
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Daniel Fedai Larsen

Approximating Global Illumination
with Real-Time Ambient Occlusion

Master’s thesis in Informatics
Supervisor: Theoharis Theoharis, Bart Iver van Blokland

May 2019

Real-Time Ambient Occlusion (model courtesy of Thomas F)

Daniel Fedai Larsen

Approximating Global Illumination with
Real-Time Ambient Occlusion

Master’s thesis in Informatics
Supervisor: Theoharis Theoharis, Bart Iver van Blokland
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

To my parents who always push me to do my best, whilst still giving me the
freedom to chose what to pursue.

I would also like to thank

Theoharis Theoharis for being an excellent supervisor and teacher,

Bart Iver van Blokland for (literally) always having his door open,

and Marius Skogen, for whom without the lunches throughout the last
academic year would have been a lot more dull.

i

ii

Abstract
Approximating global illumination has long been a problem that real-time ap-
plications, such as games, have been trying to solve efficiently. For years, the
best and most efficient techniques have been ambient occlusion algorithms based
in screen-space, such as Horizon-Based Ambient Occlusion. Although efficient,
such algorithms can suffer from artifacts, and a lack of realism due to being
screen-space algorithms trying to approximate a world space effect.

In 2018, Nvidia released the first ever hardware accelerated ray tracing
graphical processing units. Proper ray traced ambient occlusion could now be a
viable alternative to screen-space algorithms. However, to be a viable alterna-
tive, the results need to be of a certain quality, and its performance must be in
the order of a few milliseconds.

This thesis will show that although real-time ambient occlusion is possible,
and its results are of reasonable quality, it is still not quite ready to be used
in real-time applications such as games. This is due to some visual patterns in
the results that are caused by the low sample count when calculating ambient
occlusion, its scene- and viewpoint-dependent performance, and lastly the time
required to rebuild acceleration structures.

iii

Sammendrag
Å tilnærme global illuminasjon har lenge vært et problem sanntids applikasjoner
som spill har prøvd å løse effectivt. I mange år har de beste og mest effektive
teknikkene vært omgivende okklusjon algortimer basert i skjerm-rom. Ett ek-
sempel er Horizon-Based Ambient Occlusion. Selv om slike algoritmer er ef-
fektive, kan de lide av uønskede effekter, og en mangel p̊a realisme, da de er
skjerm-rom algoritmer som prøver å tilnære en verden-rom effekt.

I 2018 lanserte Nvidia de første maskinvare akselererte “ray tracing” grafikko-
rtene. Ordentlig “ray traced” omgivende okklusjon kan n̊a være et alternativ
til skjerm-rom algoritmer. Men for å være et realistik alternativ m̊a resultatene
være av en viss kvalitet, og utregningstiden må være ikke være mer enn noen
millisekunder.

Denne avhandlingen vil vise at selv om sanntids omgivende oklusjon n̊a
er mulig, og resultatene er av relativt god kvalitet, er det fremdeles ikke helt
klart til å tas i bruk i spill. Dette er grunnet uønskede visuelle effekter som
skapes av det lave antallet prøver som m̊a brukes under utregningen av om-
givende okklusjon, dens scene- og synspunkt-avhengige utregningstid, og tiden
som kreves for å gjenoppbygge akselerasjonsstrukturene.

iv

v

Contents

Abstract iii

Sammendrag iv

Contents vii

Abbreviations viii

1 Introduction 1
1.1 Background . 1
1.2 Thesis Goal . 4

2 Path Tracing Theory 6
2.1 The Path Tracing Algorithm . 6
2.2 Calculating Ray Directions for Each Pixel 7
2.3 Sub-Pixel Sampling . 8
2.4 Intersection Testing . 9

2.4.1 Acceleration Structures 9
2.5 Physically Based Rendering . 9

2.5.1 The Rendering Equation 10
2.5.2 Monte Carlo Estimation 11
2.5.3 Bidirectional Reflectance/Transmission Distribution Func-

tion . 12
2.5.4 Working With BSDFs . 15
2.5.5 Fresnel Equations . 16
2.5.6 Sampling Directions . 17
2.5.7 Sampling Geometrical Shapes 20
2.5.8 Area Lights . 22

3 Path Tracing Engine 24
3.1 Scene Creation . 25
3.2 Main Entry Point . 26
3.3 The Rendering Loop . 26
3.4 Calculating Ray Directions . 27
3.5 Intersection Testing . 27

3.5.1 Brute-Force Method . 27
3.5.2 Acceleration Structures 28

3.6 Materials and BSDFs . 29
3.7 Choosing a BxDF to Sample . 30

vi

3.8 Sampling BxDFs . 30
3.9 Account for BxDFs That Were Not Chosen 30
3.10 Fresnel Equations . 30
3.11 Parallelization . 31
3.12 Rendering Results . 34

4 Ray Tracing on GPUs 37
4.1 Graphics Application Programming Interface 37
4.2 Ray Tracing in Vulkan . 39

4.2.1 Vulkan at Its Core . 39
4.2.2 Shaders and SPIR-V . 40
4.2.3 Vulkan Extensions . 41
4.2.4 VK NV ray tracing . 41

5 Approximating Global Illumination with Real-Time Ambient
Occlusion 44
5.1 Ambient Occlusion . 44
5.2 Screen-Space Ambient Occlusion 45
5.3 Real-Time Ambient Occlusion . 45

5.3.1 Theoretical Details . 45
5.3.2 Implementation Details 48

6 Real-Time Ambient Occlusion Results 54
6.1 Visual Quality . 54

6.1.1 Real-Time AO vs Physically Based Global Illumination . 54
6.1.2 Real-Time AO vs Offline AO 56
6.1.3 Visibility Function Comparison 58
6.1.4 Box Filter Comparison . 60
6.1.5 Temporal Integration Comparison 61

6.2 Performance . 62

7 Limitations and Future Work 65
7.1 Current Implementation Limitations 65
7.2 Implementation Improvement and Future

Work . 66
7.2.1 Sampling . 66
7.2.2 Sampling Pattern Mitigation 66
7.2.3 Temporal Integration . 66
7.2.4 GPU Performance . 66

7.3 Conclusion . 67

Appendix I
Source Code . I
.brhan File Format . I
Comparison Images . II
Additional Images . IV

Bibliography VI

vii

Abbreviations
AA = Anti-Aliasing
AO = Ambient Occlusion
API = Application Programming Interface
BRDF = Bidirectional Reflectance Distribution Function
BRTF = Bidirectional Transmission Distribution Function
BSDF = Bidirectional Scattering Distribution Function
CG = Computer Graphics
CGI = Computer-Generated Imagery
CPU = Central Processing Unit
FOV = Field-of-View
GPU = Graphics Processing Unit
HBAO = Horizon-Based Ambient Occlusion
L1-3 = Level 1-3
MIS = Multiple Importance Sampling
ms = Milliseconds
OS = Operating System
PBR = Physically Based Rendering
PDF = Probability Distribution Function
RGB = Red-Green-Blue
SPD = Spectral Power Distribution
SPP = Samples Per Pixel
SSAO = Screen-Space Ambient Occlusion

viii

Chapter 1

Introduction

”The only purpose of any code is to transform data. It has to get it
from form A to form B.” [1]

- Mike Acton, CppCon 2014

All of computing essentially boils down to a data problem: given some ini-
tial data, how to best transform it to obtain the desired result? The field of
computer graphics (CG) is no exception. In CG, there is the sub-field of visu-
alization, where the desired result is some image. This means that the problem
visualization systems are trying to solve can be narrowed down from its general
form to: how to best visualize the data? In addition to this primary problem,
there is another one that is almost just as important: how to visualize the data
efficiently? As the reader will see, these two problems lay the foundation for
the question this thesis is trying to answer.

1.1 Background

Although all visualization systems share the two main problems, different visu-
alization systems can have different goals. Usually, a terminal interface is not
overly concerned with rendering an image with the highest level of graphical
fidelity. Easy to read text and a good overview of the current workflow is the
main focus. Meanwhile, a seismic visualization system is likely concerned with
rendering an image that is easy for its users to understand and interpret. Game
and film rendering systems usually have a common visualization goal: to create
the highest fidelity image given the available time. However, the level of fidelity,
and the available time, varies greatly between games and film.

In film, the requirements for image fidelity are high. This is as true now as it
was in the 70’s and 80’s, although the overall demands are higher now compared
to then. Futureworld (1976) was the first film that featured 3D computer-
generated imagery (CGI) elements: an artificial hand and face[2]. It took many
more years before CGI became the standard for special effects and entire feature
films[3]. The reason for this was that the visualization systems of the time were
not able to solve the two aforementioned problems to a satisfying degree.

Although continuous improvements were made to the systems of the time,
it was not until the introduction of the path tracing algorithm that CGI in

1

film really took off. Previously, the rasterization algorithm had been used ex-
clusively. Path tracing did not replace rasterization instantly. The reason for
this was due to a fundamental challenge with path tracing when compared to
rasterization: it is much more computationally expensive. However, with the
development of faster and more parallel hardware, both central processing units
(CPUs) and graphical processing units (GPUs), the cost of path tracing has
decreased. This resulted in the first fully path traced, physically based, film,
Monsters University, being released by Pixar in 2013. A screenshot is shown in
Figure 1.1.

Figure 1.1: Monsters University[4]

Games have a different story than film, which is caused by a key difference
between rendering in games and film. As games are interactive systems, they are
required to create each image in real-time, i.e. less than 33 milliseconds (ms).
For film, this constraint is not nearly as hard, with a single image being allowed
several hours to be rendered. This difference means that while CGI in film has
moved from rasterization to path tracing, the same shift has not been possible
in games. Nonetheless, CGI in games have come a long way since its early
days. One of the games that pioneered 3D real-time graphics was Wolfenstein
3D (1992). A screenshot can be seen in Figure 1.2. Although often viewed as a
breakthrough for its time[6], both graphically and from a gameplay perspective,
its graphics are almost non-comparable to what is achievable today. A good
example of what today’s real-time visualization systems are capable of creating
is Battlefield V. A screenshot is shown in Figure 1.3.

Although it achieves a high level of realism for today’s standards in games,
the graphics in Battlefield V are seldom mistaken for real images. There are
many reasons for this, but one is lighting. One of the most important aspects
of creating an approximation of reality, i.e. physically based rendering (PBR),
is global illumination. As opposed to local illumination, which only considers
direct light, global illumination also takes indirect light into account. While
path tracing is a global illumination algorithm, rasterization is not. And it is
rasterization which is used in games. Thus, the need for an approximation of
global illumination is needed: ambient occlusion (AO). AO evaluates the space

2

Figure 1.2: Wolfenstein 3D[5]

Figure 1.3: Battlefield V[7]

around a point in the scene, and calculates how exposed it is. The more the point
is exposed, the more likely it is that indirect light will reach it, and be reflected
in a given direction[8]. An example of what AO looks like when visualized can
be seen in Figure 1.4.

AO was used heavily in the film industry before global illumination became
the standard. This is due to its lower cost. However, although not as expensive
as global illumination, it is still not cheap. AO is based on the underlying
algorithm of path tracing: ray tracing. This has meant that until now, AO has
been too expensive for real-time systems such as games. It has been reserved
for offline systems, or real-time systems with certain characteristics, where AO
could be pre-calculated. This led to an approximation of AO being developed:
screen-space ambient occlusion (SSAO)[9]. It provided comparable results to
AO at a much lower computational cost, and has been the standard in games
since the mid 2000’s.

3

Figure 1.4: Example of ambient occlusion visualization.[8]

1.2 Thesis Goal

Although SSAO, and its leading variation, horizon-based ambient occlusion
(HBAO+)[10], have helped games improve their graphical fidelity, proper AO
would still be an upgrade. Therefore, when Nvidia, one of the major GPU
manufacturers, announced and released the first ever GPUs with hardware-
accelerated ray tracing capabilities in 2018, the question of whether real-time
AO is achievable suddenly became relevant. The work in this thesis has been
done to answer that very question:

RQ: Is real-time ambient occlusion a viable option for games?

In order to try and answer this question, the following main tasks were set:

• Get a thorough understanding of the theory behind physically based ren-
dering and global illumination. This would allow for a better understand-
ing of what AO is trying to approximate.

• Create a physically based renderer. Doing this would verify that the un-
derstanding obtained in the previous point was indeed correct. This could
be accomplished by comparing against other physically based renderers.

• Get a thorough understanding of the theory behind AO. Without this, a
real-time AO version could not be implemented.

• Create a real-time AO implementation.

• Compare its visual results against those of a non-real-time AO implemen-
tation, and the global illumination result. For real-time AO to be a viable
option, its results must be comparable to that of offline AO. Also, by
comparing against the global illumination result, insight into how well the
real-time version approximates the “overall” target is obtained.

4

• Evaluate the real-time AO implementation’s performance. For real-time
AO to be a viable option, its performance must be in the range of real-
time, and preferably in the range of HBAO+’s performance.

The remainder of this thesis will go through each of these tasks in order, and
explain both theoretical and implementation details necessary to understand
the results and conclusion presented at the end. Finally, any shortcomings and
possible improvements and future work will be discussed.

5

Chapter 2

Path Tracing Theory

This chapter will go into the theoretical concepts that are needed to create a
physically based renderer using the path tracing algorithm. The book Physically
Based Rendering - From Theory to Implementation, 3rd Edition authored by
Matt Pharr, Wenzel Jakob and Greg Humphreys[11] is the basis upon which
this chapter is built.

2.1 The Path Tracing Algorithm

Given the pixels in an image, the goal of any renderer is to fill each pixel with
a color in such a way as to most accurately depict the scene that lies “beyond”
the image. Renderers that utilize the path tracing algorithm accomplish this
by tracing rays through each of the pixels in the image. This process involves
tracing multiple rays per pixel, and following a specific path for each ray that
is traced.

A path is created by first intersecting the scene from the given pixel, and
finding the closest point of intersection. From this point, the next ray direction
is calculated, and the next intersection point is found. This process repeats
itself until a maximum number of “bounces” is reached, or no intersection is
found.

At each intersection point, lighting calculations are performed. This involves
determining how much light is arriving at the intersection point, and how much
of it that is reflected, or transmitted, in a given outgoing direction (explained in
greater detail in Section 2.5). When the path tracing algorithm terminates for
a given sample for a given pixel, light has essentially been accumulated along
the path according to the properties at the surface points that were intersected.

Due to the nature of how the lighting calculations are performed (see Section
2.5.2), multiple rays are needed for each pixel to approximate the color accu-
rately. After all samples for a pixel have been taken, the accumulated value is
averaged and stored in the final image.

When the process is finished for all pixels, the image can be saved for later
viewing. It can also be saved in a sequence of images to create a film, or it can
be displayed to the screen immediately for an interactive experience.

6

2.2 Calculating Ray Directions for Each Pixel

When the color of each pixel in the image is to be calculated, at least one ray
has to be sent through each pixel. To calculate the direction of each ray given
its pixel coordinate (x, y), a few other pieces of information are needed:

• World’s up direction: vec3(worldUp)

• Film plane dimensions: uint(filmWidth), uint(filmHeight)

• Camera’s position: vec3(camOrigin)

• Camera’s view direction: vec3(camViewDir)

• Camera’s vertical field-of-view (FOV) in degrees: float(camFOV)

Given this information, the following values can be calculated:

θ = DegreesToRadians(verticalFOV)

aspectRatio = filmWidth/filmHeight

lensHalfHeight =
tan(θ)

2
lensHalfWidth = lensHalfHeight ∗ aspectRatio

camRight = Normalize(Cross(camV iewDir, worldUp))

camUp = Normalize(Cross(camRight, camV iewDir))

lensTopLeftCorner = camOrigin+ (lensHalfWidth ∗ (−camRight))
+ (lensHalfHeight ∗ camUp) + camV iewDir

lensHorizontalEnd = lensWidth ∗ 2 ∗ camRight
lensV erticalEnd = lensHalfHeight ∗ 2 ∗ (−camUp)

These values are showcased in Figure 2.1.

Figure 2.1: Visualization of calculated camera values which are needed for gen-
erating rays.

