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Sammendrag

Denne masteroppgaven ønsker å undersøke muligheten til å bruke virtuell virkelighet
som et verktøy for å visualisere og samhandle med flerdimensjonale data representert
som Star Coordinates [1] og bruke den resulterende aksekonfigurasjonen til å sette pa-
rametere for kNN klasifisering. Ved å implementere Star Coordinates i Unity sammen
med vanlige interaksjonsmetoder innen virtuell virkelighet, vises det at dette er mulig
både fra et teknisk og brukersentrert perspektiv. StarVR kan visualisere et dataset som
er stort nok til å illustrere at denne fremgangsmåten kan brukes professjonelt. Klassi-
fiseringsnøyaktigheten når StarVR brukes som dimensjonsreduksjon for kNN er på linje
med automatiserte metoder som PCA. Det konkluderes med at StarVR kan, ved hjelp av
sanntids-integrasjoner og tilbakemeldinger, oppnå enda bedre resultater.
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Abstract

This thesis aims to investigate the possibility of using virtual reality as a way of visual-
ising and interacting with multidimensional data using Star Coordinates [1] and using the
resulting axis configuration produced by this system as a method of setting parameters for
kNN algorithms. By implementing Star Coordinates in Unity along with common VR in-
teractions, this thesis shows that it is possible both from a system performance and usabil-
ity perspective. StarVR can display a dataset that is large enough in both dimensionality
and size to get accurate real-world results. The performance of StarVR as a dimensional-
ity reduction technique in regards to kNN is shown to be similar to automated PCA, and
conclude that even better results can be achieved by tighter, real-time integration’s with
common data analysis tools.
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Preface

Data exploration and visualisation is an important part of Big Data. It plays an impor-
tant role in converting data into meaningful results. Large dataset tends to be intimidating,
both in dimensionality and size. It is therefore of great interest to create new ways of
interacting with and understanding large datasets. This project is using Star Coordinates
in Virtual Reality (VR) to create a more intuitive and immersive experience in early-stage
data exploration. The unique interaction methods of VR provide a new way of looking
at data interaction, and the project looks at how to improve existing interaction models
with gestures and movement. The solution implements already existing multidimensional
data transformations into 3D while extending them to fit the VR platform. The viability
of visualisation of highly dimensional data is evaluated, both from a user and a technical
perspective.
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Chapter 1
Introduction

The availability of large, complex datasets has never been more abundant. This evolution
of available data has huge implications and the potential to affect almost every aspect of
our lives [2]. It also brings opportunities in regards to data analysis and visualisation.
Being able to analyse data in a simple and intuitive way with powerful tools is going to
give businesses the competing edge, save unnecessary costs and emissions, optimise pro-
cesses and much more. The creation and evolution of these tools are therefore a valuable
endeavour for all parts of society [3].

1.1 Acknowledgements
The author would like to thank the supervisors Theoharis Theoharis and Jo Skjermo for
their excellent insights, helping hands and rewarding discussions during this thesis and
the preliminary specialisation project. This is the culmination of both the specialisation
project and the master’s thesis itself and therefore builds on unpublished work done by the
author previously in TDT4501. That work is included in this thesis, either in revised or
original form.

1.2 Project goal
The concept of this thesis was initially proposed by Jo Skjermo. It can roughly be di-
vided into two sections, each concerning slightly different, but related, concepts of data
exploration and visualisation.

The first part of the project is to visualise multivariate data in virtual reality using Star
Coordinates and complex user interaction in order to visually experiment with axis config-
urations. The second part concerns how Star Coordinates axis configurations can be used
in conjunction with AI algorithms, specifically looking at kNN, to ease the generation of
hyper-parameters and provide an initial starting point for further tweaks and optimisation
for classification tasks.
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Figure 1.1: Project flow

In short, the main milestones of this project are to:

• Transform data into Star Coordinates for use in a game engine.

• Visualise the data in VR.

• Allow the user to transform the visualisation in VR.

• Use the resulting axes as parameters for kNN.

The general flow of the project, and how all the pieces fit together, can be seen in
Figure 1.1.

1.3 Overview of relevant concepts

The following section will give a brief overview of some of the main concepts in this
project. Those that are of the highest relevance to the project are also described further in
chapter 2.

Multidimensional and multivariate data

The dimensionality, or more specifically domain dimensionality, of data, can be described
as the number of attributes associated with a single data point. In this project, the multi-
variate Iris dataset [4] will be used for demonstration purposes. It consists of 150 instances
of Iris flowers. Each flower has 4 attributes and a species name associated with them. This
dataset is primarily used for classification tasks. An excerpt of the Iris dataset can be seen
in Table 1.1.

2



Sepal length Sepal width Petal length Petal width Species
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa

Table 1.1: An excerpt from the Iris dataset. All measurements are given in cm.

Figure 1.2: Simple star coordinate plotted for a single data point

The dataset has 4 dimensions, but a typical 2D visualisation only has 2. In order to be
able to visualise it in 2D, we must first reduce the 4 dimensions down to 2. This is where
Star Coordinates comes in.

Star coordinates

Star Coordinates is a solution for reducing the number of dimensions when visualising
multivariate data. This approach was proposed by Eser Kandogan in 2000 [1]. The pur-
pose of Star Coordinates is to enhance the user’s insight into the dataset. However, by
reducing the number of dimensions, some of the original information is lost. The method
is therefore proposed as an early stage method for data exploration. A simple example
of plotting a data point in Star Coordinates can be seen in Figure 1.2. A more detailed
explanation can be found in section 2.1.

Virtual Reality

Virtual Reality is often associated only with the head-mounted displays that have become
more mainstream and accessible in the last years [5]. It is important to think of them as
more than a collection of hardware. The immersion, user experience and realism are all
important part of a good VR system [6]. But in order to provide a good user experience,
the hardware aspect does play an important role. Oculus Rift [7] and HTC Vive [8] are

3



the two most popular high-end VR headsets on the market today. They are however rather
expensive for normal consumers, and other alternatives, such as Google Cardboard [9]
do exist. Google Cardboard allows the user to use their phone as a VR device. When
performing scientific data analysis with a large dataset, a more powerful setup is often
required [10].

Game engines
Creating realistic virtual environments is an expensive and time-consuming process [11].
Luckily, there exists game engines like Unity[12], Unreal Engine [13] and CryEngine
[14]. Taking advantage of these engines, together with external libraries, allows for rapid
prototyping that provides state of the art results with minimal effort. Most of these engines
do come at a cost in the form of subscription, royalty and licensing fees. Their pricing
model does vary, and most of the available engines only charge based on the value of the
product that you create with their engine. Out of the ones already mentioned, CryEngine
is free to use, while the others require a small royalty fee on commercial products. For the
software produced in this project, these fees are of no concern as commercialisation is not
an important factor in the project at this point in time.

kNN
k-Nearest Neighbour is an instance-based learning algorithm for classification and regres-
sion. This category of machine learning algorithms is easy to reason about at a conceptual
level, but they do not come without drawbacks [15]. kNN base the classification on similar
data points that are close to the data point that is to be classified. The k is the number of
neighbours to look at to determine the class of our new data point. One of the drawbacks
to kNN is the fact that almost all computation is performed when classifying and that the
entire training dataset must be available [15].

4



Chapter 2
Background

2.1 Star Coordinates
Star Coordinates was presented by Eser Kandogan in 2000[1]. The inspiration for Star Co-
ordinates comes primarily from Permutation Matrices[16] which allows for rearrangement
of rows and columns and Parallel Coordinates[17] which utilises a uniform treatment of
dimensions. Combining these concepts ultimately resulted in Star Coordinates. Star Coor-
dinates arrange all uniform axis in a circle with the same length. The original proposition
only did this in 2D, but Cooprider and Burton extended this to 3D in 2007[18]. A visuali-
sation of a dataset with 4 dimensions plotted in 2D can be seen in Figure 1.2. Note that this
reduction of dimensions, and the introduction of nonorthogonal coordinate axes, introduce
ambiguity as several combinations of axis values can produce the same point in 3D space.

