NTNU - Trondheim
Norwegian University of

Science and Technology

Forwarding algorithms in vehicular
networks

Amir Afroozeh

Master of Telematics - Communication Networks and Networked Services (2
Submission date: February 2014
Supervisor: Tor Kjetil Moseng, ITEM

Norwegian University of Science and Technology
Department of Telematics

NTNU - Trondheim
Norwegian University of

Science and Technology

Forwarding algorithms in vehicular net-
works

Amir Afroozeh

Submission date: February 2014
Responsible professor: Tor Kjetil Moseng
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Abstract

Vehicular ad hoc networks are a kind of mobile ad hoc network in
which the mobile nodes are fast moving vehicles. The fast movement of
vehicles causes considerable disconnections in network links and leads
to changes in the topology of the network. Due to frequently changing
topology in vehicular ad hoc networks, finding reliable routes which
increases network performance is very important.

Finding reliable routes in vehicular ad hoc networks has received
considerable attention by researchers. The goal of this thesis is to find the
most stable routes by considering various mobility parameters by applying
a fuzzy logic controller tool. Fuzzy logic is an artificial intelligence (AI)
technique which is a form of multi-valued, as opposed to fixed and
exact logic. Fuzzy logic has good performance in pattern classification
and decision making systems. I considered the following parameters as
the input to my fuzzy logic: the direction of two intermediate nodes,
intermediate node’s position, same directional node compared to source
and destination and relative velocity compared to source and destination.

Different simulation scenarios are designed, tested and finally, the
advantages of my proposed algorithm compared to normal AODV based
on the various parameters, such as end to end delay and delivery rate,
are presented. At the end, several requirements of quality of service that
can be applied in vehicular networks are discussed and the future work is
addressed.

Acknowledgement

This master project was carried out at the department of networks
and computer (Telematics) at the Norwegian University of Science and
Technology, NTNU. The author gratefully acknowledges Professor Tor
Kjetil Moseng for his patience, motivation and valuable guidance during
the process of completing the master thesis. I would also like to thank
Ph.D. student Ameen Chilwan for sharing his knowledge and for his
constant support during the project. Finally, I would like thank my three
brothers, Ali, Azim and Omid, and especially my parents Masoumeh and
Abbass for their support and understanding.

Amir Afroozeh
NTNU, Trondheim, Norway
February, 2014

Problem Description

Intelligent Transport Systems (ITS) is the utilization of ICT in the transport sector
to improve safety and increase efficiency and convenience. One essential enabler for
ITS is communication between vehicles and infrastructure, and from one vehicle to
another. The vehicles communicate to each other in order to forward information.
Information forwarding may, especially in congested areas, be challenging due to the
shared media and QoS requirements.

The main aim of this thesis is to propose an information forwarding algorithm
that efficiently disseminate information within the vehicle network based on existing
literature. In addition, the algorithm is tested through simulations in realistic
environment scenarios and analysed for different performance parameters such as
delay and loss. Finally, the algorithm is be discussed in relation to different QoS
requirements that may apply in vehicle networks.

Assignment Given: October, 2013

Supervisor: Prof. Tor Kjetil Moseng

Contents

List of Figures xi
List of Tables xiii
Listings XV
List of Algorithms XV
1 Introduction 5
1.1 Overview 5

1.2 Research objectives oL 6

1.3 Research methodology 7

1.4 Outline 7

2 State of the art 9
2.1 Overview of AODV 9
2.1.1 Terminology 9

2.1.2 Packet types 10

2.1.3 Counting to infinity 11

2.1.4 Routing discovery procedure 11

2.1.5 Route maintenance Lo 13

2.2 Fuzzylogic 13
2.2.1 Imtroduction 14

222 Fuzzysets 14

2.2.3 Linguistic variables oL oL 15

224 Fuzzy operators. 15

2.2.5 Reasoning in fuzzy logic 0oL 18

2.2.6 Aggregate all outputs 19

2.2.7 The defuzzificationo 19

2.3 General forwarding algorithms in VANET and ITS 19
228 Conclusion 21

2.3.1 VANET architecture 22

2.3.2 VANET applications 22

vii

2.3.3 VANET characteristics
234 VANET challenges
2.3.5 Data dissemination techniques in VANET
2.3.6 VANET routing algorithm classification
2.4 AODV algorithm and fuzzy logic approach (related work)
2.4.1 AODV/AOMDV improvement
2.4.2 Fuzzy logicapproach

Algorithm description

3.1 Four-inputs Fuzzy-logic-based AODV Routing (FFAR) protocol . . .
3.1.1 Imtroductiono
3.1.2 Proposal questions L oL
3.1.3 FFAR procedure
3.1.4 Selecting route metrics oL
3.1.5 Modification of control message and routing table
3.1.6 Stability function oo oo

Simulation tools

4.1 Network simulator 2 (NS2)
4.1.1 Why did I choose NS27
4.1.2 AWK . . e

4.2 Mobility model
4.2.1 Mobility generator oL

Evaluation

5.1 Simulation set-up
5.1.1 Scenario
5.1.2 Movement model
5.1.3 Communication model
5.1.4 Parameters

5.2 Performance metrics

5.3 Simulation results

Discussion and future work

6.1 Different QoS L
6.1.1 Quality of Service definition
6.1.2 Issues and challenges
6.1.3 QoS comparison criteria Lo
6.1.4 QoS solutions

6.2 Varying speed for simulation

6.3 Acceleration

6.4 Futurework Lo

33
33
33
34
34
38
40
42

49
49
50
o1
o1
ol

53
53
93
54
55
55
96
o7

7 Conclusion
Bibliography

A Appendix A
AL e

B.l

C.l e

D Appendix D
D1 e

E Appendix E
E1 e

79

81

87
87
89
90
92

95

113
113
114
115
117

119
119

125
125

127

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1
5.2

List of Figures

Count to infinity 12
Routing discovery procedure 13
Fuzzy sets theory via classical sets theory 14
Fuzzy weekend via two-value weekend 15
Membership functions Lo 16
Linguistic variables Lo oo 16
Mamdani implication Lo oo 18
Mamdani implication and translation of OR by MAX 19
Output aggregation 20
Defuzzification 20
Fuzzy logic system 21
Fuzzy inference oo 21
VANET architecture 22
VANET routing algorithm classification number 1 26
VANET routing algorithm classification number 2 27
Hafez’s work, finding the direction 30
VANET network, real scenario 33
Example scenario Lo Lo 35
FFAR algorithm flowchart 37
Selecting route metrics 39
Direction membership function 43
Position membership function oo 43
Angle membership function oL 44
Velocity membership function oo 0oL 44
Stability membership function 45
NS2 architectureo 50
NS2 network animator (NAM) 51
Scenario visualization in NAM L. 54
Manhattan modelo oo 55

Xi

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

5.21

5.22

6.1
6.2
6.3
6.4
6.5

Route discovery frequency vs. Network size for AODV by applying error

Route discovery frequency vs. the network size for FFAR by applying
EITOT DAarS. . . .« . . . e
Comparing the route discovery frequency of AODV to FFAR when the
network size is increased (by using error bars).
Comparing the route discovery frequency of AODV to FFAR when the
network size is increased (by using average value).
Drop rate vs. the network size for AODV by applying error bars.
Drop rate vs. the network size for FFAR by applying error bars.
Comparing the drop rate of AODV to FFAR when the network size is
increased (by using error bars).o oL L
Comparing the drop rate of AODV to FFAR when the network size is
increased (by using average value).
Overhead vs. the network size for AODV by applying error bars.
Overhead vs. the network size for FFAR by applying error bars.
Comparing the overhead of AODV to FFAR when the network size is
increased (by using error bars). oo L
Comparing overhead of AODV to FFAR when network size is increased
(by using average value). Lo o
End to end delay vs. the etwork size for AODV by applying error bars.
End to end delay vs. the network size for FFAR by applying error bars.
Comparing the end to end delay of AODV to FFAR when the network
size is increased (by using error bars). L.
Comparing the end to end delay of AODV to FFAR when the network
size is increased (by using average value).
Throughput vs. the network size for AODV by applying error bars. . . .
Throughput vs. the network size for FFAR by applying error bars. . . .
Comparing the throughput of AODV to FFAR when network size is
increased (by using error bar). L.
Comparing the throughput of AODV to FFAR when network size is
increased (by using average value).

Emergency packets and their accompanying priopulses
Slots and segments in the CVIA protocol
Phases in the CVIA-QoS protocol
Neural network L L
Neuro-fuzzy system L o

62
62
64
64
65
65
66
67
67
68

69
69

70

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6

5.1

List of Tables

Truth table for binary logic 17
Fuzzy operators Lo 17
Truth table for fuzzy logic Lo 17
Fuzzy implication Lo 18
Same directional of two intermediate nodes 38
Intermediate node’s position. oL 38
Same direction to source and destination. 40
Relative velocity Lo 40
Modify of RREQ 40
Fuzzy logic rules’ table L 46
Simulation parameter 56

xiii

2.1
2.2
3.1
3.2
3.3
3.4
3.5
5.1
Al
A2
A3
A4
B.1
C.1
C.2
C.3
C4
D.1
E.1

Listings

Abedi’s algorithm number 1o 28
Abedi’s algorithm number 2o oL 29
FFAR algorithm 35
Modified send request function 40
Modified route request packet 41
RREP’s modification oo 41
Routing table’s modification00 42
Time arrival and packet size L. 59
AWK 1. . oo 87
AWK 2, normalized routing load 89
AWK 3, average throughput 0. 90
AWK 4 . oo 92
Fuzzy logic codes written in C++. 95
Same direction function L. 113
Same angle function L oL oo 114
Position functiono o 115
Velocity function Lo 117
TCL . . . 119
Mobility scenario by BonnMotion L. 125

XV

Acronyms

ITS Intelligent Transport Systems

VANET Vehicular Ad-hoc Network

MANET Mobile Ad hoc Network

SUMO Simulation of Urban MObility

AODV Ad hoc On-Demand Distance Vector Routing
OSPF Open Shortest Path First

NS2 Network Simulator 2

NS3 Network Simulator 3

RREQ Route Request

RREP Route Reply

RREP Route Error

MF Membership Function

RSU RoadSide Unit

V2V Vehicle to Vehicle

V2I Vehicles to Infrastructure

WSN Wireless Sensor Networks

DOS Denial-Of-Service

GPS Global Positioning System

DVD Digital Video Disk

GSM Global System for Mobile Communications
QoS Quality of service

AOMDV On-Demand Multi-path Distance Vector
SAODV Secure version of AODV

NES Neighbor Elimination Scheme

AT Artificial Intelligence

LISTINGS

1

2 LISTINGS

ANN Artificial Neural Network

FFAR Four-inputs Fuzzy-logic-based AODV Routing protocol
FLS Fuzzy Logic System

NAM Network Animator

DSDV Destination-Sequenced Distance Vector routing
DSR Dynamic Source Routing

TORA Temporally-Ordered Routing Algorithm

TCP Transmission Control Protocol

Wi-Max Worldwide Interoperability for Microwave Access
GloMoSim Global Mobile Information System Simulator
NS3 Network Simulator 3

GHz gigahertz

GB gigabyte

RAM Random-Access Memory

UDP User Datagram Protocol

CBR Constant Bit Rate

MAC Media Access Control

Mbit megabit

dbm power ratio in decibels

m meter

cm centimeter

ICT Information and Communications Technology

LAN Local Area Network

AP Access Point

TSA Traffic Safety Applications

DMEMD Distributed MAC scheme for Emergency Message Dissemination

LISTINGS

CVIA Controlled Vehicular Internet Access

HPP High Priority Period

LPP Low Priority Period

VCWC Vehicular Collision Warning Communication

CVTIA-QoS Controlled Vehicular Internet Access protocol with QoS

FCAR Fuzzy Control Based AODV Routing

3

Introduction

1.1 Overview

Traffic jam is a challenging issue in the 21th century. Nowadays, citizens and
governments are faced with an increasing number of vehicles. This issue is much
more critical in developing courtiers, such as India and China, where there is no
balance between the improvement of road infrastructure and the growth of traffic.
Moreover, statistics show that only relying on the construction and expansion of
transport infrastructure cannot be the ultimate solution for this problem. Therefore,
there is a demand to find ways to decrease, optimize and manage considerable costs
of traffic jam for governments and countries, and to find ways for having safe, quick
and convenient transportation [2].

There are different solutions for this problem, and one of the novel approaches is
intelligent transportation system (ITS). ITS is a novel idea to manage and mitigate
traffic issues. ITS is an umbrella term for a variety of novel technologies trying to
evaluate, observe and analyse traffics, and integrate various technologies to obtain
these aims: traffic efficiency, saving cost, energy efficiency, safe environment and
reducing time [1]. The term “Intelligent Transport System” includes a wide range of
systems such as portable systems, standalone systems installed on vehicles, systems
that enable vehicle-vehicle and vehicle-infrastructure communication, and finally
cooperative systems [2]. To sum up, ITS tries to establish a safe and convenient
environment for drivers and a sustainable connection between vehicles.

A wireless ad hoc is a decentralized wireless network [3] which does not depend
on pre-existing infrastructure like routers in a wired network or an access point in a
managed wireless network. In other words, a wireless ad hoc network is an answer to
novel wireless structures that are self healing and self organizing in which each node
can participate in routing and all of devices have equal status in the network and
they can have connection in specific range with other deceives. The term “ad-hoc
networks” is usually associated with a form of operation of IEEE 802.11 wireless

6 1. INTRODUCTION

networks [64].

There are various types of ad hoc networks and one of them is called VANET
[4]. Vehicular Ad Hoc Network (VANET) is a branch of Mobile Ad hoc Network
(MANET). MANET and VANET have some common characteristics such as low
bandwidth and self organization and shared radio transmission. The main duty
of VANET is the provision of vehicle-vehicle wireless communication and vehicle-
infrastructure communication (e.g., between vehicles and road side equipments), and
these connections can be established without central access. The communication
between vehicles has some specifics such as high speed and mobility, and that is the
key feature of vehicular ad-hoc networks that makes them unique in the context of
MANETSs [4].

By using vehicle to vehicle communications, drivers can be notified of important
traffic data such as the condition of roads and accidents. Such information will
improve drivers’ decisions in hard conditions. Moreover, vehicular communications
will help to monitor and manage traffic distribution and to improve vehicle fuel
economy.

1.2 Research objectives

Routing algorithms are an important part of a vehicular ad hoc network where
they forward information in order to connect vehicles. Artificial intelligence is a
remarkable technique for improving routing algorithms. There are various artificial
intelligence techniques which can be applied in a VANET system and one of them is
fuzzy logic. Fuzzy logic is a kind of multi valued logic rather than fixed and binary
logic and it can be applied as a tool which has good performance in classification of
pattern and decision making systems.

This thesis aims to fulfil the following goals:

1. Studying the AODV algorithm in order to make familiar with its functions
such as routing maintenance and routing discovery procedure.

2. Studying the concept of fuzzy logic and its functions.
3. Studying general routing algorithms for vehicular networks.

4. Studying the related work in the area of forwarding algorithms in VANET
regarding to fuzzy logic and AODV.

5. Proposing a novel algorithm which improves the links stability based on studied
literature.

1.3. RESEARCH METHODOLOGY 7

6. Choosing appropriate procedures and tools to test the proposed algorithm.

7. Evalutating the proposed algorithm based on various network performance
parameters such as end to end delay.

8. Discussing the possible Quality of Service which can be applied in relation to
the proposed algorithm.

9. Discussing future work.

1.3 Research methodology

This work is based on my specialization project in which I studied different routing
algorithms in VANET. Based on the studied literature, I propose a new algorithm
which improves the normal AODYV in metrics such as end to end delay.

A deep understanding of C++, Tcl/Otel scripts and AWK was obtained to meet
the specified requirements. Working with NS2 was the challenging part of this project
and I spent considerable time to understand it deeply. Moreover, I learned about
the concept of fuzzy logic and implemented the fuzzy logic codes in C++. Finally,
considerable time was spent on debugging and tracing for fuzzy logic codes and NS2.

1.4 Outline

Chapter 1 of the present thesis contains four sections: Section 1 explains AODV
as the basic algorithm studied in this research. Section 2 illustrates the concept
of fuzzy logic. Section 3 describes general VANET routing algorithms, and their
characteristics, applications, classifications and challenges. Finally, section 4 describes
the related work regarding to AODV algorithm and fuzzy logic.

Based on the studied literatures, a novel algorithm is proposed in chapter 2 and
it will be explained how this algorithm improves network performance by applying
fuzzy logic. Chapter 3 of the this thesis is about the essential tools applied to testing
the algorithm and obtaining the results.

Chapter 4 evaluates and interprets the obtained results. Different Quality of
Service requirements which can be applied in VANET and the possible future work
are discussed in chapter 5. Finally, the last chapter provides a conclusion to this
work.

Note that, Harvard style is applied for references. All the figures and source
codes which are cited from literatures are referenced. In other words, figures and
source codes which do not have references are made by myself.

State of the art

In this chapter, I introduce the necessary background information which helps us to
understand the next chapters. The study of Ad-hoc On-Demand Distance Vector
Routing (AODV) protocol and then an explanation of fuzzy logic concept, applied
in this research, are presented. Finally, general forwarding algorithms in vehicular
network and related work are presented.

2.1 Overview of AODV

AODV is classified as a member of Bellman-Ford distant vector protocol which is
ready to work in mobile network. AODYV is a reactive and an on demand distance
vector routing protocol, implying that it searches for a route only when a node needs
a route for sending packets to a destination. Proactive routing [5] algorithms such
as OSPF will disseminate their routing tables periodically in order to keep lists of
destinations and their routes. Therefore, this type of algorithm is fast in reacting
to network modification. But it has considerable overhead, and is only appropriate
for small topology networks. On the other hand, reactive algorithms will distribute
routing request packets when it is required; as a result, the network overhead is very
low, but the latency is high [5] compared to proactive algorithms. Moreover, AODV
ensures loop-free routes by counting the sequence numbers [6] that is determining
route freshness. This mechanism and the other important mechanisms, which help
us to better understand AODV, are described in the coming sections.

2.1.1 Terminology

In this section, the essential terminologies are explained. (see [6], [7])

1. Active route A route is called active when it contains a routing table entry
with the valid state. Only active routes can send data packets.

10 2. STATE OF THE ART

2. Broadcasting Broadcasting is applied to disseminate AODV messages through-
out the ad hoc network and each node will send messages to all its neighbours.

3. Destination A destination refers to an IP address to which data should be
forwarded.

4. Forwarding node in rfc 3561, a forwarding node is described as “A node
that agrees to forward packets destined for another node, by retransmitting
them to a next hop that is closer to the unicast destination along a path that
has been set up using routing control messages” [6].

5. Forward route A forward route refers to a path that should be established
to transmit information packets from a source node to a destination.

6. Invalid route A route is called invalid if it is expired. A route is expired by
getting invalid state in routing table entry. An invalid route cannot be applied
to transfer information, but it can store previous valid routes for a specific
time. This can be used for repairing routes and coming RREQ messages.

7. Originating node An originating node is a node that starts an AODV route
discovery message. This message can be resent by other nodes in the network.

8. Reverse route A reverse node is defined in the rfc 3561 as: “a route set up
to forward a reply (RREP) packet back to the originator from the destination
or from an intermediate node having a route to the destination” [6].

9. Sequence number Each time a source node sends a request message, the
sequence number will be increased. It is used as a mechanism to distinguish
the freshness of the node’s information.

2.1.2 Packet types

There are four different types of packets that are involved in AODV [6], [7].

1. Route Request (RREQ)

During the route discovery process, a source node will create and broadcast an
RREQ packet. An RREQ contains the below information.

a) Source Address

b

)

) Destination Sequence Number
¢) Destination Address
)

)

d) Number of Hops to Destination

e) Broadcast ID

2.1. OVERVIEW OF AODV 11

f) Source Sequence Number

2. Route Reply (RREP) When a node replies to a request, it will create an
RREP packet which contains these information:

a) Destination Sequence Number

b) Source Address

¢) Time when this entry is considered valid
d)

e) Destination Address

Number of Hops to Destination

3. HELLO Each HELLO message is used for discovering (probing) a node’s
neighbours and it only contains two information:

a) Address

b) Sequence Number

4. Route error (RRER) In active routes, each node will look over the link
status of next hops. If a broken link is determined, an RERR message is applied
to inform other nodes that use this link. In the “Route discovery procedure”
part, this mechanism will be explained in more details.

a) Unreachable Destination IP Address
b) Unreachable Destination Sequence

¢) DestCount Number

2.1.3 Counting to infinity

Count to infinity [7] is a critical problem for network algorithms, which will be formed
when an error happens in the operation of the routing algorithm. As a result, the
path to a specific destination forms a loop. By applying the sequence number, AODV
avoids the “counting to infinity” problem in contrast to the classical distance vector
algorithms (see Figure 2.1).

