
Robust Low-level ITS Architecture using
OSGi, Reactive Blocks and OPC-UA

Snorre Lothar von Gohren
Edwin

Master of Science in Communication Technology

Supervisor: Frank Alexander Krämer, ITEM
Co-supervisor: Jo Skjermo, SINTEF

Department of Telematics

Submission date: Januar 2014

Norwegian University of Science and Technology

Robust low­level ITS architecture using OSGi, Reactive Blocks and
OPC­UA

Many ITS stations today are still in the research phase and “Statens Vegvesen” are moving
forward with new improvements. This thesis will study how OSGi and Reactive Blocks can aid in
creating an application which is robust and ready for improvements on the fly.

In the end, a scenario is desirable in which ITS applications can be built from Reactive Blocks,
where specific capabilities of an ITS station are represented by corresponding building blocks,
and the specific application logic can be expressed by combining the blocks accordingly.
Generic functions like lifecycle management, service discovery, consistent startup and graceful
failures should also be modeled in an understandable way, so that it is easy to upgrade and
develop new functions for the ITS stations.

This task will work directly with “Statens Vegvesen” and some of their test stations they have in
their regulation. Source code should be made available and virtual test environments can be
used.

Interesting questions:
● How can the application be made robust in terms of error handling and edge cases?
● How can the application be upgraded without any inconvenience?
● How can the application be expanded without any inconvenience?

Professor: Frank Alexander Kraemer, Department of Telematics (kraemer@item.ntnu.no)
Supervisor: Jo Skjermo, SINTEF (Jo.Skjermo@sintef.no)

mailto:kraemer@item.ntnu.no
mailto:Jo.Skjermo@sintef.no

Robust Low-level ITS Architecture using
OSGi, Reactive Blocks and OPC-UA

Snorre Lothar von Gohren Edwin

Submission date: January 2014
Responsible professor: Frank Alexander Kraemer, ITEM, NTNU
Supervisor: Jo Skjermo, SINTEF

Norwegian University of Science and Technology
Department of Telematics

Abstract

The vehicle traffic flows on a daily basis, and it works. People get
from A to B, sometimes using longer time than expected because of traffic
or accidents. Transport vehicles arrive without a notice and valuable
traffic and environmental data is not collected. How should the future
traffic control be and what are the possibilities?

These are issues which concern Statens Vegvesen on a daily basis.
Currently there are ongoing research figuring out how a general Intelli-
gent transport system (ITS) station should be specified. A high level
functional specification has been written, and propose multiple use cases
and functionality for the future. This thesis will embark on the low level
technical issues regarding a general ITS station. Focusing on robustness,
upgrading and expanding, combining Reactive Blocks (RB), Open Ser-
vices Gateway initiative (OSGi) and Open Platform Communications
Unified Architecture (OPC-UA) in a technical architecture.

Statens Vegvesen have pointed out that these three terms are impor-
tant factors to be handled, for them to be able to develop ITS stations
to the satisfactory level they strive for. So if this thesis can show that it
can become easier to create new applications with RB, opening up for
application updates without downtime through OSGi and providing a
familiar communication layer with OPC-UA. That will benefit Statens
Vegvesen in many ways.

The reason for the selection of these technologies are that the domain
is a perfect match for OSGi, providing the lifecycle aspect in to the
architecture. Statens Vegvesen is familiar with OPC and OPC-UA, it
provides a way of standardizing hardware and enabling an advanced
communication protocol out of the box. RB is a technology which is
created at the institute this thesis is written for, and merge two difficult
domains by visualizing code through blocks and flows, meaning that
better code control is provided. So they all have their specific traits which
can be combined into a valuable consolidation.

A prototype architectural application was made through out several
iterations discussing the different issues which arose during development.
It became a foundation platform which allowed for expansion by deploying
additional functional OSGi bundles.

The technological combination with the specific focuses became a
satisfactory prototype architecture. It enables the application to react
on edge cases in a useful way, upgrade the software to handle the edge
cases without downtime, and improve the station with new applications
for different use cases.

This original technological combination have paved the way for a
solution to be contrived in the coming years. This thesis is meant as a
foundation to decide if this is a fitting road towards a distinguished ITS
station architecture.

Sammendrag

Trafikken flyter til daglig, og det fungerer. Folk kommer seg fra A
til B, noen ganger på lengre tid en forventet, på grunn av trafikk eller
ulykker. Nyttetransport ankommer uten forvarsel og verdifull trafikk- og
miljødata blir ikke registrert. Hvordan skal fremtidens trafikkontroll være,
og hva er mulighetene?

Dette er utfordringer som Statens Vegvesen jobber med til daglig. Det
pågår nå forskning på dette feltet, hvor man prøver å finne ut hvordan en
generell Intelligent Transport System (ITS) stasjon skal være spesifisert.
Det er blitt skrevet en høynivå funksjonell spesifikasjon som foreslår flere
bruksområder og fremtidig funksjonalitet. Denne oppgaven skal ta for
seg lavnivå tekniske problemer når det kommer til ITS stasjoner. Den vil
fokusere på robusthet, oppgradering og utvidelse, ved å kombinere RB,
OSGi og OPC-UA som en teknisk arkitektur.

Statens Vegvesen har påpekt at de tre nevnte termene er viktige
faktorer som må håndteres for at det skal bli mulig for Statens Vegvesen
å utvikle ITS stasjoner som er på det nivået de streber etter. Hvis denne
oppgaven kan vise at det vil bli lettere å utvikle nye applikasjoner med
RB, åpne opp for applikasjonsoppdateringer uten nedetid gjennom OSGi
og legge til rette for et familiært kommunikasjonslag med OPC-UA. Så
vil dette gagne Statens Vegvesen.

Grunnen til at disse teknologiene er valgt er fordi dette domenet er en
perfekt match for OSGi, ved å tilby et livssykel aspekt til arkitekturen.
Statens Vegvesen er kjent med OPC og OPC-UA, som tilbyr en måte å
standarisere maskinvare og legge til rette for en avansert kommunikasjons-
protokoll på en enkel måte. RB er en teknologi som er laget på instituttet
denne oppgaven skrives for, og slår sammen to vanskelige domener ved
å visualisere kode gjennom blokker og flyt, som gir bedre kontroll over
koden. Så alle har deres spesifikke trekk som kan bli kombinert til en
verdiful løsning.

En arkiteturisk prototypeapplikasjon ble laget gjennom flere iterasjo-
ner hvor de forskjellige vanskelighetene, som dukket opp, ble diskutert.
Den ble et fundament som legger til rette for utvidelse gjennom å installere
flere funksjonelle OSGi bundler.

Denne teknologiske kombinasjonen med de spesifikke fokus områdene,
ble en tilfredstillende prototypearkitektur. Den åpner opp for applikasjo-

nen til å reagere på ytterpunkt på en bra måte, oppgradere applikasjonen
til å håndtere ytterpunktene uten nede tid og forbedre stasjonen med nye
applikasjoner for forskjellige brukerscenarioer.

Denne orginale teknologiske kombinasjonen har lagt veien for at en
fremtidig løsning kan bli utarbeidet. Denne oppgaven er ment som et
fundament for å kunne avgjøre om dette er den riktige veien å gå for å
nå en utmerket ITS stasjonsarkitektur.

Acknowledgments

”Appreciation is a wonderful thing: It makes what is excellent in others
belong to us as well.”

— Voltair

First of all I want to thank my supervisor Frank Alexander Kraemer who has had
two hats on during this process. He has represented a supervisor from ITEM as well
as technical expert from Bitreactive. He has provided me with valuable questions
and important info regarding ReactivBlocks.

Second, Statens Vegvesen have been an important factor in this thesis by providing
an assignment which was based on real world problems and future development.
Thanks to Erik Olsen in the lead from Statens Vegvesen.

In cooporation with Statens Vegvesen is SINTEF IKT og samfunn. They have
provided with valuable insight in the research projects related to my assignment.
Thanks to Jo Skjermo and Trond Foss at SINTEF.

The OSGi community have been a supportive organ in the questions I have
asked on the different channels available. Thanks to these people, they include, Jeff
Goodyear, Peter Kriens, Richard S. Hall, Neil Bartlett, Jean-Baptiste Onofré, Justin
Edelson and David Jencks.

Lastly I want to thank Jouni Aro from Prosys OPC who have been a valuble
sparring partner when it comes to technological questions regarding OPC-UA. He
made himself available through the Prosys OPC forum.

Contents

List of Figures xv

List of Code Snippets xvii

List of Glossary xix

List of Acronyms xxi

1 Introduction 1
1.1 Project background . 1
1.2 Problem outline . 1
1.3 Research questions . 2
1.4 Limitations . 2
1.5 Scope and organization . 3

1.5.1 Technical background . 3
1.5.2 Literature and related work 3
1.5.3 Methodology . 4
1.5.4 Iteration 0: Technology study 4
1.5.5 Iteration 1: Connection and pair-ability 4
1.5.6 Iteration 2: Implementation of simple swap example 4
1.5.7 Iteration 3: OPC-UA Client and hardware approach 4
1.5.8 Iteration 4: Reactive Block focus 5
1.5.9 Evaluation and conclusion . 5

2 Technical background 7
2.1 Intro . 7
2.2 OSGi . 8

2.2.1 OSGi growing up . 8
2.2.2 Related work . 8
2.2.3 OSGi architecture . 9
2.2.4 MANIFEST.MF . 14

2.3 Reactive Blocks . 15
2.3.1 Building blocks . 16

ix

2.3.2 Reuse . 19
2.3.3 Visualization . 19
2.3.4 Verification . 20
2.3.5 Why use Reactive Blocks? . 21

2.4 OPC Unified Architecture . 21
2.4.1 What is OPC-UA . 22
2.4.2 Protocols . 23
2.4.3 Implementations . 24
2.4.4 OPC-UA Object model . 24
2.4.5 OPC-UA Node Model . 24
2.4.6 OPC-UA server . 25
2.4.7 OPC-UA client . 25
2.4.8 OPC-UA NodeManager . 26
2.4.9 OPC-UA address space & Name Space 26
2.4.10 OPC-UA View . 26

3 Literature and related work 27
3.1 OSGi . 27

3.1.1 Robust architecture OSGi . 27
3.1.2 OSGi and update/expansion handling 28
3.1.3 Dynamic OSGi architecture 28

3.2 OPC-UA . 28
3.3 Statens Vegvesen . 29
3.4 ITS focus around the world . 29

3.4.1 EU . 30
3.4.2 US . 30
3.4.3 China . 30

4 Methodology 31
4.1 General . 31
4.2 Method guidelines . 32
4.3 Literature study . 33
4.4 Development tools and technology 34

4.4.1 Eclipse . 34
4.4.2 GitHub . 34
4.4.3 OPC-UA tools . 34

5 Iteration 0: Technology study 35
5.1 Intro . 35
5.2 Robustness . 36

5.2.1 OSGi . 37
5.2.2 Reactive Blocks . 37

5.2.3 OPC-UA . 37
5.3 Upgrading . 38

5.3.1 OSGi . 38
5.3.2 Reactive Blocks . 38
5.3.3 OPC-UA . 39

5.4 Expanding . 39
5.4.1 OSGi . 39
5.4.2 Reactive Blocks . 40
5.4.3 OPC-UA . 40

5.5 Summary and concluding remarks 41

6 Iteration 1: Connection and pair-ability 43
6.1 Initial build . 43
6.2 Guidelines for future development 44

6.2.1 How low level should the Reactive Blocks be 44
6.2.2 The what and how regarding the OSGi bundles 45
6.2.3 General APIs . 48
6.2.4 How the application shall be controlled 48

6.3 Unsolved Problems . 49
6.4 Summary and concluding remarks 49

7 Iteration 2: Implementation of simple swap example 51
7.1 Problems from last iteration . 51
7.2 Swap hardware application . 51

7.2.1 OPC-UA server implementation 52
7.2.2 OPC-UA client implementation 53
7.2.3 Reactive Blocks Swap Hardware application 55

7.3 Hardware service bundle implementation 57
7.3.1 Hardware driver bundle . 57

7.4 Unsolved Problems . 57
7.5 Summary and concluding remarks 58

8 Iteration 3: OPC-UA Client and hardware approach 59
8.1 Problems from last iteration . 59
8.2 OPC-UA datamodel . 60

8.2.1 Why a datamodel? . 60
8.2.2 Example datamodel . 61

8.3 OPC-UA method and events . 62
8.4 Mapping of namespaces for each hardware 62

8.4.1 Familiar identity . 63
8.5 Other fixes and improvements . 63

8.5.1 OPC-UA client conversion to Declarative Services 64

8.5.2 File install error . 64
8.6 Proper OPC-UA server service . 64
8.7 Unsolved problems . 65
8.8 Summary and concluding remarks 65

9 Iteration 4: Reactive Block focus 67
9.1 Problems from last iteration . 67
9.2 Upgrading through the OPC-UA layer 68

9.2.1 Some important factors . 69
9.3 Reactive Block application state . 70

9.3.1 The reactive block swap application 70
9.3.2 CarSensor component . 71
9.3.3 Light component . 72

9.4 OPCUA Client . 73
9.5 Listeners and whiteboard pattern . 74
9.6 Discussions with experts and users 74

9.6.1 Peter Kriens . 74
9.6.2 Richard S. Hall . 75
9.6.3 Martin Mueller . 75

9.7 Important developing hints . 75
9.7.1 Silent Exceptions . 76
9.7.2 OPCUA monitoring value update 76

9.8 Unsolved problems . 76
9.9 Summary and concluding remarks 76

10 Evaluation and conclusion 79
10.1 Summary . 79
10.2 Evaluation . 80

10.2.1 OSGi . 80
10.2.2 OPC-UA . 80
10.2.3 Reactive Blocks . 80

10.3 Conclusion . 81
10.4 Future work . 82

References 85

Appendices

A Code blocks 91
A.1 Event Handler implementation . 91
A.2 OPCUA Client DS conversion . 92
A.3 DS Configurations to the model bundle 93

B Communications 95
B.1 Backward compability confirmation from Jo Skjermo 95
B.2 OSGi discussions on IRC . 95

C Setup 97
C.1 Eclipse setup . 97

C.1.1 Logging with the current project 98
C.2 Properly retrieving master thesis code and importing into eclipse . 99

List of Figures

2.1 OSGi layering, taken from [73] . 10
2.2 What a OSGi bundle is composed of, taken from [47] 11
2.3 The SOA view of OSGi, taken from [47] 12
2.4 OSGi Life cycle, taken from [66] . 12
2.5 Representation of a module, adapted from [47] 13
2.6 Overview of reactive blocks [30] . 16
2.7 Building block usage . 17
2.8 System block with an initial node RB 18
2.9 A shallowblock called Switcher from the library 19
2.10 The analyzing tool in action . 20
2.11 OPC-UA hierarchy presented with reference 23
2.12 OPC-UA Object model vs old OPC modules 25

4.1 First draft architecture . 32

6.1 Wrap Java Archive (JAR) as OSGi bundle 44
6.2 Simple first application which was created in chapter 7 45
6.3 The logic whitin a CarSensor . 46
6.4 Version 2.0 of the architecture proposed in chapter 4 50

7.1 OPCUA client instantiation process . 52

8.1 The FartSensor datamodel/objectmodel 61

9.1 The affect of an update of the bundle impl 69
9.2 The current swap application with another hardware 70
9.3 The current sensorcomponent, reusable logic is marked 71
9.4 The current lightcomponent . 73

B.1 Backward compatibility confirmation . 95

xv

List of Code Snippets

7.1 HardwareAPI interface . 53
7.2 Event propagation example . 56
7.3 HardwareAPI interface . 57
A.1 Event handling code . 91
A.2 OPCUA Client DS configuration . 92
A.3 OPCUA Client DS activation class 92
A.4 FartSensorDataModel DS configuration 93
B.1 A chat with Jeff Goodyear on IRC 95
C.1 Log4j properties . 98
C.2 VM arguments . 98

xvii

List of Glossary

Android This is the Google OS for tablets and smart phones.

Apache Felix This is an OSGi spesification implementation by opensource company
Apache.

BND Tools an easy, powerful and productive way to develop with OSGi. Based
on bnd and Eclipse.

Bundle The name convention of the JAR files OSGi deploy in the framework.

C is a general-purpose programming language, which is one of the most widely
used programming languages of all time, and C compilers are available for the
majority of available computer architectures and operating systems.

C++ is a programming language that is general purpose, statically typed, free-form,
multi-paradigm and compiled.

Configuration Admin The OSGi Componendium Configuration Admin Service
specifies a service, which allows for easy management of configuration data for
configurable components.

Declarative Services (DS) is a component model that simplifies the creation of
components that publish and/or reference OSGi Services.

ESM This is the external state machine which encapsulates a building block.

Freeware is software that is available for use at no monetary cost or for an optional
fee.

IRC stands for Internet Relay Chat whic is a protocol for live interactive Internet
text messaging (chat) or synchronous conferencing.

xix

Java is a general-purpose, concurrent, class-based, object-oriented computer pro-
gramming language that is specifically designed to have as few implementation
dependencies as possible.

Java Enterprise Edition The platform provides an API and runtime environment
for developing and running enterprise software, including network and web ser-
vices, and other large-scale, multi-tiered, scalable, reliable, and secure network
applications.

JavaDoc is a documentation generator from Oracle Corporation for generating API
documentation in HTML format from Java source code.

.NET is a software framework developed by Microsoft that runs primarily on
Microsoft Windows.

PID This is an OSGi persistance identifier which is used to identify the different
services within a confiuration admin.

SINTEF The SINTEF Group is the largest independent research organisation in
Scandinavia.

Web Services This is a method of communications between two electronic devices
over the World Wide Web.

List of Acronyms

API Application programming interface.

EC European Commission.

EJB Enterprise JavaBean.

EU European Union.

ITS Intelligent transport system.

JAR Java Archive.

JBI Java Business Integration.

JMX Java Management Extensions.

MVC Model view controller.

NTNU Norwegian University of Science and Technology.

OPC-UA Open Platform Communications Unified Architecture.

OS Operation system.

OSGi Open Services Gateway initiative.

OWL Web Ontology Language.

RB Reactive Blocks.

SDK Software development kit.

SOA Service oriented architecture.

SOAP Simple Object Access Protocol.

TCP Transmission Controll Protocol.

URL Uniform Resource Locator.

xxi

Chapter1Introduction

”The introduction is like a first impression, either it seems interesting or
plain boring”

— Snorre L.v.G Edwin

1.1 Project background

Statens Vegvesen, the state-owned company in charge of the Norwegian road network,
is in a process of developing highly technological ITS stations. The work is done
closely together with ”SINTEF Teknologi og samfunn”, who also is the authors of the
specifications of functional and technical requirements. [67] This project was initiated
by multiple people within ITS section in Statens Vegvesen. And as Erik Olsen said,
one of the initiators, ”There are multiple people who have a foot in this project
and cooperative systems would not be a result of a single persons effort, rather a
cooperative effort by multiple people”. It has been initiated because ITS is something
that is an important center of attention for Statens Vegvense. An early focus on the
future problems and possible architectures has been important for Statens Vegvesen.

1.2 Problem outline

This thesis will study how the Open Services Gateway initiative (OSGi) spesification
[62] and Reactive Blocks (RB) [30] can aid in creating an application which is robust
and ready for improvements on the fly for roadside ITS stations.

In the end, a scenario is desirable in which ITS applications can be built from
RB and OSGi bundles, where specific capabilities of an ITS station are represented
by corresponding building blocks, and the specific application logic can be expressed
by combining the blocks accordingly. Generic functions like lifecycle management,
service discovery and graceful failures should also be modelled in an understandable
way, so it is easy to handle errors, upgrade and develop new functions for the
ITS stations. The communication framework which will be used is the OPC-UA
specification, which is currently in version 1.02, meaning very bleeding edge. The

1

2 1. INTRODUCTION

Software development kit (SDK) which will be used is made by a Finnish company
called Prosys OPC [64]. They provided an evaluation SDK which was used during
the thesis. This is the same SDK that Statens Vegvesen is using.

