
Modifications to and performance
evaluation of output scheduling in
3LIHON nodes

Andrea Marchini

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Norvald Stol, ITEM
Co-supervisor: Walter Cerroni, University of Bologna

Department of Telematics

Submission date: December 2013

Norwegian University of Science and Technology

Problem description

In the latest years, communications have become more and more de-
manding, due to increasing needs of transferred data volumes and
speed requirements. Recent research show that future core networks
will have to handle both circuit and packet switched traffic. An intro-
duction on recent network and traffic topology evolution and future
requirements is therefore advisable.

This work will focus on integrated hybrid optical networks. We start
by explaining the three main categories to classify hybrid optical
networks: client-server, parallel and integrated. More specifically,
the most important architectures proposed so far for the latter are
ORION, OpMiGua and 3-LIHON; they should be presented as well.

3-LIHON and its output scheduling algorithm have been previously
studied by Gaia Leli in her master thesis (2012), so that work can
be extended by investigating and trying to improve the performance
of SM/BE traffic under heavy system load. In this condition short
SM/RT packets tend to frequently interrupt SM/BE packets, thus in-
creasing the loss of SM/BE packets. Some possible ways to remedy
this could be for example:

• retransmitting interrupted packets;

• resuming interrupted packets. More in details, a proper (Frag-
ment End) optical code can be used, in addition to the tail and
header ones. These packets will not be influenced by preemptive
GST and SM/RT ones (as they both have priority and will be
properly switched at the following node, according to their type

ix

and optical code, if present), so their transmission can be ac-
complished, even after an interruption, on the same wavelength
of the optical fiber. This can be performed by adding a register
for each wavelength at both transmitter and receiver. At the
following switch, fragmented packets will be reassembled.

• putting FDLs at the output of the OPS that manages SM/RT
traffic could be another possible way to reduce the effects of pre-
emptive packets over SM/BE ones, in order to decrease the prob-
ability of wavelength contention between SM/RT and SM/BE
packets. These FDLs however should not be long enough to
compromise the real time requirements of SM/RT traffic.

Moreover, if results given by the above techniques are not as effective
as expected, an intermediate architecture between OpMiGua and 3-
LIHON can be studied. A possible architecture could be obtained by
removing the OPS managing SM/RT traffic. This would lead to some
other changes, like:

• exploiting the EPS to handle both SM/RT and SM/BE packets;

• having the FDL at the OXC output equal to the maximum
length of a SM/RT packet

• employing only one output queue at the EPS, which involves
reordering incoming packets according to their length. Since
most SM/RT packets are shorter than SM/BE ones, usually they
will be prioritized.

Evaluation of this method also needs to take into account drawbacks
and consequences from packet reordering.

As the considered systems are very complex, an analytic approach
is challenging. This study will therefore focus on simulations to eval-
uate performances. More specifically, the software selected to assess
them is DEMOS, a system for discrete event modelling on Simula.

x

Abstract

Optical networks became very important in the latest years, thanks to
their high traffic capacity, because of the continuous growth of total
exchanged data and the request of real-time communication.
Since they have (relatively) long adaptation times, this technology is
not inherently the most suitable to carry bursty traffic like the current
one. Hybrid networks try to get the best from optical circuit switching
and optical packet switching.
This work is focused on an hybrid network architecture called 3LI-
HON (3-Level Integrated Hybrid Optical Network). It has
three different quality of service (QoS) levels, in order to meet differ-
ent requirements:

• Guaranteed Service Type (GST): resembling an optical circuit
switched service, it does not allow data loss.

• Statistically Multiplexed Real Time (SM/RT): resembling an
optical packet switched service, it ensures none or very small
delay inside the network, it allows a low data loss ratio and
bandwidth contention.

• Statistically Multiplexed Best Effort (SM/BE): resembling an
optical packet switched service with very small overall packet
loss but no guaranteed delay inside the nodes.

In a 3LIHON node, SM/BE traffic interrupted by packets with higher
priority is dropped. This means that time and resources spent sending
the SM/BE packet until the interruption are wasted.

In this work we try to avoid this behaviour, by implementing and

xi

comparing three new output scheduling algorithms. They are differ-
ent versions of the standard 3LIHON node:

• 3LIHON-RS: SM/BE interrupted packets are resumed once
higher priority traffic has been sent.

• 3LIHON-RT: SM/BE interrupted packets are retransmitted.

• 3LIHON-2R: since GST packets are usually much longer than
SM/RT ones, resuming an interruption caused by GST traffic
leads to a long wait. This architecture resumes SM/BE packets
interrupted by SM/RT traffic and retransmits them if they have
been interrupted by GST traffic.

A proper (Fragment End) Optical Code can be used to implement and
signal packets interruption and resuming, Every 3LIHON version has
been tested with increasing traffic loads, but never so high to overload
the node. Three different simulators have been written in order to
study the behaviour of the different architectures, by using the Sim-
ula programming language and its context class DEMOS, specifically
intended for discrete event modelling. The node input part has just
been modelled, since it does not directly influences results.

As a function of system load, performances of these new architec-
tures have been analysed, paying attention especially to SM/BE pack-
ets mean delay, SM/BE queues, delay distribution of SM/BE traffic,
wavelengths utilization, GST and SM/RT interruptions over SM/BE
traffic, standard deviation of SM/BE delay and SM/RT packet loss.
It has been observed that 3LIHON-2R does not have the best abso-
lute performances, but is the best trade off among all the systems
and is very well balanced when system load increases. It is the archi-
tecture showing the lowest mean SM/BE packet delay. 3LIHON-RS
proved to have the lowest SM/BE queue values and less interruptions
of SM/BE traffic. Furthermore, it has the best wavelengths utilization
performances. 3LIHON-RT achieved the worst results and is the first
architecture overloading.

xii

Keywords

Scheduling

Integrated hybrid

Performance evaluation

Optical networks

To my family, myself and the future.

Contents

List of abbreviations xiii

Introduction xv

Motivation and current work xv

Problem definition and goal xvi

Problem definition . xvi

Goal . xvi

Outline . xvi

1 Purpose and architecture of a 3LIHON node 1

1.1 Circuit switching and packet switching 1

1.2 QoS differentiation . 3

1.3 Architecture of a 3LIHON switching node 3

1.4 Modifications to the standard 3LIHON output scheduling 6

1.4.1 Architecture of the modified 3LIHON node . . . 8

2 Node modelling, code and scheduling algorithms 11

2.1 Node modelling . 11

2.2 Code description . 12

2.3 Sources characterization 12

2.4 Packets characterization 13

2.4.1 Guaranteed Service Type (GST) traffic description 13

2.4.2 Statistically Multiplexed Real Time (SM/RT)
traffic description 15

2.4.3 Statistically Multiplexed Best Effort (SM/BE)
traffic description 16

2.4.4 The bin-server system 18

vii

2.5 Input file . 19
2.6 DEMOS implementation of 3LIHON modified versions 20

2.6.1 3LIHON-RS . 20
2.6.2 3LIHON-RT . 21
2.6.3 3LIHON-2R . 21

3 Simulations and results 23
3.1 Results and discussion 24

3.1.1 SM/BE packets mean delay 24
3.1.2 SM/BE queues 26
3.1.3 Delay distribution of SM/BE traffic 28
3.1.4 Wavelengths utilization 31
3.1.5 GST and SM/RT interruptions over SM/BE traffic 35
3.1.6 SM/BE delay and standard deviation 36
3.1.7 SM/RT packet loss 39

4 Conclusions and further works 41
4.1 Conclusions . 41
4.2 Further works . 43

Appendix 46

Appendix A: Input file example 47

Appendix B: Confidence interval 49

Appendix C: 3LIHON-RS code 53

Appendix D: 3LIHON-RT code 59

Appendix E: 3LIHON-2R code 63

Ringraziamenti 109

viii

List of abbreviations

3LIHON 3-Level Integrated Hybrid Optical Network
GST Guaranteed Service Type

SM/RT Statistically Multiplexed Real Time
SM/BE Statistically Multiplexed Best Effort

FDL Fiber Delay Line
OXC Optical Cross Connect
OPS Optical Packet Switch
EPS Electronic Packet Switch
FIFO First In First Out

WRON Wavelength Routed Optical Network
QoS Quality of Service
DPT Detect Packet Type
OC Optical Code

DWDM Dense Wavelength Division Multiplexing
ROADM Reconfigurable Optical Add-Drop Multiplexer

xiii

xiv

Introduction

Motivation and current work

In the last decades, communication technology has changed a lot. At
the beginning, telephony was the main service, but then it has been
superseded by data, which are now the biggest portion of traffic, also
as a result of the advent of the Internet.
Since the beginning, the Internet has provided best effort services and
this has been sufficient until recent times, but lately there has been
the need of traffic differentiation, i.e. QoS management, due to new
applications and the growth of users and transferred data volume.

The evolution in fiber transmission technology, thanks to e.g. Dense
Wavelength Division Multiplexing (DWDM), reconfigurable optical
add-drop multiplexers (ROADMs) and all-optical crossconnects (OXCs),
made available a huge transmission capacity, so that now optical de-
vices and systems carry the largest amount of data, while electronics
introduce intelligence to the data and control plane. The problem
is that optical networks are not suitable for bursty traffic, thus re-
sulting in a transport inefficiency, mainly because of their (relatively)
slow adaptation times. This leads to the concept of hybrid networks,
which try to obtain the merits of different technologies - optical circuit-
switching and optical packet-switching - by combining them into one
architecture, while avoiding their disadvantages.

The hybrid network architecture we will focus on in this work is called
3-Level Integrated Hybrid Optical Network (3LIHON) [6]. The aim
of this work is to get a fully functional simulation model of a basic

xv

3LIHON node, implement resume and retransmission for interrupted
packets and study the performances for outgoing traffic towards the
output wavelengths.

Problem definition and goal

Problem definition

In a standard 3LIHON node, SM/BE traffic suffers from losses and
delay. We study the behaviour of three new 3LIHON architectures
at different traffic loads. The scheduling algorithms introduced avoid
losses and manage the delay in different ways.
We want to observe SM/BE packets delay and its characteristics, such
as mean value, distribution and standard deviation, besides wave-
length utilization, SM/BE queue length and interruptions.

Goal

The goal of this work is to study and compare the performances of
a 3LIHON node with different algorithm for output scheduling, espe-
cially for what concerns SM/BE packets. The main figures observed
are interruptions and delay for SM/BE packets, efficiency of the dif-
ferent scheduling algorithms and wavelength utilization at different
loads. Packet loss probability for SM/RT traffic is of minor interest.

Outline

The outline of the present work is the following:

• Chapter 1 explains the concept and the architecture of a 3LI-
HON node, as well as the three modified architectures.

• Sections from 2.1 to 2.4 illustrate how the node has been mod-
elled and how the different sources and types of packets have
been implemented in the simulator.

• Section 2.6 describes how the new introduced architectures have
been implemented.

xvi

• Section 3.1 and all its subsections present results and compar-
isons between the three different architectures.

• Finally, Chapter 4 illustrates conclusions for this work and pos-
sible future works.

xvii

xviii

Chapter 1

Purpose and architecture of
a 3LIHON node

1.1 Circuit switching and packet switch-

ing

Like in the ”old” telephony, circuit-switching allocates resources for
communication between two parties in a reserved way, so that they
have the complete availability of the connection for the entire dura-
tion of the conversation. This requires a previous signalling phase, in
order to set-up the appropriate circuit, performed with the exchange
of messages; thus, it is necessary at least the round trip time of the
connection and, in large networks, this can take a relative long time,
making the circuit-switched technology not suitable for the transport
of bursty or highly variable traffic.
With the advent of the Internet and the consequently raised demand,
there had been the need of upgrading the copper networks and re-
placing them with optical fibers, to provide the necessary bandwidth,
that increased further on thanks to optical amplifiers and the deploy-
ment of Dense Wavelength Division Multiplexing. At first, these links
were used as point-to-point interconnections, but now we are able
to provide real optical networking, employing optical switches. This
evolution has been possible by using so-called lightpaths (i.e. a wave-
length passes through a node transparently, thus relieving the router

1

2
CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON

NODE

of the additional work of inspecting the transit traffic) and Optical
Cross Connects (OXC, which switch the optical signal). Another step
has been made with the advent of Automatically Switched Optical
Networks (ASON), because the lightpath can be set-up by a control
plane, saving the operator from doing it [2]. Besides the relatively long
set-up time, circuit-switched networks have another drawback: there
will probably be an inefficient usage of the bandwidth, since a single
wavelength can carry up to a few ten Gbit/s.

In packet-switching, data are sent in packets and this can also be
applied to the optical world, thus talking of Optical Packet Switching
(OPS). Packets are formed by a header and a payload: the former
contains the routing information and is processed electronically, the
latter is kept in the optical domain. This allows a more efficient usage
of the network resources, because a wavelength is occupied only when
necessary, suiting better to a highly variable traffic like the present
one, and has had a boost with the IP protocol. Furthermore, it is
possible to share the wavelengths on the links thus having a statistical
multiplexing gain. Packet-switching has some disadvantages, too, as
routers and switches along the path have to process the transit traffic,
so congestion may happen and consequent delays can occur, which are
difficult to predict. Also, possible contentions at intermediate nodes
need to be solved by queuing packets until enough resources are avail-
able [5]. In the optical domain, the only way, at the moment, to queue
packets is by using a Fiber Delay Line (FDL), which introduces a fixed
delay.

In an integrated hybrid optical network, all network technologies share
the same bandwidth resources in the same network simultaneously.
Thus, in a network with OPS and wavelength switching, the node
can choose whether to send the traffic in a wavelength-switched mode
or in a packet-switched mode. Its choice can be determined by a
congestion situation or by QoS requirements (the wavelength path
are used for high-priority traffic). Usually, dynamic traffic is sent
in packet-switched mode, whereas wavelength-paths are preferred for
more smooth, stable traffic. This means also that each node must
have a wavelength-switched device and a packet-switched device. In-

2

CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON
NODE 3

tegrated hybrid optical networks are the most bandwidth-efficient, but
also the most complex.

1.2 QoS differentiation

The 3LIHON architecture proposes three service levels able to sup-
port different QoS needs, each one associated to a different switching
technology. They are respectively:

• Guaranteed Service Type (GST): similar to a circuit-switched
service, it does not allow information loss inside the network;

• Statistically Multiplexed Real Time (SM/RT): similar to a packet
switched service, it guarantees none or very limited delay inside
the network, but tolerates some packet loss inside the nodes and
bandwidth contention;

• Statistically Multiplexed Best Effort (SM/BE): similar to a packet
switched service, it does not guarantee delay inside the nodes
and allows very small packet loss, e.g. by employing link-level
packet retransmission.

1.3 Architecture of a 3LIHON switching

node

Figure 1.1 presents a general 3LIHON node, with N input/output
fibers carrying M wavelengths. Each of them has a Detect Packet
Type (DPT) block, whose function is to identify the transport service
of the incoming packets, in order to treat them accordingly. If a GST
packet is detected, it is switched to an OXC and then forwarded to
its pre-established wavelength on the output fiber. SM/RT packets
are switched to an OPS and SM/BE to either an Electronic Packet
Switch (EPS) or an OPS with electronic buffering. GST and SM/BE
are expected to be the great part of the overall traffic and luckily
OXCs and EPSs are today commercially available components, unlike

3

4
CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON

NODE

Figure 1.1: General scheme of a 3LIHON switching node [6]

the ones needed to handle SM/RT traffic. Switches managing SM/RT
and SM/BE packets also perform Collision Avoidance (CA) among
different types and contention resolution (CR) among packets of the
same class.

In Figure 1.2 is shown the architecture of a DPT, implemented us-
ing OC detection, as OC encoders/decoders are passive components,
so they do not increase the overall power consumption. This DPT
sends all the unmarked traffic to the OXC, this means that GST traf-
fic does not require OC marking, whereas SM/RT and SM/BE traffic
need to be distinguished and are then marked with an OC header
and tail. The header is used to send the packet to the proper switch-
ing subsystem by accordingly opening or closing the gates, the tail to
set the DPT back to its default configurations, after the end of the
transmitted packet. Thus OCs may be divided into two groups, i.e.
employed for SM/RT and SM/BE traffic.

Figure 1.3 shows how CA is managed using Detect signals. A generic
wavelength channel j on output fiber k, indicated with (j, k) is consid-

4

CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON
NODE 5

Figure 1.2: Detect Packet Type architecture implemented with OC
detection [6]

Figure 1.3: How collision avoidance is performed [6]

5

6
CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON

NODE

ered. GST packets need to be forwarded with maximum priority and
without loss in circuits pre-established during the network planning
phase or set up by the ASON, so, as soon as one of them arrives, a cou-
ple of Detect signals is sent by the OXC to the OPS and EPS control.
GST packets are non-preemptive over SM/RT ones, i.e. there is no
collision among their transport classes, this is why they enter a fixed
length FDL1. Its length is chosen equal to the maximum length of a
SM/RT packet, so that it can always be completely sent out on chan-
nel (j, k) before the beginning of the GST packet transmission. After
having received a Detect signal, the OPS stops considering channel (j,
k) for contention resolution for incoming packets and must use other
wavelengths; furthermore, after having sent the GST packet, the OPS
has to wait for a time equal to the delay introduced by FDL1 before
starting to send SM/RT packets again, in order to let the GST packet
finish its transmission through the FDL1 buffer. SM/BE packets are
preempted by both GST and SM/RT ones to avoid further delays, so
as soon as the EPS/OPS receives a Detect signal, it must stop trans-
mission immediately, add a tail OC and not consider channel (j, k) for
contention resolution for incoming packets. SM/BE packets that may
have been interrupted can be dropped, resumed or later retransmitted
by the EPS on a free wavelength. FDL2 is used so that SM/RT pack-
ets allow the EPS to stop its transmission and has a very small delay.
Note that SM/RT packets should have a significantly shorter length
than GST ones, so that the delay introduced by FDL1 does not affect
them too much when passing through the OXC.

