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Abstract. This paper presents some aspects of the risk and challenges associated with digital
twin implementation in the marine industry by learning from the aviation industry where the
digital twin is more widely employed. The digital twin applications in aviation and marine
industries are presented and the main steps of developing a digital twin are discussed. The
three main steps of sensors (measurements), model, and data analysis are identified and used
in the study. The lessons from two recent accidents in the aviation industry (Boeing 737 MAX
crashes in Indonesia and Ethiopia in 2018 and 2019) are studied in details and discussed. It
was found that the sensor reliability, model failure and wrong decisions as the output of the
data processing are among the risks associated with digital twin implementations. In particular,
from the case study accidents, it was found that the digital twin may not be able to represent all
the possible scenarios which a system may experience in its life time. The digital twin presents
many advantages, however the implementation of the digital twin is associated with risk and
high uncertainties, even in the industries like the aviation industry, where the digital twin is
well established and at a higher advanced level than in the marine industry.

1. Introduction
Digitalization is becoming an integral part of the engineering arena, and an interesting
technology which aspires to move industries forward is the digital twin. In terms of historical
roots of the digital twin term, it seems that Michael Grieves from the University of Michigan
was the first to write and use the digital twin term, back in 2002. Nevertheless, the National
Aeronautics and Space Administration (NASA) was using the term and applied the concept of
“pairing technology” which is a predecessor of the digital twin technology, since the beginning
of space explorations [1].

Nowadays, the digital twin is appreciated to become a key for digital transformations of
many industries. The digital twin becomes so increasingly popular, as it is seen to drive many
innovative solutions and to increase performance and profitability.

With regards to the aviation industry, Dennis Muilenburg, the Boeing CEO, mentioned
in his speech at the panel discussion in Morgan Stanley Laguna Conference – California, on
12 September 2018 – that the digital twins usage for component production has increased
the quality of parts and systems used in aircraft production by 40 percentage. Muilenburg
highlighted that because of digital twin usage “We are seeing things like 40 to 50 percentage
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improvements in first time quality”. Boeing is looking further to reduce development costs and
to create new alternatives for supply chains. Digital twin makes real-time updates accessible
by all users, enables virtual system integration and test, reduce development costs and the risk
of design problems. As per Muilenburg “That digital life cycle – think of it as a digital twin
of our airplanes – will unleash incredible value in the future” [2]. Furthermore, Canaday [3]
emphasized about the increasing role of the digital twin in the aircraft health monitoring. The
digital twin is estimated that will improve the maintenance and can bring an estimated 30
percentage improvement in cycle time for critical processes. According to Domone [4], by using
a digital twin, engineers can more accurately determine the life of structural components for
aircraft. Digital twin contribute to improve performance, to generate savings and to increase
operational flexibility [4].

In terms of investments to the digital twin’s implementation, Domone [4] advised that the
digital twin can definitely offer improvements for the civil aircraft fleet life management, but
an important consideration in usage of digital twin is given by the cost-to-benefit ratio. A low–
fidelity digital twin approach which incorporates measures operational weight for civil aircraft
operations is associated with relatively low cost and has the potential to extend life for asset. On
the other hand, a high–fidelity geometric approach is of a high interest, but it is not providing
much benefits, as it is associated with high–costs. A low fidelity approach digital twin is bringing
a good value with reference to cost versus benefits, as it contributes to optimize operations and
fleet usage. This type of digital twin is already in–use by engine manufacturers in civil aerospace.
A high-fidelity digital twin can add knowledge about detailed component geometry, mechanical
assemblies, system calibration details and can updates these through the collected data over
the asset’s life. A high-fidelity digital twin has the potential to increase component fatigue life,
but with present technology and cost, it requires huge amount of data and particularly, high
investment costs [4].