There will be direct communication with SINTEF and Statens Vegvesen to figure
out their edge cases and how they want to see the application work. If possible,
Statens Vegvesen will try to have a test station available, so that the test application
can run on live stations. Source code will be made available1, and through the
development phase, virtual test environments and dummy data will be used.

The methodology used is based on iterative experimenting with the chosen tech-
nologies and reading documentations and specifications for the different technologies.
As well as reading information and specifications covering Statens Vegvesens view on
ITS stations, and other related work that has been done in Europe. [10]

It was earlier proposed to focus on how too gather data from these specific
stations, but it was early decided that this is not in the scope of this thesis. Rather
be moved to another independent thesis.

1.3 Research questions

The following problems are based on discussions with Statens Vegvesen and some of
the issues they are experiencing with the current state of the research project. The
questions are also influenced by the point of view that the professor and the writer
of this thesis have. They both come from the Institute of Telematics at Norwegian
University of Science and Technology (NTNU), and have an interest in dynamic
architectures and state-full applications.

RQ1 How can the application be made robust in terms of error handling and
edge cases?

RQ2 How can the application be upgraded without any inconvenience?

RQ3 How can the application be expanded without any inconvenience?

1.4 Limitations

There have not been many limitations because the technologies work pretty well
together. But some limitations are based on what phase Statens Vegvesen is at,
that the specification itself is currently being written as we speak, meaning that a

1The repo is private so contact the writer for access, through the information on his GitHub
account.[21]

1.5. SCOPE AND ORGANIZATION 3

concrete direction for this project has not yet been set. Giving some uncertainness
on were to focus.

The thesis have worked with simulation data based on an earlier project and not
any real data from sensors meaning that some of the discussion have not taken into
account all the details which might be available on hardware itself.

As for RB who just started to support OSGi, meaning that there had to be some
workarounds with OSGi and it is of course still to be discussed on how much of the
OSGi technology should be incorporated into the RB framework.

Another limitation is that there are three advanced technologies and there are
endless possibilities with these technologies meaning that the writer does not have
had the opportunity to devour all three technologies completely. Which results in
some discussions based on experience and what background level the writer is.

1.5 Scope and organization

The thesis have been organized in a structure which first introduce the technical
background of the technologies, and then works on to related work and literature
evolving the three technologies. After that it will discuss how these results becomes
reality through the methodology. Moving on to the discussion involving the exper-
iments and our research questions. It will first compare the three terms from the
research questions against the technologies, then it moves on to multiple iterations
which experiment with different scenarios and unsolved problems. It all ends with a
evaluation and conclusion.

1.5.1 Technical background

This thesis will not dive into the specifics of OSGi, Reactive Blocks nor OPC-UA. It
will give a light introduction to what makes these technologies what they are today,
and refer to other articles and pages were it is possible to learn more about them.
It will rather focus on what might make these technologies a good match with the
current problem outline 1.2.

1.5.2 Literature and related work

This chapter will go through some related work based on the technologies used and
connecting them to the research questions this thesis is facing. There have not been
a lot of work directly related to what this thesis is covering because it is something
new. These technologies have never been used together in a project, and especially
not within the ITS station. But there are plenty of others who work on ITS on a

4 1. INTRODUCTION

higher level, which is mentioned, as well as others who are trying to cover some of
our research questions using OSGi.

1.5.3 Methodology

This chapter provides the current methodology used and how the work of this thesis
have been structured. It also mentions and early phase architecture which includes a
design for the control station. This is included just to convey how the ITS station
could communicate with the control station. But the technicalities and more detailed
architecture surrounding the data retrieval from the stations is not in the scope of
this thesis.

1.5.4 Iteration 0: Technology study

This chapter will address the problem outline and compare it to our technologies. It
will try to explain what the different technologies can aid with, in a solution for our
research questions.

1.5.5 Iteration 1: Connection and pair-ability

This iteration is the initial iteration which will concentrate on the fundamental
connection of the three technologies and what might be a proper fit. There are
multiple ways to solve this and they can be used in numerous ways. This iteration
also sets some guidelines for future work.

1.5.6 Iteration 2: Implementation of simple swap example

Here the thesis will hammer away at a special scenario, which is an implementation
of a simple hardware swap example focusing on OSGi and implementing some of
the OPC-UA features. This iteration will try out the guidelines and measure them
up with a test application. There will be some experienced problems and proposed
solutions in this chapter.

1.5.7 Iteration 3: OPC-UA Client and hardware approach

The application from the last iteration had some obstacles which had to be taken
care of for a better understanding. The main focus here is to use OPC-UA connected
to the hardware and propose a fitting implementation. It will focus on objectmodels
for OPC-UA, and better connection between the hardware & OPC-UA client, and
OPC-UA client & RB.

1.5. SCOPE AND ORGANIZATION 5

1.5.8 Iteration 4: Reactive Block focus

RB does not have had a complete focus through out the iterations. Therefore its time
to further develop the application with a focus on RB. This iteration will continue
from the state of the last application and go through a developing phase were the
application becomes upgradable in different modules and use the OPC-UA layer
completely in cooperation with the RB layer.

1.5.9 Evaluation and conclusion

It all ends with an evaluation and conclusion from the latter chapters. Some guidelines
for future work will also be set here.

Chapter2Technical background

”One’s mind has a way of making itself up in the background, and it
suddenly becomes clear what one means to do.”

— A. C. Benson

2.1 Intro

This thesis uses multiple different technologies which may be new to the reader.
Therefore the technologies will be lightly introduced in this chapter with referrals to
other comprehensive articles.

As mentioned in the introduction OSGi and RB are used as architectural technolo-
gies and OPC-UA as an communication protocol. The reason these three technologies
are interesting to combine into an architecture which is robust and expandable is
because they all provide their own important functionalities and benefits. For ex-
ample OSGi provides the opportunity to create a modular and dynamic application
where all the normal JAR files, which is called bundles in OSGi, might have their
own lifecycle. This will be greatly introduced in the section 2.2.

RB on the other hand accommodate the application with a structural overview
of how the application is built up. A user creates building blocks which gives the
opportunity for reuse and connects the blocks with flows to display how the event
movement and logic creates the specific application. It will be covered further in
section 2.3.

The last technology, which is OPC-UA, originally stands for Object Linking and
Embedding(OLE) for Process Control - Unified Architecture. It is an important
part that paves the way for users to be able to build the next generation of software
automation solutions. It is a communication model which is cross-platform Service
oriented architecture (SOA) for process control. [57] Can be understood as a way to
standardize the communication towards hardware. It is introduced further in section
2.4.

7

8 2. TECHNICAL BACKGROUND

2.2 OSGi

The writer of this thesis did a pre study on OSGi which can be obtained from [70].
The focus was modularity and lifecycle in an OSGi application. Based on this article
the interest to involve OSGi in this thesis was high.

”Open Services Gateway initiative (OSGi) technology is a set of specifications that
defines a dynamic component system for java. These specifications reduce software
complexity by providing a modular architecture for large-scale distributed systems
as well as small, embedded applications.” [62]

2.2.1 OSGi growing up

The OSGi specifications was started in 1998 and its main intention was the home au-
tomation market. They wanted to solve how to build applications out of independent
components.

This model is said to be the first model which ever achieved their promise to
create a component system that now solves many real dilemmas in everyday software
development. Developers who see the benefits of OSGi after its adoption can rapport
that it has saved them multiple hours in all aspects of development. For example:
reuse, code is easier to handle, deployment becomes effortless and developers could
start to think differently.

Because of this positive change to development, many applications have adopted
this technology, and OSGi is used in popular applications like Eclipse, Spring and
multiple applications servers. [41, 22]

2.2.2 Related work

There has been a lot of related work trying to handle the inadequacy that java
creates when it comes to modularization. The volume of related work has grown
over the years but there are a great deal of the different solutions which is not
directly comparable to OSGi. Some of these technologies are Java Enterprise Edition
which started almoast at the same time as OSGi, but on the other side of the
computing spectrum. But in the Java Enterprise Edition space, the thing that is
closest comparable to OSGi, is the Enterprise JavaBean (EJB). [38]

Moving on there is Java Business Integration (JBI) which provides the possibility
to plugin components and consume services. Which might seem pretty much like
OSGi with a quick glans, but OSGi is so much more, and its more natural to use OSGi
with JBI to create the modularity wanted. This actually happened in ServiceMix
from Apache. [44]

2.2. OSGI 9

In 2006 JSR 294, [37], was introduced under the name "Improved Modularity
Support in the Java Programming Language". This was a derivate from JSR 277,
[53]. During this time a project called "OpenJDK Project Jigsaw" was introduced,
hosts the Reference Implementation of JSR 294. This technology is the only one that
can be said to try to solve the same problem as OSGi. It is going to be baked right
into the java platform itself.[54] Some problems that have been discussed around
Jigsaw, is that it is not very mature and has a long way to go before it reaches the
stages that OSGi is at right now. But if it is done right, it can eventually become a
popular competitor of OSGi.[63] It was first planned to ship with java 7, but has
now been deferred to java 9 to allow more time for both development, review, testing
and feedback.[54]

But one important factor to have in mind, is that the two technologies should
to be compatible with each other. It would be a shame if these two platforms
couldn’t run unitedly, just because of tension existing between the OSGi and Jigsaw
communities. [52, 54]

2.2.3 OSGi architecture

OSGi can basically be viewed as a set of specifications, usually made possible through
the standard java manifest file, MANIFEST.MF, with the OSGi metadata. This
defines a dynamic component system for the java technology. The environment
enables applications to be built with components that can be dynamically added
and composed by other reusable components. They all hide their internals and
communicate through services, 2.2.3, which control objects called bundles, 2.2.3, that
can specifically share internals between each registered bundle using the manifest
file. It will utterly be explained in the following text.

Layers

The OSGi architecture is developed in layers as you can see in 2.1. This provides
benefits to creating and managing java applications since there can be developed
applications and bundles across each layer, and have better control of the system.
All layers can be used without the layers that are above them, but not visa versa.

OSGi bundles are the main part of the OSGi specification and is why it works so
well. Bundles might look like regular JARs but differentiate with OSGi metadata in
the MANIFEST.MF file,2.2.4, which declares essential information about the bundle.

10 2. TECHNICAL BACKGROUND

Figure 2.1: OSGi layering, taken from [73]

”A physical unit of modularity in the form of a JAR file containing code
resources, and metadata, where the boundary of the JAR file also serves as
the encapsulation boundary for logical modularity at execution time.” [47]

Bundle definition

♣

The bundle have to run inside an OSGi container which handles the MAN-
IFEST.MF properly. Meaning that the container will do actions based on the
properties the MANIFEST.MF file has. These properties are explained utterly in
2.2.4. Bundles can be deployed dynamically and have a lifecycle attached to it,
2.2.3. This allows the environment to be dynamic and services and bundles can
come and go. As for services, 2.2.3, this is something that a bundle can provide.
The reason the architecture is specified this way, is to endure the loose coupling and
have modularization in focus. Providing opportunities to upgrade and expand an
application without having to restart a system.

Services is an important part of OSGi. Java makes it complicated to write a
collaborative system with only class sharing. A standard solution for this problem
is to use factories. It works, and it is possible to provide the system with f.ex
a DocumentBuilderFactory using this technique. But as a developer there is no

2.2. OSGI 11

Figure 2.2: What a OSGi bundle is composed of, taken from [47]

opportunity to influence the implementation that is used, and by implementation,
refer to the service model, properties and conventions in the current class.

A service is an interface, with an implementation behind which a bundle can
register with the service registry, 2.2.3. Since this is separated into an interface and
implementation, it gives developers the possibility to use mulitple implementations of
the same interface. This can for example be different versions with new functionality.
This opens up for easier ways to upgrade dependent of the situation. Services also
facilitates better expansion of the application whit dynamically tracking the services
needed.

Service registry is the reason services work in OSGi. The factory model mentioned
in, 2.2.3, is a passive model, which means that the implementation just exists, with
one implementation available. It is not possible for the model to announce that it is
available for use, list the different possible implementations, nor be dynamic.

This is where the service registry solves a very important problem. For a service
registry overview, see figure 2.3. A service will always register with the service
registry when its ready to be deployed. By using the service registry the developer
can list possible implementations available in the registry, or even wait for a callback
when a specific service appears. Also the service can be removed from available
services when it is deprecated.

Since bundles are dynamic, as been mentioned earlier, they can suddenly be
withdrawn and other existing bundles using its service may crash because the service
is no longer available. To avoid this might seem like a truly complicated task, but

12 2. TECHNICAL BACKGROUND

Figure 2.3: The SOA view of OSGi, taken from [47]

it exists classes, utilities and callbacks in OSGi which minimize the complexity
utterly. Some utilites, which was tested out in this thesis, are Service Tracker and
the Managed Service Factory. It later moved on to Declarative Services which is
coverd in chapter 8. [24, 23] Chapters 5 and 701, and chapters 104.6, and chapter
112 in correct order.

Figure 2.4: OSGi Life cycle, taken from [66]

Life cycle is the OSGi layer which defines how bundles are dynamically installed
and managed. For example, if you were creating a car, the modules, 2.2.3, are the
engine and chassis, while the life cycle would be described as the wiring of the car
which provides life to the car. State diagram, 2.4, shows very easily what states that
can be transitioned too and from. It also shows that a bundle only have one start
state and one end state. So basically a bundle has to be installed before it can be
resolved. For a bundle to become resolved, it has to be able to access all its declared
dependencies. If a bundle is missing a dependency, it will stay in state installed and
provide the developer with an error. This makes it easy handle dependency troubles.

2.2. OSGI 13

There are many questions around a bundles life cycle. For example what if a
dependency doesn’t exist in the current environment? What if a bundle, that has
been acquired by other bundles, suddenly decides to stop? These can be further
studied in the pre studies earlier mentioned. [70]

Figure 2.5: Representation of a module, adapted from [47]

Module is the layer which is the foundation on which everything else rests upon in
the OSGi world. The module layer addresses all shortcomings of java’s dependency
handling and further improves it. Giving OSGi great opportunities and benefits of
thinking differently when designing and developing applications.

”A set of logically encapsulated implementation classes, an optional public
Application programming interface (API) based on a subset of the imple-
mentation classes, and a set of dependencies on external code.” See figure
2.5. [47]

Module definition

♠

There might be some confusion on the difference between a module and a bundle.
Module is a more abstract term, and this layer has strict rules for logical boundary,
as mentioned partially in the definition above. Bundle is how OSGi refers to their
solution of the module concept, and is more the implementation, the JAR itself.

Modularization aids drastically in reference to the research questions and terms.
It is what encapsulates the application and gives the developer options to provide
modules with different types of functionality. Making it easier to upgrade specific
functionalities or adding new functionality to the system.

14 2. TECHNICAL BACKGROUND

Security layer underlies all the different layers as displayed in Figure 2.1, and is
an optional layer. It is based on java 2 security, but OSGi has added a number of
constraints and fills in some of the blanks that is left open by the standard java. The
security layer defines the runtime interaction with java 2 security layer as well as a
secure packaging format. [24]

Some essentials for this layer is that it provides the infrastructure to control
applications running in an fine-grained OSGi framwork. Also the security layer does
not define an API for itself, rather the management of this layer is left to the lifecycle
layer, 2.2.3. But it is possible to use this layer to its own advantage, by controlling
which bundles can access what services and so on.

2.2.4 MANIFEST.MF

The MANIFEST.MF file is already existing in the java world, but OSGi has decided
to take advantage of it. This is where developers define some important static
properties for their current bundle, and it is important for the whole OSGi concept.
Here is a current manifest file.

Properties 2.1 An example of MANIFEST.MF

Manifest-Version: 2.0
Bundle-Name: DataService
Bundle-SymbolicName: no.dataservice.service
Bundle-Version: 1.0.0
Bundle-Description: Demo Service
Bundle-Vendor: Snorre
Bundle-Activator: no.DataService.impl.Activator
Bundle-Category: example
Import-Package: org.osgi.framework
Export-Package: no.DataService
Service-Component: OSGI-INF/component.xml

The first line of this MANIFEST.MF file indicates the OSGi metadata syntax
version. Where 1.0 defines that this follows OSGi release 3 and version 2.0 is OSGi
release 4 and later. Bundle-name defines a readable name for this bundle. This
should be a short, human-readable name that can contain spaces. The Bundle-
SymbolicName header specifies a non-localizable name for this bundle. The bundle
symbolic name together with a version must identify a unique bundle, though the
bundle can be installed multiple times in a framework as different version. The
bundle symbolic name should be based on the reverse domain name convention and
must be set. The next line specifies which version this bundle is and the description

2.3. REACTIVE BLOCKS 15

gives a short explanation to the bundle. The Bundle-Vendor header contains a
human-readable description of the bundle vendor. The Bundle-Activator header
specifies the name of the class used to start and stop the bundle if activator is the
way to go. The Bundle-Category header holds a comma-separated list of category
names. [24]

The two package lines of the MANIFEST.MF are very important! They define
what packages this bundle should make visible to other packages, and what packages
it should import. This has to be included if a bundle should depend on some other
class, and only adding to the build path is not enough. If a bundle has an API it
should be added to the export path.

The last line is added because its important to see how Declarative Service
components are activated, because it is used within the thesis. If this line is added
the Bundle-Activator can be removed. The handling of a life cycle is taken care of
by the Declarative Service component.

Many of these lines are just for human eyes and is not interpreted by the OSGi
framework. There are only 5 lines which will be interpreted here, and that is the
version, symbolicname, activator, and the two package lines. To be picky, there are
more headers which is interpreted, but it depends if DS is used or not. There may be
many more headers in a MANIFEST.MF file but its not in the scope of this rapport.
If interested, take a look at the OSGI specifications [24].

2.3 Reactive Blocks

Reactive Blocks (RB) SDK is an engineering tool to build solid, highly concurrent and
event-driven systems from reactive building blocks, fig 2.6. [30] It allows developers
to create applications which can be deployed to any device or hardware running
java. Bitreactive with RB solves three fundamental software design principals which
cannot be called new. They just combine them in a proper way.

The list of principals:
• Divide and conquer, then reuse effectively
• Visualize your system
• Automatically and formally verify everything, always

The engine behind, the RB SDK is a set of tools currently integrated into eclipse
which allows the developer to use a combination of java code and a graphical editor to
create complete applications.[36] The graphical editor provides the overview needed
to solve problems without loosing track of the code. And because of the seamless

16 2. TECHNICAL BACKGROUND

Figure 2.6: Overview of reactive blocks [30]

integration with Eclipse JDT it opens up for java coding which removes the thoughts
of limitations which might occur when the developers are provided with a graphical
editor.

2.3.1 Building blocks

This term has been mentioned, and its important to clarify what a building block is.
It is a reusable software module, which is designed to handle event-driven systems
with ease. A block may seem like a simple API, but they also have all the logic,
states and code to handle that give use this building block has been designed for.
Blocks combine graphical data flows and code. The data flow takes care of concurrent
behavior and synchronizations. Code describes detailed operations on data.[30]

In figure 2.7 it is possible to see a building block provided from a library. The
Simple Service Tracker is a implementation of an OSGi Service Tracker which is
very easy to reuse. All that is done by the user is to define what kind of service it is
suppose to handle. And of course draw up the flow to create the actions from the
different output pins of the Service Tracker.

There exist different types of building blocks dependent of what the developer wish
to achieve.

The list of building blocks:
- General blocks

• System block
• Local block
• Shallow block
- Android blocks

2.3. REACTIVE BLOCKS 17

Figure 2.7: Building block usage

• Android Application
• Android Building block

A system block is the upper most level of an block or application. The application
always populates from the root system block and wanders down into combinations of
local blocks, singeltons and shallow block. It also exist Android blocks for developing
Android applications with their respective SDK. But this is not something that will
be further discussed.

System block

The system block is the initiator of the whole application, the main method so to
say. There exists only one system block per generated JAR file. A system block is
instantiated with an initial node, figure 2.8, which generates an initial control flow,
that can lead to multiple local blocks which becomes the application. The running
JAR is a compilation of all the blocks within the system block, so there will not be a
JAR for each block used. It is also possible to compile into an OSGi bundle, which
is what this thesis will be doing. The only difference is that it will be possible to

18 2. TECHNICAL BACKGROUND

use OSGi services inside the application and the bundle can be deployed in an OSGi
environment. But the system block will still only be one bundle.