Calculating Star Coordinates
The first step to visualise a dataset D in Star Coordinates in 3 dimensions is to choose an
origin

On(x, y, z) = (ox, oy, oz)

where n is the dimensionality of the dataset. The axes are then defined. They should all
initially be of equal length and start at the origin and can be defined as n three-dimensional
vectors

A = 〈 ~a1, ~a2, ..., ~ai, ..., ~an〉

We can then map a point to Star Coordinates as follows:

Pj(x, y, z) = (ox+

n∑
i=1

ûix·(dji−mini), oy+

n∑
i=1

ûiy·(dji−mini), oz+

n∑
i=1

ûiz·(dji−mini))

where the datapoints are defined as

Dj = (dj0, dj1, ..., djn)

5



the length of the normalized axis vectors are

|~ui| =
|~ai|

maxi −mini

and the minimum and maximum of an axis i is

mini = min{dji, 0 ≤ j < |D|},maxi = max{dji, 0 ≤ j < |D|}

An intuitive understanding of the formulas above is that the point in Star Coordinates
is the sum of all the normalised axes multiplied with their original data points components
plus the origin.

Operations and features

Kandogan introduces a few key operations that the user can perform on Star Coordinates in
[1]. One year later, he also published [19] where he introduces more user interactions and
visualisations, such as marking, range selection, histograms, footprints and sticks. This
section will describe the operations and why they are useful.

Scaling

Scaling changes the length of an axis and therefore changes its contribution to the visual-
isation. The axis can also be disabled by setting its length to 0. To change the scale of an
axis, the user simply grabs the end of the axis marker and drags it to its desired position.

Rotation

Rotation changes the direction of the axis vector. This changes how this axis contribution is
relative to the other axis. Rotation helps solve ambiguities and it can separate overlapping
clusters [19]. To perform a rotation, the user selects one or more axes and drags them in
the desired direction.

Data queries

Seeing the original data for a point can be useful. To do this, the user hovers over the point
and the information is shown.

Axis range selection

Sometimes it is of interest just to examine a subset of the data. By selecting a range on
one or more axis, the user can filter or mark the points to better understand how they are
affected by a change in the axis configuration. The user can also perform logical operations
on the different axes to further enhance the selection.

6



Marking

The user can mark points by selecting them. This is either done by clicking the points or
dragging a rectangle around them. They can then be marked and filtered in order for the
user to see how the transformations affect them.

Histogram

Histograms allow the user to compare selected clusters. They can then see how they differ
in a selection of the attributes and determine the axes that make this cluster unique.

Footprints

Footprints track the position of the data points. These positional changes are then repre-
sented as a line, and the user can see how all the points changed under a particular axis
transformation. By changing specific axes and tracking their change, the user can infer the
axis contribution and how it relates to the other axes [19].

Sticks

The last visualisation options discussed by Kandogan is Sticks. It has been pointed out
earlier that the points in Star Coordinates do not have a unique mapping to the original
dataset. Different data points might show up on the same point in Star Coordinates. Sticks
is an attempt at detecting this. In normal mode, the points are represented by dots. When
stick-mode is active, all the dots are replaced by a collection of lines. Each line has a
length relative to its corresponding axis. The user can then decide which axis to encode to
examine. If the cluster has similar looking sticks and lengths, they have a similar value for
those attributes. If not, the cluster might be comprised of more than one cluster that lies
on top of each other due to the nonorthogonality of the coordinate system.

2.2 k-Means
The k-means clustering algorithm was first published in 1955 [20]. It is based on centroids,
the arithmetic mean position of all points, and it contains two steps.

Before the iteration begins, initialise the centroids 〈µ1, µ2, ..., µk〉 ∈ Rn.
The first step is to assign each point xi to its closest centroid class given by

ci = argmin
j

dist(xi, µj)
2

The second step is to update the centroids based on the points that belong to that
centroid. For centroid µj this is done by

µj =

∑m
i=1 1{ci = j}xi∑m
i=1 1{ci = j}

These two steps are then performed until some criteria are met [21].

7



2.3 k-Nearest Neighbours
kNN is the most basic instance-based learning method. It assumes that every instance, or
datapoint, corresponds to a point in n-dimensional space Rn [15]. The closest neighbours
are defined by the Euclidean distance. Given a feature vector

〈a1(x), a2(x), ..., an(x)〉

where ar(x) is the rth value of instance x, the distance between two instances, xi and xj ,
is

d(xi, xj) =

√√√√ n∑
r=1

(ar(xi)− ar(xj))2

The k in kNN refers to how many neighbours to look at when classifying. There
are two scenarios to consider, depending on whether we are approximating discrete or
continuous-valued functions. In the case of a discrete function, we want to find the most
common value. The hypothesis function f̂ is given by

f̂(xq)←− argmax
v∈V

k∑
i=1

δ(v, f(xi))

where
δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise

When approximating continuous-valued functions, we instead find the mean value of the
neighbours. f̂ is then given by

f̂(xq)←−
∑k

i=1 f(xi)

k

There are also modified versions of kNN that can be of interest. One of these is
Distance-Weighted kNN. This version values the contributions of the neighbours based
on how close they are to the point xq . The closer the point, the higher the weight. The
exact formulas are described in Machine Learning [15, Chapter 8].

kNN is not without its flaws. The most notorious problem is the Curse of dimension-
ality [22]. When the data contains a lot of dimensions, it is not unlikely that some of them
are irrelevant to the task at hand. If a dataset contains 10 attributes, but the classification is
only based on three of them, the remaining seven attributes can still be far apart and thus
misleading the classification. One solution to this problem is to weight the attributes dif-
ferently or even remove them. This weighting of attributes is where the axis configuration
of Star Coordinates comes into play.

2.4 Principal Component Analysis
Principal Component Analysis is a multivariate dimensionality reduction technique dating
back to Karl Person in 1901 [23]. PCA takes a set of possibly correlated variables and
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converts them into another set of linearly uncorrelated variables. These are the principal
components. The goal of the transformation is to preserve as much data as possible in a
lower dimension. Correlated variables contain overlapping information and by optimising
for the largest variance between variables the resulting variables contain more of the inter-
esting aspects of the dataset. All principal components must be orthogonal to each other
and the variables are a linear combination of the original variables [23].

The fact that PCA is both orthogonal and utilises a linear combination of variables,
like Star Coordinates, makes it a perfect comparison to make, as to how effective the Star
Coordinates method is at optimising information retention in lower dimensional spaces.
When StarVR is compared to PCA with 3 principal components, the result should show if
a human can find a better linear combination of the variables than an automated method
purely optimising for variance.

2.5 iViz
What seems to be the closest existing application to what this project wants to achieve is
called iViz [24]. The goal of the iViz project is to create an interactive and collaborative
Virtual Reality based visualisation tool for data visualisation and exploration.

Implementation
The implementation of iViz was originally made in vCaltech [25]. The vCaltech project is
made by Caltech Astroinformatics group. It is an immersive Virtual Reality environment
based on OpenSIM [26]. They did eventually move over to Unity, as the vCaltech engine
was not optimised to the same degree. Unity did also provide a lot of convenient, state-of-
the-art features that were lacking in the older engine. One of the important features was
the ability to run the application in a web browser. Unity, being an engine also used for
games, support multiplayer features which allowed for real-time collaboration.

Data representation
iViz aims to visualise large multidimensional multivariate dataset. In order to visualise
more than 3 axes in 3D, some transformations need to take place. The axes chosen for
iViz include, but are not limited to

• XYZ coordinates

• Colour

• Shape

• Size

• Transparency

• Texture

• Animation

9



which result in the ability to visualise at least 9 attributes.

Interactivity and collaboration
The iViz application supports the LeapMotion sensor [27] and Kinect. The user can then
move around and select data points in the visualisation. When the user selects the data
point, the original data is shown in a modal. In order to change the visualisation, the user
can change which data dimensions map to which visualisation dimensions. If used on the
iris dataset, the configuration could look like shown in Table 2.1.