With these values, and the normalized coordinates for a given pixel, (xn, yn),
the properties of the ray can be calculated as follows:

7

vec3 rayOrigin = camOrigin;

vec3 rayDir = normalize(lensTopLeftCorner +

(xn * lensHorizontalEnd) +

(yn * lensVerticalEnd) -

rayOrigin);

The normalized coordinates for a pixel are found as shown below:

float xn = (float(x) + 0.5f) / float(filmWidth);

float yn = (float(y) + 0.5f) / float(filmHeight);

Note that the addition of 0.5 is necessary because the normalized pixel coordi-
nates are at the center of the pixel, and not the top-left corner.

The method shown is a re-implementation of Pete Shirley’s code for generat-
ing rays from his book series Ray Tracing in One Weekend [12]. A visualization
of the ray tracing can be seen in Figure 2.2.

Figure 2.2: Visualization of rays being cast through the film plane and into the
scene.

2.3 Sub-Pixel Sampling

As mentioned, it is necessary to send multiple rays through a pixel to get a
good approximation of the color for that pixel. One option is to only sample
using the normalized pixels coordinates, i.e. the center of the pixel. While
this will give good results, only sampling the pixel’s center leaves most of the
pixel unsampled. This is undesirable, as the small differences in ray directions
that sub-sampling a pixel would yield, naturally acts as an anti-aliasing (AA)
technique[13]. Thus, performing sub-pixel sampling is desirable as it improves
the final result with little to no performance impact. When doing sub-pixel
sampling, the goal is to trace rays from a distribution such that as much of the

8

pixel’s area has been sampled. The rays could be evenly spaced, or picked from
a random distribution, e.g. white noise or blue noise[14].

2.4 Intersection Testing

One of the most important parts of any path tracer is its ability to check whether
a ray intersects any of the shapes in the scene. These shapes are usually trian-
gles or spheres. However, there also exist other types of shapes, e.g arbitrary
parametric surfaces, that are possible to trace rays against[15]. The mathemat-
ical derivations for finding ray-triangle[16] and ray-sphere[17] intersections are
well studied, and are not included here.

2.4.1 Acceleration Structures

To reduce the time needed to find the closest intersection point, much research
has been done on creating acceleration structures[18]. One of the most com-
mon primitive subdivision acceleration structures is a bounding volume hierarchy
(BVH). A BVH is a data structure that partitions geometric primitives, e.g. tri-
angles, into a hierarchy of disjoint sets. It is a tree structure where primitives
are stored in the leaf nodes, while internal nodes store a bounding-box which
encapsulates all the primitives in the leaf nodes below it. When a ray is to in-
tersect a BVH, it first checks for intersections with bounding boxes, upon which
two scenarios are possible:

1. If the ray intersects a bounding box:

(a) All internal nodes (bounding boxes) directly below it are added to a
queue of nodes that need to be checked for intersections.

(b) All leaf nodes (primitives) directly below it have to be checked for
intersections.

2. If the ray does not intersect a bounding box, all internal nodes and leaf
nodes below the node containing that bounding box can be skipped.

Another type of primitive subdivision acceleration structure is the kd-tree.
Although kd-trees generally provide faster intersection testing than BVHs, BVHs
are faster to build, and are less prone to missed intersections due to rounding
error in floating-point arithmetic[11].

2.5 Physically Based Rendering

In the 70’s and 80’s, the realism of the rendered images in film was highly limited
by the available hardware. Path tracing was not yet viable, and rasterization was
the best option. Due to the nature of rasterization, local illumination models,
such as the Phong Illumination Model [19], and the Cook-Torrance Reflection
Model [20], were common. Although these models produce believable results,
being local illumination models, their approximation of reality is highly limited.
However, as hardware got faster, path tracing was no longer a distant dream,
and allowed for global illumination models to be used. This then begs the
question: how to describe how light, both direct and indirect, interacts between
objects in a scene in a general way?

9

2.5.1 The Rendering Equation

The answer: the Rendering Equation introduced by James Kajiya at SIG-
GRAPH in 1986[21]:

Lo(p, ωo) = Le(p, ωo) +

∫
H
f(p, ωo, ωi)Li(p, ωi)|cosθi|dωi (2.1)

The equation has six terms that in words can be explained as follows:

• Lo(p, ωo): The total amount of radiance exitance from point p in direction
ωo.

• Le(p, ωo): The amount of emitted radiance exitance from point p in direc-
tion ωo.

•
∫
H dωi: An integral over the domain of directions that ωi can be sampled

from. Here the domain is the hemisphere about the normal of the surface
at p, hence the notation H.

• f(p, ωo, ωi): The fraction of irradiance arriving along ωi at p, that is
reflected in direction ωo given the material properties of the surface at p.

• Li(p, ωi): The amount of irradiance at p arriving along ωi

• |cosθi|: The “light attenuation” factor which reduces the amount of inci-
dent light as the angle between the incident light and the surface normal
increases. The reasoning behind this is that the same amount of light is
spread across a larger area when this angle is larger. This is visualized in
Figure 2.3.

Figure 2.3: Comparison of same amount of light hitting a surface at different
angles: notice how A (left) is smaller than A′ (right).

Figure 2.4 shows a visualization of what the various notations in the rendering
equation represent.

However, the rendering equation, specifically the integral part, has one major
issue: it cannot be solved analytically. The reason for this is that any one of

10

ω
�

θ

ω

�

!

Figure 2.4: The geometric setting and notation used throughout this thesis.

the Li(p, ωi) terms that is needed to solve a given Lo(p, ωo), requires that very
same Lo(p, ωo) term to be solved. This dependence can also be explained as
follows:

1. To find Lo(p0, ωo) for a point p0, integration over its domain, H0, is per-
formed. This domain includes a direction ωi which will intersect the scene
at point p1.

2. To find Li(p0, ωi) = Lo(p1,−ωi), integration over its domain, H1, is per-
formed. This domain includes a direction ωj which will intersect the scene
at p0.

Continuing this process results in infinite recursion of rendering equations within
rendering equations. Fortunately, the power of numerical integration can be
applied here instead. For this particular problem, Monte Carlo Estimation is
utilized.

2.5.2 Monte Carlo Estimation

A Monte Carlo Estimator can approximate the value of an arbitrary integral[11].∫ b

a

f(x)dx

Given a sequence of uniform random variables Xi ∈ [a, b], the Monte Carlo
Estimator becomes: ∫ b

a

f(x)dx =
b− a
N

N→∞∑
i=1

f(Xi) (2.2)

However, this version can only be used when each Xi ∈ [a, b] has the same prob-
ability, 1

b−a , of being chosen. Since this is not always desirable when rendering
(“intelligent” sampling can help reduce the number of samples needed for the
estimated value to converge), it is also useful to have a general version that
takes the probability of sampling the value Xi, p(Xi), into account:∫ b

a

f(x)dx =
1

N

N→∞∑
i=1

f(Xi)

p(Xi)
(2.3)

11

The Rendering Equation (Equation 2.1) can now be rewritten using the
Monte Carlo Estimator (Equation 2.3):

Lo(p, ωo) = Le(p, ωo) +
1

N

N→∞∑
i=1

f(p, ωo, ωi)Li(p, ωi)|cosθi|
p(ωi)

(2.4)

Note that although an infinite number of samples are needed for the Monte Carlo
Estimator to approximate the integral precisely, this is not needed in practice
when rendering (nor is it possible). Depending on the scene, only a few hundred
samples per pixel (SPP) might be enough to capture how light interacts with
the objects in the scene.

2.5.3 Bidirectional Reflectance/Transmission Distribution
Function

The bidirectional reflectance/transmission distribution function is a way of de-
scribing how electromagnetic radiation is reflected, or transmitted, from, or
through, a surface (the f -term in the Rendering Equation). In the case of ren-
dering, the spectrum of electromagnetic radiation is usually restricted to that
of visible light, 380nm to 740nm.

Before continuing, it is necessary to establish an understanding of the ab-
breviations used in the following sections.

• BRDF: bidirectional reflectance distribution function - describes how a
surface reflects incident light.

• BTDF: bidirectional transmission distribution function - describes how a
surface transmits incident light through itself.

• BxDF: either a BRDF or a BTDF. This abbreviation is used when either
a BRDF or BTDF could be relevant/used.

• BSDF: a composition of one or more BxDFs.

BRDFs

Each instance of a BRDF has its own function which describes what portions
of electromagnetic radiation it reflects: a spectral power distribution function
(SPD). An example is shown in Figure 2.5. If a reflective object appears blue, its
BRDF instance absorbs most of the electromagnetic radiation with wavelengths
other than those of blue, 430nm to 460nm[22].

A path tracer that aims to capture light with the highest accuracy should
work with light in terms of electromagnetic radiation, and not in terms of the
more common red-green-blue (RGB) color spectrum. This means that instead
of Lo(p, ωo) being an array of floats with three entries, it should be an array
with 360 entries. Although this results in higher accuracy, it also leads to a
higher computational cost. A common way to mitigate this is to subdivide the
spectrum into discrete bands. By specifying the range of each band, e.g. 6nm,
the array will have 60 entries instead of 360. When the color for a pixel has been
calculated, the result must then be converted into a representation that can be
viewed by computer monitors, or stored in a image format such as PNG. This

12

Figure 2.5: The reflection SPD of lemon peel (p.314 in [11]). X-axis: wavelength
in nm, Y-axis: proportion of incident electromagnetic radiation that is reflected.

representation is usually RGB. However, for most common rendering use cases,
using the RGB color spectrum during rendering is a sufficient approximation.

BRDFs are generally split into four types[11]:

• Diffuse: incident light along −ωi is reflected equally in all directions over
the hemisphere about the normal n at p. Although this BRDF is not
physically realizable, it is often a good representation of materials that
appear matte, with little to no highlights when illuminated, e.g. chalk
or matte paint[11]. Since all the incident light is reflected equally in all
directions, the probability of light being reflected in an arbitrary direction
ωo on the hemisphere is constant. This is shown in Equation 2.5.

p(ωo) =
1

2π
(2.5)

• Specular: incident light along −ωi is reflected in only one direction. Just
as the diffuse BRDF, this BRDF is not physically realizable, but makes
for a good approximation to mirror-like materials. Since all the incident
light is reflected in one direction, the probability of light being reflected
in an arbitrary direction ωo on the hemisphere is 0. The probability of
light being reflected in the reflection direction ωr is 1. This is shown in
Equation 2.6 and 2.7, respectively.

p(ωo) = 0 (2.6)

p(ωr) = 1 (2.7)

• Glossy: a common term for most other BRDFs that consists of two or
more diffuse and specular BRDFs. A glossy BRDF can also be a unique
BRDF, e.g. Disney Animation’s BRDF[23]. The probability for light

13

arriving along −ωi to be reflected along ωo is then either a combination
of multiple probability density functions (PDFs), or it has its own PDF.

• Retro-Reflective: reflects incident light back predominantly along the in-
cident direction. I.e. if the incident direction is −ωi, most of the light is
reflected back along ωi.

BTDFs

As with BRDFs, some representation of what wavelengths a BTDF transmits is
needed, i.e. a second SPD. The transmittance SPD describes which wavelengths
exit on the other side of the surface. In order to trace the outgoing ray, the angle
at which it exits is needed.

To find the angle of the transmitted light, Snell’s Law is used. It states a
relationship between the angle θi of the incident ray, and the angle θt of the
transmitted ray. This is shown in Equation 2.8, where ηi and ηt are the indices
of refraction for the medium of the incident ray and outgoing ray, respectively.

ηisinθi = ηtsinθt (2.8)

The outgoing angle can then be found through some algebraic reordering. This
is shown in Equation 2.9.

θt = sin−1(
ηisinθi
ηt

) (2.9)

A visualization of Snell’s Law can also be seen in Figure 2.6.

�

�ω

ω
!

 �
θ

!

θ

Figure 2.6: Visualization of Snell’s Law

The index of refraction for a medium is a measure of how much slower light
travels when in that medium compared to when in a vacuum. This is shown in
Equation 2.10, where c is the speed of light in a vacuum, and v is the speed of
light in the given medium.

η =
c

v
(2.10)

14

Material Index of Refraction (η)
Vacuum 1.0

Air at sea level 1.00029
Ice 1.31

Water (20oC) 1.333
Glass 1.5-1.6

Diamond 2.417

Table 2.1: Various indices of refraction for common media[24].

Table 2.1 shows some indices of refraction for various common media.
An important thing to note regarding indices of refraction is that they vary

depending on the energy level of the incident electromagnetic radiation. This
means that incident light at different wavelengths will be transmitted at different
angles. This is what causes the dispersion effect often seen in prisms[25]. If
working on a wavelength level, this effect should be taken into account. If
working with the RGB spectrum, this effect should either be disregarded or
emulated.

2.5.4 Working With BSDFs

When an intersection with the scene is found, the piece of geometry will have
a set of data associated with it. Within that set is the BSDF for the material
at the given surface point. A BSDF can consist of a single BRDF and an
RGB SPD. It can also be more complex, consisting of multiple BRDFs, BTDFs
and information needed for Fresnel calculations (see Section 2.5.5). Given the
BSDF, the task becomes how to calculate the f(p, ωo, ωi) term in the Rendering
Equation (see Equation 2.1). The process consists of three main steps:

1. Choose a BxDF to sample: for a given sample in the Monte Carlo
version of the Rendering Equation (Equation 2.4), an ωi is needed. This
is done by sampling one of the BxDFs that is a part of the BSDF at the
given surface point. For a BSDF consisting of a single BxDF, the BxDF
which to sample is implied. For a BSDF consisting of multiple BxDFs,
e.g. glass, a BxDF has to be chosen. This is done by selecting one at
random, giving each BxDF a uniform probability. Note that if the BxDFs
do not have a uniform probability of being chosen, this must be taken into
account in Equation 2.4.

2. Sampling the chosen BxDF: once a BxDF has been chosen, the next
step is to sample it. This involves calculating three pieces of information
given its properties:

• ωi: the incident direction (see Figure 2.4 for a visualization). The
procedure to sample the direction depends on the chosen BxDF, and
so the appropriate measures must be taken to sample it correctly.

• pdfi: the probability of ωi being chosen. It also depends on the chosen
BxDF, and must be calculated according to the BxDF’s properties.

• f(p, ωo, ωi): the reflected/transmitted color. Again, the chosen BxDF
will have its own specific procedure to calculate this value.

15

3. Account for BxDFs that were not chosen: to sample ωi, only one
BxDF is chosen from the BxDFs making up the given BSDF. However,
that does not mean that only the chosen BxDF’s properties should be
considered when calculating f(p, ωo, ωi); all the BxDFs that could have
been chosen must be taken into account. The reason for this is that for a
sampled direction, ωi, it is not only the chosen BxDF that will contribute
to the amount of light that is reflected/transmitted along ωo. Thus, the
other BxDFs must be evaluated using the already sampled ωi. I.e. a new
ωi is not sampled for the other BxDFs. The results, in form of a number
of f terms, are accumulated.

One thing to note here is that the pdfi value also has to be updated. The
other BxDFs, who’s f terms are being accumulated, also have a probability
of reflecting/transmitting incident light, arriving along −ωi, out along ωo.
This means that the PDF for each BxDF also has to be evaluated for
the sampled ωi. Now, this accumulation has to be averaged because it is
dealing with a probability: it cannot become more than 1.

2.5.5 Fresnel Equations

When a ray of light hits a surface, the fraction of light that is reflected, and the
fraction that is transmitted, is not constant. It depends on the incident angle
θi, and the indices of refraction for the two participating media, ηi and ηt. To
find the fraction of light that is reflected, and the fraction that is transmitted,
the Fresnel Equations[26] are used.

Before discussing the equations, it is important to distinguish between two
different classes of materials:

• Dielectrics: materials that do not conduct electricity, and that have real-
valued indices of refraction. They do transmit a portion of incident light.

• Conductors: materials that do conduct electricity, and have a complex
index of refraction. The fact that they conduct electricity results in the
portion of incident light that is transmitted into the material being rapidly
absorbed. Only thin conductor materials are able to let some light through
itself. Thus, conductors are generally opaque.

When unpolarized light interacts with a dielectric material, the Fresnel Re-
flectance is the average of the square of the parallel and perpendicular polariza-
tion terms[25]. This is shown in Equation 2.11.

