
Johannes G
rindal Ervum

P
roposing K

itchen D
esigns: A

 C
B

R
 A

pproach

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Johannes Grindal Ervum

Proposing Kitchen Designs

A Case-Based Reasoning Approach

Master’s thesis in Computer Science
Supervisor: Pieter Jelle Toussaint, Sindre Nyvoll

June 2019

Proposing Kitchen Designs:
A Case-Based Reasoning Approach

Johannes Grindal Ervum

Supervisor: Pieter Jelle Toussaint, IDI
Co-supervisor: Sindre Nyvoll, Compusoft
Submission date: June 2019

Abstract
This thesis is motivated by an idea at Compusoft—a software company that devel-
ops a computer-aided design program to design kitchens. The idea is to reuse ex-
isting designs so that the system can propose possible solutions for a new kitchen.
Case-based reasoning is a methodology within artificial intelligence that solves a
new problem based on its experience—the main idea is that similar problems have
similar solutions. In this thesis, however, the extended case-based reasoning view
is used. This means, one measures the utility of a solution to a given problem. It
is reasonable to believe that this approach has a great potential to propose kitchen
designs. This thesis describes what case-based reasoning is and specifically its
application in design. Additionally, it investigates related research in automatic
furnishing and decision support systems in design. This thesis does not only de-
scribe a theoretical solution that is likely to work in practice—a working prototype
is demonstrated and analyzed.

i

Preface
This thesis was written as the final deliverable of the 5-year Computer Science
master’s degree program with the specialization in software engineering at the
Norwegian University of Science and Technology.

First of all, I would like to thank my supervisor Pieter Jelle Toussaint for super-
vising this project, for introducing me to case-based reasoning, and for giving me
invaluable advice that improved the quality of this thesis significantly. I would
also like to thank my co-supervisor Sindre Nyvoll for his support in the imple-
mentation of the system. Without you, or the resources that Compusoft provided
in this project, this thesis would not include a working prototype of the system.

I would like to thank my family for always backing and having faith in me. I would
also like to thank my girlfriend and friends I made here in Trondheim for making
these years a great time. Last but not least, I would like to thank my friends at
home whom I always been looking forward to meeting during the holidays.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Interest in Design . 1

1.1.1 History . 1
1.1.2 Spending on Renovations 2

1.2 Winner Design . 2
1.3 Design Scenario . 3

1.3.1 Potential Problems . 4
1.3.2 Possible Solutions . 4

1.4 Design Challenges for Non-Professionals 5
1.5 Automatic Generation of Designs 5
1.6 Research Questions . 6

2 Theory 7
2.1 Case-based Reasoning . 7

2.1.1 The Standard vs. The Extended View 8
2.1.2 Basic CBR Elements . 9
2.1.3 The CBR Cycle . 15

iii

2.1.4 Applications of CBR in Design 17
2.1.5 Issues in CBD . 18

2.2 Decision Support Systems . 18
2.2.1 DSS in E-Commerce . 18
2.2.2 DSS in Design . 19

2.3 Automatic Furniture Arrangement 21
2.3.1 Automatic Furnishing using CBR and Floor Fields 21
2.3.2 Other approaches . 22

2.4 Computer-Aided Design . 22
2.4.1 History . 22

2.5 Theory in Kitchen Design . 23
2.5.1 The Basic Shapes . 23
2.5.2 Kitchen Island . 26
2.5.3 The Kitchen Triangle . 27

2.6 Summary . 27

3 Method 31
3.1 Type of Research Problem . 31
3.2 The Design Cycle . 31

3.2.1 Problem Investigation 32
3.2.2 Treatment Design . 33
3.2.3 Treatment Validation . 34

4 Solution 35
4.1 Requirements . 35

4.1.1 Classification . 35
4.1.2 Requirements Elicitation 36

4.2 Requirements of the Solution . 37
4.2.1 Quality Attributes . 37
4.2.2 Constraints . 39
4.2.3 Functional Requirements 39

4.3 COTS . 41
4.3.1 ASP.NET Core . 41
4.3.2 Azure Blob Storage . 42
4.3.3 Azure Cosmos DB . 42
4.3.4 Azure App Service . 43

4.4 Architectural Views . 43
4.4.1 Development . 43
4.4.2 Logical . 45
4.4.3 Process . 55
4.4.4 Physical . 59

iv

4.4.5 Scenarios . 60
4.5 Issues . 63

4.5.1 REST vs. RPC . 63
4.5.2 The Complexity of Autoplanning 63
4.5.3 Modifiability . 63

5 Results 65
5.1 Building the Case Base . 65
5.2 The Retrieval Method . 66

5.2.1 The Utility Metric . 67
5.2.2 Adaptations . 68
5.2.3 Performance . 68

5.3 Front End . 70
5.3.1 Integrated Process in Winner Design 70

5.4 Experimental . 73
5.4.1 Problem 1: One Wall . 73
5.4.2 Problem 2: One Wall with Door 74
5.4.3 Problem 3: L-shape . 74
5.4.4 Problem 4: L-shape with Door and Window 76

6 Conclusion 79

Bibliography 81

Appendix 85
A.1 Proof of hash collision probability 85
A.2 Source Code . 86
A.3 CBR Problems . 88

v

vi

List of Tables

2.1 Standard vs. Extended view . 9
2.2 Flat case base organization . 11
2.3 Case similarity measurement . 14

4.1 ASRs . 38
4.2 Constraints . 39
4.3 Functional Requirements . 40
4.4 Autoplanning.Web API . 50
4.5 KitchenCBR class descriptions 54

5.1 Utility calculation . 75

vii

viii

List of Figures

1.1 Historic structures . 2
1.2 Sample designs from Winner Design 3
1.3 2D view in Winner Design . 3
1.4 3D view in Winner Design . 4

2.1 Standard vs. Extended View . 8
2.2 Case representations . 10
2.3 Shared-feature networks . 12
2.4 Discrimination Network . 13
2.5 The CBR cycle . 15
2.6 Ivan Sutherland demonstrates Sketchpad 23
2.7 Single wall layout . 24
2.8 Two-wall layout . 25
2.9 L-shape layout . 25
2.10 U-shape layout . 26
2.11 G-shape layout . 27
2.12 Layouts with island . 28
2.13 The Kitchen Triangle . 28

3.1 The engineering cycle . 32

4.1 ASP.NET MVC . 41
4.2 Package diagram . 44
4.3 KitchenCBR interfaces . 46
4.4 Autoplanning.Web endpoints and resources 47
4.5 KitchenCBR class diagram . 52
4.6 Coordinate system in Winner Design 55
4.7 Activity diagram: Retrieve solution 56
4.8 Activity diagram: Retain solution 56

ix

4.9 Sequence diagram: PUT/GET/DELETE preview 58
4.10 Sequence diagram: Retain solution 59
4.11 Deployment Diagram . 60
4.12 Scenario: Get solutions with the autoplanner 62

5.1 Winner Design projects . 66
5.2 Two different designs in the same room 67
5.3 The Autoplanning Website . 71
5.4 Integrated process of autoplanning in Winner Design 73
5.5 Results for Problem 1 . 74
5.6 Results for Problem 2 . 75
5.7 Results for Problem 3 . 76
5.8 Results for Problem 4 . 77

x

Abbreviations

AI = Artificial Intelligence
ASR = Architectural Significant Requirement
BLOB = Binary Large OBject
CAD = Computer-Aided Design
CBR = Case-Based Reasoning
CBD = Case-Based Design
DSS = Decision Support System
FR = Functional Requirement
GUID = Globally Unique IDentifier
RE = Requirements Engineering
RS = Recommendation System

xi

xii

Chapter 1
Introduction

This chapter introduces the problem and why it is desired to find a solution to it.
Section 1.1 describes a short history in design and people’s willingness to invest in
renovations. Section 1.2 explains Compusoft’s design program, Winner Design.
Section 1.3 and 1.4 introduce a scenario, and challenges non-professionals meet
in design. Section 1.5 describes Compusoft’s motivation to their idea; at last,
Section 1.6 contains the research questions for the master thesis.

1.1 Interest in Design

1.1.1 History
People have shown interest in architecture for decades. The Parthenon was built in
Classical Greece (500–300 BC) and is seen as one the most famous buildings still
existing from the ancient era. In fact, a full-scale copy of the Parthenon was built
in Nashville as late as 1897. The Colosseum is a famous amphitheater in Rome
and was built in 60–70 AD; much later in 1889, the Eiffel Tower was completed.
This is just three examples of iconic structures in human history. Even today,
countries are competing to build the most impressive buildings in the world.

Elsie De Wolfe wrote The House In Good Taste in 1913 [1]. According to The
New Yorker, she invented the occupation interior decorator in this book. Although
one can argue whether she was the inventor or not, one can say with certainty that
she made people get interested in decorating their own homes. A decorator fo-
cuses on aesthetics when arranging furniture and decoration—the goal is to make
the home look as good as possible. To achieve this, the decorator needs to be
very creative and can freely decorate with few or none restrictions. An interior
designer extends the scope of the decorator’s circle of concern. In addition to aes-
thetics, they need to consider functional dependencies in the layout. For instance,

1

Chapter 1. Introduction

(a) The original Parthenon
in Athens

(b) The Colosseum (c) The Eiffel Tower

Figure 1.1: Historic structures

designing a kitchen may require a professional interior designer because of the
complexity in the design.

1.1.2 Spending on Renovations
According to two surveys by Houzz, 58% of American and 56% of Canadian
house owners renovated their homes in 2017 (full reports at [2, 3]). The results
from these surveys are compared to the global trend in [4], which shows that the
global trend is similar, but a bit weaker. The most popular room for renovation
in both the US and Canada was the kitchen (31% and 28% of renovations); the
median cost for a kitchen renovation was 11,000 USD and 12,000 CAD (≈9200
USD). The reports show that people are eager to renovate and are willing to spend
a significant amount to do so.

1.2 Winner Design
Winner Design is a computer-aided design (CAD) software for designing kitchens
and was released in 1998 by Compusoft1. The software is used by kitchen retail-
ers to tailor solutions for their customers. Currently, there are over 25,000 active
Winner Design licenses which make Compusoft the market leader in Europe of
this segment. One significant advantage of their program is the integration be-
tween different parts of a business transaction. In addition to creating a design,
you get a complete list of all the items you need to realize it. The system provides
an offer based on the articles, labor, delivery, and assembly. The manufacturer
gets the order automatically if the customer accepts the offer. See Figure 1.2 for
examples of what you can achieve with Winner Design.

Winner Design offers three different views: 2D, 3D perspective, and photore-
alistic. The 2D-view is the most technical one which shows appliances, worktops,

1https://www.compusoftgroup.com/worldwide

2

https://www.compusoftgroup.com/worldwide

1.3 Design Scenario

Figure 1.2: Sample designs from Winner Design

(a) Floor view (b) Wall view

Figure 1.3: 2D view in Winner Design

base cabinets, wall cabinets, etc., and their measurements. The user can choose
between floor or wall view depending on where one wants to furnish (see Figure
1.3). The perspective view in 3D offers a better visualization (see Figure 1.4) of
the real kitchen but contains no technical details. A photorealistic high-quality
image can be generated from the perspective but does not support interaction.

1.3 Design Scenario

How each kitchen retailer operates differs but let us imagine one hypothetical
case. You want to renovate your kitchen and visit your desired retailer and ask
a professional interior designer for help. The designer needs some information

3

Chapter 1. Introduction

(a) Perspective view (b) Photorealistic view

Figure 1.4: 3D view in Winner Design

about your needs and measurements of the room. Depending on your preparation,
you might have a design already in mind or are open for suggestions. Because you
are prepared, the designer obtains your needs through an interview/need-analysis.
The designer creates a kitchen design in Winner Design from your wants and
shows you a perspective view of the kitchen. As a professional, the designer might
identify possible flaws in your desired design and proposes alternative solutions
which might be better. You need some time to rethink at home and receive prints
of the different designs including price offers for each. The design session and
copies are something the retailer gives you for free. After some consideration,
you are satisfied with one of the alternatives and finalizes the deal.

1.3.1 Potential Problems
Some people are interested to see the potential of their kitchen but not willing to
invest in a renovation. These ”customers” come to a retailer and get suggestions
for possible designs. Retailers usually offer consultation and sketches for free
which is a waste of time and resources if there is no chance of finalizing the
deal. Another potential problem is people who receive the designs and use these
to purchase the furniture from a cheaper vendor. This is a typical problem for
physical shoe stores where people visit the store only to find the correct size and
order them online.

1.3.2 Possible Solutions
An experienced designer might detect early whether a new customer is only curi-
ous or likely to make a purchase. A successful strategy would be to spend more
time on the serious ones and make a quicker sketch for the curious. Creating
designs from scratch is time-consuming, and a system that generates possible de-
signs could be helpful. To make it harder for people to abuse free consultation and

4

1.4 Design Challenges for Non-Professionals

sketches, retailers often print only the perspective view of the kitchen. This view
does not contain details such as measurements and is harder to reuse directly.

1.4 Design Challenges for Non-Professionals

The first challenge a non-professional user faces when wanting to design some-
thing is to find an appropriate software or tool. There exist free CAD software on
the internet, but these are often limited. Desired functionalities are only available
for paying subscribers. Pen and paper would in many cases be more effective but
lacks the details a CAD software provides. Assume one finds a program that sup-
ports the creation of kitchen designs. The next problem one faces is to learn how
to use the program. For a non-technical user, this might be the end because CAD
software is usually hard to use without prior experience or training. However, sup-
pose the user found a CAD software and knows how to use it. The next challenge
is how to design a kitchen. Professional designers use prior experiences and tacit
knowledge. That is, the knowledge which is hard to write down or verbalize—
which makes it difficult or impossible to transfer. For instance, the designer might
recognize a good solution but cannot say precisely why it is a good one. Last but
not least, if one actually managed to design a kitchen, one would have to find a
manufacturer that provides the furniture. To summarize, it is clear that creating
designs are considerably challenging for non-professional users.

1.5 Automatic Generation of Designs

Compusoft competes with other companies offering CAD software in kitchen
design. To remain the market leader in this segment, they have to make sure
their product offers more functionality and better usability than their competitors.
As we have seen, non-professionals face several challenges in design. Hence,
their customers are professional kitchen retailers. Compusoft believes a system
that proposes kitchen designs automatically will be beneficiary for designers. It
can bypass the tedious and time-consuming creation of simple layouts; it can
serve as a starting point for more creative work. Additionally, it can enable non-
professionals to generate kitchen designs themselves. Except for template-based
designs, auto generation of kitchen designs would be the first of its kind in the
market.

5

Chapter 1. Introduction

1.6 Research Questions
Compusoft has a large number of kitchen designs in their database which might be
reusable when designing a new. The idea is that a customer can measure the size
of the kitchen, make some requirements of the design, and get a design proposed
automatically by the system. Case-based reasoning (CBR) is a problem-solving
methodology that reasons about cases (prior experiences) to find a solution to a
new problem. CBR is explained in more detail in Section 2.1. In this thesis, I will
research whether a CBR system can propose kitchen designs and my research
question are:

RQ1: How to design a system that proposes kitchen designs by using CBR?
RQ1.1: How should a case (kitchen design) be represented?
RQ1.2: How can a case be efficiently retrieved?
RQ1.3: How can a design be adapted into a new kitchen?