Data dimension Visualisation dimension
Sepal length x-axis
Sepal width y-axis
Petal length z-axis
Petal width size
Species colour

Table 2.1: Possible axis configuration in iViz

2.6 iStar
One of the major drawbacks to Star Coordinates is that it does not handle large numbers of
attributes very well. iStar(interactive Star Coordinates) [28] propose methods for dealing
with high dimensional datasets through attribute clustering and dynamic level of detail
representations.

Method
The method proposed consists of three parts. The first part is called Linear Mapping
and deals with the fundamental math of Star Coordinates and how the data points are a
linear combination of the axes. The other parts are Attribute Clustering and Reordering as
discussed below.

Attribute Clustering

The similarity of the axes can be used to group axes together in order to prevent informa-
tion overload. They propose three methods: Variance, Principal Component Analysis [29]
and centroids.

Variance for the jth attribute can be defined as

σ2
j =

∑m
i=1(pij − µj)

2

m

where m is the number of instances µj is the average of the jth attribute. They then use
k-Means to group similar attributes that can be merged in the visualisation.
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The Principal Component Analysis approach sees each attribute as a point in m-
dimensional space and maps the points to the space generated by the first two principal
components. The attributes that map close to each other are similar and are then grouped
using k-Means.

In order to use the centroids method, the dataset need to have classes. The centroid p̄ci
is given by

p̄ci =
1

NCi

∑
p∈Ci

p

where NCi is the number of instances with class Ci. A matrix M is then constructed with
centroids as column vectors. Finally, k-Means is applied to the rows of M to group similar
attributes.

All the methods mentioned above reduce multiple axes into one. The axis length is set
to 1 and the contribution of each grouped axis to a point is found by averaging the values
of the grouped axes with respect to the point.

Reordering

The positioning of the axes is important to give a good starting point for data exploration.
There are two methods that are being evaluated: Combinatorial optimisation and brute
force.

The combinatorial optimisation depends on a dissimilarity matrix M of size (k x k)
where k is the number of axis after clustering. M is defined as

Mij =
1

m

m∑
s=1

| psi −mini
maxi −mini

− psj −minj
maxj −minj

|

The closer this metric is to 0, the greater the similarity between the attributes. They then
represent the matrix as a complete graph, and a Genetic Algorithm is used to find the
optimal closed path connecting all the nodes. Then the axes are rearranged in the same
order.

The brute force approach simply swaps axes until it has found a satisfactory solution
that minimises a quality metric. They have used topology preservation and Dunn index as
quality measures.

Interaction and tools

As a result of the combination of axes, several new tools have been proposed to help
visualise the more complex nature of the dataset.

The node preview magnifies the selected axis and shows only the combined axes.
The node explorer is showing the same information as the node preview, but here the

axis can be changed individually and the interaction is mirrored to the main visualisation.
The quality visualiser shows the history of the quality metrics when the user changes

the visualisation.
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Figure 2.1: The Kelly colours and their corresponding hex values

Results and evaluation

The full results can be seen in [28]. The overall results were that iStar outperformed both
Star Coordinates and radViz with statistically significant margins.

2.7 Colours

Choosing colours for user interfaces is a difficult task, which is often left to the discretion
of a designer or user experience expert. In order to make the distinction of different colours
easier, KL Kelly introduced the Twenty-two colours of maximum contrast [30]. They
are aimed at being easy to differentiate and can be seen in Figure 2.1 along with their
hexadecimal colour value.

2.8 Unity

A Unity application is mostly built using a few fundamental building blocks. These build-
ing blocks dictate the architectural decisions and best practises, and it is important to
understand them in order to have a friction-less experience building high-quality Unity
applications. Figure 2.2 shows these blocks in the context of StarVR.
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Figure 2.2: Overview of the artefacts in a Unity application

Scenes

A scene in Unity is the highest hierarchical level of the application. It can be thought of
like a scene in a play. It contains its own set of GameObjects which allows the game to be
designed in decoupled pieces that are mostly independent of each other. It is possible to
have multiple scenes loaded simultaneously, but the application described in this section
only relies on completely decoupled scenes.

GameObjects

A GameObject is a container for everything in a Unity application. Everything from prim-
itives, meshes, lights, players to special effects. The GameObjects themselves cannot do
anything apart from existing, so in order to give them properties a Component is added. A
Component can do a multitude of things. To make an object show up in the application, a
renderer component is required. To be able to move the GameObject, a transform compo-
nent is applied by default. If custom behaviours are required, a script component is added.
An overview of these is seen in Figure 2.3.

Transforms

A transform component dictates the GameObjects’ rotation, position and scale in the
scene. These can be set, updated and animated thought script components. Another impor-
tant feature is the ability to set a transforms parent. The child will inherit the parents trans-
form and then apply it’s own on top of that. When transforming the parent, the children
will respond accordingly. The benefit of this is that no scripts are required to individually
move the children when the parent is either moved, rotated or scaled.
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Figure 2.3: Some of the properties of the GameObject

Scripts
In order to make the GameObjects behave in the desired manner, scripts are used to mod-
ify their components in a programmatic manner. They can also be used to instantiate,
hide/show and destroy GameObjects. The scripts are written in C#, and all supported run-
times (.NET) and libraries in the C# ecosystem can be used. The scripts can read from
the filesystem, access the internet, access databases and use complex libraries for machine
learning and data manipulation.
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Chapter 3
Requirements

This section describes the functional and non-functional requirements of the StarVR ap-
plication. The project has been developed in an iterative process with continuous feedback
from supervisors and test users, so this section will mostly describe the requirements as
they stand today. The secondary goal is also to give an introduction to the application so
that the following chapters are easier to follow without experience using the application
first-hand. The instructions for running the application can be found in Appendix C.

3.1 Functional requirements
The features of StarVR are all implemented according to common virtual reality principles
and aims to be as intuitive to use as possible and provide tools that allow the user to extract
valuable information in a faster and easier manner. The features are inspired by the original
Star Coordinates [1] as well as extensions of this discussed in the previous chapter.

Dataset selection

The first scene that the user finds themselves in is the dataset selection menu as can be seen
in Figure 3.2. Here they have to choose which dataset they want to work on. This is at the
moment limited to .csv files that are bundled at build time, but it can easily be extended to
integrate with any offline or online data source specific to the user’s needs. The user uses
the right-hand pointer and trigger to select a dataset, which is a common way of interacting
with menus in VR applications.

Axis selection and representation

The next menu is the axis selection and representation menu as seen in Figure 3.3. Here,
the user can select which axes to be visible when they start the Star Coordinates visu-
alisation. They can also select how the datapoints are distributed along the axes. The
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Figure 3.1: Controller scheme for SC application

options are listed below along with their respective functions. The ranges and domains of
all functions are [0, 1]. They can also be seen in Figure 3.4.

• linear f(x) = x

• inverse linear f(x) = −x

• sigmoid f(x) = 1
1+e−x∗12+6

• inverse sigmoid f(x) = 1− 1
1+e−x∗12+6

• exponent f(x) = x5

• inverse exponent f(x) = 1− x5

Translation
There are three ways to change the position of the coordinate system relative to the user.
The simplest is to use the d-pad, which is marked Move Origin in Figure 3.1. Another
option is to hover over the origin, press Grab axis and drag it around. The last option is
to use the left-hand d-pad, marked Teleport in Figure 3.1. This is the SteamVR default
teleport behaviour.

Rotation
Rotation of the coordinate system is performed by pressing both triggers, marked Ro-
tate/Scale in Figure 3.1 and move the controllers relative to each other. The rotation of the
controllers is applied to the coordinate system. If the user holds one controller still while
moving the other from the left of it to the top of it, the coordinate system rotates 90 deg on
the corresponding axis.
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Figure 3.2: Dataset selection in the SC application.

