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ABSTRACT
We explore the tradeoff between energy consumption and
measurement accuracy for noise monitoring and prediction
based on continuously collected data by wireless, energy-
constrained IoT nodes. This tradeoff can be controlled by the
sampling interval between measurements and is of interest
for energy-efficient operation, but most often ignored in the
literature. We study the influence of the sampling intervals
on the accuracy of various noise indicators and metrics. To
provide a context for the tradeoff, we consider the use case
of noise monitoring in working environments and present
a learning algorithm to also predict sound indicators. The
results indicate that a proper tradeoff between energy con-
sumption and accuracy can save considerable energy, while
only leading to acceptable or insignificant reductions in ac-
curacy, depending on the specific use case. For instance, we
show that a system for monitoring and prediction can per-
form well for users and only uses around 7% of the energy
compared to full sampling.
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• Computing methodologies → Machine learning algo-
rithms.
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1 INTRODUCTION
Noise has a negative impact on health, causing sleep disrup-
tion, annoyance, cognitive impairment, can increase stress
and blood pressure and lead to hearing loss [? ]. Recent
evidence suggests that urban noise levels worldwide consis-
tently exceed recommended noise limits [? ], which substan-
tiates the need for more comprehensive noise monitoring.
Traditional approaches, however, require expensive equip-
ment and manual operation, which allows only temporary
measurements at selected locations, which is why measure-
ments are usually only used to complement or calibrate sim-
ulation models based on maps. Unfortunately, results with
such approaches are often not sufficient to reflect actual
noise characteristics, as Mioduszewski et al. [? ] conclude.
IoT systems consisting of many sensors that can perform
fine-grained and continuous measurements are therefore a
relevant option. To make such systems feasible, their cost-
effective operation is essential [? ], whichmotivates our focus
on the wireless, energy-efficient and autonomous operation
of IoT nodes that replenish their energy by harvesting, for
instance via solar panels. Apart from efficient electronics
and transmission, the sampling interval, i.e., the time be-
tween measurements, has a major impact on a node’s power
consumption. Longer sampling intervals allow longer sleep
modes and require to process and transmit fewer data.
Most works on IoT noise measurement, however, don’t

discuss sampling intervals thoroughly, and simply choose
static sampling intervals at design-time. This has the bene-
fit of simplicity, but does not lead to efficient applications,
especially when we consider that many applications don’t
need to meet constant accuracy levels. Instead, if a system
adapts sampling intervals to its context, it can save energy
and hence use cheaper energy supplies. This can increase
the relevance of the data collected overall, since lower en-
ergy consumption enables lower system costs and easier
deployment, and allows to cover phenomena like noise over
a larger area with fine-grained coverage and permanently.
Further, if a system uses energy-harvesting, it can bypass

https://doi.org/10.1145/3365871.3365885
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temporary energy shortages by providing less accuracy, in-
stead of no data at all. This calls for approaches in which IoT
nodes adapt their sampling intervals and by that influence
with which accuracy and energy consumption they collect
data. This adaptation requires some form of planning. In [?
], for instance, we describe how to use reinforcement learn-
ing to train a policy for IoT nodes to optimize their energy
consumption which can provide such adaptive planning.

In this paper, we focus on the use cases for noise monitor-
ing and prediction of a working environment to explore the
tradeoff between the accuracy of the measurements and the
energy consumption of the nodes, caused by the selection of
different sampling intervals. Our results show that selecting
longer sampling intervals can lead to acceptable reductions
in the accuracy, but significant energy savings. For instance,
sampling with only 30 values instead of 450 in a 15-minute
interval, the drop in accuracy will most likely not affect users
but reduce the energy consumption of the system an order
of magnitude down to 7% of the original consumption.
Our work is organized as follows: After an overview of

related work on large-scale, continuous noise measurement
and adaptive sampling in general, we describe our system
setup in Sect. 3 and discuss noise indicators and derived
labels. Sect. 4 studies the sensitivity of these metrics to in-
creased sampling intervals. In Sect. 5 we study the use of
machine learning to improve results by compensating sys-
tematic bias, and Sect. 6 studies the significance of accuracy
when acquiring noise measurements as training data for
predictions. We then discuss the overall implication for the
energy-accuracy tradeoff in Sect. 7 and conclude.