6

Chapter 2
Theory

Section 2.1 is based on a textbook by Richter and Weber [5] and one of the most
cited foundational papers in CBR by Aamodt and Plaza [6]. Maher and Pou [7] ad-
dress issues and applications of CBR in design—also known as case-based design
(CBD). The general CBR theory is supplemented with this knowledge to make
Section 2.1 more directed towards the design domain. Section 2.2 and 2.3 discuss
related research—decision support systems in design and automatic furnishing.
Section 2.4 contains a brief history of computer-aided design, and Section 2.5
describes some basic theory in kitchen design. Finally, I summarize the chapter
and explain why CBD is an interesting approach to solve Compusoft’s problem in
Section 2.6.

2.1 Case-based Reasoning

CBR is a problem-solving methodology where the system reasons about cases—
as the name indicates—which are experienced events and the solution for them.
The main idea of CBR is that similar problems can be solved similarly. Aamodt
and Plaza [6] identified four key processes: retrieve, reuse, revise, and retain,
applied in that order. These processes form the so-called CBR-cycle (see Figure
2.5). A problem is first transformed into a specified data representation. Then the
system searches the case base (where all cases are stored), and the most similar
problem and its solution are retrieved. The proposed solution is reused either
directly or after adaptations. Then the new solution is revised (evaluated) either
internally or by an external expert. The new problem and its solution are at last
retained as a new pair in the case base. Each step of the cycle requires general
and/or domain-specific knowledge. The system uses this knowledge for reasoning
and cases are stored in the memory for later reuse. CBR is classified as artificial

7

Chapter 2. Theory

SimilarityNew problem

New solution

Problemi

Adaptation Solutioni

Case base

(a) Standard

UtilityNew problem

New solution Adaptation Solutioni

Case base

(b) Extended

Figure 2.1: Standard vs. Extended View

intelligence (AI) because it uses knowledge to reason about cases and learns by
retaining them.

2.1.1 The Standard vs. The Extended View

The general idea of CBR is that similar problems have similar solutions. A case
base is queried to find the most similar case(s). This is not very different from
how people are solving problems manually. However, the approach has a weak-
ness which limits the application domain. Let us say you recently opened a brand
new car dealership. The first customer visits your dealership and tells you their
preferences for the new car. You are using a CBR program and are now encoun-
tering a significant problem—the system has no past experiences. There is no
lack of solutions (cars), but there are no prior problems to compare with the new
customer’s problem.

This challenge was the motivation for Bergmann et al. [8] to introduce the
extended view. In the standard view, similarity functions compare two problem
descriptions; in the extended, utility functions measure the expected utility of a
solution (see Figure 2.1). The two approaches are in some sense related because
the solution to the most similar problem is also anticipated to have the most utility.
In fact, both approaches should propose the same solution, given the case base in
the standard view is filled with sufficiently many cases and the solution set is
equal. That a CBR system can operate without past problems is a significant
advantage of the extended view. However, the new model has its own challenges.
Comparing two problem descriptions is often simpler than estimating the utility
of a solution. Problems are represented by the same model, while a problem and
solution might be modeled very differently.

8

2.1 Case-based Reasoning

Standard view Extended view

A case contains problem-solution pair solution/product
Similarity between old and new problem problem and solution

Table 2.1: Standard vs. Extended view

2.1.2 Basic CBR Elements

2.1.2.1 Case representations

A case is an experienced event that comprises a problem-solution pair. The prob-
lem is often in the real domain, and it is essential that the data representation
reflects the complexity of the problem. A mismatch can be problematic because
the retrieval process might not return the correct set of experiences from the case
base. Cases can be represented in a wide variety of ways. Flat attribute-value is
maybe the most popular choice because it is easy to understand, store, and re-
trieve (see Figure 2.2a). The disadvantage is that complex information is hard or
impossible to represent. There are more advanced representations such as object-
oriented and graph-based. Object-oriented representations allow a more compact
style and might be even easier to understand but require more complex similarity
functions. In Figure 2.2b we see that instead of storing all attributes related to a
car in a single class (flat organization), attributes can be separated into sub-classes.
For instance, battery capacity is not relevant to a fossil car, and emission is not to
an electric—here, an object oritented representation allows a more compact struc-
ture. Notice that the cases only represent cars (or solutions) which means they are
only usable in the extended view. All cases would need a problem part—where
the car is the solution—to be useful for a standard CBR system.

One can design systems in different domains, for instance, in software, ar-
chitecture, interior design, mechanical devices, structural systems, meal planning,
etc. The representation of a design problem depends on which view you apply:
you can write a rationale, draw a sketch, create a CAD model (a model created
with a computer-aided design software), create a physical model, or any other ap-
proach. Maher and Andrés [9] argue that a common issue in design is that design
cannot be described from a single point of view. You will have to consider the
abstract, rationale, constraints among elements, trade-offs, decisions, etc. A case
cannot comprise all these elements without compromising effectivity and/or effi-
ciency. Hence, CBD systems tend to be domain specific and focus on parts of a
problem.

9

Chapter 2. Theory

Car

Model-year

Engine-type

Milage

Bhp

Fuel-consumption

Emission

Battery capacity

Range

Price

(a) Flat attribute-value representation

Fossil car

Engine-type

Fuel-consumption

Emission

Electric car

Battery-capacity

Range

Car

Model-year

Milage

Bhp

Price

(b) Object-oriented representation

Figure 2.2: Case representations

2.1.2.2 Case bases

A case base is a special kind of a database that contains all the cases. In a relational
database, the retrieval mechanism searches for exact matches between queries
and records. In a case base, however, one tries to find the most similar or useful
cases—which means one does not search for exact matches. The organization of
the case base affects the effectivity and efficiency of the retrieval—sometimes one
cannot have both. Kolodner [10] discusses different ways to organize the case
library.

The first and simplest one is a flat structure (see Table 2.2). Each case is stored
in a list, array, or file. It is easy to add a new one because you can just add it at
the end of the list. Given the similarity measure is correct, you are guaranteed to
retrieve the best case(s) because all cases are investigated. There are, however,
a significant drawback with this organization. As the case base grows in size,
retrieval gets quickly overwhelmed. The efficiency can be improved by searching
in parallel or making the matching function more efficient, but the organization is
still not suitable for large case bases.

A shared-feature network is a more complex organization which overcomes
the retrieval problem when the case base grows in size. When retrieving cases
from this structure, one starts at the root node and chooses to traverse the best
child based on a specific attribute which is specified at the node. For instance,
a car buyer wants a new family car with an electric engine. Using the shared-
feature network in Figure 2.3a, one chooses the branch containing family cars,
then the electric car branch and the customer ends up with a Nissan Leaf (same

10

2.1 Case-based Reasoning

Attributes Case id
case1 case2 case3 case4

Brand BMW Audi Tesla Nissan
Model M3 A4 Model S P90D Leaf
Model-year 2014 2015 2018 2018
Mileage (km) 47,426 28,968 0 0
Engine-type Gasoline Diesel Electric Electric
Bhp 424 190 525 150
Fuel-consumption (L/10km) 0.76 0.33 N/A N/A
C02 emission (g/km) 204 99 N/A N/A
Battery capacity (kWh) N/A N/A 90 40
Range (km) N/A N/A 473 378
Price (C) 38,071 22,966 97,000 33,529

Table 2.2: Flat case base organization

cases as in Table 2.2). In this situation, the customer got the best alternative, but
this is not guaranteed in all situations. Consider a customer that wants a gasoline
car, and if possible, a family car. The network will first explore the family car
branch, then the diesel branch because diesel is more similar to gasoline than
electricity. Hence, the reasoner proposes the Audi A4, although the BMW M3
is the best alternative. To enable shared-feature networks to support different
reasoning goals one can build graphs having different prioritization of attributes.
The graph in Figure 2.3b would successfully propose the BMW M3 for the second
customer. The advantage of shared-feature networks is that it handles large case
bases, but there are also a few disadvantages: it is not guaranteed to find the best
solution, one possibly needs multiple shared-feature networks, and inserting new
cases is a complex task.

The third structure is discrimination networks which are closely related to
shared-feature networks but differs on some aspects. Both are graph-based, which
limits the search space significantly. They differ on how branches are explored—
discrimination networks use a question-answer approach as opposed to selecting
the best child in shared-feature networks. All internal nodes hold the answer to the
question in their parent node and a new question for their children. In Figure 2.4
one first ask what type of engine one wants and visits the node holding the answer.
This sequence continues until a leaf node is reached. The prioritized order of
the questions can be altered to support different reasoning goals. Discrimination
networks have the same advantages and disadvantages as shared-feature networks
but have a few extra of both. Retrieval is more efficient because selecting a branch
(pick an answer) is easier than computing the best child. Choosing the wrong node

11

Chapter 2. Theory

Cars

Family Sports

GasolineElectricDiesel

case2 case4 case1 case3

Electric

(a) Prioritization 1

Cars

Fossil Electric

SportsDieselGasoline

case1 case2 case3 case4

Family

(b) Prioritization 2

Figure 2.3: Shared-feature networks

early—resulting in a bad retrieval—is more likely in a discrimination network. A
major drawback of both is how to deal with missing information; which branch
should be chosen if there is no data to answer the question?

2.1.2.3 Similarity measures

The similarity measures—or utility measures in the extended view—are one of
the core functions in CBR. As we saw in Section 2.1.1 one tries to find the most
similar problem and retrieve its solution in the standard view; in the extended, one
tries to assess the utility of a solution directly.

Definition 2.1. The similarity between two problems p ∈ P is a function

sim: P × P → [0, 1]

A value close to zero indicates that the two problems are dissimilar, and a
value close to one indicates that the two problems are almost equal. Measuring
the similarity between two problems involves two steps: first, one computes the
similarity between attributes separately; then a weighted sum of these indicates
the global similarity—which is the so-called local-global principle. The weight
of an attribute indicates its importance when comparing two problems. Different
weighting schemes can enable comparisons based on different viewpoints—for
example, in design, the view of the reasoner has a high impact of what is con-
sidered similar or not. Each attribute needs to have its own measure (or local
similarity measure). For instance, two cars compared by model-year are dissim-
ilar if one is 20 years older than the other. However, they are similar based on
mileage if they only differ by 20 km.

12

2.1 Case-based Reasoning

Engine type?

Fossil
Fuel type?

Electric
Car type?

Gasoline Diesel Sport Family

case1 case2 case3 case4

Figure 2.4: Discrimination Network

Definition 2.2. The utility of a solution s ∈ S to a problem p ∈ P is a function

u: P × S → [0, 1]

Utility functions are used in the extended CBR view to find the best solu-
tion to a problem in the case base. The problem and solution space are often
in different domains—when a customer defines their requirements for a new car,
they might use a different vocabulary than how a car is represented in the system.
For example, the customer wants a gasoline car with low mileage, and it should
be eco-friendly. An eco-friendly gasoline car could be one that has a low fuel-
consumption and CO2 emission, but the customer is not able to provide a specific
number for any of them. The system needs to find a solution that is most useful for
the customer. The global utility can be measured in the same way as with global
similarity by the local-global principle.

Example 2.1. Computing similarity in the standard view

Table 2.3 compares a new car q (a Ford Focus) with the case base in Table 2.2.
The goal is to find the most similar car to q and reuse the price for this car. The
similarity between each attribute is computed with their local similarity measure;
each attribute has a weight w which denotes its importance to the global similarity.
In this example, w = 1 means it has a low impact, while w = 6 means it has a
great impact. The global similarity is computed as a weighted sum

sim(q, ci) =
1∑n

j=1wj

n∑

j=1

wj ∗ sim(qj, cj)

and the results are
sim(q, c1) =

1

37
∗ 15.0 ≈ 0.41

13

Chapter 2. Theory

Query q Attributes w sim(q,c1) sim(q,c2) sim(q,c3) sim(q,c4)

Ford Brand 5 0 0 0 0
Focus ST Model 6 0 0 0 0
2016 Model-year 4 0.8 0.9 0.8 0.8
15,934 Mileage 5 0.7 0.8 0.5 0.5
Gasoline Engine-type 4 1 0.5 0 0
182 Bhp 6 0.3 0.9 0.2 0.7
0.35 Consumption 4 0.4 0.9 0 0
110 Emission 3 0.3 0.9 0 0
N/A Battery cap. 6 - - - -
N/A Range 6 - - - -

? Price 38,071 22,966 97,000 33,529

Table 2.3: Case similarity measurement

sim(q, c2) =
1

37
∗ 19.8 ≈ 0.54

sim(q, c3) =
1

37
∗ 6.9 ≈ 0.18

sim(q, c4) =
1

37
∗ 9.9 ≈ 0.28

The Audi A4 is the most similar one to the Ford Focus ST, so its price is reused—
namely C22,966.

2.1.2.4 Knowledge containers

The knowledge model in CBR comprises four different knowledge containers:
the vocabulary, similarity, case base, and adaptation container. The vocabulary
container contains all terms one needs to talk about something. For instance, we
cannot discuss the positioning of furniture if ”furniture” is not in the dictionary.
Describing possible actions for a real-world object with natural language may lead
to infinitely many descriptions. Moreover, the object description itself varies from
person to person depending on viewpoint, experience, knowledge, etc. Because
of this, it is essential to identify the attributes that are necessary to create a data
model—these attributes are a part of the vocabulary container.

The similarity container contains the knowledge and algorithms needed to
compare cases. Depending on the complexity of the problem, the demand for
domain knowledge ranges from none to high. Moreover, the complexity of the
algorithms varies from distance functions (comparing numeric values) to sophis-
ticated models (comparing symbolic values).

14

2.1 Case-based Reasoning

Figure 2.5: The CBR cycle presented by Aamodt and Plaza [6]

The case base container is just the case base itself and is the main source of
knowledge in CBR.

The adaptation container comprises methods to transform problems and solu-
tions. For instance, if you search for something in your favorite search engine and
misspell a word, the system corrects the mistake automatically. Adaptation of so-
lutions increases the number of problems the system can solve because unusable
solutions can be modified and become useful. Applying adaptation successfully
in a CBR system has a great impact on the performance.

2.1.3 The CBR Cycle

2.1.3.1 Retrieval

Case retrieval is the first process of the CBR cycle (see Figure 2.5). The task can
be divided into feature identification, search, initially matching, and selection.
Feature identification is partially solved with an appropriate case representation.
Mapping the new problem into the case representation may in some situations
be straightforward and in other more complicated. The complexity of the search
method depends on how a case is represented; a more complex representation usu-
ally makes the search more complex as well. The MAC/FAC method introduced
by Forbus et al. [11] is proved to be efficient when the search space is big. MAC

15

Chapter 2. Theory

(many are called) is the first step which completes the initial matching. Here, a
computationally cheap method is used to scan the case base; many potential cases
are called/selected. FAC (few are chosen) is the second step, which uses similarity
measures that rank the selected cases from most to least similar. At last, the best
case is retrieved—usually the most similar one. As we saw in Section 2.1.2.2, the
organization of the case base impacts retrieval.

Retrieval of designs can be done either informally or formally. An informal
approach requires the user to browse the case base manually. The effectiveness
depends on the richness and understandability of the indexing scheme (case rep-
resentation). Formal retrieval accepts a problem description as input and retrieves
similar cases automatically. The most popular method for computing similarity is
comparing attribute-value pairs. Determining the weights for the global similarity
can be really difficult for design, because the similarity between designs depends
on the different views.

2.1.3.2 Reuse

Reuse is the second step of the cycle and is applied to the retrieved case. The
optimal situation is when the suggested solution can be used directly on the new
problem. This is normal if the task is to classify objects. In other domains, how-
ever, solutions often need to be adapted. Transformational methods modify the
proposed solution based on rules while derivational methods modify the process
that generated it. For instance, changing an attribute value is transformational
reuse, and changing the input values for a formula is an example of derivational.
Making good use of adaptations can increase the performance of a CBR system
drastically and may propose plausible solutions even with a small case base.

