as the performance measure for the 
abovementioned surrogate models. MSE is a metric that measures the 
overall deviations between the predicted and measured values. It is 
defined as, 
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Where Y is the approximated output, T is the target output, and N is 
the number of observations. The lower MSE score indicates the higher 
accuracy in space and time 49. The most optimal surrogate model is 
selected based on the lowest MSE score obtained in this study. 

3.5. NSGA-III 

NSGA-III is a state-of-the-art many-objective optimization technique 
proposed by Deb and Jain 44. NSGA-III is developed on the framework 
of its predecessor NSGA-II with a modified selection strategy. NSGA III 
is based on a uniformly generated set of reference points in the 
objective space, which are updated using supervised learning. The 
algorithm is described in algorithm 1. NSGA-III begins with some initial 
population POP of size N using random function, and predefined set of 
reference points Zref. The algorithm executes for a prefixed number of 
iterations. While in execution, the tournament selection, binary 
crossover, and polynomial mutation 50 operators are applied on the 
POP, it generates exactly same number of offspring solutions (new child 
population is POPnew). 

 
Algorithm 1: NSGA III 

1: Generate the reference points Zref to be placed on the hyper plane 
2: Generate initial population POP at random 
3: Generate Ideal points Zmax  
4: Evaluate POP using Fitness Function and perform the non-dominated sorting on POP 
5: for i=1 to Maximum number of generation (maxGEN) do 
7: Perform the crossover on POP (probability: Pc) 
8: Perform the mutation on POP (probability: Pm) 
9: Add new solutions to POPnew and obtain POP= POP ∪ POPnew 
8: Perform the non-dominated sorting on POP 
9: Normalize the POP using Zmax 
10: Associate the population member with the Zref 
11: Calculate the number of niche and perform the niche preservation 
12: Obtain and pass the niche obtained population members to the next generation 
13: end for 

 
Further the new population is formed as, POP = POP ∪ POPnew (size 

2N). Then the non-dominated sorting technique is applied based on 
domination mechanism 51. This procedure could group the members in 
new population POP using different ranking system (Fi where i=1, 2,…, n). The 
population for the next iteration is then obtained based on this ranking 
system. For an example, F1 members would be included first, then F2 
and so on. This way, the population of size N is chosen. If the lth rank 
members are the last to be included in next population. Then, (l+1)th 
onwards all the members are rejected. At this point, not all the members 
with Fl rank might be considered due to the space constraint (population 
size N). Hence, reference point based selection mechanism is 
employed, which differs from the crowding distance based method of 
NSGA-II 52. The said method is demonstrated next. 

The reference points are obtained using the procedure defined by 53, 
which arranges the reference points on the normalized hyper-plane. 
Pareto solutions are normally associated with the reference points on 
the hyper-plane. This hyper-plane is inclined to the M-objective axes 
and defined using an (M-1)-dimensional unit simplex. The number of 
the reference points are decided on the number of divisions of each of 
the objective axes. For P number of divisions, the number of reference 
points H would be computed as, 

 
𝐻 = 𝐶௉

ெା௉ିଵ                                                            (10) 
The normalization procedure proposed by Deb and Jain 44 helps 

identify the set of ideal points Zmax by solving a set of linear equations, 
which is computationally expensive. To make it simple, the simplified 
normalization procedure is followed. If Zj

min= (z1
min, z2

min,..., zM
min) is the 

set of ideal points with the minimum objective values for jth member ∀ 
j∈[1, N]. zi

min is the ith lowest objective value fi ∀ i∈[1, M]. The zi
max ∈ Zmax 
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is supposed as the worst point for the ith objective. The normalized 
objective value fi*(xj) is calculated using Eq. (11). 

 

𝑓௜
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௠௜௡
       ∀𝑖 ∈ [1, 𝑀] 𝑎𝑛𝑑 ∀𝑗 ∈ [1, 𝑁]      (11) 

Once the objective values are normalized, each population member 
is mapped to a reference point. For that matter, the reference lines are 
drawn from each of the reference points to the origin in the hyper-plane. 
Then, the perpendicular distance between each population member 
and each reference line is computed. For every reference point, the 
minimum perpendicular distance is calculated, and the corresponding 
population member is mapped to that reference point. 

Niches are matched for each reference point based on the 
associated population member. Niche preservation is performed to 
select the desired candidates from Fl (the last selected level from new 
POP) using the following rule. First, the reference points set is selected 
with minimum niche counts. If the number of such reference points are 
more than one, a random reference point is selected from above set. If 
the niche count is zero, the member is chosen based on the smallest 
perpendicular distance to the reference line else if the niche count is 
one or greater, a random member is selected from Fl front. Thereafter, 
the niche count is increased by one for the next iteration of the niche 
preservation procedure. If this selection operation is exhausted for a 
reference point, then that is excluded from the present iteration. This 
niche preservation procedure is repeated for the N – |POP| times (until 
the new population is filled). Finally, the new population of size N is 
obtained. The proposed data-driven surrogate-assisted NSGA-III 
framework is portrayed in Figure 5. 