Digital twin is seen as a definitive technological trend in the marine industry. Primarily,
the digital twin offers the contribution that an asset is monitored in operational conditions
and the data is digitally represented in virtually real-time [5]. Moreover, there are many more
to be offered by digital twin; the digital twin allows to perform virtual tests, to reduce time
in physical tests, can improve design, allows failing and to check errors before manufacturing
process, and decreases the price for manufacturing and development time. The digitalization and
particularly, usage of the digital twin, has the potential to increase efficiency of the Condition
Based Maintenance (CBM) through reduction of time to assess equipment, assures a more
efficient reporting, increases usage of condition monitoring systems, and reduces the cost for
running CBM [6]. Furthermore, DNV GL has developed a methodology for hull condition
monitoring that incorporates the usage of the ship’s digital twin, a virtual model prepared
during the design stage. Combined with waves, position and sensor monitoring, the digital twin
usage enhances the value of predictive and preventive maintenance. Moreover, it was seen that a
combination between data provided by sensors and digital twin extends considerably structural
details accessible for monitoring and makes more accurate the condition monitoring of a vessel
or other offshore structures and assure a cost-effective instrumentation [7].

DNV-GL emphasized that digital twin can reduce the cost over the operation phase, can
contribute to safety and integrity and adequate preparedness and planning can be done with
regards to emergency response and planning. Digital twin can indicate possible changes to
design and operation and can contribute to efficiency and life extension of an asset. In terms
of decommissioning, the digital twin can support labor safety issues and environmental matters
[6].

The application of digital twin in marine industry is not limited to vessels, but offshore
renewable technologies can also take advantage of digital twin [8]. As per Johansen [9], the
offshore wind turbine market is growing and many maintenance and downtime issues are linked
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to drivetrains, more precisely to bearings. This matter, in addition to remote and rough
offshore environments poses challenges for maintenance and elevates the costs for operation
and maintenance. The development of digital twin can be a solution to these challenges. For
instance, the modelling of a digital twin for drivetrain in a Multi-Body Simulation (MBS)
software requires attention and further investigations. However, creating a high-fidelity digital
twin model in offshore wind energy is an issue still to be settled. For the wind farms, the digital
technology together with data science, industry expertise and a condition monitoring system
can enable outcomes such as automated detection of early gear damage, in time inspections
and repairs, reduction of downtime, and reduction of operational costs [10]. Johansen and
Nejad [8] emphasized that a digital twin is highly relevant, particularly, for the condition
monitoring of marine drivetrains and machinery, the holistic condition monitoring and predictive
health monitoring of an asset. Moreover, when considering difficult to access and high values
assets in offshore wind industry and shipping, the digital twin implementation can contribute
in decreasing maintenance costs and downtime.

Despite many benefits that the digital twin can offer, less is written about the challenges
linked with implementing the digital twin. Johansen and Nejad [8] through the case study of
Wilhelmsen Ship Management Norway, brought to attention that when the shift from offline
Condition-Monitoring (CM) to online CM will occur and cost challenges linked to sensors and
their connectivity will be solved, then progress will be done towards implementation of the
digital twin as the future of ship operations. However, the need to bring further to attention
the challenges associated with digital twin implementation still requires further studies which is
the main objective of this article.

2. Research approach
The aim of this paper is to identify and analyse the sources of risk associated with building and
implementation of a digital twin in marine industry by learning from aviation industry which
is an industry where the digital twin concept has been well established. With reference to the
building and implementation of a digital twin, Johansen and Nejad [8] identified common steps
among the industries. Essentially, three steps are the key points of a digital twin development:
sensors, model, and the Remaining Useful Life (RUL), fault prediction, and operational decision
making, see Figure 1.

The first step of digital twin development refers to sensors which come with their own
challenges in terms of high failure, reliability, calibration, efficient and optimized placement
and proper selections, just to name a few [8].

The second step for building a digital twin refers to model development. The question which
may raise here is which type of model is needed in digital twin development. In order to analyze
the data from sensors, in general, there are two approaches: physical-based modeling (PBM)
and data-driven modeling (DDM) approaches. The PBM is built up based on real physics of
the system, for instance utilizes the equation of motion to predict the system behaviour. The
DDM is a model which is built based on data features like for example, after collection of data,
it considers the correlations with certain faults or it is evaluating the trend, without relating to
physics of the system. This type of model requires collection of large amount of data [8].