Figure 2.8: System block with an initial node RB

Local block

This is the block most commonly used because these are what creates the application
inside the system block. Since RB is built up of an hierarchy, there can be multiple
levels with RB. Meaning that a local block may have a complete set of blocks within,
except for a system block. This thesis will not go into details of how these blocks
can be modified or added parameters and such, please refer to the developer page at
Bitreactive. [32]

Usually, each building block is instantiated once, which probably is expected.
But besides this normal case, there are some other multiplicity patterns (or session
patterns) that are possible, and that allow to handle various cases. The possibilities
are singleton, multi-session, single-session and of course normal. Depending on the
session type, communication with the session works differently, for more detailed
explanation see [35]

Shallow block

A shallow block only has parameter nodes and external behavior (ESM). It does not
contain any Java code. This is just like a local block which shall be reused inside
another local block or a system block. Its only function is to regulate and organize
flows in a more robust way than regular activity nodes like merge and join can do.
For example the Switcher in figure 2.9 is a simple flow switcher which starts on
default out1 for the first incoming flow. If there has not been any flow to the switch
input, the next flow will also head out of out1. With this Shallowblock its possible to
control where flows should go, just like a train.

2.3. REACTIVE BLOCKS 19

Figure 2.9: A shallowblock called Switcher from the library

2.3.2 Reuse

The RB SDK allows you to use existing building blocks from other providers, or
yourself, by simply drag and dropping from an existing library or project. This
facilitates a high focus on reuse when creating building blocks, which allows for more
efficient coding and the implementation of building block standards. [33]

Currently in the provided library from Bitreactive, it exists heaps of already
implemented blocks which can be used directly into an existing project. Which is
kind of an ”app store” for blocks.

2.3.3 Visualization

This is an important factor for having an overview of the existing code. People
generated diagrams all over the place to create an overview of the specific code but
an issue is that the code can be refactored thoroughly, and then its important to
update the diagrams. This provides extra work and may often be forgotten. That is
were RB generates the diagrams as we create the logic. RB let you have the cake
and eat it too.

20 2. TECHNICAL BACKGROUND

2.3.4 Verification

Its important to get feedback on errors if something is wrong with the graphical
model or the code base during development. Because its important to reduce errors
at run time by avoiding them in the first place, catching them at development time.
This is solved in RB with an analyzing tool provided in the graphical editor. It
is possible to analyze each block seperatly because they are encapsulated by their
contracts. [36]

Figure 2.10: The analyzing tool in action

As figure 2.10 displays, its possible to walk through all the steps which might
happen within the application to verify that your thoughts actually are realized. For
example what happens to the activity diagram when okSpeed is activated and the
flow goes over to blinkGreen? This tool will then visualize this by ”executing” this
flow and see what state and possibilities the flow diagram then have. Parts of this
analysis also happens at coding time providing the developer with useful feedback
on what is possible and not.

2.4. OPC UNIFIED ARCHITECTURE 21

2.3.5 Why use Reactive Blocks?

Because complete applications are created reusing multiple building blocks and
system blocks which uses event driven data flows. This is the perfect combination for
concurrent applications, because it solves event driven problems visually which pro-
motes a descriptive control. Aiding in the possibility to have a shared understanding
of the current application which is a wanted feature for users from other domains
than the developers.

2.4 OPC Unified Architecture

OPC-UA is a result through a long lasting collaboration of industry leaders that had
the goal to create an open standard which enables the exchange of information in a
rich, secure and object-oriented way. There is an already existing version of OPC
specifications which rely on Windows technology and have a lot of restrictions because
of that. For example it is dependent on windows technology, lack of security, no
configurable time-outs and so on. It had alot of smart functionality but considering
the architecture and the times that were coming, it was important to find another
solution. That is why the work on OPC-UA began. The new and cross-platform
capable architecture, OPC-UA, has all OPC functionality, pluss additions, and is
backward compatible with OPC, which was an important factor for Statens Vegvesen.

OPC-UA has been developed based on missing factors from the older OPC
specifications.

Future important factors: [39]
• Microsoft’s COM and DCOM, the foundations of earlier OPC specifications,

are now officially legacy technologies.
• Web services now offer the primary mechanism for data transport between

computers (and also provide a better option for communications with plant-floor
devices).

• Earlier OPC specifications failed to provide a single coherent data model - e.g.
the Data Access item hierarchy was totally disjoint from that offered by Alarms
and Events. This needs to be a focus.

• Backwards compatibility with earlier OPC specifications is key to acceptance
of any new standard.

The old legacy technology for communication is not a very wide standard anymore,
therefore OPC-UA have decided to use web services for primary transport. See
section 2.4.2. The old OPC provided alot of the same functionality but in different
disjunctive interface definitions, such as OPC Data Acces, OPC Alarms and Events,
OPC Commands and so on. Now OPC-UA unifies these OPC definitions into one

22 2. TECHNICAL BACKGROUND

model and providing a common interface. See section 2.4.4. Regarding the earlier
official backend OPC technologies, which now is legacy, the focus have moved over
to providing multiple implementations, 2.4.3. Information regarding the following
sections strains from the OPC-UA specifications1

2.4.1 What is OPC-UA

OPC-UA is a way to standardize communication towards hardware, making it easier
for users to abstract the hardware handling. The following text is an explanation
from Simone Massaro regarding OPC-UA and how it affects this situation:

”The information carried within an object is far richer than the information
carried with simple row data. In a typical automation application, you rarely wish
to analyse single, isolated row data. Its far more interesting to analyse the data in
terms of its relationship with other data, and in terms of the operation that can be
performed.

Any real-life object carries a tremendous amount of information within it. For
example, when thinking in terms of objects, the information carried by a ”boiler”
object is far superior to the simple combination of individual row data for pressure
and temperature. A physical boiler is an object that we can physically interact with
by turning it off or on, by changing a reference temperature setpoint or by analysing
how a change of a parameter affects the others. This information is logically grouped
and must be analysed all together.

In software terms, an object is a collection of properties (temperature, pressure),
methods (turn off, turn on) and events (temperature is too high, pressure is too
low). Objects are organized in hierarchies in such a way that an object can contain
simpler smaller objects as properties (the valve of a boiler can, itself, be an object
that exposes properties, methods and events). When thinking in these terms, its
clear how beneficial it would be to map the data of the factory floor into a hierarchy
of objects.” [58] Exactly what OPC-UA has done.

It is a well structured information model which is created by address spaces.
The address spaces is defined by a structure of elements which consists of Objects,
Types and Views. The model structure is defined hieratic but is a so called full mesh
network which allows for cross referencing to other parts of the current hierarchy
2.11. [55, 46]

When using the SDK from Prosys OPC, and creating a server, there are some
default objects which reside within the created server. This is based on OPC-UA

1OPC-UA specifications website: http://www.opcfoundation.org/default.aspx/uaspecdownloads.
asp?MID=Developers

http://www.opcfoundation.org/default.aspx/uaspecdownloads.asp?MID=Developers
http://www.opcfoundation.org/default.aspx/uaspecdownloads.asp?MID=Developers

2.4. OPC UNIFIED ARCHITECTURE 23

Figure 2.11: OPC-UA hierarchy presented with reference

specifications. The objects which is created within the server is noted by an * in fig
2.11. The first four objects are mainly folders which have its own node manager,
2.4.8. The last default implementation is a server object, which represents the current
OPC-UA server with its properties and methods. This allows for controlling and
monitoring the server. There are already multiple functions and listeners implemented
which aid in these actions.

The last three objects are created by the user. The MyObject can be whatever,
a boiler, a sensor, a light, with its properties, alarms & events and methods. The
MyView objects are a way of mapping specified OPC-UA objectmodel items into one
object, see section 2.4.10.

2.4.2 Protocols

This is a big improvement for the OPC-UA standard compared to old OPC. Now
OPC-UA supports two protocols, Transmission Controll Protocol (TCP) and Web
Services, which is only recognizable to the user by looking at the Uniform Resource
Locator (URL). OPC-UA is totally transparent to the API. The two protocols have
their differences and exist for a reason, for example the TCP has best performance,
lowest resource consumption and also use the arbitrarily TCP port for communication
which means that it is better suited for tunnelling and enablement through firewalls.

As for Web Services, Simple Object Access Protocol (SOAP), it is better suited

24 2. TECHNICAL BACKGROUND

for using with environments such as java and .NET and is firewall friendly because
its using HTTP/HTTPS ports. [57, 69]

2.4.3 Implementations

As for now there exist some commercialized implementations of the specifications
in both java and .NET. Companies such as Prosys OPC actually provide SDK for
pretty much all languages, .NET, java and C/C++. They also deliver a client for the
Android OS. Other companies providing commercialised implementations are Ignition,
Matrikon or Softing. Next to commercialised are open source libraries. These also
exist around the internet, such as opcua4j(java), OpenOpcUA(C/C++), Unified
Automation(C++,ANSI C, Java) and OPC Foundation. But OPC Foundation may
need membership to download the desired code.

Because all of these different implementations exists it allows for a much widespread
cross-platform hardware handling. Now that java exists, it can run anywhere a java
program can run. Opening plenty of opportunities. The same goes for the C and
C++ implementations which basically runs on any computer architecture. [50, 51]

2.4.4 OPC-UA Object model

The object model is what makes up an object in the address space. An object can be
pretty much anything within the hierarchy 2.11, but it will all have its own properties,
variables, references, methods, alarms & events. The following figure,2.12, compares
the new UA object model and its properties to the old OPC disjunctive interfaces
and displays how everything is now combined into one object model compared to the
the older OPC.

This is one of the most important functional units within the address space [49]

2.4.5 OPC-UA Node Model

This node model is closely interconnected with the object model. Because as men-
tioned objects and their information is what the server provides to the client in the
address space. And the way that objects and components is defined within the server
space, is through a node model which is described by attributes and references which
can be connected in a mesh network. [55]

The attribute of the node model describes the node and has something called a
Node Class. This defines what class this node is representing, which can be object,
variable, method and so on. Read more at [49, 26, 27]

2.4. OPC UNIFIED ARCHITECTURE 25

Figure 2.12: OPC-UA Object model vs old OPC modules

2.4.6 OPC-UA server

OPC-UA has defined their connection stack as server and client. Where the OPC-UA
server is the object which holds the address space and models, and also pass along the
events and alarms which might happen during runtime. The server is what usually
is connected to the hardware and holds the current datamodel and address space for
that hardware. The server can of course have multiple address spaces meaning that
multiple hardware can have their data models reside in the same OPC-UA server.
This approach is something this thesis will try out. The server is also responsible
for the history access of the readings which has happened between the server and
component.

2.4.7 OPC-UA client

The client on other hand is the component which has been designed and implemented
to browse the address space of an OPC-UA server. The client can be viewed as a

26 2. TECHNICAL BACKGROUND

middle man for data- collection and -browsing. For example a company has multiple
sensors which is placed in the terrain collecting valuable information. The client on
the other hand resides at the company base and is connected to the servers receiving
updated information and has the opportunity to browse the current sensor remotely.
During this scenario the client connects to multiple servers and have access to their
current address space, events and alarms.

This thesis is going to use OPC-UA client in a particular way. It will be used as
an object for looking up namespaces/addresspaces which belong to different hardware
connected to the ITS station. This is because an OPC-UA client is especially designed
for browsing and data-listening.

2.4.8 OPC-UA NodeManager

The OPC-UA NodeManager is the interface which allows for browsing and managing
the address space. As mentioned earlier each default object on server instantiation
has its own node manager. Through that node manager, it is possible to manage
all children nodes. But this is not optimal, so it may be clever to generate node
managers for different bigger objects. Each node manager is created with a name
space to identify that particular node manager. Which brings us to the next section.

2.4.9 OPC-UA address space & Name Space

These two terms can be very similar and might be used somewhat interchangeably.
The address space actually represents the whole server address space. Including all
the name spaces, objects and nodes which exists within the server. While a name
space is a string identifier passed a long when creating a node manager. So if one
want to differentiate different spaces within the server, one have to map up name
spaces or use OPC-UA views.

2.4.10 OPC-UA View

Views are a way to define an information model which is restricted to only the
objects and values the user chooses. It is a very unified denomination within the
software development industry. Views are used in multiple techniques, like Model
view controller (MVC), or defined views in a Couch DB [2]. It means the same
everywhere, a restricted data set. It is also how its used here in OPC-UA.

As specified earlier the information gathered in the latter sections strain from
the OPC Fountdation specifications 2

2OPC-UA specifications website: http://www.opcfoundation.org/default.aspx/uaspecdownloads.
asp?MID=Developers

http://www.opcfoundation.org/default.aspx/uaspecdownloads.asp?MID=Developers
http://www.opcfoundation.org/default.aspx/uaspecdownloads.asp?MID=Developers

Chapter3Literature and related work

”If literature isn’t everything, it’s not worth a single hour of someone’s
trouble.”

— Jean-Paul Sartre

As mentioned in the introduction the literature basically evolves around specifications
and documentation for the possible features of the technologies chosen. OSGi, OPC-
UA, RB [24, 43, 32]. The reason for this is that related work mainly focus on
the high-level architecture, meaning that they dont go down into the technical
spesifications. This thesis on the other hand will focus on the low-level architecture,
and as mentioned before, SINTEF is currently writing a high-level architecture
spesification for Statens Vegvesen. There is also some literature on how to create a
dynamic environment, robustness and upgrading using OSGi.

Connecting these three technologies has never been done before, and because of
this, there is an restriction on how many papers that exists. That is why the focus
on specifications and documentations has been so high. But Statens Vegvesen has
already been doing some work with some of these technologies separately. 3.3

3.1 OSGi

Its an advanced topic which could have been written about in multiple papers
depending on what angle is chosen. But since the research questions focus on robust-
ness,upgrading and expansion it has been important to look into some information
regarding these focus areas.

3.1.1 Robust architecture OSGi

When it comes to robustness, which is elaborated in perspective to the technolgies in,
5.2, it basically means that things should work. That is also why OSGi is a usefull
framework for handling robustness. Why, will be explained more detailed in section
5.2, but here are some references discussing this particular subject. [56, 72]

27

28 3. LITERATURE AND RELATED WORK

The first citation is an OSGi community event from 2013 talking about robustness
within collaborative services using OSGi. It brings up some subjects that has been
mentioned in this thesis and confirms some important views. The second citation is
an article regarding robustness using OSGi and how to handle hardware exceptions
and unexpected exceptions at runtime in a proper way.

3.1.2 OSGi and update/expansion handling

Updating is an important feature for all applications and systems. There might be
new features or existing problems which should be handled. This is covered more
extensivly in 5.3. OSGi has a dynamical environment, because of this it expedites
the feature of upgrading. But one important factor when updating bundles in OSGi
is having a focus on the states. Three guys from University of Shanghai wrote a
paper about "ASM-based Model of Dynamic service update in OSGi". [74] This
provides ideas regarding RB, which is using an ESM. RB might be able to be used as
an OSGi updating platform, or just build some smart blocks focusing on updating.
This should be for a future paper. But its food for thought.

3.1.3 Dynamic OSGi architecture

This field is a very interesting topic because its an ongoing debate on what is the
best solution and how this can be done properly. But of course it is very dependent
on what the context and environment is. Since this thesis focus on telematics and
ITS perspective of dynamic architecture, there have been some interesting articles
confirming some of the thoughts this thesis brings to light.

The article ”OSGi Based Service Infrastructure for Context Aware Automotive
Telematics” [75] mentions architectural solutions of problems which Statens Vegvesen
have proclaimed as a functional and technical requirement in their document [67].
Referring specifically to their vehicle ITS sub-system. This article from Daqing Zhang
and Xiao Hang Wang also confirms our OSGi thoughts of having bundles covering
each connection interface and placing a model, an OPC-UA model to be specific, on
top of that specific hardware interface. They handle their context awareness using
Web Ontology Language (OWL). But this thesis will endeavour on handling the
different types of hardware using OPC-UA models and events.

3.2 OPC-UA

OPC-UA is a very widespread technology which is used in multiple domains. So
finding articles or papers within this specific domain has been difficult. For now this
thesis can only relate to the work Statens Vegvesen have done with OPC-UA. As for
literature there have been mostly specifications and documentation.

3.3. STATENS VEGVESEN 29

Most of the work that is beeing done with OPC-UA can be related to some
particular fields within this theis. Such as device integration [45] or specifically
address space research [49]. The last article gives some good ideas regarding thoughts
about this thesis suggested architecture evolving OPC-UA and hardware object
model. There can of course be found plenty of work regarding OPC-UA but nothing
particularly more specific.

3.3 Statens Vegvesen

Statens Vegvesen have already been working a lot with OPC-UA in a project were
they focus on data collection from the Norwegian road network. [65] This is a project
which paved the way for another project which is now in the production state and
is being developed as we speak. This project can be related to the control station
this thesis decided to not focus on, which is mentioned in the introduction, chapter
1. They have currently outsourced the production of roadside equipment to other
producers. But they have given a sense of OPC-UA data model standard they wish
to connect to.

So Statens Vegvesen is not unfamiliar with the technology and OPC-UA is
something they are going to use in the future years. They are already using OPC for
certain tunnel control systems, and want OPC-UA to graduatly replace this. That is
why backward compatibility was so important.

OSGi has been used in a research project which SINTEF have been engaged
in. It was not very widely used, but they have tried it out and have some sense of
how it works. The project was called "Test-side Norway" or "Wise Car" [68]. The
implementation was Q-Frees1 responsibility with Runar Søråsen.

Reactive Blocks from Bitreactive[30] has never been used in an existing project
and is a new introduction to Statens Vegvesen. It was introduced because ITEM
NTNU has a close contact with Statens Vegvesen and Bitreactive was founded based
on technology which was created at ITEM NTNU. It is desirable to have a close
cooperation.

3.4 ITS focus around the world

ITS stations is not an unfamiliar term outside Norway. It a wide spread opinion
that traffic and travel need to combine information and communication technologies
with the current transport picture today. [10] But most work has been high level
architecture. Not a lot of specific technical work.

1Q-Free homepage: http://www.q-free.com/

30 3. LITERATURE AND RELATED WORK

3.4.1 EU

As European Commission (EC) states, ”The main innovation is the integration of
existing technologies to create new services”.[10] By this its understood that its not
necessary to invent the wheel all over again, just create some smart connections to be
able to provide new services and receive new information. The state of the current
ITS is limited and fragmented were European Union (EU) have acted to bring the
state into becoming EU-wide. [10]

3.4.2 US

US have developed a national ITS architecture which is currently at version 7. [20]
This can be compared to the specifications which SINTEF is currently writing for
Statens Vegvesen. [67]

The architecture defined by the US is a very extensive specification so this thesis
wont go into any detail about this, but it is a very high level architecture specification,
compared to thesis’s low-level architecture.

3.4.3 China

Its not only the western world who focus on ITS systems but also Beijing have had
ITS in focus. [71]. This is not directly related to this thesis but its a higher level
article about ITS in Beijing.

Chapter4Methodology

”I think you can have a ridiculously enormous and complex data set, but
if you have the right tools and methodology then it’s not a problem.”

— Aaron Koblin

4.1 General

This thesis focus on creating an architecture which is robust, expandable using three
spesific thecnologies.

How the work has been structured during the process of this thesis has mostly
been a literature study of the three technologies and their possibilities. As well as
trying to define an architecture based on the existing knowledge, and experimenting
with the chosen technologies. It has been an iterative process with defined focus
points for each iteration. This methodology can be compared to design science
methodology.[48]. But the guidelines does not match perfectly for this type of
process. For example it is hard to follow the guideline which involves research rigor.
Since this is the first time it has been done and there is not much relevant work on
this subject.

Second it will not be possible to design a viable artifact, since it was to much
technological connections and designing to be done for a product to be delivered to
a test station in time. This will be mentioned in further work, 10.4. Because some of
these guidelines does not match the designe scienece methodology, this thesis will set
some specific guidelines for the methodology used here, 4.2.