4. Results and Discussions 

In this research, eleven real-world cases are collected based on 
machining processes from the related literature. These are based on 
the turning, grinding, heat exchanger tube, milling, abrasive water jet 
machining, dry turning, drilling, welding, and emulsification processes. 
These cases are used as test data for the proposed data-driven NSGA 
III algorithm. These data are readily available from the online repository 
for further research with BSF values 45. Details of the data are presented 
in Table 1. The last column of Table 1 depicts the type of objectives 
considered for each data. If the response is Higher-the-Better, it is 
denoted as ‘Max’, if it is Lower-the-Better, it is denoted as ‘Min’ and 
‘Nominal-the-Better’, it is denoted as ‘Nom’. The proposed data-driven 
NSGA-III algorithm is implemented in MATLAB R2018a on Intel 8650U 
@1.90GHz computer. For the purpose of comparison, another well-
versed many-objective algorithm, MOEA/D 54 is considered in this study. 
The difficulty of the data-driven surrogate-assisted optimization 
algorithms could amplify insanely with the number of process 
parameters and performance characteristics for the MPOPs. These 
data are divided in 70:30 for the training, and testing. Table 2 portrays 
a comparative analysis of the training of surrogate models considered, 

which are FFNN, GKR, and GRNN. Comparison is performed based on 
the obtained MSE values and it reveals that the GKR surrogate is more 
accurate than other two. Therefore, based on the MSE scores, the GKR 
is selected for further study.  

 
Table 1. Details of eleven cases collected from literature 

No. Ref. Data 
Size 

No. of 
variables 

No. of 
Responses 

Type of Responses* 

1 55 9×8 5 3 m m m 
2 56 9×7 4 3 m m m 
3 57 18×7 4 3 M m M 
4 58 27×8 5 3 m m m 
5 59 9×7 3 4 m m m m 
6 60 18×8 4 4 m m m M 
7 61 16×9 5 4 m m M m 
8 62 9×7 3 4 M N N m 
9 63 27×8 3 5 m m m m m 
10 64 18×12 4 8 All M 
11 65 18×12 4 8 M M m M M m m m 

 *M: Higher-the-Better (Maximization); m: Lower-the-Better (Minimization); N: Nominal-the-Better (Any)  

 
Table 2. Comparison results of the surrogate models based on MSE 

MSE GKR FFNN GRNN 
Data #1 1.07142 2.5863 1.32591 
Data #2 0.04915 1.2327 0.65281 
Data #3 61.74 1432.60 528.0789 
Data #4 3076.308 6674.50 37210.00 
Data #5 1.95 41.4584 68.0058 
Data #6 670.2691 872.2372 1053.50 
Data #7 217.0276 475.5653 2029.60 
Data #8 24.82035 1263.80 302.0497 
Data #9 63.5038 804.1896 76.2148713 
Data #10 185.8598 378.1857 387.6465 
Data #11 185.8598 378.1857 387.6465 

For both the algorithms, NSGA-III and MOEA/D, identical set of 
parameters are considered for all the test cases. Probability of 
crossover is set to 0.5 and mutation rate is set to 0.02. These 
parameters are set after at least 50 independent runs. Population size, 
number of generations and initial population generation techniques 
differ depending on the size of the data and number of the objectives. 
The details are presented in Table 3. For the purpose of this study, 
different initial solution generation procedures are adopted here. For the 
surrogate-assisted optimization techniques, popular DOE tools are 
practiced mostly with an aim to obtain an evenly distributed problem 
design space, which is logically random. FFD is a popular DOE tool, 
which has rarely been practiced for the population generation in 
surrogate-assisted optimization. The possible reason would be the 
limited number of experimental runs are defined for the FFD.  For an 
example, data #5 has three parameters with three levels, hence the 
FFD based design space is set to 33 (=27). The proposed NSGA-III 
based technique is initialized with a population size of 200. Therefore, 
remaining 173 combinations of design parameters are generated using 
another popular DOE tool called LHS 65. This way, the diversity in design 
space is maintained. The last column of Table 3 depicts the types of 
DOE techniques used and the number of generated solutions by these 
tools respectively. 