The third step considers the output from a model which needs to be analyzed for the RUL
and fault prediction. Further on, data interpretations and validations are performed, and
recommendations are given for the system performance [8].

The case studies of two recent disasters in aviation industry were analyzed through the above
mentioned steps in order to identify critical factors and risk in the implementation of digital
twin in aviation industry. The marine industry needs to learn from the aviation industry which
is well-known as an advanced industry with reference to the building and implementation of
digital twin [2, 3, 4].
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Figure 1. Digital twin main steps.

3. Digital twin in aviation and marine industries
Digital twin signifies basically a virtual representation of the system containing all information
available on site. According to Marr [1] the digital twin is a virtual model of a product or
process, and acts as a bridge between the physical and digital world. The origins of the digital
twin term can be traced back in 2002, at University of Michigan when Michael Grieves introduced
it during a presentation to industry as part of the Product Lifecycle Management (PLM) center
and during first executives PLM courses. As per Michael Grieves a digital twin has always
existed before a physical product comes to existence. A digital twin is seen as a virtual image
which contains all the information of a physical product and reflects it throughout the whole
product lifecycle. This means that there is a mirroring or twinning of physical and virtual
systems, and the conceptual model was called initially as Mirrored Spaces Model or Information
Mirroring Model [1, 11].

A digital twin as presented by General Electric is “a dynamic digital representation of
an industrial asset, that enables better understanding and prediction of the performance of
machines”. Each asset can have its own digital twin and operational details can be accessed
throughout its life [4]. Erikstad [12] warned that the digital twin is not an end product in
itself. Furthermore, the interpretation of digital twin concept can varies according to different
stakeholders and industries. Within the followings, insights about the digital twin in aviation
industry and marine industry are introduced.

3.1. Digital Twin and Aviation Industry
Through the digital twin a virtual replication of physical airplane parts is provided by usage
of simulation software. The virtual model of highly complex systems and components, such as
those featured on the Boeing’s airplanes are subject to simulations about the lifecycle of the
environments and conditions that component(s) or systems might experience [2]. The digital
twin can bring improvements in structural life prediction and can enable better management of
an aircraft over its service life [13]. The Boeing started to embrace the digital twin concept from
2017, and the digital twin was launched through an official letter called the Innovation Quarterly.



MTEC/ICMASS 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1357 (2019) 012009

IOP Publishing

doi:10.1088/1742-6596/1357/1/012009

5

The digital twin or the model based-engineering was used to design the Air Data Reference
Function (ADRF) for the 777X. The ADRF is a key avionics function which process signals
from pressure and temperature probes, computing aircraft state parameters like airspeed and
altitude, processes signals and data, convert the physical information about flight environment
into digital information on cockpit displays for usage by pilots. It was assessed that the digital
twin contributed to reduce the cost and time in order to develop the ADRF on the 777X Boeing
[2].

A digital twin in aviation has been explained as being the virtual replica of a physical asset,
like for example, an aircraft engine, which can display to engineers on the ground how the engine
is running while the aircraft is still in the air. A question has emerged about how the health
monitoring through a digital twin differs from a traditional health monitoring. The answer is that
the digital twin applies the monitoring approach much earlier, deeper and in more detail, tracks
and monitors an asset in real-time taking in account for instance, the temperature of engine,
pressure and airflow rate. In this way, through a digital twin and through a virtual model
of aircraft, major systems and components, early warnings and predictions of the components
behavior and possible likely failure can be received, identified and consequently, action plans can
be built. For instance, GE developed the first digital twin for an airplane’s landing gear, and
sensors were placed on typical failure points such as hydraulic pressure and brake temperature
in order to provide real-time data. This helped to predict the early malfunctions and to diagnose
the remaining lifecycle of the airplane landing gear. Data gathered by sensors on the asset are
compared with data from its digital twin; simulations are going on about the regular wear and
tear and environmental conditions, for instance. In case the two data sets do not match up,
then, actions are being taken and asset can enter into service [3].

3.2. Digital Twin and Marine Industry
Erikstad [12] identified five characteristics of the digital twin in maritime industry: identity,
representation, state, behavior and context. However, there is no universal acceptance of these
characteristics which might be neither required, nor sufficient.