1.4 Modifications to the standard 3LIHON

output scheduling

Three main changes have been made to the standard output scheduling
of a 3LIHON node:

• resuming (RS): transmission of SM/BE packets interrupted
by higher priority traffic is then resumed, using the same wave-
length.
The concept which led to this modification was to avoid drop-
ping interrupted SM/BE packets and therefore waste transmis-

6

CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON
NODE 7

sion capacity. Time and capacity spent until the interruption
would just be wasted in the standard 3LIHON node, because
the SM/BE packet is dropped. This would also cause a data
loss.
In the 3LIHON-RS node, when a SM/BE packet is interrupted
by higher-priority traffic it is not dropped, but simply suspended
and then resumed again when the previously used wavelength
gets free.

• retransmission (RT): SM/BE packets interrupted by higher
priority traffic are then put back in queue for later retransmis-
sion, using any free output wavelength.
This alternative does not avoid wasting transmission capacity
and time, because time and capacity spent until the interruption
can not be got back. An advantage of this choice, compared to
the 3LIHON-RS, is that an interrupted packet does not have to
wait for a specific output wavelength to be free, but it can be
sent through any available resource.

• resuming/retransmission (2R): SM/BE packets interrupted
by GST traffic are put back in queue for later retransmission,
using a free output wavelength. SM/BE packets interrupted by
SM/RT traffic are resumed, using the same wavelength.
This is a compromise solution between the two previous versions.
This scheduling algorithm is based upon the idea that GST
packets are usually longer, but less frequent, than SM/RT pack-
ets, so it may be quicker to retransmit an interrupted SM/BE
packet through another free wavelength, instead of resuming it
and waiting for the complete transmission of the interrupting
GST packet.
Furthermore, it has been previously showed ([3]) that, at high
loads, interruptions to SM/BE packets are caused mainly by
SM/RT traffic. We thought that avoiding to retransmit all these
SM/BE packets could improve overall performances.

7

8
CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON

NODE

Figure 1.4: Modifications introduced to the standard 3LIHON node

1.4.1 Architecture of the modified 3LIHON node

Changes made to the standard output scheduling of the 3LIHON node
also affect the node’s architecture.
Since retransmission is quite simple to implement, because it only
needs to put the packet at the back of the queue, we will now focus
on resuming.

Introduced modifications can be seen in Figure 1.4. They only re-
gard the EPS.
Since we are dealing with a cut-through switching typology, it is not

possible to wait for an interrupted packet to be completely reassem-
bled at the following node. Inside the EPS, an input and an output
buffer have been introduced. These buffers hold a piece of a possible
incoming or outgoing interrupted SM/BE packet. There is a couple
of buffers for each wavelength.
It is also necessary to implement a new optical code, we call it Fragment-
End Optical Code (FE-OC). This OC is put in the tail and is used to
mark the end of each SM/BE fragment.
The input buffers receive incoming fragments coming from the pre-
vious node from the input fibers. Every buffer must be able to dis-
tinguish between tail OC and FE-OC, because the corresponding tail
fragment can be received while another fragment is in the buffer.

8

CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON
NODE 9

The scheduling logic (S.L. in the picture) is in charge of collecting
these incoming fragments and put them inside the node’s logic, for
possible reassembling. This aspect has not been covered, since this
work focuses on the output scheduling (so we may see the studied
node as an input node). Since it may happen that the SM/BE queue
is empty, the scheduling logic also has to decide whether to take pack-
ets from the input buffers or the queue. In case the reassembly is not
possible, the fragment has to be forwarded as it is.
While sending a SM/BE packet, an interruption may occur, thus the
remaining fragment must be put inside the output buffer correspond-
ing to the output wavelength being used. Once again, it is the schedul-
ing logic that takes this decision.
During normal operations, it will probably happen to have some out-
put buffers busy and some packets inside the queue, waiting to be
scheduled. It is now the output logic that is in charge of deciding
which packet to take and send through the output wavelength.
The 3LIHON-RS scheduling is probably more difficult to implement
using a cut-through architecture rather than a store-and-forward ar-
chitecture, since there is no chance to store fragments in buffers and
reassemble them, but every fragment or packet must be immediately
forwarded. This will also lead to more complicated logics.

9

10
CHAPTER 1. PURPOSE AND ARCHITECTURE OF A 3LIHON

NODE

10

Chapter 2

Node modelling, code and
scheduling algorithms

2.1 Node modelling

The node architecture is showed in Figure 1.1, it consists of N in-
put/output fibers, carrying M wavelengths.
The incoming traffic includes GST, SM/RT and SM/BE packets in
various percentages.
GST packets have reserved wavelengths available and do not experi-
ence any loss; their arrival process is described by Poisson distribution,
whereas their inter-arrival process is described by a negative exponen-
tial distribution. They are then collected in bursts whose length is
constant and forwarded through the network by the OXC.
Unlike GST packets, SM traffic may experience loss since it has no
wavelength reserved and is fitted in gaps between GST packets. Its
inter-arrival process and the SM packets length are both described by
a negative exponential distribution, whereas the arrival process follows
Poisson distribution.
The simulation model presented in this work is asynchronous and un-
slotted.
We assume no FDL available in the OPS for SM/RT traffic and one
buffer with FIFO priority order for SM/BE traffic.

11

12
CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING

ALGORITHMS

2.2 Code description

The programming language chosen to implement the simulator of the
3LIHON node is Simula, with the help of DEMOS, a context class for
discrete event simulation.
Simula, developed in the 1960s in Norway for simulation purposes,
has been the first object-oriented programming language; DEMOS
stands for Discrete Event Modelling on Simula and is a context class
created by Graham Birtwistle [1]. A context is a package written in
Simula which extends the language towards a specific problem area.
DEMOS was meant to help beginners in discrete event simulation
by augmenting Simula with a few building blocks, which provide a
standardised approach to a wide range of problems.

2.3 Sources characterization

Three different kind of sources have been created, in order to simu-
late the arrival of three different kind of packets: GST, SM/RT and
SM/BE.

Since GST packets have pre-defined paths along the network, 32 GST
sources are created, one for each wavelength (M=32). In this way
fixed links are realized and we assure the delivery of each GST burst.
Each source makes the inter-arrival time follow a negative exponential
distribution, whose mean value is function of the length of the GST
packet and the bit channel rate. We assume a bit channel rate of
1Gbit/s for each wavelength. We can then obtain a specified load of
GST traffic on each wavelength.

The SM/RT traffic is generated by a single source and the inter-arrival
time follows a negative exponential distribution. The mean value is
function of the mean length of a SM/RT packet, of the bit channel
rate and of the relative load of SM/RT traffic.

A single source generates SM/BE packets, whose inter-arrival time
follows a negative exponential distribution, with mean value given by
the mean length of a SM/BE packet, the bit channel rate and the

12

CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING
ALGORITHMS 13

relative load of SM/BE traffic.

2.4 Packets characterization

Each type of traffic represents different services with different quali-
ties in the future network, so it is reasonable to assign them different
packet lengths [6].

GST bursts have constant distribution with a fixed mean value of
40000 bytes.
SM/RT packets length follows a negative exponential distribution with
a mean value of 40 bytes.
The mean length for SM/BE packets is related to the one above and
is modelled by a negative exponential distribution as well. In this
work we consider a mean value equal to 40 times the mean length of
a SM/RT packets, that is 1600 bytes.
According to the 3LIHON node structure, the FDL length after the
OXC should be equal to the maximum SM/RT packet length, so both
are set to 5 times the SM/RT mean packet length. This also means
that any possible SM/RT packet longer than that will be cut off to
this maximum value.

2.4.1 Guaranteed Service Type (GST) traffic de-
scription

GST traffic has been implemented in DEMOS as shown in Figure 2.1.
Two new entities has been introduced:

• GST generator

This entity generates GST packets in a loop. There is one gener-
ator for each wavelength and, since GST packets have the highest
priority, they can not be interrupted by packets of other classes.
Once a GST packet has been generated, it is immediately sched-
uled and the corresponding wavelength is busy until it has been
completely transmitted.

13

14
CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING

ALGORITHMS

Figure 2.1: GST traffic implementation [3]

• GST packet

Each GST source is directly linked with its own output wave-
length. As soon as a GST packet is generated and then sched-
uled, the corresponding FDL is marked as ”busy” using a boolean
variable and the corresponding flag gets value 1.
There is a flag for each wavelength and they are globally visible.
When they have value 1 it means that the current wavelength
is being used by a GST packet and thus it can not be used by
other types of traffic.
The FDL has a length equal to the maximum SM/RT packet
length, that is, in the most cases, shorter than the GST packet.
When the packet reaches the output wavelength, the resource is
acquired and held until necessary.
Once the FDL has become available again, the boolean variable
becomes false, the flag is set to 0 and an appropriate message is

14

CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING
ALGORITHMS 15

Figure 2.2: SM/RT traffic implementation [3]

sent to the BE server, signalling that the current wavelength is
now free.

2.4.2 Statistically Multiplexed Real Time (SM/RT)
traffic description

Figure 2.2 shows how SM/RT traffic has been implemented. Two new
entities has been introduced:

• RT generator

SM/RT traffic is generated by only one source, that creates pack-
ets according to the specifics in chapter 2.3.
In order to guarantee collision avoidance, any SM/RT packet
having length greater than the maximum specified must be cut
off to the maximum length value.

• RT packet

15

16
CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING

ALGORITHMS

SM/RT packets length distribution follows what stated in chap-
ter 2.4.
In order to send a SM/RT packet, either a free wavelength can
be used or a resource transmitting SM/BE packets, since they
can be interrupted by SM/RT traffic.
First we start looking for a free output wavelength, beginning
from the first one. This will lead to a higher utilization of the
first wavelengths than the others. If a flag with value 0 is de-
tected, this means that wavelength is available.
If all of them are busy, we start looking for a resource which
is transmitting SM/BE traffic, since it has lower priority than
SM/RT packets and thus it can be interrupted. If a flag with
value 3 is found, it means SM/BE traffic is being carried by that
wavelength and it is allowed to interrupt it and use that resource
to send SM/RT packets.
Every time a SM/BE packet is interrupted this event is logged,
an interrupt signal with value 2 is sent to the SM/BE packet
and the wavelength carrying traffic is registered as available for
by SM/RT packets.
Once a wavelength has been found, the selected resource is ac-
quired, held for all the necessary time and the corresponding
flag is set to 2. During the transmission, neither GST traffic nor
SM/BE traffic can interrupt it.
Once the packet has been transmitted, the flag value is set back
to 0, the corresponding resource is released and the BE server is
informed of a free wavelength by sending it a proper message.
It is important to point up that, in case of high load, all the
output wavelengths may be busy carrying GST or other SM/RT
packets, thus it may happen that none of them is available to
send SM/RT traffic (because we are looking for either a free
resource or one carrying SM/BE traffic).

2.4.3 Statistically Multiplexed Best Effort (SM/BE)
traffic description

SM/BE traffic for the standard 3LIHON architecture has been imple-
mented in DEMOS as shown in Figure 2.3. Three new entities have

16

CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING
ALGORITHMS 17

Figure 2.3: SM/BE traffic implementation [3]

been introduced.
Modifications studied in this work will be explained in section 2.6.

• BE generator

A single generator is used to create SM/BE packets, with arrival
times and length following the distributions showed in sections
2.3 and 2.4.

• BE packet

This entity works together with the entity BE server shown
later in order to manage the transmission of SM/BE packets in
the system.
This type of traffic has the lowest priority, so it must be im-
plemented the preemptiveness of GST and SM/RT traffic over

17

18
CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING

ALGORITHMS

SM/BE packets.
All the generated packets go into a queue BE Q of class waitq.
As soon as a packet is scheduled, it sends a give message to the
bin object serverBEwaiting wl, to notify the server a SM/BE
packet is waiting in the queue.
After having waited in the queue, the packet is served by the
server, it acquires a wavelength, it marks the flag of the currently
used wavelength with a value equal to 3, it holds the acquired
resource until necessary and then releases it. While holding the
resource, it may be interrupted by GST or SM/RT packets.
Once the transmission is completed, another give message is
sent to serverBEwaiting wl, to notify that the wavelength is now
available again. Moreover, the flag value is set back to 0.
If, during the hold time, a GST packet requires the wavelength,
it interrupts the SM/BE packet with interrupted value 1; if it is
the case of a SM/RT packet, interrupted is set to 2.

• BE server

This entity takes packets from the queue and forwards them
into a free output wavelength.
It starts looking for an available wavelength, beginning from the
first one. If a free resource is found, then it checks if there are
any packets waiting in the queue. If both conditions are true,
the first packet in the queue is taken (following a FIFO policy)
and forwarded through the chosen output wavelength. Finally,
a take message is sent to the bin object serverBEwaiting wl, to
notify that an object from the queue has been taken.
Now the server is ready again and can manage the forwarding
of a new SM/BE packet.

2.4.4 The bin-server system

The insertion of the bin object serverBEwaiting wl avoids the server
to get stuck waiting for packets filling the queue. The bin-server sys-
tem is show in Figure 2.4.

Without a bin, it may happen that, when the queue is empty, the

18

CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING
ALGORITHMS 19

Figure 2.4: Graphical representation of the bin-server system

server keeps waiting indefinitely for an incoming packet. The bin has
a specific role in managing the wavelengths: whenever a resource gets
free, a ”token” is sent to the bin with the instruction serverBEwait-
ing wl.give(1) by the GST-SM/RT-SM/BE packet which has just been
transmitted (or maybe interrupted, if it is a SM/BE packet).
This signal tells the server to check the queue for some pending pack-
ets. There may also not be any packet in queue waiting to be served
and, in this case, the server goes back to the ready state, otherwise
the pending SM/BE packet is sent through the available wavelength.
A ”token” is sent to the server also whenever a SM/BE packet is
scheduled. This means that there is a SM/BE packet waiting and so
the queue must be checked, in order to send it.
Whenever a SM/BE packet is taken from the queue, a serverBEwait-
ing wl.take(1) message is sent, that means that an output wavelength
is now being used to transmit the SM/BE packet.

2.5 Input file

All the relevant input data needed for the simulator to run correctly
are inserted through an input file. This allows us to run the same
code or any of the versions presented in 2.6, while simply changing
only the necessary information, thus performing a different simulation,
reducing the probability of mistakes and allowing the user to keep
track easily of the corresponding results and output files. E.g. the

19

20
CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING

ALGORITHMS

input file includes:

• the seeds array (ten seeds are used to feed the internal random
number generator for ten independent sub-simulations);

• the transient and simulation time;

• the packet lengths for all the three traffic classes;

• the channel rate;

• the FDL length;

• the number of output wavelengths;

• the total load and the relative loads for each type of traffic.

An example of input file can be found in Appendix A.

2.6 DEMOS implementation of 3LIHON

modified versions

We now illustrate the main differences between the three systems.
Most of the code is the same for each of them, they differ only in the
SM/BE management part (SM/BE server and packet behaviour).
Since 3LIHON-2R involves both retransmission and resuming, its code
is thoroughly included at the end of this work, whereas for the two
other types only the different parts are attached.

2.6.1 3LIHON-RS

To implement resuming, only the code regarding the SM/BE packet
and server has been changed w.r.t. the standard 3LIHON node.
A new variable that keeps track of the remaining time necessary for
the SM/BE packet to be completely transmitted has been introduced.
If it is positive, it means the packet needs to be resumed, if it is zero
it means the packet has been sent.
When a SM/BE packet is interrupted by traffic with higher priority,

20

CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING
ALGORITHMS 21

it enters in an infinite hold and the time left is updated. In the mean-
while, the GST or SM/RT packet is sent.
The server checks if there is a free wavelength and if there is a packet,
previously using that wavelength, that needs to be resumed. If this
is the case, the server interrupts the SM/BE packet, which was in an
infinite hold, with power value 3. If in that wavelength no packets
need resuming, the server takes out a new packet from the queue, as
usual.
The DEMOS code can be found in Appendix C.

2.6.2 3LIHON-RT

According to this scheduling algorithm, when a SM/BE packet is in-
terrupted by GST or SM/RT traffic, it is put back in the waiting queue
and then retransmitted, when the BE server takes it out.
For statistical purpose, we also keep track of the number of retransmis-
sion attempts of each single packet before its complete transmission.
The DEMOS code can be found in Appendix D.