 
Table 3. Parameters and choice of DOE tools for the algorithms for various data  

Population 
Size 

Number of 
Iteration 

Initial Population Generation 
Technique 

Data #1 81 50 FFD (34=81) 
Data #2 81 50 FFD (34=81) 
Data #3 81 50 FFD (34=81) 
Data #4 243 50 FFD (35=243) 
Data #5 200 50 FFD (33=27) + LHS (173) 
Data #6 200 50 LHS (200) 
Data #7 200 50 LHS (200) 
Data #8 200 50 FFD (33=27) + LHS (173) 
Data #9 200 50 FFD (33=27) + LHS (173) 
Data 
#10 

200 50 FFD (34=81) + LHS (119) 

Data 
#11 

200 50 FFD (34=81) + LHS (119) 

  
First four data represent three-objective MPOPs. Table 4 and Table 

5 portray the holistic results obtained for these problems using the 
NSGA III and MOEA/D. The published results and the most promising 

 
Figure 5. Data-Driven Surrogate-Assisted NSGA-III framework 
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Pareto solutions obtained using the MOEA/D and NSGA-III are 
presented in Table 4. 

 
Table 4. Results obtained using MOEA/D and NSGA-III for three-objective MPOPs 

# Published Results MOEA/D Results NSGA-III Results 
Data 
#1 

CS=155.000, 
FR=0.120, 
CD=0.800, 

CFR=12.000, 
Ra=1.028, 
Rt=4.530, 
Phi=0.740 

(1) CS=181.203, 
FR=0.120, CD=0.737, 

CFR=11.974, 
Ra=0.367, Rt=2.949, 

Phi=0.142 

(1) CS=131.624, 
FR=0.120, CD=0.730, 

CFR=6.034, 
Ra=0.569, Rt=2.136, 

Phi=0.135 

Data 
#2 

DF=5, GF=6, 
DT=2.5, CT=11, 

Ra=0.439, 
OC=0.667, DT=-

0.001 

(1) DF=7.827, 
GF=9.784, DT=2.406, 
CT=10.590, Ra=0.325, 
OC=0.053, DT=0.001 

(1) DF=4.996, 
GF=8.106, DT=2.851, 

CT=11.866, 
Ra=0.355, OC=0.134, 

DT=0.002 
Data 
#3 

Re=23000, 
PR=3,DR=0.7, 

PI=24, Nu=134.22, 
f=0.14, n=1.23 

(1) Re=23000, PR=3, 
DR=0.8, PI=24, 
Nu=135.2004, 

f=0.0805, n=1.3094 

(1) Re=6500, PR=1, 
DR=0.729, PI=23.84, 
Nu=131.83, f=0.0096, 

n=1.375 
Data 
#4 

WP=320, 
AMF=200, TS=8, 
SOD=5, MT=18, 

TKW=1050.5, 
IRA=3.01, 
ZRA=3.54 

WP=279.2696, 
AMF=248.997, 

TS=7.631, SOD=5.266, 
MT=20.0396, 

TKW=1312.552, 
IRA=2.49, ZRA=3.455 

WP=290.276, 
AMF=260.098, 

TS=7.166, SOD=5.42, 
MT=18.174, 

TKW=1270.65, 
IRA=0.126, ZRA=2.57 

 
The boundary conditions are provided as 125 ≤ CS ≤ 185, 0.12 ≤ FR 

≤ 0.2, 0.5 ≤ CD ≤ 0.8, and 4 ≤ CFR ≤ 12 for data #1. For data #2, these 
are 5 ≤ DF ≤ 10, 2 ≤ GF ≤ 10, 1.5 ≤ DT ≤ 3, 10 ≤ CT ≤ 12. For data #3, 
these are 6500 ≤ Re ≤ 23000, 1 ≤ PR ≤ 3, 0.6 ≤ DR ≤ 0.8, 8 ≤ PI ≤ 24. 
For data #4, these are 260 ≤ WP ≤ 320, 200 ≤ AMF ≤ 350, 2.5 ≤ TS ≤ 
8, 5 ≤ SOD ≤ 10, 18 ≤ MT ≤ 38. The results obtained by NSGA III satisfy 
the abovementioned boundary conditions and the results of MOEA/D 
are within the boundary. It could be observed that the results obtained 
for data #1 and #3 are better than the published results for all objectives, 
whereas, obtained results are better for at least two objectives for data 
#2 and #4. NSGA-III results are competitive with MOEA/D results. Table 
5 shows the statistical details of the obtained Pareto frontiers of the 
NSGA-III and MOEA/D. It could be inspected that the obtained solutions 
do not deviate much from the best results; therefore, the mean objective 
values are better than published values. This implies that, both the 
techniques are equally good and capable of obtaining optimal solutions. 
NSGA-III is better for some of the objectives and MOEA/D is better for 
other objectives. Similar analyses could be presented for data #5 to data 
#8. These are four-objective MPOPs. The overall results are portrayed 
in Table 6 and Table 7. Table 6 demonstrates that at least one Pareto 
solution for each of the algorithms would be competitive with the 
published results. 