DNV-GL [6] defined the digital twin as a “digital representation of a physical asset, its
related processes, systems and information”. Furthermore, DNV-GL [6] advised that a digital
twin is constructed prior to and in parallel with the actual building of a vessel. The digital
twin is a tool which can support for instance, a vessel, over its life-cycle [14]. The digital
twin can support the feasibility stage, early design, prior to and during construction phase
and commissioning. During the operation of an asset, a continuous learning and updating
occurs with reference to the digital twin of asset which receives various data about operational
aspects, environmental data, data provided by sensors and input from experts with a relevant
industry knowledge [6]. Furthermore, the digital twins facilitates exchanging information among
stakeholders such as owners, manufacturers, operators, service providers, system integrator,
authorities and different suppliers. A common understanding and exchange of information can
be done through various ways such as a cloud-based platform which offers access to operational
data, data from environmental conditions such as weather, current waves, sensors data, analysis
and analytical and time-domain simulation models [6]. In 2018, as an example, a group of
students from the Marine Technology Department, NTNU has developed a digital twin of
NTNU’s research vessel Gunnerus in collaboration with DNV-GL. The work on digital twin
has continued further developing a method for the RUL calculation of thruster and it will be
integrated into the digital twin platform.

According to Bekker [5], the digital twin is “digital, real-time, in-context, operational mime
of an asset, which connects the digital and real world representations”. For instance, the polar
supply and research ship SA Agulhas II from South Africa can contribute high value to marine
industry if the digital twin technology is best implemented. It was found out that a successful
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implementation of the digital twin will depend on technology readiness, cost of implementation,
associated requirements in terms of accuracy, quality and time resolution. Moreover, digital
twin allows the measurements and analysis of extreme operational loading like experiments were
performed in an operational laboratory [5].

Tian [15] applied digital twin for monitoring and maintaining marine systems such as
propulsion systems. The parameters of a test rig from the Lab of Marine Systems Dynamics
and Vibration, Department of Marine Technology, NTNU were used to build a physical based
digital twin; the tool of Ansys Twin Builder was employed for building the model.

With regards to the offshore wind industry, GE [10] emphasized that through a constant
collection of data about environmental conditions, component information, service reports,
performance of similar models in the GE (General Electric) fleet, a predictive digital wind
model is being built. In Trondheim, Norway, the Fedem Technology (SAP SE) has developed a
digital twin and applied it to several systems, like for instance to offshore wind turbines.

4. Learning from failures in aviation: Boeing 737 MAX crashes in 2018 & 2019
The Boeing’s current in-production models include the newest and top selling models such as
737 MAX, 777X and 787. The Boeing 737 Max series represent the latest model within the
Boeing’s 737 line and comprise the Max 7, 8, 9 and 10 models. The 737 has been very successful
line for Boeing, but the Boeing 737 Max has been the fastest-selling in the Boeing’s history, as
around 100 different operators around the world ordered together more than 4500 Boeing 737
Max. Boeing launched the 737 Max on 30 August 2011, and the first 737 Max was rolled-out
of factory in December 2015. This model have been in commercial usage since 2017, when the
Malaysia-based Malindo Air received the first delivery on 17 May 2017. Since 2017, Boeing had
delivered 350 pieces of the Boeing 737 Max 8 model by the end of January 2019. A small number
of Boeing’s Max 9s are also operating around the world, and the Max 7 and 10 models, are not
yet delivered, but are due for roll-out within the next years [16, 17].

However, the Boeing 737 Max which has been the best-sold aircraft in the world, has come
under intense scrutiny by 2018. Within a period of 6 months, two deadly Boeing 737 MAX
accidents took place, one in 2018, and another in 2019. The two disasters occurred shortly after
take-off during the critical climb phase. The first disaster crashed the Lion Air Flight 610 into
the Java Sea, 12 minutes after taking off from Jakarta, in Indonesia, on 29 October 2018. The
second disaster occurred six months later, on 10 March 2019, and the Ethiopian Airlines Flight
302 crashed six minutes after take off from Addis Ababa, Ethiopia [16, 17].