2.6.3 3LIHON-2R

This version requires to distinguish which type of packet interrupted
the SM/BE transmission. In order to take the appropriate decision,
the power value of the packet causing the interruption is checked: if
it is 1, it means it is a GST packet; if it is 2, it means it is a SM/RT
packet.
The BE server, as in 3LIHON-RS, is the entity in charge of checking if
there are some free wavelengths and packets which need to be resumed.
The DEMOS code can be found in Appendix E.

21

22
CHAPTER 2. NODE MODELLING, CODE AND SCHEDULING

ALGORITHMS

22

Chapter 3

Simulations and results

All the three new versions of the 3LIHON (3LIHON-RS, 3LIHON-RT
and 3LIHON 2R) node have been studied.
Simulations consist in raising the system load until the highest value
granting system stability, which is different for each version.
The starting load is always 50%, since lower values would probably be
of little interest in real scenarios.
To establish if at a certain load the system is stable or not, we perform
a simulation with two different durations. If the average length of the
SM/BE server queue turns out to be approximately the same, it is
possible to state that it is time-invariant and the system is proven to
be stable at that load.
All simulations have some common factors:

• the seeds array, starting with the standard seed 907;

• the mean SM/RT and SM/BE packet length, 40 bytes and 1600
bytes respectively;

• the GST packet length, 40000 bytes;

• the maximum SM/RT packet length and the FDL length, 200
bytes;

• the channel rate, 1 Gbit/s;

• the number of output wavelengths, 32.

23

24 CHAPTER 3. SIMULATIONS AND RESULTS

3.1 Results and discussion

Results presented below are not available for the same load values for
every system. Due to the different scheduling algorithms, each system
has a different maximum load, beyond which it becomes unstable.
Results at these loads are not of interest, since they are not trustwor-
thy and not realistic. In our simulations, the SM/BE server has an
infinite queue length, that means that it can potentially grow forever.
Obviously, this would not be possible in a real scenario. Furthermore,
some output data would have ”wrong” values, e.g. the mean delay of
SM/BE packets. With and endless queue, SM/BE packets would ex-
perience higher and higher delay before being served, thus increasing
the delay mean value.
For 3LIHON-RT, results show that its instability load point is slightly
over 0.8, at about 0.83, so we decided to include data until load 0.8.
For 3LIHON-RS and 3LIHON-2R, the instability point is much higher:
good results have been obtained up to a load of 0.92.

3.1.1 SM/BE packets mean delay

The new scheduling algorithms introduced in this work are intended to
improve the performances of the standard 3LIHON node. This means
mainly reducing packet loss for SM/BE packets, their delay and the
utilization of the output wavelengths to achieve these results.
Delay and packet loss can be important if we think that SM/BE traffic
is intended to support general data transfer and, sometimes, interac-
tive messaging QoS [6]. This services can be loss sensitive (thus may
exploit retransmission) and have some light real-time demands.

In this section we analyse how the introduced output scheduling tech-
niques affect delay for SM/BE traffic.
Every sub-simulation returns a mean value for delay of SM/BE pack-
ets, obtained by averaging all the delays experienced by every single
SM/BE packet during the sub-simulation. All these ten mean values
are then averaged again, in order to get a single mean value, which
has been plotted.

24

CHAPTER 3. SIMULATIONS AND RESULTS 25

Figure 3.1 shows SM/BE packets delay with 95% confidence interval

Figure 3.1: SM/BE packets delay with 95% confidence interval

for every system as a function of system load.
Confidence interval bars are not visible since its values are too small.
In order to get accurate results, different simulation and transient
times have been used for different loads and systems: the higher the
load, the longer the time. Since 3LIHON-RT simulations usually take
more time, in order to get results as accurate as for the two other
systems, 3LIHON-RT transient and simulation times have been set
longer.

Figure 3.1 shows that 3LIHON-RS has the highest delay until a load
of 0.7 or slightly higher. This means that, at low loads, retransmit-
ting is the best solution. GST packets are much longer than SM/RT
ones. In 3LIHON-RS, even if a SM/BE packet is quickly scheduled,
when an interruption by a GST packet occurs it has to wait until all
the GST packet is sent. This leads to a high delay value, even in low
load conditions. 3LIHON-RT and 3LIHON-2R have the possibility to
retransmit the interrupted SM/BE packet through another free wave-
length, which is likely to be found, since the load is low.
When the load increases, interruptions by SM/RT packets tend to
be more and more frequent, causing every time a retransmission in

25

26 CHAPTER 3. SIMULATIONS AND RESULTS

3LIHON-RT. Its SM/BE queue starts filling up and being longer, so
SM/BE packets experience a higher delay.
3LIHON-2R is an intermediate solution between 3LIHON-RS and
3LIHON-RT. Figure 3.1 shows that its delay is always the lowest:
at low loads it can compete with 3LIHON-RT, whereas at high loads
its delay is much lower than 3LIHON-RT and definitely lower than
3LIHON-RS. At low loads, when interruptions are still quite rare and
most of them are caused by GST packets, SM/BE packets do not
experience a high delay: if the interruption is caused by a SM/RT
packet, which is very short, the SM/BE interrupted packet is resumed
and thus do not considerably perceive the wait; on the other hand,
if the interruption is caused by a GST packet, the SM/BE packet is
retransmitted and easily find a free wavelength, so, again, it does not
wait for a long time.

Since 95% confidence intervals are too small to be seen on Figure 3.1,
they are presented in Figure 3.2.

Figure 3.2: 95% confidence interval of delay for SM/BE packets

3.1.2 SM/BE queues

A closer look at the behaviour of the SM/BE queue for each system
will help to better understand what stated in section 3.1.1.

26

CHAPTER 3. SIMULATIONS AND RESULTS 27

Figure 3.3: Maximum queue length for SM/BE packets

In Figure 3.3 is plotted the maximum queue length for each system,
obtained with seed 234.
3LIHON-RS always has the shortest queue, because it does not imple-
ment any retransmission, so every packet is served only once. 3LIHON-
RT always has the longest queue, since it retransmits every interrupted
SM/BE packet. More in specific, after load 0.7 its queue length in-
creases rapidly, because interruptions by SM/RT traffic become much
more frequent (see section 3.1.5).
3LIHON-2R performance is slightly worse than 3LIHON-RS, because

after load 0.8 interruptions by GST packets are just a little bit more
than ones in 3LIHON-RS, as explained in section 3.1.5 and showed in
Figure 3.12.
This explains why 3LIHON-RS has always the best wavelengths uti-
lization (see section 3.1.4) but not always the shortest delay: SM/BE
packets are quickly served, since the queue is short, but they suffer
from interruptions by GST packets, which are long, so waiting for
them for resuming the transmission has a noticeable impact on delay.

27

28 CHAPTER 3. SIMULATIONS AND RESULTS

Figure 3.4: Generic cumulative distribution of delay for SM/BE traffic

We can then state that 3LIHON-2R is a good compromise between
all the systems: it does not have the best performances at every load,
but it is very well balanced.

3.1.3 Delay distribution of SM/BE traffic

It is useful to see how delay of SM/BE packets is distributed and how
the mean value is affected by high values of delay at high loads.

Figure 3.4 shows a generic distribution of delay for SM/BE packets in
a low load situation. Time is split into intervals, each represented by a
bar. Values in the X-axis represent the starting time of the intervals.
The last bar includes delays with a value of 1 · 10−4 s or higher.
Only a very little amount of packets has the highest delay, because
the system is not under heavy load and most of the packets find a free
resource. But how does the chart change at high loads?

In figure 3.5 is showed the cumulative distribution of delay for SM/BE
traffic of a 3LIHON-RS node at load 0.92. We can see that the step
between the last bar and the previous is much more clear than in fig-

28

CHAPTER 3. SIMULATIONS AND RESULTS 29

ure 3.4 and it is ca. 7%. The higher the difference between these two
bars, the more SM/BE packets have high delay.

Figure 3.6 represents the same situation for 3LIHON-2R. In this

Figure 3.5: 3LIHON-RS cumulative distribution of delay for SM/BE
traffic - load 0.92

case the difference is ca. 6%. This means that 1% less SM/BE pack-
ets than 3LIHON-RS has high delay at the same load, proving that
3LIHON-2R has better delay performances for SM/BE traffic than
3LIHON-RS at high loads. In other words, we can say that, at high
loads, retransmitting SM/BE packets interrupted by GST traffic takes
a little less time than waiting and resuming. SM/RT traffic does not
influence the results, since both systems resume SM/BE packets in-
terrupted by SM/RT packets.

In figure 3.7 is showed the cumulative distribution of delay for SM/BE
traffic of a 3LIHON-RT node at load 0.8. The difference between the
last two bars is clearly higher than in the two systems above, this time
it is ca. 16%. This confirms the poor performances of 3LIHON-RT
at high loads, even at load 0.8. It is due to its retransmission pol-
icy, which is not optimal at high loads, because retransmitted packets

29

30 CHAPTER 3. SIMULATIONS AND RESULTS

wait a long time in queue. The more packets waiting in queue, the

Figure 3.6: 3LIHON-2R cumulative distribution of delay for SM/BE
traffic - load 0.92

Figure 3.7: 3LIHON-RT cumulative distribution of delay for SM/BE
traffic - load 0.80

30

CHAPTER 3. SIMULATIONS AND RESULTS 31

Figure 3.8: Average wavelengths utilization as a function of system
load

more packets needing to be served and transmitted, the less available
wavelengths, thus preventing incoming packets to be served quickly.

3.1.4 Wavelengths utilization

Figure 3.8 shows how the wavelengths are exploited in each system by
considering all three types of traffic together.
Since all the considered nodes use 32 wavelengths and every simula-
tion is made of ten sub-simulations (one per each seed), showing the
detailed results would have been impractical. Results for one seed
(234) have been chosen for each system and for each simulation. Then
the 32 utilization values, one for each wavelength, have been averaged.
This work has been done for each load.
The figure shows that wavelengths utilization values for 3LIHON-RS

and 3LIHON-2R are very close to each other, but 3LIHON-2R has
always a little bit higher utilization. This is due to its retransmission
policy for SM/BE packets interrupted by GST traffic. This difference
has its highest value of 1,32% at load 0.9. This worse performance is

31

32 CHAPTER 3. SIMULATIONS AND RESULTS

balanced by its lower delay values (see section 3.1.1).
3LIHON-RT has always the highest utilization, because retransmit-
ting a packet means wasting all the transmission time spent until the
interruption occurred. At load 0.8, which is quite close to its instabil-
ity point, its utilization value is 10,91% higher than 3LIHON-2R and
11,83% higher than 3LIHON-RS.
We can also observe that, until a load of 0.7, wavelengths utilization
of 3LIHON-RS and 3LIHON-2R is quite close to the load value, that
means that there is not a high overhead. 3LIHON-2R has a slightly
higher utilization than 3LIHON-RS due to its retransmission policy.
3LIHON-RT starts having an utilization noticeably higher than the
load value.
At load 0.8, the difference between 3LIHON-RS and 3LIHON-2R is
more noticeable and 3LIHON-RT utilization is much higher than the
load, because it is approaching its instability load, which is at about
0.84.
At load 0.92, wavelengths utilization of 3LIHON-RS is still very close
to the load value, whereas 3LIHON-2R utilizes 93.34% of its resources
because of retransmission of some packets.
It is also interesting to compare how every system allocates resources
to the different types of traffic. Figures 3.9 and 3.10 show the percent-
age of time, over the total simulation time, which has been allocated
to transmit respectively GST and SM/RT traffic. In the last figure,
3.11, it is showed the percentage of time used to retransmit interrupted
SM/BE packets. Since only 3LIHON-2R and 3LIHON-RT implement
retransmission, 3LIHON-RS is not present in this plot.

From Figure 3.9 it is possible to see the highest priority granted to
GST traffic. Relative load for GST traffic is 0.6 in all simulations,
so, e.g. when the total load is 0.8, GST traffic is supposed to use
0.6 ∗ 0.8 = 48% of the available resources. Figure 3.9 shows that this
rule is always followed, for every system and at every load, thus prov-
ing that QoS for GST traffic is guaranteed.

Figure 3.10 shows that also for SM/RT traffic the expected wave-
lengths availability is assured. At higher loads, e.g 0.9 or 0.92, it is
possible to see a small packet loss (see section 3.1.7 for further details).

32

CHAPTER 3. SIMULATIONS AND RESULTS 33

Figure 3.9: Percentage of time allocation for GST traffic

Figure 3.10: Percentage of time allocation for SM/RT traffic

Figure 3.11 shows very well the performance difference between 3LIHON-

33

34 CHAPTER 3. SIMULATIONS AND RESULTS

Figure 3.11: Percentage of time allocation to retransmission of inter-
rupted SM/BE packets

RT and 3LIHON-2R, which comes from their different architectures.
It shows the percentage of wavelengths utilization used to retrans-
mit interrupted SM/BE packets. Only unsuccessful retransmissions
(SM/BE packets which have been interrupted, retransmitted and then
interrupted again) are taken into account. Since 3LIHON-2R retrans-
mits only SM/BE packets interrupted by GST packets, fewer resources
are necessary w.r.t. 3LIHON-RT. We can state that time spent re-
transmitting without success is wasted time, because all data sent
during this time will be dropped.
It is possible to see that at low loads, until e.g 0.5, the two architec-
tures achieve the same results. There are multiple reasons to explain
that. The first is that GST interruptions are still relatively rare, due
to the low load. Furthermore, many wavelengths are available to send
retransmitted packets, so an interrupted packet easily find a new free
resource where to be successfully transmitted. Interruptions caused by
SM/RT traffic are a small fraction of the ones caused by GST traffic,
which are the most frequent, so their impact in 3LIHON-RT on total
retransmissions is very low.

34

CHAPTER 3. SIMULATIONS AND RESULTS 35

When increasing the load, SM/RT packets gradually become the main
cause of interruption. Since 3LIHON-RT retransmits all the inter-
rupted SM/BE packets, its retransmission attempts increase conse-
quently, whereas 3LIHON-2R does not suffer from this problem. On
the contrary, it experiences a linear amount of time spent retransmit-
ting, according to the linear increase of interruptions by GST packets.

3.1.5 GST and SM/RT interruptions over SM/BE
traffic

The trend of interruptions by GST and SM/RT traffic over SM/BE
packets is important to figure out the behaviour of each system at
different loads.

Figures 3.12 and 3.13 show the percentage of interruptions by GST
and SM/RT traffic respectively.
Interrupting GST or SM/RT packets are the ones which find a wave-

Figure 3.12: Interruptions by GST packets over SM/BE traffic

35

36 CHAPTER 3. SIMULATIONS AND RESULTS

Figure 3.13: Interruptions by SM/RT packets over SM/BE traffic

length busy carrying SM/BE traffic. The number of interrupting pack-
ets is then divided by the number of generated packets of the same
type to obtain the percentage.
What comes out from both plots is that interruptions increase with
the increasing load, since more packets need to be transmitted and
they preempt SM/BE traffic.
GST interruptions increase quite linearly, except for 3LIHON-RT, be-
cause repeated retransmissions of SM/BE packets lead to have more
SM/BE packets inside the system that can be interrupted, so the prob-
ability if an interruption is higher. For the same reason, 3LIHON-2R
interruption percentage is slightly over the 3LIHON-RS one.
Similar considerations can be done for interruptions caused by SM/RT
packets.

3.1.6 SM/BE delay and standard deviation

Standard deviation is useful to figure out how much delay values are
spread around the mean value.

Figure 3.14 shows standard deviation trend for all the 3LIHON ver-
sions as a function of load. They refer to seed 234.

36

CHAPTER 3. SIMULATIONS AND RESULTS 37

Figure 3.14: Standard deviation as a function of system load

We can see that both 3LIHON-RS and 3LIHON-2R standard devia-
tion values have a linear trend until a load value of 0.8 and then they
rapidly increase. Starting from a load of 0.8, interruptions caused by
SM/RT traffic become much more frequent, whereas those caused by
GST traffic increase linearly, as Figure 3.12 and Figure 3.13 show. In
both systems, interruptions caused by SM/RT traffic are managed by
resuming the interrupted SM/BE packet.
This let us state that increased SM/RT interruptions lead to higher
delays for some SM/BE packets and this increases standard deviation
as well. The implemented scheduling algorithm always attempt to
use the first available wavelength, so SM/BE packets using the latest
wavelengths are less prone to interruptions and preserve small delays,
whereas SM/BE packets using the first wavelengths are frequently
interrupted, thus having longer delays. This difference in delays du-
ration is what lead to higher standard deviation values.

Figure 3.14 shows also that, between load values 0.8 and 0.9, 3LIHON-
2R standard deviation increases more rapidly than 3LIHON-RS stan-
dard deviation. From figures 3.12 and 3.13 we can also observe that,

37

38 CHAPTER 3. SIMULATIONS AND RESULTS

until a load value of 0.8, the percentage of GST and SM/RT inter-
ruptions is fairly the same for 3LIHON-RS and 3LIHON-2R, but then
it starts to increase more quickly for 3LIHON-2R. Since 3LIHON-2R
treats SM/BE packets interrupted by GST traffic by retransmitting
them (they are put back at the tail of the queue), delay for these pack-
ets will increase. Furthermore, 10% more interruptions by SM/RT
packets sum up its effect to the one given by GST traffic, thus further
increasing the standard deviation.