Scaling

Scaling is done in a similar way to the rotation, but instead of measuring the relative rota-
tion, it measures the distance between the controllers. Pressing the triggers and doubling
the distance between the controllers increases the coordinate system scale by a factor of 2.

Toggle axes

Toggling the axes changes whether they are included in the SC calculation. To disable
an axis, hover over the axis points, press the right menu button marked Toggle axis in
Figure 3.1 and the axis is disabled. The operation can be seen in Figure 3.5. On the left,
the axis point is being hovered over. By clicking the right menu button, the axis disappears.
Although hard to see from the perspective, the datapoints have moved slightly and the axis
name is now listed above the origin in the background. In order to get the axis back, hover
over the name above the origin and click Toggle axis again.

Merging of axes

In cases where there are many axes to keep track of, the user can choose to merge them so
that they can be moved together. Moving one axis on top of another merges the two axes,
and the result can be seen in Figure 3.6. In order to separate the axis, hover over the axis
name and click the Toggle axis button in Figure 3.1.
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Figure 3.3: Axis selection and representation in the SC application.

Star Coordinate path

Another interesting and useful feature of Star Coordinates is the ability to see the path a
datapoint took to get to its current position. This path consists of the individual vectors
that make up the linear combination that is Star Coordinates. The path is shown when a
datapoint is hovered over. The result can be seen in Figure 3.7.

Plots

An additional feature was proposed by Jo Skjermo during the development of the StarVR
application. This was a series of 2D plots of the data arranged in 3D space. It can of-
ten be useful to compare the attributes of a dataset pairwise in the search for interesting
correlations. Having 360 deg of vision allows these axes to be laid out in such a manner
that it is easy to quickly spot interesting attribute pairs. An example of this is shown in
Figure 3.8. The user can teleport and rotate the circle of plots to quickly gain an oversight
of the selected axes and their pairs.

Save configuration

When the user is satisfied with their axis configuration, they can export this for use in their
continued data exploration. The configuration is simply the 3D vector representing each
attribute in the dataset. This is saved to a text file, which can be used to transform the
entire dataset into three dimensions using the Star Coordinate algorithm. The dataset of
reduced dimensionality can then be used for further processing and analysis.
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Figure 3.4: Comparison of axis transformation functions.

3.2 Nonfunctional requirements
Having nice and useful features are all well and good, but without a functioning applica-
tion, they are worthless. StarVR is an MVP, and the functional requirements have taken
some precedence. The main goal is to be able to test new hypotheses in a quick and easy
way, while still be able to run it on datasets that are fairly similar to what one would expect
to see in day-to-day use by an industry professional.

Performance
Performance in VR applications has many similarities with other real-time programs, such
as computer games. There is only a set amount of time to perform the calculations for
each frame, and that is a hard deadline. The primary goal has been to make a functional
application, with the features mentioned, and still be able to use it with reasonably large
datasets. The performance measurements can be seen in section 5.3, a discussion of them
in section 6.2 and further improvements in section 7.1.

Extensibility
When making an MVP, the ability to quickly try out new things is important to find the
best solutions. The StarVR application has been through numerous versions during the
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Figure 3.5: Enable and disable axes in the SC application.

Figure 3.6: Merging axes in the SC application.

last year, some of which almost required a complete rewrite to account for performance
optimisations and architectural changes. The resulting software is as a result more easily
changed and extended, which has allowed the testing of many features, where some are
included in the current implementation of StarVR.

Usability

Although the testing has been done internally in our organisation, following standard pat-
terns for VR applications is important to create a usable product building on the experience
of others. If the user is familiar with VR in general, picking up StarVR should be a breeze.
It also allows the developer to leverage existing technologies that provide default interac-
tions and functionality so that the focus can be on developing the StarVR concept.
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Figure 3.7: Enable and disable axes in the SC application.

Availability
Using Unity allows the developer to build the StarVR application for many target plat-
forms. Given the targeted use-cases and audience, the most viable are desktop computers
running either Windows or Linux, but there is flexibility to extend to others if this seems
beneficial.
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Figure 3.8: SC 2D plots of attributes.
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Chapter 4
Implementation and Tools

There is a multitude of available game engines and VR systems out there. For this project,
however, it was important that the chosen technology allowed fast prototyping, state-of-
the-art results and that is was reasonably simple to use and learn. This section will go
through how the solution was implemented, what technologies were used and what some
other options are.

4.1 Game engine
The game engine used in this project is Unity [12]. There are multiple commercially
available engines available, as discussed in section 1.3, so choosing Unity was based on a
few criteria:

• Features: Provide state-of-the-art features and integrations.

• Graphics: Provide good graphics.

• Language: Has support for a familiar language.

• Learning curve: Has a lot of tutorials and examples.

• Plug-and-play: Works more or less out of the box with VR.

• Performance: High performance compared to competitors.

Most of the modern game engines fulfil all of the requirements mentioned above, so
the choice of Unity was ultimately made due to the C# programming language, ease-of-
use and the abundance of available tutorials. The results achieved here would be possible
to recreate in every major game engine, so the choice is more of a personal preference of
the author.

The other major commercially available game engine is Unreal Engine. It uses C++
as a scripting language. The graphics of Unreal Engine is generally seen as higher quality
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than Unity when developing complex games and visualisations. Unreal does have a steeper
learning curve and their asset store is smaller than the Unity counterpart.

4.2 VR device
The choice of a VR device was made on the availability of hardware at the university. It
is worth to mention that all other serious competitors provide similar features and per-
formance and that the application support most available hardware due to the OpenVR
SDK.

The main competitors in VR hardware are HTC Vive and Oculus Rift. Disregarding
the new HTC Vive pro, the Vive and the Oculus have the same resolution and framerate.
They both support full room setups, but the Oculus is more geared towards a less expansive
setup. The Vive supports full room setups out of the box with a max diagonal of 5m while
the Oculus only supports 3.5m. The new HTC Vive Pro has an increased resolution of
2,880 x 1,600 while the original Vive and the Oculus have 2,160 x 1,200 pixels. The
screen has also changed from an OLED to AMOLED. In Oculus defence, it is the cheaper
option, and it provides almost all of the features of the Vive counterparts at a lower price.

4.3 OpenVR SDK
When developing a VR application, you need to use the devices proprietary API’s to com-
municate with the devices. This introduces a large overhead related to development time.
One solution to this problem is OpenVR SDK [31] made by the game developer Valve
[32]. Together with the OpenVR plugin for Unity, it is possible to develop one application
for all OpenVR SDK supported devices. It also has support for HTC Vive and Oculus Rift,
as they are most commonly used in enterprise and education settings.

4.4 System architecture
When developing an application in a game engine, there are a lot of choices that have
already been made for you by the creators [33]. These choices and abstractions are what
makes the game engine such an appealing choice for developers who do not know enough
about the underlying mechanics to build an entire 3D application or those who do not wish
to do so due to the complexity and resources involved [34].

Unity has some concepts and artefacts that are important to understand in order to
build an application. The first one is the GameObject [35], which is the base class for all
entities in a Unity scene. Unity is built with an object-oriented architecture, so all other
entities will in some way inherit from GameObject. The other artefact is scripts [36].
Scripts are custom code that can be attached to GameObjects to provide functionality
though Components. These scripts can access and alter any part of the scene that they
have a reference to. All scripts are derived from the base class MonoBehaviour, and the
scripts can choose to implement a set of methods that are called on certain events by the
base class. The most used ones are Start which is called when the script is activated and
Update which is called on every frame.
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In this project, there are a few GameObjects. Their role is to act as containers for dy-
namically instantiated GameObjects. There are also a few GameObjects that act as a pre-
fab, a template for dynamic content. When the application loads, the plotter GameObject
calls the Start method. This loads the dataset from the filesystem, read it into memory and
instantiates new GameObjects into the scene. Then, on every frame, the update method
checks if any button is pressed. If it is, it will change the associated variable and update
the position of all instantiated GameObjects. Then it simply repeats until the application
ends. A diagram of this can be seen in Figure 4.1. Pseudocode of the Render function can
be seen in Listing 4.1.