The first iteration unfolded how the three technologies may be interconnected
and used together. And the following iterations have targeted different focus points
in regards to our research questions, with more advanced situations as the iterations
have progressed.

An early architectural draft was made to set a sense of direction for the assignment
and important factors that should be considered. See Figure 4.1 When looking back

31

32 4. METHODOLOGY

Figure 4.1: First draft architecture

at this architecture its easy to see that the knowledge of the different technologies
was not profound. Refer to architecture figure 6.4 to see where it was headed after a
broader technology study.

This architecture conveys a simplistic view on how OPC-UA and OSGi could
work together, but does not mention anything about RB. That is because RB is a
way of designing your java application. This architecture also provides an insight in
how the control station could be designed, but this is not in the scope of the thesis
as mentioned in the introduction.

4.2 Method guidelines

According to our methodology, which is iterative experimentation with given focus
points and a pre technological literature study, it makes sense to have a some guidelines
on how to work. These are based on discussion with study mates, supervisor and
logical sense:

Nr.1 Exploration of the given information from Statens Vegvens and SINTEF
is important to get a better understanding of ITS

Nr.2 Study the technologies which should be used to get a sense of possibilites

Nr.3 Define some given focus points to be explored

y Iteration start

Nr.4 Begin an iterative process with experimenting on the simplest focus
point of the ones left

4.3. LITERATURE STUDY 33

Nr.5 End iteration with feedback on results from the current experiment

Nr.6 Rethink the future focus points, add new ones if necessary

Nr.7 Write about the iteration

x Iteration end, redo

This can go on and on until the whole assignment has been solved. But there is a
time restriction so we will see how many iteration it is possible to finish during this
thesis.

4.3 Literature study

The structure of the literature for the thesis has been mostly specifications and
documentations from the three technologies employed in this thesis. They can all
be found on their respective sites. [62, 30, 61] The documents had to be studied to
give a good impression of what the technological possibilities were. Knowing these
possibilities would give the opportunity to create the most intelligent architecture
that would be possible with the features provided. This would also give an advantage
in covering the questions that 1.3 mentions.

Specifically for OSGi, the writer has written a pre thesis assignment on "Modularity
and Lifecycle of OSGi Applications" [70] which builds the foundation of the interest
towards OSGi.

Statens Vegvesen also have literature that was worth reading to get the necessary
background information for the current ITS project. Such as [65, 67]. They also
provided with a sample application which helped a lot in the understanding during
the initial development.1

By studying what other companies have done throughout Europe gave insight in
how the future ITS stations should work, giving this thesis some food for thought.
Most of this information could be retrieved through the European Commission web
pages regarding transport and ITS system. [10] If other sources is used they will be
cited at that place.

1Can be obtained by contacting the people involved with this thesis from SINTEF IKT og
samfunn or Statens Vegvesen ITS Trondheim

34 4. METHODOLOGY

4.4 Development tools and technology

4.4.1 Eclipse

As for technologies, these are pretty much covered in the next chapter and mentioned
considerably through the thesis. But as for development tools it is an easy setup.
The setup is dependent of Eclipse 3.7[42], which can run in any Operation system
(OS) that support java. But to setup the eclipse is sort of a process. Browse down to
the appendix to read about the eclipse setup. Appendix C.1

4.4.2 GitHub

There were written some lines of code and designed some building blocks during the
thesis which is available on GitHub.2 To be able to get access to the code you have
to contact the writer to get approval on downloading the code. Please refer appendix
C.2 for more detailed instructions on how to retrieve and import project.

4.4.3 OPC-UA tools

There were also used some OPC-UA tools for trying out the different modules
during development. The OPC-UA client from Unified Automation - UaExpert[28],
was an important tool when developing the server and the different datamodels.
It was necessary to have an adequate application which could browse the address
space, change variables and call methods. If this tool was not used, it would be
difficult to get a proper client up and running, because the uncertainty of the servers
implementation was to big. Therefore one could validate with this client tool from
Unified Automation.

It was also important to have a test server in an early stage to understand how
the whole OPC-UA environment worked. This was provided by the Prosys SDK.
There are a bunch of freeware servers available.

2The repo is private so contact the writer for access, through the information on his GitHub
account[21]

Chapter5Iteration 0: Technology study

“It has become appallingly obvious that our technology has exceeded our
humanity.”

— Albert Einstein

5.1 Intro

This thesis had focus on the three research questions in section 1.3. They involve
robustness, upgrading and expanding an application deployed to a current ITS station.
These are important terms considering that the ITS stations are often placed far out
in the field, near roads, and would be a hassle if technicians had to go out to the
stations every time something was wrong or Statens Vegvesen wanted to upgrade
their application. Also in these days electronics and software are an important aspect
of the daily lives and users should be able to trust the applications being deployed.
That is some reasons why these terms are important for Statens Vegvesen, and this
thesis will try to present some opportunities regarding an ITS station.

This iteration is called the iteration 0, because it does not follow our iteration
steps completely, but it was a process of feedback and pondering over the future
rundown. It incorporates the first step of our methodology guidelines, which was
study the technologies. Through out this iteration they have been researched and
examined the opportunities available . The technologies have been put into context of
each term. The three mentioned categories will be considered, and for each category
it will be a small discussion around what kind of opportunities each technology
provides. After this introduction the thesis will portray some iterations with different
focus points explaining the bumps and solutions towards a working application and
proper architecture.

35

36 5. ITERATION 0: TECHNOLOGY STUDY

5.2 Robustness

Strongly formed or constructed; capable of performing without failure under
a wide range of conditions [13]

Robust definition

♣

As mentioned above its important for Statens Vegvesen to be able to trust the
application being deployed along the road. This equipment and application provides
reliability to traffic and serves as an important data collector. As they have stated
in their specification [67]:

”The Transportation Network Information Manager is responsible for that
information about the Transportation Network, in this case the road network,
is established, verified, updated and made available to other functions. This
includes both static and dynamic information about geometry, regulations,
condition and deviations. For example:

– Conditions caused by unplanned/unforeseen events (e.g. due to weather
or accidents)

– Environmental conditions

– Transportation Network Equipment status (e.g. signaling and commu-
nication equipment)

The transportation Infrastructure Manager will pertly receive this informa-
tion from the Roadside ITS stations.”

Statens Vegvesen spesification

In hindsight of this specification, if the application were to be down every other
day for a couple of hours, it would loose important data and information, and might
even cause car accidents.

That is not a desirable scenario. So considering that OSGi is dynamic and the
ITS stations will be working with multiple hardware which may fail at any point,
its important that the rest of the application will not crash on a simple hardware
error. Its important to remove any single point of failure and have a backup solution
for error scenarios that is known. This is achievable through a modular and SOA

5.2. ROBUSTNESS 37

architecture which will be provided using OSGi.

This thesis have considered an architecture which provides the main application
an opportunity to handle any loss of services generated by outer circumstances.
Meaning that this architecture will try to separate the necessary modules to create an
environment for the application be able to respond to edge cases. The logic behind
this response will be generated and visualized with RB.

Of course, not all cases can be handled, some will be forgotten, that is why we
have brought in the term of upgrading, so when experiencing an unhandled egde
case, Statens Vegvesen can quickly deploy a new version to fix the situation.

5.2.1 OSGi

By using OSGi, which provides the opportunity to have modules with their own
lifecycle. This architecture can benefit by stopping the current bundle causing the
errors, and therefore letting the application live on without this failing module. This
will of course have to be handled defensively in the code which is one of the most
important OSGi code principals. Also this is why RB have been included in this
thesis. Visualizing the specific logic of each application module within the ITS
station.

5.2.2 Reactive Blocks

The logic of an application can be difficult to visualize with pure java code, it can
become messy and usually only the programmers who are participating in the project
understand the code. Therefore its difficult for programmers to explain the logic
of what has been created, especially towards users from other domains. Using RB,
participants can easily study the architecture visualization and understand the flow
of the code. Because of RB, different domains may together discuss and provide an
upgrade to an edge case which arise.

5.2.3 OPC-UA

OPC-UA is also introducing a solution to the robustness problem. It provides an
opportunity which is more indirect compared to the other two technologies. For
example, if some hardware breaks down, or some hardware turns out to be useless,
Statens Vegvesen have to change this into something that provides the quality they
desire. Since the data model has been standardized it will not make any differences
within the application logic what hardware is recording data in the specific situation.
This is because there will be a data model with the same APIs as the older hardware.
So deploying a new hardware will become a whole lot easier.

38 5. ITERATION 0: TECHNOLOGY STUDY

5.3 Upgrading

An occurrence in which one thing is replaced by something better, newer,
more valuable, etc. [14]

Upgrade definition

♦

Statens Vegvesen will experience unforseen happenings where some can be solved
programmatically and some have to be fixed physically. Therefore its important to
have the opportunity to be able to upgrade and deploy new versions of particular
modules without any considerable difficulties. By difficulties it involves challenging
to deploy, the need to take down the whole system and burdensome to manage.

5.3.1 OSGi

Because OSGi provides a lifecycle through their specification, it gives the architect
and programmer an opportunity to create better controlled applications. Since there
is a lifecycle, bundles, or JARs as known to java developers, can be deployed at any
time of the day, given that the remote connection is created. Meaning that we can
upgrade any individual bundle providing specific functionality, at any given time.
This must be handled in the code and thought about when developing, but OSGi
provides the opportunity.

During the upgrading process OSGi use smart algorithms which can be reviewed
in [70] page 32 and onwards. As for easy deployment there exists a great deal of
frameworks from OSGi assisting the project in deploying new bundles. This is not in
the scope of the thesis, but here are some frameworks which could assist: Karaf [6],
Apache Felix OBR [5]. There are of course possibilites to develop the deployment
framework on your own using the OSGi spesifications.

Its also worth mentioning that OSGi provides advanced dependency handling
within the container. Giving the application the possibility of multiple versions of
the same bundle residing within the application. This can arrange for a very granular
upgrade process to make sure that everything works between each change.

5.3.2 Reactive Blocks

Reactive blocks does not provide any opportunities for the upgrade process other
than that users will always have a visual control over the flow of the application.
During the related work it was mentioned an article regarding upgrading OSGi
services with an abstract state machine, 3.1. This can be connected to RB in regards

5.4. EXPANDING 39

to that RB does have a state machine implemented. Trying to control the OSGi
upgrade process using RB. But that is far fetched and can not be related to this
thesis.

5.3.3 OPC-UA

OPC-UA brings the benefits of standardization to the table. As we mentioned
earlier in the robust section 5.2, OPC-UA provides robustness indirectly through the
standardization they create. The same goes for upgrading the application. Because
when adding functionality the users have abstracted the hardware by using OPC-UA
and only work towards an API. Meaning that upgrading the application becomes
easier because users only have to worry about the logic itself and not what kind of
hardware is attached.

5.4 Expanding

To increase in size, range, or amount : to become bigger, to make (something)
bigger [15]

Upgrade definition

♦

Since this project is defined as a development/research project, its hard to visualize
all its possibilities and its future use-cases. There are of course already defined some
use-cases in the document from Statens Vegvesen [67]. But from experience its
difficult to foresee all possible applications to a research project. The different
applications also depends substantially on the current location or area of the ITS
stations. For example an ITS station residing within a big city might have a great
deal of traffic to handle, and even want to communicate with the cars to be able to
redirect the traffic. This will not be the case out on Dovre, where the climate and
weather is more interesting. But things will change and other variables can become
interesting.

Therefore it is important to considered the prospect of expanding the application
in the future. This should also be without the same difficulties mentioned in the
upgrade section.

5.4.1 OSGi

Expanding with OSGi works pretty much the same way illustrated in upgrade.
Because expanding and upgrading are pretty much the same activity. Its all about
deploying a new bundle which have its dependencies and provides some important

40 5. ITERATION 0: TECHNOLOGY STUDY

functionality. But the factor that makes a difference in expanding, is that users
probably will deploy multiple bundles, or to be more abstract, an application which
is created by multiple bundles. To do this in a proper manor is something that have
to be considered.

Frameworks to relieve the process of expanding already exists within the OSGi
ECO-system. One of these specifications are called OSGi subsystem. [19]. This can
also be handled through Karaf using something called a feature file. This provides
the opportunity to declare lists of collection of bundles that should be deployed
together. [7, 11]

5.4.2 Reactive Blocks

Reactive Blocks (RB) are an important factor in expanding the ITS station. Because
expanding an ITS station implies that it will be a new application deployed into the
existing station. Since the application is designed using java and RB, expanding is
dependent of RB. But its not part of the process of significantly simplifying the way
of expanding, that is OSGi’s job.

But it allows for control and overview over the application logic and be able to
get input from other domains as mentioned before.

5.4.3 OPC-UA

Open Platform Communications Unified Architecture (OPC-UA) is an important
technology to wield in the application to easily expand and provide new data to the
control station at Statens Vegvesen. Because OPC-UA is the communication protocol
its in this domain were OPC-UA can shine. That is because of the abstraction of
hardware, and the opportunity of having one connection point within each ITS
station. Meaning the OPC-UA server.

The OPC-UA server will provide the interfaces for interested parties to connect
and be able to retrieve the data which the ITS stations gather. When Statens
Vegvesen decide they want to expand they only need to deploy a data model bundle
which dynamically injects itself to the existing OPC-UA server address space. Then
its possible to handle the hardware which this datamodel is connected to.

Therefore OPC-UA provides the necessities to have a smooth expansion of new
applications and hardware.

5.5. SUMMARY AND CONCLUDING REMARKS 41

5.5 Summary and concluding remarks

By recurring over the the terms influencing the research questions[1.2], it becomes
clear that the technologies chosen for this task will in some way contribute to a more
elegant architecture which can handle most of the different cases. Its also evident
that these terms are important for an architecture to be properly tailored.

But in regard to the questions its now possible to get a feel on how this thesis
may provide satisfactory solutions to the questions. They will be utterly discussed
through the iteration chapters that follow.

Chapter6Iteration 1: Connection and
pair-ability

”The ultimate connection is when you are connected to the creator of the
universe.”

— Joel Osteen

Chapter 4 made a remark on how this thesis have been conducted. That was utterly
through experimenting with thechnology through iterations where there were a new
focus for each iteration. Taking care of use-cases that has been mentioned either by
Statens Vegvesen or that has been uncovered during the research phase of this thesis.

This second iteration was a process of the initial connection and analysed the
possibility to get all technologies to work together as a whole application and covering
our research questions. Through this iteration there were a great deal of ”guidelines”
that was discovered for future development.

6.1 Initial build

Through the second iteration it was important to figure out all the different quirks
that each technology would provide and how this would fit together properly. But
since it is a common platform where it all runs, java with OSGi, the connection was
not a big problem. But it is important to get all the JARs files OSGified. Meaning
that the dependencies which did not have the necessary MANIFEST.MF headers
had to be converted. Since Prosys only provided access to the JARs, and not any
source code, the solution was to import the file into BND Tools and let that take
care of the recompiling. Se figure 6.1 It follows a really simple wizard of remaking
the JAR to a bundle.

It was important to notice all the dependencies from Prosys, and include them in
the OSGi build. They were provided through their sample client and sample server.
These JARs was already OSGified from the vendor of the libraries, so it did not
create any problems. But this is a hassel if working with a great deal of dependencies
on third party libraries.

43

44 6. ITERATION 1: CONNECTION AND PAIR-ABILITY

Figure 6.1: Wrap JAR as OSGi bundle

All the dependencies was easy to include in the OSGi enviroment and because RB
now have added support to implement OSGi bundles out of the designed applications,
they were also easy to include.

But its worth mentioning that RB just started supporting OSGi and is in a
development phase to figure out how much of the OSGi spesifications they want to
support. Frank Alexander Kraemer have stated that their goal is to try to abstract
the thought of OSGi for the user and let the user rather focus on the logic. That is
also part of why RB is included within this thesis. To work with this abstraction
level and get more focus over towards the logic.

6.2 Guidelines for future development

As mentioned earlier it emerged some guidelines, through out the iterations, on how
to develop this application further. By guidelines it is meant that it was smart ways
to develop this application. Some of the guidelines were for example, how low level
should the user design RB blocks, how should the plain OSGi bundles be designed,
how can the application have a general API towards services and how shall the
control of the application be designed.

6.2.1 How low level should the Reactive Blocks be

This was an issue because as mentioned before, Bitreactive [30] wants to abstract
parts of OSGi from the user to make it easier to develop applications. Also since RB
OSGi support is in a developing phase, they are not completely cooperative with some
functionality from OSGi which is desired for the application. So the decision landed
on creating an application where pretty much every module in the environment

6.2. GUIDELINES FOR FUTURE DEVELOPMENT 45

Figure 6.2: Simple first application which was created in chapter 7

provided a service for RB to be able to track. Through this the user could be able to
visualize the event logic with RB and create an ITS station application, controlling
and monitoring the different main modules residing within the ITS station, through
services.

As for the logic for the specific applications, they would be created as their own
system blocks, please refer to 2.3 to see what this is. Following this path of developing,
the ITS application logic could be portrayed in their own isolated subsystem block,
which is also its own bundle with a lifecycle. As you can see in figure 6.2, this is
the logic of a simple sensor swapper example. And if you go into the CarSensor
block, 6.3, there is even more logic there. This application will be utterly described
in chapter 7.

For now the level of abstraction is mostly just for logic and visualizing events. For
example the OPC-UA server itself is not implemented within RB. This was decided
because it is an advanced task and would be very demanding, indicating that it
would take too much time and not be in the scope of this thesis. It is also known
that Bitreactive [30] are talking to Prosys, and something might happen there.

6.2.2 The what and how regarding the OSGi bundles

This is very coherent to the last section, because pretty much everything that is not
a RB would be made as a clean OSGi bundles. So the what would be everything else
that is not a RB. The difference is that there had to be some guidelines regarding

46 6. ITERATION 1: CONNECTION AND PAIR-ABILITY

Figure 6.3: The logic whitin a CarSensor

how the clean OSGi bundles should be designed. What the focus should be.

This is of course very dependent to each area of application but it needed to
be discussed to set a guideline towards the road for a clever modularization of the
different types of system opportunities. Meaning for example how is the hardware
connection to be designed, and how would the OPC-UA data model, OPC-UA server
and OPC-UA client be designed.

Regarding the research questions 1.3, focusing on the design of the different clean
bundles, may affect the opportunities to be able to update and expand the ITS
station. Are these bundles not carefully considered, with the right services and APIs,
the two mentioned terms will be difficult to achieve.

Hardware connection OSGi design

After this second iteration it was very clear on how the hardware connection would
be designed. Each hardware that would be connected to the ITS station will have its
own OSGi bundle. A driver bundle. This bundle will provide a service for retrieving
data, as well as a service to be able to handle the hardware itself. For example if there
were any exceptions, or a user wanted to stop this remotely or through OPC-UA.

This is the proposed design when creating a data model with OPC-UA. For each
hardware, it is nessecary to have access to the raw hardware API. At some point the
hardware has to be connected to the following OPC-UA data model.

6.2. GUIDELINES FOR FUTURE DEVELOPMENT 47

This allows for a proper abstraction when considering the possibility to upgrade
and expand. Also if the hardware fail, it will only be the hardware driver bundle
which fail giving space for error handling. More about OPC-UA device integration
[45, 46]

The OPC-UA server design

The decision fell on the task to not implement the OPC-UA server within RB, and
rather make it as a clean bundle. This was done to save time and get it up and
running as fast as possible to be able to proceed to the next iteration. This design
isolates the OPC-UA server into its own bundle, with a service API to be able to
control the address space dynamically. This API has not yet been properly defined,
but that is the direction this thesis want to proceed. Controlling the address space
during runtime is an important factor since hardware can dynamically come and go,
and they will be provided with their own OPC-UA data model bundle. It is created
based on example code from Statens Vegvesen1, and java server SDK tutorial from
Prosys [64, 60].

The OPC-UA client design

Iteration one did never touch the subject of a OPC-UA client. It focused mainly on
getting a server up and running and using freewareclients2 to make sure the OPC-UA
server was up and running. Also to check if the test models had been implemented.
But between iteration one and two it took place a meeting with Jo Skjermo. He is
one of the OPC-UA specialists from SINTEF contracted to this project. He has been
in charge of a couple of papers which concern OPC-UA in the thick of this project.