By observing figure 3.14 we can draw another interesting conclusion.
3LIHON-RS standard deviation is clearly much higher than 3LIHON-
2R standard deviation, but as the load increases, they tend to be
closer. When the load is not very high, SM/BE packets interrupted
by GST traffic in 3LIHON-2R find a new free wavelength rather easily.
This does not affect their delay very much, which remains closer to
the mean value than for SM/BE packets interrupted by GST traffic
and then resumed in 3LIHON-RS. GST packets are very long, so their
interruption will cause the resumed SM/BE packets to have a high
delay, thus increasing the standard deviation. But when the load is
high, more wavelengths are busy and the waiting queue gets longer,
so retransmitted SM/BE packets have a longer wait and the time dif-
ference between retransmission and resuming gets narrower.
In 3LIHON-RT, Figure 3.12 and Figure 3.13 show that interruptions
by both GST and SM/RT traffic start to increase positively from a load
value of 0.7 and all the SM/BE interrupted packets are retransmitted.
This causes their delay to increase. Since utilization of the latest wave-
lengths is still relatively low, SM/BE packets being sent through these
wavelength does not suffer frequent interruptions, thus experiencing
much lower delay. The great difference in delay between interrupted
and not interrupted SM/BE packets is what makes 3LIHON-RT stan-
dard deviation grow so quickly.

As illustrated above, the way how traffic is distributed among the
wavelengths directly influences standard deviation. This lead us to
think that introducing more fairness in the algorithm (e.g. using a
Round-robin or a random algorithm) would probably lower standard
deviation values, thus achieving better performances, especially for

38

CHAPTER 3. SIMULATIONS AND RESULTS 39

3LIHON-RT scheduling. This option is discussed in section 4.2.

3.1.7 SM/RT packet loss

Since SM/RT packets have priority over SM/BE traffic, the type of
output scheduling adopted does not influence their loss.
A SM/RT packet may be lost only if all the wavelengths are busy
carrying other SM/RT packets or GST packets.

The results presented in Figure 3.15 have been obtained with 3LIHON-
RS, seed 234. SM/RT packet loss is presented as a percentage of total
generated SM/RT packets, since this number highly depends on sys-
tem load. Loads over 0.92 are not present, since the system would be
unstable.
For loads up to 0.6 there is no loss, then it starts increasing, but at

Figure 3.15: SM/RT percentage packet loss as a function of system
load

high loads the percentage of lost packets is still very low.

39

40 CHAPTER 3. SIMULATIONS AND RESULTS

40

Chapter 4

Conclusions and further
works

4.1 Conclusions

In this work, three new different versions of the standard 3LIHON
node have been studied.
Each of them has distinct output scheduling algorithms, which mod-
ify the SM/BE packet processing model of the original one. This also
leads to new node architectures.

3LIHON-RS always resumes the transmission of SM/BE packets in-
terrupted by GST or SM/RT traffic.
3LIHON-RT always retransmits interrupted SM/BE packets. Finally,
3LIHON-2R retransmits SM/BE packets interrupted by GST traffic
and resumes the ones interrupted by SM/RT traffic.

Three different simulation models have been implemented using Sim-
ula programming language and its DEMOS context class, specifically
designed for discrete event simulations. These systems have been
tested under different traffic loads, starting from 0.5 up to 0.8 for
3LIHON-RT and 0.92 for 3LIHON-RS and 3LIHON-2R.

Performances of these new architectures have been analysed, paying
attention especially to:

41

42 CHAPTER 4. CONCLUSIONS AND FURTHER WORKS

• SM/BE packets mean delay. 3LIHON-2R has proved to have
the lowest mean delay for SM/BE packets. 3LIHON-RT can
compete with it at low loads (below 0.6), but its performances
decline very quickly after that point. 3LIHON-RS has much
higher delay than 3LIHON-2R, but at very high loads this dif-
ference becomes smaller.

• SM/BE queues. 3LIHON-RS has showed to have always the
shortest queue, but 3LIHON-2R can get very close to its perfor-
mances for loads below 0.8. 3LIHON-RT queue is the longest
and increases rapidly from load 0.7.

• delay distribution of SM/BE traffic. This time, 3LIHON-RS
and 3LIHON-2R have similar results at a very high load, but
the latter is still slightly better. On the other hand, 3LIHON-
RT is the best at low loads, but its retransmission policy worsen
its performances very soon.

• wavelengths utilization. 3LIHON-RS has the lowest resource
usage at all. 3LIHON-2R gets very close to it, while 3LIHON-
RT starts wasting capacity noticeably from load 0.7. It also
allocates much more resources to retransmission than 3LIHON-
2R from that load value.

• GST and SM/RT interruptions over SM/BE traffic. Again,
SM/BE traffic in 3LIHON-RS suffers less from interruptions
than in the other architectures. SM/BE packets in 3LIHON-
RT start being interrupted frequently from load 0.7, whereas
3LIHON-2R performances are in-between, but closer to 3LIHON-
RS ones.

• standard deviation of SM/BE delay. 3LIHON-2R has the low-
est standard deviation values for SM/BE delay, very similar to
3LIHON-RT ones until load 0.7. After this point, 3LIHON-RT
achieves the worst results. 3LIHON-RS starts with quite high
values, but they do not increase a lot with load, so from load 0.7
its performances are better than 3LIHON-RT.

• SM/RT packet loss. Since SM/RT traffic has priority over SM/BE,
the scheduling algorithm adopted does not affect this result and

42

CHAPTER 4. CONCLUSIONS AND FURTHER WORKS 43

it has been studied only for one system. The packet loss in-
creases noticeably after load 0.8 but even at high loads it is very
small.

The conclusion is that 3LIHON-2R is a very good trade-off between
pure retransmission or resuming. It does not always have the best
results, but it has a balanced behaviour as the load increases.

4.2 Further works

These new scheduling techniques can be further developed and stud-
ied.
For example, retransmission can be implemented by putting the SM/BE
packets at the head of the queue, instead of at the tail. If it is a short
packet that has been interrupted, it has good chances to be sent again
without any other interruption, so putting it at the back of the queue
will increase its delay. On the other hand, putting a long SM/BE
packet at the beginning of the queue could lead to many interruptions
and thus blocking all the other packets.
Another option could be deciding dynamically according to the packet
length.
The drawback of these two possible developments is that reordering
packets inside the queue would result in a more challenging and com-
plex architecture.
It can also be further investigated how SM/BE packets length affects
the queue length, thus changing the mean SM/BE packet length.

According to what stated in section 1.4.1, a new architecture can be
implemented, using a store-and-forward version instead of the current
cut-through. This should lead to simpler logics.

Another improvement could be tested, following the results illustrated
in section 3.1.6: the implementation of a new algorithm which equally
distributes traffic among the wavelengths. Instead of looking for the
first free resource, a Round-robin algorithm could store the value of
the last used wavelength and then starting its search from the next
one. Another option, perhaps more challenging, could be choosing

43

44 CHAPTER 4. CONCLUSIONS AND FURTHER WORKS

a resource randomly. These versions should result in lower standard
deviation values.

44

List of Figures

1.1 General scheme of a 3LIHON switching node [6] . . . 4
1.2 Detect Packet Type architecture implemented with OC

detection [6] . 5
1.3 How collision avoidance is performed [6] 5
1.4 Modifications introduced to the standard 3LIHON node 8

2.1 GST traffic implementation [3] 14
2.2 SM/RT traffic implementation [3] 15
2.3 SM/BE traffic implementation [3] 17
2.4 Graphical representation of the bin-server system . . . 19

3.1 SM/BE packets delay with 95% confidence interval . . 25
3.2 95% confidence interval of delay for SM/BE packets . . 26
3.3 Maximum queue length for SM/BE packets 27
3.4 Generic cumulative distribution of delay for SM/BE

traffic . 28
3.5 3LIHON-RS cumulative distribution of delay for SM/BE

traffic - load 0.92 . 29
3.6 3LIHON-2R cumulative distribution of delay for SM/BE

traffic - load 0.92 . 30
3.7 3LIHON-RT cumulative distribution of delay for SM/BE

traffic - load 0.80 . 30
3.8 Average wavelengths utilization as a function of system

load . 31
3.9 Percentage of time allocation for GST traffic 33
3.10 Percentage of time allocation for SM/RT traffic 33
3.11 Percentage of time allocation to retransmission of in-

terrupted SM/BE packets 34

45

46 LIST OF FIGURES

3.12 Interruptions by GST packets over SM/BE traffic . . . 35
3.13 Interruptions by SM/RT packets over SM/BE traffic . 36
3.14 Standard deviation as a function of system load 37
3.15 SM/RT percentage packet loss as a function of system

load . 39

1 Gaussian distribution of Z̃ 50

46

Appendix A: Input file
example

Seeds array:

907 234 326 104 711 523 883 113 417 656

Transient time (seconds):

0.75

Simulation time (seconds):

7.5

Mean RT packets length (bit) [40x8]:

320

Mean BE packets length (bit) [multiplier*mean_length_RT]:

40

GST packets length (bit) [multiplier*mean_length_RT]:

1000

Maximum RT packets length [multiplier*mean_length_RT]:

5

Channel rate (bit/s):

1000000000

FDL length (bit) [multiplier*mean_length_RT]:

5

FDL length (seconds) [multiplier*mean_length_RT/bitChannelRate]:

5

Number of output wavelengths:

32

Total load:

0.5

relative percentage of GST packets:

47

48 APPENDIX . APPENDIX A: INPUT FILE EXAMPLE

0.6

relative percentage of RT packets:

0.1

relative percentage of BE packets:

0.3

48

Appendix B: Confidence
interval

It is necessary to prove and estimate the good quality of the results
obtained by each simulation.
The estimated parameters are random variables, each characterized
by mean value and variance. By repeating n (n=10 in this work)
times each sub-simulation, we obtain n independent and identically
distributed observations X = (X1, X2, ..., Xn). From this sample, we
want to obtain a confidence interval for the observed parameter, α [4].
An unbiased estimate for the mean value is the sample mean, X̄ =
(X1 +X2 + ...+Xn)/n.
Two real-valued functions of the sample, A1(X) and A2(X), define the
confidence interval:

P {A1(X) < α ≤ A2(X)} = 1− β, 0 < β < 1. (1)

What (1) means is that a proportion 1−β of the computed confidence
intervals contains the true value of α. 1 − β is called “confidence
coefficient”of the confidence interval.
We now suppose the existence of a random variable Z(X, α) having
fixed and known distribution. We can find two numbers, z1 and z2,
such that

P (z1 < Z(X, α) ≤ z2) = 1− β, 0 < β < 1. (2)

The observations Xi obtained from the simulation tend to follow a
normal distribution. So, exploiting the central limit theorem, we can
say that each observation in the sample follows a normal distribution,
with mean value α and variance σ2, both unknown.

49

50 APPENDIX . APPENDIX B: CONFIDENCE INTERVAL

Figure 1: Gaussian distribution of Z̃

The arithmetic mean X̄ follows a normal distribution too (the sum of
normally distributed random variables is normally distributed), with
mean value α and variance σ2/n. We can state then that the random
variable

Z̃(X, α) =
X̄ − α
σ/n1/2

(3)

has the standard normal distribution, fixed and known, with mean 0
and variance 1.
By using a table of the standard normal distribution and choosing a
confidence coefficient 1− β, we can obtain z̃1 and z̃2 such that

P (z̃1 < Z ≤ z̃2) = 1− β (4)

We can choose z̃ so that P (Z̃ ≤ z̃) = 1 − (β/2) and then z̃1 = −z̃,
z̃2 = z̃, as shown in Figure 1. Substituting (3) into (4) we obtain:

P
{
X̄ − (z̃σ/n1/2) < α ≤ X̄ + (z̃σ/n1/2)

}
= 1− β (5)

Now we have to determine σ, because its value is unknown, in order
to set out the upper and lower limits in (5). It is possible to obtain σ

50

APPENDIX . APPENDIX B: CONFIDENCE INTERVAL 51

from the observations.
Called S2 the sample variance, it is an unbiased estimator for σ2:

S2 =

[
n∑

i=1

(Xi − X̄)2

]
/(n− 1) (6)

Adding and subtracting α in (6) in each bracketed term, we obtain

E[S2] = σ2 (7)

The random variable

Z(X, α) =
X̄ − α
S/n1/2

(8)

has Student’s distribution, if the observations Xi are normally dis-
tributed.
This variable has fixed and known distribution and it is function only
of the sample of observations and α. It also has n− 1 degrees of free-
dom.
Called tn the density function, using the tables it is possible to find a
number z such that P (tn−1 ≤ z) = 1− (β/2). Hence

P (−z < Z ≤ z) = 1− β (9)

Finally, we obtain the confidence interval by substituting (8) into (9):

P
{
X̄ − (zS/n1/2) < α ≤ X̄ + (zS/n1/2)

}
= 1− β (10)

In this work, we choose a confidence interval of 95% (1 − β = 0.95)
for the mean value estimator and n = 10 observations.

51

52 APPENDIX . APPENDIX B: CONFIDENCE INTERVAL

52

Appendix C: 3LIHON-RS
code

Since the three simulators share great part of their code, here only
relevant differences with 3LIHON-2R are showed. For full code, see
Appendix E.

!----SMBE PACKET----;

entity class SMBEpacket;

begin

integer actual_wl;

long real Lsmbe;

long real start_BEp, time_left, start_transmission,

resume_transmission;

serverBEwaiting_wl.give(1); !tell the server a BE packet

is waiting in the queue - invio un segnale di "presenza di

un pacchetto BE in coda" al server;

time_left:= Lsmbe/bitChannelRate;

start_BEp:= time;

BE_Q.wait;

delayBE := time - start_BEp;

be_insec := Lsmbe/bitChannelRate;

be_insec_tot := be_insec_tot + be_insec;

while time_left > 0.0 do

begin

wavelengthOUT(actual_wl).acquire(1); !transmission starts;

53

54 APPENDIX . APPENDIX C: 3LIHON-RS CODE

flag(actual_wl) := 3;

resume_BE_pointer(actual_wl) :- NONE;

SMBEpacket_pointer(actual_wl) :- this SMBEpacket;

start_transmission:= time;

if not BE_resumed(actual_wl) then

begin

BE_in_sec_offerti_al_canale:= Lsmbe/bitChannelRate;

BE_in_sec_offerti_al_canale_TOT:= BE_in_sec_offerti_al_canale_TOT+

BE_in_sec_offerti_al_canale;

BEp_intoWL := BEp_intoWL + 1;

end;

hold(time_left);

wl_BE_util(actual_wl):= wl_BE_util(actual_wl) + (time - start_transmission);

SMBEpacket_pointer(actual_wl) :- NONE;

wavelengthOUT(actual_wl).release(1); !packet transmitted or

interrupted;

if flag(actual_wl) = 3 then flag(actual_wl):= 0;

if not BE_resumed(actual_wl) then BEp_outtoWL := BEp_outtoWL

+ 1;

if interrupted = 1 then counter_BEpacket_interrupted_by_GSTp

:= counter_BEpacket_interrupted_by_GSTp + 1;

if interrupted = 2 then counter_BEpacket_interrupted_by_RTp

:= counter_BEpacket_interrupted_by_RTp + 1;

if interrupted = 0 then

begin

time_left:= 0.0;!whole packet transmitted (no interruptions);

BE_resumed(actual_wl):= false;

resume_BE_pointer(actual_wl) :- NONE; !if I’m here, it should

already be "none";

!serverBEwaiting_wl.give(1);!packet transmitted --> signal

to BE server that wl is now available;

counter_BEpacket_successful:= counter_BEpacket_successful +

1;

BEsuccessfull_in_sec := Lsmbe/bitChannelRate;

BEsuccessfull_in_sec_TOT := BEsuccessfull_in_sec_TOT + BEsuccessfull_in_sec;

54

APPENDIX . APPENDIX C: 3LIHON-RS CODE 55

BEdelay_hist.update(time - start_BEp);

BE_lifetime:= time - start_BEp; !delay of the BE packet, from

generation to the end of transmission;

total_BE_lifetime:= total_BE_lifetime + BE_lifetime;

total_BE_lifetime2:= total_BE_lifetime2 + BE_lifetime**2;

end;

if interrupted > 0 then

begin

!interrupt for statistical;

if not BE_resumed(actual_wl) then counter_BEpacket_resumed

:= counter_BEpacket_resumed + 1; !count interrupted packets

but multiple interruptions of the same packet are not counted;

if not BE_resumed(actual_wl) then if interrupted = 1 then

interruptedByGST:=interruptedByGST+1;

if not BE_resumed(actual_wl) then if interrupted = 2 then

interruptedByRT:=interruptedByRT+1;

BE_resumed(actual_wl):= true;

counter_BEpacket_interrupted := counter_BEpacket_interrupted

+ 1;

BEinterrupted_in_sec := Lsmbe/bitChannelRate;

BEinterrupted_in_sec_TOT := BEinterrupted_in_sec_TOT +

BEinterrupted_in_sec;

total_retransmission(actual_wl):=total_retransmission(actual_wl)

+1;

resume_BE_pointer(actual_wl) :- this SMBEpacket;

time_left:= time_left - (time - start_transmission);

hold(sim_time+1);!infinite hold: the interrupted packet waits

to be scheduled again by the server;

interrupted:=0;

end;

end***while***;

end***SMBEpacket***;

55

56 APPENDIX . APPENDIX C: 3LIHON-RS CODE

!----SMBE SERVER----;

entity class BEserver;

begin

integer i;

ref(SMBEpacket) p_SMBEpacket;

START:

serverBEwaiting_wl.take(1);

for i:= 1 step 1 until OUTPUT_WL do

begin

!wavelength free? Some packet to resume in this wavelength?;

if flag(i) = 0 and resume_BE_pointer(i) =/= none then

begin

p_SMBEpacket :- resume_BE_pointer(i);

p_SMBEpacket.interrupt(3);!I use interrupt (instead of schedule)

because the packet is in an endless hold;

goto START;

end;

if flag(i) = 0 and BE_Q.length > 0 then

begin

p_SMBEpacket :- BE_Q.coopt;

p_SMBEpacket.actual_wl := i;

p_SMBEpacket.schedule(0.0);

BEp_inQ:= BEp_inQ + 1;

goto START;

end;

end***for***;

goto START;

56

APPENDIX . APPENDIX C: 3LIHON-RS CODE 57

end***BEserver***;

57

58 APPENDIX . APPENDIX C: 3LIHON-RS CODE

58

Appendix D: 3LIHON-RT
code

Since the three simulators share great part of their code, here only
relevant differences with 3LIHON-2R are showed. For full code, see
Appendix E.