In AODV, each packet contains a sequence number that is increased just before
every time it will be sent. By comparing the sequence number, another mobile node
that is receiving this packet can distinguish the packet’s freshness.

2.1.4 Routing discovery procedure

When an originating node requests a route to a destination which has not been
selected before and there is no existing route to that destination, the originating
node will broadcast an RREQ message to its neighbours. After receiving an RREQ

12 2. STATE OF THE ART

a b New route
update
New route 0 ™)

0,
(8)
&

(A) (o) (A) ONE
. /N VAN
g u° G20 D G

Figure 2.1: “A0DV as a distance vector protocol: (a) Tree topology — a process of route
update will finish in two steps, (b) Loop topology — a process of route update
goes on indefinitely” [7].

message, if the RREQ has a greater sequence number or has the same sequence
number with fewer hops compared to the destination, then the neighbour nodes will
update their information. Moreover, the neighbour nodes will establish a reverese
route entry for the originating node in their routing table. If the RREQ message
does not have either a bigger sequence number or the same sequence number with
the fewer hopes, then it will be discarded [7].

Afterwards, an RREP will be sent if one of these conditions will be satisfied: the
neighbour is the destination or it has a fresher (unexpired) route to the destination [6].
Otherwise, an intermediate node will broadcast the RREQ message. As presented in
Figure 2.2, node “S” broadcasts an RREQ message to its neighbours. Suppose the
packet is fresh, if any neighbour has one of the conditions (it is either the destination
node or it has a fresher route to the destination) it sends an RREP message, otherwise
it creates a reverse route and rebroadcast the RREQ. This process is continuing
until a node has the conditions, then it is time to piggyback the required routing
information back to the originating node (“S”) [7]. The RREP packet is carried back
to the originating node and then an unicast connection between the source and the
destination (it is named “D”) is established (see Figure 2.2). Finally, data packets
are transmitted to the destination until there is no disconnection in the route (no
RRER message is denominated).

2.2. FUZZY LOGIC 13

\ I
\\ ,I
\\ ,[

e 8
Reverse path setup Forward path setup
—» Sending RREQ --- Seftingup ¢~ Transmission

a route entry ~- range
i __ Route entry to
—* Sending RREP > the destination

Figure 2.2: Routing discovery procedure [7]

2.1.5 Route maintenance

Whenever a link of an active route breaks, all routes that are using this broken link will
be invalidated by the node upstream of the break. The node will broadcast an RERR
message to all of its neighbours. Each RERR massage maintains the unreachable IP
addresses of destinations. After receiving an RRER, each node monitors its routing
table in order to find out if there are route(s) to these unreachable destinations.
If yes, it will be invalidated and afterwards a new route error (RERR) will be
disseminated [7]. At the end of this process, the originating node will get an RRER
message and it will invalidate the unreachable route(s), and if it is needed a new
RREQ message will be initiated.

2.2 Fuzzy logic

This part is written based on these papers: [8], [9].

14 2. STATE OF THE ART

2.2.1 Introduction

Fuzzy logic [10], [11] is a form of multi-valued logic rather than fixed and exact logic.
In the traditionally binary sets, each variable can take a true or false value while
fuzzy variables can take a true value that is between 0 and 1 [9]. In other word,
instead of having absolute truth, it is possible to have partial truth that provides
a very valuable flexibility for reasoning by taking into account inaccuracies and
uncertainties [8].

One of the fuzzy logic’s benefits is that the fuzzy rules are set in natural language;
for example, if the weather is cold or if my speed is slow. These examples show
that the words like cold or slow are more compatible with human-logic than the the
numbers. For instance, this sentence “if the weather is -1.2 C°, then turn on the
heater” is quite unfamiliar for people [8]. Finally it should be mentioned that fuzzy
logic can be applied as an artificial intelligence based decision making system that
has good performance in the pattern classification and the decision making systems

[9].

2.2.2 Fuzzy sets

The basis of fuzzy logic is the fuzzy sets [11], [12] theory and the theory of fuzzy sets
is actually a generalization of the classical theory; in other words, the classical set
theory is subset of the theory of fuzzy sets (see Figure 2.3)

Fuzzy
logic

Figure 2.3: Fuzzy sets theory via classical sets theory [9].

Figure 2.4 demonstrates how the days of week can be considered as a weekend
in fuzzy logic compared to binary logic. The weekend example attempts to explain
the meaning of fuzzy sets by asking some basic questions. Is Saturday is a weekend?
How about Sunday? Do you feel Friday as a weekend? How about Monday? The
left plot presents the truth values for weekend-ness in the two value mode, and the
right plot shows that you can consider Friday somehow as a weekend. As shown, in
binary logic only Saturday and Sunday are counted as weekend [§].

2.2. FUZZY LOGIC 15

NI

Thursday Friday Saturday Sunday Monday Thursday Friday Saturday Sunday Monday

-
=]
=
(=]

weekend-ness
weekend-ness

o
o
e
=Y

Days of the weekend two-valued membership Days of the weekend multivalued membership

Figure 2.4: Fuzzy weekend via two-value weekend [8].

Membership function

A membership function (MF) is a “curve that defines how each point in the input
space is mapped to a membership value (or degree of membership) between 0 and 17
[8]. Ome of the key features of fuzzy logic is that a value can be a member of many
sets at the same time. If age can be old, young and very old, then it can have three
values at the same time, but in various degree of memberships. For example, age
can be 0.6 old and 0.3 young at the same time [8].

One of the famous example to explain fuzzy membership is tallness [8]. Given
different people with various tallness, I want to classify them into two groups of tall
and short. People taller more than 6 feet are considered as tall, then it is clearly an
absurd classification, because a person is just 1 cm less than 6 feet will be considered
as short. Figure 2.5 shows how the curve transits from non-tall to tall very smoothly
(this curve is called as MF).

There are various types of membership functions. Most popular ones are: trian-
gular, trape-zoidal, piecewise linear, Gaussian, or singleton. I applied the triangular
form in this research.

2.2.3 Linguistic variables

Linguistic variables [9] refer to the non-numeric inputs and outputs variables of
a fuzzy logic system which are words or sentences from the natural language. For
example, age can have a value of young or old. Each linguistic variable can be
decomposed into a set of linguistic terms. Figure 2.6 shows the linguistic variables
for service function and it can be poor, good and excellent.

2.2.4 Fuzzy operators

The traditional two-value (bivalent) logic applies the boolean operators of AND, OR
and NOT in order to perform complement, union and intersect operations. The

16 2. STATE OF THE ART

sharp-edged (b)
membership
degree of function for
membership, y TALL
0.0

| not tall (u = 0.0)

height

1.0 . definitely a tall
continuous
membership person (p = 0.95)
degree of function for

TALL

¢ @

Figure 2.5: Membership functions [8]

membership, p

really not very

tall at all (p = 0.30)
0.0

height

o
(=]
o —

exnillem

=)

o 1 2 3 4 5 6 7 8 El 10
input variable "service”

V = service
X=R
1y ={ Poor_ Good, cacellent}

Figure 2.6: Linguistic variables [9].

below Table shows how the bivalent logic works.

2.2. FUZZY LOGIC 17

X|Y|XANDY | XORY | NOT X
010 0 0 1
0|1 0 1 1
110 0 1 0
171 1 1 0

Table 2.1: Truth table for binary logic [13].

This truth table [13] is working appropriately for bivalent logic, but fuzzy logic needs

operations that can cover all the possible fuzzy values (all the real numbers between

0 and 1); on the other hand, fuzzy logic is not limited to a (finite) set of input values
and it needs the defined operations for all of these values. Table 2.2 explains the

fuzzy table operations.

x AND y | min(x,y)
x ORy | max(x,y)
NOT x 1-x

Table 2.2: Fuzzy operators [18].

Finally, Table 2.3 can visualize how the fuzzy logic operations can cover both of

bivalent and fuzzy combinations; in other words, the bivalent operations are one
special case of fuzzy operations [8].

X |Y | min(X)Y) | max(X)Y) | 1-X
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0
0.2 | 0.5 0.2 0.5 0.8
0.7] 0.2 0.2 0.7 0.3
0.6 | 0.6 0.6 0.6 0.4
Table 2.3: Truth table for fuzzy logic [13].

18 2. STATE OF THE ART

2.2.5 Reasoning in fuzzy logic

In the classical logic the rules are made based on these two forms:

1. If p then q.

2. p true then q true.

While, fuzzy reasoning or approximate reasoning is formed based on the rules which
are written in natural language. For instance, if (the weather is cold outside), then
(heater volume should be high) [9].

Implication

The fuzzy implication does not have just a single definition like other fuzzy operators,
and there are considerable various implications. Two of them are more famous which
are mentioned in Table 2.4.

Name Truth value
Mamdani | min (fa (x), fb (x))
Larsen fa (x) x fb (x)

Table 2.4: Fuzzy implication [9)].

Figure 2.7 presents when the rule “If (the food quality is delicious), then (tip is high)”
is applied and the Mamdani implication is used, this result will be obtained.

Food quality = 8.31 Degree of truth of the proposition:
"the tip is high "
. a
Membership /
degree b
0 Food quality 10 0 Tip 30

Figure 2.7: Mamdani implication [9].

The premise of a fuzzy rule can be made by combination of various fuzzy propo-
sitions while the operators of AND, OR and NOT participate in combining process.

2.3. GENERAL FORWARDING ALGORITHMS IN VANET AND ITS 19

Figure 2.8 explains where the quality of service is 7.83 out of 10, the food’s quality is
7.32 out of 10 and the rule is “If (the service is excellent and the food is delicious),
then (tip is high)”, then this result will be obtained. Note that I used the Mamdani
implication and the translation of OR by MAX.

Degree of truth of the

Service = 7.83 Food = 7.32 o S
proposition: "the tip is high"

MAX!| /

0 10 0 10 0 Tip 30

Figure 2.8: Mamdani implication and translation of OR by MAX [9].

2.2.6 Aggregate all outputs

In order to make a decision in a fuzzy logic system all of rules should participate.
The process of combination of all rule’s outputs into a single fuzzy set is called
aggregation. Figure 2.9 shows how the rules are combined and finally a single result
is aggregated.

2.2.7 The defuzzification

The final step is to get a non fuzzy value (crisp output). This step is called defuzzifi-
cation which [8] assigns a real value or particular decision to the membership degrees
of the fuzzy sets. There are various algorithms for defuzzification and one of the most
popular ones is called center of gravity. Figure 2.10 presents the center of gravity
algorithm.

So far, I have introduced the essential concepts that are needed to build a fuzzy
control system. The fuzzy inference digram is presented in Figure 2.11 and 2.12 and
as shown, the inputs values will be fuzzified, implicated, aggregated and defuzzified
to obtain the output.

2.3 General forwarding algorithms in VANET and ITS

This section is written based on these papers: [14], [15].

20 2. STATE OF THE ART

2 3. Apply
1. Fizzzify inputs. Aﬁ’f"’ m@f‘;’am
operation mithod {min).
(OR = max).
-
1 . poor rancid cheap
service is poor food is rancid than tip= cnaap
‘ - average)
2. -
mdepe rdency
good an input 2
| o
25%
service is good than tlp Wﬁk_l
excallent
delicious QENENIUS ’ \
5% 4. apply
| It service is excellent or food is delicious then hp gemmus ad’{mﬂ}.

service =3 food =8

input 1 input 2 ’_ﬂ-\

° Resutt ot =**
aggregation

Figure 2.9: Output aggregation [8].

5. Desfuzzily the
agpregate autpul
a a5y (cenlid).

tip = 16.7%

Resull of

deduzzilication

Figure 2.10: Defuzzification [8].

I briefly introduce wireless networks and especially ad hoc networks. Afterwards,
a special kind of ad hoc network which connects two vehicles (VANET) is introduced.
This section talks about some issues of VANETS such as architecture, features,
challenges and classifications which should be considered for designing, implementing

and evaluating new routing algorithms by researchers.

2.3. GENERAL FORWARDING ALGORITHMS IN VANET AND ITS

2.2.8 Conclusion

Dinner for Two
a 2 input, 1 output, 3 rule system

Rulle 2 H servios is good, then Sip is average. E

yg =

Rule 1 (1] 5|:ruu:\e s pear ar food i randd,
Hhen lip s cheap.

Input 1
Service (0-10)

Output
T (5-25%)

Input 2
Faod (0-10)

I service is excellent or faod is
Fuile 3 delicious, then fip is genenous.

The inputs are crisp Al rules ans The resulls of the The rezultis a
{nan-fuzzy) avaluatad i paraiiel rules a8 combinad crisp {(nan-fuzzy)
mumbiers limited fo & using fuzzy and distiliag mumber.
specific rangs. reasoning. (defuzzified).
Figure 2.11: Fuzzy logic system [8].
2 Apply
fi
1. Fuzzify inputs. my 8 caﬁurr
rO.E miax). method (min).
0% 26%
service is poor or food is rancid ﬂn-elnlp
avVerage,

2 . rule 2 has

na dependency
good on input 2 |

0o 10 0% 25% 0% 269
| I service is good then tip = average
axcellent | 1 |
3. rciour ganereus f \
- | ! 4 - |
0 100 10 0% 25% 0% 25% 4 ooty
I If serviceis excellent or food is delicious then tip = generous | aggregation
method (max).
service = 3 food = 8
input 1 input 2
° = o
Cenirok
tip = 16.7% 0% 25%
output

Figure 2.12: Fuzzy inference [8].

21

22 2. STATE OF THE ART

2.3.1 VANET architecture

Figure 2.13 presents the VANET architecture [14] which contains on-board sensors
and roadside units (RSUs) which are installed along highways, roads and streets;
these tools provide vehicle to vehicle connections (V2V) and vehicles to infrastructure
(V2I) connections. As shown in Figure 2.13, V1, V2 and V3 have access to a fixed
roadside infrastructure while V4, V5 and V6 have no connections with the fixed
infrastructure. Due to limited access range of fixed base station, a considerable
amount of information is transmitted via V2V connections, for example V4, V5 and
V6 vehicles do not have any communications with the fixed infrastructure and they
receive information via other vehicles.

Roadside Unit (RSU)

A\ @lﬂ?ﬂsﬁ@}ur@
X/Q—* \ Network /l,
W\ /‘/ ==

Y

\ ,/ _______________ N g/ =

| e N
Vehicle

Roadside Unit

Transmission Coverage

Figure 2.13: VANET architecture [14].

2.3.2 VANET applications

Use cases of VANET are divided into three main groups [14].

1. Safety applications One of the most important use cases of VANET is the
safety applications which decrease the road accidents and save the lives of
thousands of people. The shared information between V2V and V2I will be
used to foresee the vehicle collisions and assists the drivers to have a convenient,
fast and safe ride.

2. Traffic monitoring and management applications The main goal of this
kind of application is increasing the performance of traffic assistance. The
updated map information will help drivers to have better speed management
and efficient navigation.

2.3. GENERAL FORWARDING ALGORITHMS IN VANET AND ITS 23

3. Infotainment applications The last VANET application offers entertainment
and useful information for the drivers. These messages contain the information
such as cinema, shopping centres, parking and fuel stations. These applications
can be divided into 2 groups 1) co-operative local applications and 2) Global
INTERNET Applications.

2.3.3 VANET characteristics

This section is written based on this paper: [14].

High dynamic topology

One of the main features of VANET is high dynamic topology. In VANET,
there are a wide range of paths and vehicles which can be chosen. As vehicles move
with considerable speed, the topology of the network can be very dynamic. Given
two vehicles that move away from each other with the speed of 100 m/sec and the
transmission range of 200m, then the link between them can be stable for: ((400
m)/(200 m * sec-1)) 2 seconds, which is very short.

Frequent disconnected Network

As mentioned in the previous part, the link between vehicles can change rapidly
(for example in 2 seconds) and they need to establish a new connection. In an area
with low vehicle density, such disconnections will happen frequently.

Mobility modelling and prediction

Predicting the movement patterns of vehicles is very challening in such a dynamic
environment with high disconnection. The mobility pattern and the node prediction
are really important for designing an effective system.

Communication environment

FEach environment has its own features. the characteristics of a city’s model differ
form a highway’s model. The city’s model consists of various items, e.g., building,
trees, different obstacles and important places (hospital and police stations), but the
model of highway is very simpler than the model of city.

Adequate storage and energy

In Wireless Sensor Networks (WSN), energy management of nodes is a challenging
issue, but this is not a problem in VANETS as the nodes are vehicle having enough
storage for energy and processing units for computational processing.

24 2. STATE OF THE ART

Geographical type of communication

VANET networks apply the address of a geographical area as an additional type
of communication in order to send the packets to the destinations. Generally, the
type of data transmission which is applied in other networks is unicast or multicast,
in which the end points are specified as ID or group ID.

Hard delay constraints

One of the VANET features which can been seen in some applications is hard
delay constraints rather than high data rate demand. For instance, in an automatic
highway system (due to the importance of safety), message information should be
sent and received in a specific duration of time after a break happens. In such an
application the maximum delay of transmission is a more important issue compared
to the average delay.

2.3.4 VANET challenges

Security challenges

In any wireless communication, security is an important challenge. Security
in VANET has got considerable attention in the past decades by researchers and
industrialists. One of the most important issues in VANET is how to route information
from sources to destinations. Designing an appropriate routing algorithm is a critical
challenge for researchers. VANET systems can be attacked by several various kinds of
attacks (such as authentication/identification, black hole, malware, DoS, broadcast,
tampering, spamming, masquerading, replay, GPS spoofing and tunnelling). To sum
up, the security issues should always be considered as an important part of designing
and maintaining a VANET system [16].

Frequent link disconnections

I described the frequent link disconnection [14] features in the section “VANET
characteristics”. Keep in mind that this character counts as a critical challenge of
VANET systems which should be studied accurately by researchers.

Socio-economic challenges

One of the most vital issues to expand a new technology is to encourage users to
purchase it. In order to have efficient communication between vehicles in VANETS,
the number of customers who have equipped their vehicles should be considerable.
The added value for one user is directly related to the number of users that apply
this technology. There are various ways to encourage (or in some cases enforce)
customers to buy the essential equipments. For instance, the law can enforce drivers

2.3. GENERAL FORWARDING ALGORITHMS IN VANET AND ITS 25

to buy the essential VANET equipments or promote advertisements showing the
benefits of using VANET such as entertainment or better navigation [71].

Highly Dynamic Spatio—Temporal Traffic Conditions

Vehicles can move from one environment to another. For instance, a vehicle can
pass from a city environment with a lot of vehicles, obstacles, trees and buildings
to a highway environment with a low density of vehicles. The environment features
directly affect the performance of VANET systems. As illustrated in the above
example, the speed in a highway environment is more than the speed in a city
environment and this speed difference in two scenarios can be seen in the drop rate
and link’s stability of VANET’s algorithm. To sum up, the designer of VANET
system should consider the details of environments in order to design a networks
which can satisfy the user requirements [14].

Information dissemination

In this part, I talk about the challenge of disseminating traffic data. “The traffic
data is destined for the public interest, and not only for an individual” [14]; as a
result, the data in VANET needs to be broadcasted while other networks just unicast
the traffic data. This form of information dissemination can decrease the complexity
of routing discovery process, address resolution and network topology management.
Finally, various techniques of disseminating traffic data will be discussed in the next
section. In other hand, information dissemination just formed on broadcasting can
not satisfy the specific technical VANET requirement. Considering several different
layers in the VANET stack is one of these challenges.