After the meeting with Jo Skjermo it was discussed how the architecture associated
with OPC-UA would be. The result of these meetings was to go for a single OPC-UA
server as mentioned before, were each hardware would have their own OPC-UA client
associated to them. Rather than declaring a service for the OPC-UA server which
would make it possible to browse the internal OPC-UA server address space and
listen to events and data changes directly from the server. The reason for this was
that the OPC-UA client is specifically designed to handle these scenarios. And even
if in principal one should be able to have the event and data change information
before anything is triggerd, it is not a suggested way to go. Jouni Aro, a Prosys
OPC forum moderator, confirmed the thoughts for us. See conversation [9]

Another issue was that the OPC-UA client has different functionality which would
support the browsing of an complex OPC-UA namespace better than if the server

1Can be obtained by contacting the people involved with this thesis from SINTEF IKT og
samfunn or Statens Vegvesen ITS Trondheim

2Such as Prosys OPC-UA samle client, UaExpert client, OPC-Foundation Client Example

48 6. ITERATION 1: CONNECTION AND PAIR-ABILITY

were to browse its own address space. Also since Statens Vegvesen have confirmed
that its important for them to support backward compability to the older OPC, the
OPC-UA client have facilitated the proper functionality to create such a gateway.
See mail in appendix B.1. The gateway functionality of the OPC-UA client was also
confirmed by Jouni Aro in [9]

The clients would be a clean OSGi bundle because it is an advanced part and it
would be easier to just create a simple bundle per hardware to get it up and running.
The problems experienced with this solution and how this was solved, is described in
iteration 2, chapter 7.

The OPC-UA data model design

This has to be done programatically since there are no modelling tools that exists
for java yet. It should also be created as a bundle and focus on the loose coupling
to be able to update the data model at any point. This is because it is important
to be able support expansion of the current model, as well as dynamic behaviour of
hardware connected to the model.

6.2.3 General APIs

This was a discussion which arised early. Because at the current state of RB and
what they supported through their service tracker, a general API was important to
be able to handle dynamism. Implying that the module using the service has no
recollection of the implementation behind the API. This results in loose coupling
which is something we want to strive for. p.16 [70].

But after that RB started to support more advanced service trackers and the
initial architecture started to change course towards using OPC-UA datamodels and
clients, this did not become as important.

6.2.4 How the application shall be controlled

It has already been discussed how the application shall be controlled, through a
master block which tracks the services necessary to have control over the main parts
within the ITS station. By main parts it is understood that it involves the OPC-UA
server, hardware and other important modules that should have a centralized control.
The reason for this is to be able to uphold the preferred robustness which this thesis
focuses on. The architecture of having a master and multiple slaves is a very familiar
way of designating control. [1] This is not displayed in the application in a proper
way, because i never became clear what kind of master slave architecture that would
be necessary.

6.3. UNSOLVED PROBLEMS 49

6.3 Unsolved Problems

After this iteration there were heaps of unsolved problems because there were no
specific example which has been implemented. Some of the problems still are:

% Create an OPC-UA client implementation
% How to handle the OPC-UA client and hardware initiation relation
% How to provide the datamodel hardware connection
% How the APIs should look like
% Get OPC-UA events and methods running

The next to last issue is an evolving case meaning that it is hard to define the
API in the beginning of the project as it will be more defined as time goes.

6.4 Summary and concluding remarks

This iteration was the start which brought up a lot of good questions and problems
that had to be dealt with. It resulted in setting some guidelines for future development
to be able to have an efficient way of coding. These guidelines were influenced by
the research questions 1.3, earlier experience with OSGi and new involvement with
OPC-UA. Following these guidelines will ensure that the terms of this thesis will be
preserved.

After these findings there had to be some changes to the current proposed
architecture in chapter 4. The changes, figure 6.4, convey that the focus of a central
station has been removed and that the new decisions has taken effect.

50 6. ITERATION 1: CONNECTION AND PAIR-ABILITY

Figure 6.4: Version 2.0 of the architecture proposed in chapter 4

Chapter7Iteration 2: Implementation of
simple swap example

”A good idea is about ten percent and implementation and hard work, and
luck is 90 percent.”

— Guy Kawasaki

After the second iteration it spurred some guidelines which would define parts of the
future architecture. After these guidelines was set it was important to make sure that
they measured up in a test application, regarding to communication, applicability
and supervision.

This iteration focused on the swapping/upgrading of hardware and how that
could be easily done, without the focus of an OPC-UA data model. It included the
task of creating an OPC-UA client for each hardware registered. It is important to
start with the small use-cases and build experience through practice.

7.1 Problems from last iteration

% Create a OPC-UA client implementation
% How to handle the OPC-UA client and hardware initiation relation
% How to provide the datamodel hardware connection
% How the APIs should look like
% Get OPC-UA events and methods running

7.2 Swap hardware application

The first proper application development was a simple RB application called Sen-
sorSwapper, trying out the simple use-case to swap an existing hardware when
the application is running. Also try to keep it running without any exceptions or
breakdowns. The bundles needed to create this demonstration was an OPC-UA
server running in the OSGi container, the RB application bundle containing the

51

52 7. ITERATION 2: IMPLEMENTATION OF SIMPLE SWAP EXAMPLE

logical visualization and two hardware driver bundles implementing the standarized
hardware API. This iteration was also going to try to connect an OPC-UA client to
each registered hardware, which would indicate that a simple OPC-UA client bundle
with its proper API, also had to be in the running OSGi environment.

7.2.1 OPC-UA server implementation

The OPC-UA server implementation follow the very basics standard implementation
from a OPC-UA server tutorial [60] which was included in the SDK recieved from
Prosys OPC [64], and the sample code provided from Statens Vegvesen1. This
implementation is an OSGi bundle which also register a service API in the bundle
activator. This is the simplest server that is possible to create but it servers up
its own server object through the API so developers can have the opportunity to
interact with the OPC-UA server.

Serving the server object through the API might not be the proper way of giving
the opportunity to change a server property or add some address space, since having
access to the server object provides a whole lot more operations. But it was currently
the easiest solution for this iteration.

It was important to learn how to be able to add a custom address space to the
server, to see how it could be done. It was not anything advanced, just a simple
folder with some properties. SINTEF had provided a simple example project which
was the source for address space experimentation1.

Figure 7.1: OPCUA client instantiation process

1Can be obtained by contacting the people involved with this thesis from "SINTEF IKT og
samfunn" or Statens Vegvesen ITS Trondheim, see acknowledgements

7.2. SWAP HARDWARE APPLICATION 53

7.2.2 OPC-UA client implementation

During the second iteration of this thesis it was never implemented an OPC-UA client
bundle. Ref section 6.2.2’s discussion. Therefore it was up to this iteration to handle
the OPC-UA client implementation. Figure 7.1 portrays the planned instantiation
process.

The implementation of the OPC-UA client was not very advanced, because at
the beginning the goal was just to get it up and running, connect to a server and be
instantiated by a plugged in hardware. It initially consisted of an activator which
first of all registered a client service with a client api, see listing 7.1, and a simple
implementaion following the very basics standard implementation from a OPC-UA
client tutorial [59].

Code snippet 7.1: HardwareAPI interface
public interface OPCUAClientAPI {

public void sayHello() ;
public void connect();
public void shutdown();

}

Unfortunately this was not enough to provide each hardware instance with is own
OPC-UA client. Using just the service would result in sharing the same object and
end up with a lot of troubles.

Therefore a solution which would provide each module, needing a client, with it’s
own instance of an OPC-UA client need to be created. The first option was an OSGi
ServiceFactory. [18]

ServiceFactory

A ServiceFactory is pretty self explanatory, meaning that its a factory which provided
service subscribers with a new instance of the object, without them knowing. The
subscribers make a notion of wanting the specific service and will receive its own
instance when it is available.

So the solution to this would be that each module would have its on ServiceTracker,
tracking the OPC-UA client service. And when the OPC-UA client registers, the
trackers would try to get the service. Then the factory would react on this and
produce a new instance for each getService method, as the factory interface implies
[18].

This would be a proper solution if there were different bundles needing the service,
because a service factory only differentiates on a bundle level. Meaning that if it were

54 7. ITERATION 2: IMPLEMENTATION OF SIMPLE SWAP EXAMPLE

two Service Trackers within the same bundle, they would receive the same instance.
As long as RB still only creates one bundle per System Block, this solution becomes
a problem. Because as described earlier(2.3.1) a System Block will hold the logic
of a whole application. Meaning that there can be multiple hardware components
within a System Block, where each hardware component would have its own Service
Trackers to handle.

The logic of a specific application would react to an event of an hardware,
meaning that the OPC-UA client would send events based on the clients they are
attached to. But since System Block is implemented into one bundle the different
hardware components within, would not be provided with its own instances of an
OPC-UA client, using a Service Factory. This led to further research which discovered
something called a Managed Service Factory. [17] The point of source for this idea was
one of the developers on the Apache Karaf project[6], Jeff Goodyear. See appendix
B.2 for conversation and an alternative source for information.

Manged Service Factory

Managed Service Factory is a more advanced service factory which could produce
instances dependent on other factors rather than which bundle called the getService
method.

The reason that Managed Service Factory is able to create services based on
other factors is that it leans on the ConfigurationAdmin [16] service. As the JavaDoc
states:

”Bundles registering this interface are giving the Configuration Admin service
the ability to create and configure a number of instances of a service that
the implementing bundle can provide. For example, a bundle implementing
a DHCP server could be instantiated multiple times for different interfaces
using a factory.
Each of these service instances is represented, in the persistent storage of
the Configuration Admin service, by a factory Configuration object that has
a PID. When such a Configuration is updated, the Configuration Admin
service calls the ManagedServiceFactory updated method with the new
properties. When updated is called with a new PID, the Managed Service
Factory should create a new factory instance based on these configuration
properties. When called with a PID that it has seen before, it should update
that existing service instance with the new configuration information.”

OSGi Managed Service Factory JavaDoc

7.2. SWAP HARDWARE APPLICATION 55

Based on this documentation and our current issue this seemed the way to go.
So how could this be done? According to the documentation of the Configuration
Admin Service [16], it was possible for each hardware to be implemented with its
own configuration which could be used to differentiate the OPC-UA clients based on
the precise hardware properties.

The solution which was advised from extensive research, was to generate a
property file for each hardware and use an Apache Felix File Install to manage OSGi,
directory based[4]. Now the hardware bundle could produce a configuration file for
the needed OPC-UA client instance, and the service would be generated based on
the proper config file.

Using this solution the generation of OPC-UA client services was abstracted to a
simple configuration file, meaning that it was a simple way of changing the particular
service later on. Each configuration file will have its own unique PID as mentioned
before, which will be stored within the ManagedServiceFactory implementation.
There were some issues with auto generating services which was hard to debug, which
provided a NullPointerException. It will be handled in the next iteration.

7.2.3 Reactive Blocks Swap Hardware application

As decided earlier in the guideline section, creating a standalone application for each
possible function within the ITS station was the proper usage of Reactive Blocks
(RB). So this application had the logic for a simple car sensor which was counting
cars driving by. See figure presented in iteration one, figure 6.2

Based on the figure there a exists Termination block, OSGi Event Handler block and
a CarSensor block.

Termination block

The Termination block is a simple OSGi bundle stop handler. A bundle can be
stopped either programatically, or through the console using the command stop
together with a bundleId. It emits a stop signal which can be processed by the
different blocks in the application. That is easy to see.

CarSensor

This block handles the logic enclosing the CarSensor. As you can see in Figure 6.3
the block is implementing a combined ServiceTracker, a CarPoller and the logic
encircling these two blocks.

Its up for discussion on how the CarSensor should be implemented, for example
if the poller should be one level up within the system block or right were it is. The

56 7. ITERATION 2: IMPLEMENTATION OF SIMPLE SWAP EXAMPLE

desicion fell on within the CarSensor because it was most logical to let the sensor
control the poller as well. But its easy to see what is happening, and that this sensor
is in need of different services to be able to work properly.

An important observation here is that the Car Sensor directly communicates with
the hardware API which is not something that is desired in the future application. Its
desired to connect the hardware and the OPC-UA client API to be able to administer
the hardware.

OSGi Event Handler block

This is a fascinating block that occurred during this iteration. After trial and error
there was some concurrency problems on how the services was produced and when the
OPC-UA server was available for connection. The experienc was that the OPC-UA
client service was registered and ready to connect before the OPC-UA server was
properly started. So there had to be some kind of mechanism to be able to handle
this concurrency.

That is where the light weight pub-sub subsystem, Apche Felix Event Admin
could be of assistance.[3] This is an implementation of the OSGi Event Admin Service
Specifications.[24]

What this specification does, is basically that it allows the developer to define
channels where one can pass events and data across bundles residing within an OSGi
container. The needed implementations is a form of Event Publisher which gets the
EventAdmin service from the context, and publishes an event on a specific channel,
code 7.2. To receive the event its needed to implement an Event Handler which deals
with an event on a specific channel and is registered within the OSGi registry. See
Appendix A.1

Code snippet 7.2: Event propagation example
ServiceReference ref= ctx.getServiceReference(EventAdmin.class.getName());
EventAdmin eventAdmin = (EventAdmin) ctx.getService(ref);
Dictionary properties = new Hashtable();
properties .put("serverStarted" , server .isRunning());
Event serverEvent = new Event("ntnu/opcua/server/STARTED", properties);
eventAdmin.sendEvent(serverEvent);

The latter code was all that was needed to notify the clients when the server
is properly started and ready to receive connections. Meaning that it can either
implement as a service with an interface or be used within the code like this. It is
important to have in mind a plan for mapping the different custom channel names
that ends up being used. The summary discuss another solution 7.5

7.3. HARDWARE SERVICE BUNDLE IMPLEMENTATION 57

7.3 Hardware service bundle implementation

The whole idea behind this bundle is to communicate with hardware in a proper
way. Creating a driver with a service that can be reached by the proper modules.
The RB logic will directly use the hardware service to be able to handle the update
scenario that has been proposed. There will be no focus on how to implement the
OPC-UA client with the proper properties and models, but rather how an hardware
can controll the instantiation of an OPC-UA client.

7.3.1 Hardware driver bundle

The hardware OSGi bundle driver, has very little logic implemented because there
were no hardware attainable to test at this moment. But it has implemented a simple
hardware API which would be the suggested standard API towards all existing
hardware. See 7.3.

Code snippet 7.3: HardwareAPI interface
public interface HardwareAPI {
public void start () ;
public void shutdown();
public String [] getData();
public HashMap<String, Object> getProperties();

}

This is a simple API to be able to demonstrate how to control the hardware which
was connected to the ITS station. The method getProperties() returns the specific
properties for an hardware. This had to be added because the current RB OSGi
SimpleServiceTracker does not support the properties that a service is registered
with. Which was needed to separate the different types of hardware when using the
standardized hardwareAPI towards all the different attached equipment.

As discussed in section 7.2.2 the OPC-UA client is driven by the "belonging"
hardware and is instantiated and killed through a configuration file. The solution for
now is that the hardware bundle will provide the proper configuration settings and
deploy a configuration file into the designated folder. This would end up in spawning
an OPC-UA client with services to browse, listen to and control the following piece
of hardware, figure 7.1. The listening and browsing has not yet been implemented.

7.4 Unsolved Problems

! How to handle the OPC-UA client and hardware initiation relation.
! Create an OPC-UA client implementation

58 7. ITERATION 2: IMPLEMENTATION OF SIMPLE SWAP EXAMPLE

% How to provide the datamodel hardware connection
% How the APIs should look like
% Get OPC-UA events and methods running
% Proper OPC-UA server service
% Avoid errors using OSGi file install

7.5 Summary and concluding remarks

After this iteration it has become clear that these technologies are working better and
better together. It is now possible to upgrade and switch out the hardware without
any application critical troubles. Also deploying a hardware will now instantiate a
client service for the hardware to be associated to. The next that will have to be
handled is to add this into a datamodel which allows the hardware to be controlled
by the OPC-UA client instead.

In regard to our research questions, its now becoming clearer and clearer on how
to implement an application which will have the robustness wanted, and possible to
upgrade and expand as desired.

Now that the OPC-UA client and hardware initiation relation have been handled,
its provides the necessary abstraction needed to be able to avoid the single point of
failure mentioned earlier. This is an important subject in regards to question one. It
has also been proven that using OSGi gives the foundation of properly handling the
upgrading process, as well as expanding the application.

In section 7.2.3 it was discussed an OSGi Event Handler. This solves the experi-
enced concurrency problem but it was not the only solution to handle this. It is also
possible to rely on a server status service which does not register unless the server
has been initiated. This is easily done through a bundle context reference. This
approach was shelved because it was much more interesting to try out OSGi events.

Chapter8Iteration 3: OPC-UA Client and
hardware approach

”Again, you can’t connect the dots looking forward; you can only connect
them looking backwards. So you have to trust that the dots will somehow
connect in your future. You have to trust in something - your gut, destiny,
life, karma, whatever. This approach has never let me down, and it has
made all the difference in my life. ”

— Steve Jobs

During this iteration it was important to focus on combining the spawned OPC-UA
client with the current datamodel for the attached hardware, that was going to be
controlled and updated on datachanges. If this works well the hardware abstraction
will be handled by OPC-UA, and every action from the application will go through
the server and can then be registered and stored.

This iteration will try to expand the current objects in the ”HardwareSwap”
application from the last iteration. The plan is to abstract the hardware from the
current RBs and let OPC-UA take full control over the hardware. Then the OPC-UA
client will provide a service that lets the logic in RB react on specific changes and
control the logic based on events and subscriptions.

8.1 Problems from last iteration

! How to handle the OPC-UA client and hardware initiation relation
! Create a OPC-UA client implementation
% How to provide the datamodel hardware connection
% How the APIs should look like
% Get OPC-UA events and methods running
% Proper OPC-UA server service
% Avoid errors using OSGi file install

59

60 8. ITERATION 3: OPC-UA CLIENT AND HARDWARE APPROACH

During this iteration there is a lot of the problems from last iteration which
will be handled. Such as connecting OPC-UA datamodel and the hardware, using
OPC-UA methods and events, as well the experienced problem from last iteration,
error during file install. The two problems with a proper API will not be handled
here because this is very vague at this point.

Its also important to not forget that this thesis focus on robustness, upgrading
and expanding, and we will have concluding remarks on how these solutions will aid
in this aspect.

8.2 OPC-UA datamodel

After trying and failing it has come the that point were this thesis implements the
OPC-UA datamodel towards the hardware. Meaning that the hardware which is
connected will provide a service for this datamodel bundle which bridge these aspects
and links itself into the OPC-UA server.

Everything is loosely coupled through services meaning that this has to be taken
into consideration! So to mention again one of the most important aspects of OSGi
and dynamism, code defensively. Have in mind that modules and services might
disappear at any time, even not be existing at startup. This needs to be be handled
in a proper fashion.

So the datamodel, this is basically a namespace creator for the current model of
the present hardware. It creates the necessary properties, attributes, and connections
to be able to have full control over everything that happens when the hardware is
hooked up. It basically maps up the hardware properties and methods into a familiar
OPC-UA datamodel. Have a look at section 2.4.4 for some basic insight.

The code is too long for appendix, so please refere to the writers GitHub account1

8.2.1 Why a datamodel?

First of all its the only way to implement OPC-UA because the object model maps
every detail about the current hardware into an understandable abstraction. It is of
course possible to dropp OPC-UA and have an API directly towards the hardware
and use this out to the rest of the application. But this gives a tightly coupled
application and a whole lot more development for the ITS implementer. They would
have to implement everything that has to do with security, communication, history
and especially a very good mapping towards what kind of values the API provides.

1The repo is private so contact the writer for access, through the information on his GitHub
account.[21]

8.2. OPC-UA DATAMODEL 61

The last point is a very important factor for using OPC-UA and its datamodel.
Consider that there is an API which provides the method getSpeed(). This returns
an int which can be whatever. This is very possible to solve with just different types
of methods, such as getSpeedInKM and getSpeedInMiles, but that means a more
advanced API and more complex to handle dynamically.