!----SMBE PACKET----;

entity class SMBEpacket;

begin

integer actual_wl;

integer retransmission_attempt; !Keeps track of how many times

a BE packet is retransmitted;

long real Lsmbe;

long real start_BEp, start_BEp2, time_left, start_transmission,

resume_transmission;

be_insec := Lsmbe/bitChannelRate;

be_insec_tot := be_insec_tot + be_insec;

RETRANSMIT:

serverBEwaiting_wl.give(1); !tell the server a BE packet

is waiting in the queue - invio un segnale di "presenza di

un pacchetto BE in coda" al server;

start_BEp:= time;

if retransmission_attempt=0 then start_BEP2:= time; !used only

to compute BE lifetime;

BE_Q.wait;

delayBE := time - start_BEp;

59

60 APPENDIX . APPENDIX D: 3LIHON-RT CODE

flag(actual_wl) := 3;

SMBEpacket_pointer(actual_wl) :- this SMBEpacket;

wavelengthOUT(actual_wl).acquire(1); !transmission starts;

if retransmission_attempt>0 then count_retransmissions:=count_retransmissions+1;

start_transmission:= time;

BE_in_sec_offerti_al_canale:= Lsmbe/bitChannelRate;

BE_in_sec_offerti_al_canale_TOT:= BE_in_sec_offerti_al_canale_TOT+

BE_in_sec_offerti_al_canale;

if retransmission_attempt=0 then BEp_intoWL := BEp_intoWL +

1;

hold(Lsmbe/bitChannelRate);

wavelengthOUT(actual_wl).release(1); !packet transmitted or

interrupted;

SMBEpacket_pointer(actual_wl) :- NONE;

if retransmission_attempt=0 then BEp_outtoWL := BEp_outtoWL

+ 1;

if interrupted = 1 then counter_BEpacket_interrupted_by_GSTp

:= counter_BEpacket_interrupted_by_GSTp + 1;

if interrupted = 2 then counter_BEpacket_interrupted_by_RTp

:= counter_BEpacket_interrupted_by_RTp + 1;

if interrupted = 0 then

begin

serverBEwaiting_wl.give(1);!packet transmitted --> signal to

BE server that wl is now available;

counter_BEpacket_successful:= counter_BEpacket_successful +

1;

wl_BE_util(actual_wl):= wl_BE_util(actual_wl) + Lsmbe/bitChannelRate;

BEsuccessfull_in_sec := Lsmbe/bitChannelRate;

BEsuccessfull_in_sec_TOT := BEsuccessfull_in_sec_TOT + BEsuccessfull_in_sec;

BEdelay_hist.update(time - start_BEp2);

BE_lifetime:= time - start_BEp2; !delay of the BE packet, from

generation to the end of transmission;

total_BE_lifetime:= total_BE_lifetime + BE_lifetime;

total_BE_lifetime2:= total_BE_lifetime2 + BE_lifetime**2;

60

APPENDIX . APPENDIX D: 3LIHON-RT CODE 61

if flag(actual_wl) = 3 then flag(actual_wl):= 0;

end;

if interrupted > 0 then

begin

!interrupt for statistical;

if retransmission_attempt=0 then counter_BEpacket_resumed

:= counter_BEpacket_resumed + 1; !count interrupted packets,

but multiple interruptions of the same packet are not counted;

if retransmission_attempt=0 then if interrupted = 1 then

interruptedByGST:=interruptedByGST+1;

if retransmission_attempt=0 then if interrupted = 2 then

interruptedByRT:=interruptedByRT+1;

counter_BEpacket_interrupted := counter_BEpacket_interrupted

+ 1;

BEinterrupted_in_sec := Lsmbe/bitChannelRate;

BEinterrupted_in_sec_TOT := BEinterrupted_in_sec_TOT +

BEinterrupted_in_sec;

total_retransmission(actual_wl):=total_retransmission(actual_wl)+1;

retransmission_attempt:= retransmission_attempt + 1;

interrupted:=0;

time_wasted(actual_wl):= time_wasted(actual_wl) + (time -

start_transmission);

if flag(actual_wl) = 3 then flag(actual_wl):= 0;

GOTO retransmit;

end;

end***SMBEpacket***;

!----SMBE SERVER----;

entity class BEserver;

begin

integer i;

ref(SMBEpacket) p_SMBEpacket;

61

62 APPENDIX . APPENDIX D: 3LIHON-RT CODE

START:

for i:= 1 step 1 until OUTPUT_WL do

begin

!wavelength free? Some packet to resume in this wavelength?;

!if flag(i) = 0 and resume_BE_pointer(i) =/= none then

begin

p_SMBEpacket :- resume_BE_pointer(i);

if flag(i) = 0 then if BE_Q.length > 0 then

begin

p_SMBEpacket :- BE_Q.coopt;

p_SMBEpacket.actual_wl := i;

p_SMBEpacket.schedule(0.0);

BEp_inQ:= BEp_inQ + 1;

end;

end***for***;

serverBEwaiting_wl.take(1);

goto START;

end***BEserver***;

62

Appendix E: 3LIHON-2R
code

BEGIN

integer count_observations, i;

long real array PLPrt(0:9);

long real array PLPrt2(0:9);

long real array PLPbe(0:9);

long real array PLPbe2(0:9);

long real PLP_RT, PLP_RT2;

long real ao_be_element, ao_be2_element;

long real as_be_element, as_be2_element;

long real pigreco_s_element, pigreco_s2_element;

long real PLP_BE, PLP_BE2; !rapporto tra quanti pacchetti BE

sono stati interrotti e quanti si sono messi in coda, quindi

hanno avuto accesso alla WL;

long real PLP_resumingBE;

long real msum, m2sum; !used to calculate confidence interval

for the mean value of delay of BE packets;

long real vsum, v2sum;

long real SUM_PLPrt, sum_meanPLPrt;

long real SUM_PLPrt2, sum_meanPLPrt2;

long real SUM_PLPbe, sum_meanPLPbe;

long real SUM_PLPbe2, sum_meanPLPbe2;

long real array vsum_vettore(0:9);

long real array v2sum_vettore(0:9);

long real array msum_vettore(0:9);

63

64 APPENDIX . APPENDIX E: 3LIHON-2R CODE

long real array m2sum_vettore(0:9);

long real sum_vsum_vettore, sum_v2sum_vettore;

long real sum_msum_vettore, sum_m2sum_vettore;

long real deviazione_std_rt;

long real deviazione_std_be;

long real deviazione_std_delay;

long real ConfInter95rt;

long real ConfInter95be;

long real ConfInter95_delay;

long real lower_rt;

long real lower_be;

long real lower_delay;

long real upper_rt;

long real upper_be;

long real upper_delay;

long real adjustDELTA_rt;

long real adjustDELTA_be;

long real adjustDELTA_delay;

for count_observations:= 0 step 1 until 9 do

begin

!Input data;

integer array my_seeds(0:9);

long real length_GST, mean_length_RT, mean_length_BE;

integer OUTPUT_WL, h; !number of fiber;

long real max_mean_length_RT, max_mean_length_BE;

long real bitChannelRate; ![bit/s];

long real rho_gst, rho_rt, rho_be, total_load;

long real A, B;

long real sim_time, transient_time; !il transient time

serve ad es a riempire le code coi BE e le wl coi GST (che

sono i pacchetti piu’ lunghi) e a mettere a regime il sistema.

Trascorso questo tempo,resetto SOLO le statistiche, perche’

ovviamente all’inizio sono "traviate" da valori che sono ancora

parzialmente a zero;

long real FDL, FDLinBIT;

64

APPENDIX . APPENDIX E: 3LIHON-2R CODE 65

long real num_pRT_sec, num_pBE_sec;

ref (infile) InputFile;

InputFile:- new infile ("input.txt");

InputFile.Open(Blanks(180));

outtext(" ");

outimage;

outtext("*******************INPUT DATA********************");

outimage;

!Initialization: seeds array;

InputFile.InImage;

OutText(InputFile.InText(80));

for h:=0 step 1 until 9 do

begin

my_seeds(h):=InputFile.InInt;

OutInt(my_seeds(h),4);

OutText(" ");

end***for***;

OutImage;

!Transient time;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

transient_time:=InputFile.InReal;

OutFix(transient_time, 3, 6);

OutImage;

!Simulation time;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

sim_time:=InputFile.InReal;

65

66 APPENDIX . APPENDIX E: 3LIHON-2R CODE

OutFix(sim_time, 3, 6);

OutImage;OutImage;

!Mean RT packets length;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

mean_length_RT :=InputFile.InReal;

OutFix(mean_length_RT, 5, 15);

OutImage;

!Mean BE packets length;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

mean_length_BE :=InputFile.InReal*mean_length_RT;

OutFix(mean_length_BE, 2, 15);

OutImage;

!GST packets length;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

length_GST :=InputFile.InReal*mean_length_RT;

OutFix(length_GST, 5, 15);

OutImage;

!Maximum RT packets length;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

max_mean_length_RT :=InputFile.InReal*mean_length_RT;

OutFix(max_mean_length_RT, 2, 15);

OutImage;OutImage;

outtext("Mean RT packets length (bytes):"); outimage;

outfix(mean_length_RT/8,2,8); outimage;

66

APPENDIX . APPENDIX E: 3LIHON-2R CODE 67

outtext("Mean BE packets length (bytes):"); outimage;

outfix(mean_length_BE/8,2,8); outimage;

outtext("Mean GST packets length (bytes):"); outimage;

outfix(length_GST/8,2,8); outimage;OutImage;

!Channel rate;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

bitChannelRate :=InputFile.InReal;

OutFix(bitChannelRate, 3, 20);

OutImage;

outtext("Channel rate (Gb/s):"); outimage;

outfix(bitChannelRate/1000000000,2,5); outimage;OutImage;

!FDL length (bit);

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

FDLinBIT :=InputFile.InReal*mean_length_RT;

OutFix(FDLinBIT, 3, 10);

OutImage;

!FDL length (sec);

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

FDL :=InputFile.InReal*mean_length_RT/bitChannelRate;

OutFix(FDL, 10, 12);

OutImage;OutImage;

!Number of output wavelengths;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

OUTPUT_WL :=InputFile.InInt;

OutInt(OUTPUT_WL, 2);

67

68 APPENDIX . APPENDIX E: 3LIHON-2R CODE

OutImage;OutImage;

!Total load;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

total_load :=InputFile.InReal;

OutFix(total_load, 2, 5);

OutImage;

!relative percentage of GST packets;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

rho_gst :=InputFile.InReal;

OutFix(rho_gst, 3, 6);

OutImage;

!relative percentage of RT packets;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

rho_rt :=InputFile.InReal;

OutFix(rho_rt, 3, 6);

OutImage;

!relative percentage of BE packets;

InputFile.InImage;

OutText(InputFile.InText(80));

InputFile.InImage;

rho_be :=InputFile.InReal;

OutFix(rho_be, 3, 6);

OutImage;

InputFile.Close;

68

APPENDIX . APPENDIX E: 3LIHON-2R CODE 69

A:= (rho_GST*total_load*bitChannelRate)/length_GST;![Rate,

pkt/sec];

B:= (1/A-length_GST/bitChannelRate); !B[sec] is the mean value

of a negexp distribution;

num_pRT_sec:= (rho_RT*total_load*bitChannelRate)/mean_length_RT;

![Rate, pkt/sec];

num_pBE_sec:=

(rho_BE*total_load*bitChannelRate)/mean_length_BE;

![Rate, pkt/sec];

!outtext(" SIMULATION TIME [s]");

!outfix(sim_time,2,20);

!outimage;

!outtext(" TRANSIENT TIME [s]");

!outfix(transient_time,2,20);

!outimage;

!outtext(" NUMBER OF OUTPUT WAVELENGTHS");

!outfix(OUTPUT_WL,0,10);

!outimage;

!outtext(" BIT CHANNEL RATE [bit/s]");

!outfix(bitChannelRate,0,20);

!outimage;

!outtext(" GST [bytes]");

!outfix(length_GST/8,0,20);

!outimage;

!outtext(" RT [bytes]");

!outfix(mean_length_RT/8,0,20);

!outimage;

!outtext(" BE [bytes]");

!outfix(mean_length_BE/8,0,20);

!outimage;

outtext(" ");

69

70 APPENDIX . APPENDIX E: 3LIHON-2R CODE

outimage;

BEGIN

EXTERNAL CLASS DEMOS="demos.atr";

DEMOS

BEGIN

integer p, k, i, u;

integer cont_res; !reset the arrays after the transient period;

!Statistic parameters for GST traffic;

integer array counter_GSTpacket_generate(1:OUTPUT_WL);!counts

generated GST packets for each wavelength;

integer array counter_GSTpacket_successful(1:OUTPUT_WL);!GST

packets successfully transmitted;

integer GSTp_intoWL, GSTp_outtoWL, GST_tot, GST_successful,

GST_wl_busy;

long real gst_insec, gst_insec_tot, gst_total_time;

!Statistic parameters for RT traffic;

integer counter_RTpacket_generate, counter_RTpacket_successful,

counter_RTpacket_lost, RT_wl_directly_free, RT_wl_busy, RTp_intoWL,

RTp_outtoWL;

long real rt_insec, rt_insec_tot, rt_total_time;

!Statistic parameters for BE traffic;

integer counter_BEpacket, counter_BEpacket_generate, counter_BEpacket_successful,

BEp_intoWL, BEp_outtoWL;

integer counter_BEpacket_interrupted, counter_BEpacket_interrupted_by_GSTp,

counter_BEpacket_interrupted_by_RTp;

long real be_insec, be_insec_tot, BE_lifetime, total_BE_lifetime,

total_BE_lifetime2;

integer BEp_inQ, counter_BEpacket_resumed;

70

APPENDIX . APPENDIX E: 3LIHON-2R CODE 71

boolean array BE_resumed(1:OUTPUT_WL); !true if the packet

will be resumed, false if the packet has never been interrupted;

integer interruptedByRT, interruptedByGST; !count how many

BE packets are interrupted. Multiple interruptions of the

same packet count as one;

long real BEgen_in_sec, BEgen_in_sec_TOT; !duration of the

generated BE packet in seconds;

long real BEsuccessfull_in_sec, BEsuccessfull_in_sec_TOT;

long real BE_in_sec_offerti_al_canale,

BE_in_sec_offerti_al_canale_TOT;

long real BEinterrupted_in_sec, BEinterrupted_in_sec_TOT,

be_total_time;

integer array total_retransmission(1:OUTPUT_WL); !counts total

number of retransmission for each wl;

long real array time_wasted(1:OUTPUT_WL);

long real sum_counter_GSTpacket_generate,

sum_counter_GSTpacket_successful, sum_wl_gst_util, sum_wl_rt_util,

sum_wl_be_util, sum_time_wasted, sum_total_retransmission;

integer TOTAL_P_GENERATED, TOTAL_P_intoWL; !total generated

packets - packets using a certain resource;

long real somma, somma2; !total BE packets delay and its square;

long real delayBE;

boolean array FDL_in_use(1:OUTPUT_WL);!is the considered wl

busy?;

integer array flag(1:OUTPUT_WL);!one flag for each wl. Values:

1->GST, 2-> RT, 3-> BE;

ref(SMBEpacket) array SMBEpacket_pointer(1:OUTPUT_WL);!is

the wl transmitting a BE packet? Used for GST packets;

ref(SMBEpacket) array resume_BE_pointer(1:OUTPUT_WL);

!tracks utilization for each wl;

long real array wl_GST_util(1:OUTPUT_WL);

long real array wl_RT_util(1:OUTPUT_WL);

long real array wl_BE_util(1:OUTPUT_WL);

71

72 APPENDIX . APPENDIX E: 3LIHON-2R CODE

!resources;

ref(res) array wavelengthOUT(1:OUTPUT_WL);

ref(bin) serverBEwaiting_wl;

ref(waitQ) BE_Q;

!GST traffic;

ref(rdist) array nextGST(1:OUTPUT_WL); !array of GST packets;

ref(rdist) array lengthGST(1:OUTPUT_WL); !array containing

length of GST packets;

!RT traffic;

ref(rdist) nextSMRT;

ref(rdist) lengthSMRT;

!SMBEtraffic;

ref(rdist) nextSMBE;

ref(rdist) lengthSMBE;

ref(histogram) BEdelay_hist;

ref (outfile) transient;

!----GST PACKET GENERATOR----;

entity class GSTgen(p); integer p;!p is the wavelength;

begin

long real Lgst;!GST packet length;

ref(GSTpacket) p_GSTp; !the GST packet;

LOOP:

counter_GSTpacket_generate(p):= counter_GSTpacket_generate(p)

+ 1;!update generated GST packet counter;

p_GSTp:- new GSTpacket("GSTpacket ", p);!create a new GST packet;

72

APPENDIX . APPENDIX E: 3LIHON-2R CODE 73

Lgst:= lengthGST(p).sample;!get a random length;

p_GSTp.Lgst:= Lgst;!set the GST packet length;

p_GSTp.schedule(0.0);!generate it now!;

!two GST packets can’t overlap, so, before the next generation

of a packet,

I must be sure the current one has been transmitted

(Lgst/bitChannelRate).Between two packets, there is

a negexp time interval nextGST(p).sample).