 
Table 5. Statistical details of Pareto solutions for three-objective MPOPs 

 MOEA/D NSGA-III 
Data 

1 
Data 

2 
Data 

3 
Data 

4 
Data 

1 
Data 

2 
Data 

3 
Data 

4 
O
bj
1 

Min 0.24
569 

0.16
983 

27.4
12 

1214
.154 

0.44
846 

0.35
545 

11.0
018 

1050
.5 

Ma
x 

1.96
81 

0.43
9 

161.
4545 

1312
.552 

1.15
22 

0.40
725 

185.
7585 

1395
.79 

St. 
Dev 

0.18
126 

0.10
209 

41.9
602 

16.7
464 

0.25
508 

0.01
1602 

27.0
774 

88.1
401 

Me
an 

0.37
792 

0.35
87 

110.
287 

1239
.815 

0.85
867 

0.38
542 

166.
2197 

1086
.56 

O
bj
2 

Min 1.57
25 

0.00
9723 

0.00
033 

2.49
15 

0.28
585 

0.13
366 

0.00
694 

0.02
6106 

Ma
x 

12.6
52 

1.91
79 

1.27
12 

6.37
96 

12.9
064 

0.74
991 

0.24
851 

3.58
19 

St. 
Dev 

1.31
36 

0.30
932 

0.32
137 

0.54
317 

3.77
17 

0.14
837 

0.04
3699 

0.95
718 

Me
an 

3.53
79 

0.62
582 

0.42
55 

5.28
95 

2.85
78 

0.48
444 

0.15
274 

2.61
96 

O
bj
3 

Min 0.00
0111 

-.001 0.82
621 

0.29
885 

0.00
0642 

0.00
1092 

1.02
49 

0.00
0379 

Ma
x 

0.89
778 

0.00
9165 

1.35
51 

3.45
48 

0.88
406 

0.00
2204 

1.37
83 

20.0
964 

St. 
Dev 

0.13
957 

0.00
2006 

0.13
429 

0.44
493 

0.18
841 

0.00
0247 

0.05
7411 

1.78
75 

Me
an 

0.11
71 

0.00
0163 

1.05 1.31
47 

0.29
548 

0.00
1506 

1.06
62 

3.52
01 

 
 

 
Table 6. Results obtained using MOEA/D and NSGA-III for four-objective MPOPs 

#. Published Results MOEA/D Results NSGA-III Results 
Data 
#5 

SS=10000, 
FPT=0.5, DC=50, 

TW=5.41, Fx=1.33, 
Fy=0.71, Ra=0.33 

SS=10106.1766, 
FPT=0.621, 
DC=51.266, 

TW=3.932, Fx=1.3096, 
Fy=0.70787, 
Ra=0.3235 

SS=10097.956, 
FPT=0.5563, 

DC=50.00687, 
TW=0.668, Fx=1.3016, 

Fy=0.7656, 
Ra=0.31845 

Data 
#6 

NR=0.4, CS=78.9, 
FR=0.05, DC=0.4, 

Fx=49.03, 
Fy=31.06, 
Fz=148.74, 
MRR=0.355 

NR=0.4, CS=84.0844, 
FR=0.05,  DC=0.469, 

Fx=50.739, Fy=39.726, 
Fz=124.5196, 
MRR=0.443 

NR=0.591, CS=93.763, 
FR=0.136, DC=0.4766,  
Fx=73.054, Fy=31.946, 

Fz=201.198, 
MRR=0.5825 

Data 
#7 

SC=40, 
PTEM=900, 
PTIM=7.5, 

SINTEM=1175, 
SINTIM=15, 

PD=0.89, WA=3, 
BR=178.9, LOI=5.4 

SC=29.89, 
PTEM=583.01, 

PTIM=9.12, 
SINTEM=1192.39, 
SINTIM=17.105, 

PD=0.213, WA=0.033, 
BR=244.0135, LOI=2.2 

SC=21.62, 
PTEM=537.126, 
PTIM=20.523, 

SINTEM=1177.45, 
SINTIM=23.43, 

PD=0.569, WA=7.553, 
BR=185.41, LOI=6.38 

Data 
#8 

SC=1, SS=5000, 
WC=5, SP=284, 

HV=42.6, 
DEN=839.6, 

KV=2.6 

SC=1.165, 
SS=11201.648, 

WC=9.032, 
SP=319.036, 
HV=42.058, 

DEN=844.861, 
KV=3.390 

SC=1.135, 
SS=13188.997, 

WC=13.019, 
SP=272.335, 
HV=41.308, 

DEN=844.783, 
KV=2.826 

 

