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Abstract 133 

Common risk factors for psychiatric and other brain disorders likely converge on biological 134 

pathways influencing the development and maintenance of brain structure and function 135 

across life. Using structural magnetic resonance imaging data from 45,615 individuals aged 136 

3 to 96 years, we demonstrate distinct patterns of apparent brain aging in several brain 137 

disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals 138 

and common brain disorders. 139 

 140 

Main text 141 

Psychiatric disorders and other brain disorders are among the main contributors to morbidity and 142 

disability around the world1. The disease mechanisms are complex, spanning a wide range of 143 

genetic and environmental contributing factors2. The inter-individual variability is large, but on a 144 

group-level, patients with common brain disorders perform worse on cognitive tests, are less 145 

likely to excel professionally, and engage in adverse health behaviours more frequently3. It is 146 

unclear to what extend these characteristics are a cause, consequence or confounder of disease.  147 

Dynamic processes influencing the rate of brain maturation and change throughout the 148 

lifespan play a critical role, as reflected in the wide range of disease onset times from early 149 

childhood to old age4. This suggests that the age at which individual trajectories diverge from the 150 

norm reflects key characteristics of the underlying pathophysiology. Whereas autism spectrum 151 

disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) emerge in childhood5, 152 

schizophrenia (SZ) and bipolar (BD) spectrum disorders likely develop during late childhood and 153 

adolescence, before the characteristic outbreak of severe symptoms in early adulthood6. 154 

Likewise, multiple sclerosis (MS) most often manifests in early adulthood but the disease process 155 
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likely starts much earlier7. First episodes in major depressive disorder (MDD) can appear at any 156 

stage from adolescence to old age5, whereas mild cognitive impairment (MCI) and dementia 157 

(DEM) primarily emerge during senescence8. Beyond such differential temporal evolution across 158 

the lifespan, age-related deviations from the norm may also differ between disorders in terms of 159 

anatomical location, direction, change rate and magnitude, all of which add complexity to the 160 

interpretation of observed effects.  161 

Machine learning techniques enable robust estimation of the biological age of the brain 162 

using information provided by magnetic resonance imaging (MRI)9,10, assessing the similarity of 163 

a given brain scan with scans of a range of individuals to estimate the age of the tissue from a 164 

normative lifespan trajectory. Initial evidence suggested that the deviation between brain age and 165 

chronological age – termed the brain age gap - is a promising marker of brain health11, but 166 

several issues remain to be addressed. First, while advantageous for narrowing the complexity, 167 

reducing a rich set of brain imaging features into a single estimate of brain age inevitably 168 

compromises spatial specificity, thereby neglecting disorder-specific patterns. Second, most 169 

studies so far have been rather small-scale, performed within a limited age range and focusing on 170 

a single disorder, which left them unable to uncover clinical specificity and lifespan dynamics. 171 

Third, the genetic underpinnings of brain age gap are not understood, and it is unknown to what 172 

degree they overlap with the genetic architecture of major clinical traits. To address these critical 173 

knowledge gaps, large imaging genetics samples covering a range of prevalent brain disorders are 174 

necessary. 175 

Here, we employed a centralized and harmonized processing protocol including 176 

automated surface-based morphometry and subcortical segmentation using Freesurfer on raw 177 

structural MRI data from 45,615 individuals aged 3 to 96 years that passed quality control 178 

(Suppl. Fig. 1). The sample included data from healthy controls (HC; n = 39,827; 3-95 years) 179 
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and 5,788 individuals with various brain disorders. We included data from individuals with ASD 180 

(n = 925; 5-64 years), ADHD (n = 725; 7-62 years), prodromal SZ or at risk mental state 181 

(SZRISK; n = 94; 16-42 years), SZ (n = 1110; 18-66 years), a heterogeneous group with mixed 182 

diagnoses in the psychosis spectrum (PSYMIX; n = 300; 18-69 years), BD (n = 459; 18-66 183 

years), MS (n = 254; 19-68 years), MDD (n = 208; 18-71 years), MCI (n = 974; 38-91 years), and 184 

