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Abstract

The development of the smart grid has led to an increase in the number of
sensors and smart meters installed in the power grid. These devices make
large quantities of data available to grid operators. At the same time,
advancements in the field of machine learning have enabled powerful tools
to provide valuable insight from big data. In predictive maintenance,
machine learning is used as a tool to predict components failures before
they happen.

This thesis introduces a process to determine whether data from
sensors in the power grid can be used to predict grid failures. The thesis
is a contribution to research on the potential of utilizing grid information
for operation support in the power grid. We present our findings on
how machine learning and predictive maintenance may be applied in the
power grid domain. Further, we propose methods for building machine
learning models for prediction of component failures in substations.

Our research includes a literature study and an experiment. As part of
the experiment, we have gathered grid data from a major Norwegian grid
operator. Our experiments consist of two separate parts with different
approaches to build prediction models for failures in substations. In the
first approach, we present a supervised learning technique to predict exact
future outcomes. In the second approach, we use unsupervised learning
techniques for building models able to detect anomalous sensor measure-
ments. Our best performing model detected a statistically significant
number of anomalies, prior to the time of failure, in two of the eight
failures investigated.





Sammendrag

Utviklingen av smartgrid har ført til en enorm vekst i antallet sensorer og
smarte målere i strømnettet. Disse enhetene tilgjengeliggjør store mengder
data. Samtidig har det de siste årene skjedd store fremskritt innen fagfeltet
maskinlæring. Disse fremskrittene har gitt oss kraftige verktøy for å
hente verdifull informasjon ut av store datamengder. Innenfor prediktivt
vedlikehold brukes nettopp maskinlæring til å predikere komponentfeil
før de inntreffer.

I denne oppgaven introduserer vi ulike metoder for å utnytte sens-
ordata, sammen med værdata, til å predikere feil i det norske strømnettet.
Oppgaven er et bidrag til forskning på utnyttelse av sensordata for å bedre
driften av strømnettet. Mer spesifikt ser vi på ulike metoder for å bygge
maskinlæringsmodeller for prediksjon av komponentfeil i nettstasjoner.

Gjennom oppgaven har vi studert eksisterende forskning på emnet
og gjennomført et eksperiment. I eksperimentet samlet vi data fra et
av Norges største nettselskaper, og brukte denne til å utvikle tre ma-
skinlæringsalgoritmer. Implementasjonen av den tekniske løsningen i
eksperimentet er delt opp i to sidestilte fremgangsmåter. I den første
fremgangsmåten benyttet vi veiledet læring til å bygge en modell som
kan predikere feil i nettstasjoner. I den andre fremgangsmåten bygger vi
en modell ved hjelp av ikke-veiledet læring, for å oppdage målinger som
avviker fra normaltilstanden.

Oppgaven forklarer den tekniske implementasjonen av algoritmene,
etterfulgt av en diskusjon knyttet til antakelser, begrensninger og hensyn
vi har måttet ta under utviklingen. Vi diskuterer også hvordan dette har
påvirket resultatene og substansen i oppgaven. Vår beste modell oppdaget
et statistisk signifikant antall avvik fra normaltilstanden for to av de
totalt åtte feilene som ble studert.
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Chapter1Introduction

The purpose of this thesis is to determine whether data from sensors in the power
grid can be used to predict grid failures. Why should prediction of grid failures be of
interest to stakeholders in the power grid? Below we present the motivation, research
questions, and methodology for this thesis.

1.1 Motivation

Electricity is the backbone of the modern world, and high security of supply is a
prerequisite for well-functioning societies. However, urbanization, population growth
and increased demand for electricity are leading to an increased load on the power grid.
Norway’s power grid has gradually been built and maintained over the last century.
This means that components in the grid, such as circuit breakers, transmission lines,
transformers and metering equipment vary in both age and quality. Some of these
components are crucial for the operation of the grid and needs to be replaced and
maintained periodically.

Advancements within information and communication technology, are used to
upgrade the current grid to the so-called smart grid. Smart grids are commonly
referred to as next-generation power systems. They apply sensing and measurements,
two-way communication and power system automation. Smart grids will lower costs,
save energy, improve security of supply, operability, and reliability, with automated
control and modern technologies [EYSKBL17][VCG10].

Statnett, the Norwegian Transmission System Operator (TSO), states that there
will be comprehensive changes to the power grid in the coming years. One of the
four main areas of development in their action plan towards 2021 is an improvement
of decision support systems and increased automation in the system operations
[Sta17]. Furthermore, Statnett claims that unavailability of grid components may

1



2 1. INTRODUCTION

lead to substantial costs for society in the form of increased market costs. However,
well-coordinated outages limit the consequences. Also, the grid operators are aware
of the potential in embracing technology. As a result, many of the operators are now
installing a significant number of sensors in the grid, to gather vast amounts of data.
However, there is still uncertainty of exactly how to leverage this data effectively.

Many industries are researching how massive amounts of data can be used to
generate actionable insight and clinical decision support. Investigating whether one
can capture recurring patterns to predict component breakdowns can be of interest
for grid operators. This will change their maintenance management from being
primarily reactive to become more proactive. We believe that data from the sensors
can be used to perform predictive maintenance and that predictive analytics may be
used to understand the likelihood of a component failure within a certain amount of
time. This way, grid operators can send field workers to perform live checks of the
component, and potentially repair or change it before failure occurs.

As previously mentioned, Distribution System Operators (DSOs) gather massive
amounts of data from sensors deployed in the power grid. At the same time, machine
learning technologies have matured and are used to provide better operating support
in many industries. Today machine learning is used in applications such as fraud
detection, personal assistance and self-driving cars. Hence, with the increase in
available data sources for the DSOs, we intend to explore the potential of using
historical and real-time sensor data to provide insights which can support grid
operation.
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1.2 Research questions

We wish to investigate to what extent grid companies can utilize their sensor data to
identify the likelihood of a component failure in the grid. Identification of vulnerable
components could help grid companies to intervene before customers lose their power
due to component breakdown. Such a solution might be economically beneficial for
grid operators, and ensure more reliable access to electricity for customers.

Our research questions are:

1. Why should machine learning and predictive maintenance be of interest to
Norwegian grid companies?

2. Which external data sources can be combined with grid data to increase insight
on the distribution grid?

3. What is the potential of using sensor data and machine learning techniques for
predictive maintenance in operation of the Norwegian distribution grid?

1.3 Methodology

This section describes the research methodology used for providing answers to our
research questions. Figure 1.1 visualizes the methodology broken up into tasks
which will be presented throughout the thesis. The tasks of "Background research",
"Literature study" and "Semi-structured interviews with DSOs" are part of an iterative
process for defining a hypothesis, while the remaining tasks are executed sequentially.
The structure of the thesis follows the methodology.

       EvaluationPresentation
of Results

Technical
Implementation

Defining
Problem
Area

Literature
study

Semi-structured
interviews

Background
research

Defining
Hyypothesis

Figure 1.1: Visualisation of the steps included in our research methodology.



4 1. INTRODUCTION

In the Background, we study some of the topics relevant for our objective. First,
we introduce the Norwegian power grid in terms of physical infrastructure before
discussing the industry as a business. Further, the concept of smart grid is discussed
to gain an understanding of the motivation and goals for developing a smarter power
grid. We then move on to the more technical part of the background, when discussing
predictive maintenance and machine learning.

To gain insight for answering our research questions, we present an overview
of the state of the art for machine learning in power grid operation. This insight
is gained through a comprehensive literature review. Various papers from both
Norwegian and international researchers are studied. From the research-papers
discussed in Related Work, we have learned approaches, struggles and thoughts on
suggestions for future work. The literature review was carried out simultaneously
with ongoing conversations with two DSOs. In an iterative process of literature
review and semi-structured interviews with these DSOs, we refined our research
questions to a hypothesis. The hypothesis states that it is possible to use data
from the power grid to perform predictive maintenance on substations. Through
conducting experiments with data obtained from DSOs, we further advance to test
this hypothesis.

In the next part of our methodology, the Technical Approach, we set up an
experiment including a technical implementation where the goal is to build a machine
learning model able to predict faults occurring in substations. This chapter describes
our process of collecting data from the DSOs and exploring characteristics of this
data. Taking into consideration what we learned from the literature review, as well
as the characteristics of the received data, we select appropriate implementation
techniques for building a prediction model. Further in the Technical Approach, the
chosen machine learning methods are presented and described in detail. Finally,
metrics for measuring the performance of the prediction models are discussed, taking
into account case-specific matters. To the best of our knowledge, there have been no
previous projects regarding fault prediction on the Norwegian power grid, including
an attempt of technical implementation. However, a paper from 2018[ATHU18]
states that with the amount and precision of data recorded in the power grid today,
prediction should be feasible.
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After describing the technical implementation, the achieved results are presented
in Results and Discussion, including performance metrics of the prediction models.
The results will be investigated and evaluated in terms of validity and limitations
in order to answer whether or not the defined hypothesis holds. After reviewing
the hypothesis, the chapter will move on to discuss more general limitations and
challenges of this research. A discussion of the usefulness of prediction models such
as the one presented, as well as how our work can be used for further research is
next. Our experiences will also be used to discuss how Norwegian grid companies
can adapt in order to position themselves better for utilizing data from the power
grid. The chapter will conclude by revisiting our research questions, incorporating
what we have learned to provide answers to these.