A design case often comprises many constraints. Here, the adaption can be
carried out by solving a constraint satisfaction problem (CSP). Retrieving a case
gives a valid solution in the old context but might violate constraints in the new.
It becomes valid by solving the new CSP. Another approach is to leave the adap-
tation to the user, as in Archie II (see Section 2.1.4). Adaptation is, in general, a
difficult task, and is especially challenging in design. Quality evaluation in design
is difficult because of the lack of formal knowledge in this domain.

2.1.3.3 Revise

Revise is the third step of the cycle and is an evaluation of the proposed solution’s
quality. In some situations, this can only be simulated or estimated in beforehand,
and other times it can only be measured afterward. Revision is usually performed
outside the system because the solution is applied in the real environment and
cannot be tested accurately in advance. A satisfiable solution can be stored in the

16

2.1 Case-based Reasoning

case base; an unsatisfiable one has to be repaired by user input or domain-specific
knowledge before the case is stored in the case base. The error might expose a
significant liability of the CBR system which requires not only an improvement
of the solution but to the entire system.

2.1.3.4 Retain

Retain is the last step of the CBR cycle. Some systems store all cases, while
other store only those that increase the competence or performance of the system.
The competence of a case base is defined by how many problems it can solve—
a new case that solves the same problem as another case does not increase the
competence. The performance of a system is how fast it can retrieve and propose a
solution to a new problem. Storing every case can lead to the so-called swamping
problem which means the cost for finding a solution overcomes the value one
gets from it. How one stores the cases depends on the design of the system. Each
problem-solution pair can be retained as a new case, or an old one can be modified
to subsume both the new and old problem—given they had the same solution. In
the extended view, one only retains the solutions because the problem is irrelevant.
A solved case can also help to improve the indexing structure, i.e., update which
features are essential in distinguishing cases. An improved indexing structure will,
in theory, increase performance and/or the effectivity of the system.

2.1.4 Applications of CBR in Design

2.1.4.1 Archie-II

Archie is a case-based design aid system that lets the user create a conceptual
design [9]. The user writes a partial description of a building which is queried
in the case base. Similar buildings and their documentation are displayed in the
program. This is called issue discovery because it provides the user with inspira-
tion from previous cases. The user can use this information to identify relevant
issues. For instance, one wants to design a library; prior cases reveal that natu-
ral light and privacy are important in reading areas. The building needs windows
to allow light to pass through, and windows compromise privacy, i.e., conflicting
issues. Archie has a case base for such concerns which helps the user to make
trade-off decisions. When the user has completed the conceptual design, Archie
can evaluate the quality of it. However, this does not work very well because the
evaluation of designs is a very complex task. Archie is only an assisting program,
so no plausible designs are proposed—the users have to create it themselves.

17

Chapter 2. Theory

2.1.4.2 FABEL

FABEL was a project that took place between 1992 and 1996 in Germany. Angi
Voss was the project manager of a team of over 20 members in addition to several
students who contributed to the project; she describes her experiences in Maher
and Pu [7]. The program they implemented supports multiple methods for re-
trieval, adaptation, assessment, and elaboration. She recommends that one should
experiment with competitive and complementary methods because the interpreta-
tion of complex designs is subjective. FABEL offers the user 13 different retrieval
functions where each returns a different set of cases. The advantage with several
options for retrieval is that it enables different reasoning goals. For instance, when
they researched what makes two designs similar they got a different answer every
time—indicating that the similarity between designs depends on which spectacles
one uses. When developing a CBD system, she recommends creating prototypes
early to verify that the system can solve the task.

2.1.5 Issues in CBD
K. Richter [12] investigates in her paper why CBR has not been as successful in
architecture as one would think. She identifies highly recognized academic CBD
systems such as FABEL, SEED, and DYNAMO, and questions why they have not
succeeded outside the scientific world. She concludes in her paper that the main
reason for the limited success of CBR in design is the lack of accessibility and
acquisition of knowledge—that is, availability of existing designs and creation of
new. General findings in her research show that architects are skeptical to reuse or
publish creative work in fear of plagiarism and copyright violations. Additionally,
they value originality and are afraid that reusing designs can decrease their cre-
ativity. A study by Heylighen and Neuckerman [13], however, shows that students
increased the quality of their designs when exposed to several past cases; they also
proved that their creativity was not decreased when using a CBD application.

2.2 Decision Support Systems

2.2.1 DSS in E-Commerce
The goal of a decision support system (DSS) is to provide support to a user in
decision making. In several situations, the problem is complicated, or the user is
overwhelmed with information. For instance, you have to make a series of choices
if you want to renovate the kitchen. Some decisions can open up new opportuni-
ties in the design and at the same time create limitations—so-called trade-off de-
cisions. You might become uncertain because you are not sure which choice is the

18

2.2 Decision Support Systems

right one. With lacking decision support, you might postpone or permanently give
up on the renovation. This is a lose-lose situation for both you and the potential
seller because you will not get a new kitchen and the seller lost a buyer. A proper
DSS would avoid this situation by giving you appropriate guidance throughout the
buying process. Traditionally you could go to a kitchen retailer and speak with a
professional, but getting expert help in e-commerce is more challenging.

Netflix uses a recommendation system (RS) to help the users in choosing se-
ries and movies based on their preferences. There is a difference between DSSs
and RSs, but they are in some sense similar. A DSS is like a framework where
the user can analyze graphs, statistics, figures, etc. that helps the user to make a
decision; a recommender system makes an educated guess what you like based
on what the system knows about you. Netflix recommends content to the users to
increase the user experience. For example, Lord of the Rings: The Two Towers
may be recommended if you watched Lord of the Rings: The Fellowship of The
Ring and gave positive feedback for it. Likewise, Amazon gives recommenda-
tions of products you may be interested in. Additionally, customers review and
rate products which are used by new customers to choose a product.

2.2.2 DSS in Design

2.2.2.1 DSS in House Customization: A Hybrid Approach

Juan et al. [14] proposed in 2006 a DSS that enables house buyers to customize
their homes before the house is built, in other words, pre-sale housing. At the time
of writing, this strategy dominated the housing market in Taiwan, but a recurring
problem was that newly built houses often were modified because the buyer was
not satisfied with the layout. House suppliers saw a business opportunity in offer-
ing the customers to participate in the design process. Success depended on the
ability to communicate and they had problems because the customers did not get
all necessary information and decision support to communicate their needs. Juan
et al. [14] propose a system that makes this process more effective and efficient.

First, the buyer enters their preferences which include budget, area, spatial
needs, housing layout, and interior fittings and finishes. Then the requirements
are transformed such that they can be used for retrieval from a case base. The
k-nearest neighbors method is used to find one or a small set of similar cases. All
local similarities are computed by a formula, and the global similarity (similar-
ity between cases) is a weighted sum of the local. The weights are user-defined
from an analytic hierarchy process (AHP). How this works is not described or
referenced in the paper. Then a genetic algorithm (GA) applied to the proposed
solution(s) to find the near-optimal one(s). Describing GAs are outside the scope
of this thesis, but the general concept is that one tries to mimic the evolution

19

Chapter 2. Theory

of nature. The fittest individuals (solutions) survives and forms new generations
(new solutions) where mutations occasionally happen. The final solution can be
retained in the case base for reuse.

They conclude that a GA enhances the general CBR system. It was applied
in an experimental project in pre-sale housing in Taiwan, and it helped to resolve
some of the root problems.

2.2.2.2 DSS in Pre-sale Housing

Juan et al. [15] have written a paper where they have implemented a DSS using
CBR that helps the customer to choose a house in the pre-sale house market. The
system focuses on the Asian market where the Feng Shui theory is important for
house buyers. They believe that fulfilling it will give success in life. For instance,
half of the house buyers in Taiwan seeks advice from a Feng Shui expert before
making a decision. The Form School focuses on the external factors: environment,
location, and price—the Compass school focuses on the internal factors: area,
needs, and layout. Both these schools have designed a model that is used in the
DSS to evaluate these factors. For example, the room layout and for what purpose
a room is used (guest room vs. storage room) influence the Feng Shui score based
on your Kua number. This number is scientifically computed from gender and
year of birth.

Although the theory itself is interesting, how they applied CBR to this problem
is more interesting from a technical point of view. The case representation consists
of both numeric and symbolic attributes which make the similarity measure more
complex. The first task of the CBR cycle is to retrieve one or a set of similar cases.
They apply a hybrid approach of inductive indexing and nearest neighbor search.
Inductive indexing uses a decision tree which may be a more known concept [16].
It is effective when the case base is large, and sets of cases can be ignored because
not all subtrees are explored. When the initial search is completed, they apply
nearest neighbor search to find the most similar cases—not very different from the
MAC/FAC principle described in Section 2.1.3. Attributes used in the inductive
search are left out of the nearest neighbor search. The similarity between numeric
values are computed, and symbolic values are compared by a model from the
Form school. The local similarities are finally aggregated by a weighted sum,
where the weights are user-defined by an AHP.

They conclude that their DSS significantly improves the housing decision and
communication between the customer and Feng Shui experts in the pre-sale stage.

20

2.3 Automatic Furniture Arrangement

2.3 Automatic Furniture Arrangement

2.3.1 Automatic Furnishing using CBR and Floor Fields

A recent paper (2018) by Song et al. [17] proposes a web-based application for
automatic generation of plausible designs. Their algorithm divides the scene in
up to four different modes: coupled, enclosed, matrix, and circular. The coupled
mode can be further divided into furniture-furniture and furniture-room coupled
mode. This mode sets constraints for angles and distances between objects. For
example, the TV should face directly towards and not be too far away from the
sofa. The enclosed mode requires that furniture is first placed up to the wall and
can then be moved along it. This mode is applied for example when placing a
shelf in the room. Matrix mode handles furniture that is placed in a matrix-like
manner. A typical example is placing desks in a classroom. The circular mode
puts furniture in a circular form.

The coupled mode is solved by CBR or potentially recursive CBR. A case
consists of one parent furniture and n identical child elements. The name of a
case is on the form (parent furniture, child furniture, number of children) and
the problem description is a vector q = (l0, h0, w0, l1, h1, w1) where l, h, and w
denote the length, height, and width of the parent and child furniture. The nearest
neighbor is found from the set of cases with an identical name. The solution of
the retrieved case contains a mathematical model, and the parameters from this
model are assigned to the new problem. Recursive CBR is applied if the child of
the parent object has its own children. For instance, a table can have a PC as a
child, and the PC has a mouse. The PC is first placed on the table, then the mouse
is placed relative to the PC.

The enclosed uses a floor field to place furniture. Energy fields near the walls
are positive, and along a path the energy is negative. A path is a straight line
between two doors, two windows, or a door and a window. Placing furniture
close to positive energy fields is desired, and the optimal solution is the one with
the maximum energy score.

The matrix and circular mode use somewhat simple methods. The vertical and
horizontal distance between furniture is equal for all furniture in the matrix mode.
In the circular, furniture is placed evenly around a round object.

To evaluate the quality of the generated designs, they consider the users’ opin-
ion. If the algorithm placed A number of pieces and the user re-arranged B of
them, then the layout accuracy is computed as LA = 1 − B/A. A different
method they propose is to print the 2D design and ask the users which pieces they
would have moved. The two approaches are not very different and should give ap-
proximately the same results. An average layout accuracy can easily be computed
from the individual evaluations.

21

Chapter 2. Theory

They conclude that their algorithm is fast and effective and can meet functional
requirements in indoor design.

2.3.2 Other approaches

Yu et al. [18] propose a solution using an optimization algorithm. A cost is com-
puted based on important ergonomic factors. For instance, a TV facing away from
the sofa has a higher cost than a TV facing towards it. They use simulated anneal-
ing which is an iterative optimization-based algorithm that finds a local minimum
or maximum. Because the goal is to minimize the total cost, the simulation should
find the local—or even better—the global minimum. Kán and Kaufmann [19]
proposed in 2017 an algorithm that uses a genetic algorithm for cost optimization.
The cost function considers aesthetics, ergonomics, and functionality. The same
authors published a paper one year later that uses a greedy algorithm [20].

2.4 Computer-Aided Design

2.4.1 History

Sketchpad was the first computer-aided design (CAD) software invented by Ivan
Edward Sutherland in his Ph.D. thesis in 1963 [21]. The designer used a ”light
pen” to draw directly on a computer screen, and the drawings were highly accurate
and supported complex designs. As you can see in Figure 2.6, the sketching is not
very different from the use of pen and paper on a sketch board.

In the 1970s most CAD software was still 2D replacements for physical sketch
boards, but there were some interest and research in 3D design. The decade saw
significant advances in other aspects of CAD software, especially in fundamental
geometric algorithms. General improvements in computer science were also no-
table. For instance, the computational power of computers increased substantially,
prices and operating costs for computers decreased, new high-level programming
languages and a more efficient operating system called UNIX was introduced.

In the 1980s IBM released its first PC and Apple released its first Macintosh.
Autodesk released its first version of AutoCAD for PC just one year after IBM
released their first PC. Although PCs became more popular than UNIX work-
stations, software on workstations offered much higher image quality than PCs.
Workstations had much higher computational power, but as we know, this was
only temporary. The market share for AutoCAD increased during the decade and
is still one the most known CAD software today. For a more detailed history of
CAD from the 1960s until 2004 see [22].

22

2.5 Theory in Kitchen Design

Figure 2.6: Ivan Sutherland demonstrates Sketchpad.
Source: http://history-computer.com/ModernComputer/Software/Sketchpad.html

2.5 Theory in Kitchen Design

To find explicit knowledge about how to design kitchens was more challenging
than expected. In Norway, it seems like a formal degree in interior design is not
a requirement to work as a designer. I found some interesting requirements when
browsing for open positions as a kitchen designer in Norway. Retailers often seek
a person that has relevant experience, the right personality, good IT competence,
and is interested in kitchen design. The National Kitchen & Bath Association
in the United States offers various certification levels—they argue that certified
designers are more attractive for employment and can show customers a proof
of their competence1. A questionnaire by Taha et al. [23] shows that architects
value experimental knowledge—that is, experience is crucial. The theory in the
following sections should be seen more like guidelines because designers can—to
some degree—choose their own style.

2.5.1 The Basic Shapes

A widely accepted theory is the idea of the five basic shapes: single-wall, two-wall
or corridor, L-shape, U-shape, and G-shape.

1https://nkba.org/info/certification (Accessed 28.12.2018)

23

http://history-computer.com/ModernComputer/Software/Sketchpad.html
https://nkba.org/info/certification

Chapter 2. Theory

(a) 3D View (b) 2D plan

Figure 2.7: Single wall layout

2.5.1.1 Single-wall

The single wall kitchen has everything on one wall (see Figure 2.7). This is suit-
able for small kitchens and is likely the cheapest layout to realize—it is area ef-
fective which makes more room for a dining table etc. The disadvantages of this
layout are the limited workspace, and it may be problematic to be used by two or
more persons at the same time.

2.5.1.2 Two-wall

The two-wall—or corridor—layout is similar to single-wall but has workspaces
on two opposite sides of the kitchen (see Figure 2.8). This layout has obviously
more workspace area and storage space than the single-wall but has one crucial
disadvantage—the space between the workspaces gets to some degree unusable.
For instance, placing a kitchen table in the middle will interfere with the workflow.

2.5.1.3 L-shape

The L-shaped kitchen is formed like the letter L (see Figure 2.9). It allows a
continuous design—unlike the two-wall layout—which may be more practical if
you want to have a dining table in the kitchen. Additionally, it is a quite simple
design that is easy to realize.