2.3.5 Data dissemination techniques in VANET

Before talking about the routing algorithm classification for VANET, it is important
to explain various data dissemination strategies in VANET because a considerable
number of problems can be resolved by efficiently disseminating data. Data dissemi-
nation is defined as the process of spreading information over distributed wireless
network. The data dissemination relies on the various parameters such as the speed of
vehicles, accelerations, pauses and the network size. Based on the current literature,
information dissemination techniques can be classified in 3 groups: [13], [14].

Opportunistic data dissemination [14].

Data will be retrieved from vehicles or infrastructure when the objective vehicle
encounters them.

Vehicle-assisted data dissemination

26 2. STATE OF THE ART

In this type of data dissemination strategy, the information is carried along with
all of vehicles and the information will be delivered to other vehicles or infrastructure
when they meet.

Cooperative data dissemination:

In this technique, part of information can be downloaded by the vehicles and this
information will be shared later to get the data.
2.3.6 VANET routing algorithm classification

There are various VANET routing algorithm classification and one of this classification
is shown in Figure 2.14. In this classification, the routing algorithm is divided into
two groups: topology based routing algorithms and geographic routing.

VANET Routing Pratocols

Topology-based Geographic
Routing Routing
Proactive Reactive None-DTN DTN Hybrid
(table-driven) (on-demand)
l .L J, l J, l GeoDTN+Nav

FSR Beacon Non-Beacon Hybrid VADD GeOpps

AQODV TORA DSR
CBF TO-GO

AODV+PGB Non-Overlay Overlay

T T T T T

GPSR PRB-DV GRANT GPCR GpsrJ+ CAR GSR A-STAR STBR GyTAR LOUVRE

)

GPSR+AGF

Figure 2.14: VANET routing algorithm classification number 1 [17].

In Figure 2.15, another routing algorithm of a VANET network is presented
where the routing protocols can be divided as position based, cluster based, topology
based, geocast based, and broadcast based.

2.4 AODV algorithm and fuzzy logic approach (related
work)

In this section, I study the work that have been done for improving the routing
algorithms in VANET by modifying AODV, Ad hoc On-Demand Multi-path Distance
Vector (AOMDV) or by applying fuzzy logic technique. Considerable effort has been

2.4. AODV ALGORITHM AND FUZZY LOGIC APPROACH (RELATED WORK) 27

Paosition Based Routing
Protocols

Hybrid Position DTN Position Non DTN Reactive/ W Proactive routing
Based P ols i s

_ FSR.DSDV,
GeoDTN+Nav VADD: Vehicle-
Delivery

Cluster Based Routing Broadcast Based Routing

Protocols Protocols

CBDRP, TIBCRPH, IVG. DG-

Figure 2.15: VANET routing algorithm classification number 2 [18].

done to improve forwarding algorithms by considering various QoS parameters such
as end to end delay, throughput and overhead. Considering more mobility parameters
and using different artificial intelligence techniques are my interests in this research.
In the first part of this section I explain AODV/AOMDYV improvements in relation
to ITS/VANETS and in the second part I describe how fuzzy logic can be applied as
a useful research approach.

2.4.1 AODV/AOMDYV improvement

In this section, I first briefly refer to some work that has already been done in this
scope. Afterwards, two important approaches are chosen to be studied in details. I
propose my algorithm based on these two work.

There have been considerable work to improve AODV/AOMDYV. The authors
in [19] introduce the secure version of AODV (SAODV) which protects the routing
messages of AODV. The digital signature and hash chains are applied to authenticate

28 2. STATE OF THE ART

non-mutable fields and the hop-count field, respectively in RREQ and RREP messages.
Moreover, in [20] and [21] another protocols are proposed that are eliminating
broadcasting in networks (for instance, Neighbor Elimination Scheme (NES)).

Mobility predication is another interesting area for researchers (see [22] and [23]).
AOMDYV is a multi-path extension of AODV protocol. In [24], a new routing protocol
(S-AOMDYV) is proposed that consists of hop and speed metrics in order to make
decision. The simulation results of S-FAOMDYV confirms generally that it has better
performance compared to AODV, and specifically it reduces the end to end delay by
11.92 % when there is a high load (8 packet/s).

In [25], Abedi proposed an enhanced version of AODV for VANET that two
different mobility parameters have been used: position and direction. In this method,
a node’s direction is considered as the most important parameter in order to find
the next intermediate hop; moreover, the node’s position which has less importance
compared to node’s direction is selected as the second parameter. He assumed that
these parameters will be obtained by GPS and the vehicles are moving based on
Manhattan mobility pattern (it is described with details in Chapter 5).

When a node sends information to the destination node, the intermediate nodes
will be selected based on the direction of the source and destination. Because of
emplying Manhattan, Abedi assumed that 2 conditions can be performed in this
protocol: first, the source node and destination are in same direction. Second, they
move in opposite of each other. In other words, a node can be selected if it moves in
the same direction with and/or destination and if its position is between source and
destination.

His algorithm is explained using the pseudo code below:

Listing 2.1: Abedi’s algorithm number 1

Bool
Next_Hop (node, source, destination)
// Stepl:
{
Ds = Get_Direction (source);
Dd = Get_Direction(destination);
Dn = Get_Direction (node);
If ((Dn == Ds) || (Dn == Dd))

//Step 2:

{
Ps = Get_Position(source);
Pd = Get_Position(destination);
Pn = Get_Position(node);

2.4. AODV ALGORITHM AND FUZZY LOGIC APPROACH (RELATED WORK) 29

If ((Ps<=Pn<=Pd) || (Pd<=Pn<=Ps))
Return TRUE;
Else
Return FALSE;
}
Else Return FALSE;

This protocol gets 3 inputs which are listed as: the candidate node for next hop,
destination node and source node in order to determine the next hop.

But there is one problem, it is possible to not find any intermediate node with
this criteria; therefore, Abedi changed his algorithm by adding a lower bound on the
number of found routes and then dividing the protocol into two stages. (see Abedi’s
algorithm n.2)

Listing 2.2: Abedi’s algorithm number 2

Attempt=0;
// Step 1:
If (((Dn==Ds) || (Dn==Dd))&& ((Pd<=Pn<=Ps) || (Ps<=Pn<=Pd))
{
Send_RREQ_packet (node) ;

NR++;
}
Else
Attempt++;
If (attempt<2)
{
Wait (w_t);
// Go to Step 1;
}
Else if (NR<Min_route_thershold)
// Step 2:
If ((Dn==Ds) || (Dn == Dd))
{
Send_RREQ_packet (node);
NR++;
}

In Step 1, searching for the nodes which have both conditions is done. If the
condition for lower bound routes is fulfilled, then the algorithm will be finished
without doing anything. If the results did not satisfy the lower bound, then the

30 2. STATE OF THE ART

protocol will go to step 2 where the position condition will be removed and the nodes
which have the same direction with the source and/or distension will be selected.
At the end, Abedi evaluated his algorithm based on metrics such route length and
broken links.

Hafez in [26] proposed a new algorithm called SD-AOMDYV. The proposed algo-
rithm improves the AOMDYV based on VANET requirements and features which has
been explained before. This algorithm considers these mobility parameters to choose
a better intermediate node: speed and direction.

During the process of data transmission, the protocol will get the direction and
speed of source and destination nodes, and based on these information an intermediate
node will be chosen. In contrast to Abedi’s work, Hafez considered speed as a new
parameter to select a better next hop. To sum up, a node will be chosen based on
two conditions: firstly, it has the same direction as source and/or destination, and
secondly, it has the speed which is the closest to the average speed of source and
destination.

One of the innovations of Hafez’s work is finding the direction which is calculated
based on vehicle’s coordinations. Hafez considered 4 groups and assumed if the
changes in coordination is positive for both X and Y (0°-90°), then it will be placed
in group 1. If the change in the X axis is negative and changes in the Y axis is
positive (90°-180°) it is set in group 2 and if both of them has negative changes it is
placed in group 3 (180°-270°), otherwise it is in group 4 (270°-360°) (see Figure 2.16).

Aol

Figure 2.16: Hafez’s work, finding the direction [26]

2.4. AODV ALGORITHM AND FUZZY LOGIC APPROACH (RELATED WORK) 31

2.4.2 Fuzzy logic approach

In addition to normal algorithms, artificial intelligence (AI) has been used to optimize
routing algorithms. Fuzzy logic has been applied widely in routing algorithms for
wireless ad hoc networks. The author in [27] proposed an ant colony and fuzzy logic
based algorithm to select the best paths. Moreover, in [28] a multi-path routing
algorithm has been proposed based on fuzzy logic. The optimal path will be selected
based on four inputs: energy consumption rate, queue occupancy rate, link stability
and the number of intermediate node.

In [29] (note that I proposed my algorithm based on this work) researchers try
to find the best route based on multi metric fuzzy logic. This algorithm is named
Fuzzy Control Based AODV Routing Protocol (FCAR). Fuzzy logic system gets the
life time of a route and the moving direction of vehicles, then it will choose the most
stable routes.

The author in [29] explains that in reality road features limit the moving track of
vehicles. Moreover, the vehicles that are moving in the same direction, can form more
stable connections. This algorithm will calculate the moving direction between
itself and last hop whenever it gets a route request message and if it is less than 20°,
then the protocol counts two vehicles as the same direction. Finally, the route life
time is defined as the shortest duration of time that two vehicles can communicate
with each other (see [29] in order to see how mathematically it is calculated).

After designing the protocol based on fuzzy logic, the author used SUMO (Simu-
lation of Urban MObility) which is a mobility generator to create nodes movements.
At the end, he evaluated his algorithm based on these metrics: packet drop rate,
average end-to-end delay, route discovery frequency and routing overhead.

Algorithm description

3.1 Four-inputs Fuzzy-logic-based AODV Routing (FFAR)
protocol

3.1.1 Introduction

Figure 3.1: VANET network, real scenario [1/]

I choose AODV [32], [33], [34] as the routing algorithm and fuzzy logic as the
artificial intelligence technique in order to improve forwarding messages in vehicular
ad hoc system (see Figure 3.1 which shows a real VANET network’s view) Moreover,
as discussed earlier, the stability of selected routes is an important issue to forward

33

34 3. ALGORITHM DESCRIPTION

information appropriately and the main focus of my algorithm is to improve the
forwarding message mechanism by having more stable routes.

3.1.2 Proposal questions

Why did I choose AODV? 1 chose AODV for the following reasons: AODV is
one of the most famous protocols which got considerable attention by researchers
and it has been implemented already by wide range of simulators, and the source
codes and the documentation are available. Moreover, the simulation results have
proved that AODV is superior (see [30], [31]) than the other existing algorithms
(DSDV,DSR and TORA) based on these metrics: routing overhead, packet delivery
ratio and path optimality.

Why did I choose Fuzzy logic? Fuzzy logic [35] can be used as a good decision
making tool which is easy to understand. The underlying theory is easy and propo-
sitions in fuzzy logic [8], [9] can be formulated using the natural language which
is an efficient way of communication. The other important aspect of fuzzy logic is
its flexibility and the tolerance for imprecise data. Finally, fuzzy logic can model
non-linear functions of arbitrary complexity.

3.1.3 FFAR procedure

I call this algorithm Four-inputs Fuzzy-Logic-based AODV Routing (FFAR), because
it gets four parameters to evaluate the stability of a route: same directional vehicles,
position of the nodes, relative velocity and the direction related to source and
destitution. As mentioned before, the authors in [29] use a multi-metric fuzzy logic
system to find the most stable routes based on the route life time and percentage of
same-directional vehicles. Based on this idea, I expand and develop this procedure
in order to find more accurate results. My goal is to present a novel alternative
algorithm that can improve AODYV based on new fuzzy inputs. To sum up,
my algorithm is more accurate compared to FCAR because it considers more input
parameters.

My fuzzy system considers more different parameters and it is not blind about
the position and direction of source and destination. It means my algorithm selects
an intermediate node based on both the situation of surrounding nodes and the
situation of the source and destination nodes. As an example, Figure 3.2 shows that
although vehicle 1 and 2 have the same direction, but if vehicle 1 wants to send data
to vehicle 4, vehicle 3 is a better choice compared to vehicle 2 (because of its position
which is between the source and the destination; therefore, it has better position
compared to vehicle 2). By having the various parameters, I have this opportunity
to consider more details and find out the most stable routes. In FFAR, when a

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
35

Figure 3.2: Example scenario

vehicle needs to set up a connection to a destination, first it will broadcast a route
request (RREQ) message. I modified the RREQ message so that it contains the
node’s speed, position and direction. When an intermediate vehicle receives the
RREQ message, it will call the stability function. The stability function will get
four inputs (as it will be explained later) and will give an output (see Figure 3.3 and
pseudo code of FFAR).

Listing 3.1: FFAR algorithm

:(step 1) receive RREQ

: calculate direction of node
: calculate velocity of node
: calculate position of node

1

2

3

4

5: calculate angle of node
6: if same RREQ then

7 comparing with data of route table

8 if fewer hops or bigger stability then
9

refresh inverse route

10: if current vehicle is a destination then
11: send RREP

12: else if has a fresher route to a destination then
13: send RREP

14: else

15: broadcast RREQ (go to step 1)

16: end if

17: else

18: discard RREQ

19: end if

20: else

21: comparing with data of route table

36 3. ALGORITHM DESCRIPTION

22: if fewer hops or bigger stability or bigger sequence number then
23: refresh inverse route

24: if current vehicle is a destination then

25: send RREP

26: else if has a fresher route to a destination then
27: send RREP

28: else

29: broadcast RREQ (go to step 1)

30: end if

31: else

32: if current vehicle is a destination then

33: send RREP

34: else if has a fresher route to a destination then
35: send RREP

36: else

37: broadcast RREQ (go to step 1)

38: end if

39: end if

40:end if

/*

If a node receives an RREQ message with the same sequence number, then it
compares the hop number and the route stability output. If it has smaller hop
number or bigger stability, it will update the reverse path to the source. Afterwards,
it checks if it is the destination. if “Yes”, it sends an RREP message, otherwise
it checks if it has a fresher route to the destination. If “Yes”, it sends an RREP
message, otherwise it will broadcast an RREQ message. If it receives an RREQ
message with the same sequence number and it does not have bigger route stability
or less hop, then it discards the RREQ message.

If a node receives an RREQ message with a different sequence number, then if it
has bigger sequence number or bigger route stability output or less hop count, then
it will update the reverse route to the source. In continue, it checks to see if it is the
destination or not. if “Yes”, it sends an RREP message, otherwise it checks to see
that if it has a fresher route to the destination or not. If “Yes”, it sends an RREP
message otherwise, it will broadcast the RREQ message.

Finally, if a node receives an RREQ message with a smaller sequence number and
it does not have bigger route stability output or a smaller hop count, then the reverse
path will not be updated. After that, it will check to see if it is the destination or not.
if “Yes”, it sends an RREP message otherwise, it checks to see that if it has a fresher
route to the destination or not. If “Yes”, it sends an RREP message otherwise, it
will broadcast the RREQ message.

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
37

Receive RREQ 3

Calculate relative

velocif

Calculate Position

Calculate
direction

Calculate angle

Y Received the same RREQ en

paFINE quting
able, it has fewer hop and
greater stability

higger stability

Discard RREQ Refresh invers Refresh inverse
route route

| N

current vehicle is destinati

Send RREP

P N

[1

Send RREP Forward REQ

Figure 3.3: FFAR algorithm flowchart [29].

Figure 3.3 explains if a node received a RREQ message, it asks the fuzzy control
system to determine stability of the route. Based on the output, I can decide to
choose the most stable route.

In the regular routing algorithm, routing table will be updated only when there
is a newer sequence number or smaller hops, but as explained before, VANET has
its own characteristics, such as high speed and frequently disconnection, and the
decision based on these parameters cannot fulfil required expectation; therefore, I
need newer parameters which will be described in the next section.

38 3. ALGORITHM DESCRIPTION

3.1.4 Selecting route metrics
Same direction of two intermediate nodes

As shown in Figure 3.4.1, when an intermediate node receives an RREQ message
from its previous node, it will create a reverse path. If the two intermediate nodes
are in the same direction, the probability of having a stable route will be increased.
As illustrated in Figure 3.4.1, node 2 has the same direction to the red node (receiver
intermediate node) and it can increase stability of the route much more, compared
to node 1 and node 3.

Consider the moving direction of node 1 is (dx1, dyl) and the moving direction of
node 2 is (dx 2, dy2), where dx and dy represent the direction vector component on
X and Y axis, respectively. The angle between two nodes can be calculated as: [29]

dxl x dx2 + dyl * dy2
Ydx12 4 dy1? x ¥/dx22 + dy22

Angle = arccos (3.1)

When a vehicle gets an RREQ message, it will calculate the included angle of moving
direction between itself and the last hop. Table 3.1 shows if the angle is less than
20°, then I call it good.

Bad Good
10° <= |Angle| < 180° |Angle| < 20°

Table 3.1: Same directional of two intermediate nodes

Intermediate node’s position

One of the most important parameters to choose and weight a route is the position of
intermediate nodes in the route. I call a position “good” if the distance (it is named
“D” in Table 3.2) of the intermediate node to the line passing through the source
and the destination node is less than 100cm. If the distance is between 1m and 3m,
it is normal, and if it is between 2m and 4m, I call it bad (see Table 3.2). Figure
3.4.2 presents how node 2 has a good position and choosing node 2 will increase the
stability of the route compared to nodes 1, 3 or 4.

Bad Normal Good

2m <D <4dm 1Im <D <3m D <100cm

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
39

Table 3.2: Intermediate node’s position

0© @® O ¢
e OO Q.QQQ
O . @

8> ©

Figure 3.4: Selecting route metrics: 1-Same direction of two intermediate nodes 2- inter-
mediate node’s position 3-same directional node 4- relative velocity

Same direction to source and destination

I considered the same direction compared to the source and destination as the other
important parameter, see Figure 3.4.3. In such a scenario node 2 will be selected
compared to node 1 and node 3. Table 3 shows if the sum angle between intermediate
node’s vector and source interminable node destination is less than 20°, I call it good,
otherwise bad.

40 3. ALGORITHM DESCRIPTION

Bad Good
10° <= |Angle| < 180° |Angle| < 20°

Table 3.3: Same direction to source and destination

Relative velocity

Velocity has considerable effect on the route life time; therefore, I used relative
velocity as an important input for my fuzzy logic system. If Vs and Vd show the
speed of the source and destination nodes, respectively, and Vi shows the speed of
intermediate node, then I call a node good if the sum of the difference compared to
the source and destination is less than 30 m/s (see Table 3.4). Figure 3.4.4 shows
the relative velocity parameter.

Bad Good

20m/s <= |Vd - Vi|l+ O0m/s < |Vd—Vi|l+
|[Vs —Vi| <=90m/s |[Vs —Vi| <30m/s

Table 3.4: Relative velocity

3.1.5 Modification of control message and routing table
RREQ’s modification
The below Table presents the added data to RREQ: [29]

Added data to RREQ

Moving direction vector component on X axis

Moving direction vector component on Y axis
X-coordinate of location
Y-coordinate of location

speed vector component on X axis

speed vector component on Y axis

Table 3.5: Modify of RREQ

The added information to “send request function”.

Listing 3.2: Modified send request function

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
41

void

AQODV: :sendRequest (nsaddr_t dst) {

iNode = (MobileNode *) (Node::get_node_by_address (index));
rq->xpos = iNode->X(); // x positon

rq->ypos = iNode->Y(); // y positon

rq->zpos = iNode->Z(); // z position

rq->dx=iNode->dX(); // dx

rq->dy=iNode->dY(); // dy

rq->v=iNodeDst->speed () ; //speed

The added information to “route request packet”.

Listing 3.3: Modified route request packet

struct hdr_aodv_request {

u_int8_t rq_type; // Packet Type

u_int8_t reserved[2];

u_int8_t rq_hop_count; // Hop Count

u_int32_t rq_bcast_id; // Broadcast ID

nsaddr_t rq_dst; // Destination IP Address
u_int32_t rq_dst_seqno; // Destination Sequence Number
nsaddr_t rq_src; // Source IP Address
u_int32_t rq_src_seqno; // Source Sequence Number
double rq_timestamp; // when REQUEST sent;
double xpos ; //x position

double ypos; //y position

double zpos ; //z position

double dx; // dx

double dy; // dy

double V; // speed

RREP’s modification

After calling stability function (fuzzy logic system), the output will be set in RREP
message and it will be used to find the most stable routes.