Fr =
1

2
(r2‖ + r2⊥) (2.11)

r‖ and r⊥ are defined as shown in Equations 2.12 and 2.13, respectively.

r‖ =
ηtcosθi − ηicosθt
ηtcosθi + ηicosθt

(2.12)

r⊥ =
ηicosθi − ηtcosθt
ηicosθi + ηtcosθt

(2.13)

Due to the conservation of energy, the sum of reflected and transmitted
radiance must equal the incident radiance. Thus, the fraction of light that is

16

not reflected is transmitted into the material, and is the residual of the reflected
light. This is shown in Equation 2.14.

Ft = 1− Fr (2.14)

The formulas for conductive materials are not included here, as they are not
as relevant for this thesis.

The Fresnel Equations can now be combined with the BSDF at a surface
point. To determine the amount of reflected or transmitted light for a specific
BxDF, the following steps are needed:

1. Determine ηi and ηt for the two participating media.

2. Calculate θi = dot(n, ωi).

3. Use Snell’s Law to find θt.

4. Find ωt.

5. Using the dielectric or conductor variant of the Fresnel Equations, to find
the fraction of radiance that is reflected and transmitted.

6. Given the particular BxDF, the spectrum of the BxDF is multiplied with
that of the correct Fresnel Equation (Fr or Ft, depending on if the BxDF
is a BRDF or BTDF).

2.5.6 Sampling Directions

Sampling is one of the core parts of a Monte Carlo Estimator. Remember that
for a given sample, Xi, in the Monte Carlo Estimator (Equation 2.3), Xi ∈ [a, b].
So when sampling a direction ωi, it must uphold this restriction and be in the
domain of the integral: ωi ∈ H. The problem thus becomes: how to sample a
direction on a hemisphere uniformly?

Spherical Coordinates

So far when discussing directions, a Cartesian Coordinate representation ω =
(x, y, z) has been assumed. However, there does exist another representation
that becomes useful when sampling a hemisphere uniformly: Spherical Coor-
dinates. A spherical coordinate is defined by three components: ω = (r, θ, φ)
which are described below:

• r: the Euclidean distance from the origin to the point. Since directions
are normalized, this will automatically be 1.

• θ: the inclination angle ∈ [0, π]. Note that since only directions that are
in the same hemisphere as the normal n at p are of interest, the domain
of θ is further restricted to θ ∈ [0, π2].

• φ: the azimuth angle ∈ [0, 2π).

17

Furthermore, there exists a relationship between Cartesian and spherical coor-
dinates that allows for converting back and forth. These relationships are shown
in Equations 2.15 through 2.17.

x = r sin θ cosφ⇒ x = sin θ cosφ (2.15)

y = r sin θ sinφ⇒ y = sin θ sinφ (2.16)

z = r cos θ ⇒ z = cos θ (2.17)

Finally, the relationship between differential area of a set of directions and the
differential area of a (θ, φ) is shown in Equation 2.18.

dω = sin θdθdφ (2.18)

Using the aforementioned equations, the integral in the Rendering Equation
(Equation 2.1) can be rewritten as a double integral over differential spherical
coordinates, instead of a single integral over differential area of a set of direc-
tions: ∫ 2π

0

∫ π
2

0

f(p, θo, φo, θi, φi)Li(p, θi, φi)| cos θi| sin θidθidφi (2.19)

Since the integral can be written in this form, a direction on the hemisphere
can be sampled using spherical coordinates, and subsequently be converted to
Cartesian representation.

Sampling a Direction Uniformly

Variables which are needed to perform the sampling operation are:

• The normal n at p.

• Two uniform random values: u0 and u1.

To sample a direction uniformly implies that each direction in the domain should
have the same probability of being chosen. It therefore follows directly that
the probability density function is constant: p(ω) = c. It also follows that
this function must integrate to 1 given its domain. Since the area of a unit
hemisphere is 2π, p(ω) = 1

2π . This is shown in Equations 2.20 through 2.21.∫
H
p(ω)dω = c

∫
H
dω = 1 (2.20)

∫
H
dω = 2π ⇒ p(ω) = c =

1

2π
(2.21)

In terms of spherical coordinates, this becomes p(θ, φ) = sin θ
2π . This represen-

tation contains two variables that need to be sampled. The technique multi-
dimensional sampling, using the marginal and conditional densities is used to
sample the variables. It involves the following steps:

18

1. Find the marginal density function for θ:

p(θ) =

∫ 2π

0

p(θ, φ)dφ =

∫ 2π

0

sin θ

2π
dφ = sin θ (2.22)

2. Compute the conditional density function for φ:

p(φ|θ) =
p(θ, φ)

p(θ)
=

sin θ
2π

2π
=

1

2π
(2.23)

In probability theory, conditional probability is given by Andrey Kol-
mogorov’s definition[27]:

p(A|B) =
p(A ∩B)

p(B)
(2.24)

3. p(θ) give the probability of any θ being chosen, while p(φ|θ) give the
probability of any φ being chosen given a θ. But to actually sample the
variables, the respective distribution functions are needed. These are ob-
tained by integrating over all possible values θ and φ can take on. This is
shown in Equation 2.25 and 2.26.

P (θ) =

∫ θ

0

sin θdθ = 1− cos θ (2.25)

P (φ) =

∫ φ

0

1

2π
dφ =

φ

2π
(2.26)

4. Next, these functions must be inverted. Only the case of inverting f(x) =
1− cosx is shown:

P (θ) = 1− cos(θ)

y = 1− cos(θ)

θ = 1− cos(y)

cos(y) = 1− θ
y = cos−1(1− θ)

P (θ)−1 = cos−1(1− θ)

Then, given some random uniform value u0, θ = cos−1(1−u0) = cos−1(u0).
Inverting P (φ|θ) gives φ = 2πu1, for some random uniform value u1.

5. The next step is to convert this back to Cartesian coordinates:

x = sin θ cosφ = sin(cos−1(u0)) cos(2πu1)

y = sin θ sinφ = sin(cos−1(u0)) sin(2πu1)

z = cos θ = cos(cos−1(u0)) = u0

6. Finally, the sampled direction must be rotated so that it is sampled around
the normal n. From 2.15 through 2.17 it is known that x ∈ [−1, 1],

19

y ∈ [−1, 1] and z ∈ [0, 1]. Thus, ω was sampled around the hemisphere
about the positive z-axis = (0, 0, 1). To rotate ω, a 3x3 rotation matrix
m that will align the z-axis with n must be calculated. See the func-
tion RotationToAlignAToB in GeometricUtilities.cpp on how to do this.
ω is simply multiplied with this matrix, and the direction in Cartesian
coordinates is obtained:

ωn = m ∗ ωz−axis (2.27)

It is also possible to sample directions non-uniformly, as the Monte Carlo
Estimator takes the probability of a direction ωi into account. Non-uniform
sampling, if done properly, can improve the results, and is thus widely used[28].

2.5.7 Sampling Geometrical Shapes

There is also the problem of sampling shapes uniformly. There are two types of
geometrical shapes that need uniform sampling support: triangles and spheres.
Although the method is similar to directional sampling, it is worth going through
both here.

Triangles

When working with triangles, it is useful to be aware of Barycentric Coordinates.
Given a triangle’s three vertices v0, v1 and v2, Barycentric coordinates allows
for any point within the triangle to be represented as a linear combination of
those three points:

p = v0λ0 + v1λ1 + v2λ2 (2.28)

Barycentric coordinates impose two restrictions that limit their “reach” from
points in the triangle’s plane, to points within the triangle itself:

1. λn ∈ [0, 1]

2.
1 = λ0 + λ1 + λ2 (2.29)

Algebraic reordering then gives:

λ2 = 1− λ0 − λ1 (2.30)

Next, assume that the triangle to be sampled is an isosceles right triangle
with an area of 1

2 . As with other types of uniform sampling, the PDF must be
constant: p(q) = c. Also, it directly follows that the PDF must be 1 over the
area of the triangle as it must integrate to 1 over its domain, i.e. its area. Thus
p(q) = 1

1
2

= 2. Finally, since λ2 is given if λ0 and λ1 are known (Equation 2.30),

only two random uniform values, u0 and u1, are needed. The procedure then
becomes similar to that of sampling directions:

1. When looking at the triangle to be sampled from a perpendicular angle
to the plane it creates, any point on the hypotenuse is described by:

ph = v0λ0 + v1λ1 = λ0 + (1− λ1) (2.31)

This can be read as the domain of λ1 being ∈ [0, 1− λ0]. The domain of
λ0 is simply ∈ [0, 1]

20

2. We can then find the marginal density for λ0:

p(λ0) =

∫ 1−λ0

0

p(λ0, λ1)dλ1 =

∫ 1−λ0

0

2dλ1 = 2(1− λ0) (2.32)

3. The conditional density p(λ1|λ0) can be found as shown in Equation 2.33.

p(λ1|λ0) =
p(λ0, λ1)

p(λ0)
=

2

2(1− λ0)
=

1

1− λ0
(2.33)

4. Both densities are integrated over their domains to find their conditional
density functions:

P (λ0) =

∫ λ0

0

2(1− λ0)dλ0 = 2λ0 − λ20 (2.34)

P (λ1) =

∫ λ1

0

1

1− λ0
dλ1 =

λ1
1− λ0

(2.35)

5. Second to last, the functions are inverted (not shown) and the random
uniform variables are substituted in. This gives the following:

λ0 = 1−
√
u0 (2.36)

λ1 = u1
√
u0 (2.37)

λ2 = 1− λ0 − λ1 = 1− (1−
√
u0)− (u1

√
u0) (2.38)

6. Finally, to find the point p within the triangle, the formula for Barycentric
coordinates (Equation 2.28) is followed.

Spheres

Spheres are just two hemispheres put together, so very little modification is
needed to sample a sphere when the procedure for sampling a direction on a
hemisphere is known. This is because sampling a point uniformly on a sphere
is equivalent to sampling a direction uniformly. This holds because by following
the sampled direction r units, where r is the radius of the sphere, a point on
the sphere will be reached.

1. First, it is known that the area of a unit sphere is 4π (not 2π as with
hemispheres). This means that p(ω) = 1

4π → p(θ, φ) = sin θ
4π

2. The marginal and conditional densities are found as before:

p(θ) =

∫ 2π

0

sin θ

4π
dφ =

sin θ

2
(2.39)

p(φ|θ) =
p(θ, φ)

p(θ)
=

1

2π
(2.40)

3. Next, find the conditional density functions by integrating the domains
and invert them:

P (θ) =

∫ θ

0

sin θ

2
dθ =

1− cos θ

2
→ θ = cos−1(1− 2u0) (2.41)

P (φ) =

∫ φ

0

1

2π
dφ =

φ

2π
→ φ = 2πu1 (2.42)

21

4. The Cartesian coordinates can finally be found the same way as for the
hemisphere sampling.

2.5.8 Area Lights

The term Li(p, ωi) in the Rendering Equation (Equation 2.1) takes incident light
into account for the current intersection point p. It consists of two “sub-terms”:

• Indirect incident light.

• Direct incident light.

The 1st sub-term is dealt with through multiple bounces for a ray. To calculate
the 2nd sub-term, it might be necessary to sample the lights in the scene. This
depends on whether the BxDF is sampled to get ωi, or a point, pa, on a light is
sampled, giving ωi = normalize(pa − p).

Regardless of the method used for acquiring ωi, an area light must be selected
to work against. This selection can be done at random, or by taking the lights’
properties into account, e.g. area. In the case where the BxDF is sampled, a
ray is fired out along ωi, and checked for an intersection against the selected
light. If an intersection is found, the amount of direct irradiance is calculated.

The case where pa is sampled on a light is a bit different. Given the chosen
area light, the amount of direct radiance that is emitted from pa and reaches
the point of intersection, p, must be calculated. This involves a few sub-steps:

1. Sample a point pa on the area light (see Section 2.5.7).

2. Check for an unobstructed path from pa to p, i.e. direct light will reach p
from pa.

3. Calculate the amount of light reaching p, which involves checking that
the direction from pa to p, i.e. ωi, and the normal n at p, are in the
same hemisphere. If they are, the radiance emitted from pa along −ωi is
calculated.

How to Best Sample the Incident Direction?

In the case where the BxDF at p is a specular BRDF, sampling pa from a light’s
distribution is not the best choice. This is because radiance will only be reflected
along ωo if, and only if, the incident radiance arrives along a −ωi, where ωi is the
reflection of ωo about n. This will never be the case when ωi is sampled from the
light’s distribution. However, if the BRDF at p is sampled, the correct reflection
direction ωi will always be returned, and thus, the Monte Carlo Estimator will
converge more quickly. However, in the case of a very rough BxDF, e.g. diffuse
or metals, sampling the light source is generally the better alternative. This is
because sampling the BRDF would give ωi’s that are uniformly distributed and
that might not always intersect the selected light. It is therefore important to
choose the sampling method carefully. It is also important to use the correct
value for p(ωi) depending on method:

• If sampling the BxDF, the probability of sampling ωi must be used.

• If sampling the light, the probability of sampling the point pa on the light
must be used.

22

It is also possible to combine the two sampling strategies using multiple impor-
tance sampling (MIS)[29].

Finally, regardless of the chosen sampling method, it is very important that
the next direction of the ray is sampled using the BxDF at p and not the light’s
distribution. This can be explained as follows: as light can arrive at p from any
direction, only selecting the next direction where there are lights will result in
an incorrect result. This is because the selection of the next direction is biased
given the distribution of lights in the scene. The only circumstance where this
would produce correct results, is if the entire scene is encapsulated by a spherical
light source.

23

Chapter 3

Path Tracing Engine

One of the goals for this thesis was to create a physically based path tracer, who’s
results could be used a comparison for the real-time AO results. As developing
a production-level-renderer like Arnold [30] requires years, the scope of the path
tracer was set to be a subset of pbrt-v3 [31]. This included the following features:

• Loading scenes from a specified format.

• A parallel path tracing implementation.

• A pinhole camera model.

• Accelerated intersection testing using a BVH.

• Various BxDFs:

– Diffuse BRDF

– Specular BRDF and BTDF

– Microfacet BRDF using Beckmann’s microfacet distribution func-
tion.

• Refraction using Snell’s Law and the Fresnel Equations.

• Various materials:

– Matte

– Mirror

– Copper and gold

– Glass

The engine is written in C++, specifically C++11. It also utilizes a C++17
feature for dealing with file systems in an OS agnostic way. C++ was chosen
for two main reasons:

1. Its (relatively) low-overhead run-time performance.

2. Its support for inheritance and virtual functions.

24

The code in this project is written with C in mind, with selected C++ features,
e.g. std::vector, std::string, std::iterator, constructors/destructors, inheritance
and virtual functions, only appearing where useful.

What follows is a description of the implementation details for some of the
features in the engine.

3.1 Scene Creation

Before any rendering can start, the scene has to be created. To make the
rendering of various scenes with varying properties easier, a scene file format
was created in which the various properties of the scene can be specified. An
example is shown below:

1 Camera position[0 5 15] view_direction[0 -0.3 -1.0]

2 vertical_fov[45] width[1920] height[1080]

3 Model file[data/mercedes/Mercedes_AMG_GT-R_OBJ.obj]

4 translate[0 0 0] rotate[0 0 0] scale[0.02 0.02 0.02]

5 material[matte] diffuse[0.9 0.4 0.25]

6 SphericalLight center[-5 5 0] radius[0.2] emittance[10 10 10]

7 SphericalLight center[5 5 0] radius[0.2] emittance[0 10 10]

For further details, see Section 7.3 in the Appendix.
The engine supports one file format for loading 3D models: Wavefront [32].

To save time and avoid bugs, Syoyo Fujita’s single-header loader, tinyobjloader [33],
is used to load Wavefront files and accompanying material files. A Wavefront
file may contain the following data:

• Vertices: the points that make up a 3D model.

• Indices: the order in which the vertices are connected.

• Normals: the plane that a vertex lies in.

• Texture coordinates: where in the accompanying images data is to be
sampled from for a given vertex.

• Material data: describe the material properties of a face (three or more
connected vertices).