24

2.5 Theory in Kitchen Design

(a) 3D View (b) 2D plan

Figure 2.8: Two-wall layout

(a) 3D View (b) 2D plan

Figure 2.9: L-shape layout

25

Chapter 2. Theory

(a) 3D View (b) 2D plan

Figure 2.10: U-shape layout

2.5.1.4 U-shape

The U-shaped kitchen is a continuous solution that is suitable for larger kitchens
(see Figure 2.10). This layout supports separate workspaces which enables two
persons to cook together without stepping on each other’s toes. Price-wise it is
prone to be more expensive because you will need more furniture and countertop
to complete the design.

2.5.1.5 G-shaped

The G-shape kitchen is similar to the U-shape but contains an additional piece at
the end of the U to complete the G (see Figure 2.11). This piece can, for instance,
serve as an additional spot to eat a smaller meal. The disadvantage of this layout
is that the kitchen might seem enclosed by the furniture. Having a large kitchen
could help to reduce this effect—in fact, both the U and G-shaped layouts are not
suitable for small kitchens.

2.5.2 Kitchen Island
A kitchen island is one or a set of furniture that is not placed against a wall or
beside another piece of furniture—you must be able to walk around it. It can be
added to each of the basic shapes but requires that there is enough space for it.
The size of the island can vary from a small zone for chopping vegetables to a
larger one which also have appliances. The cost of a kitchen island depends on
what it contains. Having a sink on it leads to moving the drain away from the wall

26

2.6 Summary

(a) 3D View (b) 2D plan

Figure 2.11: G-shape layout

which is costly; similarly, installing an extractor hood on an island usually costs
more than placing it on the wall. The upside is that one can make better use of the
limited kitchen area. However, an island is not suitable for a small kitchen.

2.5.3 The Kitchen Triangle

The kitchen triangle is a widely known concept for kitchen designers that has a
great impact on the cook’s workflow. In NKBA’s planning guidelines [24] it is
described what it is and which constraints that must be satisfied. Each corner of
the triangle represent a primary work center—a work center is a major appliance
and its surrounding landing area. A landing area is a space that is needed to keep
things temporarily—for instance, a spot to put the cooking tray when taking it
out of the oven. The length of each leg should be in between 1.2–2.7m and the
perimeter of the triangle should not exceed 7.9m. Figure 2.13a shows an exam-
ple of a kitchen with three work centers: cooking surface, preparation/cleanup
surface, and the refrigerator. Additionally, no object can intersect the triangle by
more than 31cm (see Figure 2.13b). The triangle can be extended if the kitchen
contains more than three primary stations—in this situation, the additional work
center should not be further away than 2.7m to the other stations.

2.6 Summary

The paper by K. Richter [12] raises a concern that CBD applications have limited
success in the real world—the most successful ones are in the academic field. So

27

Chapter 2. Theory

(a) One-wall with island (b) U with island

Figure 2.12: Layouts with island

(a) Triangle OK (b) Triangle not OK

Figure 2.13: The Kitchen Triangle

28

2.6 Summary

why would it be successful in kitchen design? Or, why would it not succeed? A
simple—probably too simple—answer for the second question is the absence of
prior success in CBD; K. Richter pointed out that the lack of accessibility and
acquisition of designs were the main reason. At Compusoft, I have access to
a database that contains a large set of kitchen designs created by professionals,
which does at least increase the chances of a successful CBD program based on
her concern about this issue. The case base in CBR is like an experience memory;
relevant designs can be retrieved for the architect when they face a similar design
problem—in kitchen design, this could be a room which has a similar layout. A
retrieval-only system would only show potential solutions, while a more complex
CBR program could also adapt a design to fit the new room. As we saw that in
Archie II, the user only got support in the design process; the user had to create
the designs themselves. It is clear that adapting designs is far more challenging
than just retrieving them. The minimum requirement for the CBD system I shall
develop in my master should be: to define proper case representations and be able
to retrieve potential designs for a new kitchen. It would be a huge plus if the
system also could adapt them.

29

Chapter 2. Theory

30

Chapter 3
Method

This chapter describes how I worked when writing my master thesis and develop-
ing the CBR application. The working method and how to describe it are inspired
by the textbook by R. Wieringa [25] about design science methodology.

3.1 Type of Research Problem

R. Wieringa [25] defines two main categories for research problems: design prob-
lems, and knowledge questions. The goal of a design problem is to create an ar-
tifact that answers the question raised by the research problem. Knowledge ques-
tions seek answers to the research problem but do not require an implementation—
a theoretical answer is sufficient. In this thesis, it is clear that we have a design
problem because the answer to the research problem ”How to design a system that
proposes kitchen designs by using CBR?” will be presented by a proof-of-concept
prototype.

3.2 The Design Cycle

Design problem research iterates through the design cycle which consists of three
activities namely problem investigation, treatment design, and treatment valida-
tion. It is a part of a larger one called the engineering cycle that includes treat-
ment implementation and implementation evaluation as well (see Figure 3.1). In
this project, only the design cycle was performed because the last two steps of
the engineering cycle require transferring the artifact into the real world for use
and evaluation; in other words, as the presented artifact in this thesis is only a
prototype, it stays within the academic/development boundary.

31

Chapter 3. Method

Engineering cycle

4. Treatment implementation5. Implementation evaluation

Design cycle
1. Problem investigation

2. Treatment design3. Treatment validation

Figure 3.1: The engineering cycle

3.2.1 Problem Investigation

In the first step of the design cycle, a real-world problem must be identified that
someone desires a solution for, and at the same time are willing to allocate re-
sources for the development of the artifact—i.e., identify stakeholders. The re-
sources Compusoft allocate in this project are a developer, Sindre Nyvoll, who
is the co-supervisor of my thesis, and they cover the operational costs such as
storage and deployment costs of the application.

I had several discussions with the developers at Compusoft to find a problem
that would be either advantageous for them internally or for their customers. As
the research problem of my thesis clearly shows, we settled for a system that will
propose kitchen designs. An alternative thesis problem was to design a system that
would analyze the database of the CAD objects and try to identify similar objects.
This could help to manage the database such that duplicates are removed, and it
would make it easier for designers to replace a piece of furniture with a similar
one. The reason why the autoplanning feature was preferred, was that Compusoft
believes that this feature will improve their services the most. As we saw in the
introductory chapter, some people are only curious to see the potential of their
kitchen but not willing to invest in a renovation. The designers could spare time
in suggesting designs to these people by using the autoplanning system instead of
designing kitchens from scratch. Additionally, the service can be made available
online which would enable people to explore designs at home.

When the problem was identified and described, I had to find a professor at
the university that would like to supervise my master thesis. After a meeting
with Pieter Toussaint, he accepted the request to be my supervisor. At that point,
there were no constraints on how to design the system. Together with Pieter, we
found an academic approach to solve the problem such that the solution yields

32

3.2 The Design Cycle

new knowledge in the scientific field, not only a new artifact that is just valuable
for Compusoft and/or their customers. The approach we chose was to research
how CBR can be used to propose kitchen designs.

3.2.2 Treatment Design

In the second step of the design cycle, one must specify the requirements of the
artifact and verify whether these contribute to the stakeholders’ goals. To sat-
isfy a requirement, one can use available treatments or design new ones. R.
Wieringa [25] prefers the term treatment to solution because the treatment of a
problem may or may not be successful while a solution indicates that the problem
is solved successfully. Designing a treatment means the same—at least for a soft-
ware engineer—as to implement a piece of software that is supposed to satisfy a
set of requirements.

I spent a considerable amount of time in the first iteration of the design cy-
cle. I had to specify the requirements of the system as well as to check whether
these contributed to the goals of the stakeholders. The goals of the stakeholders
were derived in the problem investigation—Compusoft’s goal is a system that can
propose designs, while the academic goal is to research how CBR can be used to
realize it. Requirements can be divided into three categories: functional require-
ments, quality attributes, and constraints. The functional requirements specify
what the system must be able to do. The quality attributes define the quality
or how this functionality is implemented, while the constraints specify decisions
about the software architecture the architect must respect [26]. I discussed the
requirements of the system with the developers at Compusoft and interviewed
experienced designers at Røskaft Kjøkken in Trondheim. The outcome of these
activities is described in Section 4.1.2, and the critical ones are: the application
must be accessible as a web-service, it must be developed using the ASP.NET
Core framework with C#, and the designs must be proposed using CBR.

When the requirements were elicited, I investigated available treatments which
include searching for available technologies, frameworks, and programming li-
braries that would make the design easier to realize. When designing my own
treatments, I identified distinct modules, or sub-parts of the system, and designed
them one at the time. Because I had little to none experience in C# and cloud
development, in particular, I had to acquire knowledge in both these domains.
Learning C# was not that difficult because the programming concepts are similar
as in Java, which I have experience in, and Microsoft has great documentation for
the language. By using the ASP.NET Core framework with Azure as the cloud
provider, it was pretty straightforward to deploy the application as a web-service.

33

Chapter 3. Method

3.2.3 Treatment Validation
When validating the treatments, the designer has to investigate whether it is likely
that the goals of stakeholders would be achieved if the artifact was implemented
(treatment implementation is the fourth step of the engineering cycle). Note that
the word implementation in this context means transferring the artifact into the
real world. If the implementation of the artifact is not considered to contribute to
the goals, a new iteration of the design cycle is executed. As the design cycle can
be iterated many times, not all requirements must be treated at once. Hence, one
can apply more treatments over time until the implementation of the artifact will
realize the goals of the stakeholders.

To validate the treatments, I used NUnit1 tests or tested them manually with
Postman2. NUnit is a framework for unit testing of .NET applications (I used C#)
that is useful when the output is known for a given input. If the test class is well
written, one can be quite confident that an algorithm produces the correct output
for any valid input. However, applying unit testing does not always guarantee that
the tested parts are free for bugs. Postman is a client to write and execute HTTP
requests. As the system must be available as a web-service (see requirements in
Table 4.2), I tested the endpoints of the service using Postman. To assess whether
the implementation (transferring it to the real world) of the artifact would realize
the goals of the stakeholders, I created requests for designs to different rooms and
examined whether the proposed kitchen designs made sense. A final assessment
should be done by a domain expert to ensure that the design suggestions are any
good.

1https://nunit.org/
2https://www.getpostman.com/

34

https://nunit.org/
https://www.getpostman.com/

Chapter 4
Solution

This chapter describes the solution of the application that proposes kitchen de-
signing using case-based reasoning. Section 4.1 describes what requirements are,
and Section 4.2 describes the requirements of the solution and how these were
elicited. Section 4.3 specifies the commercial off-the-shelf (COTS) products the
system uses. Section 4.4 describes the software architecture using the 4+1 view
model by P. Kruchten [27], and at last, Section 4.5 discusses some issues of the
solution.

4.1 Requirements
This section describes what software requirements are and how the requirements
in this projected were elicited.

4.1.1 Classification
According to P. Clements et al. [26], requirements encompass these three cate-
gories:
1. Functional requirements. The functional requirements specify what the system
must be able to do, and how to behave and react to runtime stimuli. The project
owner, end users, and other stakeholders that are interested in the functionality
of the program may contribute to the derivation of these requirements. Addition-
ally, the required tasks not visible from a black-box perspective are also seen as
functional requirements.

2. Quality attribute requirements. The quality attribute requirements define the
overall qualification of the system or functional requirements. That the system
must have a high degree of usability or be interoperable are examples of system

35

Chapter 4. Solution

qualifications; that a function must respond to stimuli within a specified period or
handle erroneous input are examples of qualifications of the functional require-
ments.

3. Constraints. A constraint is a decision about the architecture the architect
must accept and incorporate in the design. Examples of constraints are: a specific
programming language or framework must be used, the system must be available
on Android or iOS, or the system must be interoperable with legacy software.

4.1.1.1 Architectural Significant Requirements

ASRs are not a category within requirements but a collection of the requirements
that have a significant impact on the architecture. If the absence of a requirement
may result in a drastically different architecture, then the requirement is an ASR.
Functional requirements cannot be ASRs because they do not specify anything
about how the functionality is implemented—they only describe what the system
must be able to do. Both quality attributes and constraints have the potential
to affect the final design of the architecture significantly, and hence they can be
ASRs.

4.1.2 Requirements Elicitation
A textbook by Zowghi and Coulin [28] reviews the state-of-the-art (2006) require-
ments engineering (RE) process research, key areas of RE, and presents empirical
evidence and experience from practice in the industry. They define requirement
elicitation as the process of seeking, uncovering, acquiring, and elaborating re-
quirements. The goal of the process is to uncover and understand the users’ needs
and communicate these to the developers. They discuss elicitation approaches
such as interviews, questionnaires, task analysis, domain analysis, introspection,
group work, brainstorming, etc. In this project, the requirements were acquired
through interviews and group work.

4.1.2.1 Interviews

Interviews can be performed in three different ways: structured, semi-structured,
or unstructured. Structured interviews require the interviewer to have knowledge
of the subject so that questions can be formed in advance. Unstructured interviews
are preferred if the purpose of the interview is to not only elicit the requirements
but gain critical knowledge of the application domain.

I performed a semi-structured interview with an experienced kitchen designer
at Røskaft Kjøkken in Trondheim, i.e., I prepared a few questions but let the in-

36

4.2 Requirements of the Solution

terviewee speak freely. This helped me to gain insight into how a designer thinks,
what information they require from their customers and thoughts about autoplan-
ning of designs. The interview revealed that a designer needs to know, not surpris-
ingly, the layout of the kitchen and position of walls, windows, drain, and power
outlets. The interviewee made it clear that designers work differently in how they
transform the users’ needs into a final design—some start with a pen and paper
sketch, some design directly in Winner Design, some starts with a guide through
the kitchen showrooms, and so on. Using the autoplanner must be more efficient
than designing from scratch to be usable by the designer.

4.1.2.2 Group Work

Group work promotes cooperation between the stakeholders. The effectiveness
depends on the cohesion within the group, i.e., the ensemble of the participants
have expertise in the whole application domain. Additionally, it is critical that
each group member is allowed to speak freely and express their opinions.

The group work in this project consisted of the development manager and
two developers at Compusoft, and me as the role of an architect and developer.
The two developers work in different application domains; one works with the
development of Winner Design, and the other mainly works with cloud-based
development. The development manager is the project owner and has a great
influence on high-level requirements.

One of Compusoft’s goals is to make their applications available in the cloud.
Winner@Web is a lightweight planning version of Winner Design that lets users
design their kitchens online, and they offer cloud-based storage of designs. It is
required that this project, i.e., the autoplanning feature, is designed as a cloud
application. Because the devlopers at Compusoft already use and have experience
in the Microsoft ASP.NET—a framework for cloud-based development—it is both
wanted and logical to choose this framework.

4.2 Requirements of the Solution
This section lists and categorizes the elicited requirements of the solution in this
project. The ASRs, which are a subset of the quality attributes and constraints, are
listed in Table 4.1.

4.2.1 Quality Attributes
P. Clements et al. [26] discuss a comprehensive list of quality attributes and de-
scribe the most popular ones in detail, which are availability, interoperability,

37

Chapter 4. Solution

ASR Description

1 CBR must be used to propose designs.
2 The application must be available as a web-service.
3 ASP.NET Core must be used to develop the web-service.

Table 4.1: ASRs

modifiability, performance, security, testability, and usability. As the kitchen de-
signer made clear in the interview, the autoplanning feature must be more efficient
than designing from scratch—hence, performance is required for the solution. Be-
cause end users are going to use the autoplanner, usability is also important. At-
tributes such as security, modifiability, and availability are relevant but are not
considered as critical in the prototype.