Listing 3.4: RREP’s modification

struct hdr_aodv_reply {

u_int8_t rp_type; // Packet Type

u_int8_t reserved[2];

u_int8_t rp_hop_count; // Hop Count

nsaddr_t rp_dst; // Destination IP Address

u_int32_t rp_dst_seqno; // Destination Sequence Number

42 3. ALGORITHM DESCRIPTION

nsaddr_t rp_src; // Source IP Address
double rp_lifetime; // Lifetime
double rp_timestamp; // when corresponding REQ sent;

// used to compute route
discovery latency
int stability // stability parameter;

Routing table’s modification

The routing table will be updated like an RREP message and only the stability
parameter in the routing table will be updated.

Listing 3.5: Routing table’s modification

class aodv_rt_entry {
friend class aodv_rtable;
friend class AQODV;
friend class LocalRepairTimer;
public:
aodv_rt_entry();
~aodv_rt_entry() ;

void nb_insert(nsaddr_t id);
AODV_Neighbor* nb_lookup(nsaddr_t id);

void pc_insert(nsaddr_t id);
AODV_Precursor* pc_lookup(nsaddr_t id);

void pc_delete(nsaddr_t id);

void pc_delete(void);

bool pc_empty(void) ;

double rt_req_timeout; //

u_int8_t rt_req_cnt; //

int stability; // stability paramater

3.1.6 Stability function

This section is written based on these papers: [8], [9].

The concept of fuzzy logic is explained in the Chapter 2. In this section, I apply
fuzzy logic to find the most stable routes (in some parts, I forced to rewrite or address
to the defined previous concepts and it is because of splitting the fuzzy logic section
in two parts)

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
43

A fuzzy logic system is shown in Figure 2.12. A fuzzy logic system (FLS) can be
defined as a non-linear mapping of an input data set to a scalar output data. Each
FLS has four key parts: [8], [9].

fuzzifier, rules, inference engine, and defuzzifier.

The first step is called fuzzification [8] and the gathered crisp data are con-
verted to a fuzzy set by using a fuzzy linguistic variable, fuzzy linguistic terms and
membership functions. In order to map non-fuzzy input values to fuzzy linguistic [9]
terms and contrariwise, membership function will be applied. There are various
types of membership functions such as triangular, Gaussian, trape-zoidal, piecewise
linear or singleton. I used the triangular form in this research. Figures 3.5, 3.6, 3.7,
3.8 and 3.9 show the angle, direction, velocity, position and stability membership
function, respectively.

Direction

0 10 20 30 40 SO 60 70 80 0 100 110 120 130 140 150 160 170 180
x

[good a bad]

Figure 3.5: Direction membership function

Position

0.05

o.00 I
000 025 050 075 Loo 125 150 175 0 225 250 275 300 325 350 375 400

Figure 3.6: Position membership function

The quality of fuzzy logic approximation depends on the quality of fuzzy rules. 1
designed the fuzzy logic system to calculate the stability of each link between source

44 3. ALGORITHM DESCRIPTION

Angle

Membership

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90
x

[good & bad

Figure 3.7: Angle membership function

Velocity

Membership

100 125 150 175 200 225 250 275 30,0
x

(& good a bad

Figure 3.8: Velocity membership function

and destination. This fuzzy system has four inputs that are named with numbers 1,
2, 3 and 4 in Table 3.6.

1. Intermediate node’s position
2. Same direction of two intermediate nodes
3. Relative velocity

4. Same direction to source and destination

The inputs are fuzzified, implicated, aggregated and defuzzified [8], [9] to
get the link stability as the output. The linguistic variables which are associated with
the output variables are too bad, very bad, bad, normal, good, very good,

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
45

Stability

[a stability:0.00 (centerofravity) a verygood a verybad a excelent » normal toobad a good - bad|

Figure 3.9: Stability membership function

excellent. Input variables are explained earlier. The important part of any fuzzy
logic system is how to design rules. A rule is actually a simple “IF-THEN” with a
condition and a conclusion. My four inputs assigned as antecedent of the conditional
statement and the result of the conditional is the output. I just used the “AND”
operation to build the rules. For example,

RULE 1 : IF Position IS excellent AND Direction IS good AND Velocity IS good
AND Angle Is good THEN Stability IS excellent. Table 3.6 shows the fuzzy rules
which is applied in this report.

46 3. ALGORITHM DESCRIPTION

Fuzzy logic

In order to evaluate the fuzzy rules and the combination of results of the individual
rules, fuzzy set operation [8], [9] will be applied. After evaluation of the rules, the
results will be combined to get the final answer (the output is actually the stability
parameter and will passed to RREP function). This process is named inference. For
combining the results, different methods exist, I used “maximum” algorithm in this

research.

Link situation

Excellent
Excellent
Excellent
Excellent
Good
Good
Good
Good
Very good
Very good
Good
Normal
Normal
Normal
Bad

Bad
Very bad
Very bad
Very bad
Very bad
Very bad
Too bad
Too bad
Too bad

W EEEWwW =22 222 22200000000F

vs)

seiiveliive i oo B B S RN I R o~ A oc B ov B vs B> B> B> B Bl ve i ve i oo B os B BRSO BRSO ER S N I

ioe el N D J oF v~ B D B/ BES N °* B D b B vw A o B D B D IS B - BN S BE O I B e BRSO I S RS

(Do~ Rrep Bl o> D T ve A ep S o B b B S o S o~ B @b W oS R D UL s B @ B S BN D Bl e B D N s B O B L

vy

Table 3.6: Fuzzy logic rules’ table

3.1. FOUR-INPUTS FUZZY-LOGIC-BASED AODV ROUTING (FFAR) PROTOCOL
47

The final step is to get a non-fuzzy value (crisp output) which is named defuzzi-
fication. Defuzzification [8] is the process of interpreting the membership degrees of
a fuzzy set into a specific decision or real value. There are various algorithms for
defuzzification and I used center of gravity in this research. Appendix B explains
the fuzzy logic library I have designed in this thesis, and appendix C illustrates how
to calculate 4 fuzzy inputs.

Simulation tools

4.1 Network simulator 2 (INS2)

A network simulator [36], [37] is a software or hardware which can foresee the
performance, behaviour and actions of a network in various situations while there is
no actual network [36]. Generally, users can configure the simulator based on their
requirement to reach their goals. There are various network simulators which support
the most popular protocols like TCP and AODV and various types of networks such
as wireless sensor network and Wi-Max.

In the field of computer networks, network simulation [36] refers to the tech-
nique by which the behaviour of a network is modelled by measuring the interaction
between various network entities such as routers, switches and data links or obtaining
and playing back the events from a production network. The behaviour of a network
and different applications under different conditions can be observed and tested by
changing network parameters. For example, to see the behaviour of a network in high
congestion area I decrease the arrival time or increase the movement speed of mobile
nodes. Finally, in the validation process, the results obtained by the simulation will
be compared to the results from mathematical models.

There are many different reasons to apply network simulators compared to set-up
an entire testing enviroment consisting of networked computers, switches, routers
and information links [36]. Two of the main reasons are: simulators are significantly
cheap and fast. To study the scenarios which takes considerable time and resources,
the simulators will allow researchers to have a under control and reproducible setup.
In general, network simulators give the user the opportunity to build a network
topology by adding nodes and links between them. One of this simulators is called
network simulator 2 (NS2).

NS2 [38] is an object-oriented and discrete event simulator which is developed
and designed at Berkeley university. The core of NS2 is written in C++ with an

49

50 4. SIMULATION TOOLS

Object Tel (OTcl) interpreter as a command and configuration interface. The reason
for this technology stack is that C++ is fast for running programs, but it is slow
for modifying the configurations. On the other hand, Otcl can be modified quickly
while it is slow to run. This approach is called split-language programming that
allows to easily run and modify large scenarios. On other hands NS2 requires a deep
understanding of both languages and compiling, running and debugging at the same
time [7].

NS2 has a large number of built-in C++ classes that is used to set up a simulation
via Tcl script. To make your own protocol you need to create your own C++ classes.
As shown in Figure 4.1, NS2 gives a text based output which can be interpreted
graphically and interactively by a network animator (NAM). NAM environment is
presented in Figure 4.2 [7].

Tcl Simulation Simulation Simulation
Simulation Objects Objects Trace
Script File
~ C++ OTcl .
—| NS2 Shell Executable Command (ns) —> %
I____A::_l |——\:5————|
i NAM 1 | Xgraph |
| (Animation) | | (Plotting) |

S ——— T4

Figure 4.1: NS2 architecture [7].

NAM is an effective visualization tool to animate the network simulation traces
and it gives this opportunity to users to observe packet movements, packet loss and
the topology of network (nodes and link between them) in a real world [7].

4.1.1 Why did I choose NS27?

In conclusion, I chose NS2 as the simulator for this project because it is an open
source software and its code can be modified. Moreover, it has considerable
libraries that cover various areas such as different routing algorithms, different
layers and mobility. There are many various versions of NS and I applied the last
version which is ns-2.35 [7].

4.2. MOBILITY MODEL 51

i ime wges | eswstekowmsoaeas

1]
“ <« " > » iz ,%‘

FIry
=

515 8 1 Y 0 0 0 0 T T

7

Figure 4.2: NS2 network animator (NAM)

4.1.2 AWK

AWK [42] is an interpreted programming language that I used in order to extract the
required data from NS2 trace file (.tr). Appendix A presents the AWK files which
are used in this thesis. To run the AWK script in Linux, this command should be
run: “awk —f filename.awk filename.tr”

4.2 Mobility model

Mobility models [43], [47] show the motion of mobile nodes and how their position
and velocity modify. There are different mobility models such as: random walk
model, and random Gauss-Markov model.

4.2.1 Mobility generator

In order to generate random movement, I used BonnMotion. “BonnMotion is a
Java software which creates and analyzes mobility scenarios and is most commonly
used as a tool for the investigation of mobile ad hoc network characteristics. The
scenarios can also be exported for several network simulators, such as ns-2, ns-3,
GloMoSim/QualNet, COOJA, MiXiM, and ONE” [44]. BonnMotion will be run by
this command:

bm -f scenariol Manhattan -n 100 -x 900 -y 3600 which the -n refers to
number of nodes and -x and -y refer to width and hight respectively. Finally, I used
the jFuzzyLogic library [45], [46] in Java in order to create a Fuzzy logic system (see
Appendix E which shows the mobility scenario made by Bonnmotion).

Evaluation

After defining the problem, introducing the essential background and proposing
the new algorithm, in this section I run various simulation scenarios based on the
tools that have been described earlier. This chapter presents how the simulation
characteristics are set and what results are obtained.

The simulations were conducted on a computer with these specifications: an Intel
core 15 processor at 2.50 GHz, 8 GB of RAM running Linux Ubuntu 13.10.

5.1 Simulation set-up

Features of the simulation scenario, movement model, communication model and
simulation parameters are described in this section.

5.1.1 Scenario

My studied scenario consists of 10 mobile nodes, and at each time 5 mobile nodes are
added to the next scenario (the nodes are increasing between 10-50) and my topology
is a square with 2000 * 2000 m2. 1000 seconds is considered as the simulation
time. For each scenario, the number of source and destination nodes are random. In
addition, sources and destinations are distributed stochastically among all of mobile
nodes (see appendix D). It should be mentioned that I assume that all of links during
simulation are bi-directional. Figure 5.1 shows how the mobile nodes are distributed
in a scenario with 25 vehicles. Moreover, error bars are applied in this report and I
repeated the simulation for 10 times for each value by applying random mobility
model for each one.

Error bars are applied to show the variability of data graphically. In other
words, error bars shows the accuracy of data or the amount of deviation value from
the average or expected value.

53

54 5. EVALUATION

Usually error bars offer the amount of deviation from the average data or expected
data by presenting standard deviation. A low standard deviation means the data are
closed to the average value and high standard presents that the data are far from

the expected value.

A confidence interval refers to the precise range of measurement. 95% confidence
interval is applied in this research and it means that there is just 5% chance of being

wrong.

Evo views anayis | aten |

« < | n N _—— " e ams ,‘
e |

=
<

qm“\\\‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I

Figure 5.1: Scenario visualization in NAM

5.1.2 Movement model

Manhattan is one of the most important mobility models of VANET. I chose Man-
hattan for simulating different scenarios in this thesis. In this model, there are many
horizontal and vertical streets present in the simulation field and vehicles move in
lanes of the streets. The street can be one directional or bi-directional; moreover,
the vehicles can go to left, right, up and down. The streets can cross each other and
given one direction has positive value 1, the negative value is assigned to the opposite
one. The Manhattan model is shown in Figure 5.2 [25]. In my mobility model, a
random value for speed which is constrained between the optional minimum and
maximum values is allocated to each mobile node. -M and -h commands show the
minimum and maximum speed, respectively in BonnMotion. To see how the nodes
are randomly distributed in the map and how their speeds are different from each
other see appendix E.

5.1. SIMULATION SET-UP 55

Figure 5.2: Manhattan model [25]

5.1.3 Communication model

In this research, I target the effects of mobility parameters in VANET networks
based on various parameters; therefore, the size of a packet and the packet’s inter
arrival time are selected as constant variables (deterministic functions).

Listing 5.1: Time arrival and packet size

set udpl [$ns_ create-connection UDP $node_(5) LossMonitor $node_(0) 0]
$udpl set fid_ 1

set cbrl [$udpl attach-app Traffic/CBR]

$cbrl set packetSize_ 1000

$cbrl set interval_ .07

$ns_ at 0.0 "$cbrl start"

$ns_ at 1000.0 "$cbrl stop"

As shown in the above code, the inter arrival time for the source mobile nodes is
constant and it starts at 0 seconds and will finish at 1000 seconds. Each source
mobile node generates its packets every 0.7 seconds in this research; in other words,
10 packets per 7 seconds and each packet size is 1000 bytes. Therefore, the amount
of generated data per second is (10) / (7) * (1000) * (8) = 1142.85 bits.

Note that TCP is not applied in this report because I did not want to investigate
the effect of TCP on the flow control and re-transmission.

5.1.4 Parameters

The commonly applied parameters for simulation in this thesis are shown in Table
5.1.

56 5. EVALUATION

Parameter Value
Application layer UDP
Traffic type CBR
Routing protocol AODV / FFAR
MAC band width 54 Mbit/s
MAC 802.11
Frequency 2.4 GHz
Transmitting power 17 dbm
Antenna type Omni-directional
Size of simulation scene | 2000 * 2000 (m * m)
Simulation time 1000 s
Packet rate 0.7
Transmission range 250 m

Table 5.1: simulation parameter

5.2 Performance metrics

The definition of network performance metrics are written based on these papers:
[26], [29], [40], [41], [48], [49].

To evaluate the simulation results five performance parameters are taken into
account.

Packet delivery ratio

The number of received packets compared to the number of generated packets is
defined as the packet delivery ratio. This parameter determines how the protocol’s
performance in term of delivery of packets, while speed, acceleration or payloads are
variables. This property can be defined as:

received packets
generated packets

Packet delivery ratio

Note that packet drop ratio can be calculated as: 1 - (packet delivery ratio).
Route discovery frequency

A source node will start the route discovery process by broadcasting a probe
packet (in AODV, it is called route request message or RREQ message) to all of its
neighbours. In Chapter 2, it has been explained how a route can be established in

5.3. SIMULATION RESULTS 57

AODV. After establishing the route, the packets are transmitted to the destination.
Therefore, the intermediate nodes do not need to maintain the routing tables any more.
This will decrease network overhead. As mentioned before, VANET networks have
unstable connections because of high mobility which causes considerable overhead
for networks to establish new routes. As a result, the frequency of route discovery
procedure should be reduced as much as possible. Keep in mind, generally, the
routing discovery approach takes considerable network bandwidth. Formally, route
discovery frequency can be defined as:

route discovery time initiated by route
simulation time

Route discovery frequency:

End to end delay

It refers to the entire time that is spent for sending a packet across a network from
a source to a destination node. This time includes transmission delay, processing
delay and propagation delay.

Network overhead

Overhead should be considered as a significant issue in design and implemention
of a network. Briefly, the network protocol overhead can be described as follows:
network protocols such as TCP need sending control and signalling data in order to
manage the data transfer over the network; as a result, the maximum bandwidth
of the network cannot be used to send actual data. Moreover, it causes more
transmitting time and requires more computational processing.

Network throughput

Throughput or network throughput in computer networks is defined as the average
rate of successful messages delivery over a communication channel, which will be
measured by bits per second (bit/s or bps) and data packet per time slot or data
packets per second. The queue theory is widely applied to analyse network throughput
mathematically where the data can be sent through a physical link or a network
node.

5.3 Simulation results

After introducing the network parameters, this section presents and discusses the
results of simulation scenarios.

58 5. EVALUATION

Routing discovery frequency

Figure 5.3 and 5.4 show route discovery frequency when the network size is varying
from 10 to 50. As shown, the route discovery frequency is getting higher when the
number of nodes increases because when there are more nodes, the probability of
link disconnection is getting higher. Therefore, sources initiate new route requests
messages which increase the route discovery frequency. Figures 5.5 and 5.6 present
the comparison of FFAR and normal AODV in one figure. Based on my expectation,
Figure 5.5 indicates when the number of nodes increases, the route discovery frequency
of FFAR is getting lower than AODV. The routes that are set up in FFAR are more
stable in contrast to normal AODV, because FFAR searches for more stable routes
based on the new mobility metrics. In conclusion, AODV needs to initiate more route
request messages in order to find new routes. This causes higher route discovery
frequency compared to FFAR.

In Figure 5.6, each data point is the average value of running the simulation
scenarios for 10 times with different seeds.

80

[AODV 10
[AODV15 %
[AODV 20
60 1 2 aobpv2s ==
[——J AODV 30 =—

[A0DV35
[AODV 40 % =
40 1 == A0DV45

[AODV50

==

207 =

Route discovery frequency (times/s)

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.3: Route discovery frequency vs. Network size for AODV by applying error bars.

Drop rate

As shown in Figure 5.7 and 5.8, packet drop ratio is increasing when the size of the
network is increased from 10 to 50. As Figure 5.7 and 5.8 present, packet drop ratio
is relatively high (above 70%) for all of the scenarios. There is no specific reason

5.3. SIMULATION RESULTS 59

[e:]
o

[FFAR 10

[FFAR 15

1 FFAR 20 ==

] = FFAR25
[FFAR 30 %

[FFAR 35 %

[FFAR 40

] == FFAR 45 ==

[FFAR 50 ==

D
o

'y
o

*

Route discovery frequency (times/s)
o

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.4: Route discovery frequency vs. the network size for FFAR by applying error
bars.

©
o

1 AODV 10
| | = aoovis
[AoDV 20
$ =71 AODV 25

% 1 AODV 30
1 AODV 35
$ 1 AODV 40

% 1 AODV 45
1 AODV 50

% [FFAR 10
[FFAR 15
1 FFAR20
1 FFAR25
[FFAR 30
[FFAR35
1 FFAR40
[FFAR45
1 FFARS50

B (o2}
o (=]
L 1

#

Route discovery frequency (times/s)
o

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.5: Comparing the route discovery frequency of AODV to FFAR when the network
size is increased (by using error bars).

for this event and it was completely stochastic. For instance, if the distance between

60 5. EVALUATION

o))
(=]
T

IS
(=)
T

8]
(=}
T

Route Discovery Frequency (times/s)

(=)
T

10 20 30 40 50
Number of nodes

Figure 5.6: Comparing the route discovery frequency of AODV to FFAR when the network
size is increased (by using average value).

source and destination nodes was short, then less drop rate would be observed. It
should be mentioned that this high drop rate directly is related to the designed
mobility model with a several nodes and connections. As shown in Figure 5.7 and
5.8, drop rate increases when the number of nodes are increasing, because by having
more nodes and a bigger network topology, there will be longer routes (in number of
hops). Consequently, it takes more time for sources to send an RREQ and receive an
RERR; as a result, it causes more dropped packets and higher link’s disconnections.