To summarize the structure of the thesis:

– Chapter 2 discusses the Norwegian power grid and maintenance tasks, what
machine learning is and how it can be used to support operation of the grid.

– Chapter 3 presents the most relevant related work found during our literature
review

– Chapter 4 describes our technical implementation, as well as the reasoning for
choosing the methods which were used.

– Chapter 5 presents and interprets the results of the experiments, before dis-
cussing the substance of these in relation to our research questions.

– Chapter 6 provides the concluding remarks and a discussion about future
research on the topic we have researched.





Chapter2Background

This chapter provides the theoretical background of the Norwegian power grid and
explains the concepts of smart grid, machine learning and predictive maintenance. We
explain why our field of research is relevant, for the reader to gain an understanding
of why we have chosen our respective research questions.

2.1 The Norwegian Power Grid

This Section will be focused around the infrastructure of the Norwegian power grid,
its operation and stakeholders, as well as typical failures occurring in today’s grid.

2.1.1 Infrastructure

Almost all parts of a modern society depend on a well-functioning power system.
The power grid enables electricity to flow from producers to customers, and is a key
infrastructure and the backbone of the power system [Nor19]. Figure 2.1 shows how
producers connect to one common grid from different topological locations, and that
Norway is a net exporter of electricity. The Norwegian electricity grid may be divided
into three main levels between production and consumption. The three layers are the
transmission grid, the regional grid and the distribution grid. Figure 2.2 visualizes
the topology of the infrastructure and how the different parts are defined in terms of
voltages.

7



8 2. BACKGROUND

Export

Import

94.3%

3.4% 2.2%

Thermal power plantsHydropower Wind power

15%

5%

Consumers

Figure 2.1: The power grid enables electricity to flow from production to consumers.

Power Generation

Most of Norway’s electricity production originates from renewable energy sources,
such as hydro and wind power. In fact, 96% of the electricity generation in Norway
comes from the 1660 hydroelectric power plants in the country [Nor19]. The location
of production sites is heavily based on the accessibility of resources. As resources are
unevenly spread out across the country, the electricity grid is essential for delivering
power to consumers often located far away from production sites.

Transmission Grid

The transmission grid, also known as the central grid, carries high voltage, usually
between 300 to 420 kV. The transmission grid can be viewed as the motorway of the
power system. Througout the country, the transmission grid branches out to lower
voltage regional and distribution grids. Statnett, a state-owned enterprise, is the
designated TSO in Norway. As the TSO, they are responsible for maintenance and
extension of the transmission grid, which has a total length of about 12 500 km.
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Transmission Grid
420-300 kV

Regional Grid
132-33 kV

Distribution Grid
22-0.23 kV

Statnett (TSO) owns 90%
12 500 km

80 Companies (DSOs)
19 000 km

135 Companies (DSOs)
>300 000 km100	000	km

Figure 2.2: A simplified topology of the Norwegian power grid and its operators.
The voltages typically carried in the different levels is also included.

Regional Grid

The regional grid is the link between the transmission and distribution grid, and is
operated by DSOs, companies given concession by the government [Lov]. Voltages
carried in the regional grid are in the range from 33 to 132 kV. Endpoints connected
directly to the regional grid may include smaller production facilities and power-
intensive manufacturing or customers from the petroleum industry. The regional
grid has a total length of about 19 000 km, and the operation is split between 80
companies [nve].

Distribution Grid

The distribution grid is operated by local DSOs. The distribution grid supplies
smaller end-users such as households. This part of the grid carries voltages between
230 V and 22 kV. The distribution grid can be further divided into low and high
voltage segments, split at 1 kV. The length of the distribution grid is 100 000 km,
and it is operated by 135 companies. The final voltage transformation before a power
line reaches a household, the transformation down to 230 V, happens in substations.
In this thesis we study data provided from sensors installed in such substations.
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2.1.2 Security of Supply and Instantaneous Balance

The International Electrotechnical Commission (IEC) has defined Security of elec-
tricity supply as the "ability of an electric power system to provide electric power
and energy to end-users with evaluation of existing standards and contractual agree-
ments at the point of supply" [IEC19]. This means that security of supply is about
maintaining a stable supply of electricity at an acceptable cost [sin].

The fact that electricity cannot be stored means that there must at all times
be a balance between power generation and consumption. This balance is known
as the instantaneous balance, and needs to be maintained at an equilibrium. A
badly maintained instantaneous balance may lead to damage in components, which
again may lead to power outages. Whenever cars are charging or factories are
producing goods, the consumed electricity has to be generated simultaneously with
the consumption. Statnett, the TSO in Norway, is responsible for maintaining the
instantaneous balance at all times. The system frequency is a measure of the balance,
and the nominal frequency is 50 Hertz (Hz). Frequency quality can be measured
using deviations, expressed as the number of minutes outside normal variation range
of 49.9-50.1 Hz [Ene19].

Figure 2.3: Relationship between frequency and the load–generation ratio.[DO18]

2.1.3 Peak Load

Load on the power system is an indication of how much electricity is consumed at
a specific point in time. This load fluctuates and has a clear correlation with the
temperature. However, the systems peak load has had a distinct trend in the last 30
years. The maximum load on the system in 1990 was 18.42 Gigawatt (GW). In 2016
the maximum load reached 24.49 GW. There has been a 33% rise in the peak load
on the system since 1990. There has also been a general rise in consumption, a trend
expected to continue in the future [Ene19]. Heavier load on the system may result in
faster wear of its components, thus more frequent component failures.
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2.1.4 The Norwegian Power Industry

In order to understand how DSOs operate, it is necessary to have some knowledge
about stakeholders associated with the power grid, and their respective interests.
The regional and distribution grids are operated by local DSOs, who are given
concession by the Norwegian Water Resources and Energy Directorate (NVE) [Lov].
The operators act like monopolists, as having multiple power grids in the same area
would not make sense concerning the cost of infrastructure. From a socio-economic
perspective, it is desirable that the DSOs operate in a way that leads to reliable
delivery of electricity at low prices, while maintaining sustainable development of
the environment [BBM15].

To ensure that the power grid is operated as efficiently as possible from a socio-
economic perspective, DSOs have to comply with regulations dictated by NVE.
Regulations from NVE include price ceilings and Cost of Energy Not Supplied
(CENS)[TL13]. CENS is compensation for non-delivered energy during an outage,
and works as an incentive for DSOs to reduce the number of outages and the duration
of these. Grid companies are fined based on the predicted amount of electricity not
delivered [TL13] [Tje16]. Additionally, politics and reputation are pushing the DSOs
towards environmental awareness [BBM15].

Norwegian DSOs are partially owned by the local municipalities from the area
which they serve. The DSOs primary objective is to maximize profit by ensuring
operational efficiency so that dividends can be paid to their owners, while also meeting
the regulatory requirements set by NVE. Regulations on price ceilings are set based on
the historical performance of DSOs, and the companies are compared to the average
DSO in Norway [PMG04]. This means that even though operators do not have any
direct competitors in their area, one could still argue that they are competing, in
terms of outperforming each other on operational efficiency. Therefore, the process
of increasing profits for a DSO is primarily about increasing the effectiveness of their
operation more than other DSOs.

Traditionally, main stakeholders in the grid have been grid companies, regulators,
and equipment suppliers. However, the emergence of new instrumentation and more
access to data allows for third-party stakeholders to provide support for the operators.
Established software companies, as well as new and innovative electricity providers,
such as Tibber, using intelligent software to manage electricity, are likely to become
significant stakeholders in the power grid [Inn19].
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2.1.5 Failures in the Grid

The electricity grid is considered a critical infrastructure. Interruptions in the
power supply may have serious consequences for end-users. The grid must be able
to cope with the variability of demand and varying voltage quality and earth faults.
We introduce earth faults, and explain why the industry has expressed a request
for software able to identify and categorize earth faults based on measurement data.
Additionally, we introduce the statistics of faults and disturbances in the Norwegian
grid.