After the crash of the Ethiopian Airlines Flight ET302 on 12 March 2019, the national
aviation authorities and airlines around the world have grounded the Boeing 737 MAX 8 due
to big safety concerns. At the the time of crash in Ethiopia, more than 350 airplanes of the 737
MAX 8 were in operation around the world. The biggest operator in the world for the Boeing
737 MAX is the Southwest Airlines in the US. However, the United States was one of the last
countries to ground this model of airplane. Globally, the China Southern Airlines is also one
of the biggest Boeing 737 MAX 8 operators, and among the Europe’s largest operators are the
Norwegian Airlines, the TUI Airways and the Ryanair. Turkish Airlines is considered also as a
big operator of this model.

4.1. Lion Air Flight 610 crash in 2018, Indonesia
The Lion Air Flight JT 610 Boeing 737 Max 8 took off from Jakarta on Monaday, 29 October
2018, at 06.20 (23.20) with destination of city Pangkal Pinang. After 13 minutes, it crashed and
all his 189 passengers and crew were killed. By the time it crashed, this Boeing had only 800
hours of flight time [18].

After the Lion Air crash, it was found that the aircraft had experienced problems with a sensor
which calculates the angle of flight, or angle of attack. The Digital Fly Data Recorder (DFDR)
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of the airplane recorded a difference between left and right AOA (Angle of Attack) of about
20 degrees. Moreover, data recovered from the cockpit voice recorders has revealed that pilots
were searching for a way to fix the aircraft’s nose of pitching down because of the faulty AOA
sensors. Furthermore, pilots were struggling to deal with an automated safety system – known
as the Manoeuvring Characteristics Augmentation System (MCAS). Practically, the pilots were
constantly fighting against the MCAS system in order to maintain proper airspeed and altitude.
Unfortunately, despite pilots’ trials to raise the nose of aircraft, the MCAS triggered more than
21 times and in the end, the aircraft collapsed in sea [16, 18, 19].

The MCAS system has been blamed for this Boeing 737 Max crash in Indonesia. The role of
MCAS was to compensate for a design change to the twin engines from past 737 generations.
The Max’s engines are larger and mounted farther forward on the wings and this brought issues
about aerodynamics of aeroplane. MCAS is a special technology which automatically lowers
the nose of airplane in order to head off an aerodynamic stall. MCAS can detect critical flight
situations and can intervene in the event of an imminent stall. MCAS would automatically
swivel up the horizontal stabilizer, so air flow would push the tail up and push nose down. This
MCAS system has been designed to prevent the airplane stalling when making steep turns under
manual control. However, if a sensor gives a false reading, MCAS may activate and push the
nose down when nothing is wrong with the airplane [20]. A stall can occur when the plane flies
at very steep angle and this can reduce the lift generated by the wings, and has the risk to
make the airplane to drop. In order to recover from a stall, a pilot would normally push down
the nose of airplane. For the Boeing 737 Max, MCAS does this automatically and moves the
aircraft back to a normal flight position. MCAS repeatedly takes action if it detects the plane
is still tilted at too high angle [16, 19].

On a previous day prior to the Lion Air Flight JT 610 crash, the same airplane encountered
problems via Denpasar to Jakarta because of a broken AOA sensor. A pilot issued the second-
highest warning because of problems with MCAS system. But fortunately at that time, the flight
was saved because of another pilot which was commuting to Jakarta and helped the crew to
disable in time the MCAS system. The flight was continued with manual trim without auto-pilot
until landing [19].

After the Lion Air Flight JT 610 Boeing 737 Max 8 crash, Boeing company issued guidance
to pilots on how to manage MCAS system. As a note, prior to this disaster, information about
MCAS was not included in pilot manual. However, a software fix in order to remedy the problem
has been repeatedly delayed by Boeing until the next crash occurred six months later [16, 20].