The amount of data that needs to be present for a Wavefront file to be confor-
mant to the format specification is small; all that is needed are three vertices.
If normals are missing, they can be calculated on a per-face basis, given that
the winding order for faces is consistent throughout the file. Note that per-face
normals results in less physically accurate lighting than per-vertex normals.
Barycentric coordinates are the reason for this. To find the normal of a point
within a face, the normals at its vertices are interpolated. Thus, per-face nor-
mals will give the same normal for any point in the triangle, as all vertices will
have the same normal. On the other hand, per-vertex normals results in varying
normals across the face. This also results in a smoother transition across faces.
If texture coordinates are missing, they cannot be calculated. There is also no
requirement for material properties to be specified, so a default material must
exist in the engine to be used in such cases.

25

Once an image is rendered, it becomes necessary to save it. For this the stb
library is used, specifically stb image write[34].

3.2 Main Entry Point

The main file in the engine is main.cpp. It contains the engine’s entry point:

1 int main(int argc, char** argv) {/*Things happen*/}

In this function, various things happen. The scene is loaded, the camera is
initialized, memory for all images to be generated is allocated, a set of random
number generators are created etc. Then, depending on the settings described in
the .brhan file, the appropriate rendering function(s), of which there are three,
is selected:

• Render(): renders the scene and stores one RGB image.

• RenderInIntervals(): renders the scene and stores n RGB images at certain
intervals, e.g. after 256, 512, 768, 1024 SPP.

• GenerateDepthImage(): fires a single ray per pixel and stores a grayscale
image with depth values.

3.3 The Rendering Loop

The standard rendering loop, Render(), has a the layout which is shown below:

1 for (unsigned int y = 0; y < system.film_height; y++) {

2 for (unsigned int x = 0; x < system.film_width; x++) {

3 const float u = (float(x) + 0.5f) /

4 float(system.film_width);

5 const float v = (float(y) + 0.5f) /

6 float(system.film_height);

7 glm::vec3 L(0.0f);

8 for (unsigned int s = 0; s < system.spp; s++) {

9 glm::vec2 sample_offset =

10 pixel_sampler.Sample(s,

11 rngs[omp_get_thread_num()]);

12 Ray ray = camera.GenerateRay(u,v,sample_offset);

13 L += system.integrator.Li(scene, &ray, rngs,

14 omp_get_thread_num(),

15 0, system.max_depth);

16 }

17 L /= float(system->spp);

18 int idx = (y * system.film_width + x) * 3;

19 film[idx+0] = L.r;

20 film[idx+1] = L.g;

21 film[idx+2] = L.b;

22 }

23 }

24 WriteImage(film, *system);

26

The other rendering loops for RenderInIntervals() and GenerateDepthIm-
age() look similar, but vary slightly to accomplish their specific goal.

3.4 Calculating Ray Directions

The technique described in Section 2.2 is implemented directly as is. While it
does generate seemingly correct results, it is a simplification when compared to
how actual cameras work. However, with the purpose of this thesis in mind, it
was decided that implementing realistic camera models was not the best use of
the available time.

3.5 Intersection Testing

The engine supports two kinds of shapes: triangles and spheres. Both of these
shapes are derived from a parent struct called Shape. This design allows for
a convenient interaction with objects in the scene. I.e. when intersecting the
scene, both Triangle and Sphere structs have their own implementation of the
virtual function Intersect() defined in Shape. This is shown below:

1 struct Shape {

2 /*Member data and functions*/

3 virtual bool Intersect(Ray* ray,

4 SurfaceInteraction* isect, float t_min, float t_max)

5 const = 0;

6 };

7 struct Triangle : Shape {

8 /*Member data and functions*/

9 bool Intersect(Ray* ray, SurfaceInteraction* isect,

10 float t_min, float t_max) const;

11 };

12 struct Sphere : Shape {

13 /*Member data and functions*/

14 bool Intersect(Ray* ray, SurfaceInteraction* isect,

15 float t_min, float t_max) const;

16 };

3.5.1 Brute-Force Method

To find the closest point of intersection given a ray and the scene, the ray needs
to be checked against every piece of geometry in the scene for an intersection.
For small scenes with a few hundred triangles, a brute-force implementation can
work well. For clarity, an example of such an implementation can be seen below:

1 Ray ray = camera.GenerateRay(xn, yn);

2 float closestHitDist = std::numeric_limits<float>::max();

3 for (const Mesh& mesh : scene.meshes) {

4 for (const Shape& shape : mesh.shapes) {

5 if (shape.Intersect(ray) &&

6 ray.t < closestHitDist) {

27

7 closestHitDist = ray.t;

8 }

9 }

10 }

11 if (closestHit == std::numeric_limits<float>::max()) {

12 return false;

13 }

14 isect->point = ray.origin + (ray.dir * closestHitDist);

15 return true;

However, as the number of shapes grows, the time it takes to compute the closest
intersection point grows linearly with it. This is not a desirable scenario.

3.5.2 Acceleration Structures

To speed up the intersection testing, a BVH structure (see Section 2.4.1 for
information about BVH), was implemented. The speed up gained from the
BVH structure is clear for any scene with more than a few hundred triangles.
A comparison of rendering times of the scene described in scenes/buddha.brhan
with 1 SPP can be seen in Table 3.1. Although not all scenes can be expected

Description Rendering time (s)
Brute-force 113.6

BVH 0.4

Table 3.1: Comparison of brute-force vs. BVH render times for buddha.brhan
with 1 SPP.

to have such a drastic reduction in rendering times, this clearly shows how
using an acceleration structure can benefit rendering times. In this particular
case, the reason for the drastic decrease is that most of the rays never hit any
geometry (see Figure 3.1). This means that when a ray fails to intersect the
top-most bounding-box in the BVH, all triangles below that bounding-box can
be disregarded and the process is then finished. For this scene with its 28 980
triangles, this “early-exit” saves a lot of time.

28

Figure 3.1: budda.brhan rendered with 1 SPP (model courtesy of Stanford Com-
puter Graphics Laboratory[35] via PBRT scenes[36]).

3.6 Materials and BSDFs

Once the closest intersection point has been found, the properties at the surface
point must be evaluated. This gives the values needed to estimate the Rendering
Equation using the Monte Carlo Estimator (see Equation 2.4).

As with different types of shapes, all materials inherit from a common Ma-
terial struct. This allows materials to have their own unique data, but still have
a common interface through which they are interacted with. Examples include
MatteMaterial, MirrorMaterial and MetalMaterial. They all share one impor-
tant function which they must implement: ComputeScatteringFunctions(). In
this function, the BSDF for the given material at the intersected surface point
is created. It can then be sampled later on. An example for the MatteMaterial
can be seen below:

1 void MatteMaterial::ComputeScatteringFunctions(

2 SurfaceInteraction* isect) const {

3 isect->bsdf = new BSDF();

29

4 DiffuseBRDF* l_ptr = new DiffuseBRDF(reflection_spectrum);

5 isect->bsdf->Add(l_ptr);

6 }

3.7 Choosing a BxDF to Sample

Once the BSDF for the current intersection point has been created, it can be
queried for the necessary information.. The first step in this process is to choose
one BxDF from the available BxDFs in the BSDF. Given this BxDF, the di-
rection ωi can be sampled. A code snippet showing a simplified version of this
choosing is shown in below:

1 int bxdf_to_sample = std::min(int(uniform_value * num_BxDFs),

2 num_BxDFs - 1);

3 BxDF* bxdf = bxdfs[bxdf_to_sample];

3.8 Sampling BxDFs

When a BxDF is sampled, i.e. its f() function is called, the amount of light
arriving along −ωi, hitting point p and being reflected/transmitted out along
ωo, is returned. What this function returns varies between BxDFs. An example
for a diffuse BRDF can be seen below:

1 return R * ONE_OVER_PI;

For a specular BxDF, the Fresnel Equations have to be evaluated in this func-
tion, while for a microfacet BRDF, a new normal must be generated from its
microfacet distribution.

3.9 Account for BxDFs That Were Not Chosen

Once a BxDF has been chosen, and ωi has been sampled, all BxDFs that
could have been chosen must be taken into account when calculating pdfi and
f(p, ωo, ωi). A code snippet showing a simplified version of this process can be
seen below:

1 for (int i = 0; i < num_BxDFs; i++) {

2 if (bxdfs[i]->MatchesFlags(bxdf->flags)) {

3 pdf += bxdfs[i]->Pdf(wo, wi, normal);

4 f += bxdfs[i]->f(wo, normal, wi);

5 }

6 }

7 pdf /= num_BxDFs;

3.10 Fresnel Equations

One important implementation detail regarding the Fresnel Equations for dielec-
tric, is that the indices of refraction for a medium are specified in an outside-
to-inside order. This means that when a ray interacts with a surface that has

30

a BxDF with a Fresnel property, the indices of refraction must be swapped
depending on whether the ray is entering or leaving the medium.

Here is an example: given that ηt = 1 and ηi = 1.2, if the ray is entering
the medium, the indices are left as they are. However, if the ray is leaving the
medium, the indices are swapped, i.e. ηt = 1.2 and ηi = 1. Whether or not this
swap is necessary can be detected when evaluating the Fresnel Equations, and
is shown below:

1 float cos_theta_from = glm::dot(wo, normal);

2 bool exiting = cos_theta_from <= 0.0f;

3 if (exiting) {

4 std::swap(eta_t, eta_i);

5 cos_theta_from = glm::abs(cos_theta_from);

6 }

The dot-product between the outgoing direction ωo and the normal n at the
surface is taken. If this result is negative, it means that the indices must be
swapped. This works because the normal for all shapes in the scene have their
normal pointing out of the shape. If any normal is facing the wrong way, i.e.
into the shape, this technique is invalid.

3.11 Parallelization

An feature of the path tracing algorithm is that it is highly parallelizable. Each
ray that is traced from a pixel is independent from any other ray that is traced,
both from a different pixel, but also the same pixel. This means that multiple
paths can be traced simultaneously.

For complex path tracing engines, e.g. production renderers, the paralleliza-
tion has to be done very carefully. However, for an implementation such as this
one, a high level of parallelization is achieved with a single line of code:

1 #pragma omp parallel for // Line of importance

2 for (unsigned int y = 0; y < system.film_height; y++) {

3 for (unsigned int x = 0; x < system.film_width; x++) {

4 /*Rendering happens*/

5 }

6 }

By utilizing OpenMP’s interface, and compiling with -fopenmp (in g++), the
engine is able to utilize all of the CPU’s cores close to their max potential,
compared to using just one core. This is showcased in Figure 3.2.

To get further insight into how much performance is gained when using 12
cores vs 1 core, the rendering times for both setups, and the speedup gained
when using 12 cores compared to 1 core, can be plotted. These plots can be
seen in Figure 3.3 and 3.4 respectively.

The first thing to notice is that when the number of samples increases, the
rendering time also increases, and it does so in a linear fashion. This is a
good thing; the program should not suffer much due to more samples within a
pixel. The same holds true when using more cores. Next, Figure 3.4 shows that
the program’s scalability stays relatively stable when increasing the number of
samples. However, notice that the scaling achieved is not close to a factor of 12.

31

Figure 3.2: Comparison of running without (top) and with (bottom) OpenMP
parallelization on an Intel i7-8700K. Note that in the top image, only core six
is used for rendering, while in the bottom, all twelve cores are used.

1 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

400

450

500

Samples per pixels (SPP)

T
im

e
(s

)

1 core
12 cores

Figure 3.3: Comparison of rendering times

Linear scaling would be an incredible result, and it is very rarely (or never) the
case when working with parallel processing.

By testing with different core configurations (all with 128 SPP), it becomes
clear that the program scales differently depending on the number of cores. This
is shown in Figure 3.5. The program is not close to a linear speedup with any
of the configuration. In fact, the ActualSpeedup

PerfectSpeedup ratio decreases as the number
of cores increases. There are various reasons that might help explain why this
is the case:

• There is some overhead associated with assigning work to threads. This
happens each time a thread reaches the end of its double for-loop.

• The Intel i7-8700K (which this entire project is being run on) has 12MB
of Intel’s SmartCache[37]. Although this design gives each core its own
L1 cache, it will share higher levels of cache with one or more of the other

32

1 20 40 60 80 100 120 140
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

Samples per pixel (SPP)

S
p

ee
d

u
p

1CoreTime
12CoresT ime

Figure 3.4: Speedup when using 12 cores vs 1 core

1 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

Number of cores

S
p

ee
d

u
p

Actual speedup

Linear (ideal) speedup

Figure 3.5: Comparison of speedup with different core configurations (all taking
128 SPP)

cores. As the program is running, each path that is being traced will
access different data, and will thus weaken the principles of cache locality
and temporality in the higher levels of cache.

• The CPU only has six physical cores, but has support for Intel Hyper-
Threading[38] which allows for up to twelve logical cores. However, this
means that two logical cores will share L1 cache, again weakening the
principles of cache locality and temporality on a lower cache level. Addi-
tionally, Hyper-Threading does not actually add more execution engines
to a core. While the two logical cores will have their own state, they

33

share the same execution engine. This means that if both logical cores
are running with perfect instruction-level parallelism, very little perfor-
mance is gained by Hyper-Threading. However, this is usually not the
case, and so a speed-up is achieved. However, this does shine light on why
the engine is nowhere near a x12 speedup; it is virtually impossible with
Hyper-Threading as a technology.

• The CPU also has other tasks, which are scheduled by the operating sys-
tem (OS), that it must complete. This leads to context switches and
accompanying state changes, which are non-desirable when aiming for op-
timal scalability.

Note that the reasons mentioned above are not specific to this program; they
would apply to any parallel program running on this CPU.

3.12 Rendering Results

Below are some images rendered with the path tracer developed for this thesis:
BrhanRenderer. Note that the first image is a reference image rendered by pbrt-
v3 ; the renderer developed for the Physically Based Rendering book[11]. These
show that the implementation was indeed successful, and the results comparable
to that of the reference.

Figure 3.6: Reference Cornell Box render by pbrt (model courtesy of Morgan
McGuire’s graphics archive[39]).

34

Figure 3.7: Cornell Box render by BrhanRenderer (model courtesy of Morgan
McGuire’s graphics archive[39]).

Figure 3.8: Dragon render by BrhanRenderer (model courtesy of Christian
Schüller via PBRT scenes[36]).

35

Figure 3.9: Mercedes render by BrhanRenderer (model courtesy of Thomas
F[40]).

36

Chapter 4

Ray Tracing on GPUs

Although CPUs have multiple cores, which allow them to do parallel work, this
is not where they excel. Contrary to CPUs, GPUs are designed specifically for
parallel work. Seeing as path tracing, and the underlying ray tracing algorithm,
are parallelizable (see Section 3.11), it seems natural that GPUs would be a good
platform for running said algorithms. With the release of Nvidia’s RTX graphics
cards in 2018, which have hardware accelerated ray tracing, this statement is
more true now than ever before.

Before moving on to the real-time AO implementation in Chapter 5, it is
first beneficial to get an overview of how GPUs are programmed, and how the
ray tracing functionality is managed.

4.1 Graphics Application Programming Inter-
face

GPUs were originally designed to do a small set of rendering tasks. Thus,
making the entire GPU, with all its functionality, available to the programmer
would likely not be the most effective solution1. Instead, the development of
graphics application programming interfaces (APIs) became the norm, with one
of the first being OpenGL[41]. First introduced in 1992, it allowed developers
to write code in C, which during run-time would call into the GPU’s driver.
The driver then instructed the GPU to perform the required tasks. The driver
thus acted as a middleman between the programmer and the GPU. This was
beneficial for a number of reasons:

• It allows programmers to write less code.

• It alleviated the task of implementing the crucial core algorithms, e.g.
rasterization and texture sampling, from the programmer onto the GPU
vendors’ driver development teams.

• Most importantly, it allowed for a common programming interface, instead
of each GPU vendor having their own libraries etc. for interacting with
their GPUs.

1This is what is done for CPUs; by writing assembly code, the programmer gets access to
virtually all the functionality the CPU has.

37

Since 1992, OpenGL has evolved a lot, and it is a larger API today than
it was back then. Other graphics APIs also exit today, e.g. Vulkan[42], Di-
rect3D [43] and Metal [44]. Some APIs are cross-platform, meaning they can
run on multiple OSs, e.g. OpenGL and Vulkan. Others are proprietary, e.g.
Direct3D (Microsoft Windows) and Metal (macOS and iOS). With the intro-
duction of graphics APIs, the graphics pipeline, the steps GPUs follow to render
images, became more standardized. In recent years, the rendering pipeline has
looked something like what is shown in Figure 4.1.