Fault Statistics

In the Norwegian power grid, there is a mandatory responsibility for DSOs and
the TSO to report faults and disturbances through a national reporting system
called FASIT [voe18]. The report must specify the type of incident, time and
duration, number of affected phases, voltage level, as well as plausible root cause and
contributing causes. This reporting gives a statistical basis for national reports on
the frequency of faults and disturbances in the Norwegian grid.

From the 2017 FASIT report [voe18], we can learn that the average Norwegian
end-user experienced 1.6 short and 1.7 longer power outages during that year. Longer
power outages are defined as outages lasting for more than three minutes. The
number of events and consequences is far larger in the high voltage distribution grid
(1-22 kV) with 8 672 events, compared to the transmission and regional grid (33-420
kV) where only 459 events were registered. The FASIT report states that in the
distribution grid the major cause of errors is “surroundings” with 52.8%. Technical
equipment is the major root cause in 12.3% of the failures, and in 22.9% of the
cases the root cause is non-defined. Surrounding causes include birds, thunderstorms,
vegetation and wind. Figure 2.4 provides an overview of the major cause of errors in
the distribution grid.

Figure 2.4 shows the how the surrounding causes are distributed when split into
more specific causes, such as birds, vegetation, thunderstorms and wind. The root
cause responsible for most failures in the high-voltage distribution grid is technical
equipment. One may discuss if surrounding causes, such as rain and wind, really
should be considered as surrounding causes. If a component fails due to heavy rain,
it is difficult to know if the operators categorize the outage as a component failure
due to rain. The same goes for operational stresses. Where these lines are drawn are
to our understanding up to the various grid operators. Hence, this data should be
taken with a grain of salt.



2.1. THE NORWEGIAN POWER GRID 13

Figure 2.4: The most common root causes of failures in the high-voltage distribution
grid (1-22 kV). The numbers are gathered from the FASIT report [voe18].

The regional- and transmission grid generally contains equipment providing the
TSO with a relatively high degree of insight and control of the behaviour of their
networks, through sensors and remotely controlled switches [KS15]. On the other
hand, the distribution grid, where nearly 95% of all faults happen, is equipped with
a limited amount of sensors to give the distributors insight into the current status of
the grid. According to [KS15], a paper from 2015, Norwegian DSOs are “blind and
happy – until the customer calls". Thus, detecting, localizing and repairing faults in
the low-voltage network (< 1kV) often takes more time than necessary.

In 2017 the average recovery time on breaches affecting the end-user was 1
hour 22 minutes, according to a NVEs document on interruption-statistics [voe18].
Restoration of physical components is a time-consuming task with manual labour
required. Thus, DSOs should be interested in automating tasks of monitoring and
restoring components in the grid. Utilization of historical and real-time data for
increasing insight have helped many industries in a move towards a more proactive
form of operation. The combination of new technology and the increasing cost of
failures[MHH18] should be reasons for DSOs to research ways in which they can
operate in a more proactive manner.
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2.2 Development of the Smart Grid

As this thesis should be regarded as a contribution towards the development and
implementation of a smarter power grid, a solid understanding of the underlying
motivation and goals for the smart grid is necessary. This Section discusses topics
which provide the foundation of smart grid, before diving into more concrete details
on the implementation of sensors and controllers, and the potential these bring
through the availability of new information.

Concerning the challenge of global warming, greenhouse gas emissions from the
burning of fossil fuels like coal and oil are the biggest issue [NAS]. Thus, reducing the
consumption of energy from fossil sources is a crucial part of responding to the threat
of climate changes. Before this reduction can happen without the global economy
suffering, alternative energy sources needs to be available. The worlds increasing
awareness on climate changes and environmental issues leads to a greener energy
consumption, relying heavier on electricity than before. Development of what has
been termed the smart grid has emerged as a consequence of this trend.

2.2.1 Renewable Energy

Investments in research and development of renewable energy have been steadily
growing over the last 15 years [ES18]. Technology for utilizing renewable energy
sources like wind and solar power are continuously has improved and become more
cost and energy efficient [Laz].

Renewable energy sources like wind and solar energy differ from fossil energy
sources in many ways. First of all, while coal and oil can be stored, transported, and
burned at any chosen time. However, wind and solar energy have to be converted into
electricity to be utilized. Hydropower, the primary source of electricity in Norway,
has a similar advantage as fossil fuels of being flexible in the sense that water can be
stored in reservoirs until electricity is needed. Because of this difference, wind and
solar energy are referred to as Variable Renewable Energy (VRE).

In order to comply with international agreements on emission reductions, countries
need to plan and facilitate for renewable energy sources. This is leading to the
electrification of many sectors which have traditionally been powered by fossil fuels.
Between the years 2004 and 2017, electricity consumption in Norway has varied from
121.9 to 134.3 TWh [SSB18]. In May 2019, NVE published a report with forecasts
for electricity consumption in Norway, suggesting a 22% increase from 130 to 159
TWh between 2015 and 2040. Contributions to this increase will mainly come from
the electrification of transport and the petroleum industry, as well as establishments
of data centers.
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Figure 2.5: World electricity generation by power station type. Source: DNV GL
Energy Transition Outlook 2018

2.2.2 Grid Utilization and Flexibility

NVE publishes a yearly report about the status and forecasts of the power grid
infrastructure. In the report from 2018, it is stated that more than 50% of the grid
infrastructure investments for the next decade will be related to either the increasing
consumption or unsatisfactory technical condition. While some parts of the grid
still have available capacity capable of handling the increasing maximum load, other
parts are already operating close to its load capacity. [LO].

Because of the natural variation in electricity consumption throughout the day,
with demand peaks in the morning and afternoon, flexibility in production volume is
needed. In Norway, this has historically been solved mainly through the flexibility
that is brought by hydropower. With the introduction of VRE sources for production,
both in large and small scale, the requirements for the power grid will have to change
in order to maintain the ability of efficiently utilizing production capacity [AK]. Solar
panels are not going to produce energy during the night, and wind turbines need
wind to produce electricity. Thus, to fully take advantage of these renewable energy
sources, the grid needs to become more flexible. One way of defining this flexibility
is that "The concept of flexibility describes the capability of the power system to
maintain balance between generation and load under uncertainty" [HA17].

As the cost of upgrading the grid infrastructure is extremely high, looking at
alternative solutions for fulfilling future grid capacity requirements becomes important
from a socio-economic perspective. Peak-shaving of load through automated demand
response tools is one of the concepts that can drastically reduce or delay the need
for infrastructure investments [PD11]. By incentivizing customers to shift their
consumption through time-varying power prices, one hopes to reduce the maximum
load on the grid. Other fields of research, like energy storage, is also expected to
provide effective tools contributing to the mentioned grid flexibility[AK].
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2.2.3 What is the Concept of Smart Grid?

Taking into consideration the effects of the mentioned circumstances and how
the power grid needs to change in the coming years, the concept of smart grid has
emerged as a solution to the grid needs to be developed.

Various definitions of the smart grid concept exist. However, the one used in
[GSK+11] provides a useful summary of how the smart grid solves different challenges.
Here the concept is explained as "a modern electric power grid infrastructure for
enhanced efficiency and reliability through automated control, high-power converters,
modern communications infrastructure, sensing and metering technologies, and
modern energy management techniques based on the optimization of demand, energy
and network availability, and so on."

When communicating sensors and controllers are installed on top of existing
grid infrastructure in large scale, the potential of building software for supporting
the operation of the grid changes. Smart grids, commonly referred to as the next
generation electric power system, apply real-time monitoring, networking, and control
technologies. The smart grid is said to lower cost, save energy, improve security,
operability, and reliability, with an integration of renewable and alternative energy
sources, through automated control and modern technologies [EYSKBL17, VCG10].

Figure 2.6: Illustration of the smart grid concept [Bar].
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2.2.4 Smart Meters and Information Availability

In the Norwegian low voltage distribution grid, there are few sensors installed.
However, the rollout of smart meters to every Norwegian household enables sophisti-
cated measurements of volumes and patterns in electricity consumption. Implement-
ing solutions for increasing insight into the state of the power grid is a prioritized task
for many DSOs. With the advancements of smart grid and the installation of smart
meters in every Norwegian household, the availability of information from the power
grid will grow significantly in the coming years. Although information availability
itself is not going to improve the power grid significantly, it creates opportunities
for building software that takes advantage of this information to provide tools for
supporting the operation.