Figure 4.1: Unity update flow. The red lines indicate what happens once the script is activated and
the green lines indicate what happens on every frame. The call to Rerender is only performed if a
keypress is detected.
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Listing 4.1: Pseudocode for updating of Star Coordinate visualisation in Unity

def Update :
# Update p o i n t s
f o r i n s t a n c e , i n d e x in p o i n t s H o l d e r :

p o s i t i o n := o r i g i n

f o r a x i s , a x i s I n d e x in axes :
p o i s i t i o n += a x i s ∗ d a t a [ i n d e x ] [ a x i s I n d e x ]

i n s t a n c e . p o s i t i o n = p o s i t i o n

# Update a x i s h a n d l e s
f o r i n s t a n c e , i n d e x in a x e s H o l d e r :

p o s i t i o n := o r i g i n + axes [ i n d e x ]

i n s t a n c e . p o s i t i o n = p o s i t i o n

# Update a x i s l i n e s
f o r i n s t a n c e , i n d e x in a x i s L i n e H o l d e r :

i n s t a n c e . s t a r t = o r i g i n
i n s t a n c e . end = o r i g i n + axes [ i n d e x ]

4.5 Application Architecture and Rationale
In order to create a high-performance data visualisation application in Unity, it is important
to follow their guidelines and try to not work against the framework. The first implemen-
tation positioned the datapoints in world space, and therefore required a re-position on
every change to the coordinate system. The newest version uses parents/children trans-
form hierarchies to offload the computational expense of repositioning the GameObjects
and relies on the built-in GPU implementation of transforms to do this automatically. This
improvement also resulted in cleaner, easier to read and resulted in less code.

4.5.1 Architectural principles
When hearing the word global variables, a lot of people instantly regards this as a huge
red flag and a code smell. They might be on to something. If all parts of the application
have the ability to read and write to common variables, it is harder to reason about how
a particular variable has changed. It is also harder to make sure all parts on the software
that depends on these variables updates correctly. To mitigate this, the implementation
in this project is inspired by the flux architecture [37] by Facebook. This results in a
unidirectional data-flow, where actions triggered by the user results in state changes, which
again results in all dependent entities update based on this state change. This does not
prevent changes to global variables but simply creates a rigid structure to adhere to. By
encapsulating the global variables, as described by Martin Fowler in Refactoring [38], a
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layer of abstraction is achieved which gives greater insight and control of a variable. When
combining these two approaches, the result is a dataflow that works well for this kind of
dynamic data visualisation application.

4.5.2 Star Coordinates

StarVR’s implementation of Star Coordinates and how all the elements interact with each
other can be seen in Figure 4.2. The main hub of all changes are the Data Plotter Script.
This script updates the Star Coordinate configuration and changes the application state
based on input from VR interaction. The update part of the Script can be seen in algo-
rithm 1 which also calls algorithm 2. The remaining functionality is mostly wrappers for
changing the application state.

4.5.3 Parenting

By leveraging the power of parent/child transforms, the complexity of the application went
down and the performance went up. The performance benefit was only visible when not
transforming the Star Coordinates system. The hierarchy can be seen in Figure 4.3.

4.5.4 Event system and updates

The fist implementation of StarVR relied solely on a polling mechanism for detecting user
interaction and physics collisions. Using version 2 of SteamVR, a lot of the polling could
be replaced with callbacks instead, lessening the overhead of constantly checking if certain
criteria are met. There are still some parts of the application that uses polling, but only in
performance insensitive areas. While Figure 4.2 show all the elements of the application,
Figure 4.4 shows a higher level abstraction of how the updates are performed. The Scene
registers listeners for relevant interaction actions and starts checking for update criteria.
When a listener is triggered or a certain criteria is met, the accompanying state change is
performed through the Data Plotter Script. The changes then result in a change to the Star
Coordinate system. Then the loop repeats until the Scene ends.

4.5.5 Data structures

The data structures used in the application are native to the C# programming language,
Unity and the .NET framework. The datapoints from the dataset are stored in a static
variable of type

List <Dictionary<string, object>>pointList

This is a two-dimensional datastructure where the first layer is a List, where any datapoint
can be looked up by its index. The returning value is a Dictionary. This is a mapping from
an attribute, which is a string, to its corresponding value, which can be of any type. This
object type does cause some annoyances when using the data, but the value could be of
any datatype and it has to be dealt with at some point in the pipeline. The time complexity
of the retrieval of any points attribute is constant time.
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The attributes are also stored in a List, which gives them an order. This is used to
store the mapping of attributes to groups in another List. The indexes of these two lists
correspond to the same attribute/group pair. This is visualised in Figure 4.5. This is done
as it is required to get all attributes in a group, as well as getting a certain attributes group.
This is then easier than using a Dictionary, which would be preferable if only one of the
lookups were required.

4.5.6 Source of truth
In a complex application, it is important to have a clear mental model of the current state
of the system. Alongside this, having a single source of truth is helpful when debugging
and it minimises the risk of unforeseen side-effects and discrepancies.

There are two entities in the application which are directly modifiable by the player
using the built-in physics collision detection system: The origin and the axis points. When
moved, they retain their position unless moved by a script. These two entities were there-
fore chosen to be the source of truth of the application state. It is also very convenient that
a GameObject has a localPosition attribute, which is the position relative to its parent. In
this case, the parent is the origin. This means that the origin can be transformed at will,
and it will have no effect on the position or rotation of the axis configuration. Mathemat-
ically, these properties are also not important for the calculations and can be discarded
when the axis configuration is exported from the system. This export is then simply the
localPostition of all axisPoints which is then mapped to the attribute names.

4.6 Input and output
The input to the system is in the form of a .csv file that conforms to the schema in Table 4.1.
If the problem at hand is a classification task, the class column will dictate the colours of
the datapoints. If there is no class attribute, all the datapoints will have the same colour.
The system only accepts numbers as attribute values, but can easily be extended to include
discrete values as well.

The output from the system is a .txt file that conforms to the schema in Table 4.2. This
configuration can then be used to transform the whole dataset into the 3D star coordinate
version. An example of how to do that is found in Appendix B.
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Algorithm 1: Main update loop
Input : Datapoints(gameObjects) D

Axes(gameObjects) A
AxisLines(gameObjects) L
Paths(gameObjects) P
Origin scale scale
Active datapoint ad
hasMoved(axis index) hasMoved

/* If the origin scale has changed, scale the children down
accordingly */

1 if previousScale != currentScale then
2 for each datapoint d ∈ D do
3 d.scale← 1/scale
4 end
5 for each axisPoint a ∈ A do
6 a.scale← 1/scale
7 end
8 for each axisLine l ∈ L do
9 l.scale← (1/scale, l.scale.y, 1/scale)

10 end
11 end

/* If a datapoint is selected, draw the path from origin */
12 if ad >= 0 then
13 P.setActive← true
14 paths← calculatePath(ad)
15 for each p, i ∈ paths do
16 p.getChild(i).setPosition← p
17 end
18 end
19 else
20 P.setActive← true
21 end

/* If an axis has moved, update axes */
22 if hasMoved != −1 then
23 for each axis ∈ axisHolder do
24 axis.setActive← checkIfActive(axis)
25 if axis.position.magnitude < 0.7 then
26 disableAxis(axis)
27 end
28 else
29 if axis is close to other axes then
30 mergeAxes(axis, otherAxes)
31 end
32 end
33 UpdateAxisData(axis)
34 RepositionAxisLine(axis)
35 UpdateAxisName(axis)
36 SetActive(axis)
37 end

/* Update all datapoints in local coordinates */
38 for each datapoint d ∈ D do
39 d.position← calculateGroupedStarCoordinates(d)
40 end
41 end
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Figure 4.2: Star coordinates implementation overview

Figure 4.3: Application hierarchy
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Figure 4.4: Application update loop

Figure 4.5: Grouping array. The green numbers highlight attribute 3 who is a part of group 6.