4.2.1.1 Performance

The stimulus in the general performance scenario is the arrival of a periodic, spo-
radic, or stochastic event, and the system responds by processing it. Performance
can be measured by the latency (time to process an event), whether it is processed
within a deadline or not, the throughput, jitter (variation in latency), and miss
rate. For the autoplanning feature, latency and throughput are critical. If it takes
too much time for the CBR to return solutions, then it is likely that the perceived
usefulness of the feature will diminish. If it turns out that it is time-consuming
to propose solutions, then the client should at least be informed by this before
the task is executed. To test if the system is more efficient than designing from
scratch, one can compare the time used to design the kitchen manually versus us-
ing the autoplanner. The outcome of the test is not final because the quality of
the design must be acceptable as well—time consumption is not the only critical
factor.

4.2.1.2 Usability

The autoplanning feature is supposed to make the design process more efficient
for professional designers, and enable non-professionals to generate their own de-
signs. P. Clements et al. [26] define the stimulus of the general usability scenario
to be an action where the end user wishes to use a system efficiently, learn to
use the system, minimize the impact of errors, adapt the system, or configure the
system. The system should either provide the user with needed features or antic-
ipate the user’s needs as the response to the stimulus. The usability of the system
is somewhat connected to the performance of it. If the design process is slower

38

4.2 Requirements of the Solution

ID Description

1 CBR must be used to propose designs.
2 The application must be available as a web-service.
3 The ASP.NET Core framework must be used to develop the web-service.

Table 4.2: Constraints

than designing from scratch, the perceived usefulness of the system is low for pro-
fessionals. For a non-professional, however, the performance is not that critical
because they are not able to design kitchens themselves. Of course, if it takes too
much time, the non-professional will also abandon the process.

Consistency in software design lets users that are known with one application
reuse their experiences when trying to learn a new one. For instance, the design
of every Apple product is similar which makes it easier for a user to learn how
to use a new Apple product if they are familiar with one of their other products.
Drawing the room for the autoplanning system should be similar as in Winner
Design because a designer familiar with this program can use the autoplanner
without learning a new design tool.

4.2.2 Constraints

The purpose of the master thesis is to research how CBR can be used to propose
kitchen designs. Hence, the first constraint is that the solution must use CBR. As
the outcome of the group work shows, the application must be available as a web-
service and implemented using the ASP.NET Core framework. The constraints
are listed in Table 4.2.

4.2.3 Functional Requirements

The functional requirements of the system are listed in Table 4.3. They are sepa-
rated into three different categories, namely Client, API, and CBR. The client re-
quirements specify the necessary functionality to construct a CBR problem. The
API requirements specify needed functionality to use the case-based reasoner over
the web. And at last, the CBR module must at least be able to perform the retrieve
and retain processes of the CBR-cycle.

39

Chapter 4. Solution

FR Description — It must be possible to ...

1.1 draw the room that shall be furnished.
1.2 select which walls one wants to furnish.
1.3 select desired shape of the design (see Section 2.5.1).
1.4 search for designs suggestions.
1.5 import the chosen design to the room.

(a) User requirements

FR Description — It must be possible to ...

2.1 upload a solution (.json extension).
2.2 upload a kitchen design (.drw extension).
2.3 upload a kitchen design preview (.jpeg extension).
2.4 download a solution.
2.5 download a kitchen design.
2.6 download a kitchen design preview.
2.7 delete a solution.
2.8 delete a kitchen design.
2.9 delete a kitchen design preview.
2.10 retrieve solutions for a problem.

(b) Web API requirements

FR Description

3.1 The reasoner must be able to retrieve solutions.
3.2 The reasoner must be able to retain solutions.

(c) CBR requirements

Table 4.3: Functional Requirements

40

4.3 COTS

Autoplanning.Web — ASP.NET MVC

displaymanipulate

Model

response
Controller

request
View

Business logic
Application data
Classes

Handle web requests
Manipulate the model
Update the view

Display the data
User interface

Figure 4.1: ASP.NET MVC

4.3 COTS

COTS is short for commercial off-the-shelf which are third-party hardware or
software that can be used to solve a problem or complete a task. These can be
open source, and hence free, but may also come at a cost. In this solution, these
four COTS products are used: ASP.NET Core, Azure Storage, Azure CosmosDB,
and Azure App Service.

4.3.1 ASP.NET Core

The ASP.NET Core framework is free to use. It supports three different program-
ming languages namely C#, F#, and Visual Basic. A natural choice in this project
is C# because the developers at Compusoft is familiar with this language and I am
experienced in Java—C# and Java are similar which makes it easier to learn the
other if one master one of them. The framework is designed to make use of the
Model-View-Controller (MVC) architectural pattern.

4.3.1.1 ASP.NET MVC

Figure 4.1 shows how the three parts (Model, View, and Controller) communicate
with each other and their responsibilities.

41

Chapter 4. Solution

The model contains business logic, the application data, and the classes. When
using an external database or storage, it is the model’s job to read and store data.
The controller transforms user input or events into method calls that are passed to
the model. In the context of web services, the controller(s) implements the server
endpoints which are reachable by HTTP requests. The ASP.NET framework han-
dles the routing of requests (mapping from URL to method in the controller) as
well as functionality to return the response. The view is the user interface—
typically a website for web services. One data model can have zero to many views;
each displays the same data but from a different point of view. For instance, the
data can be displayed as a histogram, bar chart, pie chart, etc.

The advantage with MVC is that it applies separation of concerns, i.e., each
part is responsible for a distinct task, and a modification in one of parts should
not propagate (too much) to other. Significant changes in the model would, of
course, impact the controller but changes to the view would not affect the model.
Because the views can be modified without side-effects, they can be optimized to
ensure high usability without changing anything of the back-end. This is signifi-
cant because as we saw in the previous section, usability is a requirement of the
solution.

4.3.2 Azure Blob Storage
Azure Blob Storage is a cloud-based storage offered by Microsoft that can store
unstructured data, and the solution in this project will use this storage for previews
and drw files—Blob is short for Binary Large OBjects. The maximum storage
capacity for an account is 20 PB, and the storage can handle up to 20,000 requests
per second. The egress limit, i.e., the maximum transfer rate from the server to the
client, is 50 Gbps, and the ingress limit, i.e., the maximum incoming transfer rate
the server can handle, is 10 Gbps. To reduce latency, Microsoft offers premium
storage that uses SSD (solid-state drives), or one can enable Azure CDN (content
distribution network) that reduces latency by having the data physically closer to
the client. It is reasonable to assume that the performance of this storage will not
be a bottleneck to the performance of the autoplanner. For more information about
Azure Blob Storage see their website1.

4.3.3 Azure Cosmos DB
Azure Cosmos DB is a globally distributed database service that supports docu-
ment, key-value, wide-column, and graph databases. The CBR case base in the
solution will use a document database—MongoDB to be more specific. Microsoft

1https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-overview

42

https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-overview

4.4 Architectural Views

guarantees a latency <10 ms for reads and <15 ms for indexed writes operations
at the 99th percentile, which means only one percent of the requests exceed 10 ms
for reads or 15 ms for writes. To improve performance, MongoDB uses shards
that distribute documents in a collection according to some shard key. This key
should be chosen carefully such that the documents are evenly distributed among
the shards. Cosmos DB uses a currency called request units (RUs) and must be
reserved by a database. Reading a 1 kb document costs 1 RU and writing a 1 kb
document costs 5 RU. For more information about Azure Cosmos DB see their
website2.

4.3.4 Azure App Service
Azure App Service is a service for hosting of web apps, REST APIs, and mo-
bile back-ends. It can provide authentication, security, load balancing, out and
up-scaling, and it can integrate the development and deployment via its DevOps
service. There are various pricing tiers, and one can choose the appropriate one
according to the requirements of the application. The cheapest option is suitable
for development and testing, while the premium options are more suitable for high
performance and security applications. Scaling up means that the app is backed
with better hardware, and scaling out means that one creates more instances of the
app. For more information about the Azure App Service see their website3.

4.4 Architectural Views
This section uses the 4+1 model by P. Kruchten [27] to describe the architecture
of the solution. It consists of the development, logical, process, and physical
view where each one describes the system from a different viewpoint. The ”plus
one” contains the scenarios, also known as user stories. It is not considered as an
independent view because it does not give any extra information—its purpose is to
explain the behavior of the program to stakeholders not familiar with or interested
in the details of the development.

4.4.1 Development View
The purpose of the development view is to visualize the relations between the
different modules and submodules in the system and their dependencies. The
package diagram in Figure 4.2 shows that four new packages will be created
in this project namely Autoplanning.Web, KitchenCBR, and their test packages.

2https://azure.microsoft.com/en-us/services/cosmos-db/
3https://azure.microsoft.com/en-us/pricing/details/app-service/windows/

43

https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/

Chapter 4. Solution

using using

using KitchenCBR

usingusing

Autoplanning.Web

MongoDB.Bson

External modules

New modules

Microsoft.Azure.Storage.BlobMongoDB.DriverNewtonsoft.Json

using

using

TestKitchenCBR

using

TestAutoplanningWeb

NUnit

Figure 4.2: Package diagram

TestKitchenCBR and TestAutoplanningWeb test the KitchenCBR and Autoplan-
ning.Web packages respectively using the NUnit framework.

The KitchenCBR module is responsible for performing the CBR methodol-
ogy; in the first version of the program, it will retrieve solutions from the case
base and retain new ones—the reuse and revise step of the cycle must be per-
formed manually by the user. Such a system is called a retrieve-only CBR. If
possible, the module will be responsible for the reuse of designs in later releases.
I.e., the system inserts a design into the given room.

The CBR methodology requires an implementation of a case base but does not
specify which technology to use. MongoDB is a NoSQL technology which pro-
vides high performance, scalability, and modifiability. MongoDB stores BSON
(binary JSON) documents and does not require any information about the internal
structure of them. An advantage of this design is that the representation of the
cases can be modified without changing anything with the database setup. With a
SQL database, one will have to add attributes to an existing table or create a new
one if there are significant changes to the case structure.

The case base will be realized using MongoDB. Hence, the KitchenCBR mod-
ule depends on the MongoDB.Bson and MongoDB.Driver libraries. The Bson
module provides the Binary JSON (Bson) class, and the Driver module offers
functionality to communicate with the database.

The design preview (.jpeg) and CAD file (.drw used in Winner Design) should
be stored outside the case base to reduce the size of a case. This will improve

44

4.4 Architectural Views

efficiency because working with smaller cases is faster, and the preview and CAD
model will anyways not influence the output of the CBR retrieval.

The project will use Microsoft Azure Storage, a cloud-based solution, to store
previews and binary drw files. The Microsoft.Azure.Storage.Blob module imple-
ments methods to interact with the storage unit and uses BLOBs (Binary Large
OBjects) for uploading and downloading documents. Microsoft has detailed doc-
umentation on how to use the library in C#.

The Autoplanning.Web module implements the web endpoints of the CBR ap-
plication by using the ASP.NET Core framework. This module enables commu-
nication between the client and the KitchenCBR module with HTTP requests. As
we saw in Section 4.3.1.1, the ASP.NET framework has built-in support for the
MVC pattern. The web package depends on the KitchenCBR package because
the model uses the KitchenCBR methods. Newtonsoft.JSON is used to convert
JSON-objects to and from .NET (C#) objects.

In the first version of the system, the web service is only an API that lets the
client communicate with the KitchenCBR. This means that the client can send a
request to the API to retrieve solutions, but needs to handle the response them-
selves. The idea is that Winner Design is used to draw the room, send the request
to the API, and display the returned solution(s). It is desired that the application
can be available as a stand-alone web service without the usage of Winner Design
as a supportive tool in later versions.

4.4.2 Logical View
The logical view focuses on the implementation of the system and contains class
diagrams and interfaces. Developers can use this view to see which methods the
interfaces exposes and the methods and properties of the classes. This section
contains a detailed description of how the CBR cases are represented, which ad-
dresses research question 1.1 (see Section 1.6).

4.4.2.1 Interfaces

The KitchenCBR module exposes three interfaces namely ICaseBase, IStorage,
ICbr (see Figure 4.3). ICbr is the main interface that is supposed to be used by
external applications that want to access the case-based reasoner. The other two
interfaces are related to storage of cases and binary data used by a CBR class. An
advantage of this design is that the CBR class does not need to know how data
are stored or what kind of technology is used. For instance, the case base can be
stored in a local file system, in a MongoDB database, or in a MySQL database—
switching from to another will not affect the CBR class because it relies on the
interface of ICaseBase. The methods are marked as Async which means they

45

Chapter 4. Solution

 KitchenCBR

<<Interface>>
ICbr

+ RetrieveKAsync(Problem, int): Task<List<Solution>>
+ RetainAsync(Solution, MemoryStream, MemoryStream): Task
+ ForgetAsync(string): Task

<<Interface>>
IStorage

+ StorePrvwAsync(MemoryStream, string): Task
+ StoreDrwAsync(MemoryStream, string): Task
+ GetPrvwAsync(string): Task<MemoryStream>
+ GetDrwAsync(string): Task<MemoryStream>
+ DelPrvwAsync(string): Task
+ DelDrwAsync(string): Task

<<Interface>>
ICaseBase

+ StoreAsync(Solution): Task<bool>
+ GetAllAsync(): Task<List<Solution>>
+ GetSolutionAsync(string): Task<Solution>
+ FindAllAsync(Expression<Func<Solution, bool>>): Task<List<Solution>>
+ DeleteAsync(string): Task

Figure 4.3: KitchenCBR interfaces

should be implemented using asynchronous programming. Async methods have a
great increase in performance over synchronous ones when doing IO operations4.

The interface of the web service, or API, is listed on the left-hand side in
Figure 4.4 and the resources on the right-hand side. The last three endpoints
execute CBR methods and the other gets, puts, or deletes resources on the server.
There is an issue with this design regarding RESTful design which is discussed in
Section 4.5. For a detailed explanation of each endpoint see Table 4.5.