Figure 5.9 explains the comparison between two curves in one figure. It is clear
when the number of nodes is increasing, the drop rate in FFAR is less than normal
AODV. AODV chooses a route just based on newer sequence number and less hops
(it does not care about route’s firmness); therefore, there will be some unstable
intermediate nodes among the selected nodes. The route that contains these nodes
breaks easily which causes more drop rate in contrast to FFAR which is seeking
for more stable routes. Note that although there are slight difference between two
algorithms, but when there are millions of packets, it is a considerable improvement.
Finally, I have used error bar in Figure 5.9 and in Figure 5.10 the data points are
the average value of simulations results.

As shown in Figure 5.10 there is an unexpected event where drop rate for the
network for 40 nodes is less than the network with 35 nodes (in FFAR). This is because

5.3. SIMULATION RESULTS 61

0,95
1 AODV 10
1 AODV 15 -
0,90 { C—J A0DV 20 == E
[AODV 25
[AODV 30 -3
~— 0,85 4 C—1 AODV35 %
X =1 A0DV 40 ==
by [AODV 45
Pl
E 0,80 4 AODV 50
o A%-
o
o
a 0,75 $
0,70 - %
0,65 T T T T T T T T T

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.7: Drop rate vs. the network size for AODV by applying error bars.

0,95
I FFAR 10
1 FFAR 15
0,00 | =1 FFAR20 ==
[FFAR 25 -
[FFAR 30
[FFAR 35 -
3 0.85 1 =3 FFAR 40 ==
< 1 FFAR45 ==
2 [FFAR 50
g 080
3 -+
a 0,75 %
070 {=4=
0,65 1 —
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.8: Drop rate vs. the network size for FFAR by applying error bars.

the nodes and sources are distributed randomly and there is a small probability that
the drop rate is not increased compared to the previous scenario which has less nodes.
I refer the reader to this paper [29] which is showing the results are relying on the

62 5. EVALUATION

0,95

1 AODV 10
1: [A0DV15
0,90 - 1 AODV 20
i $ [AoDV25
* 1 AODV 30
- 0,85 | $ 1 AODV35
= $ 1 AODV 40
by 1 AODV 45
® 080 - 1 AODV 50
= 1 FFAR 10
5 % 1 FFAR 15
= 1 FFAR 20
| 0754 $ [FFAR 25
[FFAR 30
=71 FFAR 35
0.70 1 % [FFAR 40
1 FFAR 45
[FFAR 50

0,65 T T T T T T T T T

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.9: Comparing the drop rate of AODV to FFAR when the network size is increased
(by using error bars).

09

0.85 -

08

Droprate (%)

0.75 -

0.7

! : ! . 1 . ! . !
10 20 30 40 50
Number of nodes

Figure 5.10: Comparing the drop rate of AODV to FFAR when the network size is increased
(by using average value).

5.3. SIMULATION RESULTS 63

scenarios situations dramatically. At the end, it should be mentioned that the main
point of Figure 5.9 and 5.10 is showing that FFAR is superior than AODV in terms
of drop rate (even when the node number is 40).

Network overhead

Control data messages are used to establish new routes in forwarding routing al-
gorithms. Studying the amount of control information is an interesting issue for
researchers. As explained earlier, this control messages cause overhead and conse-
quently, overhead uses the bandwidth. Therefore, the actual data which should be
sent cannot use the maximum bandwidth. Moreover, the overhead is very expensive
in terms of transmission time, memory usage and commuting processing. Figure 5.11
and 5.12 show the network overhead when the size of a network is increased from 10
to 50. As presented, the network overhead is increased by increasing the network
size. By having more nodes and a bigger network topology, there will be longer
routes and searching for longer routes (in number of hops) requires more control
messages. In addition, the probability of disconnection in longer routes is more
than shorter ones; therefore, the sources need to initiate new route request messages
again.

The comparison of two protocols is shown in Figure 5.13 and 5.14 and as presented,
the network overhead in FFAR is less than normal AODV. FFAR adds some more
information to RREQ and RREP (control messages) compared to normal AODV. At
first glance, it seems that it should have higher routing overhead, but as explained
earlier, FFAR has this ability to find firmer routes and, therefore, there is less demand
to search for new routes. In the other word, it will decrease the route discovery
frequency.

By considering these two issues (the lower route discovery frequency in FFAR
and having more control messages compared to AODV), it can be concluded that
the overhead in FFAR is less than AODV and especially when the network is getting
big and bigger, there will be a significant difference between the two protocols in
term of network overhead. Note that I have used error bar in Figure 5.13 and Figure
5.14 shows the data points are the average value of 10 simulation scenarios.

As explained in the drop rate section, the results of mobility scenarios are scenario
based. Sometimes it causes that they will not be based on my expectation (see
Figure 5.14 when the node number is 25). I should emphasize that the main aim
of the evaluation section is to show how my algorithm is better than AODV in all
situations.

64 5. EVALUATION

16

[AODV 10
14 | == a0pv1s %‘
[AODV 20
[A0DV 25
12 1 == aopv30
[AODV 35 é

10 { == AoDV 40

[A0DV45
| = aopvso

Overhead (%)
©

-

0 T T T T T T T T T
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.11: Overhead vs. Network size for AODV by applying error bars.

16

[FFAR 10
14] T FFAR 15
[FFAR 20
[FFAR 25
12 | 3 FFAR 30
[FFAR 35
$ 4o | == FFAR4O
< [FFAR 45
= [FFAR 50
S =—]
=
g
> 64
© ==
N ==
P =l
—
=l
01— . T T

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.12: Overhead vs. the network size for FFAR by applying error bars.

End to end delay

As described in Chapter 2, the routes are very unstable in vehicular ad hoc network
systems due to the high mobility of nodes. Moreover, I have learned that AODV

Overhead (%)

16

5.3. SIMULATION RESULTS

14 4

12

10 A

[71 AODV 10
[A0ODV 15
1 AODV 20
[A0ODV 25
71 AODV 30
1 AODV 35
71 AODV 40
[AODV 45
1 AODV 50
[FFAR10
[FFAR15
[FFAR 20
[FFAR25
[FFAR 30
1 FFAR 35
1 FFAR40
[FFAR45
1 FFAR50

Number of nodes

40 45 50

65

Figure 5.13: Comparing the overhead of AODV to FFAR when the network size is increased

(by using error bars).

S
T

Overhead (%)

L | 1 |

10 20 30

40 50

Number of nodes

Figure 5.14: Comparing overhead of AODV to FFAR when network size is increased (by

using average value).

66 5. EVALUATION

has an error recognition mechanism which generates RRER messages. The sources
will initiate new route request messages (RREQ messages) after reviving an error
message. Figures 5.15, 5.16 show the end to end delay curves for FFAR and AODV
protocols.

Note that in this section I am just interested in the comparison of AODV and
FFAR. Moreover, there is no attempt to minimize the end to end delay and I only
want to show that my algorithm is superior compared to the normal AODV with
respect to the mobility parameters. In terms of end to end delay, the routes that are
set up in FFAR are more stable than AODV, and AODV needs to spend more time
to repair the broken links and also to search for the new routes. In summary, the
end to end delay is higher than FFAR.

1,2

1 AODV 10
[AODV 15 %‘
1 AODV 20 %I ‘%'
1.0 1 =3 aopv2s %
[AODV 30
[A0DV 35

1 AODV 40 é
0.8

[AODV 45
[AODV 50

Yl =%

04

End to end delay (s)

0.2 T T T T T T T T T

Number of nodes

Figure 5.15: End to end delay vs. the network size for AODV by applying error bars.

The error bars is used in Figure 5.17 and each data point in Figure 5.18 is the
average value of 10 simulation repetitions. Finally, it should be mentioned that the
end to end delay is applied only for the successful data packets.

Throughput

Figure 5.19, 5.20 present the average of successful data delivery over network (network
throughput) in FFAR and AODV, respectively. As I repeated earlier, by choosing
more stable routes in FFAR the drop rate will be decreased and it causes higher
throughput compared to normal AODV (see the network throughput definition part).

5.3. SIMULATION RESULTS 67

20
= FFAR 10
1,8 { = FFAR 15
1 FFAR 20
1,6 { =] FFAR 25
—_ I FFAR 30
& 1,4 =3 FFAR 35
2 1 FFAR 40
= 1.2 0 FFAR 45
= I FFAR 50 -
= 10
= % %
o 08
Q ,8 7
£ %
E 06 %‘
g é =
04
02 - =
0,0 1 — y T T T T T T y

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.16: End to end delay vs. the network size for FFAR by applying error bars.

20
=1 AODV 10
18 [AODV 15
=1 AODV 20
16 1 [AODV25
o~ =1 AODV 30
— 144 [—J AODV35
-y [AODV 40
< 12 [AODV 45
g 104 ; i % [AODV50
= [FFAR 10
g 08 4 ; [FFAR15
= [FFAR20
T o5 I%I [FFAR25
T é % [FFAR30
04 [FFAR35
’ $ [FFAR40
0,2 [FFAR45
[FFAR50

0,0 T T T T T T T T T
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.17: Comparing the end to end delay of AODV to FFAR when the network size
is increased (by using error bars).

Note that I am only interested in the comparison of algorithms in terms of
network throughput and the results are very related to the scenarios. Let us make

68 5. EVALUATION

End to end delay (s)
8 - b
T T T

o
o
T

i
~
T

—— AODV

0.2

30 40
Number of nodes

50

Figure 5.18: Comparing the end to end delay of AODV to FFAR when the network size
is increased (by using average value).

it clear by an example: if source and destination nodes are placed in one side of
generated scenarios, then I have short routes and therefore it is much easier to
initiate, search and maintain these routes compared to scenarios that all sources
are distrusted all over the map. I will see less drop packets, broken routes and less
overhead; therefore, it will have higher throughput.

In other words, they do not follow a specific pattern, but the main point is that
in all of the scenarios, FFAR is superior in terms of network throughput compared
to normal AODV. (see [29])

5.3. SIMULATION RESULTS 69

3,5e+6
[AODV 10
[——1 AODV 15
=1 A0DV 20 ==
3,0e+6 1 = AoDV 25
—_ [AODV 30
Q [——1 AODV 35
£ 5oerg | T AODV 40
B 777 aopv4s %
= [AODV 50
=
s = z
o 2,0e+6 A %
T
= = ===
=
1,56+6 - ===
1,0e+6 T T T T T T T T T
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.19: Throughput vs. the network size for AODV by applying error bars.

3,5e+6

[FFAR 10

[FFAR 15 %

[FFAR 20
3,0e+6 { 3 FFAR 25

[FFAR 30

[FFAR 35

[FFAR 40 %
2,5e+6 4 [FFAR 45

[FFAR 50
= ==
2,0e+6 o % % %

Throuput (pkt/s)

1,5e+6 =—

1,0e+6 T T T T T T T T T
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.20: Throughput vs. the network size for FFAR by applying error bars.

70 5. EVALUATION

3,5e+6

1 AODV 10
é [A0DV15
1 AODV 20
3,0e+6 + 1 AODV 25
1 AODV 30
w % 1 AODV35
= 1 AODV 40
2 25046 % 1 AODV45
= 1 AODV50
g i 1 FFAR 10
= [FFAR 15
e 20e+6 1 % é = 1 FFAR 20
= === 1 FFAR 25
= [FFAR 30
+6 4 1 FFAR35
150 % 1 FFAR 40
[FFAR 45
* [FFAR50

1,0e+6 T T T T T T T T T

10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5.21: Comparing the throughput of AODV to FFAR when network size is increased
(by using error bar).

3.0x10°

2.0x10°

1.0x10° [~

Throughput (pkt/s)

0.0x10°

10 20 30 40 50
Number of nodes

Figure 5.22: Comparing the throughput of AODV to FFAR when network size is increased
(by using average value).

Discussion and future work

The following topics are discussed in this chapter:

1. Different QoS requirements that can be applied in vehicle networks
2. Why FFAR has not been tested when speed is varying?
3. Why acceleration has not been applied in my algorithm?

4. Future work

6.1 Different QoS

6.1.1 Quality of Service definition

Generally, the term QoS [55], [56] refers to a sort of guarantee or assurance about
the level and grade of service which is given to an application. In other words, QoS
provides various priority to different applications. QoS parameters are relying on the
application’s requirements; for instances, an application which is sensitive to delivery
ratio might requires QoS packet delivery ratio assurance. There are many different
QoS parameters such as jitter, required bit rate and packet dropping.

6.1.2 Issues and challenges

This section is written based on these papers: [55], [56].

As described earlier, a VANET network, which is a kind of ad hoc network,
contains mobile nodes connected through wireless links, which causes more errors
in contrast to wired links. In order to transmit data packets in VANET networks,
mobile (vehicle) nodes should cooperate together for transmission through a shared
channel. This property causes some delay and it is hard to guarantee the end to end
delay in such a network because the nodes should wait until the channel will be free

71

72 6. DISCUSSION AND FUTURE WORK

to send data packets. In addition, it is possible to have multiple hops where each of
them might contend for the channel between a source and a destination. Therefore,
due to channel contention, the end to end delay assurance is a difficult task.

The authors in [58] illustrate the characteristics of a network which influences
QoS provisioning. High dynamic topology of VAENT networks is one of these
properties which causes high loss of packets and link disconnections. Another weak
point of VANET networks is the lack of central controller which is coordinating
the activity of mobile nodes (cellular networks and wireless LAN networks has this
facility) [57], [58]. By nature, the radio channel is a broadcast medium and wireless
applies the radio waves to propagate information.

Interference, attenuation and multi-path propagation are the main weak
points of dissemination through the radio waves [58]. The other critical challenge
in wireless ad hoc networks is the hidden terminal issue which happens when a
node can be visible from a wireless access point (AP) while it cannot be seen from
other nodes communicating with that AP [57], [58]. Resource limitations like
bandwidth, storage size, and processing capability is another challenge of VANET
networks. Finally, because wireless networks have a broadcasting nature, they are
considerably vulnerable to attacks such as eavesdropping, spoofing and DoS. As a
result, the security issues should get more attention.

6.1.3 QoS comparison criteria

After illustrating the definition of QoS and various issues and challenges, in this sec-
tion, different requirements that can be applied to compare several QoS are described.
The author in [59] explains that the QoS in VANET network application can be
satisfied by resource reservation from the network’s viewpoint and by adaptation
from the application’s viewpoint. There are different QoS comparison requirements
which are noted here [59].

Requirement 1: applying various radio channels for different kinds of
applications.

For each application type, a different radio channel can be applied. For instance, a
specific radio channel can be allocated to vehicle Traffic Safety Applications (TSAs).

Requirement 2: Media Access Controller (MAC) layer can support
QoS differentiation.

In order to apply a different QoS, the wireless MAC layer should behave differently
with various data packets.

6.1. DIFFERENT QOS 73

Requirement 3: Support of an increased end-to-end throughput.

Fairness is the ability of a network to provide the same level of service to all
its users. In order to satisfy fairness guarantees, the end to end throughput should
be decreased in VANET applications. This capability should be designed for QoS
solutions.

Requirement 4: Achieving low latency [59] in delivering emergency
warnings

Emergency messages should be sent immediately. Therefore, it is important to
decrease the latency of emergency warning messages in VANET networks and this
issue should be considered in designing of QoS solutions.

6.1.4 QoS solutions

In what follows, various algorithms and architectures which are proposed in relation
to QoS assurance in VANET networks are presented.

1) A Distributed MAC scheme for Emergency Message Dissemination
in Vehicular Ad hoc Networks (DMEMD)

The author in [63] introduces a novel algorithm which supports strict priority
for individual packets based on MAC scheme. This algorithm mainly focuses on
emergency data propagation in vehicular networks which suffer from high packet
drop rate. Two important duties of this algorithm are as follows: first, it should
find out strict packet-level priority scheduling, and second, for emergency packets it
should support various levels of strict priority .

In this protocol, the MAC scheme operates with three various radio channels
which are listed as:

1. a channel for a non-emergency messages
2. a channel for emergency messages

3. a chancel for pluses (it is named as priopulses)

Figure 6.1 illustrates when an emergency message is sent via an emergency channel,
a priopulses is sent too, but it will be sent through a control channel. As shown in
Figure 6.1, node A is the node which generates an emergency message while node B is
A’s neighbour and node C is a hidden terminal which is placed between node A and
B and blocks their connection. The author explains that the priopulses guarantees

74 6. DISCUSSION AND FUTURE WORK

| o T Y i N o O I T i
A — ——

I I o I o N 5 I [N i I i I i
CI s Bl s B

SNl

C

Figure 6.1: Emergency packets and their accompanying priopulses [63].

that, based on the emergency level, each emergency packet gets the priority that it
deserves. The full algorithm is described in [63].

2) A cross layer multihop delivery protocol with fairness guarantees
for vehicular networks (CVIA)

In [62], the author proposed a new algorithm which is named the controlled
vehicular internet access (CVIA) protocol. This algorithm targets to increase the end
to end throughput when it guarantees the bandwidth usage fairness between road
segments. “To achieve this goal, the CVIA protocol eliminates contention in relaying
packets over long distances. CVIA creates single-hop vehicle clusters and mitigates
the hidden node problem by dividing the road into segments and controlling the
active time of each segment” [62].

The fairness in the context of this paper is defined as the equal throughput for
all segments and in order to satisfy this requirement, the content of packet trains
should be checked while leaving a segment. In order to assure fairness for packet
trains, CVIA makes sure the packets in each segments have the same number (see
Figure 6.2)

3) Internet Access Protocol Providing QoS in Vehicular Networks with
infrastructure Support (CVIA-QoS)

The author in [61], proposed a new algorithm which is named CVIA-QoS and it
is defined as “A cross-layer solution for vehicular multi-hop networks spanning MAC
and routing functions with infrastructure support” [61]. Actually this algorithm
expands the previous illustrated CVIA algorithm and compared to the CVIA which is
providing the best-effort traffic, CVIA-QoS assures a fixed delay bound for real-time
applications such as voice and video streaming [59], [61].

6.1. DIFFERENT QOS 75

Slot length=T,

slot

»
<3

slot,

i i |
slot, is;f)ts I oslot, i slot, oo

Current Slot=odd

Segment Length =R

///////W

Segments

Figure 6.2: Slots and segments in the CVIA protocol [62].

Based on the proposed algorithm, first, an available bandwidth will be allocated
to the soft real time traffic, then the rest of bandwidth will be allocated to the best
effort traffic. Figure 6.3 explains that each time slot contains two parts: a high
priority period (HPP) and a low priority period (LPP). In Figure 6.3, various phases
that are applied in the CVIA-QoS protocol are presented and each session which
needs service, should send registration packets. Through these phases the selected
packeted will be transmitted in the gateway. The LPP already has been defined in
CVIA while HPP is a novel phase that is described here [59], [61].

The author concludes that the capacity of the proposed algorithm regarding to
the “best effort traffic throughput” is smaller than CVIA, because CVIA-QoS spends
some of its throughput to guarantee the fixed delay bound. Moreover, the results
indicate that the soft real time throughput is not decreased, due to admission control
and polling [59], [61].

4) A Vehicle-to-Vehicle Communication Protocol for Cooperative Col-
lision Warning (VCWC)

The novel algorithm which is presented in [60] can help solve considerable chal-
lenges in V2V communications. It is named Vehicular Collision Warning Communi-
cation (VCWC) [60] and the main purpose of this algorithm is providing low latency

76 6. DISCUSSION AND FUTURE WORK

High Priority Period | Low Priority Petiod

T-'Ira TLI-"'.- T

ntar

| Registration |Contl0|| Polling | Propagation || Intra-segment |ana| PackeIGatheIing| Inter-segment |

[111 ”c(muml TTTITTTT] || Itra-segment | Lacal Packet Gathering | _Intr-segment |
sub-g'.h.ase |
fixed phase boundaries variable phase boundaries insicle this region

Figure 6.3: Phases in the CVIA-QoS protocol [61].

for emergency warning applications in VANET networks [60]. For instance, in a
congestion area when an accident occurs, VCMC warns the vehicles behind the
collision with a low delay. The author assumes that the vehicle has this ability to
gain its own geographical location. Moreover, each vehicle has a wireless transceiver
in range of 300 meters. In what follows, the author illustrates one of the challenges
regarding emergency messages delivery.

It is necessary to warn the vehicles behind a road collision immediately. Due
to the nature of wireless communication, this fast data delivery is very unreliable.
The author solves this issue by proposing a new rate decreasing protocol. (for more
information see [60]). In conclusion, the simulation results proves that this algorithm
can provide essential QoS emergency warning delivery requirements.