DEM (including Alzheimer’s disease; n = 739; 53-96 years). Suppl. Tables 1-3 provide details 185 

on the sample’s characteristics and scanning protocols.  186 

We used machine learning to estimate individual brain age based on structural brain 187 

imaging features. First, we grouped all subjects into different samples. For each of the ten clinical 188 

groups, we identified a group of healthy individuals of equal size, matched on age, sex and 189 

scanning site from a pool of 4353 healthy control subjects. All remaining individuals were joined 190 

into one independent sample comprising healthy individuals only. The latter constituted a 191 

training sample, used to train and tune the machine learning models for age prediction (n = 192 

35,474 aged 3-89 years; 18,990 females), whereas the ten clinical samples were used as 193 

independent test samples. Figure 1a illustrates the respective age distributions per sex and 194 

diagnosis.  195 

The large sample size and wide age-span of the training sample allowed us to model male 196 

and female brain age separately, thereby accounting for potential sexual dimorphisms in brain 197 

structural lifespan trajectories12. For each sex, we built a machine learning model based on 198 

gradient tree boosting to predict the age of the brain from a set of thickness, area and volume 199 

features extracted using a multi-modal parcellation of the cerebral cortex as well as a set of 200 

cerebellar/subcortical volume features (1,118 features in total, Fig. 1b). Five-fold cross-201 

validations revealed high correlations between chronological age and predicted brain age (r=.93 202 

and r=.94 for the female and male model, respectively; Suppl. Fig. 2). Suppl. Fig. 3-6 provide 203 
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further validation of the prediction approach and Suppl. Table 4 provides details on sex 204 

differences in the prediction models. Next, we applied the models to predict age for each 205 

individual in the ten independent test samples (predicting brain age using the female model in 206 

females and the male model in males) and tested for effects of diagnosis on the brain age gap 207 

using linear models. We used mega-analysis (across-site analysis) as the main statistical 208 

framework and provide results from a meta-analysis framework in the supplement. We included 209 

age, age², sex, scanning site and a proxy of image quality (Euler number) in all statistical models 210 

testing for group differences and clinical associations. To further minimize confounding effects 211 

of data quality, we repeated the main analyses using a more stringent quality control and 212 

exclusion procedure. 213 

Figure 2a illustrates that the estimated brain age gap was increased in several brain 214 

disorders. Strongest effects were observed in SZ (Cohen’s d = 0.51), MS (d = 0.74), MCI (d = 215 

0.41) and DEM (d = 1.03). PSYMIX (d = 0.21) and BD (d = 0.29) showed small effects of 216 

increased brain age gap, whereas other groups showed negligible effects (d<0.2). The meta-217 

analysis converged on the same findings (Suppl. Fig. 7) and the results replicated regardless of 218 

the quality control exclusion criterion applied (Suppl. Fig. 8). The brain age gap in all clinical 219 

groups was positive on average and there were no signs of a negative brain age gap 220 

(developmental delay) in children with ASD or ADHD, and no significant group by age 221 

interaction effect (Suppl. Table 5). 222 

We assessed specificity of the spatial brain age gap patterns across clinical groups. We 223 

trained age prediction models using only occipital, frontal, temporal, parietal, cingulate, insula, or 224 

cerebellar/subcortical features (Fig. 1b). Cross-validation confirmed the predictive performance 225 

of all regional models (Suppl. Fig. 2) which were used to predict regional brain age in the ten 226 

independent test sets. Regional brain age gaps largely corresponded to the full brain level, with 227 
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some notable differential spatial patterns (Fig. 2b). For example, increased cerebellar/subcortical 228 

age gap was most prominent in DEM (d = 0.99) and MS (d = 0.81) but was not present in SZ (d 229 

= 0.16). The largest effect in SZ was observed in the frontal lobe (d = 0.70). A brain age gap in 230 

the temporal lobe was observed in MDD (d = 0.24), whereas there was no evidence (d<0.2) for a 231 

brain age gap in ASD, ADHD or SZRISK in any of the regions. To explore regional differences 232 

in brain age patterns, we tested for group by region interactions on each pairwise combination of 233 

clinical groups and pairwise combination of regional brain age gaps (1260 tests). Figure 2c 234 

illustrates the significant effect sizes, indicating that the rate at which different regions age in 235 

relation to each other oftentimes showed opposite patterns between disorders typically considered 236 

neurodevelopmental (e.g. SZ) and neurodegenerative (e.g. MS/DEM), respectively.  237 