Figure 4.1: The OpenGL graphics pipeline[45].

Today, GPUs do not only do graphics related work as they did in the early
days. This is due to how GPUs’ design have changed over the years. In the
beginning, a GPU was merely a hardware implementation of rasterization and
texture sampling. Over time, this has changed, and a GPU now has many cores,
each of which is able to execute any instruction it is told to execute. This has led
to compute becoming a common use case for GPUs. Compute-workload can be
just like any other computation performed on the CPU. However, generally, it is
a computation that has one or more parts that is parallelizable, which when run
on GPUs can result in speed-ups. Because of this, most modern graphics APIs
have some compute functionality that usually is a standalone pipeline, i.e. a
compute pipeline. There also exist compute-only APIs, e.g. OpenCL[46] (cross-
platform) and CUDA[47] (Nvidia). In such APIs, the GPU is not considered to
be a graphics processing unit, but rather a general processing unit.

Compute APIs have one main advantage over graphics APIs: when using
compute in a graphics API such as OpenGL, the compute work is written in
a shader that has its own language, and thus, its own restrictions. In the
case of OpenGL, this language is the OpenGL Shading Language[48] (GLSL).
A compute API like CUDA, however, exposes a lot more specific behaviour
and functionality which allows the programmer to utilize the GPU a lot more
precisely than what is possible in GLSL. Therefore, if ray tracing was to be
parallelized, it would be natural to utilize e.g. CUDA instead of OpenGL’s
compute pipeline. However, compute APIs like CUDA do not standardize the
ray tracing implementation; implementing an efficient ray tracer is left to the
programmer. This is time consuming, and not a trivial task. An example of a

38

path tracing implementation using CUDA is Pixar’s RenderMan[49]2.
However, as ray tracing is generally a graphics technique, another option

is to do as was done with rasterization: add a ray tracing pipeline to graphics
APIs, i.e. Vulkan and Direct3D. This makes the task easier for the programmer,
and offloads much of the responsibility of making the ray tracing fast onto the
driver. A second step would be to add specialized hardware to the GPU, which
is designed to do ray tracing. This is what Nvidia has done with their newest
consumer graphics cards line: RTX [50].

4.2 Ray Tracing in Vulkan

Vulkan was the API of choice for this thesis, due to it being the only API with
ray tracing capabilities that is also cross-platform. Therefore, a brief overview
of Vulkan and its ray tracing functionality will be given here.

4.2.1 Vulkan at Its Core

At the core of Vulkan applications are instances (VkInstance[51]), and physi-
cal and logical devices (VkPhysicalDevice[52] and VkDevice[53], respectively).
When working with Vulkan, the first thing that must happen is an instance of
Vulkan being created. The instance can be queried for physical GPUs that have
Vulkan support, and one GPU is typically selected. Finally, given the selected
physical device, the requested validation layers[54], extensions[55], physical de-
vice features[56] and queue indices[57], a logical device can be created. This
device is what is supplied to most Vulkan functions when a resource is to be
managed, of which an example is shown below (notice the first parameter):

1 VkResult vkCreateImage(VkDevice device,

2 const VkImageCreateInfo* pCreateInfo,

3 const VkAllocationCallbacks* pAllocator,

4 VkImage* pImage);

After the initial setup, the programmer is free to create and manage other
Vulkan resources that can be used to produce the desired end result. One
concept that is crucial to getting any work done in Vulkan are queues[57]. They
are where command buffers[58] are submitted to. Once a queue receives a
command buffer, and it is available to do some work, it executes the commands
stored in the buffer. There exist various queues for different purposes, but
generally the graphics queue is used in graphics applications.

As all modern graphics APIs, Vulkan aims to make the task of writing code
that is to run on a wide range of GPUs easier. When comparing Vulkan code
to what driver-style code would look like, it is at a higher abstraction level, and
it requires less code to achieve the same result. However, in the API setting,
Vulkan is considered a verbose, low-level API compared to OpenGL. Vulkan’s
design is based on the idea that programmers should be explicit about their in-
tentions. The reason behind this design is to better allow the driver to make legal
optimizations according to the specification. An example of this are image lay-
outs (VkImageLayout [59]). When creating an image in Vulkan (VkImage[60]),

2It is important to note that this implementation does use Nvidia’s OptiX ray tracing
software development kit.

39

the image has a layout associated with it. The layout specifies how the data
is laid out in memory, and thus how the driver should access it. The different
layouts, e.g.

• VK IMAGE LAYOUT UNDEFINED

• VK IMAGE LAYOUT COLOR ATTACHMENT OPTIMAL

• VK IMAGE LAYOUT SHADER READ ONLY OPTIMAL

are implementation dependent. This means that different Vulkan implementa-
tions can use a different data layout for the same VkImageLayout. This allows
the data layout to be designed with a specific GPU’s architecture in mind. How-
ever, this shifts some responsibility from the driver onto the programmer. The
programmer should ensure that the optimal image layout is set when interact-
ing with an image in a specific way. E.g. when writing to an image from the
fragment shader, its layout should be COLOR ATTACHMENT OPTIMAL.

4.2.2 Shaders and SPIR-V

Vulkan introduced a new way of dealing with shaders compared to other graph-
ics APIs. The general sequence of actions performed when using shader code
written in a language such as GLSL in OpenGL, or HLSL in Direct3D, is shown
in Figure 4.2. There are a few suboptimal things that this results in:

Figure 4.2: General view of shader language compilation in OpenGL/Direct3D.

• The driver’s compiler is responsible of translating human-readable code
into an internal format. This inserts a possible point of failure should a
driver not do this correctly.

• During code optimization, the driver’s compiler must be sure to adhere to
the specifications, and not make any illegal optimizations.

• When the creation of a shader object happens, the entire process shown in
Figure 4.2 must be done. This is actually unnecessary. The first step could
be done as a preprocessing step if a common intermediate representation
was agreed upon. This would result in faster shader creation when an
application is running.

• Working with different shader languages becomes more complicated for
compiler teams, as each language requires a language → intermediate for-
mat compiler front-end.

40

To address this, the Khronos Group developed SPIR-V[61]: an intermediate
format. The Khronos Group is responsible for developing the necessary tools
for GPU vendors, and programmers, to use the format[62][63]. This suite of
tools includes, but is not limited to:

• SPIR-V Generator: GLSL/HLSL → SPIR-V.

• SPIR-V Optimizer: optimize SPIR-V without breaking its validity.

• SPIR-V Disassembler: SPIR-V → human-readable SPIR-V representa-
tion.

• SPIR-V Cross: reflection and SPIR-V → GLSL/HLSL.

When a shader is to be used with Vulkan, its SPIR-V byte-code should first
be generated offline by the glslangValidator tool. Then, during run-time, the
byte-code is loaded and passed to the vkCreateShaderModule function through
a structure. This invokes the driver, which uses its compiler to generate the
appropriate machine instructions which can be run by the GPU’s shader cores.

4.2.3 Vulkan Extensions

When working with Vulkan, it is important to know if the functionality used
is a part of the core functionality. The core includes all functionality which a
GPU-driver combo that is Vulkan compatible should/must support. The core
is ever evolving, with new functionality being added on a regular basis. This
new functionality comes from one of two places:

1. It is completely new functionality in all of Vulkan.

2. It has been promoted to the core from an extension.

A Vulkan extension is a way for programmers to add new functionality to
Vulkan, without it having to be accepted by the Vulkan Group. This can be
beneficial as adding new functionality to the core is not something that is done
quickly. The Vulkan Group consists of many various companies with different
interests. Thus, for new functionality to be accepted, more than one partner
has to see the benefit of supporting the new functionality in their drivers. If
the new functionality is very specific to a particular use case, it might not pass.
This is where extensions are useful. GPU vendors can themselves decide if they
want to support an extension. And when an extension becomes popular, there
is the chance that it will be promoted to be a part of the core functionality.
This was the case with YCbCr samplers and images.

Thus, when using extension functionality, the Vulkan application must ask
for whether or not the functionality is supported by the driver.

4.2.4 VK NV ray tracing

At the time of writing, Nvidia is the only GPU vendor with consumer ray
tracing GPUs. The ray tracing functionality is therefore, not unsurprisingly, an
extension in Vulkan. Ray tracing in Vulkan can be activated by checking if the
physical device supports the VK NV ray tracing extension[64], and requesting
it upon logical device creation.

41

The ray tracing extension essentially creates a new pipeline: the ray tracing
pipeline. The extension contains new data types, flags, functions etc. To avoid
rewriting the entire specification, only a few key parts will be discussed here.

VkGeometryTrianglesNV

This new structure is used to specify the properties of the input vertex data.
It also has support for indexed vertex data. It is reminiscent of VkVertexIn-
putBindingDescription and VkVertexInputAttributeDescription, which are used
when creating a rasterization pipeline. One important thing is that although the
buffer with the vertex data can contain other data as well, only the vertices are
of importance when building acceleration structures. Thus, the correct vertex
count and stride must be supplied to skip irrelevant data.

vkCreateAccelerationStructureNV()

One of the key parts of the ray tracing GPUs are their ability to do fast
hardware-accelerated intersection testing. This requires an acceleration struc-
ture, and in this case, multiple structures. The setup is as follows:

1. For each 3D mesh of vertices:

• A bottom-level acceleration structure is created.

• Memory is allocated for the acceleration structure, and bound to the
acceleration structure’s handle.

2. A top-level acceleration structure is created. Memory is allocated for the
acceleration structure, and bound to the acceleration structure’s handle.

3. Each bottom-level acceleration structure is built.

4. The top-level acceleration structure is built using all bottom-level accel-
eration structures.

vkCmdTraceRaysNV()

This is the function that, when put into a command buffer, will actually launch
the ray tracing shaders invocations. The shader configuration will not be dis-
cussed here, as it is explained well in the specification[64]. Before this function is
called, the appropriate ray tracing pipeline, and accompanying descriptor sets,
have to be bound.

There are two familiar parameters in this function: width and height. These
specify the dimensions of a grid, usually with the size of the image to be ren-
dered. For each cell in the grid, a ray tracing shader invocation is issued. For
any given shader invocation, its xy-coordinates in this grid are available in the
gl LaunchIDNV.xy decoration in SPIR-V. These coordinates are useful when
tracing rays, as they may be used to calculate the ray’s direction (see Section
2.2).

42

traceNV()

A ray tracing shader invocation does not actually perform any ray tracing im-
plicitly. To perform ray tracing, the traceNV() function needs to be called in the
shader. Its main argument is the acceleration structure which is to be checked
for intersections. The acceleration structure has to be made available in the
shader through a uniform buffer [65].

This design allows for many ray tracing commands to be performed per ray
tracing shader invocation. As will become evident in the next chapter, this is
useful when multiple rays needs to be fired for the same pixel, but invoking a
new ray tracing shader for each ray is unnecessary.

Vertex Data

Other vertex data, e.g. normals, texture coordinates etc. are not available
through the acceleration structure. Usually, they are passed through uniform
buffers. SPIR-V provides the gl InstanceCustomIndexNV and gl PrimitiveID
decorations which are used to index into uniform buffers to access the correct
mesh and face respectively, given that the traceNV() function intersected some
geometry.

Updating the Acceleration Structure(s)

There are two scenarios that can occur which would require the acceleration
structures to be updated:

• An entire mesh is transformed: in this case, the internal mesh structure
is static, but it is transformed within the scene. This means that only the
top-level acceleration structure needs to be rebuilt.

• The internal structure of a mesh is changed: in this case, the bottom-level
acceleration structure for the given mesh must first be rebuilt, and then
the top-level acceleration structure must be rebuilt.

In neither scenario is the required actions performed by Vulkan implicitly, and
they have to be done manually by submitting certain command buffers onto the
correct queue.

43

Chapter 5

Approximating Global
Illumination with
Real-Time Ambient
Occlusion

When the restraint to calculate how light interacts in a scene in real-time is
lifted, the global illumination techniques discussed in Chapter 2 produce the
most realistic results. However, in the setting of interactive applications, e.g.
computer games, this is not an option. This is where good approximations
become relevant.

5.1 Ambient Occlusion

AO is an approximation of global illumination. It emulates the complex inter-
actions between the diffuse inter-reflections of objects[8]. It also assumes that
all light in the scene comes from an infinite uniform environment light, e.g. a
distant sun. Equation 5.1 expresses this approximation[66].

A(p) =

∫
H
V (p, ωi) cos θidωi (5.1)

The visibility function, V (ωi), checks if the point p is occluded along the direc-
tion ωi. The basic version of the function returns 1 for any occluded direction
ωi, and 0 for any unoccluded direction ωi.

Just as any other integral, the one in Equation 5.1 can be rewritten in terms
of the Monte Carlo Estimator (see Section 2.3). This is shown in Equation 5.2.

A(p) =
1

N

N→∞∑
i=1

V (p, ωi) cos θi
pdf(ωi)

(5.2)

Although AO, as shown in Figure 1.4, is only an approximation of global
illumination, it is still time consuming to calculate. To create good results, it
requires many samples of the hemisphere. AO has therefore been reserved for

44

offline rendering that does not require the level of quality which global illumi-
nation produces.

5.2 Screen-Space Ambient Occlusion

Another technique that tries to approximate global illumination, is SSAO. Un-
like regular AO, SSAO is not a ray tracing algorithm. As the name indicates,
SSAO works in screen-space, and it uses a depth buffer from which the depth
of neighboring pixels are sampled, and are used to calculate the occlusion value
for the current pixel[9]. A benefit of SSAO, besides the fact that it is a fast
algorithm, is that its computation time is constant for a given screen size. This
makes it a very predictable algorithm.

There are various version of SSAO, and one of the industry-leading is HBAO
[67], developed by Louis Bavoil of Nvidia. “Unlike previous SSAO variants,
HBAO uses a physically-based algorithm that approximates an integral with
depth buffer sampling”[10].

Although SSAO implementations produce good results, and are generally
fast algorithms, they can suffer from artifacts due to being screen-space algo-
rithms that try to approximate a world space effect. The results are also worse
than what regular AO, with a high sample count, is able to produce.

5.3 Real-Time Ambient Occlusion

Given that AO produces better results than SSAO, it would be a step forward
if AO was used in real-time applications instead of SSAO. So far this has not
been an option. However, with the new RTX GPUs, it might now be possible.
What follows are the theoretical and implementation details for the real-time
AO implementation that this thesis set out to create.

5.3.1 Theoretical Details

There is one major challenge with doing AO in real-time: sampling the hemi-
sphere. In real-time, the number of samples that can be taken is small compared
to what one would ideally want to use to get good results. This essentially re-
duces the problem of real-time AO to a sampling problem (given that the ray
tracing can be done fast). Then, there is also the problem of trying to reduce
sampling artifacts that are caused by the low sample count. Relevant back-
ground theory for both these areas will be presented below.

Sampling Technique

It seems logical to begin with the same hemispherical sampling technique pre-
sented in Section 2.5.6. Given two random uniform values u0 and u1, a point
on the hemisphere can be generated uniformly, thus giving a direction ωi. As
briefly mentioned in Section 2.5.6, there is also the option to use cosine-weighted
sampling instead of uniform sampling. As AO is a way to approximate how light
interacts in a scene, cosine-weighted sampling may produce better results than
uniform sampling.

45

The next order of business then becomes how to best generate the random
values u0 and u1?

Evenly Spaced Samples

The simplest option is to have two for-loops that generate evenly spaced samples
in the 2D domain (u0, u1 ∈ [0, 1]). An example of this can be seen in Figure 5.1.
This sample distribution does, however, result in very visible sampling patterns,

Figure 5.1: Example of evenly spaced samples.

and does not produce good looking results with few samples.

White Noise Samples

Another option is white noise. It is essentially what the random number genera-
tor in the path tracing engine does: upon request, it returns a seemingly random
value. A visualization of a white noise sampling pattern is shown in Figure 5.2.
However, white noise is generally not a good option when the amount of sam-

Figure 5.2: Example of white noise samples.

46

ples is very limited. Due to their completely random nature, they may clump
together, resulting in areas being left unsampled.