But, having the OPC-UA datamodel/objectmodel, it all becomes browsable and
its only necessary to agree on a general datamodel. Then its not important to
know what the API is anymore, because you browse objects, find an object which is
speed, then this has a value, properties, attributes, methods or whatever might be
interesting. This will give the opportunity to look up what kind of measurements
this object has, giving opportunities to have a much more dynamic environment. [46]

So the OPC-UA browsing API is already standardized, one factor removed, and
then its only a standard datamodel with attributes/properties that can convey the
differences behind the values.

8.2.2 Example datamodel

Figure 8.1: The FartSensor datamodel/objectmodel

62 8. ITERATION 3: OPC-UA CLIENT AND HARDWARE APPROACH

The current datamodel, 8.1, is a very simple variant which has a variable speed
object, a method and a variable switch object. The method and switch variable
object is basically the same, its just two different ways of turning on or off the current
hardware. As mentioned, it is a mapping of the hardware, so there have to be an
implementation reacting to the methods or property changes within the hardware as
well.

The example is connected to the hardware through a service registered by the
hardware, with the opportunity to register a listener on the changes within the
hardware. This follows the whiteboard pattern which is OSGi’s way of implementing
the observable pattern. [25]

To implement a datamodel is a big hassel because there is heaps of code for
something that does not feel that important. But this datamodel provides freedom
towards the hardware and its important to know about the different opportunities
which OPC-UA provides. It is not in the scope of this thesis to cover all the
possibilities which OPC-UA provides.

8.3 OPC-UA method and events

It was mentioned that this thesis is not going to cover the details of OPC-UA but
this iteration started with an error of being able to use methods and events. These
are important objects to be able to gain the proper control over the hardware and
provide the needed attributes and properties that brings the wanted separation which
upholds the robustness and possibilities to upgrade the hardware. Objects like events
and methods are also inserted into the objectmodel, but since they are important
and have been a task itself, they received its own section.

Its important to describe properly what can be done with the hardware through
methods and not only attributes and properties. To be able to handle uncertainties
and edge cases is what events are for. Therefore OPC-UA provides a nice framework
for events which gives more control over happenings than the simple listener used on
the speed value in the application. If not using OPC-UA, the developer would have
to implement the wheel again with listeners to be able to provide the opportunities
which OPC-UA already do.

8.4 Mapping of namespaces for each hardware

As mentioned before a goal for this application was to have an objectmodel for each
hardware. But since OPC-UA is magically made up of the same objects, which is
nodes, it would be difficult to browse all nodes and filter out on a specific string

8.5. OTHER FIXES AND IMPROVEMENTS 63

property within these nodes. This would be time consuming its much more interesting
to have a direct access to specific node which holds the information wanted.

Each time a node manager is created, which usually happens when a new hardware
is added, a string has to be passed along, which is the namespace. By the way there
already exists managers for the root nodes and standards nodes that the OPC-UA
server provides.

The namespace cannot be used as a browsable unique identifier, because its only
possible to browse on NodeIds which every node in the environment have. Therefore
it was important to map the specific NodeId to the objectmodel of the hardware, to
some familiar identity.

To solve this there was created a NameSpaceController service. This holds two
hash maps containing the NodeIds and this familiar identity. The NameSpaces passed
along with the creation of the node manager is also contained with the same familiar
identity. So its possible to look up the specific NodeId with either a NameSpace or
this familiar identity.

8.4.1 Familiar identity

Just to clarify what this identity might be. Earlier in the thesis it was decided that
each hardware will create its own instance of a OPC-UA client, to be able to browse
the hardware objectmodel in a proper way. The reason for this internal OPC-UA
client was to provide a service to RB which could control the application logic.

But for a hardware to instantiate an instance of the OPC-UA client service based
on something unique, it had to provide some properties. A config file was deployed
with properties, and on of them were hardware.name, which is the familiar identity
mentioned earlier. This identifies the current hardware. The node manager which
holds the hardware object model would generate the string based on the property
of the hardware, as well register its root NodeId with the namespace and with the
property from the hardware.

For now its nothing more than a simple string, but this can of course be done a
lot smarter. But that is to detailed for the application and this was a proper solution.

8.5 Other fixes and improvements

Along the iteration it became clear that some things had to be fixed. First of all
file install produced a strange NullPointerException which no one could answer
for. It also became complicated to work with the OPC-UA client instantiation and
delivering other services to the instance.

64 8. ITERATION 3: OPC-UA CLIENT AND HARDWARE APPROACH

8.5.1 OPC-UA client conversion to Declarative Services

The way the instantiation of the OPC-UA client was currently handled was with a
Managed Service Factory and a bundle activator. Now that the OPC-UA client was
dependent of another service, which was the NameSpaceController, problems started
to arise. The code started to become ugly, there was a lot to have in mind when
coding, and the decision was that ManagedServiceFactory and bundle activator was
immensely low level API. It was difficult to expand and that is the opposite of what
this thesis is focusing on.

Therefore it was important to convert to DS which provides the handling of the
low level API so the devloper only have to focus on what he wants to do. Neil
Bartlett has written a good book on starting with OSGi which is open and free. [29]
The explanation to the the expantion problem was in his book, which seemed to
be easily handled, by just converting to DS. The DS conversion done here is also
disclosed in the appendix, A.2

The reason for this is that DS already is couple with CM and provides the same
functionallites as the ManagedServiceFactory do, just hiding the low level API, and
in a simpler way. Have a look in [29] at chapter 11, p.219 for a good introduction to
DS. The specific solution was a combination of all sub chapters but mostly resided
in subchapter 11.11 which starts on page 259.

8.5.2 File install error

After some trial and error it became clear that the loading configurations which the
hardware produced, provided an unexplainable error. It did not break anything so it
was ignored in the first iterations. It was annoying and had to be dealt with. The
simple solution was that the configuration which was produced from the hardware
could not be in the same root folder as the folder which the Configuration Admin
listened too. After they were split up into each folder, the error never occurred.
The Apache Felix mailing list was not able to provide any answers to this question.
Nobody confirmed when I shared the solution either. So for now just make sure they
do not share folders.

8.6 Proper OPC-UA server service

This has been mentioned as a problem because it currently only provides the whole
server object to the instances who want to access the server. It is used by the
objectmodel creators which need to have the server object to create the NodeManager.
So the discussion is then if the server should provide its whole server object, or simply
provide a detailed server service which allows the users of the service to add and
modify objectmodels.

8.7. UNSOLVED PROBLEMS 65

Passing around an object to multiple instances is not a proper way of doing java.
The only place that the server object is actually needed is:

y Node manager instantiation
y Get the root folders such as object folder, type folder and views.
y Get different types available in the root manager

This could be solved through a simple OSGi service returning the desired ob-
jects: the node manager, rootfolders, different types, from the server. This is not
implemented by this thesis but is food for thought and should be looked into.

8.7 Unsolved problems

! How to handle the OPC-UA client and hardware initiation relation
! Create a OPC-UA client implementation
! How to provide the datamodel hardware connection
- How the APIs should look like
! Get OPC-UA events and methods running
! Proper OPC-UA server service
! Avoid errors using OSGi file install
% Get update procedure to work properly
% Complete a RB application showing functionality
% Uphold robustness in application

8.8 Summary and concluding remarks

Things started to fall in place during this iteration. Modules were made and OPC-UA
started to be involved in the project accordingly. It has been difficult to comprehend
OPC-UA well, but nothing is impossible, just have to use enough time with it.

By starting to use DS with the OPC-UA client, it became easier to expand the
client module and add more functionality to the current application. It also became
easier to handle different egde cases such as cardinality and dependent services.

The application is starting to behave like a robust, upgradable and expandable
application utilizing the technologies chosen, which is exactly what has been worked
towards.

Chapter9Iteration 4: Reactive Block focus

”One reason so few of us achieve what we truly want is that we never
direct our focus; we never concentrate our power. Most people dabble
their way through life, never deciding to master anything in particular.”

— Tony Robbins

Up to now there have been a lot of focus on the OPC-UA and OSGi components of
the application, and getting them connected in a proper way. Its time to put some
of the attention over to Reactive Blocks (RB).

As mentioned many times before, this is where the logic is going to reside. Were
the edge cases will visually be handled and were one can go to understand what each
application ends up doing in the different cases.

The first three proper iterations focused on a swap application, which was modified
properly in the last iteration. The hardware was abstracted from the application
and moved the communication to the OPC-UA layer which was the plan all along.

9.1 Problems from last iteration

! How to handle the OPC-UA client and hardware initiation relation
! Create a OPC-UA client implementation
! How to provide the datamodel hardware connection
- How the APIs should look like
! Get OPC-UA events and methods running
! Proper OPC-UA server service
! Avoid errors using OSGi file install
% Get update procedure to work properly
% Complete a RB application showing functionality
% Uphold robustness in application

67

68 9. ITERATION 4: REACTIVE BLOCK FOCUS

This iteration will continue to work on the swap application and modify the
RBs and the belonging OSGi bundles to visualise more logic and taking care of
multiple hardware within one application. It will also focus more on upgrading and
robustness. But first of all it will be discussing how the upgrading will work now
that the communication is going through the OPC-UA layer rather than directly to
the OSGi hardware driver bundle.

9.2 Upgrading through the OPC-UA layer

It was clear from the latter chapters that it was pretty simple to upgrade the hardware
when it was directly cooperating with the hardware through OSGi services. Then
it was explicit how the process should be handled, because all that had to be done
was to react on ServiceRegistration.UNREGISTER event gracefully. This was done
through the ServiceTracker. Having a direct link between the hardware and logic, it
created a tight coupling, which is not what is desired.

Since the plan was to have everything pass through the OPC-UA layer providing
a lot of wanted features, it would not be as straight forward.

The positive thing about abstracting the hardware layer with an OPC-UA layer,
is that now its possible to upgrade the implementation without the application logic
having to react on the activity. When the hardware API was directly connected to
the RB, the service disappeared on an update, and had to be handled. Now the
service only disappears in the datamodel, but reappears just as quickly. Since the
service has been set to cardinality [0..1] with dynamic option, A.3, the service is not
an necessity. Meaning that updating the hardware implementation have become a
breeze. It wont affect the system a whole lot, as you can see in figure 9.1. And it
will be easy to handle a request on the driver implementation when you know its
unregistered. The time it took to update the bundle was milliseconds. This is of
course just this simple hardware, but updating does not demand a great deal of time
unless there is a huge startup process.

The same goes for the RB application logic implementation. It does not affect
the system in a big deal when it updates, because its not a provider, rather just a
consumer. It has a bigger startup process because it have to connect to the server
and prepare for OPC-UA client events.

Both updates of these two bundles work fine in the demo application which is
acquirable through GitHub1.

1The repo is private so contact the writer for access, through the information on his GitHub
account[21]

9.2. UPGRADING THROUGH THE OPC-UA LAYER 69

Figure 9.1: The affect of an update of the bundle impl

9.2.1 Some important factors

There are some important factors to consider when dealing with this second layer
and updating and expanding. Right now expanding is not much of a subject since
it will be so loosely coupled that the new application will not affect the rest of the
system. It is just important to remember to deploy all the nessecary bundles to have
the application running. How this can be done is discussed in 5.4.

After the OPC-UA layer was introduced, communication through listeners and
the whiteboard pattern, is introduced. This will be covered more later. But these
listeners becomes an issue when bundles are updated. Because bundles updating
means the instantiation of a new listener. While other bundles which have used the
specific listener in their instantiation, have to have their listeners reset to the new
instance. If not, the reference to the current listener will be incorrect.

Since the OPC-UA client service is dependent of the configuration file of the
hardware driver, this becomes an easy task to handle. It the config file does not
change, the client service will not go down. Meaning that the driver implementation
just updates without reacting on the java code update. This is because CM handles
this properly. It is different if the bundle is stopped, but this is because of how driver
activate and deactivate is implemented. Currently, when stopping a hardware, the

70 9. ITERATION 4: REACTIVE BLOCK FOCUS

Figure 9.2: The current swap application with another hardware

adherent configuration file is deleted.

Lastly, when updating, it basically means that the bundles is going to stop, and
then start over, so its important to remember the most important coding principle
for OSGi, code defensively.

9.3 Reactive Block application state

Now the application is in a state where its possible to update the most important
modules without taking down the system. These modules are the RB application
and the hardware driver implementation. The hardware can be controlled by an
OPC-UA client, which is what spawns for each hardware. But since the client is
programmed by the writer and made pretty simple to get things working, it can
be smart to have an advanced client connected to the server to have better control
over the datamodels. Meaning a visual representation of the datamodel and the
possibility to change and read attributes on the hardware, for testing purposes. The
one that has been used in this thesis is mentioned in chapter 4.

9.3.1 The reactive block swap application

Figure 9.2 portrays the current RB application which uses an OPC-UA client service
to communicate. It is a simple speed sensor with a light blinking red or green
dependent of the speed. Yellow if something is wrong with the sensor.

9.3. REACTIVE BLOCK APPLICATION STATE 71

Figure 9.3: The current sensorcomponent, reusable logic is marked

This is all loosely coupled and is using the OPC-UA layer to communicate the
events and methods. But this displays how easily an application can look with RB.
There is of course a lot of logic behind the whole application and if one dig deeper
into the two components, there is a mess at the moment.

9.3.2 CarSensor component

The car sensor component is a RB mess, 9.2, because the developer is not a good
RB designer. The logic on the other hand works and is the reason it is possible to
update the RB application without affecting the system.

What basically happens here is that the OPC-UA client service is picked up by
the tracker with an OSGi filter which sets the lookup to be the OPCUAClientAPI
with the property hardware.name=this.name. Then its possible to filter out the
wanted clients. The tracker is an updated version of the one used in the beginning of
this thesis. Its called a Native Service Tracker and is within the RB OSGi library.

After the service is acquired the component waits for the server to start. Then
the Hold block releases the service. Then the CarSensor connects and sets a listener

72 9. ITERATION 4: REACTIVE BLOCK FOCUS

to data updates from the server.

Using a data listener directly towards the OPC-UA client is not necessary the
best way of doing things, because it is not very generic. It has been done to test if the
data was received, and with this application that is confirmed. When data is received
it flows towards the logic which reacts to the current speed received. The DataPoller
can be ignored, it is just included to visualize how the first version received data
from the hardware.

The OSGiStateCacher has been introduced to handled the update procedure
for the RB application. The reason is, because the block solely depend on event
propagation from the server, and since the server is already running, the state will
have to be cached between start and stop. Currently the cache is cleared on each
stop of the OSGi container itself, because the cache is persistent across container
failures as well. This is done through a simple property in the container launch
arguments: -Dosgi.clean=true [40]

This is considered a hack and should rather be handled with services. It might
be smart to declare a ServerStatus DS component in the server bundle which can
provide better service state handling. This was tested in 7 when looking at solutions
to handle the concurrency issue regarding the OPC-UA server.

But the OSGiStateCacher only stores a value in the OSGi persistence storage,
which is accessible through the bundle context. Then it reads the value upon request
and returns a boolean so the service can be released from the hold block if the server
was earlier running.

Within the red stripes of figure 9.3, there is logic which can be moved into its
own block to keep the application simpler. Its also worth noticing that the marked
logic is something that is also used in the light component 9.3.3. So it is prone to be
created into its own block to enable reuse.

9.3.3 Light component

This component is very similar to the sensor component. It uses the same logic for
stop and start as well as service loss, and it has specific logic which reacts to events
received from the sensor.

This is the ActionHandler which uses the OPC-UA client API to retrieve the
method belonging to this hardware. When the NodeId of the method is retrieved,
it uses the client service to generate the right inputs and invoke the method based
on the given NodeId. So when it receives an event from the latter CarSensor it can
react on it through the OPC-UA layer. For information, the CarSensor also received

9.4. OPCUA CLIENT 73

Figure 9.4: The current lightcomponent

the event and data from the OPC-UA layer.

9.4 OPCUA Client

There were some changes to this module to get everything to work properly. After
studying the sample client from Prosys[64], provided through their java SDK evalua-
tion, it was clear that having a way to call a method on the client API was the way
to go. This opens up for a more generic OPC-UA client. Right now it is possible
to call a method based on a NodeId and generate the inputs based on values in our
logic. By implementing this in the OPC-UA client, all the different clients are able
to call methods as well. And abstract the OPC-UA client from being familiar with
the hardware implementations.

Right now the client is not very generic overall, but this is something that should
be considered in the near future. A generic client is important for the application
to work properly and be expandable. By generic client, it is meant that the client
should not have any sense of what belongs behind each datamodel. It should just
expose what is needed in a proper way.

Something that has been discussed is the possibility to create a service based

74 9. ITERATION 4: REACTIVE BLOCK FOCUS

on the possible methods which is available through the deployed datamodel of each
hardware. It has not been tried out but is of course a possibility. Take full advantage
of OSGi. This is a complicated discussion and reflection has been up to consideration,
but has been discouraged. It is very dependent on the overall architecture on how
it should be done. But the thesis was not able to cover this subject, just slightly
become familiar with the issue. It is recommended for future work. 10.4

9.5 Listeners and whiteboard pattern

The whiteboard pattern was mentioned in the latter chapter with the listener between
the datamodel and the associated hardware. But the reason it is brought up again
in this chapter is that it became an issue because of upgrading, and its important
to highlight the different essential listeners in use. It was mentioned earlier that
listeners had to be reset when an update was at hand. And this is what happens
when designing with multiple references and using listeners across different layers.

The second essential listener which needs to be updated is the whiteboard pattern
listener, DataValueListener, which the OPC-UA client registers. This listener is
implemented by the CarSensor logic to be able to receive the necessary data values
regarding the speed. This is not generic at all but is an example on how the
whiteboard listener works, and needs to be reconsidered. But this is covered by the
generic client future work. 10.4

This architectural solution should be reconsidered in future work, but is a func-
tional solution for this example. Testing this solution allows for knowledge and
awareness of the different issues when working with these technologies.

9.6 Discussions with experts and users

During this iteration it was initiated contact with some experts and people who
work with the different technologies. Peter Kriens and Richard S. Hall are two OSGi
experts with valuable information regarding the OSGi thoughts of the application.
Martin Mueller is a user of the Prosys SDK and was provided to me as someone who
has worked with OPC-UA and OSGi.

9.6.1 Peter Kriens

After a discussion with Peter Kriens, there were some issues that arose. For example
the way this application is listening to a server state change event is not an OSGi
custom. He said that the only time something should wait, is when waiting for
a service. By this he means that things should not be initialized through event

9.7. IMPORTANT DEVELOPING HINTS 75

propagation, but rather be dependent on services. This gives OSGi proper control
and does not leave room for unforeseen errors.

He also mentioned that there exists a specification which could aid in device
access for the hardware bundles, and it was something that was worth reading. This
is called the Device Access Service Chapter.103 [23].

9.6.2 Richard S. Hall

Richard is one of the authors of OSGi in Action[47] and was glad to aid in the
academics. The dialogue evolved mostly OSGi specific subjects and errors experienced
in the application. But after the discussion more of the OSGi errors turned into more
architectural problems rather then OSGi specific problems. One was the generic
OPC-UA client dilemma. How this could be solved the best way, is an architectural
question which is noted down for future work, 10.4.

9.6.3 Martin Mueller

Martin is a professional user of the OPC-UA SDK and offered some tips regarding
designing an OPC-UA architecture. One of the hints from him was to put the
OPC-UA server as close to the data source as possible and provide a client to each
hardware. Because then each hardware would have the possibility to communicate
with each other. Going an all OPC-UA architecture. Then have a OPC-UA master
server for the ITS stations itself. This is not something that will be pursued in this
thesis, but is an alternative for future work.

Martin also mentioned that the way this thesis have mapped the namespaceindex
might not be a recommended approach. He suggested to look into OPC-UA types
and using these more laboriously to be able to reuse and have better browsing
capabilities.

It is understood that OPC-UA user specific types can be created, meaning that
its possible to create a parent object for a speed sensor, and then mapping down
the different speed sensors underneath. Giving a new entry point to all the different
speed sensors for example.

9.7 Important developing hints

There were some errors which wasted a lot of time during this iteration, and its
important that they are uncovered so the next person will not waste time on the
same problems.