4https://msdn.microsoft.com/en-us/magazine/dn802603.aspx accessed 27.03.19

46

https://msdn.microsoft.com/en-us/magazine/dn802603.aspx

4.4 Architectural Views

Autoplanning.Web

Edge: {
 "xPos": "number",
 "yPos": "number",
 "width": "number",
 "angle": "number",
 "appliances" : [Appliance, ...],
 "parts": [Part, ...]
}

Appliance: {
 "guid": "string",
 "xPos": "number",
 "yPos": "number",
 "wallOffset": "number",
 "angle": "number",
 "width": "number",
 "height": "number",
 "depth": "number",
 "type": "string"
}

Endpoints

GET /drws/{guid}

GET /previews/{guid}

GET /solutions/{guid}

DELETE /drws/{guid}

DELETE /previews/{guid}

DELETE /solutions/{guid}

PUT /drws/{guid}

PUT /previews/{guid}

PUT /solutions/{guid}

POST /cbr/retain

POST /cbr/retrieve

POST /cbr/forget?guid={guid}

Resources

Problem: {
 "shape": "string",
 "walls": [Wall, ...],
}

design.drwpreview.jpeg

Part: {
 "guid": "string",
 "xPos": "number",
 "yPos": "number",
 "wallOffset": "number",
 "angle": "number",
 "width": "number",
 "height": "number",
 "depth": "number"
}

Wall: {
 "xPos": "number",
 "yPos": "number",
 "width": "number",
 "height:" "number",
 "angle": "number",
 "parts": [Part, ...]
}

Solution: {
 "guid": "string",
 "shape": "string",
 "edges": [Edge, ...]
}

Figure 4.4: Autoplanning.Web endpoints and resources

47

Chapter 4. Solution

GET /previews/{guid} – Get the solution’s preview image

Path vars {guid} – The id of the solution
Request vars none
Body none
Response 200 OK image/jpeg

404 NOT FOUND

(a) Get the solution’s preview image

GET drws/{guid} – Get the solution’s drw file

Path vars {guid} – The id of the solution
Request vars none
Body none
Response 200 OK application/octet-stream

404 NOT FOUND

(b) Get the solution’s drw file

GET solutions/{guid} – Get the solution in json format with this guid

Path vars {guid} – The id of the solution
Request vars none
Body none
Response 200 OK application/json {Solution}

404 NOT FOUND

(c) Get solution

DELETE /previews/{guid} – Delete the preview with this guid

Path vars {guid} – The id of the solution
Request vars none
Body none
Response 200 OK

404 NOT FOUND

(d) Delete preview

48

4.4 Architectural Views

DELETE /drws/{guid} – Delete the drw with this guid

Path vars {guid} – The id of the solution
Request vars none
Body none
Response 200 OK

404 NOT FOUND

(e) Delete drw

DELETE /solutions/{guid} – Delete the solution with this guid

Path vars {guid} – The id of the solution
Request vars none
Body none
Response 200 OK

404 NOT FOUND

(f) Delete solution

PUT /previews/{guid} – Store a preview with the given guid

Path vars {guid} – The id of the solution
Request vars none
Body multipart/form-data [*.jpeg]
Response 201 CREATED

400 BAD REQUEST

(g) Store preview
PUT /drws/{guid} – Store a drw with the given guid

Path vars {guid} – The id of the solution
Request vars none
Body multipart/form-data [*.drw]
Response 201 CREATED

400 BAD REQUEST

(h) Store drw

49

Chapter 4. Solution

PUT /solutions/{guid} – Store a solution with the given guid

Path vars {guid} – The id of the solution
Request vars none
Body application/json {Solution}
Response 201 CREATED

400 BAD REQUEST

(i) Store solution

POST /cbr/retrieveK?k={k} – Execute CBR retrieval

Path vars none
Request vars {k} – Number of cases to retrieve
Body application/json {Problem}
Response 200 OK application/json { ”solutions”: [Solution, ...] }

(j) Execute CBR retrieval

POST /cbr/retain – Retain a new solution. Stores case, preview, and drw file.

Path vars none
Request vars none
Body multipart/form-data [*.json, *.jpeg, *.drw]
Response 200 OK

400 BAD REQUEST

(k) Execute CBR retain

POST /cbr/forget?guid={guid} – Deletes case, preview, and drw file.

Path vars none
Request vars {guid} – The id of the solution
Body none
Response 200 OK

404 NOT FOUND

(l) Execute CBR forget

Table 4.4: Autoplanning.Web API

50

4.4 Architectural Views

4.4.2.2 Classes

As the class diagram in Figure 4.5 shows, IStorage is realized with AzureBlob-
Storage and ICaseBase with MongoDB. The six classes Solution, Problem, Edge,
Wall, Appliance, and Part are used to construct the CBR cases—Solution and
Problem are the two central ones, while the others are means to build them in an
object-oriented fashion. Table 4.5 describes the attributes of all the classes.

Note: A GUID is a randomly generated 128-bit string, i.e., it can give up to
2128 unique identifiers. In practice, a collision will occur before all unique ones
have been generated because of the birthday paradox. It will happen with the
probability of 50% if one generates 1.17 ∗ √n + 1 identifiers, where n is the
number of possible assignments (see Appendix A.1 for proof). If approximately
2.16 ∗ 1019 Guids are generated, then there is a 50% chance that two of them are
equal. However, this application will never even come close to this amount of
identifiers.

51

Chapter 4. Solution

Legend

Appliance

+ Guid: string

+ XPos: double

+ YPos: double

+ WallOffset: double

+ Angle: double

+ Width: double

+ Height: double

+ Depth: double

+ Type: enum

Solution

+ Guid: string

+ Shape: enum

+ Edges: List<Edge>

Edge

+ XPos: double

+ YPos: double

+ Width: double

+ Angle: double

+ Appliances: List<Appliance>

+ Parts: List<Part>

«interface»
ICaseBase

«interface»
IStorage

MongoCB

- client: MongoClient

+ MongoCB(string)

AzureBlobStorage

- client: CloudBlobClient

+ AzureBlobStorage(string)

Cbr

- storage: IStorage

- caseBase: ICaseBase

+ Cbr(ICaseBase, IStorage)

«interface»
ICbr

depends on

realizesA B

A B

Problem

+ Shape: enum

+ Walls: List<Wall>

Class

Part

+ Guid: string

+ XPos: double

+ YPos: double

+ WallOffset; double

+ Angle: double

+ Width: double

+ Height: double

+ Depth: double

Wall

+ XPos: double

+ YPos: double

+ Width: double

+ Height: double

+ Angle: double

+ Parts: List<Part>

Figure 4.5: KitchenCBR class diagram

52

4.4 Architectural Views

Solution
Attribute Description

Guid A globally unique identifier.
Shape Enum type that represents the shape of the kitchen (see Section

2.5.1).
Edges A list that contains the edges of the solution. An edge is a con-

tinuous line of furniture.

(a) Solution

Problem
Attribute Description

Walls A list that contains the walls of the kitchen that the user wants
to furnish.

Shape What kind of kitchen shape the user wants.

(b) Problem

Edge
Attribute Description

XPos X-coordinate of its start position.
YPos Y-coordinate of its start position.
Width The width of the edge.
Angle The angle of the edge around the z-axis (cf. Figure 4.6).
Appliances A list of appliances on this edge.
Parts A list of furniture on this edge.

(c) Edge

53

Chapter 4. Solution

Wall
Attribute Description

XPos X-coordinate of its start position.
YPos Y-coordinate of its start position.
Width The width of the wall.
Height The height of the wall.
Angle The angle of the wall around the z-axis (cf. Figure 4.6).
Parts A list of furniture (windows, doors, ..) on this wall.

(d) Wall

Appliance
Attribute Description

Guid Identifier of this part (furniture) in the drw file.
XPos The x position of this appliance.
YPos The y position of this appliance.
WallOffset Specifies the offset from the wall for this appliance.
Angle Rotation of the appliance relative to the parent edge around the

z-axis.
Width The width of this appliance.
Height The height of this appliance.
Depth The width of this appliance.
Type What kind of appliance this is (Refrigerator, Cooker Top, ...).

(e) Appliance

Part
Attribute Description

Guid Identifier of this part (furniture) in the drw file.
XPos X position of the part.
YPos Y position of the part.
WallOffset Specifies the offset from the wall for this part.
Angle Rotation of the part relative to the parent edge around the z-axis.
Width The width of this part.
Height The height of this part.
Depth The depth of this part.

(f) Part

Table 4.5: KitchenCBR class descriptions

54

4.4 Architectural Views

x

y

z

angle

Figure 4.6: The coordinate system used in Winner Design is left-handed where the z-axis
points up and the x-axis points to the right. Rotation in a left-handed coordinate system is
clock-wise.

4.4.3 Process View
The purpose of the process view is to describe and visualize the flow of the pro-
gram. Activity diagrams show the sequence of actions that are performed when
an activity is initiated. These diagrams should be readable by stakeholders who
are not interested in implementation details but rather in an abstract view of what
happens when completing a task. Sequence diagrams can also show the flow of
the program but are implementation specific; these diagrams display the method
calls, which are valuable to stakeholders that want to understand how a task is
solved at a more technical level—mostly used by the developers. This section
includes both activity and sequence diagrams to satisfy both needs.

4.4.3.1 Activity Diagrams

Figure 4.7 depicts the activity diagram of the CBR retrieve process. First, the
web service receives an HTTP request for designs suggestions for a given prob-
lem (room and requirements). If the request is invalid, an error message will be
returned, and the process is terminated. Else, the web service initiates a task in the
CBR module to retrieve designs. When the solutions are found, the CBR module
ranks them from best to worst based on their utility for the specific problem. At
last, the API returns the proposed solutions to the user.

Figure 4.8 shows the activity flow of the retain process. As for retrieval, the
task is initiated by an HTTP request from the client, however, this time for storing
a new case. An error message is returned if the request is invalid or incomplete,
and the process is terminated. If it is valid, the CBR will first retain the case in the
case base and afterwards store the preview and drw file in the storage. At last, a

55

Chapter 4. Solution

User Web API CBR

Receive HTTP
request for design

retrieval
(CBR retrieve)

[OK][Not OK]

[Check
request
validity]

Get solutions from
case base that
matches user
requirements

Rank solutions
by ulility

Return HTTP
response with

solutions

Return HTTP
response with
error message

Figure 4.7: Activity diagram that shows the activity flow of the retrieval process

User Web API CBR

Receive HTTP request
for storing a new

solution (CBR retain)

[OK][Not OK]

[Check
if all

files are
present]

Store solution in
the case base

Store preview
and drw file in the

storage

Return HTTP
success
response

Return HTTP
response with
error message

Figure 4.8: Activity diagram that shows the activity flow of the retain process

56

4.4 Architectural Views

response is sent to the client that informs the action was successfully completed.

4.4.3.2 Sequence Diagrams

Figure 4.9 depicts three sequence diagrams of the possible interactions on the
/previews endpoint on the API. As stated earlier, these diagrams show the method
calls in the process flow. First, an HTTP request is sent to the server which in-
cludes one of the HTTP verbs PUT, GET, or DELETE together with a specific
endpoint, which in this case is /previews/{guid}. The first part of the endpoint,
namely previews, refers to a collection of preview images, and the guid part refers
to one specific resource in this collection. When putting a new image to the server,
the image must be added to the request body as seen in Figure 4.9a. The Web API
calls the correct IStorage method based on the HTTP verb of the request—the
name of the message maps directly to one of the methods exposed by the interface
in Figure 4.4. The user is notified with a 201 Created response if the preview was
uploaded successfully, a 200 OK response with the image if the GET verb was
used, and a 200 OK if the deletion was successful.

Figure 4.10 shows the process of retaining a complete set of a solution, pre-
view and drw file on the /cbr/retain endpoint. The request is transmitted with
the HTTP POST verb, and the request body contains the three files that will be
uploaded to the server. First, a RetainAsync message is sent to the ICbr class
which executes three asynchronously methods on the IStorage and ICaseBase
classes. The sequence diagram shows the advantage of using asynchronous over
synchronous methods; instead of sending a message and wait for it to complete
before the next message is sent, one can send multiple messages at the same time
and wait until all of them are completed. The user is notified with a 200 OK
response if the request was processed successfully.

57

Chapter 4. Solution

:WebAPI :IStorage

HTTP PUT /previews/{guid}
StorePrvwAsync

return201 Created

(a) Put a preview into the storage

:WebAPI :IStorage

HTTP GET /previews/{guid}
GetPrvwAsync

return200 OK

(b) Get a preview from the storage

:WebAPI :IStorage

HTTP DELETE /previews/{guid}
DelPrvwAsync

return200 OK

(c) Delete a preview from the storage

Figure 4.9: Sequence diagrams that show the program flow when putting, getting, or
deleting previews from the server.

58

4.4 Architectural Views

HTTP POST /cbr/retain

:WebAPI :ICbr :IStorage :ICaseBase

RetainAsync
StorePrvwAsync
StoreDrwAsync

StoreAsync

return
return

return
return

200 OK

.jpeg .drw .json

Figure 4.10: Sequence diagram that shows the program flow when using the /cbr/retain
endpoint.

4.4.4 Physical View

The physical view is used to describe the physical deployment of the application
by using deployment diagrams. These diagrams show the different nodes (com-
puters, servers, databases), how these communicate with each other, and what
piece of software which is deployed on them.

Traditionally, each development team had at least one person responsible for
deploying new releases onto the nodes. With the DevOps (development opera-
tions) practice, however, writing code and deploying it have become a more inte-
grated process. In the Azure DevOps environment, one connects a VCS (version
control system) repository and each time a developer push changes to master, a
build is executed. A release can be deployed when a trigger condition is met, for
instance, each time a build has succeeded, it can be scheduled, or initiated manu-
ally. This enables the developers to focus more on developing the application and
less on deployment.

Figure 4.11 shows the deployment diagram of the system. The KitchenCBR
and Autoplanning.Web modules are deployed on Microsoft’s Azure Web App
Service—it is not known which physical computer(s) Microsoft use for running
the application. The machine can be shared with other applications, or one can
pay a premium to get higher performance. Their website describes the possible

59

Chapter 4. Solution

Azure Blob Storage

HTTP MongoDB wire protocol

Azure Web App Service

KitchenCBR.dll

 Autoplanning.Web.dll

Azure CosmosDB

Figure 4.11: Deployment Diagram

options and the pricing of them5.
The case base is implemented using MongoDB, but any technology could have

been used. CosmosDB uses the MongoDB wire protocol to enable communica-
tion between the application and the database. Similar to the Web App Service,
Microsoft offers various pricing levels depending on the desired features and per-
formance of the database. The different options and their prices can be found on
their website6.

Azure Blob Storage is a service that enables storing BLOBs by using the
HTTP protocol. Again, it is not known which physical machine or server that
stores the data. The Blob Storage have different pricing levels that depend on
the required storage capacity, and the performance of read and write operations.
Prices can be obtained on their website7.

4.4.5 Scenarios

This view shows how the system appears for a user from a black-box perspective.
It hides the implementation details, the activity flow behind the scenes, or anything

5https://azure.microsoft.com/en-us/pricing/details/app-service/windows/ accessed 25.03.19
6https://azure.microsoft.com/en-us/pricing/details/cosmos-db/ accessed 25.03.19
7https://azure.microsoft.com/en-us/pricing/details/storage/blobs/ accessed 25.03.19

60

https://azure.microsoft.com/en-us/pricing/details/app-service/windows/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/

4.4 Architectural Views

else which is not visible for the user.
The diagram in Figure 4.12 shows the design process from start to end and

separates the scenario into three sub-scenarios. First, the user has to draw his or
her room in Winner Design and export it in a json format. Then, the user uploads
this json file to the autoplanning website and specifies the requirements of the
desired design and requests solutions. The system retrieves some designs with
their associated previews that the user can choose and download. At last, the user
imports the design in Winner Design which will apply it to the room they drew
earlier.

61

Chapter 4. Solution

Client

Winner
Design

Draw room

Export room
to json

(a) Draw room and export room in
Winner Design

Client

Autoplanning
website

Upload room in
json format

Select design
requirements

Request
designs

Choose design
Download

design
as json

(b) Get designs from the autoplanner

Client

Winner
Design

Import design

Accept or
modify design

Precondition:
- The room must be already drawn

(c) Import the design in Winner Design

Figure 4.12: This diagram shows a scenario that consists of three sub-scenarios. (a) The
user draws the room. (b) The website finds solutions. (c) The user imports the selected
design in Winner Design.

62

4.5 Issues

4.5 Issues
This section describes the identified concerns about the architectural design and
the problem (autoplanning) in general.

4.5.1 REST vs. RPC
REST is an abbreviation for REpresentational State Transfer and was introduced
by Roy Fielding in his doctoral dissertation in 2000 [29]. He describes a network-
based architecture that is one of the most popular choices when designing web
applications. There is an issue when deploying the CBR application on the web
in a RESTful way because it violates the uniform interface constraint in the REST
architecture. This interface specifies that all interfaces on the web service must
fulfill these four constraints: identification of resources, manipulation of resources
through representations, self-descriptive messages, and hypermedia as the engine
of application state. Design previews, drws, and solutions (the json representation
of them) are resources and can fulfill all the requirements of the uniform interface.
But how can the CBR methods in the cycle be executed in a RESTful way? For
instance, searching for a resource in the REST architecture requires a SQL-like
query, which means it is not possible to query a resource with another type. For
instance, one cannot search for solutions with a problem in the CBR domain.