The boundary conditions for data #5 are defined as 10000 ≤ SS ≤ 
12000, 0.5 ≤ FPT ≤ 1.5, 50  ≤ DC ≤ 100. For data #6, these are 0.4 ≤ 
NR ≤ 0.8, 46.65 ≤ CS ≤ 102.63, 0.05 ≤ FR ≤ 0.2, 0.4 ≤ DC ≤ 0.8. For 
data #7, these are 10 ≤ SC ≤ 40, 300 ≤ PTEM ≤ 900, 7.5 ≤ PTIM ≤ 30, 
1125 ≤ SINTEM ≤ 1750, 10 ≤ SINTIM ≤ 25. For data #8, these are 0.5 
≤ SC ≤ 1.5, 5000 ≤ SS ≤ 15000, 5 ≤ WC ≤ 15. All the obtained results 
satisfy the abovementioned boundary conditions.  
 
 
Table 7. Statistical details of Pareto solutions for four-objective MPOPs 

 MOEA/D NSGA-III 
Data 

5 
Data 

6 
Data 

7 
Data 

8 
Data 

5 
Data 

6 
Data 

7 
Data 

8 
O
bj
1 

Mi
n 

0.02
2237 

23.0
473 

0.00
6133 

146.
0032 

0.66
785 

66.0
081 

0.19
874 

229.
3933 

Ma
x 

27.9
096 

180.
1501 

1.64
06 

338.
022 

7.12
14 

140.
8389 

0.68
134 

272.
3345 

ST
D 

4.87
6 

31.6
443 

0.22
175 

51.7
184 

0.83
605 

14.5
289 

0.08
2832 

7.40
1 

Me
an 

4.25
2 

71.9
11 

0.15
145 

260.
5149 

3.77
88 

95.5
652 

0.38
498 

254.
8826 

O
bj
2 

Mi
n 

1.10
67 

30.1
429 

0.00
1057 

38.5
953 

1.30
16 

28.7
855 

6.04
64 

40.8
999 

Ma
x 

2.58
52 

122.
4458 

5.17
03 

44.4
466 

1.44
33 

65.8
542 

12.9
593 

41.3
348 

ST
D 

0.29
808 

26.5
538 

0.65
348 

1.26
45 

0.01
8055 

6.88
23 

1.11
7 

0.06
3375 

Me
an 

1.51 68.6
461 

0.44
268 

41.9
475 

1.37
32 

41.6
27 

8.34
96 

41.1
674 

O
bj
3 

Mi
n 

0.62
691 

101.
4875 

175.
9111 

827.
4191 

0.71
001 

184.
4619 

140.
7625 

844.
7681 

Ma
x 

1.24
45 

383.
2257 

271.
2379 

868.
0094 

0.76
559 

302.
068 

199.
1408 

850.
1016 

ST
D 

0.12
176 

67.9
347 

17.0
271 

7.49
34 

0.00
9242 

23.0
157 

9.44
22 

0.90
535 

Me
an 

0.78
71 

219.
4054 

230.
4393 

844.
9152 

0.73
894 

231.
1358 

165.
5958 

846.
7218 

O
bj
4 

Mi
n 

0.12
111 

0.33
027 

0.83
344 

1.37
45 

0.30
294 

0.46
416 

6.06
26 

2.37
31 

Ma
x 

0.48
036 

1.73
84 

4.54
54 

5.86
53 

0.36
287 

1.36
21 

7.59
45 

3.06
89 

ST
D 

0.08
7133 

0.28
772 

0.54
979 

0.98
102 

0.01
0076 

0.18
255 

0.26
897 

0.11
872 

Me
an 

0.28
721 

0.72
804 

1.78
87 

3.17
98 

0.32
783 

0.85
929 

6.94
33 

2.70
91 

 

For data #5, the objective scores obtained by NSGA-III and MOEA/D 
outperforms the published results. For data #6, at least two objective 
scores are better than the published results. More important objective 
is MRR than the cutting forces 60, which shows improved values for both 
the algorithms. For data #7, MOEA/D shows better results than the 
NSGA-III by producing best scores, whereas NSGA-III obtains good 
scores for at least two objectives. In case of data #8, NSGA-III obtains 
very close values to the published results. Table 7 depicts statistical 
details of obtained results for data #5-#8. The Mean values obtained by 
the MOEA/D and NSGA-III are good are improved. This further proves 



that the obtained Pareto frontiers are near optimal and convergence 
properties are tight to the solution spaces.  

 
Table 8. Results obtained using MOEA/D and NSGA-III for five to eight objective 
MPOPs 

Data 
No. 