With converging evidence demonstrating largest brain age gaps in SZ, MS, MCI and 238 

DEM, we explored the functional relevance of the regional brain age gaps for these groups by 239 

testing for associations with clinical and cognitive data. Clinical data available from individuals 240 

with SZ included symptom (n = 389) and function (n = 269) scores of the Global Assessment of 241 

Functioning scale (GAF) as well as positive (n = 646) and negative (n = 626) scores of the 242 

Positive and Negative Syndrome Scale (PANSS). For MS, we assessed associations with scores 243 

from the Expanded Disability Status Scale (EDSS, n = 195). In the dementia spectrum, we 244 

assessed associations with Mini Mental State Examination scores (MMSE, n = 907 MCI, n = 686 245 

DEM). Figure 2d depicts association strengths accounted for age, age², sex, scanning site and 246 

Euler number and Suppl. Fig. 11 provides corresponding scatter plots. In SZ, larger brain age 247 

gaps were associated with lower functioning, for example full brain age gap with GAF symptom 248 

(r = -0.15, P = .003) and insula brain age gap with GAF function (r = -0.22, P = 3 x 10-4), and 249 

with more negative symptoms, for example temporal brain age gap with PANSS negative (r = 250 

0.13, P = .001). In MS, larger full brain age gap was associated with higher disability (r = 0.23, P 251 
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= .001). Finally, lower cognitive functioning was associated with larger brain age gaps in 252 

MCI/DEM, with strongest effects for full brain (r = -0.30, P = 7 x 10-33) and 253 

cerebellar/subcortical (r = -0.29, P = 2 x 10-30) brain age gaps.  254 

 Given the substantial genetic contributions to most brain disorders, our results incite the 255 

question to what degree brain age patterns are genetically influenced and if the implicated 256 

polymorphisms overlap with the polygenic architectures of the disorders. We used single 257 

nucleotide polymorphism (SNP) data from the 20,170 adult healthy individuals with European 258 

ancestry available in UK Biobank. We estimated full and regional brain age for these individuals 259 

using 5-fold cross-validation in models trained on all healthy controls (n = 39,827 aged 3-95 260 

years; 20,868 females, models trained per sex).  261 

First, we performed one genome-wide association study (GWAS) per brain age gap using 262 

PLINK, including the first ten population components from multidimensional scaling, age, age², 263 

sex, scanning site and Euler number as covariates. Next, we assessed heritability using LD score 264 

regression on the resulting summary statistics. In line with earlier results from twin studies13, our 265 

SNP-based analysis revealed significant heritability (Fig. 3a), with common SNPs explaining 266 

24% of the variance in brain age gap across all individuals (full brain, h2SNP = 0.24, SE = 0.03) 267 

and 17-23% of the variance in regional brain age gaps (all SE < 0.03).  268 

Next, we assessed the overlap between the genetic underpinnings of brain age gap and 269 

common brain disorders. We gathered GWAS summary statistics for ASD, ADHD, SZ, BD, MS, 270 

major depression (MD), and Alzheimer’s disease (AD) (see online methods). First, using LD 271 

score regression, we assessed the genetic correlation between these summary statistics and those 272 

from brain age gaps. Correlations were overall weak (Suppl. Fig. 12), with only one surviving 273 

FDR correction for the number of tests (cingulate brain age gap with ADHD). Lack of genetic 274 

correlation does not preclude genetic dependence as traits may have mixed effect directions 275 
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across shared genetic variants14. Thus, we next used conjunctional FDR analyses to identify 276 