2 RELATEDWORK
Most projects on large-scale and real-time noise measure-
ment are focused on urban noise, as for instance SONYC [? ],
SENSEable [? ], DYNAMAP [? ? ] and CENSE [? ]. In urban
areas, traffic is a major concern and many approaches there-
fore perform noise measurements with the aim to calibrate
or confirm sound propagation models based on maps. Some
of the approaches also try to identify the origins of noise or
perform noise event detection. Sevillano et al. [? ] emphasize
the significance of providing cost-effective solutions to cities,
which have to adhere to legislation [? ] and need to produce
noise maps regularly. Advances in hardware engineering
and electronics, like for example MEMS microphones, enable
approaches based on cheaper sensor devices. Manvell [? ]
compares the cost and accuracy of several sound sensor tech-
nologies, with a focus on usability and suitability in different
purposes. Manvell [? ] and Bartalucci et al. [? ] highlight the
benefits of cheaper sensor hardware, but also emphasize the
significance of the operating costs for periodic maintenance
and calibration of the sensors. Regarding energy supplies,
most of the low-cost approaches still rely on power provided

by cables, and only some explore wireless options, which
reduces deployment and operating costs. Ardouin et al. [? ],
for instance, present the design of a solar-powered device in
the context of the CENSE project, and SONYC plans the use
of solar-powered devices.
To our surprise, there is only little focus on the accuracy

that stems from the number of samples taken and hence its
influence on energy consumption. Zambon et al. address cost
in [? ] with an approach that tries to estimate daily average
sound levels caused by different road types based on fewer
hour-long measurements. However, this addresses sampling
on a macro-time scale but is not intended for real-time mon-
itoring. We want to address here use cases for continuous
and real-time monitoring and prediction. Amongst those,
some approaches don’t even mention their sampling pol-
icy, and most others do not further justify their choice of
sampling rates. Especially, we have not found noise monitor-
ing approaches that vary their sampling rate or adjust their
behavior according to the energy situation of the node.
Adapting sampling intervals actively to the needs of the

application is applied in other domains. Event-sensitive sam-
pling [? ], for instance, alternates high and low frequency
intervals, and uses higher frequencies for extended periods
if an event was detected. This technique has been used for
structural health monitoring and fire event monitoring ap-
plications. Similarly, Liu et al. [? ] introduced an adaptive
sampling strategy for online process monitoring and process
change detection, which selects some data streams and ig-
nores others depending on the resource status of the system.
Another example of an error-accuracy tradeoff is Trihinas et
al. [? ], who proposed an adaptive monitoring framework for
sampling and filtering for data streaming. They are capable
of reducing energy consumption by 71% while keeping the
system accuracy at least 89%. For human activity recognition,
Cheng et al. [? ] propose a learning algorithm that not only
learns the parameters for activity classifier, but also the most
energy-efficient frequency for the sampling, depending on
the observations made.

3 SYSTEM SETUP
In our conceptual system, noise is measured by energy-
constrained IoT nodes that transmit their measurements
wirelessly. To ensure perpetual operation, a node’s energy
buffer can be charged by a solar panel. Calculation of the
noise indicators can happen on-board of the IoT node or as
part of the server backend. We study two different use cases:

• The system monitors noise and computes a number of
noise indicators.
• The system predicts noise labels, for instance to in-
dicate to students where they find a quiet place for
focused work, as part of a campus information system.
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Figure 1: Lp,450Aeq,15min in dB for the observation period.