4.2. Ethiopian Airlines 302 crash in 2019, Ethiopia
On 10 March 2019, the The Boeing 737 MAX 8, registered ET-AVJ with flight ET302 took off
from Addis Ababa, Ethiopa, at 08:38 local time (05:38 GMT). The flight was supposed to be
a two-hours flight and had as destination Nairobi, in Kenya. However, the Ethiopian Airlines
Boeing 737 MAX 8 crashed soon in a field, just six minutes after take-off, at 08:44, almost 30
miles (about 50 kilometers) southeast of the airport, near the town of Bishoftu, south of Addis
Ababa. All 149 passengers and 8 crew members on board lost their lives [16].

At the time of crash, the aircraft had only around 1,200 hours of flight time since Boeing
delivered it to Ethiopia in November 2018. This airplane, underwent on 4 February 2019 a very
rigorous first check maintenance and earlier on Sunday, had flown from Johannesburg, South
Africa, without any incidents on board. The Boeing 737 Max which crashed in Ethiopia was
part of 30 airplanes of this Boeing model which were ordered by the Ethiopian Airlines [16, 17].

Very shortly after taking-off, two sensors measuring the AOA began to record different
readings. One of the sensors particularly was giving erroneous readings and this triggered the
MCAS safety system which activated and forced the nose of airplane down. The pilots tried very
hard to deal with the MCAS system and repeatedly disengaged it and manually tried to steady
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the airplane and to control the aircraft’s angle of flight. However, the MCAS prevailed in the
end, and pushed down the nose of the aircraft until it crashed. The black box flight recorders,
more precisely the flight data recorder and cockpit voice recorder of the Ethiopian aircraft have
been under scrutiny of the investigators in Paris. It was announced that an official report will
be issued within one year after this disaster [16].

5. Discussions
Analysis of the Lion Air Flight JT 610 and the Ethiopian Airlines Flight ET302 crashes identifies
similarities among flight data. The vertical speed readings which indicates how fast a plane
is going up and down, were erratic for both airplanes in Ethiopia and Indonesia and are a
part of evidence that the pilots in both countries encountered big difficulties in maintaining a
stable ascent of the aircraft very soon after taking-off. Furthermore, the US Federal Aviation
Administration (FAA) declared that evidence which was collected from both satellite data and
site brought to attention that both airplanes in Ethiopia and Indonesia behaved very similarly
after taking-off until the crush moment. Moreover, in Ethiopia, a piece of wreckage from the
tail of aircraft was found and showed that before the crush the horizontal stabilizers were set to
point down the nose of aircraft. Both Lion Air Flight JT 610 and the Ethiopian Airlines Flight
ET302 encountered difficulties with the MCAS system which automatically pushes the aircraft’s
nose down, or automatically trims the aircraft if it detects a stall [21].

The older Boeing 737 models do not have the MCAS system which its role is to quickly fix
the aerodynamic problems which emerged after testing in 2012. the MCAS system was allowed
to be triggered on impulse of a single sensor [17, 20]. In the beginning of May 2019, Dennis
Muilenburg, the Boeing CEO, acknowledged that the automatic flight control system played
a role in both crashes in Indonesia and Ethiopia. He declared that “The full details of what
happened in the two accidents will be issued by the government authorities in the final reports,
but, with the release of the preliminary report of the Ethiopian Airlines Flight 302 accident
investigation, it’s apparent that in both flights the Maneuvering Characteristics Augmentation
System, known as MCAS, activated in response to erroneous angle of attack information” [22].

After the crash of Ethiopian Airline 737 Max airplane, the Boeing company and the FAA
were heavily questioned by the US regulators and safety experts around the world, particularly,
about evaluation of the anti-stall system, and about the training which was offered to pilots
around the world. An important issue concerns the AOA signal reading and the MCAS’s
dependence on a single sensor. As the case studies of the Boeing 737 MAX 8 crashes in
Indonesia and Ethiopia have shown, the malfunctions of sensors has a negative impact on
functioning of system and contributes to its collapse. Moreover the probability of hazardous
MCAS malfunctions (catastrophic failure) was calculated as virtually inconceivable. Boeing
came up with a probability for this MCAS failure of about once every 223 trillion hours of
flight. In its first year in service, the MAX fleet logged just 118,000 flight hours. Furthermore,
the failure analysis did not consider the possibility the MCAS could triggered repeatedly. In
addition, Boeing never flight-tested a scenario in which a broken angle-of-attack sensor would
triggered MCAS. During flight testing in 2016, and in order to compensate for other issues, the
scope and power of MCAS were further extended [20].