Remember: there is a GST generator for each

wavelength; hold(Lgst/bitChannelRate +

nextGST(p).sample);

goto LOOP;

end***GSTgen(p)***;

!----GST PACKET----;

entity class GSTpacket(p); integer p;

begin

long real Lgst;!GST packet length;

ref (SMBEpacket) BE_p;

flag(p):=1;!flag=1 means GST packet;

FDL_in_use(p):=true;!set the current wl to busy;

!this is the most frequent case, because FDL is equal to the

SM/RT max length

and usually RT packets are very short, so FDL is frequently

shorter than GST packets;

if Lgst/bitChannelRate >= FDL then

begin

hold(FDL);!FDL now full;

if SMBEpacket_pointer(p) =/= none then

begin

GST_wl_busy := GST_wl_busy + 1;

BE_P:- SMBEpacket_pointer(p);

BE_P.interrupt(1);!BE packet interrupted;

73

74 APPENDIX . APPENDIX E: 3LIHON-2R CODE

end;

wavelengthOUT(p).acquire(1);

GSTp_intoWL:= GSTp_intoWL + 1;

hold(Lgst/bitChannelRate-FDL);!first transmit the part of the

packet that overflows the FDL;

wl_GST_util(p):= wl_GST_util(p) + Lgst/bitChannelRate-FDL;

FDL_in_use(p):= false;!the beginning of the FDL is now free;

hold(FDL);!transmit the part of the packet that is as long

as the FDL;

wl_GST_util(p):= wl_GST_util(p) + FDL;

end

else

begin

hold(Lgst/bitChannelRate);!wait for the whole packet to enter

the FDL;

FDL_in_use(p):= false;!the beginning of the FDL is now free;

hold(FDL-Lgst/bitChannelRate);!wait for the packet to reach

the end of the FDL;

if SMBEpacket_pointer(p) =/= none then

begin

GST_wl_busy := GST_wl_busy + 1;

BE_P:- SMBEpacket_pointer(p);

BE_P.interrupt(1);!BE packet interrupted;

end;

wavelengthOUT(p).acquire(1);

GSTp_intoWL:= GSTp_intoWL + 1;

hold(Lgst/bitChannelRate);!send the packet;

wl_GST_util(p):= wl_GST_util(p) + Lgst/bitChannelRate;

end;

wavelengthOUT(p).release(1);

gst_insec:= Lgst/bitChannelRate;!duration of the GST packet;

gst_insec_tot:= gst_insec_tot+gst_insec;!total duration of

GST packets;

GSTp_outtoWL := GSTp_outtoWL + 1;

if not FDL_in_use(p) then flag(p):=0;

serverBEwaiting_wl.give(1); !packet transmitted --> signal

to BE server that wl is now available;

74

APPENDIX . APPENDIX E: 3LIHON-2R CODE 75

counter_GSTpacket_successful(p):=counter_GSTpacket_successful(p)+1;

end***GSTpacket(p)***;

!----SMRT PACKET GENERATOR----;

entity class SMRTgen;

begin

long real Lsmrt;

ref(SMRTpacket) p_SMRTp;

LOOP:

counter_RTpacket_generate := counter_RTpacket_generate + 1;

Lsmrt:= lengthSMRT.sample;

p_SMRTp:- new SMRTpacket("SMRTpacket ");

!NegExp can potentially generate very long packets:

I cut them off, because they must have a max length, used to

fix the FDL length;

if Lsmrt > max_mean_length_RT then Lsmrt := max_mean_length_RT;

p_SMRTp.Lsmrt := Lsmrt;

p_SMRTp.schedule(0.0);

hold(nextSMRT.sample);!now the gen waits some time, it’s the

time between two following RT packets;

goto LOOP;

end***SMRTgen***;

!----SMRT PACKET----;

entity class SMRTpacket;

begin

long real Lsmrt;

integer interrupt_wl, i;

ref(SMBEpacket) BE_p;

counter_BEpacket:= counter_BEpacket+1; !IMO it should be RTpacket.

Anyway it is used correctly later;

for i:= 1 step 1 until OUTPUT_WL do

begin

75

76 APPENDIX . APPENDIX E: 3LIHON-2R CODE

if flag(i) = 0 then!the wavelength is free;

begin

RT_wl_directly_free := RT_wl_directly_free + 1;

goto USE_FREE_WL;

end;

!il controllo della presenza di pacchetti BE qui e’ fatto diversamente

che dal caso GST

perche’ il pacchetto GST non deve cercare una wl libera, ma

va dritto a quella che gli

e’ stata assegnata. Invece un pacchetto RT deve prima cercare

una wl libera;

if (flag(i) = 3 and interrupt_wl = 0) then interrupt_wl :=

i;!the wl is currently used by BE traffic;

end***for***;

if interrupt_wl > 0 then !interrupt BE traffic;

begin

BE_P:- SMBEpacket_pointer(interrupt_wl);

BE_P.interrupt(2);

i:= interrupt_wl;!when i gets out of the "for" cycle above,

i is OUTPUT_WL and interrupt_wl is the first interruptable

wl;

RT_wl_busy := RT_wl_busy + 1;

goto USE_FREE_WL;

end

else counter_RTpacket_lost:= counter_RTpacket_lost +1; !no

wl free-->RT packet dropped;

goto FINE;

USE_FREE_WL:

wavelengthOUT(i).acquire(1);

RTp_intoWL:= RTp_intoWL + 1;

flag(i) := 2;

hold(Lsmrt/bitChannelRate);!transmit RT packet;

wl_RT_util(i):= wl_RT_util(i) + Lsmrt/bitChannelRate;

76

APPENDIX . APPENDIX E: 3LIHON-2R CODE 77

wavelengthOUT(i).release(1);

rt_insec:= Lsmrt/bitChannelRate;

rt_insec_tot := rt_insec_tot+rt_insec;

RTp_outtoWL := RTp_outtoWL + 1;

if flag(i) = 2 then flag(i) := 0;

!send token to BE server;

serverBEwaiting_wl.give(1); !packet transmitted --> signal

to BE server that wl is now available;

counter_RTpacket_successful:= counter_RTpacket_successful +

1;

FINE:

end***SMRTpacket***;

!----SMBE PACKET GENERATOR----;

entity class SMBEgen;

begin

ref(SMBEpacket) p_SMBEp;

long real Lsmbe;

LOOP:

counter_BEpacket_generate:= counter_BEpacket_generate + 1;

Lsmbe:=lengthSMBE.sample;

p_SMBEp:- new SMBEpacket("SMBEpacket ");

BEgen_in_sec := Lsmbe/bitChannelRate;

BEgen_in_sec_TOT := BEgen_in_sec_TOT + BEgen_in_sec;

p_SMBEp.Lsmbe:=Lsmbe;

p_SMBEp.schedule(0.0);

hold(nextSMBE.sample);

goto LOOP;

end***SMBEgen***;

!----SMBE PACKET----;

entity class SMBEpacket;

begin

77

78 APPENDIX . APPENDIX E: 3LIHON-2R CODE

integer actual_wl;

integer retransmission_attempt; !Keeps track of how many times

a BE packet is retransmitted;

long real Lsmbe;

long real start_BEp, time_left, start_transmission, resume_transmission;

be_insec := Lsmbe/bitChannelRate;

be_insec_tot := be_insec_tot + be_insec;

RETRANSMIT:

serverBEwaiting_wl.give(1); !tell the server a BE packet

is waiting in the queue - invio un segnale di "presenza di

un pacchetto BE in coda" al server. Vd. foglio per maggiori

spiegazioni;

time_left:= Lsmbe/bitChannelRate;

if retransmission_attempt=0 then start_BEP:= time; !used to

compute BE lifetime;

BE_Q.wait;

delayBE := time - start_BEp;

while time_left > 0.0 do

begin

wavelengthOUT(actual_wl).acquire(1); !transmission starts;

flag(actual_wl) := 3;

resume_BE_pointer(actual_wl) :- NONE;

SMBEpacket_pointer(actual_wl) :- this SMBEpacket;

start_transmission:= time;

if not BE_resumed(actual_wl) then

begin

BE_in_sec_offerti_al_canale:= Lsmbe/bitChannelRate;

BE_in_sec_offerti_al_canale_TOT:= BE_in_sec_offerti_al_canale_TOT+

BE_in_sec_offerti_al_canale;

BEp_intoWL := BEp_intoWL + 1;

end;

hold(time_left);

!wl_BE_util(actual_wl):= wl_BE_util(actual_wl) + (time - start_transmission);

SMBEpacket_pointer(actual_wl) :- NONE;

78

APPENDIX . APPENDIX E: 3LIHON-2R CODE 79

wavelengthOUT(actual_wl).release(1); !packet transmitted or

interrupted;

if flag(actual_wl) = 3 then flag(actual_wl):= 0;

if not BE_resumed(actual_wl) then BEp_outtoWL := BEp_outtoWL

+ 1;

if interrupted = 0 then

begin

time_left:= 0.0;!whole packet transmitted (no interruptions);

BE_resumed(actual_wl):= false;

wl_BE_util(actual_wl):= wl_BE_util(actual_wl) + Lsmbe/bitChannelRate;

resume_BE_pointer(actual_wl) :- NONE; !if I’m here, it should

already be "none";

serverBEwaiting_wl.give(1);!packet transmitted --> signal to

BE server that wl is now available;

counter_BEpacket_successful:= counter_BEpacket_successful +

1;

BEsuccessfull_in_sec := Lsmbe/bitChannelRate;

BEsuccessfull_in_sec_TOT := BEsuccessfull_in_sec_TOT +

BEsuccessfull_in_sec;

BEdelay_hist.update(time - start_BEp);

BE_lifetime:= time - start_BEp; !delay of the BE packet, from

generation to the end of transmission;

total_BE_lifetime:= total_BE_lifetime + BE_lifetime;

total_BE_lifetime2:= total_BE_lifetime2 + BE_lifetime**2;

end;

if interrupted = 1 then

begin

serverBEwaiting_wl.give(1);!packet interrupted and put back

in queue --> signal to BE server that wl is now available;

if retransmission_attempt=0 then if not BE_resumed(actual_wl)

then

begin

79

80 APPENDIX . APPENDIX E: 3LIHON-2R CODE

interruptedByGST:=interruptedByGST+1;

counter_BEpacket_resumed := counter_BEpacket_resumed + 1;

!count interrupted packets but multiple interruptions of the

same packet are not counted;

end;

counter_BEpacket_interrupted_by_GSTp := counter_BEpacket_interrupted_by_GSTp

+ 1;

counter_BEpacket_interrupted := counter_BEpacket_interrupted

+ 1;

BEinterrupted_in_sec := Lsmbe/bitChannelRate;

BEinterrupted_in_sec_TOT := BEinterrupted_in_sec_TOT + BEinterrupted_in_sec;

total_retransmission(actual_wl):=total_retransmission(actual_wl)+1;

retransmission_attempt:= retransmission_attempt + 1;

interrupted:=0;

time_wasted(actual_wl):= time_wasted(actual_wl) + (time - start_transmission);

GOTO retransmit;

end;

if interrupted = 2 then

begin

!interrupt for statistical;

counter_BEpacket_interrupted_by_RTp := counter_BEpacket_interrupted_by_RTp

+ 1;

if retransmission_attempt=0 then if not BE_resumed(actual_wl)

then

begin

counter_BEpacket_resumed := counter_BEpacket_resumed + 1;

!count interrupted packets but multiple interruptions of the

same packet are not counted;

interruptedByRT:=interruptedByRT+1;

end;

BE_resumed(actual_wl):= true;

counter_BEpacket_interrupted := counter_BEpacket_interrupted

+ 1;

BEinterrupted_in_sec := Lsmbe/bitChannelRate;

BEinterrupted_in_sec_TOT := BEinterrupted_in_sec_TOT +

BEinterrupted_in_sec;

80

APPENDIX . APPENDIX E: 3LIHON-2R CODE 81

total_retransmission(actual_wl):=total_retransmission(actual_wl)+1;

resume_BE_pointer(actual_wl) :- this SMBEpacket;

time_left:= time_left - (time - start_transmission);

hold(sim_time+1);!infinite hold: the interrupted packet waits

to be scheduled again by the server;

interrupted:=0;

end;

end***while***;

!if flag(actual_wl) = 3 then flag(actual_wl):= 0;

end***SMBEpacket***;

!----SMBE SERVER----;

entity class BEserver;

begin

integer i;

ref(SMBEpacket) p_SMBEpacket;

START:

serverBEwaiting_wl.take(1);

for i:= 1 step 1 until OUTPUT_WL do

begin

!wavelength free? Some packet to resume in this wavelength?;

if flag(i) = 0 and resume_BE_pointer(i) =/= none then

begin

p_SMBEpacket :- resume_BE_pointer(i);

p_SMBEpacket.interrupt(3);!I use interrupt (instead of schedule)

because the packet is in an endless hold;

goto START;

end;

if flag(i) = 0 and BE_Q.length > 0 then

81

82 APPENDIX . APPENDIX E: 3LIHON-2R CODE

begin

p_SMBEpacket :- BE_Q.coopt;

p_SMBEpacket.actual_wl := i;

p_SMBEpacket.schedule(0.0);

BEp_inQ:= BEp_inQ + 1;

goto START;

end;

end***for***;

goto START;

end***BEserver***;

!------------;

!----MAIN----;

!------------;

outf :- new outfile ("report.txt");

outf.setaccess("Append");

outf.open(blanks(180));

outtext("**");

outimage;

outtext("

"); outimage;

setseed(my_seeds(count_observations));

outtext("OBSERVATION N. [0 - 9]: ");

outfix(count_observations, 0, 3);

outimage;

outtext("SEED:");

outfix(my_seeds(count_observations), 0, 13);

outimage;

82

APPENDIX . APPENDIX E: 3LIHON-2R CODE 83

outtext("

"); outimage;

outtext("**");

outimage;

!GST PACKET LENGTH (constant distribution);

for k := 1 step 1 until OUTPUT_WL do

lengthGST(k) :- new Constant("L GSTp", length_GST);

!NEXT GST PACKET (negexp distrib. for the arrival process);

for k := 1 step 1 until OUTPUT_WL do

nextGST(k) :- new NegExp("NextGSTp", 1/B); !1/B is

lambda, the parameter of a negexp distribution;

!SMRT PACKET LENGTH (negexp distribution);

lengthSMRT :- new NegExp("L SMRTp", 1/mean_length_RT);

!NEXT SMRT PACKET (negexp distrib. for the arrival process);

nextSMRT :- new NegExp("NextSMRTp", num_pRT_sec*OUTPUT_WL);

!SMBE PACKET LENGTH (negexp distribution);

lengthSMBE :- new NegExp("L SMBEp", 1/mean_length_BE);

!NEXT SMBE PACKET (negexp distrib. for the arrival process);

nextSMBE :- new NegExp("NextSMBEp", num_pBE_sec*OUTPUT_WL);

outtext("LAMBDAS");

outimage;

outtext("LAMBDA GST");

outfix(1/B,4,20);

outimage;

outtext("LAMBDA RT");

outfix(num_pRT_sec*OUTPUT_WL,4,20);

outimage;

outtext("LAMBDA BE");

outfix(num_pBE_sec*OUTPUT_WL,4,20);

outimage;

83

84 APPENDIX . APPENDIX E: 3LIHON-2R CODE

!OUTPUT WAVELENGTHS;

for k := 1 step 1 until OUTPUT_WL do

wavelengthOUT(k) :- new res(edit("wlOUT ", k), 1);

!the global text procedure edit accepts a text t and an integer

n as actual

parameters and combines them into a single text (e.g. edit("aisle",

17) returns "aisle17".