The basis of our experiment is noise data that we collected
in a collaborative learning space for students that blends
faculty-guided instructions with self-organized work.1 We
deployed Libelium Waspmotes with noise sensors [? ]. They
measure the A-weighted, equivalent continuous sound pres-
sure level LAeq,T , which is a standard indicator used for noise
measurement [? ]. For the experiment, we collected samples
with the SLOW setting ofT = 1 s . The sensors have an accu-
racy of ±0.5 dBA, corresponding to the Class 2 devices in IEC
61672 [? ] and cover a frequency range from 20 Hz to 20 kHz,
similar to the human hearing. For our use cases, we monitor
and predict the soundscape of the working environment in
periods of 15 minutes. We collected data with the highest
sampling rate possible for the device, which means a new
value for LAeq every 2 seconds, hencenmax = 450 samples per
15-minute period. In the following, each 15-minute period is
numbered by index p. We also introduce sampling function
Sp[n] that returns n selected samples of period p (for now,
all 450 of the original samples).

To characterize a 15-minute period p with a single number,
we calculate the equivalent continuous sound level Lp,nAeq,15min

1The experiment data is available at https://github.com/Faiga91/Koopen

Excellent LA10 <40 ∧ LA90 <32
∨ LA10 <40 ∧ LAeq <37
∨ LAeq <37 ∧ LA90 <32

Good 40≤ LA10 <50 ∧ 32≤ LA90 <42
∨ 40≤ LA10 <50 ∧ 37≤ LAeq <47
∨ 37≤ LAeq <47 ∧ 32≤ LA90 <42

Fair 50≤LA10 <61 ∧ 42≤LA90 <53 ∧ 47≤LAeq <58

Poor 61≤LA10 <85 ∧ 53≤LA90 <79 ∧ 58≤LAeq <85

Hazardous LA10 >85 ∧ LA90 >79 ∧ LAeq >85

Table 1: Soundscape label SC based on noise indicators.

from the individual samples as follows:

L
p,n
Aeq,15min = 10log(

1
n

∑
l ∈Sp [n]

10
l
10 ) (1)

The superscript n represents how many samples are used
for its calculation. Figure ?? shows the Lp,450Aeq,15min values of
the observed period. Each row shows the 15-minute periods
of a day. We see that noise is higher during working hours
and the lowest during the night. Holidays (around week 16)
and weekends are quieter than working days, and afternoons
on Fridays tend to be quieter than those of other workdays.
Some noise is also created by cleaning staff and social events.

Other noise indicators areN -percentage exceedance levels
LAN,T of the collected sound pressure levels over a time
interval T [? ]. They can be determined using percentiles:

L
p,n
AN,T = percentile(100−N , Sp[n]) (2)

We select N ∈ {10, 90} andT = 15 min. LA90,15min is the level
of noise that is exceeded 90% of the time, hence an indicator
for background noise, while LA10,15min is the level exceeded
10% of the time, capturing shorter noise events.

Since numeric values can be difficult for users to interpret,
we also want to label each 15-minute period with one of five
ordered categories to classify the soundscape:

SCp,n
15min ∈ (excellent, good, fair, poor, hazardous) (3)

For working environments, we found a composite label based
on LAeq,15min, LA10,15min, LA90,15min most suitable [? ]. The
definition of the label is shown in Table ??. For a working
environment to score excellent, for example, the classifier
requires two of the three indicators to have very low values,
as described by the first rows. On the other side, to receive
a poor rating, it’s enough that any of them is above certain
levels.
In the following, since we always use A-weighting and

15-minute periods, we simplify the notation to L
p,n
eq , Lp,n10 ,

L
p,n
90 and SCp,n , with p identifying the period and n denoting

the number of samples that went into their calculation.

https://github.com/Faiga91/Koopen
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Interval Samples n in 15 min Energy Consumption
2 s 450 100 %

4 sec 225 50 %
10 sec 90 20 %
20 sec 45 10 %
30 sec 30 7 %
60 sec 15 3 %
120 sec 7.5 2 %
180 sec 5 1 %
Table 2: Different sampling modes of the sensor devices.

4 EFFECT OF INCREASED SAMPLING INTERVALS
The main elements of the energy cost for a sensor node are
related to transmission, computation and sensing, but their
portion depends on the specific setting, see for instance [? ].
We assume in the following a fixed cost per measurement,
including any computation and transmission costs. The en-
ergy consumption will hence depend mainly on the sampling
intervals between measurements, listed in Table ??, together
with estimates for the resulting energy consumption.