Bekker [5] and DNV-GL [7] drew also attention that the collapse of sensors and data quality
to the model are critical for the digital twin. Bekker [5] emphasized that with regards to
digital twin, the technological challenges remain, particularly those ones related to the sensor
technology. The increased communication capabilities and increased number of sensors brought
security issues in order to safely enable the digital twins [5]. Furthermore, with regards to the
digital twins and sensor monitoring, the DNV-GL highlighted that a crucial aspect is given by
sensor data quality which is a key requirement among industry and authorities [7].

The measurement data are provided to the digital twin through the sensors, which are critical
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for their inputs to the virtual model, see the digital twin steps presented in Figure 2. A
malfunction of a sensor, wrong input to model and model associated with a high uncertainty
and not designed to consider most of scenarios, all of these present a high risk and ultimately, it
can lead to a disaster. According to Johansen and Nejad [8], a data driven model is often used
in the marine industry rather than physical-based, primarily due to lack of information of the
system parameters.

Another important aspect of digital-twin relates to the real-time digital twin and near-
real-time results. A slow processing of data or analysis models will bring a time-lag between
measurements and the digital twin model [5]. The digital twin needs to have the ability to update
dynamically in real time /near real-time as the state of the physical asset evolves and suffers
changes over the time, or in the other words, the physical asset is getting older. The digital
twin needs to experiment the same environmental conditions, to develop over the life-cycle like
the physical asset and to get continuously updated.

Other critical aspect for the digital twin implementation concerns the role of experts. A
digital twin requires various efforts and skills, and interpretation and utilization of its results
needs different expertise and training. An interdisciplinary approach is highly required [5].
Moreover, as per DNV-GL [6], the digital twin brings together experts from various fields and
requires long-term collaborations and integration of expertise. However, a world of experts
requires learning, diversity, acceptance, collaboration, and interdisciplinary approach.

DNV-GL [6] proposed an extension of the Digital Twin concept, the so-called Probabilistic
Twin. While the digital twin is a digital copy of a physical asset, the Probabilistic twin
is a forecasting tool in order to support the risk management of asset’s operation. The
Probabilistic twin couples the digital twin to risk models which are continuously updated based
on existing knowledge and actual conditions. Nevertheless, before moving beyond digital twin,
the implementation of the digital twin is associated with uncertainties.

The Boeing accidents highlight that the consequences of a faulty digital twin can be very
severe and can contribute to major accidents and disasters. These Boeing accidents can be
seen through different views or perspectives related to the digital twin: through the sensors
malfunctions and software malfunctions, through the faulty verification of the new MCAS
system through digital twin and simulators, faulty model, through wrong data-analysis, failure
to predict risky scenarios and wrong decision making. These views indicates the importance
of sensor reliability, importance of right input measurements, risk of decision making based on
wrong input measurements, and significance of better modelling, simulations and verification.
The Boeing accidents can be seen as examples of risks associated with digital twin main steps
as presented by the Figure 2.

The MCAS system had been tested via digital twin and through simulations, but later on,
after disasters, Boeing acknowledged the faults linked to the MCAS simulator and flaws in the
737 Max flight simulators [23, 20]. The Boeing officially announced the updates of MCAS system
in May 2019:“MCAS is designed to activate in manual flight, with the airplane’s flaps up, at an
elevated Angle of Attack (AOA). Boeing has developed an MCAS software update to provide
additional layers of protection if the AOA sensors provide erroneous data. The software was put
through hundreds of hours of analysis, laboratory testing, verification in a simulator and two
test flights, including an in-flight certification test with Federal Aviation Administration (FAA)
representatives on board as observers” [21]. The faulty software linked to MCAS system has been
further confirmed through additional layers of protection not limited to: flight control system
will compare inputs from both AOA sensors, and MCAS can never command more stabilizer
input than it can be counteracted by the flight crew. The pilots will always have the ability to
override MCAS system and to manually control the airplane [21].