Gungor, Lu and Hancke [VCG10] discusses the impact of increased information
availability from the power grid. They expect low-cost monitoring and control
enabled by sensor technology to become essential to maintain safety, reliability, and
efficiency in the power grid. Sensor nodes installed on critical components will enable
real-time monitoring of the grid on a different level than what has been possible
before. By analyzing sensor data of more substantial quantities than what has been
done before, new insight is likely to be found. Gungor et al. [GSK+11] further expect
that the negative impact of equipment failures, capacity limitations, and natural
accidents, causing disturbances and outages in the power grid, can largely be avoided
by monitoring along with software for diagnostics and protection.
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2.3 Predictive Maintenance

There is great interest, as well as large investments, towards the field of Predictive
Maintenance (PdM). The purpose of this section is to provide a deeper understanding
of the concept of predictive maintenance. Some failures in the power grid may
be considered impossible to predict, due to external instantaneous events, such as
bird-related failures. However, failures related to malfunctioning technical equipment
may sometimes be predicted and avoided.

2.3.1 Maintenance Management

There are three main approaches to maintenance management.

1. Run-to-Failure Management. Also known as corrective maintenance. This
approach is an "If it ain’t broke, don’t fix it" management approach. An
operator does not spend any money on maintenance until a machine or system
fail to operate. However, this is known to be the most costly strategy [Mob04].

2. Preventive maintenance. Most Norwegian DSOs lean more toward this
approach as they perform basic preventive tasks, such as live inspections,
maintenance planning and small adjustments. This approach is sometimes
based on statistical characteristics, such as hours of operation and Mean Time
To Failure (MTTF)[Mob04].

3. Predictive maintenance. PdM involves foreseeing breakdown of a system
or component by detecting early signs of failure in order to make maintenance
work more proactive, saving money by ensuring a more reliable operation. This
is done by utilizing real-time data analytics in combination with historical data
to predict problems before they occur and conduct PdM, eliminating costly
downtime.

The bathtub curve in Figure 2.7 is often used in reliability engineering. It shows
the relative failure rate of an entire population of equipment over time. When the
early, random, and wear-out failures are combined, they form a shape resembling the
cross-shape of a bathtub, hence the name. The likelihood of failures due to ageing
rise slowly in the steady-state phase, but increases remarkably at the wear out part
of the curve. The curve often serves as a basis for predicting the Mean Time Between
Failure (MTBF) in maintenance management.
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Figure 2.7: The Bathtub Curve [Suh15]

When components operate in different environments, unique circumstances come
to play and individual components are affected by various conditions. Therefore,
viewing an entire population of components as equal, using calculations of MTBF in
order to know roughly when to replace them, is problematic. Such a maintenance
strategy does not properly take unique circumstances and conditions into considera-
tions. PdM can be utilized to examine components individually to determine their
state. This way, operators can avoid replacing non-failing components. Rather, they
might be able to replace components that are near failure, although the age of that
component indicates that it "should not" fail at this stage.

Many industries, especially the ones where reliability is crucial, has started to
adapt PdM in order to improve reliability, safety, availability and efficiency, as well
as to protect the environment.

Grid operators often perform maintenance on equipment when it is already too
late (reactive maintenance), or on equipment that does not require maintenance
(preventive maintenance) [Con16]. Due to scale and complexity, minor technical
malfunctions can result in reduced efficiency and significant financial losses. Mal-
functioning equipment in the power grid might also result in outages for consumers.
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The deployment of physical sensors, such as Power Quality Analyser (PQA) and
Phasor Measurement Unit (PMU), has lead to an increase in available data sources
from the power grid. Combining data generated by these sensors with software
using machine learning techniques trained on large data-sets, could prove efficient in
predicting and giving early warnings on potential faults and instabilities [ATHU18].
A machine learning model trained on the "normal state" might be able to spot outliers
in the observations (anomaly detection), which may provide awareness of equipment
in need of maintenance. PdM systems may additionally utilize service and repair
history of components to help predict MTTF more accurately.

With a successful implementation of PdM, maintenance goes from being primarily
reactive to becoming more proactive. It enables more efficient scheduling of service
and part replacement ahead of failure, when it has the least impact on operation.
Additionally, PdM can contribute in maximizing interval between repairs. A more
proactive approach to maintenance is beneficial for both DSOs and consumers,
through increased availability, reliability and safety in the power grid.

Numbers from the US Department of Energy [oE10] show that a functional
predictive maintenance program can provide up to 10 times return on investment.
Maintenance costs can be reduced by up to 30%. Additionally up to 75% of break-
downs may be eliminated, although the level of effectiveness and cost savings varies
between industries. As sensors and telecommunication infrastructure is already imple-
mented in the power grid, PdM is a field DSOs should be interested in investigating
further.
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2.4 Machine Learning

This section gives an introduction to the ideas and methods of Machine Learning (ML)
relevant to this thesis. The motive of this section is to provide a basic understanding
of the capabilities and challenges related to ML. General ideas will be discussed, before
comparing common approaches when ML is applied to problem solving. Finally, we
discuss the challenges related to data preprocessing and domain knowledge, and how
these may be dealt with.

2.4.1 History and General Idea

During the last 10-20 years, the ubiquity of the Internet has lead to an explosion
in the amount of data generated and stored every day. Though ML has seen an
upswing in popularity and boost as a buzzword during the last decade, the concept
is not new. The fundamental methods and mathematics of ML were proposed more
than 60 years ago [For]. Since then, technological advancements have led to reduced
costs of computer processing power and increased availability of storage capacity. As
a consequence, many industries have invested heavily in research on how their data
can be used to generate actionable insight and clinical decision support.

The general idea of ML is that we want to use historical data to make predictions on
the future. In mathematical terms, we want to use some set of independent variables
(features) to predict the value of a dependent variable (label). The independent
variables of interest compose the feature-set, and the dependent variable is the
corresponding label. The term example is used about one set of features coupled
together with the corresponding label of that specific feature-set. Further, the term
dataset is used about the set of all such examples. When quantity of available data
is discussed, we refer to the amount of examples in the dataset.

Features and labels can be either numerical (continuous) or categorical (discrete).
A problem where the goal is to predict a numerical label is called a regression problem,
while making predictions on a categorical label is called a classification problem.

To further explain the terminology, we use an example problem from the power
grid domain. In this regression problem, we want to build a model that is able to
predict electricity prices based on weekly measured precipitation and the day of the
year (from 1 to 365). We denote the measured precipitation as x1, the day of the
year as x2, and the corresponding electricity price forecast as y. x1 and x2 are the
features of the feature-set X, and y is the label.
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After collecting a sufficient amount of data, the dataset S contains n examples of
the feature-set X coupled together with a corresponding label y, as in Equation 2.1.
The dataset S is then used to to train the model. During training, the model is fit
to describe how the chosen features maps to the different labels.

S = {Xi, yi}n
i=1 ,

X = {x1, x2}
(2.1)

The task of creating and tuning these models, to describe the real world in the
best way possible, is done through statistical optimization algorithms. This is what
we refer to as ML. Some of the more advanced use cases of ML are image recognition,
product recommendation systems and fraud detection.

When training ML models, we provide a dataset to the algorithm of our choice,
as well as some algorithm-specific parameters that makes sense for the problem and
dataset at hand. As more examples from the dataset are provided, the algorithms
adjust the model to better fit the examples presented. After having provided the
algorithms with a sufficient amount of examples, we let the model predict labels of a
previously unseen example.
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2.4.2 Artificial Intelligence vs Machine Learning vs Deep
Learning

The terms artificial intelligence (AI), machine learning (ML) and deep learning
(DL) are often used interchangeably. To dispel confusion, we introduce a simple
description of the relationship relationship between the terms. ML is a subfield of
AI, while DL again is a subfield of ML, as Figure 2.8 illustrates. AI is a broader,
more general term used about bringing intelligent behaviour into machines. ML
refers to a more specific application of AI, where machines learn patterns based on
observed data, so the way it performs a task improves with experience. DL is a field
given much attention lately for its performances at benchmark tasks in text, speech
and image processing. The term usually refers to the technique of using multiple
layers of Artificial Neural Networks (ANNs) to progressively "learn multiple levels
of representation and abstraction that help to make sense of data such as images,
sound, and text" [DY14].

Artificial
Intelligence

Machine
Learning

Deep
Learning

Artficial
Intelligence

Figure 2.8: Relationship between the fields of AI, ML and DL.
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2.4.3 Supervised vs Unsupervised Learning

Supervised Learning

So far we have discussed cases where our dataset consists of feature-sets and its
corresponding label. This means that the learning process is done using a ground
truth, with prior knowledge of what the output value for a specific feature-set should
be. The goal is to learn a function that best approximates the relationship between
input and output observed from the data. This is what we call supervised learning.

The Random Forest Algorithm

A commonly used algorithm for supervised learning is the Random Forest (RF)
algorithm, which can be used for both classification and regression problems. RF
uses a technique of building multiple decision trees based on the features of the
dataset. For classifications, the model then combines the predictions from these trees
into a majority voting system, where the final output class will be the one with the
majority of votes, as illustrated in Figure 2.9.