SNPs that are significantly associated with both brain age gap and disorders. We found 277 

significant independent loci showing pleiotropy between brain age gaps and all included 278 

disorders (Figure 3b). Most loci were identified for SZ (2 occipital, 4 frontal, 3 temporal, 6 279 

parietal, 5 cingulate, 5 insula, 2 cerebellar/subcortical; 161 SNPs in total). Further, 5 independent 280 

loci for ASD (76 SNPs), 6 for ADHD (80 SNPs), 10 for BD (94 SNPs), 5 for MS (22 SNPs), 1 281 

for MD (14 SNPs), and 6 for AD (15 SNPs). Suppl. Table 6 provides details. Figure 3c depicts 282 

the identified genes coloured by significance and sized by frequency. An intronic variant in 283 

protein coding gene SATB2 at chromosome 2q33.1 was most frequently associated with brain age 284 

gaps and SZ. A missense variant in protein coding gene SLC39A8 was associated with 285 

subcortical brain age gap and SZ and showed the strongest effect in all tested associations (P = 9 286 

x 10-8). 287 

Taken together, our results provide strong evidence that several common brain disorders 288 

are associated with an apparent aging of the brain, with effects observed at the full brain or 289 

regional level in SZ, PSYMIX, BD, MS, MDD, MCI and DEM; but not in ASD, ADHD or 290 

SZRISK. Importantly, our approach revealed differential neuroanatomical distribution of brain 291 

age gaps between several disorders. Associations with clinical and cognitive data in patients 292 

supported the functional relevance of the brain age gaps and genetic analyses in healthy 293 

individuals provided evidence that the brain age gaps are heritable, with overlapping genes 294 

between brain age gaps in healthy adults and common brain disorders.  295 

Our approach of estimating regional brain age was useful to reveal differential spatial 296 

patterns between disorders. Whereas the implicated regions in the spatial brain age profiles of the 297 

disorders largely corresponded with previously reported structural abnormalities (e.g. frontal in 298 

SZ15 and substantial subcortical volume loss in AD16), our regional brain age approach preserved 299 
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the well-established benefit of down-sampling a large number of brain imaging features into a 300 

condensed and interpretable score without a total loss of spatial sensitivity. As such, the analysis 301 

revealed substantial differences in spatial aging profiles between disorders typically regarded as 302 

neurodegenerative (MS, MCI, DEM) and neurodevelopmental, in particular SZ and PSYMIX. 303 

For example, whereas these disorders were all associated with increased brain age gap on the full 304 

brain level, regional analysis revealed interactions between the frontal brain age patterns 305 

observed in SZ and the cerebellar/subcortical patterns observed in MS and DEM, supporting 306 

spatial differences in apparent brain age. Moreover, significant associations with clinical and 307 

cognitive data, in particular with scores of the GAF and PANSS in SZ, with the EDSS in MS and 308 

with MMSE in the dementia spectrum demonstrated functional relevance of brain age gap 309 

beyond group differences. By gauging the dynamic associations between changes in brain age 310 

and clinical and cognitive function, future longitudinal studies may prove instrumental to dissect 311 

the large individual differences among patients with brain disorders, even within the same 312 

diagnostic category17. Furthermore, incorporating additional imaging modalities, voxel-level data 313 

or different segmentations at various levels of resolution will allow for estimation of tissue-314 

specific brain age gaps or different regional gaps in future studies. Such approaches will also be 315 

useful to further investigate the apparent lack of brain age gap differences in ASD and ADHD. In 316 

contrast to research from other imaging phenotypes18,19, we did not observe case-control 317 

differences in brain age gaps for ASD or ADHD, nor group by age interactions (developmental 318 

delays might be reflected in a negative brain age gap in children). Brain age gaps based on 319 

different imaging modalities may capture different aspects of pathophysiology and will therefore 320 

yield an important contribution in future research.  321 

Conceptually, brain age gaps reflect a prediction error from a machine learning model and 322 

can therefore be attributed to both noise (lack of model accuracy, insufficient data quality) and 323 
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physiology (deviations from normal aging trajectories). The large training sample and accurate 324 

model performance, replication of results at different data quality criterions, as well as our 325 

approach of comparing brain age gaps of cases to a group of age-, sex- and scanner-matched 326 

controls allowed us to reduce the impact of noise and to attribute variation in brain age gaps as 327 

likely related to biologically relevant differences. The physiological underpinnings of the brain 328 