76 9. ITERATION 4: REACTIVE BLOCK FOCUS

9.7.1 Silent Exceptions

When connecting all these different technologies and there are multiple different
threads doing work around the application, it might freeze at different places if there
is a bug. These freezes happens because of silent exceptions which is unclear why
happens. It was experienced a silent NullPointerException when trying to set a
listener on an object which did not exist. The application froze if the exception was
not caught. Its important to have in mind what might actually happen.

It was also experienced a silence exception when creating the simulation code
for the FartSensorImplementation. But then it was not solved through a special
exception, but rather rearranging code to get it to work.

9.7.2 OPCUA monitoring value update

The way that the car sensor received speed updates was through a OPC-UA monitor
value listener on the client. Some times this did not trigger even if setValue() was
called. It was unclear why at certain points. But one important factor is that it does
not trigger onDataChange() if the value is set to be the same as the last value. This
is of course a logical way of responding to data change, but it was not clear in the
beginning.

9.8 Unsolved problems

! Get update procedure to work properly
! Complete a RB application showing functionality
! Uphold robustness in application

9.9 Summary and concluding remarks

Through out this iteration there have been a focus on RB and starting to design these
in a proper way. Because all of the backend/OSGi bundles that was core functionality
had been developed and ready to be used with RB. The existing bundles worked
properly but had traces of being developed for a very specific example, rather than
focusing on the generics of the application. Meaning that there were some specific
handling in the OPC-UA client dependent on which hardware being used. This
iteration tried to handle it with some generic inputGenerator and callMethod but it
was soon noticed that there had to be some specific handling of the different possible
methods in the RB logic layer. This was of course a smarter way to handle the
differentiation, rather than doing it in the OPC-UA client which is suppose to be as
generic as possible.

9.9. SUMMARY AND CONCLUDING REMARKS 77

The example application handles updating, stops at unforeseen events, as well
as expansion of the application. By expansion it is understood that this can be to
expand the current logic layer with another hardware that should be a factor to
the current logic, and not just a whole new application logic. A new application
logic block is not necessary the hardest thing to handle because everything is loosely
coupled.

But through these development phases it is clear that RB is very capable of
handling the logic regarding the application. Meaning that it will be easier to
understand what is going on and can be easier to create new applications just using
the already existing services. This abstracts a level of understanding away from the
OPC-UA layer and lets the developer focus on what is important, the specific logic
in the application.

Chapter10Evaluation and conclusion

“A conclusion is the place where you got tired thinking."

— Martin Henry Fischer

10.1 Summary

Through out this thesis there have been discussed a combination of three technologies
creating an architecture which were to focus on three different research questions 1.3.
There have been provided background for each technology, as well as related work.
But since this particular combination of technology is entirely novel, there were not
much work directly related to this thesis, rather work which touches a subject within
one of the specific technologies.

The research questions had a focus on robustness, upgrading and expanding, and
they were:

RQ1 How can the application be made robust in terms of error handling and edge
cases?

RQ2 How can the application be upgraded without any inconvenience?
RQ3 How can the application be expanded without any inconvenience?

There have been iterations with different types of focus to achieve results in
regards to the research questions. During these iterations the questions have been
discussed in view to the different types of solutions and problems that has occurred
on the road.

It started with a simple technology assessment to uncover the different benefits
each would provide. This went rather smoothly and brought to light different traits
for each technology. The different traits are discussed in contrast to the questions
and terms this thesis is seeking.

79

80 10. EVALUATION AND CONCLUSION

Subsequent came iterations which step by step developed an application into
something that had the different desired aspects implemented. During these iterations
it was assessed if these technologies cooperate together in a proper way and aids in
solving this thesis considerations.

10.2 Evaluation

The task at hand was very sophisticated which undertakes three excessively complex
technologies into a suitable architecture. Each provide opportunities to solve both
similar and different issues. It has been mentioned to the writer that solely OPC-UA
takes 1 year to comprehend completely.

These three technologies are created to master their specific tasks single-handedly.
And do a mighty fine job in their fields. All have their traits and a combination
might be valuable, but is complex to achieve.

10.2.1 OSGi

OSGi alone provide the application with a lifecycle which opens doors for new ways
to handle application errors and updates. Gives the opportunity to stop modules
which crashes and update specific modules without affecting the rest of the system.
But as mentioned it is a complex technology and when using this with minimal
experience, faulty design is a big possibilty which again leads to errors.

10.2.2 OPC-UA

This is an intricate technology which has been developed for years by intelligent
people. It provides the possibility to map hardware or other devices into a familiar
concept, giving one access point to a whole new world. Hardware comes with different
properties and functionallity, and its important to be able to standardize this into
one portal of conduct. The positive part is that it maps up the hardware traits into
familiar nodes and attributes, which can be handled easily as long as OPC-UA is a
recognizable technology.

10.2.3 Reactive Blocks

Reactive blocks is the solution to messy code and handling real time applications
which is dependent of state and events. It is quite advanced in handling logic on a
visual level, but is missing the lifecycle layer as well as the possibility of standardizing,
which makes it a complementary. RB has to be accounted for in the architecture
which adds yet another layer with opportunities.

10.3. CONCLUSION 81

10.3 Conclusion

As been mentioned many times through out this thesis, the technologies do match
each other in a good way and do benefit from each other. Aiding in resolving the
three terms, robustness, upgrading and expanding. Please refer to chapter 5 to see
which technology complements what term.

But all in all it is a good match which, if done properly, can create a powerful
architecture. There may be a lot of bumps along the road because of the complexity
of each technology and to be able to use them in the best functional way. But in the
end beneficial value will prevail.

This thesis have covered some of these bumps and proposed some ideas which
can be considered. But considering the complexity, one thesis will not cover this a
100%. Delving into each technology has not been a purpose, that can be split up
into each its own paper. The focus have been to get a good overview of benefits, and
being able to corporate these technologies in an example, which provides thoughts
enclosing the different questions and issues.

Through experimenting and trying out the configurations and possibilities that
OSGi provide, such as complex service factories, whiteboard pattern listeners, event
admin, configuration admin and lifecycle handling. It has become clear that OSGi
is a powerful technology which provides possibilities that is a perfect match for the
scenarios and research questions introduced in this thesis. These evolves robustness,
upgrading and expanding. The focus has been to try out the opportunities, to be
able to modularize and provide a lifecycle for each specific module. Resulting in
an application which handles dynamism that might occur when working with other
factors such as hardware. This ends up in covering the robustness needed in an
application like this. Because of the modularization and lifecycle, OSGi provides the
opportunity to create new versions of an existing bundle resulting in that upgrading
becomes a breeze. After discussions with experts it was also confirmed by Peter
Kriens that this is a situation which OSGi is a good fit.

OPC-UA is not directly an aid in these three terms, but indirectly assist in
keeping robustness, abstracting some layers when considering updating and overall
provide a lot of out of the box functionality. The provided services is something that
is a hassle to develop all over again and may be error prone if done yourself. Things
such as modelling/mapping the hardware, secure connection to each server, browsing
capabilities, concurrency in data reading and proper event handling. It is features
which takes time to develop. But using OPC-UA, it becomes painless. OPC-UA is
not always a breeze, its complicated and is something that has to be properly learned
before implemented into a project. Because the possibilities are endless, and the way
nodes are connected into a full mesh network, it provides positive possibilities. There

82 10. EVALUATION AND CONCLUSION

should not be a need to develop a lot of aiding modules towards OPC-UA because
OPC-UA is quite complex and will handle most cases one will ever consider. It was
mentioned to focus more on OPC-UA types rather than mapping up self developed
namespaceindexes.

Reactive Blocks (RB) is not a necessity but a much wanted feature because
clean code is not a simple thing to do. RB visualizes the code while one actually
develop functionality. Merging two steps into one, the architecture design and the
implementation itself, which results in having the best of both worlds. It is important
to design the architecture to implement RB. Its not something that just is merged
into the application, but would have to be designed to be able to append in the
architecture. But if the main modules, such as OPC-UA client, OPC-UA server and
hardware, are designed properly with concrete services, creating applications using
RB would not be a problem at all. The focus would be reuse and development of the
logic.

Because this architecture is so modularized, and application logic is created
based on services, it is pretty simple to engage multiple developers into this project.
Meaning that hardware modules, OPC-UA datamodels, and RB application logic
can all be developed on its own as long as the OPC-UA client is generic enough.
Meaning that the OPC-UA client does not have to be changed each time a new
hardware or datamodel is added. This is possible because these modules does not
have a tight coupling.

10.4 Future work

There is still things to improve and ideas to develop on the architecture, but a
foundation and experiments have been made. Right now it cannot be deployed, but
that can be blamed that this thesis currently do not have any example hardware to
work with, and did not get to a stage where it was worth working with hardware. If
real hardware was obtained, a driver and a test datamodel could be implemented
which means a real hardware working example. The road to this stage is not long
and is something that should be pursued.

After feedback with OPC-UA users, alternative architecture solutions have been
hatched. Some focusing on a purer OPC-UA architecture, which was an example
from Martin Mueller, 9.6. He was not familiar with OSGi or RB but based on his
OPC-UA skills, he suggested that this was the way to go. So it is worth to make up
some ideas regarding this solution.

Considering OSGi feedbacks from experts such as Peter Kriens and Richard S.
Hall, there are issues that should be taken into consideration. For example, the

10.4. FUTURE WORK 83

architecture now is mixing a service based model with an event model. It has been
mentioned that it would be better to focus on one or the other. It has been tried out
to replace the event handling with services, and was not a complicated task. Its just
important to remember to track those new services.

The current OPC-UA client is not at this point perfectly generic, and it has been
mentioned multiple times that this is something which should be engaged into. It is
a complicated task and might be suited to spur out to a assignment of its own. The
conversation with Richard S.Hall brought up some consideration on how to handle
the generic client method functionality. Meaning that using a generic OPC-UA client
is difficult because its not possible to have a contract over the potential methods of
a hardware. Reflection was discussed but not necessary the best way to go. But this
is a complex architectural choice for future work.

References

[1] Analysis of Control Architectures for Teleoperation Systems with Impedance/Ad-
mittance Master and Slave Manipulators. http://ijr.sagepub.com/content/20/6/
419.short.

[2] Apache CouchDB. http://couchdb.apache.org/.

[3] Apache Felix Event Admin. http://felix.apache.org/site/apache-felix-event-admin.
html.

[4] Apache Felix File Install. http://felix.apache.org/site/apache-felix-file-install.
html. Apache Felix documentation.

[5] Apache Felix OBR. http://goo.gl/KkB3ty.

[6] Apache Karaf. http://karaf.apache.org/.

[7] Apache Karafe Features. http://karaf.apache.org/manual/latest-2.2.x/
users-guide/provisioning.html.

[8] BND-Tools. http://bndtools.org/.

[9] Conversation between Snorre Edwin and Jouni Aro regarding OPC-UA
client architecture. http://www.prosysopc.com/blog/forum/opc-ua-java-sdk/
opc-ua-and-osgi-providin-server-querying-as-a-osgi-service/.

[10] European Commission. http://goo.gl/Kn7UDn.

[11] Introduction to Karaf Featuers. http://icodebythesea.blogspot.no/2012/03/
making-osgi-deployments-easier-with.html.

[12] IRC Org. http://www.irc.org/.

[13] Merriam-Webster dictionary. http://www.merriam-webster.com/dictionary/
robust.

[14] Merriam-Webster dictionary. http://www.merriam-webster.com/dictionary/
upgrade.

85

http://ijr.sagepub.com/content/20/6/419.short
http://ijr.sagepub.com/content/20/6/419.short
http://couchdb.apache.org/
http://felix.apache.org/site/apache-felix-event-admin.html
http://felix.apache.org/site/apache-felix-event-admin.html
http://felix.apache.org/site/apache-felix-file-install.html
http://felix.apache.org/site/apache-felix-file-install.html
http://goo.gl/KkB3ty
http://karaf.apache.org/
http://karaf.apache.org/manual/latest-2.2.x/users-guide/provisioning.html
http://karaf.apache.org/manual/latest-2.2.x/users-guide/provisioning.html
http://bndtools.org/
http://www.prosysopc.com/blog/forum/opc-ua-java-sdk/opc-ua-and-osgi-providin-server-querying-as-a-osgi-service/
http://www.prosysopc.com/blog/forum/opc-ua-java-sdk/opc-ua-and-osgi-providin-server-querying-as-a-osgi-service/
http://goo.gl/Kn7UDn
http://icodebythesea.blogspot.no/2012/03/making-osgi-deployments-easier-with.html
http://icodebythesea.blogspot.no/2012/03/making-osgi-deployments-easier-with.html
http://www.irc.org/
http://www.merriam-webster.com/dictionary/robust
http://www.merriam-webster.com/dictionary/robust
http://www.merriam-webster.com/dictionary/upgrade
http://www.merriam-webster.com/dictionary/upgrade

86 REFERENCES

[15] Merriam-Webster dictionary. http://www.merriam-webster.com/dictionary/
expand.

[16] OSGi Configuration Admin. http://www.osgi.org/javadoc/r5/cmpn/org/osgi/
service/cm/ConfigurationAdmin.html. Java doc.

[17] OSGi Mangaged Service Factory. http://www.osgi.org/javadoc/r5/cmpn/org/
osgi/service/cm/ManagedServiceFactory.html. Java doc.

[18] OSGi Service Factory. http://www.osgi.org/javadoc/r5/core/org/osgi/framework/
ServiceFactory.html. Java doc.

[19] OSGi Subsystem. http://www.osgi.org/javadoc/r5/enterprise/org/osgi/service/
subsystem/Subsystem.html.

[20] The US national ITS architecture. http://www.iteris.com/itsarch/.

[21] Writers GitHub account. https://github.com/Snorlock.

[22] OSGi Alliance. http://www.osgi.org/Technology/WhyOSGi.

[23] OSGi Alliance. OSGi compendium spesifications - Release 5. OSGi Alliance.
http://www.osgi.org/Download/Release5.

[24] OSGi Alliance. OSGi spesifications - Release 5. OSGi Alliance. http://www.osgi.
org/Download/Release5.

[25] OSGi Alliance. Listeners Considered Harmful: The “Whiteboard” Pattern.
Technical Whitepaper, 2004. http://www.osgi.org/wiki/uploads/Links/whiteboard.
pdf.

[26] Unfified Automation. Unified Automation OPC-UA documentation. Unfified Au-
tomation. http://documentation.unified-automation.com/uasdkcpp/1.2.1/main.
html.

[27] Unfified Automation. Unified Automation OPC-UA documentation Node Classes.
Unfified Automation. http://documentation.unified-automation.com/uasdkcpp/1.
2.1/L2UaNodeClasses.html.

[28] Unified Automation. Unified automation. http://www.unified-automation.com/.

[29] Neil Bartlett. Himself, 2009. http://njbartlett.name/files/osgibook_preview_
20091217.pdf.

[30] Bitreactive. http://www.bitreactive.com/.

[31] Bitreactive. Bitreactive get started guide. http://www.bitreactive.com/
get-started.

[32] Bitreactive. Developer page. http://www.bitreactive.com/developer. This is were
the refrences and guides are.

http://www.merriam-webster.com/dictionary/expand
http://www.merriam-webster.com/dictionary/expand
http://www.osgi.org/javadoc/r5/cmpn/org/osgi/service/cm/ConfigurationAdmin.html
http://www.osgi.org/javadoc/r5/cmpn/org/osgi/service/cm/ConfigurationAdmin.html
http://www.osgi.org/javadoc/r5/cmpn/org/osgi/service/cm/ManagedServiceFactory.html
http://www.osgi.org/javadoc/r5/cmpn/org/osgi/service/cm/ManagedServiceFactory.html
http://www.osgi.org/javadoc/r5/core/org/osgi/framework/ServiceFactory.html
http://www.osgi.org/javadoc/r5/core/org/osgi/framework/ServiceFactory.html
http://www.osgi.org/javadoc/r5/enterprise/org/osgi/service/subsystem/Subsystem.html
http://www.osgi.org/javadoc/r5/enterprise/org/osgi/service/subsystem/Subsystem.html
http://www.iteris.com/itsarch/
https://github.com/Snorlock
http://www.osgi.org/Technology/WhyOSGi
http://www.osgi.org/Download/Release5
http://www.osgi.org/Download/Release5
http://www.osgi.org/Download/Release5
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
http://documentation.unified-automation.com/uasdkcpp/1.2.1/main.html
http://documentation.unified-automation.com/uasdkcpp/1.2.1/main.html
http://documentation.unified-automation.com/uasdkcpp/1.2.1/L2UaNodeClasses.html
http://documentation.unified-automation.com/uasdkcpp/1.2.1/L2UaNodeClasses.html
http://www.unified-automation.com/
http://njbartlett.name/files/osgibook_preview_20091217.pdf
http://njbartlett.name/files/osgibook_preview_20091217.pdf
http://www.bitreactive.com/
http://www.bitreactive.com/get-started
http://www.bitreactive.com/get-started
http://www.bitreactive.com/developer

REFERENCES 87

[33] Bitreactive. Overcoming the Challenges of Reusing Software. http://www.
bitreactive.com/download.php?filid=15204d533672d3-.

[34] Bitreactive. Reacting on external events. http://reference.bitreactive.com/doc/
reacting_on_external_events.

[35] Bitreactive. Sessions and multiplicity page. http://reference.bitreactive.com/doc/
multipicity_of_blocks.

[36] Bitreactive. The Secret Twists to Efficiently Develop Reactive Systems. http:
//www.bitreactive.com/download.php?filid=1519b42a5df214-.

[37] Oracle Blog. https://blogs.oracle.com/abuckley/entry/jsr_294_and_module_
systems.

[38] H. Cervantes and Jean-Marie Favre. Comparing JavaBeans and OSGi Towards an
Integration of two Complementary Component Models. In Euromicro Conference,
2002. Proceedings. 28th, pages 17–23, 2002.

[39] OPC Connect. OPC Unified Architecture. http://www.opcconnect.com/ua.php.

[40] Eclipse Documentation. http://goo.gl/7Ss5ae. Under the Arguments Tab link.

[41] Eclipse. http://www.eclipse.org/osgi/.

[42] Eclipse. http://wiki.eclipse.org/Older_Versions_Of_Eclipse.

[43] OPC Foundation. OPC UA Spesifications. http://www.opcfoundation.org/default.
aspx/uaspecdownloads.asp?MID=Developers.

[44] The Apache Software Foundation. http://servicemix.apache.org/.

[45] D. Grossmann, K. Bender, and B. Danzer. OPC UA based Field Device Integration.
In SICE Annual Conference, 2008, pages 933–938, 2008.

[46] Thomas Hadlich. Providing device integration with OPC UA. http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=4053398.

[47] Richard S. Hall. OSGi in action: creating modular applications in Java. Manning,
2011.

[48] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. MIS Q., 28(1):75–105, March 2004.

[49] Lu Huiming and Yan Zhifeng. Research on Key Technology of the Address
Space for OPC UA Server. In Advanced Computer Control (ICACC), 2010 2nd
International Conference on, volume 3, pages 278–281, 2010.

[50] ISO. C programming manual. ISO. http://www.open-std.org/JTC1/SC22/
WG14/www/docs/n1256.pdf.

http://www.bitreactive.com/download.php?filid=15204d533672d3-
http://www.bitreactive.com/download.php?filid=15204d533672d3-
http://reference.bitreactive.com/doc/reacting_on_external_events
http://reference.bitreactive.com/doc/reacting_on_external_events
http://reference.bitreactive.com/doc/multipicity_of_blocks
http://reference.bitreactive.com/doc/multipicity_of_blocks
http://www.bitreactive.com/download.php?filid=1519b42a5df214-
http://www.bitreactive.com/download.php?filid=1519b42a5df214-
https://blogs.oracle.com/abuckley/entry/jsr_294_and_module_systems
https://blogs.oracle.com/abuckley/entry/jsr_294_and_module_systems
http://www.opcconnect.com/ua.php
http://goo.gl/7Ss5ae
http://www.eclipse.org/osgi/
http://wiki.eclipse.org/Older_Versions_Of_Eclipse
http://www.opcfoundation.org/default.aspx/uaspecdownloads.asp?MID=Developers
http://www.opcfoundation.org/default.aspx/uaspecdownloads.asp?MID=Developers
http://servicemix.apache.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4053398
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4053398
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

88 REFERENCES

[51] ISO. C++ programming manual. ISO. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2010/n3092.pdf.