If the text t is more than 10 characters long, then it is stripped

down to the first 10.

If the integer value of N is not in the range 0 through 99

then abs(n)//100 is accepted. It

is commonly used with res etc. arrays which share the same

text as title;

!FLAG;

for k := 1 step 1 until OUTPUT_WL do flag(k) := 0;

BE_Q :- new waitQ("BEtQueue");

serverBEwaiting_wl :- new bin("ServBE wait", 0);!first parameter

used in reports and

in traces. Second parameter = initial size of the pool;

!trace;

!GENERATORS;

for k := 1 step 1 until OUTPUT_WL do

new GSTgen("GSTgen", k).schedule(nextGST(k).sample);

new SMRTgen("RTgen").schedule(nextSMRT.sample);

new SMBEgen("BEgen").schedule(nextSMBE.sample);

new BEserver("BEserver").schedule(0.0);

BEdelay_hist :- new histogram ("delay_hist", 0, 0.000100, 19);

84

APPENDIX . APPENDIX E: 3LIHON-2R CODE 85

hold(transient_time);!a sort of warm up period;

reset;! "resets all Demos facilities created by the user, so

that they now collect afresh over the next time period";

!----reset----;

!reset statistic parameters for GST traffic;

for cont_res:= 1 step 1 until OUTPUT_WL do

begin

counter_GSTpacket_generate(cont_res):=0;

counter_GSTpacket_successful(cont_res):=0;

wl_GST_util(cont_res):=0;

end;

GSTp_intoWL:=0;

GSTp_outtoWL:=0;

GST_tot:=0;

GST_successful:=0;

gst_insec:=0.0;

gst_insec_tot:=0.0;

GST_wl_busy:=0;

gst_total_time:= 0.0;

!reset statistic parameters for RT traffic;

counter_RTpacket_generate:=0;

counter_RTpacket_successful:=0;

RT_wl_directly_free:=0;

RT_wl_busy:=0;

counter_RTpacket_lost:=0;

RTp_intoWL:=0;

RTp_outtoWL:=0;

rt_insec:=0.0;

rt_insec_tot:=0.0;

PLP_RT:=0.0;

PLP_RT2:=0.0;

rt_total_time:= 0.0;

85

86 APPENDIX . APPENDIX E: 3LIHON-2R CODE

for cont_res:= 1 step 1 until OUTPUT_WL do wl_RT_util(cont_res):=0;

!reset statistic parameters for BE traffic;

counter_BEpacket_generate:=0;

counter_BEpacket_successful:=0;

counter_BEpacket_interrupted:=0;

counter_BEpacket_interrupted_by_GSTp:=0;

counter_BEpacket_interrupted_by_RTp:=0;

counter_BEpacket_resumed:=0;

BEp_inQ:=0;

BEp_intoWL:=0;

BEp_outtoWL:=0;

be_insec:=0.0;

be_insec_tot:=0.0;

counter_BEpacket:=0;

somma:=0.0;

somma2:=0.0;

delayBE:=0.0;

PLP_BE:=0.0;

PLP_BE2:=0.0;

PLP_resumingBE:= 0.0;

vsum:=0.0;

v2sum:=0.0;

interruptedByGST:=0;

interruptedByRT:=0;

BE_lifetime:= 0.0;

total_BE_lifetime:= 0.0;

for cont_res:= 1 step 1 until OUTPUT_WL do

begin

wl_BE_util(cont_res):=0;

BE_resumed(cont_res):=false;

total_retransmission(cont_res):=0;

time_wasted(cont_res):=0;

end;

be_total_time:= 0.0;

86

APPENDIX . APPENDIX E: 3LIHON-2R CODE 87

BEgen_in_sec:=0.0;

BEgen_in_sec_TOT :=0.0;

BEsuccessfull_in_sec:=0.0;

BEsuccessfull_in_sec_TOT:=0.0;

BE_in_sec_offerti_al_canale:=0.0;

BE_in_sec_offerti_al_canale_TOT:=0.0;

BEinterrupted_in_sec := 0.0;

BEinterrupted_in_sec_TOT:= 0.0;

BEdelay_hist.reset;

!total statistic parameters;

TOTAL_P_GENERATED:=0;

TOTAL_P_intoWL:=0;

!-----end reset-----;

transient :- new outfile ("transient.txt");

transient.setaccess("Append");

transient.open(blanks(180));

transient.outimage;

transient.outtext("---");

transient.outimage;

!by steps of 1% I can check (print out) the simulation progress;

for u:=1 step 1 until 100 do

begin

hold(sim_time/100.0);

!print out the % of simulation ;

outtext("Simulation in progress: ");

outint(u, 3);

outtext(" % complete");

!outtext(" % of total simulation time");

outimage;

if u<4 then

begin

transient.outfix(total_BE_lifetime, 16, 20);

transient.outimage;

87

88 APPENDIX . APPENDIX E: 3LIHON-2R CODE

transient.outfix(counter_BEpacket_successful, 2, 20);

transient.outimage;

end;

transient.outfix(total_BE_lifetime/counter_BEpacket_successful,

20, 22);

transient.outimage;

end;

transient.close;

for i:=1 step 1 until OUTPUT_WL do

begin

GST_tot:= GST_tot + counter_GSTpacket_generate(i);

end;

for i:=1 step 1 until OUTPUT_WL do

begin

GST_successful:= GST_successful + counter_GSTpacket_successful(i);

end;

PLP_RT:= counter_RTpacket_lost/counter_BEpacket;

!square value of PLP rt;

PLP_RT2:=PLP_RT**2;

PLP_resumingBE:= counter_BEpacket_resumed/BEp_inQ; !my PLP;

PLP_BE:= counter_BEpacket_interrupted/BEp_inQ; !Gaia’s;

!square value of PLP be;

PLP_BE2:= PLP_BE**2;

TOTAL_P_GENERATED:= GST_TOT + counter_BEpacket_generate + counter_RTpacket_generate;

TOTAL_P_intoWL:= GSTp_intoWL + counter_BEpacket + BEp_inQ;

!****************************PRINT***;

! GST traffic

;

88

APPENDIX . APPENDIX E: 3LIHON-2R CODE 89

!**;

outtext("

"); outimage;

outtext("

"); outimage;

outtext("***********************GST************************");

outimage;

!stampo a video quanti pacchetti GST sono stati generati da

ciascuna sorgente GST p-esima;

outtext("Column 1: source or wl number"); outimage;

outtext("Column 2: GST packets generated by each GST source");

outimage;

outtext("Column 3: GST packets successfully forwarded by each

GST source"); outimage;

outtext("Column 4: time used by each wl for GST packets");

outimage;

outtext("Column 5: time used by each wl for RT packets"); outimage;

outtext("Column 6: time used by each wl for BE packets"); outimage;

outtext("Column 7: time wasted by each wl for retransmission");

outimage;

outtext("Column 8: total number of retransmission for each

wl"); outimage;

outimage;

for i:= 1 step 1 until OUTPUT_WL do

begin

outint(i,2); outtext(" |"); outint(counter_GSTpacket_generate(i),

7); outint(counter_GSTpacket_successful(i), 10); outtext("

|"); outfix(wl_gst_util(i), 5,12); outfix(wl_rt_util(i),

5,12); outfix(wl_be_util(i), 5,12); outfix(time_wasted(i),5,9);

outint (total_retransmission(i), 8);

outimage;

end;

outimage;

!media dei valori sopra indicati;

for i:= 1 step 1 until OUTPUT_WL do

89

90 APPENDIX . APPENDIX E: 3LIHON-2R CODE

begin

sum_counter_GSTpacket_generate:= counter_GSTpacket_generate(i)

+ sum_counter_GSTpacket_generate;

sum_counter_GSTpacket_successful:= counter_GSTpacket_successful(i)

+ sum_counter_GSTpacket_successful;

sum_wl_gst_util:= wl_gst_util(i) + sum_wl_gst_util;

sum_wl_rt_util := sum_wl_rt_util + wl_rt_util(i);

sum_wl_be_util:= sum_wl_be_util + wl_be_util(i);

sum_time_wasted:= time_wasted(i) + sum_time_wasted;

sum_total_retransmission:= sum_total_retransmission + total_retransmission(i);

end;

outtext("Avg: "); outfix(sum_counter_GSTpacket_generate/OUTPUT_WL,

1, 7); outfix(sum_counter_GSTpacket_successful/OUTPUT_WL, 1,

10); outtext(" |"); outfix (sum_wl_gst_util/OUTPUT_WL,5,12);

outfix (sum_wl_rt_util/OUTPUT_WL, 5,12); outfix(sum_wl_be_util/OUTPUT_WL,

5,12); outfix(sum_time_wasted/OUTPUT_WL,5,9); outtext(" ");

outfix(sum_total_retransmission/OUTPUT_WL, 2, 8);

outimage;

!stampo a video quanti paccheti GST TOTALI sono stati generati;

outtext("Total GST packets generated: ");

outfix(GST_tot, 0, 20);

outimage;

!stampo a video quanti paccheti GST TOTALI arrivano a destinazione;

outtext("GST packets successful: ");

outfix(GST_successful, 0, 20);

outimage;

outtext("Generated unsuccessful GST packets: ");

outfix(GST_tot-GST_successful, 0, 20);

outimage;

!how many packets are now in the system?;

outtext("GST packets in the FDL: ");

90

APPENDIX . APPENDIX E: 3LIHON-2R CODE 91

outfix(GST_tot-GSTp_intoWL, 0, 20);

outimage;

outtext("GST packets actively using wavelengths when simulation

stops: ");

outfix(GSTp_intoWL-GSTp_outtoWL, 0, 10);

outimage;

!pacchetti che prendono la risorsa;

outtext("GST packets inside WLs: ");

outfix(GSTp_intoWL, 0, 20);

outimage;

!pacchetti che rilasciano la risorsa;

outtext("GST packets releasing WL = GST packets successful:");

outfix(GSTp_outtoWL, 0, 20);

outimage;

!stampo a video quanti pacchetti BE vegono interrotti per poter

trasmettere un pacchetto GST;

outtext("GST packets finding a busy WL = BEp interrupted by

GST: ");

outint(GST_wl_busy, 10);

outimage;

!tempo totale impiegato da tutte le wl per trasmettere pacchetti

GST (dovrebbe coincidere con gst_insec_tot);

outtext("Total time used by all wl to transmit GST packets:");

for i:= 1 step 1 until OUTPUT_WL do gst_total_time:= gst_total_time

+ wl_GST_util(i);

outfix(gst_total_time,16,20);

outimage;

!quanti secondi sono impiegati per trasmettere pacchetti di

tipo GST;

outtext("sec to transmit all GST packets:");

outfix(gst_insec_tot,16,20);

91

92 APPENDIX . APPENDIX E: 3LIHON-2R CODE

outimage;

outtext("avg time needed by a WL to transmit GST packets over

tot sim time:");

outfix((gst_insec_tot/OUTPUT_WL)/sim_time, 16, 20);

outimage;

!****************************PRINT***;

! RT traffic

;

!**;

outtext("

"); outimage;

outtext("

"); outimage;

outtext("***********************RT*************************");

outimage;

!stampo a video quanti paccheti RT sono stati generati;

outtext("RT packets generated: ");

outfix(counter_RTpacket_generate, 0, 20);

outimage;

!stampo a video quanti paccheti RT arrivano a destinazione;

outtext("RT packets successful: ");

outfix(counter_RTpacket_successful, 0, 20);

outimage;

outtext("RT packets unsuccessful: ");

outfix(counter_RTpacket_generate-counter_RTpacket_successful,

0, 20);

outimage;

!how many RT packets are now in the system?;

outtext("RT packets crossing the system: ");

outfix(counter_RTpacket_generate-RTp_intoWL, 0, 20);

outimage;

92

APPENDIX . APPENDIX E: 3LIHON-2R CODE 93

outtext("RT packets actively using wavelengths when the simulation

stops: ");

outfix(RTp_intoWL-RTp_outtoWL, 0, 10);

outimage;

!pacchetti RT che prendono la risorsa;

outtext("RT packets acquiring WL: ");

outfix(RTp_intoWL, 0, 20);

outimage;

!pacchetti RT che rilasciano la risorsa;

outtext("RT packets releasing WL = RT packets Successful: ");

outfix(RTp_outtoWL, 0, 20);

outimage;

!quanti pacchetti RT vanno persi;

outtext("RT packets lost (all wl busy): ");

outfix(counter_RTpacket_lost, 0, 20);

outimage;

!stampo a video i pacchetti RT che trovano subito libera la

wl;

outtext("RT packets that find a free WL: ");

outfix(RT_wl_directly_free, 0, 20);

outimage;

!stampo a video quanti pacchetti BE vegono interrotti per poter

trasmettere un pacchetto RT;

outtext("RT packets finding a busy WL = BEp interrupted by

RT: ");

outfix(RT_wl_busy, 0, 10);

outimage;

!stampo a video PLP RT;

outtext("PLP RT: ");

outfix(PLP_RT, 16, 20);

93

94 APPENDIX . APPENDIX E: 3LIHON-2R CODE

outimage;

!tempo totale impiegato da tutte le wl per trasmettere pacchetti

RT (dovrebbe coincidere con rt_insec_tot);

outtext("Total time used by all wl to transmit RT packets:");

for i:= 1 step 1 until OUTPUT_WL do rt_total_time:= rt_total_time

+ wl_RT_util(i);

outfix(rt_total_time,16,20);

outimage;

!quanti secondi sono impiegati per trasmettere pacchetti di

tipo RT;

outtext("sec to transmit all RTp: ");

outfix(rt_insec_tot,16,20);

outimage;

outtext("avg time needed by a WL to transmit RTp over tot sim

time :");

outfix((rt_insec_tot/OUTPUT_WL)/sim_time,16,20);

outimage;

!****************************PRINT***;

! BE traffic

;

!**;

outtext("

"); outimage;

outtext("

"); outimage;

outtext("***********************BE*************************");

outimage;

!stampo a video quanti paccheti BE sono stati generati;

outtext("BEpackets generated: ");

outfix(counter_BEpacket_generate, 0, 20);

outimage;

!stampo a video quanti paccheti BE arrivano a destinazione;

94

APPENDIX . APPENDIX E: 3LIHON-2R CODE 95

outtext("BEpackets successful: ");

outfix(counter_BEpacket_successful, 0, 20);

outimage;

outtext("Generated unsuccessful BE packets: ");

outfix(counter_BEpacket_generate-counter_BEpacket_successful,

0, 20);

outimage;

!pacchetti BE che vanno in coda;

outtext("BEp_inQ = BEp queued = BEintoWL :");

outfix(BEp_inQ, 0,20);

outimage;

!pacchetti BE che prendono la risorsa;

outtext("BEp acquiring WL: ");

outfix(BEp_intoWL, 0, 20);

outimage;

!pacchetti BE che rilasciano la risorsa;

outtext("BEp releasing WL = BEp Successful: ");

outfix(BEp_outtoWL, 0, 20);

outimage;

outtext("BEps actively using wavelengths when simulation stops:

");

outfix(BEp_intoWL-BEp_outtoWL, 0, 20);

outimage;

!stampo a video quante volte vengono interrotti i pacchetti

BE;

outtext("Total interruptions = interruptions by GST + interruptions

by RT : ");

outfix(counter_BEpacket_interrupted, 0, 10); outimage;

!stampo a video quante volte vengono interrotti i pacchetti

BE da GST;

95

96 APPENDIX . APPENDIX E: 3LIHON-2R CODE

outtext("Total interruptions by GST: ");

outfix(counter_BEpacket_interrupted_by_GSTp, 0, 10);

outimage;

!stampo a video quante volte vengono interrotti i pacchetti

BE da RT;

outtext("Total interruptions by RT: ");

outfix(counter_BEpacket_interrupted_by_RTp, 0, 10);

outimage;

!stampo la somma dei 2 addendi, che deve essere uguale al numero

di volte in cui i pacchetti BE sono stati interrotti;

outtext("Total interruptions (GST + RT): ");

outfix(counter_BEpacket_interrupted_by_RTp+counter_BEpacket_interrupted_by_GSTp,

0, 10);

outimage;

!stampo quanti pacchetti sono stati ripresi (uno stesso pacchetto

interrotto/ripreso piu’ volte viene contato una sola volta);

outtext("BEpackets interrupted: ");

outInt(counter_BEpacket_resumed,10);

outimage;

!stampo il numero di pacchetti BE interrotti da RT (uno stesso

pacchetto interrotto piu’ volte viene contato una sola volta);

outtext("BEpackets interrupted by RT: ");

outInt(interruptedByRT,10);

outimage;

!stampo il numero di pacchetti BE interrotti da GST (uno stesso

pacchetto interrotto piu’ volte viene contato una sola volta);

outtext("BEpackets interrupted by GST: ");

outInt(interruptedByGST,10);

outimage;