Blue Noise Samples

Blue noise differs from white noise in a very important aspect: the points are
not placed at complete random. The first point is placed at random, but all the
following points are placed in such a way as to try and cover as much of the
sampling domain as possible. An example is shown in Figure 5.3. A thorough
description of Mitchell’s Best Candidate Algorithm, which was used to generate
the samples, can be found in a blog post by Alan Wolfe[14]. As can be seen in

Figure 5.3: Example of blue noise samples.

the figure, there are no visible patterns, and the samples appear random even
though they are not. Due to the way blue noise samples are generated, blue noise
has the desirable property that it has a lower starting error than many other
sampling distributions. This means that although it converges just as fast/slow,
a low number of samples can still give a reasonably good representation of the
sampling domain[14].

Box Filter

Next comes sampling pattern mitigation. Due to the small amount of available
samples, it is still likely that some sampling patterns will persist. A fairly simple
way to reduce these patterns’ impact on the final image, is to blur the image.
There exist various types of blurs that can be applied with varying reach and
effect. For the purpose of blurring, a simple box filter is used. A box filter
applies a kernel, e.g. 3x3 kernel, onto each texel in the image. At each texel
location, it computes the new value of the texel by multiplying the values in the
kernel cells with the texel value at the corresponding location in the image. A
3x3 box filter kernel is shown in Figure 5.4.

Temporal Integration

An important thing to take note of is that two frames that follow each other will
be very similar in content. Although the camera might change its position and

47

Figure 5.4: 3x3 box filter kernel.

orientation between the two frames, most of what can be seen in frame n − 1
will also be present in frame n. This leads to an interesting observation: if a
point p is visible in both frames, its color value will have been calculated twice.
Also, if AO has been calculated for p, it will be baked into the color values for
both frames.

Now, if the same sample values, u0 and u1, were used in both frames, the
AO values will be identical. However, if different sample values were used, the
two AO values will be different. In the latter case, information about the AO
at p is available with twice the amount of samples. E.g. if one frame takes 64
AO samples at p, a total of 128 samples are taken over the two frames. If the
color values at the texel locations corresponding to p’s location in the images
are averaged, a more accurate estimate of the actual color value is obtained.
This procedure is expressed in Equation 5.3,

framen(un, vn) =
framen(un, vn) + framen−1(up, vp)

2
(5.3)

where up and vp are the texel coordinates of p in the previous framen−1. This
results in integration over time, i.e. temporal integration.

To be able to perform temporal integration, up and vp are needed. These val-
ues can be calculated given the world coordinates of p and the previous frame’s,
framen−1, camera properties. Given framen−1’s camera properties, the view-
projection matrix, mvp, for that frame can be calculated. The texel coordinates
for p in framen−1 can then be calculated by projecting p by mvp, performing a
manual perspective division, and transforming the xy-coordinates from screen-
space to UV-space. This process is shown in Section 5.3.2, and is also described
in detail in the presentation titled Temporal Reprojection Anti-Aliasing in IN-
SIDE by Lasse Jon Fuglsang Pedersen[68], presented at the Game Developers
Conference in 2016. Note that the procedure described above is only valid
for static scenes. For dynamic scenes, refer to [68] for further implementation
details.

5.3.2 Implementation Details

Rendering Setup

Before describing the implementation details of the various techniques used, it
is necessary to first describe the rendering setup. Figure 5.5 shows the various
render passes and what each render pass reads (R) and writes (W).

48

Figure 5.5: Visualization of the render passes in the application.

First comes the deferred render pass. For each pixel in the final image, it
traces a ray in the correct direction and checks for an intersection. There are
then a few possibilities:

• If the closest intersection is with a light, the color of the light is stored
in the color buffer, and a value of 0 is stored in the position and normal
buffers.

• If no intersection was found, a custom color is stored in the color buffer,
and a value of 0 is stored in the position and normal buffers.

• If an intersection with some geometry is found, simple diffuse-only Phong
lighting is calculated and stored in the color buffer, the position and nor-
mal are stored in the position and normal buffers respectively. Finally,
the fraction of point lights that are visible from the intersection point is
stored in the w-component in the position buffer.

Then comes the AO render pass. It samples both the position and normal
buffer and opts for an early exit:

• If either the position is 0, or the fraction of visible point lights is larger
than 0, a value of 0 is stored in the AO buffer.

• Otherwise, AO is calculated and stored in the AO buffer.

Next comes a render pass that consists of two subpasses (see Section 7 in
the Vulkan specification[69]), both of which rasterize two triangles that cover
the entire screen. The first subpass blurs the contents of the AO buffer, and
combines that result with the contents of the color buffer. An important thing
to note here is that only the AO buffer is blurred, and it is only blurred if the
center texel has a value other than 0. This is to avoid unnecessary texture look-
ups. The second subpass performs the temporal integration by interpolating
between framen−1’s final result and the current result of framen.

The last thing that happens, which is not shown in Figure 5.5, is that the
final result for framen is blitted into a buffer that always contains the result
from the previous frame. This will be used in framen+1’s temporal integration
subpass.

Blue Noise

Out of the three sample distributions described, i.e. evenly spaced, white noise,
and blue noise, blue noise was chosen. To calculate 2D blue noise upon request
in real-time is not a feasible option; it takes too long. Therefore, an array of
2D points is pre-calculated using the algorithm described in [14]. The array is
stored explicitly in the shader that performs AO calculations. A small example
is shown below:

49

1 struct SamplePoint { float u0; float u1; };

2 SamplePoint samplePoints[4] = {

3 {0.869141, 0.657227},

4 {0.379883, 0.838867},

5 {0.349609, 0.327148},

6 {0.610352, 0.965820} };

In the actual implementation, 64 samples are stored in the array.
However, in order for temporal integration to work well, the same samples

should not be used between two consecutive frames. This is dealt with by
performing a rotation on the indices used to retrieve the blue noise samples.
The procedure is as follows:

1. First, an angle of rotation is calculated. This is done by sampling a
normalized value from a blue noise texture (downloaded from http://
momentsingraphics.de/ ?p=127). This is then added to the result of mul-
tiplying the current frame number and the golden ratio. The fraction of
this number is then found and multiplied with 2π, giving the angle of
rotation in radians. The procedure is shown below:

1 vec2 blueNoiseUV = gl_LaunchIDNV.xy /

2 vec2(BLUE_NOISE_IMAGE_SIZE);

3 float rotationAngle =

4 texture(blueNoiseImage, blueNoiseUV).r;

5 rotationAngle += GOLDEN_RATIO * float(frameNumber);

6 rotationAngle = fract(rotationAngle) * TWO_PI;

Note that the BLUE NOISE IMAGE SIZE is 64, and so, a sampler with
a repeating addressing mode must be used.

2. Next, a double for-loop is started, where each inner-most instance repre-
sents a single sample AO of the hemisphere. Each such sample will have
an x and y index associated with it from the for-loops. These indices are
transformed to be centered about (0, 0), instead of the half-way point of
the for-loops. This is shown below:

1 int sampleCenterX = numOcclusionSamples / 2;

2 int sampleCenterY = numOcclusionSamples / 2;

3 for (int y = 0; y < numOcclusionSamples; y++) {

4 for (int x = 0; x < numOcclusionSamples; x++) {

5 vec4 sampleRelative =

6 vec4(x - sampleCenterX, 0.0f,

7 y - sampleCenterY, 1.0f);

8 }

9 }

3. Then, the actual rotation is performed. Here, the indices are set to be
in the xz -plane, and so a rotation about the y-axis must be performed to
achieve the desired result. The procedure is shown below:

1 // Calculate and apply rotation matrix around y-axis

2 mat4 xzPlaneRotation = Rotate(blueNoiseRotationAngle,

3 vec3(0.0f, -1.0f, 0.0f));

50

http://momentsingraphics.de/?p=127
http://momentsingraphics.de/?p=127

4 vec4 rotatedSampleRelative = xzPlaneRotation *

5 sampleRelative;

6 int rotatedSampleRelativeX =

7 int(round(rotatedSampleRelative.x));

8 int rotatedSampleRelativeZ =

9 int(round(rotatedSampleRelative.z));

10 // Move back to original coordinate system

11 int rotatedSampleX = rotatedSampleRelativeX +

12 sampleCenterX;

13 int rotatedSampleZ = rotatedSampleRelativeY +

14 sampleCenterY;

4. The second to last step is to make sure that the new rotated indices are
within the range of the blue noise sample space. This is accomplished
by wrapping the rotatedSampleX and rotatedSampleZ indices about their
maximum/minimum values, i.e. numOcclusionSamples. This is fairly sim-
ple, and the code is omitted here.

5. Finally, the index, with which the array of blue noise samples is to be
indexed, is calculated. This is shown below:

1 int idx = wrapRotatedSampleZ * numOcclusionSamples +

2 wrapRotatedSampleX;

The blue noise sample points can now be retrieved from the array, and a
direction can be sampled.

Sampling

The two selected sample points are passed as parameters to the given sampling
function. Having chosen cosine-weighted hemisphere sampling, the implemen-
tation follows directly the one described in Chapter 13.6.3 in [11] and is omitted
here. At this point, the ray’s origin, p, and direction, ωi, are available.

Calculating AO

For each AO sample, a ray is traced against the scene. There are two scenarios
that can occur at this point:

• The ray intersects with the scene: an occlusion value is calculated.

• The ray does not intersect the scene: no action is taken.

In the case where an intersection is detected, the visibility term V (p, ωi) must
be calculated. This is shown below:

1 if (hitDist.x >= 0.0f) {

2 #if SAMPLE_COSINE

3 occlusion += VisibilityFunction(hitDist.x);

4 #elif SAMPLE_UNIFORM

5 occlusion += VisibilityFunction(hitDist.x) *

6 dot(isectNormal, occlusionRayDir);

7 #endif

8 }

51

Note that if cosine-weighted sampling is used, the cosine term in Equation 5.2
disappears. This is because when cosine-weighting samples, pdf(ωi) = cos θi,
and the cosine terms cancel out.

As mentioned previously, the value returned by the visibility function can be
1 for the most basic implementation, but more complicated implementations can
give better results. This is because of the following argument: if p is occluded
along ωi by an occluder that is far away, the amount of indirect light that will
reach p is likely to be large. If the occluder instead is very close, the amount of
indirect light that will reach p is likely to be much lower. Thus, the visibility
function is often implemented in such a way that it takes the distance d to the
occluder into account. A way to view the visibility term is in the form of a
question: “How subject to indirect light is p along ωi?” If implemented in its
binary form, it answers yes or no to a non-yes-no question.

Through testing of different visibility functions that could be used in place
of the binary function, Equation 5.4 was found to give good results:

y = c−d (5.4)

where c is a constant that can be adjusted according to the desired visual result.
A comparison of Equation 5.4 with different values of c can be seen in Figure
5.6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersection distance

V
is

ib
il

it
y

va
lu

e

c=2
c=32

Figure 5.6: Comparison of y = c−d with different values for c

Finally, if the AO is calculated at full resolution, the maximum number of
rays that could be traced would be 1920 ∗ 1080 ∗ 64 = 132710400. Through
testing, it was found that reducing the resolution of the AO pass yielded a
significant performance boost, without compromising too much on the quality of
the results. This means that the AO pass is calculated at a resolution of 960x540,
effectively reducing the maximum number of rays traced to 960 ∗ 540 ∗ 64 =
33177600, 1

4 of the 1920x1080 case.

52

Box Filter

The implementation of the 3x3 box filter is straight forward. The 9 texels are
sampled individually using GLSL’s textureOffset function. It allows for the
sampling of texels specified by an offset in texel coordinates. An example is
shown below:

1 float v = textureOffset(image, uv, vec2(-1, -1)).r;

These values are then averaged.

Temporal Integration

To perform temporal integration between framen−1 and framen for point p,
four pieces of data are needed:

• The 3D coordinates of p.

• The camera’s details in the previous frame.

• The previous frame’s result.

• The current frame’s result.

The two triangles that are rendered in this subpass have UV-coordinates asso-
ciated with them. These are used to sample p’s coordinates from the position
buffer. Then, the color value from framen is loaded using subpassLoad()[70].
Next, the position is checked to see if this is a special case, where it is 0. If it
is not, p’s UV coordinates in framen−1 are calculated, and its color retrieved.
Finally, the two color values from the two frames are mixed. The procedure is
shown below:

1 vec3 currentFramePosition = texture(positionImage,fUV).xyz;

2 vec3 currentFrameColor = subpassLoad(currentFrameImage).rgb;

3 if (currentFramePosition == vec3(0.0f)) {

4 outColor = vec4(currentFrameColor, 1.0f);

5 return;

6 }

7 vec4 previousFrameProjected = previousViewProjection *

8 vec4(currentFramePosition, 1.0f);

9 vec2 previousFrameUV = previousFrameProjected.xy /

10 previousFrameProjected.w;

11 previousFrameUV.y *= -1.0f; // Vulkan specific

12 previousFrameUV *= 0.5f;

13 previousFrameUV += 0.5f;

14 vec3 previousFrameColor = texture(previousFrameImage,

15 previousFrameUV).rgb;

16 outColor = vec4(mix(previousFrameColor,

17 currentFrameColor, 0.5f), 1.0f);

53

Chapter 6

Real-Time Ambient
Occlusion Results

When looking at the results, there are two main aspects that are of utmost
importance:

• Quality: how good are the results?

• Performance: how fast are the results achieved?

In most of CG, but especially in real-time applications, this is a constant trade-
off. This chapter will go through the results achieved by the implementation of
real-time AO described in Section 5.3.2. Note that unless otherwise specified, a
value of c = 8 is used in the visibility function, and 64 AO samples are taken
per pixel when necessary.

6.1 Visual Quality

6.1.1 Real-Time AO vs Physically Based Global Illumina-
tion

By developing a physically based path tracer, physically correct images can be
rendered, and compared against their real-time AO counterpart. Because AO
is an approximation of global illumination, this comparison is relevant. Before
proceeding, two notes on the approximation need to be mentioned:

• Due to how AO is calculated in this implementation, i.e. only for pixels
that represent a point that is not directly illuminated by any point lights,
the comparison will not be perfect. For a better approximation, shadows
should be calculated and added to the result. This was not part of this
thesis, and has therefore not been done.

• The physically based results were rendered with area lights as light sources.
However, in the real-time AO implementation, point lights were used for
simplicity and efficiency. Point lights are not physically possible, and
therefore reduce the quality of the comparison.

54

Figure 6.1: Dragon rendered with 8196 SPP from view point 1 (model courtesy
of Christian Schüller via PBRT scenes[36]).

Figure 6.2: Dragon rendered with real-time AO from view point 1 (model cour-
tesy of Christian Schüller via PBRT scenes[36]).

The first comparison is between Figure 6.1 and 6.2. First, note how there
is AO in the crevices of the dragon scales. This shows that the technique is able
to capture AO in very small areas. Next, there is also visible AO on the down-
facing side of the wing, in the crevice on the neck, and finally below the dragon.
Also note that at the top of the dragon, there is little to no AO. This is because
one or more point lights have a direct effect on these areas. Thus, no AO is
calculated there. When compared against the global illumination result, it is
fairly similar. The areas below the tail are not as dark, and the wing is not as
dark at the back. However, from this point of view, the results are comparable.

Next, Figure 6.3 and Figure 6.4 are compared. First notice how the crevices
of the scales have AO, which is similar to that of the global illumination result.
Next, see how the inside of the mouth has AO. Finally, notice how the area

55

Figure 6.3: Dragon rendered with 8196 SPP from viewpoint 0 (model courtesy
of Christian Schüller via PBRT scenes[36]).

Figure 6.4: Dragon rendered with real-time AO from viewpoint 0 (model cour-
tesy of Christian Schüller via PBRT scenes[36]).

beneath the head is less exposed to indirect light, and is comparable to that of
the global illumination result.

For two more comparisons, see the Appendix, Section 7.3, Figure 7.1 - 7.4.
Some of the comparisons shown there highlight how some scenes are are quite
visibly less comparable.

6.1.2 Real-Time AO vs Offline AO

Another, even more relevant comparison is how well the real-time AO version is
able to approximate the offline AO version. Although comparing against global
illumination is interesting, offline AO is a more “realistic” target for real-time
AO. If the results are highly comparable, this would indicate that high quality

56

real-time AO is obtainable, and a viable option for games. Figure 6.5 and 6.6
shows such a comparison. From this example, it is clear that the real-time
version is close to the offline version. However, there are some areas that suffer.
Some slight sampling patterns can be seen below the car, above the exhaust,
and underneath the rear wing in Figure 6.5. The same problem has been found
in other comparisons as well.