6.2 Varying speed for simulation

It has been planned to observe and evaluate simulations results when speed is varying.
But due to the algorithm’s structure and properties, it has been decided to not
interpret these results. FFAR considers the relative speed as the input for its fuzzy
logic controller and based on the FFAR design, it chooses a node which has a “good”
relative speed in relation to source and destination. The term relative speed is defined
as the diference in speed between an intermediate node and destination and source
(see Chapter 3).

6.3. ACCELERATION 77

On the other hand, BonnMotion creates a mobility model in which the mobile
nodes move with random speed. By increasing the speed parameter, all nodes will
have higher speed. Therefore, it is seen that nodes are moving faster, but the relative
deference is still the same approximately. By increasing the speed parameter, it was
observed that the simulation results does not follow an expected behaviour.

6.3 Acceleration

In the basic proposed algorithm, acceleration was considered as a novel parameter
for fuzzy logic system, but during the implementation process I was faced with the
problem that the acceleration has been defined “zero” for mobile node in NS2. In
this model, it has been assumed that the simulation time is divided into very short
time slots where in each slot, a mobile node moves with constant speed. In other
words, simulation curves move similar to a stair in which each slot has a constant
speed and a mobile node can jump from one speed to another speed. To sum up, a
mobile node’s speed cannot smoothly increase; therefore, the actual acceleration
counts as zero in this mobility model. In the future, I plan to implement this idea,
acceleration for mobile nodes, in NS3 (see [72], [73], [74] for more information about
NS3).

6.4 Future work

Based on this work, in future I plan to improve FFAR by considering more mobility
parameters and more environments (urban, rural). Moreover, other Al techniques
can be applied to find the optimized results. For example, One of the interesting
issues which can be studied is artificial neural network.

Neural network
An artificial neural network can be defined as a computational model which is
inspired by biological information processing in nervous systems such as the human
brain, which has pattern recognition and machine learning abilities. An artificial
neural network [51], [53] (ANN) is composed of considerable interconnected neurones
(processing elements) that cooperate to find out the optimised results.

The ability of learning is one of the most interesting parts of a neural network.
ANN can modify its internal structure based on the obtained information. The
process of learning stands on adjusting of weights. As shown in Figure 6.4, each
line presents the connection between two neurons and will be applied to transfer
information. Each line has a weight that will control the signal between two neurons.
There is no need to adjust the weights if the network creates a “good” output. The
network will adapt the weights if the output will be “poor”.

78 6. DISCUSSION AND FUTURE WORK

Input Layer

RLRE X3 X4 XS

Figure 6.4: Neural network [9].

The neural networks is a significant tool due to these characteristics: adaptive
learning, fault tolerance, real time operation and self organization. Neural networks
and fuzzy systems have common features. One of these features is solving a problem
in lack of any mathematical model. As illustrated in Figure 6.5, a neuro-fuzzy [52],
[54], [9] system has the following blocks: fuzzification, multiplication, summation, and
division. When neural networks and fuzzy logic systems are combined, it gains both
advantages in one framework and it creates smoother control surface, although
it will be more difficult to implement such a system.

input inputmf rule outputmf output

Logical Operations
and

] or

D not

Figure 6.5: Neuro-fuzzy system [9].

Conclusion

In this thesis, a number of achievements have been obtained:

First, background information such as AODV, the concept of fuzzy logic, various
forwarding algorithm related to AODV and the challenges in general routing algorithm,
their features and classification are studied.

Second, a novel algorithm named Four-inputs Fuzzy-logic-based AODV Routing
(FFAR) is proposed. FFAR uses four input parameters to find the most stable nodes
and increase the network throughput.

Third, several simulations have been done to prove that FFAR has better
performance when a network is getting crowded. FFAR has improved normal AODV
in different metrics such as end to end delay and route discovery frequency. The
performance of the fuzzy logic system is studied by using NS2, BonnMotion and the
jFuzzyLogic library. At the end, the future work and possible QoS which could be
used in relation to VANET are described.

79

Bibliography

[1] SHENG-HAI AN, B.-H. L. DONG-RYEOL SHIN, 2011, “A Survey of Intelligent
Transportation Systems”, Third International Conference on Computational
Intelligence, Communication Systems and Networks, CA 795-895.

[2] FEMA Position Paper, 2011, “Intelligent Transport Systems (ITS)”.

[3] Chai Keong Toh, 2002, “Ad Hoc Mobile Wireless Networks”, Prentice Hall
Publishers.

[4] FAN, L, YU, W, 2007, “Routing in vehicular ad hoc networks: A survey”,
Vehicular Technology Magazine, IEEE, 2, 12-22.

[5] Basu Dev Shivahare, Charu Wahi, Shalini Shivhare, 2012, “Comparison Of
Proactive And Reactive Routing Protocols In Mobile Ad hoc Network Using
Routing Protocol Property”, ISSN 2250-2459, Volume 2, Issue 3.

[6] [RFC3561] C. Perkins, E. Belding-Royer and S. Das, July 2003, “Ad hoc On-
Demand Distance Vector (AODV) routing”.

[7] Teerawat Issariyakul, Ekram Hossain, 2010, “Introduction to Network Simulator
NS2”, 2nd edition, Springer, pp. 305-315.

[8] mathworks, 2013, “what-is-fuzzy-logic”, http://www.mathworks.se/help/fuzzy /what-
is-fuzzy-logic.html, [Accessed 14 January 14].

[9] Franck Dernoncourt, January 2013, “Introduction to fuzzy logic”, MIT, USA.

[10] Stanford Encyclopedia of Philosophy, 2006, “Fuzzy Logic”, Stanford University,
2006-07-23, Retrieved 2008-09-30.

[11] Zadeh, L.A, (1965), “Fuzzy sets”, Information and Control 8 (3): 338-353.

[12] Zadeh, L. A. et al, 1996, “Fuzzy Sets, Fuzzy Logic, Fuzzy Systems”, World
Scientific Press, ISBN 981-02-2421-4.

[13] calvin, 2014, “Fuzzy Operations”, https://www.calvin.edu/ pribeiro/othrlnks/-
Fuzzy /fuzzyops.htm, [Accessed 14 January 14].

81

82 BIBLIOGRAPHY

[14] Rakesh Kumar, and Mayank Dave, “A Review of Various VANET Data Dis-
semination Protocols”, Department of Information Technology, M. M. University,
Mullana, Haryana, India.

[15] Annu Mor, “Study of Different Type of Data Dissemination Strategy in VANET”,
Research Scholar, Deptt. Of Computer Science Applications, Kurukshetra Uni-
versity, Kurukshetra, Haryana, India.

[16] Anup Dhamgaye, Nekita Chavhan, “Survey on security challenges in VANET”,
Wireless Communication and Computing, Dept. of CSE, G. H. Raisoni College of
Engineering, Nagpur, India.

[17] Kevin C. Lee, Uichin Lee, Mario Gerla, “Survey of Routing Protocols in Vehicular
Ad Hoc Networks”, UCLA, USA.

[18] Uma Nagaraj, Dr. M. U. Kharat, Poonam, “Study of Various Routing Protocols
in VANET?”, Dhamal 1,3Dept. of Computer Engg, M.A.E., Pune, India 2Dept. of
Computer Engg., M.E.T., Nashik, India.

[19] M. Zapata and N. Asokan, 2002, “Securing Ad-hoc Routing Protocols”, in Proc.
of ACM Workshop on Wireless Security (WiSe), Atlanta, GA, Sept.

[20] W. Peng and X.C. Lu, August 2000, “On the reduction of broadcast redundancy
in mobile ad hoc networks”, In ACM MobiHoc 2000, pages 129 — 130, Boston,
Massachusetts, USA.

[21] 1. Stojmenovic and M. Seddigh, 2000, “Broadcasting algorithms in wireless
networks”, In Proceedings of the International Conference on Advances in Infras-
tructure for Electronic Business, Science, and Education on the Internet SSGRR,
L’Aquila, Italy.

[22] S. Lee, W. Su, and M. Gerla, 1999, “Ad hoc Wireless Multicast with Mobility
Prediction”, Proceeding of IEEE ICCCN’99, Boston, MA, pp. 4-9.

[23] W. Su, 1999, “Motion Prediction in Mobile/Wireless Networks”, PhD Disserta-
tion, UCLA Computer Science Department, Los Angeles, CA.

[24] Yufeng Chen Zhengtao Xiang, Wei Jian and Weirong Jiang, 2009, “An Im-
proved AOMDV Routing Protocol for V2V Communication”, Intelligent Vehicles
Symposium, IEEE Conferences.

[25] Abedi, O. Fathy, M. Taghiloo, J, 2008, “Enhancing AODV Routing Protocol
Using Mobility Parameters in VANET”, Iran Univ. of Sci. and Technol, Tehran
Computer Systems and Applications, AICCSA 2008. IEEE/ACS International
Conference on.

[26] Hafez Maowad, Eman Shaaban, “Enhancing AOMDV Routing Protocol for V2V
Communication”, Department of Computer System, Faculty of Computer and
Information science, Ain shams University Cairo, Egypt.

BIBLIOGRAPHY 83

[27] M.M.Goswami, R.V. Dharaskar, V.M.Thakare, 2009, “Fuzzy Ant Colony Based
Routing Protocol For Mobile Ad Hoc Network”, International Conference on
Computer Engineering and Technology, pp.438-444.

[28] Hui Liu, Jie Li, Yan-Qing Zhang and Yi Pan, 2005, “An Adaptive Genetic Fuzzy
Multi-path Routing Protocol for Wireless Ad-Hoc Networks”. Proceedings of the
Sixth International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel /Distributed Computing and First ACIS International
Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05). Towson
University, Towson, Maryland, USA, pp. 468-475.

[29] WANG Xiao-bo, YANG Yu-liang, AN Jian-wei, 2009, “Multi-Metric Routing
Decisions in VANET”, Department of Communication Engineering, University of
Science and Technology Beijing, Beijing, China.

[30] S. Lee, W. Su, and M. Gerla, 1999, “Ad hoc Wireless Multicast with Mobility
Prediction”; Proceeding of IEEE ICCCN’99, Boston, MA, pp. 4-9.

[31] W. Su, 1999, “Motion Prediction in Mobile/Wireless Networks”, PhD Disserta-
tion, UCLA Computer Science Department, Los Angeles, CA.

[32] C. E. Perkins and E. M. Royer, 1999, “Ad-hoc On-Demand Distance Vector
Routing”, In Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, pages 90-100, New Orleans, LA.

[33] C. Perkins, 1997, “Ad Hoc On Demand Distance Vector (AODV) routing”,
Internet-Draft, draft — ietf-MANET-aodv-00. txt.

[34] C. Perkins, E. Royer, and S. Das, 1997, “Ad hoc on-demand distance vector
(AODV) routing”. Internet Draft, Internet Engineering Task Force, Mar.

[35] Pedro Albertos, Antonio Sala, Manuel Olivares, “Fuzzy Logic Controllers.
Methodology. Advantages and Drawbacks”.

[36] Asmussen, Soren, Glynn, Peter W, 2007, “Stochastic Simulation: Algorithms
and Analysis”, Springer, Series: Stochastic Modelling and Applied Probability,
Vol. 57, 2007.

[37] Banks, Carson, Nelson Nicol, “Discrete Event System Simulation”, Pearson.
[38] ns, “ns2”, http://www.isi.edu/nsnam/ns/, [Accessed 25 January 14].

[39] J. L. Font, P. Inigo, M. Dominguez, J. L. Sevillano, and C. Amaya, 2011, “Anal-
ysis of source code metrics from ns-2 and ns-3 network simulators,” Simulation
modelling practice and theory.

[40] Alex Ali Hamidian, January 2003, “A Study of Internet Connectivity for Mobile
Ad Hoc Networks in NS 2”7, Department of Communication Systems Lund Institute
of Technology, Lund University, Box 118, S-221 00 Lund, Sweden.

84 BIBLIOGRAPHY

[41] Tony Larsson, Nicklas Hedman, 1998, “Routing Protocols in Wireless Ad-hoc
Networks-A Simulation Study”, Stockholm.

[42] Stutz, Michael (September 19, 2006), “Get started with GAWK: AWK language
fundamentals”, developerWorks, IBM, Retrieved 2010-10-23, “[AWK is] often
called a data-driven language — the program statements describe the input data
to match and process rather than a sequence of program steps”.

[43] Sun, Jun-Zhao and; Jaakko Sauvola (2002), “Mobility and mobility management:
a conceptual framework”, Proc. 10th IEEE International Conference on Networks,
Retrieved 23 February 2009.

[44] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn, 2010,
BonnMotion: 10 - a Mobility Scenario Generation and Analysis Tool, in Proc.
of the 3rd International ICST Conference on Simulation Tools and Techniques
(SIMUTools '10), Torremolinos, Malaga, Spain.

[45] Cingolani, Pablo, and Jesus Alcala-Fdez, “jFuzzylogic: a Java Library to
Design Fuzzy Logic Controllers According to the Standard for Fuzzy Control
Programming”.

[46] Cingolani, Pablo, and Jesus Alcala-Fdez, 2012, “jFuzzyLogic: a robust and
flexible Fuzzy-Logic inference system language implementation”. Fuzzy Systems
(FUZZ-IEEE), IEEE International Conference on. IEEE, 2012.

[47] Bai, Fan; Helmy, Ahmed (2006), “A Survey of Mobility Models in Wireless
Adhoc Networks”, (Chapter 1 in Wireless Ad Hoc Networks, Kluwer Academic,
2006, Based on result of Google Scholar search, Additional work needed to identify
this book.)

[48] Jiajia Liu, Xiaohong jiang, Hiroki Nishiyama, Nei Kato, and Xuemin (Sherman)
Shen, Apr. 2012, “End-to-End Delay in Mobile Ad Hoc Networks with Gener-
alized Transmission Range and Limited Packet Redundancy,” IEEE Wireless
Communications and Networ king Conference (WCNC 2012), Paris, France, pp.
1731-1736.

[49] John David Cavanaugh, “Protocol Overhead in IP/A TM Networks”, Minnesota
Super, computer Center, Inc.

[50] Jennifer Yick, Biswanath Mukherjee, Dipak GhosalCorresponding, “Wireless
sensor network survey”, Department of Computer Science, University of California,
Davis, CA 95616, United State.

[61] Quek, C. & Zhou, R. W, (2001), “The POP learning algorithms: reducing work
in identifying fuzzy rules”, Neural Networks, 14(10), 1431-1445.

[62] Zhou, R. W. & Quek, C, (1996), “POPFNN: A Pseudo Outer-product Based
Fuzzy Neural Network”, Neural Networks, 9(9), 1569-1581.

BIBLIOGRAPHY 85

[53] Bhadeshia H. K. D. H, 1999, “Neural Networks in Materials Science”, ISIJ
International 39 (10): 966-979.

[54] M. Figueiredo and F. Gomide, “Design of Fuzzy Systems Using Neuro Fuzzy
Networks”, IEEE Transactions on Neural Networks, 1999, Vol. 10, no. 4, pp.815
827.

[55] Abbas, A.M. and Kure, “Quality of Service in mobile ad hoc networks: a survey”,
Int. J. Ad Hoc and Ubiquitous Computing.

[56] Leonard Franken, 1996, “Quality of Service Management: A Model-Based
Approach”. PhD thesis, Centre for Telematics and Information Technology.

[57] Shouzhi Xu, Pengfei Guo, Bo Xu, Huan Zhou, 2013, “QoS Evaluation of VANET
Routing Protocols”, JOURNAL OF NETWORKS, VOL. 8, NO. 1, Collage of

Computer and Information Technology, China Three Gorges University, Yichang,
China.

[58] Shraddha Saharanl & Rakesh Kumar, June 2010, “QoS Provisioning in VANETSs
using Mobile Agent”; ol. 1, No. 1, pp. 199-202, India.

[59] P.W.H.M. Hornman, “QoS support for traffic safety applications in VANET
communication infrastructures”, University of Twente, Enschede, The Nether-
lands.

[60] Yang X., Liu L., Vaidya N.H., and Zhao F, Aug. 2004, “A vehicle-to-vehicle
communication protocol for cooperative collision warning”, pages 114-123.

[61] Korkmaz G., Ekici E., and Ozguner F, 2006, “Internet access protocol providing
QoS in vehicular networks with infrastructure support”, In IEEE Intelligent
Transportation Systems Conference, ITSC’06, pages 1412-1417.

[62] Korkmaz G., Ekici E., and Ozguner F, 2006, “A cross-layer multihop data delivery
protocol with fairness guarantees for vehicular networks”, IEEE Transactions on
Vehicular Technology,55(3):865-875.

[63] Peng J. and Cheng L, 2007, “A distributed MAC scheme for emergency message
dissemination in vehicular ad hoc networks”, IEEE Transactions on Vehicular
Technology, 56(6):3300-3308, Nov.

[64] C. Siva Ram Murthy and B. S. Manoj, May 2004, “Ad hoc Wireless Networks:
Architectures and Protocols”, Prentice Hall PTR.

[65] isi, 2014, “Running Wireless Simulations in ns”, http://www.isi.edu/nsnam/
ns/tutorial /nsscript5.html, [Accessed 25 January 14].

[66] topcoder, “Shortest distance between a point and a line”, http://www. top-
coder.com/, [Accessed 25 January 14].

[67] github, “AODV.Tcl”, https://github.com/softvar/ns2-oadv/blob/master/aodv.t
cl, [Accessed 25 January 14].

86 BIBLIOGRAPHY

[68] code.google, “AODV.Tcl”, https://code.google.com/p/ns-allinone-2-34-imp-
protocol/source/browse/trunk/src/ns-2.34/aodv/example.tcl?r=7, [Accessed 25
January 14].

[69] nsnam, “awk-scripts-for-ns2-to-process-data”, http://www.nsnam.com/2013/03 /awk-
scripts-for-ns2-to-process-data.html, [Accessed 25 January 14].

[70] mohittahiliani, “awk-script-for-ns2”, http://mohittahiliani.blogspot.no/2009/12 /awk-
script-for-ns2.html, [Accessed 25 January 14].

[71] Hannes Hartenstein, University of Karlsruhe Kenneth P. Laberteaux, “A Tutorial
Survey on Vehicular Ad Hoc. Networks”, Toyota Technical Center.

[72] Henderson, Tom (2012-06-09), “upcoming ns-3.1 release”, ns-announce, Retrieved
2013-05-31.

[73] Henderson, Tom (2013-12-20), “ns-3.19 released”, ns-announce, Retrieved 2014-
1-11.

[74] nsnam, 2014, “publications”, http://www.nsnam.org/overview/publications/,
[Accessed 14 January 14].

Appendix A

In this section, various AWK functions are listed. These files were copied from NS2
forums and INTERNET (for example, see [69], [70]) while the author was anonymous.
Moreover, they do not have the direct effects in this report. In other words, they are
just used to drive required information from trace files.

A.l

Listing A.1: AWK 1.