Algorithm 2: Computation of grouped Star Coordinates
Input : Datapoint Dj

Axis group configuration vectors A
Mapping of attributes to groups G

Output: 3D vector Pj representing position in 3D space
1 Pj ← Zero vector
2 for each group g ∈ G do
3 groupV alue← 0
4 for each attribute i ∈ g do
5 groupV alue← groupV alue+Dji

6 end
7 Pj ← Pj +Ag ∗ (groupV alue/|g|)
8 end
9 return Pj
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attribute 1 · · · attribute N class(optional)
4 · · · 1.0 Fish
1 · · · 1.1 Fish
6 · · · 0.7 Mammal
7 · · · 1.2 Fish
...

...
...

...

Table 4.1: Input data structure for SC application

attribute x y z
attribute 1 1.4 -0.3 3.2
...

...
...

...
attribute N 1.4 -0.3 3.6

Table 4.2: Output data structure from SC application
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Chapter 5
Results and discussion

Figure 5.1: Screenshot from the project showing the Iris dataset.

Portraying a 3D immersive experience on a two-dimensional static piece of paper
leaves a lot to be desired. A screenshot from the application can be seen in Figure 5.1.
The black lines and spheres are the axes of the dataset and the coloured spheres are the
data points. The dataset is the Iris Dataset as described earlier, and the colours represent
the species. Even though this is a two-dimensional representation for the purpose of be-
ing presented on paper, some three-dimensionality can be inferred from the size of the
spheres. The axes are distributed evenly in 3D space, and we can easily see how the red
data points have a much stronger dependency on the axis pointing towards the camera. In
the following section, a synthesised random dataset was created to measure performance
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and give an indication of cognitive overload. Keep in mind that a random dataset is a worst
case scenario, as there is no correlation between data points.

5.1 Number of axes

Figure 5.2: Comparison of different number of axis

The number of axes is given by the number of attributes in the dataset. Figure 5.2
shows the difference between 10 and 100 axes on the same dataset with 100 and 1000
instances. Even though complexity is a subjective matter, using this system with 100 axes
is simply not feasible. Based on experience, the sweet spot for the numbers of axes is less
than 10.

If the system were to be used with a dataset with high dimensionality, possible solu-
tions include selecting a subset of the attributes or to combine the attributes.

5.2 Number of instances
The number of instances, or data points, is given by the size of the dataset. Figure 5.3
shows a comparison of 100, 250, 1000, 10000 instances. 250 instances were found to be
the sweet spot for the randomised dataset, and 600 was sufficient for real-world datasets. A
possible feature would be to allow the user to select the number of instances to show. For
Parallel Coordinates, which has a lot in common with Star Coordinates, selecting a random
subset of the dataset has proven to be the most accurate solution to solving cluttering of
the visualisation[39].
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Figure 5.3: Comparison of different number of instances

5.3 Performance
Performance in a VR application is very important to prevent motion sickness and nau-
sea. In Table 5.1 are the measured frames per second for the different random datasets.
These are the lowest consistent framerates (ignoring short spikes) that are recorded while
transforming the Star Coordinates axis configuration. This section will focus on CPU per-
formance, as this is shown to be the bottleneck in this system by a large margin. GPU’s are
made to handle complex scenes with large amounts of geometry, like those found in mod-
ern videogames. Rendering a few thousand spheres is a simple task for a decent GPU, and
the amount of video and system memory needed is also rather small. The specifications of
the computer used to run the tests are found in Table 5.2. The refresh rate of the Vive is
90FPS, which is required in order to prevent VR motion sickness. In order to maintain a
90FPS framerate, all calculations must be performed faster than the time a frame stays on
the screen. This can be seen as

timePerFrame =
1

framerate

so in order to maintain 90 frames per second, the calculation can take no more than 11
milliseconds.

The colours found in Figure 5.5, Figure 5.6 and Figure 5.7 correspond to the labels in
Figure 5.4.

An analysis of Table 5.1 shows that the only fully usable result from the three tests is
found in Figure 5.5(10 axes x 100 instances). The HTC Vive used to develop the software
runs at 90FPS, which means that 10 attributes and 100 datapoints will provide a smooth
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100 instances 1 000 instances
10 dimensions 140 fps 20 fps
100 dimensions 10 fps unusable

Table 5.1: Worst case performance metrics on synthesised datasets.

Figure 5.4: Colour map for performance graphs.

user experience without any lag, tearing or stuttering. The performance while idle, as
seen in Figure 5.5a, shows a consistent framerate of about 140FPS which is well above
the required 90. Most of the time between frames is used to render objects to the screen,
and some script evaluation to detect events such as user interactions. In Figure 5.5b, the
framerate while rotating the coordinate system is mostly similar. The most interesting
difference is the work required to perform physics evaluations while rotating, whose job is
to check for collisions between the data and axis points and the user controllers. There is
however a huge change in performance when one of the axes are moved. This can be seen
in Figure 5.5c. When the axes are moved, all the points positions in local space must be
recalculated and updated. This is a rather large task that requires the multiplications of all
axes and all datapoint attributes. This is all done on the CPU, and is therefore substantially
contributing to the framerate reduction.

The next test increases the number of datapoints to 1000. The performance can be seen
in Figure 5.6. Both idle, Figure 5.6a, and rotation, Figure 5.6b, show negligible framerate
reductions from 100 datapoints.This indicates that roughly 140FPS is the baseline framer-
ate for any scene. The amount of physics calculation has increased, as there are an order
of magnitude more object to calculate interactions between. As expected, and confirmed
by Figure 5.6c, the amount of CPU calculations required for the coordinate system has
increased substantially. A framerate of 30FPS is usable but very tiring to the user. Script
evaluation went from about 3ms to 30ms.

The last test set the number of attributes to 100 and the number of datapoints to 100.
The result can be seen in Figure 5.7. Even when idle, Figure 5.7a, and when rotating,
Figure 5.7b, the framerate is inconsistent but usable. The axes have a lot more functionality
related to them than the datapoints, and the complexity of the calculations increases. When
transforming the performance is abysmal, as can be seen in Figure 5.7b, and absolutely
unusable. Using the system at 15FPS for even a minute causes nausea.

36



(a) Performance while idle. (b) Performance while rotating

(c) Performance while transforming

Figure 5.5: Profiling. 10 axes and 100 datapoints.

5.4 Comparison to iViz

In this section, a comparison to iViz is performed, highlighting the key differences in the
methods and tools used.

Interactivity and collaboration

The interaction is one of the main differences between this project and iViz. The interac-
tion model of iViz, described in section 2.5, is very static, and based on their publication[24],
does not allow for any other transformations than translation and rotation. The only pa-
rameter available to the user is the dimension mapping.

Operating System Microsoft Windows 10 Pro
CPU Intel i7-5820K 6-core @ 3.30GHz
RAM 32GB
GPU NVIDIA GeForce GTX 980 Ti
Game engine Unity 2017-2-0f3
VR system HTC Vive

Table 5.2: Software and hardware specifications on test machine
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(a) Performance while idle. (b) Performance while rotating

(c) Performance while transforming

Figure 5.6: Profiling. 10 axes and 1000 datapoints.

Data representation

The other big difference between the projects is how they represent the data in 3D space.
iViz represents data orthogonally and unambiguously by mapping attributes directly to
many dimensions. Star Coordinates uses a non-orthogonal space, and the points become
ambiguous but contained in three dimensions. A comparison can be made as in Table 5.3.

Data dimension iViz Star Coordinates
Sepal length x-axis x, y, z axis
Sepal width y-axis x, y, z axis
Petal length z-axis x, y, z axis
Petal width size x, y, z axis
attribute1 shape x, y, z axis
attribute2 texture x, y, z axis
attribute3 transparency x, y, z axis
Species color color

Table 5.3: Difference is axis mapping between iViz and Star Coordinates.