Of course, depending on the phenomena observed, longer
sampling intervals have influence on the accuracy of the col-
lected data and hence the overall performance of the system.
We simulate longer sampling intervals by selecting only a
subset of the originally sampled measurements. Full sam-
pling, with a power consumption of 100 %, results in n = 450
samples in a 15-minute period.When the device only samples
n = 90 times during the same period, the power consumption
is reduced to 20%. Function Sp[n] again selects n samples
out of the available 450, as equally spaced as possible, but
now n also takes values < 450. This selection allows us to
simulate a sensor that uses longer sampling intervals.

To study the error when sampling less frequent, we use the
values for the indicators calculated with all samples (n = 450)
as ground truth, and hence observe the error when using
indicators calculated according to (??) for Lp,neq and (??) for
L
p,n
10 and Lp,n90 with fewer samples, i.e., n < 450:

ep,450 (n) = Lp,450 − Lp,n (4)

Figure ?? shows boxplots of the errors for selected n in
its upper row. They reveal that with decreasing samples n,
indicators Leq and L10 have a negative bias, i.e., they tend to
underestimate the noise level, while L90 has a positive bias.
We also calculate the root mean squared error (RMSE)

over all 15-minute intervals in the test set:

RMSEL (n) =
√

1
n

∑
∀p

ep,450 (n) (5)
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Figure 2: RMSE for noise indicators for different number of
samples n. Dashed lines show errors after bias compensa-
tion.

By definition, RMSE(450) = 0. Figure ?? shows the RMSE
of all indicators when using increasing sampling intervals,
i.e., a decreasing number of samples n. With lower n, we see
an increased RMSE for all indicators Leq , L10, L90 (solid lines).
L10 is subject to greater loss in accuracy, since it indicates
shorter noise events that are more dependent on the place-
ment of the samples, while the L90 background indicator is
less sensitive to the sampling interval.
To study the effect on the soundscape classifier SC , we

compare the resulting labels SCp,n with the truth values
SCp,450. We first look at the F1-score that is often used as
classificationmetric. In amulti-class setting andwith amicro-
weighting, it corresponds to the accuracy, i.e., the quotient
of correct labels to the total number of labels. It is shown in
Figure ??. Since the categories in SC are ordered (see (??)), we
also take the distance of the error into account, i.e., if a label
hops one or even two steps. Here, we only observe errors
of one step, and Figure ?? shows the percentage of wrongly
assigned 15-minute periods. With n = 225 samples, ca. 2 %
of labels are switched, and with n = 30, ca. 5 % of labels are
assigned wrongly. (Since only one-step errors occur, results
are consistent with the F1-score.)

5 LEARNING BIAS COMPENSATION
Since we expect the errors observed above to be systematic,
we explore if this bias can be learned and compensated by
an improved indicator L̃p,n :

L̃p,n = Lp,n + δ (Lp,n ,n) (6)

For each of the indicators L̃eq , L̃10, L̃90 we train a modelML to
learn δ (Lp,n ,n). The training data consists of the measured
indicators Ln , the number of samples n and is labelled with
the ground truth L450. We remove any 15-minute periods
with missing data, and select the 15-minute periods from
week 8 as test set. Through hyperparameter tuning we select
a random forest regressor with 100 trees.
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Figure 3: Errors for the noise indicators when using longer sensing intervals for monitoring. The upper row shows errors for
different n without bias compensation, the lower row shows errors with bias compensation.
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The results for the RMSE are shown with dashed lines
in Figure ??, showing that the compensation reduces the
RMSE in some cases for lower n. The boxes in the lower part
of Figure ?? accordingly indicate a lower bias compared to
the ones without the compensation in the row above. Cor-
respondingly, the F1-score in Figure ?? shows an improved
performance of the soundscape label, and Figure ?? shows a
reduced percentage of categories assigned wrong.