!stampo il numero di pacchetti BE interrotti (uno stesso pacchetto

interrotto piu’ volte viene contato una sola volta);

96

APPENDIX . APPENDIX E: 3LIHON-2R CODE 97

!la somma deve essere uguale agli interrotti/ripresi poco sopra;

outtext("BEpackets interrupted: ");

outInt(interruptedByRT + interruptedByGST,10);

outimage;

!stampo una media delle interruzioni per un pacchetto BE;

outtext("Avg number of interruptions per BEpacket: ");

outfix(counter_BEpacket_interrupted/counter_BEpacket_successful,

4, 7);

outimage;

!tempo impiegato per trasmettere tutti i pacchetti BE (dalla

loro creazione a fine trasmissione);

outtext("Total lifetime of BE packets: ");

outfix(total_BE_lifetime, 16, 20);

outimage;

outtext("Square total lifetime of BE packets: ");

outfix(total_BE_lifetime2, 16, 20);

outimage;

!ritardo medio di un pacchetto BE (dalla creazione a fine trasmissione);

outtext("Avg lifetime of a BE packet: ");

outfix(total_BE_lifetime/counter_BEpacket_successful, 15, 17);

outimage;

!PLP: pacchetti interrotti/pacchetti serviti;

outtext("PLP resuming BE (pkt int/pkt served): ");

outfix(PLP_resumingBE,16,20);

outimage;

!PLP_BE (Gaia): interruzioni totali/pacchetti serviti;

outtext("PLP BE (Gaia: tot interr./pkt served): ");

outfix(PLP_BE, 16, 20);

outimage;

!stampo a video il rapporto tra quanti pacchetti BE sono stati

97

98 APPENDIX . APPENDIX E: 3LIHON-2R CODE

interrotti e quanti si sono messi in coda, quindi hanno avuto

accesso alla WL ;

outtext("BEinterrupted/BEinQueue ratio:");

outfix(counter_BEpacket_interrupted/BEp_inQ, 16, 20);

outimage;

!solo pacchetti BE interrotti da GST a numeratore;

outtext("BEinterrupted by GST/BEinQueue ratio:");

outfix(counter_BEpacket_interrupted_by_GSTp/BEp_inQ, 16, 20);

outimage;

!solo pacchetti BE interrotti da RT a numeratore;

outtext("BEinterrupted by RT/BEinQueue ratio:");

outfix(counter_BEpacket_interrupted_by_RTp/BEp_inQ, 16, 20);

outimage;

!tempo totale impiegato da tutte le wl per trasmettere pacchetti

BE (>= be_insec_tot a causa delle ritrasmissioni);

outtext("Total time used by all wl to transmit BE packets:

");

for i:= 1 step 1 until OUTPUT_WL do be_total_time:= be_total_time

+ wl_BE_util(i);

outfix(be_total_time,16,20);

outimage;

!quanti secondi sono impiegati per trasmettere pacchetti di

tipo BE;

outtext("sum of all BE packets (time):");

outfix(be_insec_tot,16,20);

outimage;

outtext("sum of all BE packets (time)/number of OUTPUT_WL ratio:");

outfix((be_insec_tot/OUTPUT_WL)/sim_time,16,20);

outimage;

msum:= total_BE_lifetime/counter_BEpacket_successful;

m2sum:= (total_BE_lifetime/counter_BEpacket_successful)**2;

98

APPENDIX . APPENDIX E: 3LIHON-2R CODE 99

vsum:=vsum+abs(BEp_inQ*somma2-somma**2.0)/(BEp_inQ*(BEp_inQ-1.0));

v2sum:= v2sum+(abs(BEp_inQ*somma2-somma**2.0)/(BEp_inq*(BEp_inQ-1.0)))**2.0;

outtext("

"); outimage;

outtext("**");

outimage;

!stampo a video quanti pacchetti in totale ho generato;

outtext("PACKETS GENERATED OVERALL: ");

outfix(TOTAL_P_GENERATED, 0, 20);

outimage;

!stampo a video quanti pacchetti cercano di utilizzare una

risorsa;

outtext("TOTAL PACKETS into the WL: ");

outfix(TOTAL_P_intoWL, 0, 20);

outimage;

!stampo a video rho GST a priori;

outtext("rho GST a priori: ");

outfix(rho_gst, 5, 10);

outimage;

!stampo a video la percentuale assoluta di GST calcolata a

posteriori;

outtext("Actual absolute percentage of GST packets: ");

outfix((gst_insec_tot/OUTPUT_WL)/sim_time, 16, 20);

outimage;

!stampo a video la percentuale assoluta di RT calcolata a priori;

outtext("rho RT a priori : ");

outfix(rho_RT, 5, 10);

outimage;

!stampo a video la percentuale assoluta di RT calcolata a posteriori;

outtext("Actual absolute percentage of RT packets: ");

outfix((rt_insec_tot/OUTPUT_WL)/sim_time, 16, 25);

outimage;

99

100 APPENDIX . APPENDIX E: 3LIHON-2R CODE

!stampo a video la percentuale assoluta di BE calcolata a priori;

outtext("rho BE a priori: ");

outfix(rho_BE, 5, 10);

outimage;

!stampo a video la percentuale assoluta di BE calcolata a posteriori;

outtext("Actual absolute percentage of BE packets: ");

outfix((be_insec_tot/OUTPUT_WL)/sim_time, 16, 25);

outimage;

END***DEMOS***;

END;

PLPrt(count_observations):= PLP_RT;

PLPrt2(count_observations):= PLP_RT2;

sum_PLPrt := sum_PLPrt+PLPrt(count_observations);

sum_PLPrt2 := sum_PLPrt2+PLPrt2(count_observations);

PLPbe(count_observations):= PLP_BE;

PLPbe2(count_observations):= PLP_BE2;

sum_PLPbe := sum_PLPbe+PLPbe(count_observations);

sum_PLPbe2 := sum_PLPbe2+PLPbe2(count_observations);

msum_vettore(count_observations):=msum;

m2sum_vettore(count_observations):=m2sum;

vsum_vettore(count_observations):=vsum;

v2sum_vettore(count_observations):=v2sum;

sum_msum_vettore:= sum_msum_vettore+msum_vettore(count_observations);

sum_m2sum_vettore:= sum_m2sum_vettore + m2sum_vettore(count_observations);

sum_vsum_vettore:= sum_vsum_vettore+vsum_vettore(count_observations);

sum_v2sum_vettore:= sum_v2sum_vettore+v2sum_vettore(count_observations);

outtext("

"); outimage;

outtext("@@@"); outimage;

outtext("

"); outimage;

outtext("OBSERVED VALUE = PLP of RT : ");

outint(count_observations,2); outfix(PLPrt(count_observations),

100

APPENDIX . APPENDIX E: 3LIHON-2R CODE 101

40, 45);

outimage;

outtext("SQUARE OBSERVED VALUE: PLP**2 of RT ");

outint(count_observations,2); outfix(PLPrt2(count_observations),

40, 45);

outimage;

outtext("OBSERVED VALUE = PLP of BE : ");

outint(count_observations,2); outfix(PLPbe(count_observations),

40, 45);

outimage;

outtext("SQUARE OBSERVED VALUE: PLP**2 of BE ");

outint(count_observations,2); outfix(PLPbe2(count_observations),

40, 45);

outimage;

outtext("OBSERVED VALUE=vsum : ");

outint(count_observations,2); outfix(vsum_vettore(count_observations),

40, 45);

outimage;

outtext("SQUARE OBSERVED VALUE=v2sum ");

outint(count_observations,10); outfix(v2sum_vettore(count_observations),

40, 45);

outimage;

end***for***;

sum_meanPLPrt:=sum_PLPrt/count_observations;

sum_meanPLPrt2:=sum_PLPrt2/count_observations;

deviazione_std_rt:= sqrt(abs(10.0*sum_PLPrt2-sum_PLPrt*sum_PLPrt)/90.0);

ConfInter95rt:= (deviazione_std_rt*2.262)/sqrt(10.0);

lower_rt:= sum_meanPLPrt-ConfInter95rt;

101

102 APPENDIX . APPENDIX E: 3LIHON-2R CODE

upper_rt:= sum_meanPLPrt+ConfInter95rt;

if lower_rt>0 then adjustDELTA_rt:=ConfInter95rt

else adjustDELTA_rt:=ConfInter95rt+lower_rt;

outtext("Sum of PLP RT: ");

outfix(sum_PLPrt, 40, 45);

outimage;

outtext("Mean value of sum of PLP RT : ");

outfix(sum_meanPLPrt, 40, 45);

outimage;

outtext("Sum of PLP**2 of: ");

outfix(sum_PLPrt2, 40, 45);

outimage;

outtext("Mean value of sum of PLP**2 of RT : ");

outfix(sum_meanPLPrt2, 40, 45);

outimage;

outtext("Standard deviation RT: ");

outfix(deviazione_std_rt, 40, 45);

outimage;

outtext("95% Confidential Intervall : ");

outfix(ConfInter95rt, 40, 45);

outimage;

outtext("LOWER of RT : ");

outfix(lower_rt, 40, 45);

outimage;

outtext("UPPER of RT : ");

outfix(upper_rt, 40, 45);

outimage;

outtext("Adjusted lower 95% Confidence interval of RT : ");

102

APPENDIX . APPENDIX E: 3LIHON-2R CODE 103

outfix(adjustDELTA_rt, 40, 45);

outimage;

outtext("@@");

outimage;

outtext("

"); outimage;

sum_meanPLPbe:=sum_PLPbe/count_observations;

sum_meanPLPbe2:=sum_PLPbe2/count_observations;

deviazione_std_be:= sqrt(abs(10.0*sum_PLPbe2-sum_PLPbe*sum_PLPbe)/90.0);

ConfInter95be:= (deviazione_std_be*2.262)/sqrt(10.0);

lower_be:= sum_meanPLPbe-ConfInter95be;

upper_be:= sum_meanPLPbe+ConfInter95be;

if lower_be>0 then adjustDELTA_be:=ConfInter95be

else adjustDELTA_be:=ConfInter95be+lower_be;

outtext("Sum of PLP BE: ");

outfix(sum_PLPbe, 40, 45);

outimage;

outtext("Mean value of sum of PLP BE : ");

outfix(sum_meanPLPbe, 40, 45);

outimage;

outtext("Sum of PLP**2 of BE: ");

outfix(sum_PLPbe2, 40, 45);

outimage;

outtext("Mean value of sum of PLP**2 of BE : ");

outfix(sum_meanPLPbe2, 40, 45);

outimage;

outtext("Standard deviation BE: ");

outfix(deviazione_std_be, 40, 45);

outimage;

103

104 APPENDIX . APPENDIX E: 3LIHON-2R CODE

outtext("95% Confidential Interval of BE: ");

outfix(ConfInter95be, 40, 45);

outimage;

outtext("LOWER of BE : ");

outfix(lower_be, 40, 45);

outimage;

outtext("UPPER of BE : ");

outfix(upper_be, 40, 45);

outimage;

outtext("Adjusted lower 95% Confidence interval of BE : ");

outfix(adjustDELTA_be, 40, 45);

outimage;

outtext("@@");

outimage;

outtext("

"); outimage;

deviazione_std_delay:=sqrt(abs(10.0*sum_m2sum_vettore-sum_msum_vettore**2)/90.0);

ConfInter95_delay:= (deviazione_std_delay*2.262)/sqrt(10.0);

lower_delay:= sum_msum_vettore/10.0-ConfInter95_delay;

upper_delay:= sum_msum_vettore/10.0+ConfInter95_delay;

if lower_delay>0 then adjustDELTA_be:=ConfInter95_delay

else adjustDELTA_delay:=ConfInter95_delay+lower_delay;

outtext("Mean value of delay: ");

outfix(sum_msum_vettore/10.0, 40, 45);

outimage;

outtext("Standard deviation of delay: ");

outfix(deviazione_std_delay, 40, 45);

outimage;

outtext("95% Confidence interval of delay: ");

104

APPENDIX . APPENDIX E: 3LIHON-2R CODE 105

outfix(ConfInter95_delay, 40, 45);

outimage;

outtext("Lower bound for delay: ");

outfix(lower_delay, 40, 45);

outimage;

outtext("Upper bound for delay: ");

outfix(upper_delay, 40, 45);

outimage;

outtext("@@");

outimage;

outtext("

"); outimage;

END;

105

106 APPENDIX . APPENDIX E: 3LIHON-2R CODE

106

Bibliography

[1] DEMOS - A system for Discrete Event Modelling on Simula. 2003.

[2] Jan Cheyns, Erik Van Breusegem, Didier Colle, Mario Pickavet,
and Pie Demeester. ORION: a Novel Hybrid Network Concept:
Overspill Routing in Optical Networks. Proceedings of 2003 5th
International Conference on Transparent Optical Networks, 1:144
– 147, 2003.

[3] Gaia Leli. Performance study of the 3LIHON output scheduling
part. Master’s thesis, NTNU, February 2012.

[4] I. Mitrani. Simulation techniques for discrete event systems. Cam-
bridge University Press, 1982.

[5] Carla Raffaelli, Slavisa Aleksic, Franco Callegati, Walter Cerroni,
Guido Maier, Achille Pattavina, and Michele Savi. Optical Packet
Switching. Enabling Optical Internet with Advanced Network Tech-
nologies, pages 31 – 85, 2009.

[6] Norvald Stol, Michele Savi, and Carla Raffaelli. 3-level integrated
hybrid optical network (3LIHON) to meet future QoS require-
ments. Global Telecommunications Conference, pages 1 – 6, Dec
2011.

107

108 BIBLIOGRAPHY

108

Ringraziamenti

I miei piu’ sentiti ringraziamenti vanno al Prof. Walter Cerroni, per
avermi dato la possibilita’ di svolgere all’estero il lavoro di preparazione
di tesi, presso una delle piu’ importanti universita’ della Norvegia,
NTNU. Grazie al suo supporto e alla sua guida mi e’ stato possibile
inserirmi all’interno di un progetto di ricerca estremamente interes-
sante e innovativo, trascorrendo in tale Paese sei mesi che hanno dato
come frutto la presente tesi.

Un grazie speciale va al Prof. Norvald Stol, che con molta disponi-
bilita’ e dedizione ha supervisionato lo sviluppo del mio lavoro dall’inizio
alla fine, aiutandomi ad avere una visione globale dell’argomento,
prodigandosi in ottime spiegazioni ed approfondimenti e lasciandomi
grande liberta’ nell’indirizzo dei miei studi, per i quali l’aspetto cre-
ativo e’ stata componente di grande motivazione ed entusiasmo.

Ringrazio i miei genitori per l’aiuto morale, economico e affettivo,
non solo durante questi sei mesi, ma anche per tutti gli anni di studi.
Perche’ mi hanno lasciato sempre libero di scegliere, senza farmi mai
mancare nulla.

Meritano la mia gratitudine anche la zia Nadia, soprattutto per es-
sersi talvolta prestata ai ”quiz notturni pre-esame” con grande spirito
di sacrificio; mio cugino Marco, che e’ sempre riuscito a trovare lo
spunto per qualche battuta anche su materie niente affatto divertenti;
la zia Mirella, per il continuo interessamento ai miei avanzamenti negli
studi e per il fondamentale supporto gastronomico - rigorosamente ro-
magnolo - durante i sei mesi a Trondheim; la zia Dalide, per aver
accolto sempre con entusiasmo le mie novita’, per lo sforzo di “tec-

109

110 APPENDIX . RINGRAZIAMENTI

nologizzazione”pur di superare i 2600 km di distanza e perche’, ormai
raggiunto il secolo, le sue maggiori preoccupazioni sono ancora che
“l’inzignir”mangi a sufficienza e non prenda freddo.

Grazie a Vincenzo, non solo come compagno di studi, ma come Amico,
perche’ parlando con lui ogni esame e’ sembrato piu’ facile (almeno
per un momento!), perche’ nei momenti di bisogno c’e’ sempre stato,
perche’ c’e’ sempre stato anche nei momenti di solitudine, per il pi-
acere di vedermi e non solo per necessita’, per avermi infuso parte
della sua fermezza e determinazione, per avermi dedicato varie ore del
proprio tempo libero a fine giornata e nei weekend ad aiutarmi con
solerzia e passione nei miei esami, per essere stato compagno di tante
serate.
Insieme a lui, Giovanni ha contribuito a rendere piena la mia vita
extra-universitaria, compensando le ore sui libri con le nostre uscite,
risate, prese in giro e tanti ritorni in bici all’alba con i merli che can-
tano.
Grazie a Roberto, persona che posso fortunatamente ed orgogliosa-
mente annoverare tra i veri Amici, il quale e’ stato l’unico a rinunciare
a due settimane di caldo mediterraneo per venirmi a trovare in Norve-
gia e fare un indimenticabile esperienza al di la’ del Circolo Polare:
ripercorrendo questi ultimi sedici anni, capisco che condividiamo molto
di piu’ dei nostri viaggi.

Sono sicuro che, dentro a quell’asettico numero che e’ il voto di laurea,
siano in realta’ racchiusi anche tutti i vostri contributi. Grazie.

110