BEGIN {

seqno = -1;

droppedPackets = 0;

receivedPackets = 0;

count = 0;

#packet delivery ratio

if ($4 == "AGT" && $1 == "s" && seqno < $6) {
seqno = $6;

} else if(($4 == "AGT") && ($1 == "r")) {
receivedPackets++;

87

88 A. APPENDIX A

} else if ($1 == "D" && $7 == "cbr" && $8 > 512){

droppedPackets++;

}

#end-to-end delay

if($4 == "AGT" && $1 == "s") {

start_time[$6] = $2;

} else if (($7 == "cbr") && ($1 == "r")) {
end_time[$6] = $2;
} else if($1 == "D" && $7 == "cbr") {

end_time[$6] = -1;

END {

for(i=0; i<=seqno; i++) {

if (end_time[i] > 0) {

delay[i] = end_time[i] - start_timel[i];

count++;

else

delay[i] = -1;

}

A2.

for(i=0; i<count; i++) {

if(delay[i] > 0) {

n_to_n_delay = n_to_n_delay + delayl[il;

n_to_n_delay = n_to_n_delay/count;

89

print "\n";
print "GeneratedPackets = " seqgno+il;
print "ReceivedPackets = " receivedPackets;
print "Packet Delivery Ratio = " receivedPackets/(seqno+1)*100
"h"s
print "Total Dropped Packets = " droppedPackets;
print "Average End-to-End Delay = " n_to_n_delay * 1000 " ms";
print "\n";
}
A.2

Listing A.2: AWK 2, normalized routing load

HAHHHHHRHEEEE R R R

#
#

AWK Script to calculate Normalized Routing Load #
Works with AODV, DSDV, DSR and OLSR #

HEHHBH AR R R R R R R

BEGIN{

90 A. APPENDIX A

recvd = O;#####HHHHH#H#### to calculate total number of data packets

received

rt_pkts = O;################## to calculate total number of routing packets
received

3

{

Check if it is a data packet

if (($1 == "r") && ($7 == "cbr" || $7 =="tcp") && ($4=="AGT")) recvd++;

Check if it is a routing packet

if (($1 == "s" || $1 == "f") && $4 == "RTR" && ($7 =="AODV" || $7 =="message"
|| $7 =="DSR" || $7 =="0OLSR")) rt_pkts++;

}

END{

Printf (" ##tH R \D ")

printf ("\n");

printf (" Normalized Routing Load = %.3f\n",
rt_pkts/recvd) ;

printf("\n");

printf ("####E R \n ")

}

A.3
Listing A.3: AWK 3, average throughput
BEGIN {
recvdSize = 0
startTime = 400
stopTime = 0
}
{

event = $1

A3,

time = $2
node_id = $3
pkt_size = $8

level = $4

Store start time
if (level == "AGT" && event == "s" && pkt_size >= 512) {
if (time < startTime) {

startTime = time

Update total received packets’ size and store packets arrival time
if (level == "AGT" && event == "r" && pkt_size >= 512) {
if (time > stopTime) {

stopTime = time

Rip off the header

hdr_size = pkt_size % 512
pkt_size -= hdr_size

Store received packet’s size

recvdSize += pkt_size

91

92 A. APPENDIX A

}
END {
printf ("Average Throughput[kbps] = %.2f\t\t StartTime=Y},.2f
\tStopTime=Y.2f\n", (recvdSize/ (stopTime-startTime))
*(8/1000) ,startTime,stopTime)
}
A4
Listing A.4: AWK J
BEGIN {
TotalSendPacket = 0;
TotalRecvPacket = 0;
aodv = 0;

total_pkt_size = O;

highest_packet_id = 0;
duration_total = 0;
packet_number = O;
drop_packet = 0;

requests = 0;
frequency = 0;

}
{

field parameters of normal trace

event = $1; #; Event : r , s , d , f

time = $2; #; Time : send time , receive time , drop time
node = $3; #; Node : source node , receive node
trace_type = $4; #; Trace type MAC trace

pkt_id = $6; #; Event ID : Frame sequence number for total flows
pkt_type = $7; #; Packet type : RTS , CTS , Data = cbr , ACK
pkt_size = $8; #; Packet size (unit : bytes)

source_ip =$23;

if (event == "s" && trace_type == "AGT" && pkt_type == "cbr") {

TotalSendPacket++;

}

if (event == "r" && trace_type == "AGT" && pkt_type == "cbr") {

Ad4.

TotalRecvPacket++;
}
if ((event == "s"||event == "f") && (pkt_type == "AODV"||pkt_type ==
"AOMDV")){
aodv++;
}
if (event == "s" && trace_type == "AGT" && pkt_type == "cbr" &&

start_time[pkt_id] == 0){
start_time[pkt_id] = time;
if (pkt_id > highest_packet_id)

highest_packet_id = pkt_id;

}

if (event == "r" && trace_type == "AGT" && pkt_type == "cbr") {
total_pkt_size = total_pkt_size + pkt_size;
end_time[pkt_id] = time;

}
if (event == "d" && pkt_type == "cbr"){
drop_packet++;
end_time[pkt_id] = -1;
}
source_ip=substr(source_ip,2);
node=substr(node,2,2);
if (event =="s" && $25=="(REQUEST)" && node==source_ip){
requests++;
}
}
END {

throughput = total_pkt_size * 8 / 300;

for (pkt_id 0; pkt_id <= highest_packet_id; pkt_id++){
start = start_time[pkt_id];
end = end_time[pkt_id];
if (end!=-1 && start < end){
packet_duration = end - start; # single distance
duration_total += packet_duration; # total duration

packet_number++; # count packet number

}
frequency=requests/300;
printf ("Route Discovery Frequency:%f\n",frequency);
delay=duration_total / packet_number;

printf ("Packet Delivery Ratio is: %f\n",TotalRecvPacket/TotalSendPacket);
printf ("Packet Drop ratio is: %f\n", (TotalSendPacket-
TotalRecvPacket)/TotalSendPacket) ;

93

94 A. APPENDIX A

printf ("Routing Overhead ratio is: %f\n",aodv/TotalRecvPacket);

printf ("The Average End-to-End Delay of this Network is: %f\n",delay);
printf ("Throughput is: %f\n",throughput);

printf ("The totalrecvpacket is: %f\n",TotalRecvPacket);

printf ("the totalcomandpacket is: %f\n",aodv);

Appendix B

This appendix illustrates the source codes regarding to fuzzy logic [45], [46] applied
in this project. The basis of these codes are taken form jFuzzylogic library and
afterwards, it is modified based on issues such as membership functions and defined
rules.

B.1

Listing B.1: Fuzzy logic codes written in C++

#include <stdio.h>

#include <stdlib.h>

double ruleAccumulationMethod_max(double defuzzifierValue, double
valueToAggregate)

{ return (defuzzifierValue > valueToAggregate 7 defuzzifierValue
valueToAggregate); }

double ruleActivationMethod_min(double degreeOfSupport, double membership)
{ return (degreeOfSupport < membership ? degreeOfSupport : membership); }

double ruleConnectionMethod_and(double antecedentl, double antecedent2)

{ return (antecedentl < antecedent2 ? antecedentl : antecedent2); }
class FunctionBlock_tipper {

public:

// VAR_INPUT

double Angle;
double Direction;

95

96 B. APPENDIX B

double Position;
double Velocity;

// VAR_OUTPUT
double Stability;

private:

// FUZZIFY Angle
double Angle_bad;
double Angle_good;

// FUZZIFY Direction
double Direction_bad;
double Direction_good;

// FUZZIFY Position
double Position_excelent;
double Position_good;
double Position_poor;

// FUZZIFY Velocity
double Velocity_bad;
double Velocity_good;

// DEFUZZIFY Stability
double defuzzify_Stability[1000];

public:
FunctionBlock_tipper();
void calcQ);

void print();

private:

void defuzzify();

void fuzzify();

void reset();

double membership_Angle_bad(double x);
double membership_Angle_good(double x);
double membership_Direction_bad(double x);
double membership_Direction_good(double x);
double membership_Position_excelent(double x);
double membership_Position_good(double x);
double membership_Position_poor(double x);

};

B.1. 97

double membership_Stability_bad(double x);
double membership_Stability_excelent(double x);
double membership_Stability_good(double x);
double membership_Stability_normal(double x);
double membership_Stability_toobad(double x);
double membership_Stability_verybad(double x);
double membership_Stability_verygood(double x);
double membership_Velocity_bad(double x);
double membership_Velocity_good(double x);
void calc_No1();

// Constructor

FunctionBlock_tipper: :FunctionBlock_tipper() {

Stability = 0.0;

// Calculate function block
void FunctionBlock_tipper::calc() {

reset();
fuzzify(Q;
calc_Nol1();
defuzzify();

// RULEBLOCK Noi
void FunctionBlock_tipper::calc_No1() {

// RULE 1 : IF (((Position IS excelent) AND (Direction IS good)) AND
(Velocity IS good))
AND (Angle IS good) THEN Stability IS excelent;
double degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and(ruleConnectionMethod_
and(Position_excelent , Direction_good) , Velocity_good) ,
Angle_good));
if (degree0fSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_excelent (x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

98 B. APPENDIX B

// RULE 1 : IF (((Position IS excelent) AND (Direction IS good)) AND
(Velocity IS good)) AND (Angle IS bad) THEN Stability IS excelent;
degree0fSupport_1 = 1.0 * (

ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_excelent , Direction_good) ,
Velocity_good) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_excelent(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS excelent) AND (Direction IS good)) AND
(Velocity IS bad)) AND (Angle IS good) THEN Stability IS excelent;
degree0fSupport_1 = 1.0 * (ruleConnectionMethod_and
(ruleConnectionMethod_and(ruleConnectionMethod_and(Position_excelent
, Direction_good) ,
Velocity_bad) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_excelent(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS excelent) AND (Direction IS good)) AND
(Velocity IS bad))

AND (Angle IS bad) THEN Stability IS excelent;

degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and

(ruleConnectionMethod_and(Position_excelent , Direction_good) ,

Velocity_bad) , Angle_bad));

if (degreeOfSupport_1 > 0) {

for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;

B.1. 99

double membership = membership_Stability_excelent(x);

double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);

defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS excelent) AND (Direction IS bad))
AND (Velocity IS good))
AND (Angle IS good) THEN Stability IS good;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_excelent , Direction_bad) ,
Velocity_good) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_good(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS excelent) AND (Direction IS bad))
AND (Velocity IS good))
AND (Angle IS bad) THEN Stability IS good;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_excelent , Direction_bad) ,
Velocity_good) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_good(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

100 B. APPENDIX B

// RULE 1 : IF (((Position IS excelent) AND (Direction IS bad)) AND
(Velocity IS bad))
AND (Angle IS good) THEN Stability IS good;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_excelent , Direction_bad) ,
Velocity_bad) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_good(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS excelent) AND (Direction IS bad)) AND
(Velocity IS bad))
AND (Angle IS bad) THEN Stability IS good;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_excelent , Direction_bad) ,
Velocity_bad) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_good(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS good)) AND
(Velocity IS good))

AND (Angle IS good) THEN Stability IS verygood;

degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and

(ruleConnectionMethod_and(Position_good , Direction_good) ,

Velocity_good) , Angle_good));

if (degreeOfSupport_1 > 0) {

for (int i = 0 ; i < 1000 ; i++) {

B.1. 101

double x = 0.0 + i * 0.1;

double membership = membership_Stability_verygood(x) ;

double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);

defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS good))
AND (Velocity IS good))
AND (Angle IS bad) THEN Stability IS verygood;
degreeOfSupport_1 = 1.0 * (ruleConnectionMethod_and
(ruleConnectionMethod_and(ruleConnectionMethod_and(Position_good ,
Direction_good) , Velocity_good) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_verygood(x) ;
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS good)) AND
(Velocity IS bad))
AND (Angle IS good) THEN Stability IS good;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_good , Direction_good) ,
Velocity_bad) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_good(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

102 B. APPENDIX B

// RULE 1 : IF (((Position IS good) AND (Direction IS good)) AND
(Velocity IS bad))
AND (Angle IS bad) THEN Stability IS normal;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_good , Direction_good) ,
Velocity_bad) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_normal(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS bad)) AND
(Velocity IS good))
AND (Angle IS good) THEN Stability IS normal;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_good , Direction_bad) ,
Velocity_good) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_normal(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS bad)) AND
(Velocity IS good))

AND (Angle IS bad) THEN Stability IS normal;

degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and

(ruleConnectionMethod_and(Position_good , Direction_bad) ,
Velocity_good) , Angle_bad));

if (degreeOfSupport_1 > 0) {

for (int i = 0 ; i < 1000 ; i++) {

B.1. 103

double x = 0.0 + i * 0.1;

double membership = membership_Stability_normal(x);

double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);

defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS bad)) AND
(Velocity IS bad))
AND (Angle IS good) THEN Stability IS bad;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_good , Direction_bad) ,
Velocity_bad) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (dnt i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_bad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS good) AND (Direction IS bad)) AND
(Velocity IS bad))
AND (Angle IS bad) THEN Stability IS bad;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_good , Direction_bad) ,
Velocity_bad) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_bad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

104 B. APPENDIX B

// RULE 1 : IF (((Position IS poor) AND (Direction IS good)) AND
(Velocity IS good))
AND (Angle IS good) THEN Stability IS verybad;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_poor , Direction_good) ,
Velocity_good) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_verybad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS poor) AND (Direction IS good)) AND
(Velocity IS good))
AND (Angle IS bad) THEN Stability IS verybad;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_poor , Direction_good) ,
Velocity_good) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_verybad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS poor) AND (Direction IS good)) AND
(Velocity IS bad))

AND (Angle IS good) THEN Stability IS verybad;

degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and

(ruleConnectionMethod_and(Position_poor , Direction_good) ,

Velocity_bad) , Angle_good));

if (degreeOfSupport_1 > 0) {

for (int i = 0 ; i < 1000 ; i++) {

B.1. 105

double x = 0.0 + i * 0.1;

double membership = membership_Stability_verybad(x);

double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);

defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS poor) AND (Direction IS good)) AND
(Velocity IS bad))
AND (Angle IS bad) THEN Stability IS verybad;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_poor , Direction_good) ,
Velocity_bad) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (dnt i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_verybad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS poor) AND (Direction IS bad)) AND
(Velocity IS good))
AND (Angle IS good) THEN Stability IS verybad;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_poor , Direction_bad) ,
Velocity_good) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_verybad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

106 B. APPENDIX B

// RULE 1 : IF (((Position IS poor) AND (Direction IS bad)) AND
(Velocity IS good))
AND (Angle IS bad) THEN Stability IS toobad;
degree0fSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_poor , Direction_bad) ,
Velocity_good) , Angle_bad));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_toobad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max(
defuzzify_Stability[il, y);

// RULE 1 : IF (((Position IS poor) AND (Direction IS bad)) AND
(Velocity IS bad))
AND (Angle IS good) THEN Stability IS toobad;
degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and
(ruleConnectionMethod_and(Position_poor , Direction_bad) ,
Velocity_bad) , Angle_good));
if (degreeOfSupport_1 > 0) {
for (int i = 0 ; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
double membership = membership_Stability_toobad(x);
double y = ruleActivationMethod_min(degreeOfSupport_1
, membership);
defuzzify_Stability[i] += ruleAccumulationMethod_max (
defuzzify_Stabilityl[il, y);

// RULE 1 : IF (((Position IS poor) AND (Direction IS bad)) AND
(Velocity IS bad))

AND (Angle IS bad) THEN Stability IS toobad;

degreeOfSupport_1 = 1.0 * (
ruleConnectionMethod_and(ruleConnectionMethod_and

(ruleConnectionMethod_and(Position_poor , Direction_bad) ,

Velocity_bad) , Angle_bad));

if (degreeOfSupport_1 > 0) {

for (int i = 0 ; i < 1000 ; i++) {

double x = 0.0 + i * 0.1;

double membership = membership_Stability_toobad(x) ;

B.1.

107

double y = ruleActivationMethod_min(degreeOfSupport_1

, membership);

defuzzify_Stability[i] += ruleAccumulationMethod_max(

defuzzify_Stabilityl[il, y);

// Defuzzify
void FunctionBlock_tipper::defuzzify() {
double sum_Stability = 0.0;
double wsum_Stability = 0.0;
for (int i = 0; i < 1000 ; i++) {
double x = 0.0 + i * 0.1;
sum_Stability += defuzzify_Stabilityl[il;

wsum_Stability += x * defuzzify_Stabilityl[il;

}
Stability = wsum_Stability / sum_Stability;

// Fuzzify all variables

void FunctionBlock_tipper::fuzzify() {
Angle_bad = membership_Angle_bad(Angle);
Angle_good = membership_Angle_good(Angle) ;
Direction_bad = membership_Direction_bad(Direction);

Direction_good = membership_Direction_good(Direction);
Position_excelent = membership_Position_excelent(Position);

Position_good = membership_Position_good(Position);
Position_poor = membership_Position_poor(Position);
Velocity_bad = membership_Velocity_bad(Velocity);

Velocity_good = membership_Velocity_good(Velocity);

// Membership functions

double FunctionBlock_tipper::membership_Angle_bad(double x) {

if (x <= 20.0) return 0.0;
if (x > 90.0) return 1.0;

if (x <= 40.0) return 0.0 + (1.0 - 0.0) * ((x - 20.0) / (

40.0 - 20.0));

if (x <= 90.0) return 1.0 + (1.0 - 1.0) *» ((x - 40.0) / (

90.0 - 40.0));

108 B. APPENDIX B

double FunctionBlock_tipper: :membership_Angle_good(double x) {
if (x <= 0.0) return 1.0;
if (x > 30.0) return 0.0;

if (x <= 20.0) return 1.0 + (1.0 -1.0) * ((x-0.0) / (
20.0 - 0.0));
if (x <= 30.0) return 1.0 + (0.0 - 1.0) *x ((x -20.0) / (
30.0 - 20.0));
}
double FunctionBlock_tipper: :membership_Direction_bad(double x) {
if (x <= 10.0) return 0.0;
if (x > 180.0) return 1.0;
if (x <= 30.0) return 0.0 + (1.0 - 0.0) * ((x - 10.0) / (
30.0 - 10.0));
if (x <= 180.0) return 1.0 + (1.0 - 1.0) *x ((x - 30.0) / (

180.0 - 30.0));

double FunctionBlock_tipper: :membership_Direction_good(double x) {
if (x <= 0.0) return 1.0;
if (x > 20.0) return 0.0;
if (x <= 20.0) return 1.0 + (0.0 - 1.0) * ((x-0.0) / (
20.0 - 0.0));

double FunctionBlock_tipper: :membership_Position_excelent (double x) {
if (x <= 0.0) return 1.0;
if (x > 3.0) return 0.0;
if (x <= 3.0) return 1.0+ (0.0 -1.0) * ((x-0.0) / (3.0
0.0);

double FunctionBlock_tipper: :membership_Position_good(double x) {
if (x <= 1.0) return 0.0;
if (x > 10.0) return 0.0;
if (x <=4.0) return 0.0 + (1.0 -0.0) * ((x-1.0) / (4.0

1.0));

if (x <=6.0) return 1.0 + (1.0-1.0) *x ((x-4.0) / (6.0 -
4.0));

if (x <= 10.0) return 1.0 + (0.0 - 1.0) * ((x-6.0) / (

10.0 - 6.0));

double FunctionBlock_tipper: :membership_Position_poor(double x) {

B.1. 109

if (x <= 8.0) return 0.0;
if (x > 14.0) return 1.0;

if (x <= 14.0) return 0.0 + (1.0 - 0.0) *x ((x-8.0) / (
14.0 - 8.0));
}
double FunctionBlock_tipper: :membership_Stability_bad(double x) {
if (x <= 15.0) return 0.0;
if (x > 25.0) return 0.0;
if (x <= 20.0) return 0.0 + (1.0 - 0.0) * ((x - 15.0) / (
20.0 - 15.0));
if (x <= 25.0) return 1.0 + (0.0 - 1.0) * ((x - 20.0) / (

25.0 - 20.0));

double FunctionBlock_tipper: :membership_Stability_excelent(double x) {

if (x <= 70.0) return 0.0;

if (x > 100.0) return 0.0;

if (x <= 85.0) return 0.0 + (1.0 - 0.0) * ((x -70.0) / (
85.0 - 70.0));

if (x <= 100.0) return 1.0 + (0.0 - 1.0) * ((x-85.0) / (

100.0 - 85.0));

double FunctionBlock_tipper: :membership_Stability_good(double x) {

if (x <= 35.0) return 0.0;

if (x > 60.0) return 0.0;

if (x <= 50.0) return 0.0 + (1.0 - 0.0) * ((x -35.0) / (
50.0 - 35.0));

if (x <= 60.0) return 1.0 + (0.0 - 1.0) * ((x - 50.0) / (

60.0 - 50.0));

double FunctionBlock_tipper: :membership_Stability_normal(double x) {

if (x <= 20.0) return 0.0;

if (x > 40.0) return 0.0;

if (x <= 30.0) return 0.0 + (1.0 - 0.0) * ((x - 20.0) / (
30.0 - 20.0));

if (x <= 40.0) return 1.0 + (0.0 - 1.0) * ((x - 30.0) / (

40.0 - 30.0));

double FunctionBlock_tipper: :membership_Stability_toobad(double x) {
if (x <= 0.0) return 0.0;
if (x > 10.0) return 0.0;