Published Results MOEA/D Results NSGA-III Results 

Data 
#9 

SS=3000, PA=100, 
FR=100, TF=84.23, 

TOR=0.39, EnDF=1.4287, 
ExDF=1.41, Ecc=0.0156 

SS=1915.342, 
PA=102.117, 
FR=155.611, 
TF=81.079, 
TOR=0.193, 
EnDF=1.436, 
ExDF=1.405, 
Ecc=0.010 

SS=1472.946, 
PA=109.898, 
FR=161.275, 
TF=73.769, 
TOR=0.826, 
EnDF=1.366, 
ExDF=1.339, 

Ecc=0.011 
Data 
#10 

PD=0.12, TRS=1100, 
WS=98, SD=24, 

UTS=135.05, YS=113.25, 
E=5.37, CS=8.02, BA=45, 

AHNZ=55.26, 
AHTMAZ=53.09, 
AHHAZ=49.12 

PD=0.204, 
TRS=971.365, 
WS=98.717, 
SD=23.627, 

UTS=131.857, 
YS=103.503, 

E=6.978, 
CS=5.812, 
BA=53.189, 

AHNZ=56.783, 
AHTMAZ=62.183, 
AHHAZ=52.187 

PD=0.181, 
TRS=769.885, 
WS=82.647, 
SD=22.194, 

UTS=79.786, 
YS=70.254, 

E=4.236, 
CS=8.394, 
BA=45.568, 

AHNZ=57.138, 
AHTMAZ=57.910, 
AHHAZ=51.568 

Data 
#11 

PD=0.21, TRS=600, 
WS=98, SD=24, 

UTS=113.04, YS=109.64, 
E=1.46, CS=5.23, BA=35, 

AHNZ=52, 
AHTMAZ=50.36, 
AHHAZ=48.66 

PD=0.170, 
TRS=600, WS=98, 

SD=24, 
UTS=132.174, 
YS=111.654, 

E=1.413, 
CS=6.879, 
BA=39.206, 

AHNZ=53.820, 
AHTMAZ=51.945, 
AHHAZ=50.742 

PD=0.148, 
TRS=728.862, 
WS=87.578, 
SD=19.21, 

UTS=131.221, 
YS=119.673, 

E=0.589, 
CS=5.125, 
BA=44.636, 

AHNZ=51.517, 
AHTMAZ=49.029, 
AHHAZ=49.738 

For the rest of the data (#9-#11), the number of objectives is higher. 
The results are portrayed in Table 8. The boundary conditions are 
defined as 1000 ≤ SS ≤ 3000, 100 ≤ PA ≤ 135, 100 ≤ FR ≤ 500 for data 
#9. For data #10 and #11, these are 0.12 ≤ PD ≤ 0.21, 600 ≤ TRS ≤ 
1100, 63 ≤ WS ≤ 132, 16 ≤ SD ≤ 24. Both the EAs satisfy the 

abovementioned boundary conditions. For data #9, it is observed that 
the objective values are better for at least four out of five responses. 
The NSGA-III obtains slightly better results than the MOEA/D. Rest of 
the cases are identical except the types of the responses considered. 
Table 9 and Table 10 portray statistical details for the Pareto solutions 
obtained for these data.  
 
Table 9. Statistical details of Pareto solutions for data #9 

 MOEA/D NSGA-III 
Obj1 Min 89.9676 67.4746 

Max 316.8432 203.0775 
STD 46.9734 47.4164 
Mean 171.7997 169.6964 

Obj2 Min 0.4363 0.19287 
Max 1.8016 1.6763 
STD 0.28929 0.45359 
Mean 0.83595 1.3899 

Obj3 Min 1.1919 1.3295 
Max 1.5758 1.4355 
STD 0.076778 0.02088 
Mean 1.3661 1.3852 

Obj4 Min 1.1797 1.232 
Max 1.5034 1.4522 
STD 0.074801 0.058484 
Mean 1.3492 1.2846 

Obj5 Min 0.013958 0.000236 
Max 0.094262 0.062879 
STD 0.013388 0.014728 

Mean 0.048773 0.019597 
 
Table 10. Statistical details of Pareto solutions for data #10 and data #11 

 MOEA/D NSGA-III 
Data 10 Data 11 Data 10 Data 11 

Min 

Obj1 

66.193 108.54 64.10 65.094 
Max 143.2 152.76 86.13 140.26 
STD 13.583 9.5639 3.245 16.369 
Mean 120.38 130.94 79.79 111.29 
Min 

Obj2 

63.378 85.326 61.57 52.000 
Max 164.36 113.23 81.60 131.08 
STD 22.572 6.1076 2.802 16.128 
Mean 97.212 97.933 70.39 103.59 
Min 

Obj3 

2.365 1.0386 3.291 0.0300 
Max 10.415 2.0119 5.170 5.7989 
STD 2.128 0.1739 0.271 1.1034 
Mean 5.985 1.6994 4.269 1.423 
Min 