age gaps are likely diverse, much like the polygenic nature of brain disorders and their 329 

profoundly heterogeneous symptomatology. They may reflect differences in disease severity, 330 

effects of comorbid disorders, substance use or other adverse lifestyle factors. Genetic analysis 331 

offers one way of exploring factors that influence phenotypic variation toward an improved 332 

understanding of the multi-faceted sources of lifespan trajectories in the brain. Here, we provided 333 

evidence that full and regional brain age gaps represent genetically influenced traits, and 334 

illustrated that the genetic variants associated with brain age gaps in healthy individuals partly 335 

overlap with those observed in ASD, ADHD, SZ, BD, MS, MD and AD. In line with 336 

accumulating evidence that common brain disorders are highly polygenic and partly 337 

overlapping20 these results suggest shared molecular genetic mechanisms between brain age gaps 338 

and brain disorders. Statistical associations do not necessarily signify causation, and functional 339 

interpretations of the identified genes should be made with caution. Larger imaging genetics 340 

samples, in particular those including individuals with common brain disorders, may in the future 341 

allow the investigation of specificity of the implicated genes, and integrating a wider span of 342 

imaging modalities may increase both sensitivity and specificity.  343 

 In conclusion, we have established that the brain age gap is increased in several common 344 

brain disorders, sensitive to clinical and cognitive phenotypes and genetically influenced. Our 345 

results emphasize the potential of advanced lifespan modelling in the clinical neurosciences, 346 

highlighting the benefit of big data resources that cover a wide age span and conditions. 347 



Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

13 
 

Delineating dynamic lifespan trajectories within and across individuals will be essential to 348 

disentangle the pathophysiological complexity of brain disorders.  349 
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 457 
 458 
Figure legends 459 
 460 
Figure 1: Sample distributions and imaging features used for brain age prediction. a, Age 461 

distributions of the training (left) and the ten test samples (right) per sex and diagnosis. The grey 462 

shades behind each clinical group reflect its age-, sex- and site-matched control group. b, Cortical 463 

features from the Human Connectome Project (HCP) atlas as well as cerebellar/subcortical 464 

features used for brain age prediction. Colours were assigned randomly to each feature. All 465 

features were used in the full brain feature set (left), whereas only those from specific regions 466 

(occipital, frontal, temporal, parietal, cingulate, insula, cerebellar/subcortical) were included in 467 

the regional feature set (right). For illustration purpose, the left hemisphere is shown. 468 

 469 

Figure 2: Apparent brain aging is common in several brain disorders and sensitive to 470 

clinical and cognitive measures. a, The gap between chronological age and brain age was 471 

increased in several disorders. The grey shades behind each clinical group reflect its age-, sex- 472 

and site-matched controls. The test samples comprised n=925 ASD / n=925 HC, n=725 ADHD / 473 

n=725 HC, n=94 SZRISK / n=94 HC, n=1110 SZ / n=1110 HC, n=300 PSYMIX / n=300 HC, 474 

n=459 BD / n=459 HC, n=254 MS / n=254 HC, n=208 MDD / n=208 HC, n=974 MCI / n=974 475 

HC, n=739 DEM / n=739 HC; in total n=10,141 independent subjects. Cohen’s d effect sizes 476 

(pooled standard deviation units) and two-sided P-values are provided. b, Several disorders 477 

showed specific patterns in regional brain age gaps. Colours indicate Cohen’s d effect sizes for 478 

group comparisons. Sample size as specified in panel a. Corresponding correlation matrix of the 479 
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effect sizes is depicted in Suppl. Fig. 9. c, Effect sizes of significant region by group interactions 480 

from repeated measures ANOVAs run for each combination of regions and groups (1260 tests in 481 

total). Sample size as specified in panel a yet excluding HC; n=5788 independent subjects. Only 482 

significant (p<FDR; Benjamini-Hochberg) effects are shown. Suppl. Fig. 10 depicts effect sizes 483 

for all 1260 tests. d, Correlation coefficients for linear associations between brain age gaps and 484 

cognitive and clinical scores. Sample size comprised n=389 SZ for GAFsymptom, n=269 SZ for 485 