110 B. APPENDIX B

if (x <= 5.0) return 0.0 + (1.0 -0.0) * ((x-0.0) / (5.0 -
0.0));

if (x <= 10.0) return 1.0 + (0.0 -1.0) * ((x-5.0) / (
10.0 - 5.0));

double FunctionBlock_tipper: :membership_Stability_verybad(double x) {

if (x <= 10.0) return 0.0;

if (x > 20.0) return 0.0;

if (x <= 15.0) return 0.0 + (1.0 - 0.0) * ((x - 10.0) / (
15.0 - 10.0));

if (x <= 20.0) return 1.0 + (0.0 - 1.0) *x ((x - 15.0) / (

20.0 - 15.0));

double FunctionBlock_tipper: :membership_Stability_verygood(double x) {

if (x <= 55.0) return 0.0;

if (x > 80.0) return 0.0;

if (x <= 65.0) return 0.0 + (1.0 - 0.0) * ((x - 55.0) / (
65.0 - 55.0));

if (x <= 80.0) return 1.0 + (0.0 - 1.0) * ((x -65.0) / (

80.0 - 65.0));

double FunctionBlock_tipper: :membership_Velocity_bad(double x) {

if (x <= 10.0) return 0.0;
if (x > 30.0) return 1.0;
if (x <= 20.0) return 0.0 + (1.0 - 0.0) * ((x - 10.0) / (
20.0 - 10.0));
if (x <= 30.0) return 1.0 + (1.0 - 1.0) * ((x - 20.0) / (
30.0 - 20.0));
}
double FunctionBlock_tipper: :membership_Velocity_good(double x) {
if (x <= 0.0) return 1.0;
if (x > 15.0) return 0.0;
if (x <= 10.0) return 1.0 + (1.0 -1.0) * ((x-0.0) / (
10.0 - 0.0));
if (x <= 15.0) return 1.0 + (0.0 - 1.0) * ((x - 10.0) / (
15.0 - 10.0));
}
// Print

void FunctionBlock_tipper: :print() {

printf ("Function block tlpper \n");

printf (" Input %20s : %f\n",

printf (" %20s : %f\n",
printf (" %20s : %f\n",
printf (" Input %20s : %f\n",
printf (" %20s : %f\n",
printf (" %20s : %f\n",
printf (" Input %20s : %f\n",
printf (" %20s : %f\n",

Position_excelent);

printf (" %20s : %f\n",
printf (" %20s : %f\n",
printf (" Output %20s : %f\n",
printf (" Input %20s : %f\n",
printf (" %20s : %f\n",
printf (" %20s : %f\n",

// Reset output
void FunctionBlock_tipper::reset() {

B.1. 111

"Angle" , Angle);

"Angle_bad" , Angle_bad);
"Angle_good" , Angle_good);
"Direction" , Direction);
"Direction_bad" , Direction_bad);
"Direction_good" , Direction_good);
"Position" , Position);
"Position_excelent"

"Position_good" , Position_good) ;
"Position_poor" , Position_poor);
"Stability" , Stability);
"Velocity" , Velocity);
"Velocity_bad" , Velocity_bad);
"Velocity_good" , Velocity_good) ;

for(int i=0 ; i < 1000 ; i++) { defuzzify_Stability[i] = 0.0; }

int main() {
// Create function blocks
FunctionBlock_tipper tipper;

// Parse input
tipper.Angle = 90 ;
tipper.Direction = 90 ;

tipper.Position = 1 ;
tipper.Velocity = 4.510434;
// Calculate
tipper.calc();

// Show results
tipper.print();

Appendix C

This section will describe the parameters which are participated in FFAR.

C.1
The codes of same direction to previous hop function are shown here.

Listing C.1: Same direction function

double
AODV :: direction (Packet *p)

double param;
double result ;
double x1;
double x2;
double yi;
double y2;
double sum;
struct hdr_aodv_request *rq = HDR_AODV_REQUEST(p);
x1 = rq-> dx ;
yi= rq-> dy;
iNode = (MobileNode *) (Node::get_node_by_address (index));
x2=iNode->dX () ;
y2=iNode->dY() ;
sum=(sqrt ((pow(x1,2.0) +pow(y1,2.0)))*(sqrt((pow(x2,2.0)
+pow(y2,2.0))))) ;
if (sum!=0)
{
param= (((x1 *x2)+(yl *y2))/ sum);
if (param <=1 && param >=-1)

113

114 C. APPENDIX C

{
result =(((acos (param))* 180.0)/ PI);
}
}
return abs(result);
}
C.2

These codes explian the “same direction compared to source and destination” function.

Listing C.2: Same angle function

double
AODV :: angle (Packet *p)

double paraml;

double resultl ;

double param?2;

double result2 ;

double x1;

double x2;

double x3;

double y1;

double y2;

double y3;

double sumil;

double sum2;

struct hdr_aodv_request *rq = HDR_AODV_REQUEST (p) ;

iNodeDst = (MobileNode *) (Node::get_node_by_address (rq-> rq_dst));
iNodeSrc = (MobileNode *) (Node::get_node_by_address (rq-> rq_src));
x1 = iNodeSrc->dX() ;

y1= iNodeSrc->dY();

x3 = iNodeDst->dX() ;

y3= iNodeDst->dY();

iNode = (MobileNode *) (Node::get_node_by_address (index));
x2=iNode->dX () ;

y2=iNode->dY() ;

suml=(sqrt ((pow(x1,2.0) +pow(yl,2.0)))*(sqrt((pow(x2,2.0) +pow(y2,2.0))))) ;
if (suml!=0)

C.3. 115

{
paraml= (((x1 *x2)+(yl *y2))/ suml);
if (paraml <=1 && paraml >=-1)
{
resultl =(((acos (paraml))* 180.0)/ PI);
}
}

sum2=(sqrt ((pow(x2,2.0) +pow(y2,2.0)))*(sqrt((pow(x3,2.0) +pow(y3,2.0))))) ;
if (sum2!=0)

{
param2= (((x3 *x2)+(y3 *y2))/ sum2);
if (param2 <=1 && param2 >=-1)
{
result2 =(((acos (param2))* 180.0)/ PI);
}
}
return (abs(result2)) + (abs(resultl)) ;
}
C.3

The below codes illustrates the position function which is applied in FFAR. The
functions of linePointDist, dot, cross and distance are cited from [66].

Listing C.3: Position function

double
AODV :: nodePosition (Packet *p)

double x1;

double x2;

double xm;

double yi;

double y2;

double ym;

double X ;

MobileNode *iNodeDst;

MobileNode *iNodeSrc;

struct hdr_aodv_request *rq = HDR_AODV_REQUEST(p);
iNodeDst = (MobileNode *) (Node::get_node_by_address (rq-> rq_dst));

116 C. APPENDIX C

iNodeSrc = (MobileNode *) (Node::get_node_by_address (rq-> rq_src));
iNode = (MobileNode *) (Node::get_node_by_address (index));
x1 = iNodeSrc->dX() ;
y1l= iNodeSrc->dY();
x2 = iNodeDst->dX() ;
y2= iNodeDst->dY();
xm=iNode->dX() ;
ym=iNode->dY() ;
int V [1= {x1,y1};
int W [1= {x2,y2};
int D [] = {xm,ym};
X = linePointDist(V,W,D,false) ;
return X;

}

sk 5k 3k %k ok %k k 3k k ok sk k sk k ok k ke put these functions in quotation sk >k >k >k 3k 3k 3k >k >k >k 5k 3k 3k 5k %k >k >k 3k
‘fint

AODV :: dot (int A [1, int B [], int C [])

int AB [2];
int BC [2];
AB[0] = B[0]- A[0];
AB[1] = B[1]-A[1];
BC[0] = C[0]-B[0];
BC[1] = C[11-BI[1]1;
int dot = AB[0] * BC[0] + AB[1] * BC[1];
return dot;

int
AODV :: cross (int A [1, int B [], int C [1){
int AB [2];
int AC [2];

AB[0]
AB[1]

B[0]-A[0];

B[1]1-A[1];

AC[0] C[0]-A[0];

AC[1] C[1]1-A[1];

int cross = AB[0] * AC[1] - AB[1] = AC[0];
return cross;

C.4. 117
double
AODV :: distance (int A [1, int B [1){
int d1 = A[0] - B[O];
int d2 = A[1] - B[1];
return sqrt(di*d1+d2*d2);
}
double
AODV :: linePointDist (int A [], int B [], int C [], bool isSegment)
{
if (distance(4A,B)!=0)
{
double dist = cross(A,B,C) / distance(A,B);
if (isSegment){
int dotl = dot(A,B,C);
if (dotl > O)return distance(B,C);
int dot2 = dot(B,A,C);
if(dot2 > O)return distance(A,C);
}
return abs(dist);
}
else
return 1000;
}7)
C4

The relative vel

ocity function are described by these codes.

Listing C.4: Velocity function

double

AODV :: nodeVelocity (Packet *p)

MobileNode
MobileNode
double vi;
double v3;
double v2;
struct hdr
iNodeDst =
iNodeSrc =

*iNodeDst;
*iNodeSrc;

_aodv_request *rq = HDR_AODV_REQUEST(p) ;
(MobileNode *) (Node::get_node_by_address (rq-> rq_dst));
(MobileNode *) (Node::get_node_by_address (rq-> rq_src));

118 C. APPENDIX C

iNode = (MobileNode *) (Node::get_node_by_address (index));
v1=iNodeDst->speed() ;

v3=iNodeSrc->speed () ;

v2= iNode->speed();

return (abs(vi-v2) + abs(v2-v3));

Appendix D

The below codes explain the TCL scenario which is applied in this report. The basis
of my codes is cited from [65], [67], [68], INTERNET and NS2 forums, then it is

modified to satisfy my design.

D1

Listing D.1: TCL

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 20 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 2000 ;# X dimension of topography

set val(y) 2000 ;# Y dimension of topography

set val(stop) 1000 ;# time of simulation endset ns
[new Simulator]

LL set mindelay_ 50us

LL set delay_ 25us

LL set bandwidth_ 0 ;# not used

LL set off_prune_ 0 ;# not used

LL set off_CtrMcast_ 0 ;# not used

Agent/Null set sport_ 0

119

120 D. APPENDIX D

Agent/Null set dport_ 0
Agent/CBR set sport_ 0
Agent/CBR set dport_ 0
Agent/TCPSink set sport_ 0
Agent/TCPSink set dport_ 0
Agent/TCP set sport_ 0
Agent/TCP set dport_ 0
Agent/TCP set packetSize_ 1460

Queue/DropTail/PriQueue set Prefer_Routing_Protocols 1

unity gain, omni-directional antennas

set up the antennas to be centered in the node and 1.5 meters above it
Antenna/OmniAntenna set X_ O

Antenna/OmniAntenna set Y_ O

Antenna/OmniAntenna set Z_ 1.5

Antenna/OmniAntenna set Gt_ 1.0

Antenna/OmniAntenna set Gr_ 1.0

Initialize the SharedMedia interface with parameters to make
it work like the 914MHz Lucent WaveLAN DSSS radio interface
Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 1.559e-11

Phy/WirelessPhy set RXThresh_ 3.652e-10

Phy/WirelessPhy set Rb_ 2x%1e6

Phy/WirelessPhy set Pt_ 0.2818

Phy/WirelessPhy set freq_ 914e+6

Phy/WirelessPhy set L_ 1.0

set ns_ [new Simulator]
#create trace file and nam file
set tracefile [open aodvi0.tr w]
$ns_ trace-all $tracefile
set namtrace [open out.nam w]
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)
set up topography object
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)
Create God
create-god $val(nn)
For model ’TwoRayGround’
set dist(5m) 7.69113e-06
set dist(9m) 2.37381e-06

set
set
set
set
set
set
set
set
set
set
set
set
set
set

dist (10m)
dist(11m)
dist(12m)
dist(13m)
dist(14m)
dist (15m)
dist (16m)
dist (20m)
dist (25m)
dist (30m)
dist (35m)
dist (40m)
dist (45m)
dist (50m)

Phy/WirelessPhy
Phy/WirelessPhy

1.92278e-06
1.58908e-06
1.33527e-06
1.13774e-06
9.81011e-07
8.54570e-07
7.51087e-07
4.
3
2
1
1
1
1

80696e-07

.07645e-07
.13643e-07
.56962e-07
.56962e-10
.56962e-11
.20174e-13

set CSThresh_ $dist (40m)
set RXThresh_ $dist (40m)

set chan [new $val(chan)]

configure the nodes

$ns_ node-config -adhocRouting $val(rp) \
-11Type $val(ll) \
-macType $val(mac)\
-ifqType $val(ifq) \
-ifqlen $val(ifqglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace ON \

-movementTrace ON \

-channel $chan

Creating node objects...
for {set i 0} {$i < $val(an) } { incr i } {
set node_($i) [$ns_ nodel]

$node_($i) random-motion O ;# disable random motion

}

set opt(seed) 0.1
set a [ns-random $opt(seed)]

set

while {$i < 5} {

io0

incr i

}

#setting animation rate

D.1.

121

122 D. APPENDIX D

$ns_ at 0.0 "$ns_ set-animation-rate 20.0ms"
set plan nodes

#30 defines the size for nam

for {set i 0} {$i < $val(an)} { incr i } {
$ns_ initial_node_pos $node_($i) 30

}

connect 2 nodes
set udpl [$ns_ create-connection UDP $node_(6) LossMonitor $node_(8) 0]
$udpl set fid_ 1
set cbrl [$udpl attach-app Traffic/CBR]
$cbrl set packetSize_ 1000
$cbrl set interval_ .07
$ns_ at 0.0 "$cbrl start"
$ns_ at 1000.0 "$cbrl stop"

connect 2 nodes
set udpl [$ns_ create-connection UDP $node_(0) LossMonitor $node_(2) 0]
$udpl set fid_ 1
set cbrl [$udpl attach-app Traffic/CBR]
$cbrl set packetSize_ 1000
$cbrl set interval_ .07
$ns_ at 0.0 "$cbrl start"
$ns_ at 1000.0 "$cbrl stop"

connect 2 nodes
set udpl [$ns_ create-connection UDP $node_(3) LossMonitor $node_(4) 0]
$udpl set fid_ 1
set cbrl [$udpl attach-app Traffic/CBR]
$cbrl set packetSize_ 1000
$cbrl set interval_ .07
$ns_ at 0.0 "$cbril start"
$ns_ at 1000.0 "$cbrl stop"

connect 2 nodes
set udpl [$ns_ create-connection UDP $node_(6) LossMonitor $node_(7) 0]
$udpl set fid_ 1
set cbrl [$udpl attach-app Traffic/CBR]
$cbrl set packetSize_ 1000
$cbrl set interval_ .07
$ns_ at 0.0 "$cbril start"
$ns_ at 1000.0 "$cbrl stop"

connect 2 nodes

D.1. 123

set udpl [$ns_ create-connection UDP $node_(5) LossMonitor $node_(0) 0]
$udpl set fid_ 1

set cbrl [$udpl attach-app Traffic/CBR]

$cbrl set packetSize_ 1000

$cbrl set interval_ .07

$ns_ at 0.0 "$cbrl start"

$ns_ at 1000.0 "$cbrl stop"

Telling nodes when the simulation ends
for {set i 0} {$i < $val(an) } { incr i } {
$ns_ at $val(stop) "$node_($i) reset";

}
$ns_ at $val(stop) "stop"

Ending nam and the simulation
$ns_ at $val(stop) "$ns_ nam-end-wireless $val(stop)"
$ns_ at 1000.0 "puts \"end simulation\"; $ns halt"
puts "Starting Simulation"
#stop procedure:
proc stop { } {
global ns_ tracefile namtrace
$ns_ flush-trace
close $tracefile
close $namtrace
exec nam out.nam &
exit O
}
$ns_ at 1000 "stop"
$ns_ run

Appendix E

This part presents the mobility scenario which is generated by BonnMotion.

E.1

Listing E.1: Mobility scenario by BonnMotion

$ns_ at 9067.033118438478 "$node_(10) setdest 259.871130474348 650.0
0.7705007778923962"

$ns_ at 9112.45812124735 "$node_(10) setdest 254.87113047434798 650.0
0.7790790898130234"

$ns_ at 9118.87595489913 "$node_(10) setdest 199.87113047434798 650.0
0.8572696045126093"

$ns_ at 9183.033134519734 "$node_(10) setdest 194.87113047434798 650.0
1.2495308161951517"

$ns_ at 9187.034636471662 "$node_(10) setdest 184.87113047434798 650.0
0.7796770929389434"

$ns_ at 9199.86045896993 "$node_(10) setdest 89.87113047434798 650.0
0.9576805363563702"

$ns_ at 9299.058465396416 "$node_(10) setdest 79.87113047434798 650.0
1.2754190426932142"

$ns_ at 9306.89902576541 "$node_(10) setdest 64.87113047434798 650.0
1.0182450487830874"

$ns_ at 9321.63025379144 "$node_(10) setdest 44.87113047434798 650.0
1.2885906888567502"

$ns_ at 9337.151086103013 "$node_(10) setdest 39.87113047434798 650.0
0.9067072526549765"

$ns_ at 9342.665545136355 "$node_(10) setdest 24.87113047434798 650.0
1.2828699394215537"

$ns_ at 9354.35807883682 "$node_(10) setdest 10.0 650.0 1.1781006351303598"

$ns_ at 9366.981050110155 "$node_(10) setdest 10.0 655.128869525652
1.178100635130306"

125

126 E. APPENDIX E

at 9371.334557249284
0.7365729383909928"
at 9398.487333244135
0.7555200734346452"
at 9411.723248941966
0.8940949655087873"
at 9422.907743191197
0.8358929818771894"
at 9464.779131944097
1.142973753818449"

at 9482.277346520927
1.1702191683992649"
at 9520.731681584977
0.9387694307406182"
at 9536.710045929634
1.102893506752886"

at 9545.777104479504

1.0666440401762602"

$ns_

$ns_

$ns_

$ns_

$ns_

$ns_

$ns_

$ns_

$ns

$ns_
0.5705871402310542"

"$node_(10)

"$node_(10)

"$node_(10)

"$node_(10)

"$node_(10)

"$node_(10)

"$node_(10)

"$node_(10)

"$node_(10)

setdest

setdest

setdest

setdest

setdest

setdest

setdest

setdest

10.

10.

10.

10.

10.

10.

10.

10.

675.

685.

695.

730.

750.

795.

810.

820.

setdest 10.0 835

128869525652

128869525652

128869525652

128869525652

128869525652

128869525652

128869525652

128869525652

128869525652

at 9559.83990278429 "$node_(10) setdest 10.0 865.128869525652

127

	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Introduction
	Overview
	Research objectives
	Research methodology
	Outline

	State of the art
	Overview of AODV
	Terminology
	Packet types
	Counting to infinity
	Routing discovery procedure
	Route maintenance

	Fuzzy logic
	Introduction
	Fuzzy sets
	Linguistic variables
	Fuzzy operators
	Reasoning in fuzzy logic
	Aggregate all outputs
	The defuzzification
	General forwarding algorithms in VANET and ITS
	Conclusion
	VANET architecture
	VANET applications
	VANET characteristics
	VANET challenges
	Data dissemination techniques in VANET

	VANET routing algorithm classification
	AODV algorithm and fuzzy logic approach (related work)
	AODV/AOMDV improvement
	Fuzzy logic approach

	Algorithm description
	Four-inputs Fuzzy-logic-based AODV Routing (FFAR) protocol
	Introduction
	Proposal questions
	FFAR procedure
	Selecting route metrics
	Modification of control message and routing table
	Stability function

	Simulation tools
	Network simulator 2 (NS2)
	Why did I choose NS2?
	AWK

	Mobility model
	Mobility generator

	Evaluation
	Simulation set-up
	Scenario
	Movement model
	Communication model
	Parameters

	Performance metrics
	Simulation results

	Discussion and future work
	Different QoS
	 Quality of Service definition
	Issues and challenges
	QoS comparison criteria
	QoS solutions

	Varying speed for simulation
	Acceleration
	Future work

	Conclusion
	Bibliography
	Appendix A
	
	
	
	

	Appendix B
	

	Appendix C
	
	
	
	

	Appendix D
	

	Appendix E
	

	