Figure 2.9: Random forest illustrating the majority voting of decision trees.



2.4. MACHINE LEARNING 25

Unsupervised Learning

ML may also be applied in cases where we have no prior knowledge of the output
value for a specific feature-set, meaning the dataset contains no labels. This is called
unsupervised learning. In this case, the goal is often to find interesting structures
in the data and to gain insight which can be further used to produce hypotheses.
Clustering algorithms are commonly used for this purpose. As opposed to for
supervised learning methods, there is not always a specific way to measure the
performance of an unsupervised learning method, as there is no ground truth to
compare with. Figure 2.10 illustrates the difference between a supervised classification
problem, and an unsupervised clustering problem.

In situations where the dataset contains numerous examples, but we have no
knowledge of how to classify these examples, unsupervised learning can be used to
provide valuable insight. Sometimes we encounter situations where we have knowledge
of what the normal state of a system looks like, but limited or no knowledge about
what abnormal states look like. Several real-world problems introduce us to cases
like this, where we only have access to information about one of the possible classes.
In such cases, the dataset can sometimes be used to detect examples that deviate
significantly from the class we have knowledge about. Methods for solving problems
like this are called One Class Classification (OCC) algorithms, and are often used
for anomaly detection. Anomaly detection is an important tool for industries where
detection of abnormal or suspicious behaviour is of interest [CCV08].

Label A
Label B

Supervised Learning Unsupervised Learning

Cluster 1

Cluster 2

Figure 2.10: Simplified illustration of supervised and unsupervised learning.
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One-Class Support Vector Machine

A commonly used OCC algorithm for anomaly detection is the One-Class Support
Vector Machine (One-Class SVM) [KM09]. The idea is to use the dataset to find a
function which returns either a positive or negative value, depending on how similar
the test data is to the examples in the applied training set. The function is made by
fitting a hypersphere that includes most of the training data (Usually 90-100%). The
amount of examples included in the hypersphere is dictated by the NU parameter,
a parameter set by the developers, which should be set based on attributes on the
training set.

Figure 2.11 illustrates the fitted hypersphere in a simple classification problem
with only two features. Whenever predictions are made on a data point, a scoring-
function will output a value describing the distance between that data point and the
centre of the hypersphere. All data points which fall outside of this hypersphere will
be labelled as an outlier (negative value), while data points inside the hypersphere
are labelled as a normal observation [LSKM04]. A data point labeled as an outlier
indicates an abnormality.

Figure 2.11: Simplified illustration of a one-class SVM.
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2.4.4 Data Preprocessing: Providing useful data to the
algorithms

Before ML can produce valuable insight and prediction models, the data needs
to be thoughtfully handled during the data preprocessing step. The preprocessing
step is a significant component of a ML project [RWA+12]. It involves dealing with
missing data, scaling values, conversion of categorical features to numerical features,
splitting the dataset, as well as deciding which features to use.

Missing Data

Missing some data is a common problem. For different reasons, some examples in
the dataset might be missing a value for one or more of its features. For instance, a
feature originating from a sensor with limited power access is prone to have some
periods of missing data. The best way to handle missing data depends on the context
and domain explored. In some cases, it makes sense to assume a missing value can
be replaced by the average, or median, of that specific feature from other examples
in the dataset. In other cases, it might make sense to drop the entire example from
the dataset if a feature-value is missing. If dropping the example removes crucial
information, or taking the average does not make sense (such as for categorical
features), other methods of handling missing data have to be assessed.

Feature Scaling

Feature scaling is a method to scale numbers of varying magnitudes from different
features into the same range. Some of the commonly used ML algorithms, including
Support Vector Machines (SVMs) and K-Nearest Neighbors (KNN), use the distance
between data points in computations for training a model. As a dataset usually
contains features with varying magnitudes, feature scaling is a crucial step in the
data preprocessing. While the age of a person will vary from 0 to about 100, the
salary of a person might vary between 0 and 1,000,000. Thus, if age and salary make
up the feature-set, the magnitudes of the features are highly varying.

Consequently, the age of a person will practically be negligible when computing
the distances between data points without feature scaling, as the magnitude of salary,
is much higher. There are multiple ways to scale features. A common approach is
to scale all features up or down to fit in the range [-1,1] or [0,1]. For ML methods
not based on distance calculations, such as decision trees and naive Bayes, feature
scaling is not always necessary.
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Categorical Data

Categorical features, such as nationality or movie genre, can not be directly compared
in the same way as numerical features. Therefore, when using distance-based ML
methods, categorical features needs to be transformed and encoded before they can
be interpreted by algorithms. A common way of solving this is by using one-hot
encoding. In this scheme, we first explore how many different values that exist for
a specific categorical feature in our dataset. Then, for every possible value of that
categorical feature, we create a new numerical feature which is given the value 0 or 1.
This way, a categorical feature is instead represented by multiple numerical features.
Table 2.1 and 2.2 illustrates the one-hot encoding scheme.

Table 2.1: Categorical text data

Country

France
Spain

Germany
Spain

Germany
France
Spain
France

Table 2.2: One-hot encoded variables

France Germany Spain

1 0 0
0 0 1
0 1 0
0 0 1
0 1 0
1 0 0
0 0 1
1 0 0

Domain Knowledge

While some correlations and dependencies between variables can be found through
data exploration, possessing domain expertise is an advantage in the process of
gaining insight from the data. A fundamental understanding of the problem to be
solved and the properties of the available dataset, can be time-saving and crucial in
order to pick the right features for the ML algorithms to operate correctly. Domain
knowledge includes all technical, social and legal factors that may come into play.
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Feature Extraction

Feature extraction means decreasing the size of the feature-set. An argument for
decreasing the size of the feature-set is to reduce the computational power required
for training the model. Additionally, the prediction accuracy of the model may suffer
if the feature-set contains redundant features, or features that don’t make sense to
include for the specific task, as it may confuse the algorithm.

The task of feature extraction is to find a subset of features from the features
in the dataset, that maximizes the ability of the learner to create a well-performing
model. This process will reduce the dimension of the dataset (reduce the number
of features) and remove redundant or irrelevant information, making the remaining
feature-set more appropriate for the problem at hand. Deciding what features to
include and exclude from the raw dataset is a challenging task, and the performance
of the ML model depends on a well-thought selection.

Skewed Datasets

When supervised learning is used, another aspect of feature extraction is the balance
of the dataset. In a classification problem with two distinct classes, having a well-
balanced dataset would mean having a reasonable amount of examples from both of
the two possible output classes. Most of the time when ML is applied to real-world
problems, the dataset available will contain some degree of class imbalance. For
many of the most used ML algorithms, an imbalanced dataset will often lead to a
prediction model biased to predict the dominant class in the training set. Techniques
for managing this challenge include undersampling examples from the dominant class
or oversampling the underrepresented class. Other, more sophisticated techniques
also exist.

Splitting the Data

Finally, before we start to train a model, the dataset needs to be split up into a
training set and a test set. The training set is then used for training the model before
the test set is used to measure the accuracy of the model. Normally a training set
contain 70-80% of the examples in the dataset, the remaining 20-30 % make up the
test set. A comparison of the predicted and the true labels in the test set will give
an indication of how well the model generalizes to previously unseen cases.
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Importance of Data

When the application of ML is considered, a common topic is the availability of suffi-
cient amounts of data for ML to be used. Quantity of data often gets more attention
than the actual quality of data, even though high-quality data is a prerequisite for
being able to create models that generalize well to new cases. Sometimes data can
be transformed into high-quality data through the steps of preprocessing and feature
extraction, but this is not necessarily the case. If useful data is not present in the
dataset, the mentioned steps will not magically generate high-quality data for solving
the problem we want to solve. What we need is a sufficient quantity of high-quality
data.

2.4.5 Performance Evaluation

Before any ML model can be put into production and used as an analysis tool, its
performance needs to be evaluated. Depending on the method and algorithm used
for training the model, different ways to measure the accuracy of the model exists.
For a classification problem, a common and natural measure is to count the number
of correct and false predictions made on a test set. In case of a binary classification
problem, a confusion matrix containing the number of true positives, true negatives,
false positives and false negatives is often used. These numbers can also be used for
calculating other performance metrics, to better adapt to the domain in which the
model is going to be used [Tow].

Cross-validation is a common technique used to ensure that the model does not
rely too much on the initially chosen training set. K-fold cross-validation is done by
splitting the training data into k folds, then training on k-1 folds before testing its
accuracy on the last fold. All of this is done k times. The error of the model is then
averaged across the k folds, which gives the cross-validation error.