GAFfunction, n=646 SZ for PANSSpositive, n=626 SZ for PANSSnegative, n=195 MS for EDSS, n=907 486 

MCI and n=686 DEM for MMSE.  Associations were computed using linear models accounting 487 

for age, age², sex, scanning site and Euler number, and the resulting t-statistics were transformed 488 

to r. Significant (P<FDR; Benjamini-Hochberg; two-sided) associations are marked with a black 489 

box. Corresponding scatter plots are depicted in Suppl. Fig 11. 490 

 491 

Figure 3: The brain age gaps are heritable, and the genetic underpinnings overlap with 492 

those observed for several disorders. Genetic analyses were performed using data from 493 

n=20,170 healthy adult individuals with European ancestry a, Heritability (h2) estimated using 494 

LD Score regression. Error bars reflect standard error. b, Significantly (P<FDR) overlapping loci 495 

between brain age gaps and disorders, identified using conjunctional FDR. c, Corresponding to 496 

panel b, the overlapping genes across all disorders, coloured by significance and sized by 497 

frequency of detection. 498 
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Online methods 499 

Additional information is available in the Life Sciences Reporting Summary. 500 

Samples 501 

We have included data collected through collaborations, data sharing platforms, consortia as well 502 

as available in-house cohorts. No statistical methods were used to pre-determine sample sizes. 503 

We included as much data as we could gather (brain scans from N=45,615 individuals) and 504 

sample size of individual clinical groups is thus based on data availability. Suppl. Tables 1 - 3 505 

provide detailed information on the individual cohorts. All included cohorts have been published 506 

on, and we refer to a list of publications that can be consulted for a more detailed overview of 507 

cohort characteristics. Data collection in each cohort was performed with participants’ written 508 

informed consent and with approval by the respective local Institutional Review Boards. 509 

Image pre-processing and quality control 510 

Raw T1 data for all study participants were stored and analysed locally at University of Oslo, 511 

following a harmonized analysis protocol applied to each individual subject data (Suppl. Fig. 1). 512 

We performed automated surface-based morphometry and subcortical segmentation using 513 

Freesurfer 5.321. We deployed an automated quality control protocol executed within each of the 514 

contributing cohorts that excluded potential outliers based on the Euler number22 of the respective 515 

Freesurfer segmentations. Euler number captures the topological complexity of the uncorrected 516 

Freesurfer surfaces and thus comprises a proxy of data quality22. In brief, for each scanning site 517 

we regressed age, age² and sex from the Euler number of the left and right hemispheres and 518 

identified scans that deceeded 3 standard deviations (SD) on either of the residualized Euler 519 

numbers. Suppl. Fig. 13 provides a validation of the approach against manual quality control. 520 

Data from a total of 977 individuals was excluded in this step, yielding 45,615 subjects for the 521 
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main analysis. To further minimize confounding effects of data quality23, we performed 522 

supplementary analyses using a subset of data, where a more stringent threshold was used for 523 

exclusion (1 SD on Euler numbers). Thus, supplemental analysis provides a sanity check with 524 

those subjects excluded (sample size: n = 40,301). 525 

Brain age prediction  526 

We utilized a recent multi-modal cortical parcellation scheme24 to extract cortical thickness, area 527 

and volume for 180 regions of interest (ROI) per hemisphere. In addition, we extracted the classic 528 

set of cerebellar/subcortical and cortical summary statistics21. This yielded a total set of 1118 529 

structural brain imaging features (360/360/360/38 for cortical thickness/area/volume as well as 530 

cerebellar/subcortical and cortical summary statistics, respectively).  531 

We used machine learning on this feature set to predict the age of each individual’s brain. 532 

First, we split the available data into a training sample and ten independent test samples (Fig. 1a). 533 

The test samples in total comprised 5788 individuals with brain disorders and 4353 healthy 534 

controls. For each of the ten clinical groups, we selected a set of healthy controls from the pool of 535 

4353 individuals, matched for age, sex and scanning site using propensity score matching25. 536 