A remote procedure call (RPC) executes a procedure on a remote host. This
seems to be the optimal choice when retrieving cases with the case-based reasoner,
but it leads to an issue in the architecture. Mixing REST and RPC into a combined
API can lead to confusion for both the client and the developers.

4.5.2 The Complexity of Autoplanning
In a perfect world, all sorts of kitchen designs can be proposed by the CBR—it
can handle unusual room layouts and extraordinary designs. With the limited re-
sources in this master project, however, it is critical to get some possible results
rather than a production-ready software. A challenge is to find a case representa-
tion such that the CBR gets some results, and these designs must be either usable
directly or after minor modifications. Making too high expectations of the CBR
might result in too complex case representations and overthinking about odd room
shapes and unusual designs.

4.5.3 Modifiability
This is somewhat related to the complexity of autoplanning because it requires
careful thought about possible features and changes that can be implemented in

63

Chapter 4. Solution

the future. Although getting some results are the top priority of the project, it is
critical to design the system such that it is possible to build on it later. Let us say
a prototype of the system successfully proposes suitable designs. What is now the
cost to add a new feature or change the case representation? Is it enough to update
the case representations and utility metrics? How do the changes impact the rest
of the system? How can the existing cases be updated with new attributes? This
concern should be a motivation to design the architecture after best practices and
strive for modifiability.

64

Chapter 5
Results

This chapter describes how the case base was constructed, or rather, populated
with cases (kitchen designs). The CBR retrieval method of the system is ex-
plained, and its performance is analyzed. The front-end (website) of the appli-
cation is presented, which describes how you can use the autoplanner to retrieve
kitchen designs. At last, there are some experiments to show what the autoplanner
is capable of doing.

5.1 Building the Case Base

A case-based reasoner without a case base cannot propose any solutions, because
it can only propose solutions from its memory. K. Richter [12] discussed in her
paper why case-based design applications seldom succeeded outside the academic
field. The main reason for this was the lack of accessibility and acquisition of
knowledge. With this, she means access to existing designs and the creation of
new.

I had access to a database that contained 1853 Winner Design projects for
the construction of the case base in this project. Additionally, each project could
have multiple alternatives—an alternative is one design—where each one was a
candidate for the case base. The true number of usable kitchen designs is un-
certain because some projects had zero useful designs while some had several.
Figure 5.1 shows two projects where one has plenty of kitchen designs, while the
other has none. As Winner Designs is capable of designing kitchens, bathrooms,
and wardrobes, some projects may not have any kitchen designs at all (as in Fig-
ure 5.1b). However, I assume that the number of available designs is more than
enough to build a sufficiently large case base. My co-supervisor Sindre Nyvoll
created an export feature for Winner Design that identifies what kind of shape

65

Chapter 5. Results

(a) Project with plenty of kitchen designs

(b) Project for wardrobes

Figure 5.1: Winner Design projects

the kitchen has (One wall, two walls, L, etc.), exports the design to a JSON repre-
sented format as specified in Section 4.4.2, and uploads it to the case base by using
the /solutions endpoint of the Web API. I exported 45 One Wall and 55 L-shaped
kitchen designs with this extension. It took some days to export these because I
had to make sure that each export was correct, such that the case base would not
be filled with erroneous cases. The total size of the 100 cases adds up to 1.15
MB—which is approximately 11.8 KB per case.

5.2 The Retrieval Method

Retrieval is the first process of the CBR-cycle and takes a problem as input. First,
the method queries the case base to get all cases with a kitchen shape that matches
the required shape by the problem. This corresponds to the many-are-chosen prin-
ciple by the MAC/FAC methodology introduced by K. Forbus et al. [11]. For
instance, if the user wants an L-shaped kitchen, the system should not propose
any other shape. Hence, it is unnecessary to evaluate solutions with an incorrect
shape. A utility metric which calculates the utility of a solution to the problem is
applied to all the selected solutions from the first stage. The k solutions (the user

66

5.2 The Retrieval Method

(a) Solution uses plenty of the available
space

(b) Solution does not make good use of the
available space

Figure 5.2: Two different designs in the same room

decides k) with the highest utility are sorted from high to low, and the user can
choose the desired solution.

5.2.1 The Utility Metric

One of the research questions of my thesis is how to retrieve cases efficiently.
Having this in mind, I tried to design the utility metrics such that the computa-
tional cost for each measurement is as low as possible. The algorithm computes
the average of two local utility metrics—one computes the ratio of the used area
of the available area of the wall, and the other evaluates whether the properties
of the kitchen triangle are preserved. These properties are described in Section
2.5.3. The general idea is that using more of the available space is better than
leaving parts of the wall unfurnished. Figure 5.2 shows two different designs in
the same room. It is reasonable to believe that the largest is the best one. Hence,
the utility measure should give a higher score to the larger kitchen. The metric
does not accept a large intersection between blocked regions of the wall and the
solution—i.e., collisions between furniture and window, doors, etc. As a conse-
quence, a utility of zero is given for solutions that do not fit the input room. The
global utility of the kitchen is the average of the edge utility (how much space is
used), and the quality of the kitchen triangle. For instance, if 60% percent of the
wall is furnished, and the triangle formed by the work centers almost complies
with the kitchen triangle (gives a triangle utility of 0.75). Then the global utility
would be 0.5 ∗ (0.6 + 0.75) = 0.675 given for that solution. Code snippets for
measuring the edge and triangle utitlities are listed in Appendix A.2.

67

Chapter 5. Results

5.2.2 Adaptations

Adaptation is typically applied after a solution is selected (see Figure 2.1). The re-
trieval method in this system, however, performs a few simple adaptations before
measuring the utility of a solution. For instance, an L-shaped solution is translated
into the corner of the input room before the utility is measured. Remember that
one utility metric measured the ratio of used area of the wall. The value of this
metric depends on the positioning of the furniture. Additionally, the solution must
be placed correctly in the room before one can verify whether it collides or not
with unavailable parts (doors, windows, etc.) of the wall.

One could argue whether these minor adaptations are significant enough to
be labeled as CBR adaptations—the layout does not change at all. However, the
positions of the parts are included in the case representation, and by modifying
them, one is strictly speaking adapting the cases.

5.2.3 Performance

The performance of the retrieval method is one of the research questions in my
thesis. Additionally, it is also a requirement of the system that it must be faster
to use the autoplanner than designing kitchens from scratch (see Section 4.1). To
measure the performance of the CBR retrieval, I will do two things. First, I will
investigate how much time it takes to measure the utility of a solution. Then, I
will evaluate the Time To First Byte (TTFB), which indicates the responsiveness
of the web server—that is, I will assess the TTFB of the RetrieveK endpoint of
the API.

First, the performance of computing the utility of one wall designs is measur-
ing using the problem in Listing 5.1. The width of the wall is set to 10,000 mm so
that the utility metric cannot break early because the kitchen design is wider than
the room; if the width of the kitchen is wider than the wall, a utility score of zero
will be given without further measurements. It took 3 ms to compute the utility of
45 one wall solutions—which corresponds to approximately 0.07 ms per case or
14 286 cases per second.

Listing 5.1: Problem: One wall shape

{
"shape": "ONE_WALL",
"walls": [

{
"xPos": 0,
"yPos": 0,
"width": 10000,

68

5.2 The Retrieval Method

"height": 2400
}

]
}

The performance of measuring L-shaped kitchens is computed using the prob-
lem in Listing 5.2. For the same reason as with one wall designs, the width of the
walls is set to 10,000 mm to make sure that the utility of all the cases is measured.
It took 7 ms to compute the utility of 55 L-shaped kitchens—which corresponds
to approximately 0.13 ms per case or 7692 cases per second. It is not surpris-
ing that it takes about twice as much time to measure the utility of an L-shaped
kitchen compared to a one wall design. A likely explanation is that the algorithm
to compute the ratio of used wall space and collision detection is executed twice
instead of once.

Listing 5.2: Problem: L shape

{
"shape": "L",
"walls": [

{
"xPos": 0,
"yPos": 0,
"width": 10000,
"height": 2400

},
{

"xPos": 10000,
"yPos": 0,
"width": 10000,
"height": 2400,
"angle": 90

}
]

}

So, the performance of the utility measure should be more than fast enough to
propose designs quickly. Let us take a look at the TTFB of the RetrieveK endpoint.
When there have not been any requests for a while, Azure CosmosDB (the case
base) frees up some resources and goes to some sort of idle mode. This makes the
first request a bit slower because there is some overhead in firing up the service
again. The overhead varies, but it usually takes up to a second extra for the first
request. If the database is not idle, TTFB for the RetrieveK endpoint is around

69

Chapter 5. Results

200–250 ms for the problem in Listing 5.1 and 250–300 ms for the problem in
Listing 5.2—which means it takes around 4.4–5.6 ms per case the system has to
reason about before it can return the results. If the retrieval method spends 5 ms
on average per case, the autoplanner could theoretically retrieve 200 cases per
second.

5.3 Front End
As promised in Chapter 4, the web service is available as a web service. The API
can be accessed with Postman1 or any other client that lets you create an HTTP
request. For the sake of usability, I created a website that makes it easier to try out
the autoplanner. If you visit http://autoplanning-webapp-dev.azurewebsites.net,
you will see the landing page in Figure 5.3a. First, you will have to upload a
Problem as a JSON file. You could use one of the problems in Listing 5.1, 5.2,
A.3.1, A.3.2, A.3.3, A.3.4—you must copy the case and store it as a json file.
Note that only One Wall and L shaped designs can be proposed at this time. By
clicking the next button, the website will propose the best solutions based on their
utility. Click on a preview in the list to show its utility and other information about
the design. When you have chosen a solution, click next, and you will have the
possibility to download the solution. There is no point in doing so without Winner
Design installed because you cannot import it in any other program this program.
If you had it, you could import the design and check how it looks in your kitchen.

5.3.1 Integrated Process in Winner Design
There is a feature in Winner Design that can use the autoplanner without taking
the detour through the website. First, one draws the room. Then, one chooses
which walls one would like to furnish—in this case, only one wall (see Figure
5.4a). The program will then access the retrieveK endpoint of the web service to
get design suggestions and display these to the user (see Figure 5.4b). At last,
the chosen kitchen design is imported automatically and placed on the specified
wall(s) from the first stage (see Figure 5.4c).

1https://www.getpostman.com/

70

http://autoplanning-webapp-dev.azurewebsites.net
https://www.getpostman.com/

5.3 Front End

(a) Autoplanning landing page

(b) Design suggestions

Figure 5.3: The Autoplanning Website

71

Chapter 5. Results

(a) Draw room and select wall(s) that should be furnished

(b) Select kitchen design

72

5.4 Experimental

(c) Chosen kitchen design is imported automatically

Figure 5.4: Integrated process of autoplanning in Winner Design

5.4 Experimental

In this section, I will use four different problems to test the autoplanner. The two
first problems are kitchens where the user wants a one wall design. The first room
of these two does not have any obstacles—that is, the whole wall is available for
furnishing. The other room has the same dimensions as the first but has a door
on the left-hand side. The two last problems are kitchens where an L-shape is
desired. As with the two first, one room has all the wall space available while the
other has a door, and additionally, a window.

5.4.1 Problem 1: One Wall

Figure 5.5 shows a subset of the suggested solutions when retrieving cases with
the problem in Listing A.3.1 in the Appendix. The empty room that should be
furnished is displayed in Figure 5.5a among three of the design alternatives. The
solution with the highest utility has a score of 0.8161, and as you can see in the
figure, it fits quite well. The solution in Figure 5.5c uses most of the available
wall area, but the appliances are placed too close to each other to get a good score
for the kitchen triangle. Strictly speaking, it is not possible to construct a triangle
from three points on a line. However, the same guidelines of the triangle can
be used to evaluate whether the work centers are too close or too far away from

73

Chapter 5. Results

(a) Input room (b) Utility 0.8161

(c) Utility: 0.4844 (d) Utility: 0.0875

Figure 5.5: Results for Problem 1

each other. Not surprisingly, the last kitchen has a low utility score because of its
minimal size.

5.4.2 Problem 2: One Wall with Door

The result when retrieving solutions with the problem in Listing A.3.2 is quite
similar to the result of problem 1 (see Figure 5.6). The dimensions of the room
are the same but a door has been inserted on the left-hand side of the wall. Note
that the highest rated design from the first experiment is not suggested because it
is too large when there is a door in the room. The lowest rated kitchen looks quite
similar to the second best but it has a significantly lower utility score because it
has no refrigerator. The user can, of course, modify the chosen design to fit the
room even better. For instance, for the lowest rated kitchen in this experiment, a
refrigerator could be added to the right side of the oven.

5.4.3 Problem 3: L-shape

The problem in Listing A.3.3 seeks an L-solution on the two walls in Figure 5.7a.
The utility of the suggested solutions in this experiment looks to be violating the
idea that a larger kitchen is better than a smaller one. The highest rated kitchen for

74

5.4 Experimental

(a) Input room (b) Utility 0.7986

(c) Utility: 0.4288 (d) Utility: 0.2549

Figure 5.6: Results for Problem 2

Solution Edge Utility Kitchen Triangle Utility Global Utility

(b) 0.4407 1 0.7204
(c) 0.5794 0.75 0.6647
(d) 0.4889 0.75 0.6194

Table 5.1: Utility calculation

this problem has a utility score of 0.7204 while the two other seems to be better,
although their utilities are 0.6647 and 0.6194. Let us take a look into the reason
behind the utility of each kitchen. Table 5.1 shows the edge utility and kitchen
triangle utility for each of the three solutions. As can be seen in the table, the
highest rated solution has the lowest edge utility but the highest for the kitchen
triangle. Because the global utility is computed from the average of these two
metrics, the kitchen in Figure 5.7b comes out on top. The weighting of the two
utility metrics might have to be adjusted, such that the global utility indicates the
usefulness of a kitchen to a higher degree. It is unlikely that the edge utility will
get a full score because this means that 100% of the available wall space must be
furnished, while a full score for the kitchen triangle is more common. Hence, the
current weighting may be biased against designs that do not follow the triangle
guidelines.

75

Chapter 5. Results

(a) Input room (b) Utility: 0.7204

(c) Utility: 0.6647 (d) Utility: 0.6194

Figure 5.7: Results for Problem 3

5.4.4 Problem 4: L-shape with Door and Window
Figure 5.8 shows a subset of the suggested solutions when querying the case-
based reasoner with the problem in Listing A.3.4. This experiment shows that
the system is capable of suggesting designs that avoid unavailable parts of the
wall. For instance, the kitchen in Figure 5.8b displays a kitchen that utilizes the
area below the window. Again we see that the lowest rated kitchen in Figure 5.8d
has a low utility score, not only because of its small size but because it has no
refrigerator.

76

5.4 Experimental

(a) Input room (b) Utility: 0.7380

(c) Utility: 0.7280 (d) Utility: 0.1906

Figure 5.8: Results for Problem 4

77

Chapter 5. Results

78

Chapter 6
Conclusion

This thesis shows that it is possible to propose kitchen designs by using a case-
based reasoning approach, which was the goal of this thesis. The three sub-
research questions were: how to represent the cases—or kitchen designs, how to
efficiently retrieve cases, and how to adapt an existing design for a new kitchen.
Section 4.4.2 about the logical view of the architecture presents how the designs
are represented, and here comes a short summary of it.

The design of a kitchen has one of the following shapes: One wall, two walls,
L, U, or G. An edge corresponds to a line of furniture, so for one wall, there is
one edge. For two walls there are two edges, and for L and U there are three
edges—G solutions have four. Each edge has a list of parts (furniture) that are
placed relative to that edge. The position of a part and its physical dimensions are
stored in its representation. This is basically all the necessary data to be able to
retrieve designs.