[52] JavaWorld. OSGi vs Jigsaw. http://goo.gl/54KX2k.

[53] JCP. http://jcp.org/en/jsr/detail?id=277.

[54] OPEN JDK. http://openjdk.java.net/projects/jigsaw/. Website of Jigsaw project.

[55] Joseph D. Camp and Edward W. Knightly. The IEEE 802.11s Extended Service
Set Mesh Networking Standard. Technical report, Rice University, 2008.

[56] Satya Maheshwari. http://goo.gl/NvdMtg. This is a session from the OSGi
Community Event 2013.

[57] Wolfgang Mahnke and Stefan-Helmut Leitner. OPC Unified Architecture - The
Future Standard for Communication and Information Modeling in Automation.
http://goo.gl/CW2xWz.

[58] Simone Massaro. What is OPC UA and how does it affect your world? http:
//goo.gl/ApordY.

[59] Prosys OPC. Prosys OPC UA Java SDK - Client Tutorial. Prosys OPC.

[60] Prosys OPC. Prosys OPC UA Java SDK - Server Tutorial. Prosys OPC.

[61] OPC-UA foundation. https://www.opcfoundation.org/Default.aspx.

[62] OSGi Alliance. http://www.osgi.org/Main/HomePage.

[63] Mitch Pronschinske. ’OSGi vs. Jigsaw: Kirk Knoernschild on Modularity’. http:
//java.dzone.com/articles/osgi-vs-jigsaw-kirk, 2012.

[64] Prosys OPC. http://www.prosysopc.com/.

[65] Olivier Roulet-Dubonnet. An Evaluation of OPC-UA for Data Collection from
the Norwegian Road Network. Technical report, SINTEF, 2012.

[66] JBoss Application server. http://www.jboss.org/jbossas.

[67] SINTEF. Roadside ITS station specification - Functional and technical require-
ments. Statens Vegvesen.

[68] Kenneth Sørensen, Terje Moen, and Cato Mausethagen. Implementation of CVIS
ITS Application in a Driving Simulator Environment. 2011.

[69] Wolfgang Mahnke Stefan-Helmut Leitner. OPC UA – Service-oriented Architec-
ture for Industrial Applications. http://pi.informatik.uni-siegen.de/stt/26_4/
01_Fachgruppenberichte/ORA2006/07_leitner-final.pdf.

[70] Snorre Lothar von Gohren Edwin. Modularity and Lifecycle of OSGi Applica-
tions. https://www.researchgate.net/publication/255703644_Modularity_and_
Lifecycle_of_OSGi_Applications.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
http://goo.gl/54KX2k
http://jcp.org/en/jsr/detail?id=277
http://openjdk.java.net/projects/jigsaw/
http://goo.gl/NvdMtg
http://goo.gl/CW2xWz
http://goo.gl/ApordY
http://goo.gl/ApordY
https://www.opcfoundation.org/Default.aspx
http://www.osgi.org/Main/HomePage
http://java.dzone.com/articles/osgi-vs-jigsaw-kirk
http://java.dzone.com/articles/osgi-vs-jigsaw-kirk
http://www.prosysopc.com/
http://www.jboss.org/jbossas
http://pi.informatik.uni-siegen.de/stt/26_4/01_Fachgruppenberichte/ORA2006/07_leitner-final.pdf
http://pi.informatik.uni-siegen.de/stt/26_4/01_Fachgruppenberichte/ORA2006/07_leitner-final.pdf
https://www.researchgate.net/publication/255703644_Modularity_and_Lifecycle_of_OSGi_Applications
https://www.researchgate.net/publication/255703644_Modularity_and_Lifecycle_of_OSGi_Applications

REFERENCES 89

[71] Fei-Yue Wang, Shuming Tang, Yagang Sui, and Xiaojing Wang. Toward Intelligent
Transportation Systems for the 2008 Olympics. Intelligent Systems, IEEE, 18(6):8–
11, 2003.

[72] Pang-Chieh Wang, Cheng-Liang Lin, and Ting-Wei Hou. A Service-Layer Diagnos-
tic Approach for the OSGi Framework. Consumer Electronics, IEEE Transactions
on, 55(4):1973–1981, 2009.

[73] Wikipedia. http://en.wikipedia.org/wiki/OSGi.

[74] Jiankun Wu, Linpeng Huang, and Dejun Wang. ASM-based Model of Dynamic
Service Update in OSGi. SIGSOFT Softw. Eng. Notes, 33(2):8:1–8:8, March
2008.

[75] Daqing ZHANG and Xiao Hang WANG. OSGi Based Service Infrastructure for
Context Aware Automotive Telematics.

http://en.wikipedia.org/wiki/OSGi

AppendixACode blocks

”Appendix - Just like the intestines, small outgrowth from large intestine
or additional information accompanying main text”

— Anonymous

A.1 Event Handler implementation

Code snippet A.1: Event handling code
public void registerEventHandler() {
EventHandler handler = new EventHandler()
{
@Override
public void handleEvent(Event event)
{

logger .debug("RECIEVED EVENT SENDING IT FORWARD");
sendToBlock("OSGIEVENT", event);

}
};

String [] topics = new String[] {
this . registerEvent
};
Dictionary<String,String[]> props = new Hashtable();
props.put(EventConstants.EVENT_TOPIC, topics);
ctx. registerService (EventHandler.class.getName(), handler, props);

}

This can be done as an interface implementation as well, but is implemented like this
to easily display what is needed to listen to a specific event. Inside the handleEvent
action there is a sendToBlock method, this is a RB method to support internal
system block events. [34] As for this.registerEvent, it is an instance parameter for this
particular block and is registered within a String table, which is the table holding
the channels this Event Handler should subscribe to.

91

92 A. CODE BLOCKS

A.2 OPCUA Client DS conversion

When working with DS there is another important file added to the soup. Its just not
the MANIFEST.MF file, 2.2.4, any more. It is a component.xml file which is added
and controls the configuration of each component service. See config A.2. Some
important settings to notice, is the configuration-policy which is set to require. This
is to avoid an arbitrary OPC-UA client being spawned at startup, if no configuration
file exists. The rest is pretty self explanatory, implementation class, what service it
provides and what service it which to reference.

Code snippet A.2: OPCUA Client DS configuration
<?xml version="1.0" encoding="UTF−8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"

configuration−policy="require" immediate="true" name="ntnu.opcua.client.service">
<implementation class="ntnu.opcua.client.service.OPCUAClientCreator"/>
<service>

<provide interface="ntnu.opcua.client.api.OPCUAClientAPI"/>
</service>
<reference bind="setNameSpaceController" cardinality="1..1"

interface="ntnu.opcua.namespace.controller.api.NameSpaceControllerAPI"
name="NameSpaceControllerAPI" policy="static"
unbind="unsetNameSpaceController"/>

</scr:component>

The following are the important methods which makes the whole OPC-UA client
spawning concept functional. As mentioned before, the reason the change from
ManagedServiceFactory was done, was because of the NameSpaceControllerApi. It
was difficult to append to the client when using a simple bundle activator which
had to instantiate a OSGi ServiceTracker to handle the NameSpaceControlleApi
properly. But using DS this became a breeze as can be viewed in A.3. Another
important factor here is that the activate and deactivate method is initiated with
a java Map variable. This implyes that this component is instantiated through
Configuration Admin. As mentioned before FileInstall is used, which communicates
with Configuration Admin, 7.1. The configuration files which the hardware bundles
create is created with the same PID as the recent component configuration has
declared in the name property. This creates the connection so that Configuration
Admin understands that it is going to initiate this particular component with the
configurations within the file that the hardware just created. And example of such a
file name is: ntnu.opcua.client.service-fartSensor.cfg

Code snippet A.3: OPCUA Client DS activation class
public void setNameSpaceController(NameSpaceControllerAPI nameSpaceApi) {

this .nameSpaceApi = nameSpaceApi;
}

A.3. DS CONFIGURATIONS TO THE MODEL BUNDLE 93

public void unsetNameSpaceController(NameSpaceControllerAPI nameSpaceApi) {
this .nameSpaceApi = nameSpaceApi;

}

public void activate(Map<String,String> config, ComponentContext context) throws
Exception {
this .context = context;
if (config .get("hardware.name") == null){

throw new Exception("MISSING NEEDED CONFIGS");
}
else {

this .clientName = config.get("hardware.name");
this . client = new OPCUAClient(this.clientName,this.nameSpaceApi);

}
}

protected void deactivate(Map<String,String> config, ComponentContext context) {
this .context = null;
this . client .shutdown();
this . client = null;

}

A.3 DS Configurations to the model bundle

The datamodel is dependent of multiple services to connect the appropriate channels
between OPC-UA and the hardware. It is currently dependent of the ServerService
to append its model into the server address space. The NameSpaceController service
to be able to append the current name space index which is created within the model
creator. And it needs the Hardware service to be able to connect OPC-UA with the
hardware.

When dependent of this many service the DS configuration files becomes a little
more extensive than the latter displayed. As the configuration code A.4 reveal, it
reference three different service. But there is on different setting here, and that
is the cardinality and policy of the FartSensor service. It is [0..1] and has policy
dynamic. If the settings were [1..1] and static, each time the hardware was updated,
meaning stopped and started again, it would unset all the different services. Which is
unnecessary because they do exist and function well. Therefore the hardware service
has been declared this way, to be able to update itself without disturbing the other
services.

Code snippet A.4: FartSensorDataModel DS configuration
<?xml version="1.0" encoding="UTF−8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"

name="ModelFartSensorDriver">

94 A. CODE BLOCKS

<implementation class="model.fartsensor.ModelFartSensor"/>
<reference bind="setServerApi" cardinality="1..1"

interface="ntnu.opcua.server.api.ServerApi" name="ServerApi" policy="static"
unbind="unsetServerApi"/>

<reference bind="setFartSensor" cardinality="0..1"
interface="hardware.driver.api.HardwareAPI" name="HardwareAPI" policy="dynamic"
target="(hardware=fartsensor)" unbind="unsetFartSensor"/>

<service>
<provide interface="org.osgi. service .event.EventHandler"/>

</service>
<property name="event.topics" value="ntnu/opcua/server/STARTED"/>
<reference bind="setNameSpaceController" cardinality="1..1"

interface="ntnu.opcua.namespace.controller.api.NameSpaceControllerAPI"
name="NameSpaceControllerAPI" policy="static"
unbind="unsetNameSpaceController"/>

</scr:component>

The reason that unset might be a unwanted feature, is because sometimes a form
of cleaning up would be crucial, meaning that some services might be ordered to
stop to let the application function. Therefore it would be a more ideal situation
if the hardware service were to come and go as it pleased, and the handling of its
absence would be managed by the datamodel.

AppendixBCommunications

B.1 Backward compability confirmation from Jo Skjermo

Figure B.1: Backward compatibility confirmation

B.2 OSGi discussions on IRC

During the thesis IRC[12] has been used to converse with OSGi users for tips
and tricks. One channel which has been very helpful is the #karaf channel on
irc.codehaus.org:6667. The idea to the OPC-UA client spawning solution came from
Jeff Goodyear which was kind enough to discuss this situation, B.1.

95

96 B. COMMUNICATIONS

Code snippet B.1: A chat with Jeff Goodyear on IRC

’ [15:23:35] <jgoodyear> Cool
[15:23:45] <jgoodyear> Whats your question?
[15:25:05] <Snorre> Quick intro to the sitation: I have to use a framework for my thesis

which creates a system, but bundles it inside one bundle. This cannot be changed. For me
to be able to create the modularity I want i need to create different instances of a
spesific service , hence a serviceFactory

[15:25:31] <jgoodyear> ManagedServiceFactory ?
[15:25:35] <Snorre> but what I need is that two different classes from the same bundle will

trigger the serviceFactory to generate a new instance for me
[15:25:53] <Snorre> So this is possible with managedServiceFactory?
[15:26:02] <jgoodyear> thats what youre looking for in OSGi
[15:26:15] <jgoodyear>

http://www.osgi.org/javadoc/r4v42/org/osgi/service/cm/ManagedServiceFactory.html
[15:26:20] <Snorre> ok, I have not gotten to that yet
[15:26:42] <jgoodyear>

http://felix.apache.org/documentation/subprojects/apache−felix−config−admin.html
[15:26:55] <jgoodyear> :)
[15:26:57] <jgoodyear> No worries
[15:27:06] <jgoodyear> OSGi is a large framework
[15:27:22] <jgoodyear> I took a full year reading and digesting the specification and

compendium to it

AppendixCSetup

C.1 Eclipse setup

First of all the Eclipse has to be downloaded from [42], choose Indigo to be able to
run RB.

RB has to be installed through Bitreactive and they have a start up process which
needs to be followed. [31]

Then the second thing to do, is to set an OSGi environment for your development
space. This can be done through different means but the solution this thesis follow
is to define a target platform for eclipse. By doing this its easy to handle the
dependencies that is needed for the project. This is not necessary if using the GitHub
code, because all the dependencies and the target platform used in the thesis is part
of the repo. BND Tools[8], is also a way to set up an OSGi development environment.
It allows for support of other functionality, such as MANIFEST.MF generation,
dependency evaluation before runtime, and it was used to generate bundles of of
existing JARs, section 6.1.

First of all create a clean project, not technology specified, and add a folder
plugins within that folder. Here the dependencies can be added. Also the OSGi
container jars need to reside here. After that is done, create a new other->target
definition within the folder, and add the plugins folder as a location in the target
definition. Then its safe to click "Set as Target Platform" in the upper right corner.

When this is done the project need a run configuration based on OSGi technology.
Go to "Run configurations" and create a new OSGi framework configuration. Here its
possible to cross of the wanted projects from the current workspace and the wanted
dependencies from the plugins folder in the target platform.

Starting arguments may be added into the arguments tab, these can be for
example bundle properties when you depend on bundles from Apache. As the OSGi

97

98 C. SETUP

cache property mentioned in section 9.3.2.

C.1.1 Logging with the current project

The current project depend on a lot of logging. So this should be set up properly. It
is dependent of log4j and slf4j. So appended to the plugin folder the log4j jar file and
two files from slf4j called slf4j-log4j12-1.7.5.jar and slf4j-api-1.7.5.jar. Now all the
dependencies are up and running. Second there has to be added a log4j.properties
file.

Code snippet C.1: Log4j properties
set log levels − for more verbose logging change ’info’ to ’debug’
log4j .rootLogger=DEBUG, R
log4j . logger .console = DEBUG, stdout

log messages to logfile###
log4j .appender.R=org.apache.log4j.RollingFileAppender
log4j .appender.R.File=C:/Prosjekter/masteroppgave/opcserver.log
log4j .appender.R.layout=org.apache.log4j.PatternLayout
log4j .appender.R.layout.ConversionPattern=%d{HH:mm:ss,SSS} %p %t %C − %m%n

direct log messages to stdout
log4j .appender.stdout=org.apache.log4j.ConsoleAppender
log4j .appender.stdout.Target=System.out
log4j .appender.stdout.layout=org.apache.log4j.EnhancedPatternLayout
log4j .appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} [%t] %−5p %C{1}:%L

%X{username} − %m%n

#log4j.logger .com.prosysopc.ua=WARN
#log4j.logger .org.opcfoundation.ua=WARN

These properties is can of course be changed, and that absolute path should be
changed. The property file now splits ut DEBUG and INFO so that all the OPC-UA
server logging will be put into a file that we dont have to worry about in the console.

Lastly to get everything connected this argument have to be added to the run
configuration arguments:

Code snippet C.2: VM arguments
−Dlog4j.configuration=file:${workspace_loc}/equinox/log4j.properties

C.2. PROPERLY RETRIEVING MASTER THESIS CODE AND IMPORTING INTO
ECLIPSE 99

C.2 Properly retrieving master thesis code and importing
into eclipse

After the eclipse has been set up the code can be pulled from the writers GitHub[21].
The repo is private and to get access one has to contact the writer through the
contact information on the GitHub account[21].

Once the code is pulled, the next step is to import the code into eclipse. This is
easily done through import and find the folder containing all the projects. When this
is done, and the later instructions, the development environment should be ready
to use. Right now, all the dependencies are attached to the GitHub repo, meaning
that the target platform file will be achieved through the existing code. Therefore,
creating a target platform is not necessary.

	Title Page
	List of Figures
	List of Code Snippets
	List of Glossary
	List of Acronyms
	Introduction
	Project background
	Problem outline
	Research questions
	Limitations
	Scope and organization
	Technical background
	Literature and related work
	Methodology
	Iteration 0: Technology study
	Iteration 1: Connection and pair-ability
	Iteration 2: Implementation of simple swap example
	Iteration 3: OPC-UA Client and hardware approach
	Iteration 4: Reactive Block focus
	Evaluation and conclusion

	Technical background
	Intro
	OSGi
	OSGi growing up
	Related work
	OSGi architecture
	MANIFEST.MF

	Reactive Blocks
	Building blocks
	Reuse
	Visualization
	Verification
	Why use Reactive Blocks?

	OPC Unified Architecture
	What is OPC-UA
	Protocols
	Implementations
	OPC-UA Object model
	OPC-UA Node Model
	OPC-UA server
	OPC-UA client
	OPC-UA NodeManager
	OPC-UA address space & Name Space
	OPC-UA View

	Literature and related work
	OSGi
	Robust architecture OSGi
	OSGi and update/expansion handling
	Dynamic OSGi architecture

	OPC-UA
	Statens Vegvesen
	ITS focus around the world
	EU
	US
	China

	Methodology
	General
	Method guidelines
	Literature study
	Development tools and technology
	Eclipse
	GitHub
	OPC-UA tools

	Iteration 0: Technology study
	Intro
	Robustness
	OSGi
	Reactive Blocks
	OPC-UA

	Upgrading
	OSGi
	Reactive Blocks
	OPC-UA

	Expanding
	OSGi
	Reactive Blocks
	OPC-UA

	Summary and concluding remarks

	Iteration 1: Connection and pair-ability
	Initial build
	Guidelines for future development
	How low level should the Reactive Blocks be
	The what and how regarding the OSGi bundles
	General APIs
	How the application shall be controlled

	Unsolved Problems
	Summary and concluding remarks

	Iteration 2: Implementation of simple swap example
	Problems from last iteration
	Swap hardware application
	OPC-UA server implementation
	OPC-UA client implementation
	Reactive Blocks Swap Hardware application

	Hardware service bundle implementation
	Hardware driver bundle

	Unsolved Problems
	Summary and concluding remarks

	Iteration 3: OPC-UA Client and hardware approach
	Problems from last iteration
	OPC-UA datamodel
	Why a datamodel?
	Example datamodel

	OPC-UA method and events
	Mapping of namespaces for each hardware
	Familiar identity

	Other fixes and improvements
	OPC-UA client conversion to Declarative Services
	File install error

	Proper OPC-UA server service
	Unsolved problems
	Summary and concluding remarks

	Iteration 4: Reactive Block focus
	Problems from last iteration
	Upgrading through the OPC-UA layer
	Some important factors

	Reactive Block application state
	The reactive block swap application
	CarSensor component
	Light component

	OPCUA Client
	Listeners and whiteboard pattern
	Discussions with experts and users
	Peter Kriens
	Richard S. Hall
	Martin Mueller

	Important developing hints
	Silent Exceptions
	OPCUA monitoring value update

	Unsolved problems
	Summary and concluding remarks

	Evaluation and conclusion
	Summary
	Evaluation
	OSGi
	OPC-UA
	Reactive Blocks

	Conclusion
	Future work

	References
	Code blocks
	Event Handler implementation
	OPCUA Client DS conversion
	DS Configurations to the model bundle

	Communications
	Backward compability confirmation from Jo Skjermo
	OSGi discussions on IRC

	Setup
	Eclipse setup
	Logging with the current project

	Properly retrieving master thesis code and importing into eclipse