Overfitting

Overfitting is defined as “the production of an analysis which corresponds too closely
or exactly to a particular set of data, and may, therefore, fail to fit additional data
or predict future observations reliably” [oxf]. This means that the model will not
generalize well to new data. Whenever a ML model achieves significantly better
accuracy on the training set than on the test set, chances are high that the model is
overfitted. The overfitted model in Figure 2.12 shows a model that learns to fit noise
or random fluctuations in the training data. This is learned to such an extent that it
negatively impacts the performance of the model.
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Figure 2.12: Underfitted, good fit, and overfitted machine learning model [Anu18]

2.4.6 Libraries

A library is a tool with a collection of functions and methods which can be
used to perform special actions, without writing the code needed to perform the
operation. Therefore, using the programming language with the most fitting libraries
is beneficial.

Python is considered to be the best language for machine learning [Nau15]. The
simple syntax of Python combined with an active developer community has lead to
many well documented open-source libraries. Many libraries for different tasks makes
ML in python uncomplicated [Har12]. Next, we introduce four important libraries
used in our study for to perform ML in python.

NumPy is a mathematical tools library. Functions can be called through the
NumPy library to perform advanced mathematical operations. As ML are based on
mathematical models, NumPy is one of the most essential libraries for ML. Further,
Matplotlib is a python library used to plot high-quality graphs. The Pandas
library is considered the best library to import and manage large datasets in Python
[Kir19]. Scikit-learn is a ML library built on the aforementioned libraries, and a
great tool for performing data preprocessing and ML algorithms.





Chapter3Related Work

In this chapter we summarize research related to the scope of this thesis, to provide
an overview of the state-of-the-art. We have included papers which have investigated
new ideas concerning ML in the operation of the power grid, as well as papers which
have studied more specific challenges tied to our approach. Research related to
predictive maintenance and forecasting in grid operation are also discussed. Some of
our assumptions are based upon the following papers.

According to [ATHU18] monitoring based on measuring instruments in the Nor-
wegian grid has been sparse, and existing research on the power quality signature of
fault events and disturbances is limited. This paper is one of our motivating factors
for choosing predictive maintenance as our focus for this thesis. In this paper, it is
emphasized that possibilities within fault prediction exists in the Norwegian grid
based on available sensor data which the various grid operators collect. Their paper
suggests that some types of faults are likely to have a signature pattern in advance of
the fault happening. Failures related to component faults caused by humidity, salt,
ageing, etc. develop over time and is therefore assumed to be possible to detect prior
to the actual failure. They conclude that it remains to be established what time
resolution and duration is needed for robust detection and prediction. Henceforth,
our intention is to extend their research and propose a technical solution to their
assumptions.

Already in 2001, Nikolaos Hatziargyriou included a chapter on ML applications
to Power Systems in his book on Machine Learning Applications[Hat01]. He points
out that forecasting of electricity demand and production volumes are suitable tasks
for applying ML. It is also stated that ’real-time measurements of high actuality can
detect critical situations and predict failures’. Hence, the research concept conducted
in our thesis is not a new idea.

33
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A paper from Texas A&M University researchers in 2009 observed anomalies
developing ahead of faults and outages on 60 feeders, to comprehend how those events
could be avoided with intelligent monitoring [RBC+09]. The paper documented fault
and failure conditions that could reduce feeder reliability and service continuity, and
concluded that the number of outages could be significantly reduced by early warning
and detection of the faults which later escalated to feeder outages [RBC+09]. Figure
3.1 and 3.2 presents one of many observations made in [RBC+09] prior to an outage.

Figure 3.1: Wildlife fault that stressed connector [RBC+09]

Figure 3.2: Anomalies following wildlife stress, prior to outage [RBC+09]
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The wildlife stress on the connector seen in Figure 3.1 caused a fault to the
grid, and service was out for an hour. Figure 3.2 shows that three days later the
same phase on the same feeder shows an anomaly. The anomaly seen in Figure
3.2 continued intermittently for six days. ’On May 30, 2008, a customer reported
lights-out and “arcing and sparking” wires on top of the pole outside his home. The
responding crew found that the clamp connecting the primary phase conductor to
the customer’s service transformer had burned open’ [RBC+09]. The observations
shown in Figure 3.1 and 3.2 indicates that early warnings are possible with intelligent
monitoring. However, measurements done by the instruments in their research was
of very high resolution, with millisecond scale, which is not available for us in this
thesis’ work.

A pioneering project within predictive maintenance in the power grid used
historical grid data to create comprehensive models that aim to assist power companies
with maintenance planning and decision support, by creating a vulnerability ranking
system of components as well as MTBF estimates [RWA+12]. They emphasize the
challenges of working with historical grid data not initially meant for predictive
purposes. Accordingly, data preprocessing was considered the most challenging step
in their research. Further, they underline that power companies often keep historical
data records, however, these are not used for predictive purposes.

Instead of using the same variables for predicting grid failures, the NYC research
[RWA+12] developed specialized processes for predicting different ranking systems.
The data used by their ML models include information about past events, such as
failures, repairs and power quality, as well as asset features, such as type of equipment,
manufacturer and date of installation. From [RWA+12], we learn the challenge of the
preprocessing step when working with such imbalanced datasets, and of managing
data from different sources. Nonetheless, their research is an inspiration for proving
how studies of this kind may be of help for grid operators.

A project in Portugal proposed a system for predicting events in the Portuguese
power grid, using data provided from assets combined with exogenous variables such
as weather data [VVM+16]. Their paper included testing of both SVM and RF as
classification methods. They suggest using a sliding window approach for labelling
the data, then makes use of one RF model and one SVM model as classification
methods. Their prediction interval length was set to one day (24 hours). But,
their feature window contained features from two days, and a label indicating if an
interruption occurred the following day. [VVM+16] Concludes that the performance
of SVM and RF classifiers are quite similar.
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Target events considered in the study from Portugal were interruptions of power
supply, indicating an outage or transformer faults. Their exogenous variables used in
their study are the maximum and minimum temperature, maximum gust speed, and
most extreme weather event, such as the occurrence of a thunderstorm. Our research
intends to utilize similar techniques regarding data labelling, such as the sliding
window approach coupled with events data revealing if an interruption occurred
during the label window or not. To evaluate their performance they apply two
different methods, 10-fold Cross Validation (CV) and a 70% training and 30% testing
approach, similar to what we intend to do.

A paper from Politecnico de Bari in Italy presents a data aggregation framework
for reducing the size of large datasets while keeping the usability for decision support
and predicting grid failures [RLS14]. Their research investigates ways to aggregate
data generated by energy distributors in Italy, in order to reduce data volumes.
After the volume reduction, the researchers try to predict grid faults. The research
point out that the early data cleaning and aggregation steps are critical stages which
need strong collaboration between analysts and domain experts. Their cleaned
data consists of statistical indexes used to characterize current variations, such as
maximum, minimum and average values, as well as variance and standard deviation.
These parameters were used to build a decision tree classifier before 10-fold CV is
used to measure the accuracy of their classifier. We intend to apply their findings in
our study, utilizing ideas from their framework for data aggregation towards data
from the Norwegian power grid. Just like the studies from New York [RWA+12] and
Portugal [VVM+16], the paper from Politecnico de Bari [RLS14] input both weather
and grid data to their machine learning models. The case study presented in [RLS14]
is a root cause classification of historical events in the power grid, classifying 77.8%
of events correctly.

Table 3.1 contains an overview of some related work on the topic of predictive
maintenance in the power grid. The left-most column contains the publication, the
articles may be looked up in the bibliography. In the next column, we have outlined
what type of data the publication has used for their research. The "method" column
contain brief information of how the data has been processed, e.g. what their research
investigated or classification methods used. The right-most column, "results" is a
short explanation of the findings and conclusions of the corresponding paper.



37

Publication Data source Method Results

[RBC+09]
60 feeders with doc-
umented faults and
outages.

Examines if events
could be avoided if
intelligent monitor-
ing was in place by
reviewing pre-fault
data.

Concludes that
reliability can
be significantly
improved with
condition-based
maintenance.

[RWA+12]

Past events, such
as failures, replace-
ments, repairs.
Also, asset features,
such as the type of
equipment, environ-
mental conditions,
manufacturer, com-
ponents connected,
date of installation.

Uses supervised
bipartite ranking al-
gorithms to predict
the risk of failures
for components,
with time-shifted
features/labels (up
to a year). Ranks
for various types
of equipment, i.e.,
1000+ high voltage
feeders.

60% of failures oc-
cur in the 15% of
feeders ranked as
most susceptible to
failure. Concludes
that data already
collected by power
companies can be
harnessed to pre-
dict and assist in
preventing grid fail-
ures.

[GKWK15]

Post-fault re-
covery voltage
measurements in
different operating
conditions.