38



(a) Performance while idle. (b) Performance while rotating

(c) Performance while transforming

Figure 5.7: Profiling. 100 axes and 100 datapoints.

Patents

The team behind iViz has also filed a patent for Systems and methods for data visualization
using three-dimensional displays with patent number US9665988B2. At the surface, this
patent seems very broad and generic. It describes their system in meticulous detail and
seeing as many of the main components differ between our approaches, the patent is highly
unlikely to cover this project.

5.5 Good vs bad configuration

When moving the Star Coordinate axes around, the goal is to achieve the maximum level
of separation between the classes. To illustrate this, a dataset containing votes from the
Senate in the USA has been used as a simple example with two classes. The class is either
Republican or Democrat. The attributes are questions categories, and the datapoint is a
person’s votes on these categories. In Figure 5.8, the results of 3 minutes of work are
shown. Most of the datapoints are situated along with their respective class, while a few
are lost in the middle. These in the middle are the cause of the non-perfect classification
score and should be minimised to the best of ones ability. It is however not always possible,
as outliers do exist in most real-world datasets. When ran through kNN with k = 3, the
accuracy was at 94.8%.

In Figure 5.9, we see an axis configuration that separates the classes to a lesser ex-
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tent than the previous example. How difficult it is to separate the classes comes down to
the properties of the dataset, like the degree of correlation between attributes, number of
classes etc. When ran through the same kNN configuration, the accuracy was at 84.4%,
which shows the importance of a good axis configuration.

Figure 5.8: Good axis configuration with separation between the classes.

5.6 kNN accuracy and size reduction

For the Iris dataset, all methods provided good results. This is not a particularly difficult
dataset to work with, apart from some datapoints that are in between two classes. These
are hard to separate without any continuous feedback on the current configuration.

With the HTRU2 dataset, the goal is to binary classify pulsars, which is a type of
neutron star. The dataset contains different scientific metrics of the candidates. Here,
StarVR and kNN alone provided better results than PCA. This dataset was easy to work
with in StarVR, and the separation of classes was easier to find than in a lot of the other
datasets.

The Congressional Voting Records data set contains the votes of members of Congress
concerning different topics (the attributes). The goal is to classify the member to his/her
party based on these votes. This dataset was fairly easy to work with, but had some of
the problems that the Iris dataset had with rouge datapoints between the clusters. StarVR
performed marginally better than PCA, and both were worse than kNN alone.

The glass identification data set contains the mineral composition of glass samples and
the goal is to classify the type of glass. This dataset has 7 classes, which were hard to
keep track of when using StarVR. Even pure kNN struggled with this one. PCA managed
a perfect score. This is an indication that implementing PCA into StarVR could have huge
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Figure 5.9: Bad axis configuration with little separation with classes.

benefits both in terms of accuracy and time saved configuring axes and is discussed further
in section 6.3.

The last, and most difficult, dataset was the Breast Cancer Wisconsin (Diagnostic)
dataset. This dataset has 14 axes. It was difficult for the user to understand how each axis
affects the plot as a whole, and moving them did not seem to do provide better segregation
of the classes. Both kNN and PCA provided good results, and this further backs up the
idea of including PCA into StarVR to be able to handle more complex datasets.

Dataset dims points classes kNN acc PCA acc StarVR acc
iris [4] 4 150 3 98.0% 100.0% 96.0%
HTRU2 [40][41] 10 17898 2 97.1% 94.5% 97.0%
votes [42] 16 408 2 97.0% 93.3% 94.8%
glass[43] 10 214 7 70.4% 100.0% 67.6%
cancer [44] 14 569 2 94.7% 92.0% N/A

Table 5.4: kNN performance results comparing StarVR and PCA. k has been set to 4 for both
methods and all datasets.
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Chapter 6
Conclusion

This project has enlightened both theoretical and practical aspects of using Star Coordi-
nates in Virtual Reality. From a theoretical and mathematical perspective, the extension of
Star Coordinates into three dimensions is fairly straightforward and provides a larger space
of operation. The dataset then retains more of its original information. From a practical
perspective, the usefulness and the practicalities of the application have been considered.
Using a game engine to develop data visualisation software for VR has been a pleasant ex-
perience, for the most part. The setup was mostly painless, apart from some configuration
and version mismatching of the plugins used in Unity.

6.1 Usability
One of the main selling points of VR is that the user can interact with the application as if
it were real life. The interactions have their real-life counterparts, like grabbing, moving,
stretching and turning. By leveraging these human motor functions and mapping them to
application tasks, the usage of the application quickly becomes second nature.

It is important to talk about the target audience when discussing usability. The appli-
cation has been tested mostly on people who are somewhat technically focused, and the
results might not be representative of the population at large. It does not require any techni-
cal experience to use, but in order to understand what to do and why the datapoints behave
as they do, a certain amount of knowledge is required. The application is more catered
towards data scientists and students who have an interest in the field of data science.

6.2 Performance
While the performance of the system is good enough for displaying more elements than a
user would need, there is no reason to stop there. The main bottleneck of the application
showed to be the single-threaded, synchronous execution of the star coordinates calcula-
tion. The task is performed on the same thread as the application itself, and is the main
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factor for lowered performance while configuring the axes. The computer used for this
project has a lot of CPU cores, but the single thread performance is not great at 3GHz. A
CPU with fewer cores and higher clock speed would probably yield better results. This is
however not a scalable solution, but merely a band-aid. In order to further enhance the ap-
plication performance, a re-architecture is required. The most obvious solution is to move
the slow code to an asynchronous thread. This would result in the datapoints positions not
updating as smoothly, but the overall frame-rate would increase immensely. This would
complicate the application further, which was found not beneficial for this prototype.

The important take-away is not the absolute performance, but the fact that anyone
which some technical knowledge and programming experience can make this application
work. It is therefore what I would consider a lower threshold of performance, and if
someone were to make this a commercial product, they would have the know-how and
resources to achieve much greater performance. StarVR serves as a proof that implement-
ing Star Coordinates in Virtual Reality using a commercial game engine is doable from a
performance perspective.

6.3 Dimensionality reduction
Based on the results discussed earlier, the results of dimensionality reduction for kNN
classification show that StarVR has comparable results to automated methods. The main
benefit over alternative methods is the ability to tweak the axis configuration to optimise
for the dataset at hand. Not all datasets will yield the best results when optimised for
variance or other metrics. It can also use these methods as a starting point for further
manual optimisation to improve results further. There are however some limitations of the
dimensionality of the dataset, and some datasets lend themselves better to Star Coordinates
than others. For datasets with less than 10 attributes, the results were comparable and
sometimes better, than automated PCA. Some datasets were also harder to make sense of
than others, which is probably due to how the attributes are related to each other. If the
dataset has some attributes that separate the classes more distinctly than others, these are
easier to find and use as a starting point. Without these starting points, it becomes harder
to find a good configuration in a short time. A possible solution to this is to use existing
data reduction techniques as a starting point for StarVR. This would in many situations
resolve this issue, or at least remedy it. Star Coordinates is therefore not a perfect solution
to all dataset, but as many other techniques, a tool in a data analysts toolbox.

6.4 Commercial exploitation
Making a proof of concept is useful for validating a hypothesis, but in order to reach real-
life users, a more commercial approach should be considered. The 3D data exploration
space is not crowded with competitors, and those who exist fail to impress industry pro-
fessionals. One of the more serious competitors, who have a similar scope to this project,
is DatavizVR[45]. They launched in 2016, and have not had many updates since. The
initial public reaction was positive to the use of data visualisation in VR, but the imple-
mentations and features were not good enough for data visualisation experts and business
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users.
If the star coordinates virtual reality application were to be expanded with some of

the most basic features, like import and export, real-time analysis and integration with
common data manipulation tools and frameworks, the possibility of commercial success
is real.

6.5 Other applications
While the scope of this project has been evaluated above, some new applications of the
project have emerged during its development. While it performs well at its intended tasks,
it could also provide value to other parts of eScience and society as a whole.