Nevertheless, during simulator testing of the software changes, the Federal Aviation
Administration had identified in June 2019, a new potential risk which is required to be settled
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Figure 2. Examples of risk associated with digital twin main steps.

by Boeing. This matter relates to the runaway stabilizer trim, an uncommanded movement of
the horizontal stabilizer, the little wing near the tail which moves the plane up or down. If the
pilots are unable to correct it and a microprocessor will fail, then, there is the risk of plane crash
[24].

The aviation industry is very advanced in implementation of digital twins [2, 3, 4] and the
digital twin has been used much earlier and for longer time in this industry in comparison with
marine industry. However, it was identified that the aviation industry still confronts major
challenges associated with implementation and development of digital twin. Nowadays, the
technological trend of digital twin is growing fast in marine industry, however the implementation
of the digital twin in marine industry is not so well developed like in the aviation industry.

The aviation and marine industry are different industries, however with regards to the risk
of digital twin implementation, some common traits can be identified.

First, the essential steps of the digital twin as presented by Figure 1 are common steps
for both digital twin in aviation industry and digital twin in marine industry. Second, both
industries pose risk to people, properties, business and environment. Third, the structures in
both aviation and marine industry are subject to dynamic environmental forces; for example, in
aviation industry, there is wind, temperature, air density, and in marine industry, there is wind,
waves, current load, tidal currents. Moreover, in both industries, there are dynamic electro-
mechanical systems which are used to transfer and convert energy and control of structures
such as airplanes, ships and other offshore or marine structures. Thus the lessons and learning
from aviation industry with regards to risk posed by digital twin can have high value among
other industries, particularly, in the marine industry. Moreover, a reactive learning from major
accidents and disasters needs to be continuously supported by a proactive learning and a dynamic
risk culture [25].

6. Concluding remarks
The digital twin presents many advantages, however the implementation of the digital twin
is associated with high risk and high uncertainties which must be addressed, even within the
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industries like aviation industry where the digital twin is well established and at a more advanced
level than in the marine industry.

An essential lesson from the aviation industry towards marine industry is that the
implementation of the digital twin comes with its own risk, and requires a risk assessment.

The aim of employing digital twin is to reduce the risk in operations, and therefore, the
digital twin itself should not pose or bring new risk. However, the recent failures in the aviation
industry show the vulnerability of sensors, and cases where the digital twin was not able to
identify the system faults - software in this case - during the design and this contributed to
two disasters. The digital twin used for system verification of the Boeing 737 Max product
encountered failures. The digital twin was ineffective as it failed to simulate and predict those
operational scenario cases which could lead to deadly accidents.

Moreover, through the case studies of disasters in the aviation industry it was found that
the digital twin may not be able to represent all the possible scenarios which a system may
experience during its life time.

As a paradox, the purpose of implementation of the digital twin is to reduce the risk, but the
digital twin itself brings its own risk as illustrated by case studies and disasters in the aviation
industry. Various challenges are associated with implementation of the digital twin and these
include and are not limited to sensor reliability, sensor data quality and their input to the virtual
model, uncertainty associated with model, the real-time digital twin and near-real-time results,
dynamic updates to the model, the role of experts, integration of expertise, multidisciplinary
approach in engineering, and collaboration and learning among industries.

Towards learning from the aviation industry recommends that a risk associated with the
digital twin itself shall be assessed before the implementation of the digital twin. The digital
twin comes with high uncertainties and cannot be only seen as the technological solution which
shall be implemented in order to solve all the problems within the industry. A high awareness
indicates that the digital twin shall not be seen only in terms of potential benefits, but comes
with its own challenges and risk which need to be addressed in time.

The marine industry, particularly the autonomous ships, needs to learn from and integrate the
lessons from the aviation industry with reference to the digital twin. The aviation industry has
employed the digital twin for longer time than the marine industry, but still the implementation
and usage of digital twin is not risk free and a complete reliance on digital twin is not feasible.

In a digital era with many complicated and highly advanced technological systems, the digital
twin solution presents its own related uncertainties which need to be continuously assessed and
addressed.
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