6 PREDICTION BY MACHINE LEARNING
The task of the prediction is to estimate future noise levels
based on past observations and explanatory variables, such
as time. Our motivation is not only to validate the feasibility
of the prediction itself, but also to estimate its inherent error,
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Figure 5: Percentage of switched SC labels.

as we need it later in the discussion in Sect. ??. For each
of the numeric noise indicators and sampling numbers n,
we train a separate model Mn

L . The prediction features are
based on time and context, summarized in Table ??. Each
15-minute period p is hence characterized by a feature vector
xp :

xp = (weekday, hour, quarter, schedule, holiday)T (7)

Time is described by weekday, full hour and quarter. The
binary variable schedule indicates hourswith faculty-planned
activities, and holidaymarks official holidays, like Easter. The
label for each period is the corresponding noise indicator
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Feature Values ImportanceMn
L ImportanceMn

SC

weekday [0, 1,.. 6] 25% 26%
hour [0,1,.. 23] 20.3% 28%
schedule [0,1] 36% 24.2%
quarter [0,1,2,3] 5.5% 8%
holiday [0,1] 13.2% 13.8%

Table 3: Features for the prediction of noise indicators.

450 225 90 45 30 15 7.5 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
M

S
E

 [d
B

]

Leq with ep, n 
L10 with ep, n

L90 with ep, n

Leq with ep, 450 
L10 with ep, 450

L90 with ep, 450 

Figure 6: RMSE of the prediction of noise indicators.

Lp,n . We choose again a random forest regressor with 100
trees. The importances of the features are noted in Table ??.

For evaluation, we calculate two errors, ep,n and ep,450:
ep,n = Mn

L (x
p ) − Lp,n (8)

ep,450 = Mn
L (x

p ) − Lp,450 (9)
The first one uses the indicators measured with n ≤ 450 as
truth values (i.e., uses the same n), and is hence a measure
for the prediction quality. The second one compares the
prediction trained on samples Ln with the truth acquired
with n = 450. Correspondingly, Figure ?? shows the RMSE
based on these two error metrics. Interestingly, there is much
less dependency onn than in themonitoring case of Figure ??.
We explain this with the inherent error of the prediction itself,
which is in the same order for n = 450 as for the other n.
This also explains why the error is similar when comparing
the regressors trained with data from n < 450 and then
compared with the n = 450 data.
We also trained a model Mn

SC to predict the soundscape
classifier. We use the same training data as forMn

L , but use
the soundscape categories as labels, and use a random forest
classifier as a model. Similar as with the monitoring use case,
we show in Figure ?? the resulting F1-score for the classifica-
tion. The solid line shows scores when labels are compared
to truth values determined by the same n, and the dashed
line when the truth values are n = 450. Figure ?? shows the
percentage of mispredicted labels. Similar to the regression
above, the error is higher compared to the monitoring case,
due to the inherent prediction error. However, we see again
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Figure 7: F1-score for the prediction of the SC label.
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Figure 8: Percentage of mispredicted SC labels.

that the error depends less on n for the prediction than for
the monitoring use case.
Figure ?? illustrates the performance of the predictor for

Leq for one randomly selected day of the test period by show-
ing the actually measured data and the predictions using the
models trained with data sampled with different values for
n. In the lower part, the figure shows the soundscape labels
for each 15-minute interval. The upper row shows the labels
measured with n = 450, the ones below the predicted ones,
based on data sampled with different values for n.

7 ENERGY-ACCURACY TRADEOFFS
The results of the experiments and use cases from above
provide the context to discuss the energy-accuracy tradeoff
for noise monitoring in working environments. In Sect. ??
we studied how the accuracy of various indicators and labels
develops when the sensing interval is extended. As expected,
using longer sampling intervals and hence collecting less
data decreases accuracy, but also decreases energy usage con-
siderably. However, we also observe that the accuracy only
drops moderately compared with significant gains in energy-
efficiency. Hence, the required accuracy should be seen in
connection with system resources, the actual user require-
ments and for which decision the data is used. This gives
a system a broad range of tradeoffs so that it can increase
its overall performance. In the following, we will discuss
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Figure 9: Randomly selected day to illustrate prediction performance. The upper graph shows the observed values for Leq, and
the prediction done with data based on different n. The lower graph shows the observed soundscape label, with the predicted
soundscape labels for different values of n below. ■=good, ■=fair, ■=poor.