A support vector
machine classifier to
predict the stabil-
ity status of the sys-
tem.

[RLS14]

27 months of ob-
servations and
2438 interruptions.
Aggregated current
data, line data and
weather data.

Aggregated data
and a sliding win-
dow of 30 minutes.
Predicting possi-
ble grid failures
with decision tree
classifier.

Correctly classifies
77.8% of the events.

[VVM+16]

7 months of opera-
tion data generated
by 300 transformers
and weather data.
Out of 60,000 la-
bels, 277 interrup-
tions are found in
the dataset.

Sliding window clas-
sification approach,
bag-of-words event
representation, and
tests random forest
models and support
vector machines.

Up to 0.75 area un-
der the receiver op-
erating characteris-
tic curve in testing.
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Publication Data source Method Results

[ATHU18]

Data from FA-
SIT together with
graphs of grid data
from the Norwegian
power grid.

Presents the idea
of performing mon-
itoring and fault
prediction methods
on the Norwegian
power grid.

Given the right
data, there should
be opportunities for
developing a ma-
chine learning based
fault identification
and prediction
algorithm.

Table 3.1: Table summarizing various related articles

Some of the papers, such as [RBC+09] and [ATHU18] purely identifies possibilities
with creating actual models. The NY project [RWA+12] created ranked lists of feeder,
components and manhole events. As they created different models for each type
of event their results vary, however, their overall conclusion is that all events are
worthwhile to model for prediction. While [GKWK15] uses post-faults voltage to
predict stability status of the network.

[RLS14] creates a model for classification of faults, based on current measurements
and weather data. We intend to have an approach more similar to [VVM+16], and
investigate if the prediction of faults within a given time-window is possible, based on
grid data from a Norwegian DSO in combination with weather data. Such a project
has, to our knowledge, not been performed on the Norwegian power grid before.



Chapter4Technical Approach

This chapter provides information on the process of data collection, preprocessing,
and the procedures to create a machine learning model. Throughout this chapter,
we explain why we chose particular procedures. The chapter may be considered a
guideline for building similar models.

Data
Collection

Data 
Evaluation

Method
Selection

  Implementation
Model

Review

Figure 4.1: Visualisation of the main tasks included in the technical approach.

Method selection and implementation depend on the characteristics of the data
collected. The technical approach followed in this chapter may be visualized as
the process in Figure 4.1. Below we describe the process from data retrieval to
implementation of the ML algorithms.

4.1 Data Collection

In this section, we review the data collection task. At the beginning of this project,
we had limited knowledge about the data available. Also, we did not know from
which sources we could expect to receive data. In order to collect data, we contacted
several DSOs. The goal of contacting several DSOs was that at least one of them
possessed grid data which they could share with us. Through a review of the partners
in the Centre for Intelligent Electricity Distribution (CINELDI) project [cin], and
exploration of pilot projects these partners were a part of, we decided upon a few
DSOs to contact.

39



40 4. TECHNICAL APPROACH

The DSO we received data from has an ongoing pilot project in approximately 30
of their substations. In these substations, the DSO has installed several sensors for
monitoring equipment. Furthermore, this DSO spends more than 10 million NOK a
year on CENS for non-planned outages, implying faults should exist in their data.
However, only two of the substations equipped with sensors recorded a failure during
the last 12 months. The data from these substations were relevant for us to inspect
closer. Also, fault logs from their SCADA system would be relevant.

After valuable conversations, through semi-structured interviews, with two DSOs,
we signed a confidentiality agreement with one on these. We received data from
substations S1 and S2 for two specific dates which contained faults. The received
data contained 24 hours of measurements with a resolution of one minute. We
requested more data from other periods in S1 and S2, as more faults and longer
intervals of continuous measurements during the substations normal condition could
be beneficial. Information about the root causes of the failures in the datasets already
received were also requested.

Unfortunately, the DSO experienced technical difficulties when trying to export
more data from S1 and S2 from their SCADA-systems. Eventually, we received a
dataset from a substation S3, containing one year of hourly aggregated measurements.
The DSO helped explain the technical details in the data we received.

For components in the power grid, it is reasonable to believe that some exogenous
variables, like weather data, might affect the system state. While rainfall and
snow might affect underground power cables, wind can cause disturbances through
falling trees and vegetation. Additionally, outside temperatures affect electricity
consumption, and thus also the load on the power grid. Therefore we have included
data on wind and rainfall collected from weather stations close to the substations in
this study.

Weather data is freely available on JSON-format through a RESTful API provided
by the Norwegian Meteorological Institute. The API gives access to "quality controlled
daily, monthly, and yearly measurements of temperature, precipitation, and wind
data" [meta]. To access the API, we created a user to get the credentials needed for
logging in to the service. Through the API documentation, we found guidelines on
how to access information about weather stations, and how to extract data from
these sources through HTTP-requests with Python [metb].

We located the weather stations which were physically as close as possible to
the substations of interest, and inspected available data from these weather stations.
Not all of these weather stations contained data on both wind and precipitation
from the time intervals of interest. As a result, we had to retrieve measurements of
precipitation from one weather station, and measurements of wind from another.
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4.2 Data Characteristics

We investigate data characteristics to find useful traits for our purpose. Data
characteristics are significant in the phase of algorithm selection. The purpose and
importance of different measurements in the dataset should also be understood. Due
to limited domain knowledge, this too is part of investigating the data characteristics.
This section presents the most significant characteristics discovered during the
inspection of the data.

In total, we received data containing sensor measurements from three substations.
From one of the substations, S3, we received hourly aggregated values from the year
2018. However, no faults occurred in S3 during 2018. For substations S1 and S2, we
received measurements, as well as event logs. The data covered two specific dates,
October 27th, 2018 and January 1st, 2019. S1 and S2 experienced failures resulting
in outages on both of these dates. Table 4.1 summarizes the characteristics of the
received datasets.

S1 S2 S3 Shared

Data Interval 27.10.2018 &
01.01.2018

27.10.2018 &
01.01.2018

09.01.2018 -
31.12.2018

-

Resolution Every minute Every minute Every hour -
Event logs included Yes Yes No -
Faulty days 2 2 0 -
Sensors measuring
voltage

30 24 36 24

Sensors measuring
current

15 12 18 6

Sensors measuring
power

5 4 6 4

Sensors measuring
volt-ampere

12 9 14 8

Table 4.1: Overview of the data collected from substations
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Table 4.1 shows similarities between the dataset from substations S1 and S2
especially considering the data interval, resolution and faulty days. Data from
substation S3 differs significantly from S1 and S2. Further, the number of sensors
measuring voltage, current, and power varies for each substation. Additionally, the
feeders of S1 and S2 have a voltage of 22 kV, while the feeders of S3 have a voltage
of 11 kV.

The papers described in the Chapter on related work, varies between having 277
to 2438 faults in their datasets. Meanwhile, the datasets we have received contain
only eight failures in total. Table 4.3 shows the times when failures occurred in S1
and S2. Having such few examples and few failures in our dataset may bring more
uncertainty to our results.

Upon further inspection of each of the measurements, we observed some measured
values were zero through the entire dataset. These zero-values indicate inoperative
sensors. Also, several sensors produced long sequences of repeating values, even
though they stem from variables of continuous nature. Some of these sequences
contained repeating values for up to three minutes. After inquiring with the DSO
about this, the explanation was that the SCADA-system does not register a change
in measured value until the change is more significant than a certain threshold.

Some measurements were comparable across the substations. A total of 24 voltage
sensors and six current sensors appears to be measuring similar physical compo-
nents across the three substations. In the same way, the number of comparable
measurements appears to be four for power and eight for volt-ampere. However, all
measurements on power and volt-ampere in S1 and S2 appeared to differ signifi-
cantly from the corresponding measurements in S3, both in amplitude and variance.
Furthermore, in the dataset from S3, all values freeze in the period from 25.05.2018
to 17.08.2018. Consequently, we excluded this period from the dataset.

The characteristics of the data received from the three substations vary in both
resolution and duration. To summarize, the dataset from S3 contains data for a
longer time period, while S1 and S2 contain measurements from two single days at
a time. The measurements from S1 and S2 are from periods with registered faults
and outages, while S3 is in normal condition during the entire period.
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4.3 Selection of Machine Learning method

Before examining the data received, we planned to follow the approach taken in
many of the papers presented in 3. In the experiments of these papers, the data used
contained numerous faults and longer periods of measurements. In such situations,
supervised learning methods have proved to be efficient for building prediction models.

However, the data evaluation of our data revealed that the datasets from S1 and
S2 contained short periods of faulty condition data, while S3 contained a longer
period of only normal condition data. Therefore, we decided to reconsider our
approach. In 2.4, we discussed some use cases of unsupervised learning methods,
including detection of outliers, or anomalous data points. As our data, especially
from S3, contain long periods with numerous examples of the same class, namely the
normal condition of the substation, we decided to explore unsupervised learning as
well.