Thus, data from some healthy individuals acted as control data in several test samples, yet each 537 

test sample had the same number of patients and controls and all subjects in the test samples were 538 

independent of the subjects in the training sample. The remaining datasets (45,615 – 539 

(5788+4353) = 35,474) went into the training set. For each sex, we trained machine learning 540 

models based on gradient tree boosting26 utilizing the xgboost package in R27, chosen due to its 541 

resource efficiency and demonstrated superior performance in previous machine learning 542 

competitions26, to predict the age of the brain using data available in the training set. First, model 543 

parameters were tuned using a 5-fold cross-validation of the training data. This step identified the 544 
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optimal number of model training iterations by assessing the prediction error for 1500 rounds and 545 

implementing an early stopping if the performance did not improve for 20 rounds. Based on 546 

previous experience, the learning rate was pre-set to eta=0.01 and all other parameters were set to 547 

default27 for linear xgboost tree models. After determining the optimal number of training 548 

iterations, the full set of training data was used to train the final models with the adjusted nrounds 549 

parameter. These models were used to predict brain age in the test samples, and the brain age gap 550 

(deviation between brain and chronological age) was computed. In line with a recent 551 

recommendation28, all statistical analyses on the brain age gap accounted for age, age², sex, 552 

scanning site and Euler number. In addition, to assess overall model performance, prediction 553 

models were cross-validated within the training set using a 5-fold cross validation, each fold 554 

implementing the above described training procedure and testing on the hold-out part of the 555 

training set. Brain age predictions on the level of individual brain regions followed the same 556 

procedures as those described for the full brain level, except that the feature set was reduced to 557 

cover only those features that overlapped more than 50% with a given lobe. Regions were 558 

defined following the Freesurfer lobesStrict segmentation as occipital, frontal, temporal, parietal, 559 

cingulate and insula. In addition, given the limited number of cerebellar features available in the 560 

Freesurfer summary statistics, cerebellar and subcortical features were grouped into a 561 

cerebellar/subcortical region (Fig. 1b). For additional validation, we compared our xgboost 562 

approach against two other approaches (Suppl. Fig. 3). One approach implemented a different 563 

machine learning algorithm on the same set of features (slm from the care package29), whereas 564 

the other approach made use of a fully independent processing pipeline, feature set and algorithm 565 

(github.com/james-cole/brainageR13,30). Furthermore, we assessed the impact of sample size on 566 

model performance by creating random subsets of data with sample sizes of 100, 500, 1000, 567 

https://github.com/james-cole/brainageR
https://github.com/james-cole/brainageR
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2000, 5000, 10,000, and 20,000 individuals (40 random subsets per sample size). For each subset 568 

and sample size we assessed model performance using cross-validation (Suppl. Fig. 5).  569 

The genetic analysis was performed in UK Biobank data, which was part of the training 570 

set in the main analysis. We thus trained different brain age models for the genetic analysis. We 571 

selected all healthy subjects and estimated their brain age using a 5-fold cross-validation 572 

approach, like the one performed when validating performance of the training set. The resulting 573 

unbiased estimates of brain age gaps for all UK Biobank individuals with genetic data available 574 

went into the genome-wide association analysis, LD score regression and conjunctional FDR. 575 

Main statistical analysis framework 576 

We performed both mega- (across cohorts) and meta- (within cohort) analyses. To estimate group 577 

effects on a given measure in a mega-analysis framework, we computed the effect of diagnosis in 578 

relation to the healthy controls for each of the ten test samples in a linear model accounting for 579 

age, age², sex, scanning site and Euler number. Cohen’s d effect sizes were estimated based on 580 

contrast t-statistics31 following Formula 1: 581 

𝑑𝑑 =  
𝑡𝑡(𝑛𝑛1  +  𝑛𝑛2)

√𝑛𝑛1𝑛𝑛2�𝑑𝑑𝑑𝑑
 

 (1) 

For the meta-analysis, similar models were computed within cohorts. In addition to estimating 582 