To be able to retrieve kitchens, a representation of the problem is needed as
well. The representation of a problem is quite similar to the solution. It has an
attribute that specifies the desired shape of the solution and a corresponding num-
ber of listed walls that should be furnished—i.e., if an L-solution is wanted, two
walls must be provided in the problem representation. Each wall has a width and
a height and optionally a list of parts that specify unavailable areas of the wall,
typically doors and windows. The retrieval method uses two utility metrics: edge
utility and kitchen triangle utility. The edge utility calculates how much of the
available area of the wall is used, and the idea is that the more, the better. The
utility of the kitchen triangle is based on to which degree the kitchen design com-
plies with the design guidelines described in Section 2.5.3. Finally, the global
utility of a solution to a problem is the average of these two metrics. The perfor-
mance of the retrieval algorithm is analyzed in Section 5.2.3, and it is estimated
that the CBR can retrieve around 200 cases per second. That includes getting the

79

Chapter 6. Conclusion

cases from the case base and utility measurement. The CBR can calculate the util-
ity of 14286 one wall designs per second and 7692 L-shaped solutions per second.
Hence, most of the latency comes from getting them from the case base.

The autoplanner can be used in three different ways. The first a and most
technical one is to communicate with the API manually. This can be achieved
by using Postman or any other client to create HTTP requests. Secondly, there
is a website that lets the user upload a CBR problem (room and requirements)
and get design proposals in return. The last, and probably the best way, is to
use the integrated feature in Winner Design (given you have a license for the
software). Here you can draw the layout of the room, select walls that should be
furnished, request design suggestions, select the desired design, and import the
chosen kitchen—everything integrated into one process.

80

Bibliography

[1] Elsie De Wolfe. The House in Good Taste. The Century Co., 1913.

[2] Houzz and home - survey us. http://st.hzcdn.com/static/
econ/18HouzzandHome1.pdf. Accessed 18.10.2018.

[3] Houzz and home - survey canda. http://st.hzcdn.com/static/
econ/HHCA18.pdf. Accessed 18.10.2018.

[4] Houzz and home - survey global. http://st.hzcdn.com/static/
econ/Houzz&Home2018GlobalUSRenovationActivityUS.
pdf. Accessed 18.10.2018.

[5] Michael M Richter and Rosina O Weber. Case-based reasoning. Springer,
2016.

[6] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches. AI communica-
tions, 7(1):39–59, 1994.

[7] Mary Lou Maher and PEARL Pu. Introduction to the issues and applications
of case-based reasoning in design. Lawrence Erlbaum Associates, Mahwah,
NJ, 1997.

[8] Ralph Bergmann, M Michael Richter, Sascha Schmitt, Armin Stahl, and Ivo
Vollrath. Utility-oriented matching: A new research direction for case-based
reasoning. In Professionelles Wissensmanagement: Erfahrungen und Visio-
nen. Proceedings of the 1st Conference on Professional Knowledge Manage-
ment. Shaker, 2001.

[9] Mary Lou Maher and A Gomez de Silva Garza. Case-based reasoning in
design. IEEE Expert, 12(2):34–41, 1997.

81

http://st.hzcdn.com/static/econ/18HouzzandHome1.pdf
http://st.hzcdn.com/static/econ/18HouzzandHome1.pdf
http://st.hzcdn.com/static/econ/HHCA18.pdf
http://st.hzcdn.com/static/econ/HHCA18.pdf
http://st.hzcdn.com/static/econ/Houzz&Home2018GlobalUSRenovationActivityUS.pdf
http://st.hzcdn.com/static/econ/Houzz&Home2018GlobalUSRenovationActivityUS.pdf
http://st.hzcdn.com/static/econ/Houzz&Home2018GlobalUSRenovationActivityUS.pdf

[10] Janet Kolodner. Case-based reasoning. Morgan Kaufmann, 1993.

[11] Kenneth D Forbus, Dedre Gentner, and Keith Law. Mac/fac: A model of
similarity-based retrieval. Cognitive science, 19(2):141–205, 1995.

[12] Katharina Richter. What a shame-why good ideas can’t make it in architec-
ture: A contemporary approach towards the case-based reasoning paradigm
in architecture. In FLAIRS Conference, 2013.

[13] Ann Heylighen and Herman Neuckermans. Dynamo: dynamic architectural
memory on-line. Educational Technology and Society, 3(2):86–95, 2000.

[14] Yi-Kai Juan, Shen-Guan Shih, and Yeng-Horng Perng. Decision support for
housing customization: A hybrid approach using case-based reasoning and
genetic algorithm. Expert Systems with Applications, 31(1):83–93, 2006.

[15] Yi-Kai Juan, Sheng-Fen Chien, and Yi-Jhen Li. Customer focused system
for pre-sale housing customisation using case-based reasoning and feng shui
theory. Indoor and Built Environment, 19(4):453–464, 2010.

[16] Kyung-shik Shin and Ingoo Han. A case-based approach using inductive
indexing for corporate bond rating. Decision Support Systems, 32(1):41–52,
2001.

[17] Peihua Song, Youyi Zheng, Jinyuan Jia, and Yan Gao. Web3d-based auto-
matic furniture layout system using recursive case-based reasoning and floor
field. Multimedia Tools and Applications, pages 1–29, 2018.

[18] Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri Terzopoulos, Tony F
Chan, and Stanley J Osher. Make it home: automatic optimization of furni-
ture arrangement. -, 2011.

[19] Peter Kán and Hannes Kaufmann. Automated interior design using a genetic
algorithm. In Proceedings of the 23rd ACM Symposium on Virtual Reality
Software and Technology, page 25. ACM, 2017.

[20] Peter Kán and Hannes Kaufmann. Automatic furniture arrangement using
greedy cost minimization. In 2018 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pages 491–498. IEEE, 2018.

[21] Ivan E Sutherland. Sketch pad a man-machine graphical communication
system. In Proceedings of the SHARE design automation workshop, pages
6–329. ACM, 1964.

82

[22] Cad software history. http://www.cadazz.com/
cad-software-history.htm. Accessed 22.10.2018.

[23] D Taha, S Hosni, M Suermann, and B Streich. The role of cases in archi-
tectural practice and education–moneo: An architectural assistant system.
Proceedings of the ASCAAD, 2007.

[24] National Kitchen and Bath Association. NKBA Kitchen and Bathroom Plan-
ning Guidelines with Access Standards. John Wiley & Sons, 2016.

[25] Roel J Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014.

[26] Paul Clements, Rick Kazman, and Len Bass. Software Architecture in Prac-
tice. Pearson, 2013.

[27] Philippe B Kruchten. The 4+ 1 view model of architecture. IEEE software,
12(6):42–50, 1995.

[28] Didar Zowghi and Chad Coulin. Requirements elicitation: A survey of tech-
niques, approaches, and tools, pages 19–46. Springer, 2005.

[29] Roy Thomas Fielding. Rest: architectural styles and the design of network-
based software architectures. Doctoral dissertation, University of Califor-
nia, 2000.

83

http://www.cadazz.com/cad-software-history.htm
http://www.cadazz.com/cad-software-history.htm

84

Appendix

A.1 Proof of hash collision probability
The proof is extracted from the lecture notes in Cryptography at RWTH Aachen
University1.

10.1. SECURITY OF HASH FUNCTIONS 83

Proposition 10.3. k objects are randomly put into n bins. Let pk,n denote the probability
that no bin contains two or more objects (there is no collision). Then

pk,n =
n(n− 1)(n− 2) . . . (n− k + 1)

nk
≤ exp

(
−k(k − 1)

2n

)
.

Proof.

pk,n =
number of collision free assignments

number of all possible assignments
=
n(n− 1)(n− 2) . . . (n− k + 1)

nk

= 1 ·
(

1− 1

n

)
. . .

(
1− k − 1

n

)
= exp

(
k−1∑

i=0

ln(1− i

n
)

)

≤ exp

(
−
k−1∑

i=0

i

n

)
= exp

(
−k(k − 1)

2n

)
.

In the proof we use, that lnx ≤ x− 1 for x ≥ 0⇔ ln(1− x) ≤ −x for x ≤ 1.

The name
”
birthday paradox“ comes from the following famous example: Let n = 365

(days) and k = 23 (people). Assume that birthdays are uniformly distributed. Then it
holds, that the probability, that at least two people have birthday on the same day is
bigger than 1

2 , since

p23,365 ≤ exp

(
−23 · 22

2 · 365

)
≈ 0.499998.

In general it holds that pk,n ≤ 1
2 if k ≥

√
2n ln 2 + 1 ≈ 1.17

√
n+ 1, since

k − 1 ≥
√

2n ln 2 =⇒ (k − 1)2

2n
≥ ln 2

=⇒ pk,n ≤ exp

(
−k(k − 1)

2n

)
≤ exp

(
−(k − 1)2

2n

)
≤ 1

2
.

Applying this result to hash functions we conclude, that by generating 1.17
√
n hash values

for distinct messages, the probability of a collision is larger than 1
2 . To avoid such kind of

a brute force attack, length of hash values is usually chosen larger than 128 bits.

Proposition 10.4. (Generalized birthday paradox) k red and k blue balls are randomly
put into n bins. If k ∼

√
λn, then the probability that at least one bin contains a red and

a blue ball is approximately 1− e−λ.

Proof. For a proof and a detailed examination of possible applications in cryptography
see [GCC88].

From the generalized birthday paradox an attack against hash functions with
”
short“ hash

values can be derived, which has impact on real world applications. In most signature
schemes, only a hash value of the message is digitally signed, hence by producing two
distinct messages with the same hash values, a valid signature for one of the messages can
eventually be used for the other message. Consider for example a hash function with hash
length 64 bits.
An attacker Oscar generates slight variations at 35 places in the original document m:

1https://www.ti.rwth-aachen.de/teaching/cryptography/lecture crypto1 ws0708.shtml

85

https://www.ti.rwth-aachen.de/teaching/cryptography/lecture_crypto1_ws0708.shtml

A.2 Source Code

// Compute distances between the work centers
var ab = new Vector2(workcenters[1].X - workcenters[0].X,

workcenters[1].Y - workcenters[0].Y).Length();
var bc = new Vector2(workcenters[2].X - workcenters[1].X,

workcenters[2].Y - workcenters[1].Y).Length();
var ca = new Vector2(workcenters[0].X - workcenters[2].X,

workcenters[0].Y - workcenters[2].Y).Length();
var total = ab + bc + ca;

// Count number of fulfilled criteria of the kitchen
triangle (allow 10% slack)

double cnt = 0;
if (total <= 7920)
{

cnt += 1;
}
if (ab >= 1080 && ab <= 2970)
{

cnt += 1;
}
if (bc >= 1080 && bc <= 2970)
{

cnt += 1;
}
if (ca >= 1080 && ca <= 2970)
{

cnt += 1;
}

return cnt / 4d;

Listing A.2.1: Triangle utility metric

// Compute distances between the work centers
var ab = new Vector2(workcenters[1].X - workcenters[0].X,

workcenters[1].Y - workcenters[0].Y).Length();
var bc = new Vector2(workcenters[2].X - workcenters[1].X,

workcenters[2].Y - workcenters[1].Y).Length();

// Count number of fulfilled criteria of the kitchen
triangle (allow 10% slack)

int cnt = 0;

86

if (ab + bc <= 7920)
{

cnt += 1;
}
if (ab >= 1080 && ab <= 2970)
{

cnt += 1;
}
if (bc >= 1080 && bc <= 2970)
{

cnt += 1;
}

return cnt / 3d;

Listing A.2.2: Triangle utility metric for one wall

/// <summary>
/// Computes the ratio between used area of the available

area of the wall
/// </summary>
private double EdgeUtility(Wall wall, Edge edge)
{

var usedRegion = edge.GetUsedRegion();
var availableRegion = wall.GetAvailableRegion();

// Intersect used region with available region
usedRegion.Intersect(availableRegion);

var availableArea = ComputeRegionArea(availableRegion);
var usedArea = ComputeRegionArea(usedRegion);

if (availableArea > 0)
{

return usedArea / availableArea;
}
else
{

return 0;
}

}

Listing A.2.3: Edge utility

87

A.3 CBR Problems

{
"shape": "ONE_WALL",
"walls": [

{
"xPos": 0,
"yPos": 0,
"width": 4000,
"height": 2400

}
]

}
Listing A.3.1: Problem 1

{
"shape": "ONE_WALL",
"walls": [
{
"xPos": 0,
"yPos": 0,
"width": 4500,
"height": 2400,
"parts": [
{
"guid": "door",
"xPos": 200,
"width": 1000,
"height": 2100

}
]

}
]

}
Listing A.3.2: Problem 2

88

{
"shape": "L",
"walls": [

{
"xPos": 0,
"yPos": 0,
"width": 5000,
"height": 2400

},
{

"xPos": 5000,
"yPos": 0,
"width": 5000,
"height": 2400,
"angle": 90

}
]

}
Listing A.3.3: Problem 3

89

{
"shape": "L",
"walls": [

{
"xPos": 0,
"yPos": 0,
"width": 5000,
"height": 2400,
"parts": [
{
"guid": "door",
"xPos": 200,
"width": 1000,
"height": 2100

}
]

},
{

"xPos": 5000,
"yPos": 0,
"width": 5000,
"height": 2400,
"angle": 90,
"parts": [
{
"guid": "window",
"xPos": 3000,
"yPos": 900,
"width": 1200,
"height": 1200

}
]

}
]

}
Listing A.3.4: Problem 4

90

Johannes G
rindal Ervum

P
roposing K

itchen D
esigns: A

 C
B

R
 A

pproach

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Johannes Grindal Ervum

Proposing Kitchen Designs

A Case-Based Reasoning Approach

Master’s thesis in Computer Science
Supervisor: Pieter Jelle Toussaint, Sindre Nyvoll

June 2019

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Interest in Design
	History
	Spending on Renovations

	Winner Design
	Design Scenario
	Potential Problems
	Possible Solutions

	Design Challenges for Non-Professionals
	Automatic Generation of Designs
	Research Questions

	Theory
	Case-based Reasoning
	The Standard vs. The Extended View
	Basic CBR Elements
	The CBR Cycle
	Applications of CBR in Design
	Issues in CBD

	Decision Support Systems
	DSS in E-Commerce
	DSS in Design

	Automatic Furniture Arrangement
	Automatic Furnishing using CBR and Floor Fields
	Other approaches

	Computer-Aided Design
	History

	Theory in Kitchen Design
	The Basic Shapes
	Kitchen Island
	The Kitchen Triangle

	Summary

	Method
	Type of Research Problem
	The Design Cycle
	Problem Investigation
	Treatment Design
	Treatment Validation

	Solution
	Requirements
	Classification
	Requirements Elicitation

	Requirements of the Solution
	Quality Attributes
	Constraints
	Functional Requirements

	COTS
	ASP.NET Core
	Azure Blob Storage
	Azure Cosmos DB
	Azure App Service

	Architectural Views
	Development
	Logical
	Process
	Physical
	Scenarios

	Issues
	REST vs. RPC
	The Complexity of Autoplanning
	Modifiability

	Results
	Building the Case Base
	The Retrieval Method
	The Utility Metric
	Adaptations
	Performance

	Front End
	Integrated Process in Winner Design

	Experimental
	Problem 1: One Wall
	Problem 2: One Wall with Door
	Problem 3: L-shape
	Problem 4: L-shape with Door and Window

	Conclusion
	Bibliography
	Appendix
	Proof of hash collision probability
	Source Code
	CBR Problems