The StarVR applications primary goal is to manipulate data and perform dimensional-
ity reduction. There is however nothing in the way of using it as a static, immersive data
visualisation tool.

Another area to consider is eLearing and gamification. The StarVR application could
be used at high school and higher level to provide a more hands-on approach to eScience
and mathematics. Using digital learning tools is becoming more main-stream, and using
Star Coordinates in VR might have a motivating effect on students who are more visual
learners rather than simply stating formulas and theorems. It could even implement gami-
fication elements, like performing the best configuration for certain data analysis tasks.
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Chapter 7
Future work

In this thesis, it has been shown that a tool like StarVR has a place in the world of data
science. However, this does not mean that StarVR in its current form is ready for the com-
mercial market. It is merely a prototype, meant to showcase the possibilities of interactive
VR in data science. This section discusses the implications and steps necessary to take
the ideas and mechanics of StarVR to the next level, while still being able to add new and
useful features and integrations to be able to provide a versatile tool for professional data
science and visualisation.

7.1 Performace

The main bottleneck of StarVR is real-time performance. While using a high-level frame-
work for prototype use speeds up prototyping immensely, it also comes with its fair share
of drawbacks. Unity is mostly used for game development, and the architectural decisions
of the platform reflect that. Performing complex data analysis tasks is not the norm. In or-
der to provide considerable performance improvements, more than simply optimising the
current system would be to start building from a lower abstraction level. It is much more
resource intensive in terms of manpower and expertise required but comes with fewer of
Unity’s drawbacks.

The main problem regarding performance is the calculation of the Star Coordinates on
all datapoints. The CPU is excellent at performing a sequence of tasks rapidly, but it is
not optimised for complex parallel workloads. It would be of interest to experiment with
offloading the computation of Star Coordinates to a GPU. If successful, it will to a large
degree remedy the main performance concern of StarVR.

While it might seem like leaving Unity only has benefits, it is far from the truth. Im-
plementing a VR application on a range of operating systems, architecture, hardware and
software is a massive undertaking. It could be of interest to investigate other VR compat-
ible solutions, which are lower level than Unity and allows for more fine-grained control
over how the calculations and visuals are carried out.
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7.2 Integrations
In order to make the application more useful for the working professional, it is important
to make the workflow as seamless as possible in conjunction with other industry standard
tools, libraries and systems.

The next logical step would be to incorporate StarVR with common data storage strate-
gies. Loading files from the filesystem as well as network locations are the most basic
functionality while connecting to local databases and being able to query for data might
be more advanced use cases. It would also be of interest to be able to export data back to
the sources for storage, as well as any produced metadata, such as axis configurations and
analytic scores. Another possibility is to allow streaming of real-time data, and visualise
and configure the axes in a sliding time window where datapoints appear and disappear
after a certain amount of time. Then, one would be able to see the evolution of the kNN
score, for instance, over time and look for how time affects the incoming datapoints.

Integrating common data analysis methods is a two-edged sword. It is very nice to
have if you need it, but quite useless and bloated if you don’t. Some sort of pluggable
system, using common data structures and interfaces could be of interest. Creating data
structures compatible with scikit-learn, tensorflow and pandas, just to mention a few, could
be very useful.

7.3 Dimensionality reduction
The dimensionality reduction of StarVR works very well when it does, and quite poorly
when it doesn’t. Using PCA as a good starting point should be investigated. Together with
real-time feedback through integrations, the user could be able to consistently perform
on par or better than PCA when performing kNN. Real-time classification comes with
a lot of the problems of the calculation of Star Coordinates, but the penalty of waiting
for a few frames is far less severe. Integrating the kNN classifier more deeply with Star
Coordinates could also provide a performance increase, but it will decrease the modularity
and pluggability of the system. This is a trade-off that must be evaluated based on business
and user needs.

7.4 User testing and evaluation
The system is of no value if the users cannot perform their task in an effective and accu-
rate manner. It is important to investigate common interaction models and evaluate their
usefulness in an interactive 3D application. The aim is to provide a more intuitive and
easy-to-use solution, and testing and evaluation on real users are necessary to validate this
claim.
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Appendix A
Python data normalisation

from p a t h l i b import Pa th
from pandas import pandas

def n o r m a l i z e ( d f ) :
r e s u l t = d f . copy ( )
# Normal i z e a l l b u t t h e l a s t f e a t u r e ( s p e c i e s name )
f o r f e a t u r e n a m e in df . columns [ 0 : −1 ] :

max va lue = df [ f e a t u r e n a m e ] . max ( )
m i n v a l u e = df [ f e a t u r e n a m e ] . min ( )
d i f f e r e n c e = max va lue − m i n v a l u e
v a l u e = ( d f [ f e a t u r e n a m e ] − m i n v a l u e ) / d i f f e r e n c e

r e s u l t [ f e a t u r e n a m e ] = v a l u e
re turn r e s u l t

d f = pandas . r e a d c s v ( Pa th ( ’ d a t a s e t . c sv ’ ) ) . d rop ( ’ i n d e x ’ , 1 )
n o r m a l i z e ( d f ) . round ( 4 ) . t o c s v ( Pa th ( ’ n o r m a l i z e d . csv ’ ) )
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Appendix B
Apply SC transformation

import pandas as pd

t r a n s f o r m = {}

wi th open ( ’ . / g l a s s / s t a r C o n f i g . t x t ’ , ’ r ’ ) a s t :
f o r l i n e in t :

[ a t t r , v e c t o r ] = l i n e . s p l i t ( ’ : ’ )

t r a n s f o r m [ a t t r ] = [ f l o a t ( x . s t r i p ( ) )
f o r x in v e c t o r . s t r i p ( ) [ 1 : − 1 ] . s p l i t ( ’ , ’ ) ]

d a t a s e t = pd . r e a d c s v ( ’ . / g l a s s / o r i g i n a l . c sv ’ )

def t r a n s ( row ) :
r e s = [ 0 , 0 , 0 ]
f o r key in t r a n s f o r m :

r e s [ 0 ] += row [ key ] ∗ t r a n s f o r m [ key ] [ 0 ]
r e s [ 1 ] += row [ key ] ∗ t r a n s f o r m [ key ] [ 1 ]
r e s [ 2 ] += row [ key ] ∗ t r a n s f o r m [ key ] [ 2 ]

re turn r e s

d a t a s e t = n o r m a l i z e ( d a t a s e t )

# Apply t h e t r a n s f o r m a t i o n f u n c t i o n
d a t a s e t [ ’ coord ’ ] = d a t a s e t . apply ( t r a n s , a x i s =1)

# S p l i t t h e ’ coord ’ column i n t o ’ x ’ , ’ y ’ , ’ z ’
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d a t a s e t [ [ ’ x ’ , ’ y ’ , ’ z ’ ] ] = pd . DataFrame (
d a t a s e t . coord . v a l u e s . t o l i s t ( ) , i n d e x = d a t a s e t . i n d e x )

d a t a s e t . t o c s v ( ’ . / g l a s s / s t a r C o o r d i n a t e s . c sv ’ , columns =[
’ i n d e x ’ , ’ x ’ , ’ y ’ , ’ z ’ , ’ c l a s s ’ ] , i n d e x = F a l s e )
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Appendix C
Running the StarVR application

In order to run the StarVR application, a Htc Vive headset and a fairly decent computer
with a graphics card is required. One can either run the pre-built binary for Windows or
build the project from source-code.

Run prebuilt binary
The easiest approach, if it works, is to simply start the executable that accompanies this
thesis. This is dependent on system architecture and OS, so it might not work for everyone.

Build from source
Don’t do this unless you are in for some debugging, as it can be tricky to set up. In order
to build StarVR from source-code and use your own datasets, the follow these steps:

• Download accompanying source-code and unzip.

• Download Unity along drivers and plugins and initialise the project.

• Build the project and add your own datasets in the resources folder.

• Run the build.

If neither of these works, you can contact the author in order to get access to the online
Unity code repository.
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