Obj4 

0.945 1.5257 6.799 2.75 
Max 10.66 7.1936 10.34 7.9823 
STD 2.067 0.7325 0.656 0.9148 
Mean 6.957 5.411 8.719 5.1429 
Min 

Obj5 

14.36 15.43 27.588 10.893 
Max 76.71 43.91 59.274 75.423 
STD 10.16 4.074 5.1583 12.097 
Mean 47.58 34.27 44.160 42.574 
Min 

Obj6 

46.09 52 55.242 46.201 
Max 61.65 62.1 59.495 59.948 
STD 3.942 0.917 0.7323 2.3591 
Mean 55.83 58.81 57.531 51.251 
Min 

Obj7 

50.82 50.36 52.672 48.383 
Max 62.83 53.67 62.000 60.815 
STD 3.656 0.301 1.5957 2.051 
Mean 58.69 53.18 57.735 50.071 
Min 

Obj8 

48.96 48.66 50.015 45.984 
Max 53.87 51.53 52.226 50.377 
STD 1.338 0.284 0.3134 0.6951 
Mean 51.66 50.69 51.383 49.242 

 
Table 11. CPU time (Seconds) consumed by both the EAs 

MOEA/D 

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 
33.552 32.019 34.847 139.21 114.226 115.834 
Data 7 Data 8 Data 9 Data 10 Data 11  
116.66 117.574 169.292 2304.23 1764.77  

NSGA-III 

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 
34.452 32.527 29.238 113.352 86.3906 86.9707 
Data 7 Data 8 Data 9 Data 10 Data 11  
82.806 88.9076 95.2284 1225.181 1224.518  

 
Obtained solutions are evenly distributed in the solution space. 

Therefore, the obtained solutions portray improved mean and standard 
deviation scores. This is also depicted that the individual objective 
scores are optimal and objective tradeoffs are obtained accordingly. 

 
Figure 6. Pareto plots for three-objective MPOPs (data #1 - #4) 

 
Figure 7. Pareto plots for four-objective MPOPs (data #5 - #8) 
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Table 11 portrays the CPU times consumed by both the EAs and the 
NSGA-III works faster that MOEA/D. Objective trade-offs for data #1 to 
#9 are portrayed in Fig. 6-8. These are 3-5 objective problems. Another 
example of the largest data #10 (eight objectives) is portrayed using the 
parallel coordinate plots in Fig. 9.  

For the machining related process optimization, the validation or 
confirmatory tests are required. Otherwise, the results obtained by data-
driven optimization algorithms do not provide any relevant information. 
Since the test data are considered from the literature and due to the 
involvement of various types of the machining operations, it is not 
possible to verify the obtained results. However, the rigorous tests on 
enough test data would confirm the consistency of the proposed 
techniques. The conformity of the obtained results within the boundary 
conditions for the MPOPs proves the relevancy of the performances of 
algorithms. Further, a statistical test is conducted to validate the results 
obtained by the data-driven EAs. 

4.1. Statistical Analysis 

The objective of this statistical test is to measure the performances 
of the EAs in the state space. For that matter, the euclidean distance 
between multi-objective solutions (BFS and EA solutions) are computed 
using, 

𝑑𝑖𝑠𝑡(𝑧ଵ, 𝑧ଶ) = ට∑ ൫𝑓௜(𝑧ଵ) − 𝑓௜(𝑧ଶ)൯
ଶ௠

௜ୀଵ                           (12)  

 
Where z1 and z2 are the solutions and fi(z1) and fi(z2) are the fitness 

values for ith objective. In this analysis, the solution diversity is 
considered as the measurement. Therefore, the Front Spread (FS) 
indicator is incorporated 66. The FS metric measures the objective space 
area covered by the solution set POP. The larger is the obtained FS 
value; the better is the performance of the corresponding EA. For m-
dimensional state space consisting of POP, the FS is computed using, 

 

𝐹𝑆(𝑃𝑂𝑃) = ඨ෍ 𝑚𝑎𝑥(௭భ,௭మ)∈௉ை௉×௉ை௉ ቄ൫𝑓௜(𝑧ଵ) − 𝑓௜(𝑧ଶ)൯
ଶ
ቅ

௠

௜ୀଵ
      (13) 

 