Cohen’s d (Formula 1), we estimated the variance of d following Formula 2.  583 

Cumulative effects across cohorts were then estimated using a variance-weighted random-effects 584 

model as implemented in the metafor package in R32. 585 

Data distributions were assumed to be normal, but this was not formally tested. Data collection 586 

and analysis were not performed blind to the conditions of the experiments. 587 

𝑣𝑣 =  �
𝑛𝑛1  +  𝑛𝑛2
𝑛𝑛1𝑛𝑛2

+  
𝑑𝑑2

2(𝑛𝑛1 + 𝑛𝑛2 −  2)� �
𝑛𝑛1  +  𝑛𝑛2

𝑛𝑛1  +  𝑛𝑛2 −  2�
 

 (2) 
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Assessment of regional specificity 588 

In Suppl. Fig 9, we performed clustering of effect sizes from Figure 2b using heatmap.2 from the 589 

gplots package33 in R. A Spearman correlation matrix was computed based on the case-control 590 

effect sizes obtained from each test sample and region and hierarchical clustering was performed 591 

using the default settings. To further explore regional specificity, we performed an analysis that 592 

involved only the clinical groups. We regressed age, age², sex, scanning site and Euler number 593 

from the brain age gaps in each test sample. Next, we joined data from each pair of clinical 594 

groups and each pair of regions for repeated measures analysis of variance and estimated the 595 

effect sizes of region x group interactions (1260 ANOVAs in total). The significant interaction 596 

effects were visualized in Figure 2c using the circlize package34 in R. 597 

Genetic analyses 598 

We restricted all genetic analyses to individuals from the UK Biobank with European ancestry, as 599 

determined by the UK Biobank study team35. We applied standard quality control procedures to 600 

the UK Biobank v3 imputed genetic data. In brief, we removed SNPs with an imputation quality 601 

score below 0.5, with a minor allele frequency less than .05, missing in more than 5% of 602 

individuals, and failing the Hardy Weinberg equilibrium tests at a p<1x10-6, yielding SNP data 603 

from 20,170 adult healthy individuals. We performed a genome-wide association analysis using 604 

PLINK v1.936, accounting the analysis for 10 genetic principal components, age, age², sex, 605 

scanning site and Euler number. We used LD Score regression37 to estimate narrow sense 606 

heritability.  607 

Furthermore, we used cross-trait LD Score regression37,38 to calculate genetic correlations, 608 

and conjunctional FDR analyses39,40 to assess genetic overlap between two complex traits. We 609 

gathered genome-wide association analysis (GWAS) summary statistics for ASD41, ADHD42, 610 



Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

24 
 

SZ43, BD44, MS45, MD46, and AD47; and assessed genetic overlap with brain age gap genetics. 611 

The MHC region was excluded from all analysis. Conjunctional FDR was run for each pair of 612 

full brain / regional brain age gap and group, using conjunctional FDR threshold of 0.05. SNPs 613 

were annotated using the Ensembl Variant Effect Predictor48. 614 

Cognitive and clinical associations 615 

Cognitive and clinical associations were tested in subsets based on data availability and were 616 

performed in clinical groups only (excluding controls) as described in the main text. Using linear 617 

models accounting for age, age², sex, scanning site and Euler number we associated brain age 618 

gaps with scores of the Global Assessment of Functioning scale49 (GAF), the Positive and 619 

Negative Syndrome Scale50 (PANSS), the Expanded Disability Status Scale51 (EDSS) and Mini 620 

Mental State Examination scores52 (MMSE). The t-statistics of the linear models were 621 

transformed to r, thus the correlation coefficients depicted in Fig 2d essentially reflect a partial 622 

correlation between full brain / regional brain age gaps and clinical/cognitive scores, controlling 623 

for confounding effects of age, sex, site and image quality. 624 

Code availability.  625 

Code needed to run brain age prediction models is available at github.com/tobias-kaufmann (see 626 

Data availability). Additional R statistics53 code is available from the authors upon request. 627 

Data availability 628 

The raw data incorporated in this work were gathered from various resources. Material requests 629 

will need to be placed with individual PIs. A detailed overview of the included cohorts is 630 

provided in Suppl. Table 1. GWAS summary statistics for the brain age gaps as well as the 631 

models needed to predict brain age in independent cohorts are available at github.com/tobias-632 

kaufmann. 633 
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