Figure 6.5: Mercedes rendered with real-time AO from viewpoint 1 (model
courtesy of Thomas F[40]).

Figure 6.6: Mercedes rendered with offline AO from viewpoint 1 (model cour-
tesy of Thomas F[40]).

To get deeper insight into how well the real-time version is able to approxi-
mate the offline version, a similarity measure can be used. “Given two sequences
of measurements X = {xi : i = 1, ..., n} and Y = {yi : i = 1, ..., n}, the simi-
larity (dissimilarity) between them is a measure that quantifies the dependency

57

(independency) between the sequences”[71]. Two similarity measures were cho-
sen as metrics: Tanimoto Measure[71]:

S =
X · Y

||X||2 + ||Y ||2 −X · Y
(6.1)

and Minimum Ratio[71]:

S =
1

n

n∑
i=1

min(
xi
yi
,
yi
xi

) (6.2)

Table 6.1 shows how the two similarity measures rate the real-time version
against the offline version. The similarity measures clearly show that real-time

Scene and viewpoint Tanimoto Minimum ratio
dragon.brhan, viewpoint=0 0.999933 0.996596
dragon.brhan, viewpoint=1 0.999974 0.998328
mercedes.brhan, viewpoint=0 0.999848 0.991831
mercedes.brhan, viewpoint=1 0.999795 0.990140

Table 6.1: Similarity between real-time AO and offline AO.

and offline AO results are very similar from a data standpoint. However, from a
visual standpoint, there are some areas in which the real-time version is lacking.

6.1.3 Visibility Function Comparison

By changing the constant c in the visibility function, different results are obtain-
able. Unless comparing against the physically based result, there is no “correct”
value. Generally, the value of c should be chosen so that it produces the most
good looking results, subjectively speaking, for the given application.

A few examples are shown in Figure 6.7, 6.8 and 6.9. It is interesting to notice
how a higher value of c, i.e. a quicker fall-off, results in less visible sampling
patterns. The reason for this behaviour is that if the visibility function has
c = 1, all samples are weighted equally. However, the larger c becomes, the less
weight are given to samples that hit geometry that is far away. This is explained
in greater detail in Section 5.3.2.

58

Figure 6.7: Mercedes rendered with real-time AO from viewpoint 1 with c = 1
in the visibility function (model courtesy of Thomas F[40]).

Figure 6.8: Mercedes rendered with real-time AO from viewpoint 1 with c = 2
in the visibility function (model courtesy of Thomas F[40]).

59

Figure 6.9: Mercedes rendered with real-time AO from viewpoint 1 with c = 32
in the visibility function (model courtesy of Thomas F[40]).

6.1.4 Box Filter Comparison

Due to the limited number of AO samples, it is virtually impossible to avoid
some sampling patterns being present in the result. A way to try and reduce the
pattern’s impact, is through the use of a blur. However, blurring also reduces the
overall detail in the image, and so, it must be used with caution. A comparison
is shown between Figure 6.10 and 6.11.

Although some of the sampling patterns’ impact is slightly lessened, what
becomes most evident is the loss of overall detail. Even though a box filter was
found to give the best result among the filters tested, it still suffers from this
rudimentary problem. E.g. see how the lettering and the Mercedes logo are a
lot less clear in the blurred result in Figure 6.11.

Figure 6.10: Mercedes rendered with real-time AO from viewpoint 1 without
box filter (model courtesy of Thomas F[40]).

Furthermore, a measure of similarity can be used to confirm the visual im-
pact blurring has. Table 6.2 shows the similarity between the non-blurred, and

60

Figure 6.11: Mercedes rendered with real-time AO from viewpoint 1 with box
filter (model courtesy of Thomas F[40]).

blurred real-time results, when measured against the offline result. Although
only slight, there is a decrease in similarity between the blurred real-time result
and the offline result, when compared to the non-blurred real-time result.

Scene Blurred Tanimoto Minimum ratio
mercedes.brhan No 0.999795 0.990140
mercedes.brhan Yes 0.999283 0.985215

Table 6.2: Similarity between non-blurred real-time AO, and blurred real-time
AO, when measured against offline AO.

6.1.5 Temporal Integration Comparison

The addition of temporal integration helps reduce sampling patterns, and noise,
in the AO. A comparison can be seen between Figure 6.12 and 6.13.

Although not easy to see, there is a reduction in noise in Figure 6.13 com-
pared to 6.12. This is especially noticeable under the rear wing, above the
exhaust, and below the car. These are large areas in which noise is more visible.
For smaller areas, noise is less visible, and thus, temporal integration does not
yield much improvement.

As with blurring, a measurement of similarity shows that using temporal
integration, slightly increases the similarity when measured against the offline
result. This is shown in Table 6.3.

Scene Temporal Integration Tanimoto Minimum ratio
mercedes.brhan No 0.999662 0.986676
mercedes.brhan Yes 0.999795 0.990140

Table 6.3: Similarity between temporally integrated real-time AO, and non-
temporally integrated real-time AO, when measured against offline AO.

61

Figure 6.12: Mercedes rendered with real-time AO from viewpoint 1 without
temporal integration (model courtesy of Thomas F[40]).

Figure 6.13: Mercedes rendered with real-time AO from viewpoint 1 with tem-
poral integration (model courtesy of Thomas F[40]).

6.2 Performance

Two measures were taken when gathering performance timings:

• Only rendering is included in the timings, i.e. not other calculations per-
formed within a frame.

• All timings were gathered when rendering off-screen. This means that no
results were presented to the display, thus removing the effect of VSync[72],
and other presentation overhead.

Table 6.4 shows an example of the timings gathered on an arbitrary run of
the mercedes.brhan scene which has 2.45M triangles. This is the same scene

62

which is displayed in Figure 6.13.

Pass Time (ms)
Deferred pass ∼2.89
AO pass ∼5.18
Blur pass ∼0.53
Temporal integration pass ∼0.2
Total (AO only) ∼5.91
Total (all) ∼8.8

Table 6.4: Overview of timings for the various passes in the application. Timings
are the average time of running for 10 seconds.

There are a few things to take note of here:

• The deferred pass is ray traced. This is not the optimal strategy, as it could
just as well be rasterized, which still is faster than ray tracing. However,
as this step will vary from application to application, it is not of large
importance.

• The blur pass could be optimized to take advantage of the box filter’s
separable quality[73]. However, time was not spent on this.

• For more complex scenes with moving geometry, the temporal integration
would be more complex and time consuming. However, it is unlikely that
its time would exceed 1ms.

The timings do however show that for the given scene, real-time AO is an option
as it requires far less than 16.6ms.

However, a very important thing to take note of here before continuing, is
that the viewpoint of the camera, and the lighting in the scene, are incredibly
important for the time is takes to calculate AO. When the same scene that gave
the timings shown in Table 6.4 is rendered from a different viewpoint (shown in
Figure 7.5 in the Appendix, Section 7.3), the total render time was reduced to
1.59ms, with the AO requiring a mere 0.6ms. This reduction can be explained
by three reasons:

• As many of the rays do not hit any geometry, the intersection testing of
the acceleration structure becomes faster.

• Most of the image does not have geometry in it. Thus, the deferred pass
gets an early exit for a majority of the pixels.

• AO is only calculated for pixels that have geometry in them, and that are
not directly illuminated. In this case, this percentage is relatively low.
For a scene where most of the geometry does not have direct illumination,
the AO would require more time.

To get a better understanding of how well the hardware accelerated ray trac-
ing performs, additional tests with more complex scenes were performed. Table
6.5 shows some of these results. Even though the last entry in Table 6.5 has 3.5x
the amount of triangles compared to the scene that gave the results in Table 6.4,

63

Triangle Count (M) AO Time (ms)
4.9 ∼1.2
6.7 ∼4.3
8.6 ∼5.6

Table 6.5: Rendering times for various scenes with increasing complexity. All
scenes were rendered from the same static viewpoint. The scenes can be seen
in respective order in the Appendix, Section 7.3, from Figure 7.6-7.8

the AO takes less time. This is due to the viewpoint. Even though the scene has
a lot more triangles, they do not occupy as much of the image. This highlights
an interesting point: intersecting a simpler acceleration structure many times
is more costly than intersecting a more complex acceleration structure fewer
times. I.e. deciding upon a good strategy for where and when AO should be
calculated is of great importance.

Another important aspect of the performance is the time it takes to up-
date the acceleration structure. There are two scenarios in which this becomes
necessary:

• An mesh is altered internally: requires a rebuild of the bottom-level ac-
celeration structure.

• A mesh is transformed within the scene: requires a rebuild of the top-level
acceleration structure.

Due to time limitations, only the 2nd option was investigated. The results for
the same scenes used in Table 6.5, plus one additional scene, are shown in Table
6.6. This highlights an interesting point: even in a scene with 25.2 million

Triangle Count (M) Mesh Count Rebuild Time (ms)
4.9 4 ∼0.157
6.7 5 ∼0.16
8.6 6 ∼0.16
25.2 15 ∼0.18

Table 6.6: Top-level acceleration structure rebuild times for various scenes with
varying complexity.

triangles, rebuilding the top-level acceleration structure does not require much
time when compared to how long the AO calculations take.

However, some insight into bottom-level rebuilding times can be obtained.
By taking a look at the initial build time for the entire acceleration structure
(both bottom- and top-level), it is possible to reason about how long it should
take to update the bottom-level acceleration structures. The initial build time
for the scene with 25.2 million triangles is ∼ 230ms. Although it is reasonable
to expect the initial build to require more time than updates, it is also reason-
able to expect that updating the bottom-level acceleration structures for the 15
meshes would take more than a few milliseconds. It would likely take somewhere
between 100− 200ms, which is far too much for a real-time application.

64

Chapter 7

Limitations and Future
Work

Given the results presented in Chapter 6, there are a few relevant questions one
could ask:

• What limitations does the current implementation have?

• How can the results be improved upon in the future?

7.1 Current Implementation Limitations

The biggest limitation with the current real-time AO implementation, aside
from the rebuilding of the bottom-level acceleration structures, is the limited
sample count. It directly leads to the presence of sampling patterns in the final
result. If not for this, the real-time AO version would be very close to the offline
AO target (see the comparison made in Section 6.1.2). So long as the sampling
patterns are present to the degree to which they are now, the implementation is
almost “unusable” in any application that is to be placed in the hands of users.

To add to the problem of a low sample count, there is also the fact that
the AO pass is being rendered at half resolution, i.e. 960x540. This makes the
sampling patterns even more visible.

There is also the issue of performance. To get the current results, the AO
pass needs roughly 5ms for the mercedes.brhan scene. This scene, although
it has ∼ 2.45M triangles, is fairly simple; all of the geometry is clustered in
one area. This makes the intersection of the acceleration structure faster than
if there were many smaller clusters of geometry evenly spread throughout the
scene. The geometry is also static, both internally and externally. In an appli-
cation such as a game, this will not be the case. The acceleration structure will
require regular updates, which will add to the total time of the AO implementa-
tion. As presented, this is likely to require many milliseconds, if not in the order
of microseconds. This means that even if the AO calculations themselves were
sped up a considerable amount, the implementation would still be bottlenecked
by the acceleration structure updates.

65

Finally, the current implementation struggles to remove sampling artifacts.
Other blurs were also tested, they did not yield as good results as the box filter
which did a fairly poor job itself:

• Gaussian blur: failed to blur the sampling artifacts enough when using a
small kernel. With a large kernel, a lot of detail in the AO was lost.

• Wider box blurs: the large kernels resulted in a loss of detail in the AO.

• Blurs with larger jumps in offsets, e.g. 1, 3, 5 instead of 1, 2, 3: loss of
detail in the AO.

It is also worth noting that large kernels result in more texture loop-ups and
reduced performance. Although the performance hit was negligible in compar-
ison to the AO render pass, it still adds to the total time, and any time saved
on blurring can be reinvested in AO calculations.

7.2 Implementation Improvement and Future
Work

7.2.1 Sampling

Given the number of samples that are available for each pixel, one of the most
important tasks is how to best sample the hemisphere. In the implementation
presented, blue noise is used heavily. There does however exist other types of
sequences that can be generated, e.g. Sobol Sequence. Doing further investiga-
tions into how to best pick the values used for sampling the hemisphere, might
prove very valuable. For the sampling method, it is hard to do better than
cosine-weighted sampling.

7.2.2 Sampling Pattern Mitigation

In the implementation presented, a simple box filter was used to try and reduce
the sampling patterns that were present in the results. Although other filters
were also tested, this part of the implementation did not receive a lot of focus.
Finding a way to reduce the sampling patterns without much loss in overall
detail would be very beneficial. Here various denoising algorithms could be
investigated, that are better suited than a blur. If good filtering is achieved,
the number of AO samples could also possibly be reduced, resulting in less time
spent on the actual AO.

7.2.3 Temporal Integration

In an application were the camera and geometry move around, more care has to
be taken when implementing temporal integration. This is explained in greater
detail in [68], and would have to be implemented accordingly.

7.2.4 GPU Performance

Finally, although not up to the programmer implementing real-time AO, an
increase in GPUs’ ray tracing performance would yield better results. This is

66

because more samples could be taken, or the number of samples could remain
the same, yielding lower computation time. Also, improving the acceleration
structure (re-)building time is very crucial for real-time AO to be a feasible
option. With time, GPUs will get faster, and so, only the future will tell when
real-time AO can become the standard for real-time global illumination approx-
imation in games.

7.3 Conclusion

Given the presented implementation, real-time AO is not yet ready for use in
real-time applications, especially games. The issue with AO quality due to sam-
pling artifacts, the variable computation time which is viewpoint dependent, and
the rebuilding of acceleration structures makes the technique hard to implement
into a rendering pipeline with a limited budget, < 5ms for AO.

67

68

Appendix

Source Code

All of the code for the path tracing engine is available in a public GitHub
repository: https:// github.com/ MulattoKid/ BrhanRenderer .

All of the code for the real-time AO implementation is available in a public
GitHub repository: https:// github.com/ MulattoKid/ Vulkan RTX .

Both code bases have also been included in a .zip file when handing in the
thesis.

.brhan File Format

The .brhan format allows for specifying the camera properties, number of sam-
ples per pixel, path depth, which geometric models to load, what transforma-
tions to apply to each model, what material a model should have etc. A full list
of features can be found in the README.md in the GitHub repository for the
path tracing engine.

I

https://github.com/MulattoKid/BrhanRenderer
https://github.com/MulattoKid/Vulkan_RTX

Comparison Images

Figure 7.1: Head rendered with 2048 SPP (model via PBRT scenes[36]).

Figure 7.2: Head rendered with real-time AO (model via PBRT scenes[36]).

II

Figure 7.3: Mercedes rendered with 8196 SPP from viewpoint 0 (model courtesy
of Thomas F[40]).

Figure 7.4: Mercedes rendered with real-time AO from viewpoint 0 (model
courtesy of Thomas F[40]).

III

Additional Images

Figure 7.5: Mercedes rendered with real-time AO from far away (model courtesy
of Thomas F[40]). Note that color is added for easier viewing.

Figure 7.6: Scene with a complexity of 4.9M triangles.

IV

Figure 7.7: Scene with a complexity of 6.7M triangles.

Figure 7.8: Scene with a complexity of 8.6M triangles.

V

Bibliography

[1] Mike Acton. Data-Oriented Design and C++. https:// youtu.be/
rX0ItVEVjHc?t=1359 (accessed 01/29/2019), 2014.

[2] Michael Gallucci. ’Futureworld’ - A Look Back at the First Movie With
3D CGI. http:// diffuser.fm/ futureworld-movie/ (accessed 01/31/2019),
February 2014.

[3] PC Plus. How special effects transformed the movies. PC Plus, 280, 2011.

[4] Pixar. https:// www.pixar.com/ feature-films/ monsters-university/ (ac-
cessed 01/29/2019).

[5] DOS games archive. https:// www.dosgamesarchive.com/ download/
wolfenstein-3d/ (accessed 01/29/2019).

[6] Fabien Sanglard. GAME ENGINE BLACK BOOK: DOOM. CreateSpace
Independent Publishing Platform, 2018.