them to estimate potential performance gains when letting
a system adjust its sampling intervals.
For the monitoring use case one may consider the accu-

racy of the measurement equipment which is in this case
±0.5 dB. Most errors when sampling with n = 225 instead of
n = 450 fall below this order, while the energy consumption
is cut to around 50%. Arguing further, a difference of 3 dB is
barely noticeable for humans (see, e.g., [? ]). Looking at the
boxplots of errors in Figure ??, this suggests that just sam-
pling with n = 30 samples in a 15-minute interval leads to an
acceptable performance, which also leads to the system only
using around 7% of the energy compared to sampling with
n = 450. Further, the presentation of information to users
in more abstract form also gives room for lower accuracy.
The soundscape label is based on intervals of the individual
indicators, and occasional flips in a category seem accept-
able. As we see in Figure ??, less than 5% of the soundscape
labels change one step up or down when we sample with
n = 30, while only requiring around 7% of the energy. With
bias compensation, one could even select n = 15.

When the use case is soundscape prediction, the inherent,
irreducible error of the prediction is much larger than the
error introduced by using fewer samples. When we consider
Figures ?? and ??, the system trained with n = 30 samples
shows almost the same performance as the one trained with
n = 450 samples, but uses only around 7% of its energy. Fig-
ure ?? illustrates the effect of using less samples for a specific

day, and shows the inherent prediction error in comparison
to the relatively insignificant changes due to lower n.
We further argue that the considerations of sampling in-

tervals as above should happen autonomously by the IoT
systems, which should learn to select a proper sampling in-
terval based on its specific context and the phenomenon
to observe. In this specific example, the system can, for in-
stance, sample with less accuracy at night-time, holidays or
weekends when working conditions are less relevant to the
users. When nodes are using energy harvesting and their
energy budget varies, adaptation can help to ensure energy-
neutral operation [? ]. By giving a node the option to adjust
its sampling interval and hence the energy consumption, it
can instead of just failing in low-energy situations, predict
future energy intake (see [? ]), plan ahead and strategically
allocate energy to maximize its long-term application perfor-
mance. In [? ], we presented such a planning strategy using
reinforcement learning, which can take the energy-accuracy
consideration presented here as input. We expect that this
technique can learn even more complex policies, and also
take more aspects into consideration than just the sampling
interval. In addition, a node could autonomously decide in
which situations it should gather training data, i.e., use its
shortest sampling interval to gather data with the highest
accuracy. With the bias compensation in Sect. ??, we showed
how a system can improve its performance when working in
low-energy situations by knowledge in the form of training
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data acquired earlier. This adds to the degrees of freedom an
IoT node can use to optimize its energy consumption.

8 CONCLUSION
We presented the use cases of monitoring and prediction of
noise indicators for working environments, and studied how
their accuracy depends on the sampling interval. We showed
how IoT nodes can further compensate bias through learning.
The considered use cases make it possible to discuss the
energy-accuracy tradeoffs for such a system, which can result
in significantly lower energy consumption while offering
suitable levels of accuracy. This is an important factor in
making IoT-based solution for noise monitoring scalable and
economically feasible, as lower energy consumption allows
ever smaller devices, which are easier to deploy and operate.
In this paper, we explored the energy-accuracy tradeoff

for the domain of noise, but the principle of accuracy-energy
tradeoffs extends also to other domains. For future IoT sys-
tems we see the need and possibility to let a system do
this tradeoff constantly and autonomously, establishing au-
tonomous adaptive sensing that leads to smarter IoT solu-
tions. Instead of wasting energy on acquiring data of little
significance or with accuracy levels that are not relevant, IoT
nodes should be able to autonomously decide what the best
accuracy levels in a given situation are.
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