To facilitate the statistical analysis, the numerical FS scores are 
computed for all the results (Table 12). These FS scores are considered 
as two independent sets of values. Therefore, the equality of variances 
is tested with 2 variances f-test with σ₁: standard deviation of MOEA/D; 
σ₂: standard deviation of NSGA III. The ratio σ₁/ σ2 is the indicator. If 
the test statistic < critical value (F < Fcritical) accept the null hypothesis; 
in other words, if p-value > α, accept the null hypothesis. The f-test result 
is shown in Table 13. According to the result, it is clearly visible that the 
F < Fcritical (2.671217985 < 2.978237016); p-values > α 
(0.068499784>0.05). Therefore, the null hypothesis is accepted, and it 
is concluded that the variances are equal. Further, the paired t-test is 
performed assuming equal variances. The result of t-test is reported in 
Table 14. If the test statistic < critical value (F < Fcritical) accept the null 
hypothesis; in other words, if p-value > α, accept the null hypothesis. 
Since the null hypothesis is that the mean difference = 0, therefore this 
would be decided with a two-sided test. Two-tail values are used for the 
analysis. According to Table 14, the test statistic < critical values 
(0.776115333 < 1.812461123 and 0.776115333 < 2.228138852) and 
the p-values for one-tail and two-tail > α (0.227822418 > 0.05 and 
0.455644837 > 0.05), thus the null hypothesis is accepted, and the 
means are same. Therefore, the obtained results are consistent and 
reliable. More specifically, it could also be stated that, even though the 
NSGA III (mean= 34.2572) performs little better than the MOEA/D 
(mean= 46.1848), they are equally capable of producing reliable 
solutions for the MPOPs. 

 
Table 12. FS scores by both the EAs 

Data # MOEA/D NSGA III 
1 1.340E+00 1.738E+00 
2 8.990E-02 1.908E-01 
3 2.394E+01 3.200E+01 
4 1.893E+02 3.606E+01 
5 1.175E+00 1.632E+00 
6 8.325E+01 9.522E+01 
7 5.173E+01 1.443E+01 
8 2.410E+01 3.001E+01 
9 8.757E+01 8.547E+01 
10 2.278E+01 7.018E+01 
11 2.273E+01 9.897E+00 

 
Table 13. F-Test Two-Sample for Variances  

MOEA/D NSGA III 
Mean 46.18487273 34.25720909 

Variance 3185.430948 1192.501311 
Observations 11 11 

df 10 10 
F 2.671217985 

 

P(F<=f) one-tail 0.068499784 
 

F Critical one-tail 2.978237016 
 

 
Table 14. t-Test: Paired Two Sample for Means 

  MOEA/D NSGA III 
Mean 46.18487273 34.25720909 
Variance 3185.430948 1192.501311 
Observations 11 11 
Pearson Correlation 0.4566072 

 

Hypothesized Mean Difference 0 
 

df 10 
 

t Stat 0.776115333 
 

P(T<=t) one-tail 0.227822418 
 

t Critical one-tail 1.812461123 
 

P(T<=t) two-tail 0.455644837 
 

t Critical two-tail 2.228138852   

5. Conclusions 

An attempt has been made in this article to implement the data-
driven surrogate-assisted EAs to optimize the manufacturing 
processes. These types of optimization problems are based on the 
limited off-line data. The proposed technique is based on the NSGA-III 
algorithms. The proposed data-driven technique exploited the GKR 
based surrogate for the objective approximations. In order to verify the 
proposed methodology, a comprehensive number of data are 
considered from the past literature. These data have different 
responses ranging from three to eight (objectives). The NSGA-III is 

 
Figure 8. Pareto plots for five-objective MPOP (data #9) 

 
Figure 9. Pareto plot for eight-objective MPOP (data #10) (Responses are 
ultimate tensile strength (UTS), yield strength (YS), percentage of elongation (% 
E), compressive stress (CS), bending angle (BA), average hardness at the 
nugget zone (AHNZ), thermo mechanical affected zone (AHTMAZ) and heat 
affected zone (AHHAZ)) 



shown to obtain good results and outperforms another recent EA. The 
following contributions could be concluded from this research, 

 Generic objective approximation and data-driven multi-objective 
optimization approaches are rarely practiced together for the 
manufacturing process optimization, which is done in this work. 

 The NSGA-III is a newly developed many-objective optimization 
technique, which is not yet tested for the data-driven surrogate-
assisted optimization, which is done in this paper. 

 The initial population generation for the data-driven EA maintains 
the variation in the population. For that matter, LHS techniques are 
mostly exploited in past. In this study, the LHS is mixed with FFD. 
This mixed approach incorporates more variety and proportional 
distribution of the solutions in the design space. 

 Mostly past research on the surrogate-assisted optimization 
employed single surrogate based objective evaluation. In this 
study, the GKR, GRNN, and FFNN are utilized and compared 
based on the off-line data training. The best model is then selected 
based on the lowest MSE scores. 

 The obtained solutions are confirmed with the boundary conditions 
and the statistical analysis proves the reliability of the EAs.      

The further scope of this study is to address on-line direct 
optimization of the machining processes with many responses. 
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