[7] Dark Side of Gaming. https:// www.dsogaming.com/ screenshot-news/
battlefield-5-open-beta-4k-screenshots-gallery/ (accessed 01/29/2019).

[8] Solid Angle. Ambient Occlusion. https:// docs.arnoldrenderer.com/
display/ A5AFMUG/ Ambient+Occlusion accessed(04.01.2019).

[9] Valve. Screen Space Ambient Occlusion. https:// developer.
valvesoftware.com/ wiki/ Screen Space Ambient Occlusion (SSAO) ac-
cessed(04.01.2019).

[10] Nvidia. Nvidia HBAO+ Technology. https:// www.geforce.com/ hardware/
technology/ hbao-plus/ technology accessed(04.01.2019).

[11] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Ren-
dering - From Theory to Implementation. Morgan Kaufmann, 3 edition,
December 2016.

[12] Pete Shirley. Ray Tracing in one Weekend. Independent Publisher, January
2016.

[13] Unknown Author. Antialiasing and Anisotropic Filtering. https:// www.
geforce.com/ whats-new/ guides/ aa-af-guide#2 .

[14] Alan Wolfe. Generating Blue Noise Sample Points with Mitchell’s Best
Candidate Algorithm. The blog at the bottom of the sea, October 2017.

VI

https://youtu.be/rX0ItVEVjHc?t=1359
https://youtu.be/rX0ItVEVjHc?t=1359
http://diffuser.fm/futureworld-movie/
https://www.pixar.com/feature-films/monsters-university/
https://www.dosgamesarchive.com/download/wolfenstein-3d/
https://www.dosgamesarchive.com/download/wolfenstein-3d/
https://www.dsogaming.com/screenshot-news/battlefield-5-open-beta-4k-screenshots-gallery/
https://www.dsogaming.com/screenshot-news/battlefield-5-open-beta-4k-screenshots-gallery/
https://docs.arnoldrenderer.com/display/A5AFMUG/Ambient+Occlusion
https://docs.arnoldrenderer.com/display/A5AFMUG/Ambient+Occlusion
https://developer.valvesoftware.com/wiki/Screen_Space_Ambient_Occlusion_(SSAO)
https://developer.valvesoftware.com/wiki/Screen_Space_Ambient_Occlusion_(SSAO)
https://www.geforce.com/hardware/technology/hbao-plus/technology
https://www.geforce.com/hardware/technology/hbao-plus/technology
https://www.geforce.com/whats-new/guides/aa-af-guide#2
https://www.geforce.com/whats-new/guides/aa-af-guide#2

[15] Daniel L. Toth. On Ray Tracing Parametric Surfaces. SIGGRAPH Com-
put. Graph., 19(3):171–179, July 1985.

[16] Tomas Möller and Ben Trumbore. Fast, Minimum Storage Ray-triangle
Intersection. J. Graph. Tools, 2(1):21–28, October 1997.

[17] Scott Owen. Ray-Sphere Intersection. SIGGRAPH Education, 1999.

[18] Erik Reinhard, Brian Smits, and Charles Hansen. Dynamic Acceleration
Structures for Interactive Ray Tracing. In Bernard Péroche and Holly
Rushmeier, editors, Rendering Techniques 2000, pages 299–306, Vienna,
2000. Springer Vienna.

[19] Bui Tuong Phong. Illumination for Computer Generated Pictures. Com-
mun. ACM, 18(6):311–317, June 1975.

[20] R. L. Cook and K. E. Torrance. A Reflectance Model for Computer Graph-
ics. ACM Trans. Graph., 1(1):7–24, January 1982.

[21] James T. Kajiya. The Rendering Equation. SIGGRAPH Comput. Graph.,
20(4):143–150, August 1986.

[22] Gianluca Tosini, Ian Ferguson, and Kazuo Tsubota. Effects of blue light
on the circadian system and eye physiology. Molecular Vision, 22:61–72,
January 2016.

[23] Brent Burley. Physically-Based Shading at Disney. Disney Animaion, Au-
gust 2012.

[24] Rod Nave. Index of Refraction. http:// hyperphysics.phy-astr.gsu.edu/
hbase/ Tables/ indrf.html .

[25] Max Born and Emil Wolf. Chapter 1 - basic properties of the electromag-
netic field. In Max Born and Emil Wolf, editors, Principles of Optics (Sixth
Edition), pages 1 – 70. Pergamon, sixth edition edition, 1980.

[26] Rod Nave. Fresnel’s Equations. http:// hyperphysics.phy-astr.gsu.edu/
hbase/ phyopt/ freseq.html .

[27] Andrey N. Kolmogorov. Foundations of the Theory of Probability - Second
English Translation. Chelsea Publishing Company, 1956.

[28] Rory Driscoll. Better Sampling. http:// www.rorydriscoll.com/ 2009/ 01/
07/ better-sampling/ (accessed 0.5.17.2019).

[29] Yining Karl Li. Multiple Importance Sampling. https:// blog.yiningkarlli.
com/ 2015/ 02/ multiple-importance-sampling.html (accessed 05.21.2019).

[30] Solid Angle. Arnold. https:// appleseedhq.net/ (accessed 02.14.2019).

[31] Matt Pharr, Wenzel Jakob, and Greg Humphreys. pbrt-v3.
https:// github.com/ mmp/ pbrt-v3 (accessed 02.14.2019). Commit:
f7653953b2f9cc5d6a53b46acb5ce03317fd3e8b.

[32] Paul Bourke. Object Files (.obj). http:// paulbourke.net/ dataformats/ obj/
(accessed 01.13.2019).

VII

http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/indrf.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/indrf.html
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/freseq.html
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/freseq.html
http://www.rorydriscoll.com/2009/01/07/better-sampling/
http://www.rorydriscoll.com/2009/01/07/better-sampling/
https://blog.yiningkarlli.com/2015/02/multiple-importance-sampling.html
https://blog.yiningkarlli.com/2015/02/multiple-importance-sampling.html
https://appleseedhq.net/
https://github.com/mmp/pbrt-v3
http://paulbourke.net/dataformats/obj/

[33] Syoyo Fujita. tinyobjloader. https:// github.com/ syoyo/ tinyobjloader .

[34] Sean Barrett. stb. https:// github.com/ nothings/ stb.

[35] Standford University. The Stanford 3D Scanning Repository. http://
graphics.stanford.edu/ data/ 3Dscanrep/ (accessed 05.01.2019).

[36] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Scenes for pbrt-v3.
https:// pbrt.org/ scenes-v3.html (accessed 04.09.2019).

[37] Jack Doweck. Inside Intel Core Microarchitecture and Smart Memory Ac-
cess. Intel Whitepaper, 2006.

[38] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A.
Koufaty, J. Alan Miller, and Michael Upton. Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology Journal Q1, 2002.

[39] Morgan McGuire. McGuire Computer Graphics Archive. https:// casual-
effects.com/ data/ (accessed 0.50.8.2019).

[40] Thomas F (@TehRenderGuy). Thomas F’s Models. https:// www.behance.
net/ tehrenderguy .

[41] Khronos Group. OpenGL Overview. https:// www.opengl.org/ about/ ac-
cessed(03.28.2019).

[42] Khronos Group. Vulkan Overview. https:// www.khronos.org/ vulkan/ ac-
cessed(03.28.2019).

[43] Microsoft. Direct3D. https:// docs.microsoft.com/ en-us/ windows/
desktop/ direct3d accessed(03.28.2019).

[44] Apple. Metal 2 - Accelerating graphics and much more. https:// developer.
apple.com/ metal/ accessed(03.28.2019).

[45] Rendering Pipeline Overview. https:// www.khronos.org/ opengl/ wiki/
Rendering Pipeline Overview (accessed 03.27.2019).

[46] Khronos Group. OpenCL Overview. https:// www.khronos.org/ opencl/
accessed(03.28.2019).

[47] Nvidia. About CUDA. https:// developer.nvidia.com/ about-cuda ac-
cessed(03.28.2019).

[48] Khronos Group. Opengl Shading Language. https:// www.khronos.org/
opengl/ wiki/ Core Language (GLSL) accessed(03.28.2019).

[49] Max Liani. Renderman XPU: Development Update. Pixar, March 2018.

[50] Nvidia. RTX. IT’S ON. https:// www.nvidia.com/ en-us/ geforce/ 20-
series/ accessed(03.28.2019).

[51] Khronos Group. Vulkan Specification Instances. https:// www.
khronos.org/ registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.html#
initialization-instances (accessed 05.13.2019).

VIII

https://github.com/syoyo/tinyobjloader
https://github.com/nothings/stb
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://pbrt.org/scenes-v3.html
https://casual-effects.com/data/
https://casual-effects.com/data/
https://www.behance.net/tehrenderguy
https://www.behance.net/tehrenderguy
https://www.opengl.org/about/
https://www.khronos.org/vulkan/
https://docs.microsoft.com/en-us/windows/desktop/direct3d
https://docs.microsoft.com/en-us/windows/desktop/direct3d
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opencl/
https://developer.nvidia.com/about-cuda
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.nvidia.com/en-us/geforce/20-series/
https://www.nvidia.com/en-us/geforce/20-series/
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#initialization-instances
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#initialization-instances
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#initialization-instances

[52] Khronos Group. Vulkan Specification - Physical Devices. https:
// www.khronos.org/ registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.
html#devsandqueues-physical-device-enumeration (accessed 05.13.2019).

[53] Khronos Group. Vulkan Specification - Devices. https:// www.khronos.org/
registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.html#devsandqueues-
devices (accessed 05.13.2019).

[54] Khronos Group. Vulkan Specification - Valiadation Layers.
https:// www.khronos.org/ registry/ vulkan/ specs/ 1.1-extensions/ html/
vkspec.html#fundamentals-errors (accessed 05.13.2019).

[55] Khronos Group. Vulkan Specification - Extensions. https:
// www.khronos.org/ registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.
html#extendingvulkan-extensions (accessed 05.13.2019).

[56] Khronos Group. Vulkan Specification - Features. https:// www.khronos.
org/ registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.html#features
(accessed 05.13.2019).

[57] Khronos Group. Vulkan Specification - Queues. https:// www.khronos.org/
registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.html#devsandqueues-
queues (accessed 05.13.2019).

[58] Khronos Group. Vulkan Specification - Command Buffers.
https:// www.khronos.org/ registry/ vulkan/ specs/ 1.1-extensions/ html/
vkspec.html#commandbuffers (accessed 05.17.2019).

[59] Khronos Group. Vulkan Specification - Image Layout Tran-
sitions. https:// www.khronos.org/ registry/ vulkan/ specs/ 1.1-
extensions/ html/ vkspec.html#synchronization-image-layout-transitions
(accessed 05.13.2019).

[60] Khronos Group. Vulkan Specification - Images. https:// www.khronos.
org/ registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.html#resources-
images (accessed 05.13.2019).

[61] Khronos Group. SPIR-V Overview. https:// www.khronos.org/ spir/ ac-
cessed(04.01.2019).

[62] Khronos Group. SPIR-V Overview. https:// github.com/ KhronosGroup/
SPIRV-Tools accessed(04.01.2019).

[63] LunarG. SPIR-V Toolchain. https:// vulkan.lunarg.com/ doc/ sdk/ 1.1.101.
0/ windows/ spirv toolchain.html accessed(04.01.2019).

[64] Khronos Group. Vk nv ray tracing. https:// www.khronos.org/ registry/
vulkan/ specs/ 1.1-extensions/ html/ vkspec.html#VK NV ray tracing ac-
cessed(03.29.2019).

[65] Khronos Group. Vulkan Specification - Descriptor Types.
https:// www.khronos.org/ registry/ vulkan/ specs/ 1.1-extensions/ html/
vkspec.html#descriptorsets-types (accessed 05.17.2019).

IX

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-physical-device-enumeration
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-physical-device-enumeration
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-physical-device-enumeration
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-devices
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-devices
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-devices
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#fundamentals-errors
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#fundamentals-errors
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-extensions
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-extensions
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#extendingvulkan-extensions
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#features
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#features
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-queues
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-queues
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#devsandqueues-queues
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#commandbuffers
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#commandbuffers
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#synchronization-image-layout-transitions
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#synchronization-image-layout-transitions
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#resources-images
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#resources-images
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#resources-images
https://www.khronos.org/spir/
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://vulkan.lunarg.com/doc/sdk/1.1.101.0/windows/spirv_toolchain.html
https://vulkan.lunarg.com/doc/sdk/1.1.101.0/windows/spirv_toolchain.html
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_NV_ray_tracing
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_NV_ray_tracing
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#descriptorsets-types
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#descriptorsets-types

[66] Jorge Jimenez, Xian-Chun Wu, Angelo Pesce, and Adrian Jarabo. Practical
Realtime Strategies for Accurate Indirect Occlusion. SIGGRAPH2016, July
2016.

[67] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-Space Horizon-
Based Ambient Occlusion. ShaderX7 Advanced Rendering Techniques, July
2008.

[68] Lasse Jon Fuglsang Pedersen. Temporal Reprojection Anti-Aliasing in IN-
SIDE. Game Developers Conference, March 2016.

[69] Khronos Group. Vulkan - A Specification. https:// www.khronos.
org/ registry/ vulkan/ specs/ 1.1-extensions/ html/ vkspec.html# ac-
cessed(03.29.2019).

[70] Jeff Bolz, Kerch Holt, Kenneth Benzie, Neil Henning, Neil Hickey, Daniel
Koch, Timothy Lottes, and David Neto. GL KHR vulkan glsl. Khronos
Group, July 2018.

[71] Arthur Ardeshir Goshtasby. Image Registration - Principles, Tools and
Methods. Springer, London, 2012.

[72] Nvidia Cooperation. Adaptive VSync. https:// www.geforce.com/
hardware/ technology/ adaptive-vsync/ technology .

[73] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, San Diego, CA, USA, 1997.

X

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#
https://www.geforce.com/hardware/technology/adaptive-vsync/technology
https://www.geforce.com/hardware/technology/adaptive-vsync/technology

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Daniel Fedai Larsen

Approximating Global Illumination
with Real-Time Ambient Occlusion

Master’s thesis in Informatics
Supervisor: Theoharis Theoharis, Bart Iver van Blokland

May 2019

Real-Time Ambient Occlusion (model courtesy of Thomas F)

	Abstract
	Sammendrag
	Contents
	Abbreviations
	Introduction
	Background
	Thesis Goal

	Path Tracing Theory
	The Path Tracing Algorithm
	Calculating Ray Directions for Each Pixel
	Sub-Pixel Sampling
	Intersection Testing
	Acceleration Structures

	Physically Based Rendering
	The Rendering Equation
	Monte Carlo Estimation
	Bidirectional Reflectance/Transmission Distribution Function
	Working With BSDFs
	Fresnel Equations
	Sampling Directions
	Sampling Geometrical Shapes
	Area Lights

	Path Tracing Engine
	Scene Creation
	Main Entry Point
	The Rendering Loop
	Calculating Ray Directions
	Intersection Testing
	Brute-Force Method
	Acceleration Structures

	Materials and BSDFs
	Choosing a BxDF to Sample
	Sampling BxDFs
	Account for BxDFs That Were Not Chosen
	Fresnel Equations
	Parallelization
	Rendering Results

	Ray Tracing on GPUs
	Graphics Application Programming Interface
	Ray Tracing in Vulkan
	Vulkan at Its Core
	Shaders and SPIR-V
	Vulkan Extensions
	VK_NV_ray_tracing

	Approximating Global Illumination with Real-Time Ambient Occlusion
	Ambient Occlusion
	Screen-Space Ambient Occlusion
	Real-Time Ambient Occlusion
	Theoretical Details
	Implementation Details

	Real-Time Ambient Occlusion Results
	Visual Quality
	Real-Time AO vs Physically Based Global Illumination
	Real-Time AO vs Offline AO
	Visibility Function Comparison
	Box Filter Comparison
	Temporal Integration Comparison

	Performance

	Limitations and Future Work
	Current Implementation Limitations
	Implementation Improvement and Future Work
	Sampling
	Sampling Pattern Mitigation
	Temporal Integration
	GPU Performance

	Conclusion

	Appendix
	Source Code
	.brhan File Format
	Comparison Images
	Additional Images

	Bibliography