Process Diagram

Data Preprocessing

Cleaning Aggregating

Create similar tables

Classifiers

Raw 
substation

 data

Exogenous 
variables

RF One-class SVM

Labels/Warnings

Figure 4.2: Process diagram.
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Unsupervised

Implemented Algorithms

Supervised

Method: RF & Sliding window Classifier
Training data: S3

Testing data: S1, S2
Resolution: Hour

Method: One-Class SVM
Training data: S3 (+S1, S2)

Testing data: S1, S2
Resolution: Hour

Method: One-class SVM
Training data: S1, S2
Testing data: S1, S2
Resolution: Minute

Figure 4.3: The three algorithm approaches conducted, one supervised and two
unsupervised.

4.4 The Supervised Implementation

The first implemented approach was a supervised learning approach. With this
approach, we wished to train a model on data from one substation over an extended
period. The model was designed to recognize recurring patterns before failure.
However, due to the limited datasets received, we chose to blend the data from S1
and S2 multiple times into the S3 dataset. We did this to demonstrate how we
would implement a ML algorithm on a substation with a sufficient amount of failures
during a measurement period. Therefore, the presented supervised approach provides
more of a framework for future similar work on how to implement such an algorithm,
rather than being an attempt to achieve strong results.
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4.4.1 Data Preprocessing

As mentioned in the background and in related work, the preprocessing is often
considered the most challenging step of a ML project. The preprocessing steps of
the supervised approach consisted of the following steps:

1. Import the dataset.

2. Make datasets from S1 and S2 resemble the dataset from S3 by extracting
the similar relevant features into tables, and aggregate S1 and S2 to hourly
measurements.

3. Blending the datasets from S1 and S2 into S3.

4. Retrieving the exogenous variables and adding them to the table obtained from
(3).

5. Handle missing data.

6. Add labels to the data.

7. Perform feature scaling.

8. Split the table into a training set and a test set.

First we converted the Excel files to CSV format and imported them to Spyder
(IDE). Next, we extracted the power and voltage measurements similar in S1, S2
and S3. These were 6 Low Voltage (LV) (400V) measurements and 18 High Voltage
(HV) (22kV) measurements, as well as 3 LV and 3 HV electric current measurements.

Thereafter, we aggregated the minute values from the datasets of S1 and S2 into
hourly aggregated minimum and maximum values, in order to make the tables of S1
and S2 similar to that of S3. We then mixed data from S1 and S2 into the table
with measurements from S3, in order to make the S3 dataset resemble a substation
with multiple failures throughout a longer measurement period. In total, we mixed
ten faults into the dataset from S3. The S3 table now contains several months of
hourly minimum and maximum values, including a total of 10 faults. Next, we added
the obtained weather variables. We replaced missing data points in the weather data
with the mean of the respective column.

In order to train the supervised model, we need to add labels to the data. We
utilize the sliding window approach for adding labels to the data based on whether a
fault occurs during the next hour or not. We label a row as "1" if failure happens
during the next hour, and "0" if there is no fault during the next hour, as illustrated
in Figure 4.4.
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Feature window Label window

10:00 11:00 12:00 13:00

Feature window Label window

10:00 11:00 12:00 13:00

Figure 4.4: Sliding Window

Then we feature scaled the data, which is essentially normalizing the data within a
particular range. The standard score is calculated according to Equation 4.1. Where
x is the scaled sample, u is the mean of the training samples, and s is the standard
deviation of the training samples. The main reason for doing this is to avoid the
features with large number ranges to dominate those with smaller ranges [BLB+13].

z = x− u
s

(4.1)

Lastly, we divided the table into two non-overlapping sets, the training set, and
the test set. We chose to split the data on November 1st, so the training set contains
data from January 9th to November, and the test set contains data from November
and December. The training set is then used to build the model before the test set
is used to make predictions for evaluating the accuracy of the model. In total, 70%
of the data is used for training and 30% for testing (after removing the dates when
the measurements freeze).

4.4.2 Predictions

The model has now been trained on historical data to learn how to recognize
patterns (if there are any) occurring before a grid failure, and use this data in order to
try and predict whether a fault will occur during the next hour or not. As mentioned
in 2.4.3 RF classification is used for making these predictions. The results of these
predictions are shown and discussed in chapter 5 Results and Discussion.
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4.5 The Unsupervised Implementation

The unsupervised approaches are different from the supervised approach. A distinct
difference is that the unsupervised procedures did not include labeling of the data
before training the model. We implemented two unsupervised approaches with the
data at hand. In the first unsupervised approach, we make use of the S3 dataset,
containing no faults, for training the model. The second unsupervised approach takes
individual differences between substations into consideration.

We trained a model using One-Class SVM to learn typical patterns from healthy
substations, to later be able to spot measurements deviating from the normal
condition. The idea of One-Class SVM is described in the section on One-class SVM.
In the first unsupervised approach, we train a model using samples containing hourly
aggregated minimum and maximum values from S1, S2, and S3, as well as weather
data. For the second unsupervised approach, we train separate models for S1 and S2
using minute measurements from only the substation itself. The rest of this section
will further describe and clarify the two executed unsupervised approaches.

4.5.1 Data Preprocessing for Unsupervised Learning

First Unsupervised Implementation

During the preprocessing phase of the first unsupervised approach, we created the
training set with current and voltage measurements from the S3 dataset and added
wind and precipitation data to this table. Next, we created four tables, two from
27.10.2018(S1 and S2 ) and two from 01.01.2019(S1 and S2 ), this made up our test
sets. The received datasets from S1 and S2 contained minute measurements of both
voltage and current from days with grid failures. We aggregated the minute measure-
ments to hourly minimum and maximum values and added wind and precipitation
data in order to make the test sets resemble the training set from S3.

Table 4.2: Training set and test set for the first unsupervised approach.

Training set S3
Test set S1 (27.10 & 01.01), S2(27.10 & 01.01)

Table 4.2 clarifies that the first unsupervised model uses the large healthy dataset
from substation S3 for training, while the 24-hour datasets provided by S1 and S2
were used for testing. After scaling the features in a similar way as in the supervised
approach, the tables are ready for training and testing the model.
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Second Unsupervised Implementation

In the second unsupervised approach, we utilize the datasets with minute resolution
from S1 and S2, to investigate the effect of training and testing on shorter intervals.
Additionally, in this approach, we only test a model on data from the same substation
as the model was trained on, as illustrated in Figure 4.5 and Figure 4.6. In the two
previous approaches, individual differences between substations might negatively
affect the models created. However, as each of the models created in the second
unsupervised approach only deals with data from one specific substation, this effect
from individual differences is removed.

The second unsupervised approach used the same features as the first unsupervised
implementation, namely, current, voltage, and temperature. However, the tables in
the second unsupervised approach do not include wind and precipitation, as we were
unable to retrieve weather data at such a high degree of granularity.

Splitting the Data in the Second Unsupervised Approach

In the second unsupervised approach, we split the data into training and test sets
based on the time of failure in the respective datasets from S1 and S2.

Data from S1,
27.10.2018

(00 - 24)

Training set:
00 - 10 & 18 - 24

Test set:
10 - 12:34

Split into training and
test set

Assumed normal
condition

Assumed faulty
condition

Figure 4.5: Example of training and testing data used in second unsupervised
approach.
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00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Training
set

Test
set

Training
set

Failure

Figure 4.6: The timeline shows the intervals used for training sets and test set with
respect to the time of failure, in the second unsupervised approach. The time of
failure is not included in the test set. The example corresponds to data from S1 on
27.10.2018.

The timeline in Figure 4.6 illustrates the intervals used for training and testing.
The training set contains measurements up to three hours before failure, as well as
data from a period starting a few hours after the fault. We inserted a delay between
the failure and the second part of the training set, as we assume measurements
from this period might not reflect the normal state of the substation. The test set
contains measurements from the period between approximately three hours prior to
the failure, up until the point of failure. Table 4.3 gives an overview of when failures
happened in the various datasets, as well as the periods used for training and testing.

Table 4.3: Failure times, training sets, and testing sets used in the second unsuper-
vised approach.

S1(27.10.18) S2(27.10.18) S1(01.01.19) S2(01.01.19)

Faults 12:34 - 12:40 12:34 - 12:40
10:33 - 10:35,
11:01 - 12:07,
14:50 - 14:51

10:33 - 10:35,
11:01 - 12:07,
14:50 - 14:51

Training
set

00:00 - 09:59,
18:00 - 23:59

00:00 - 07:59,
15:00 - 23:59

00:00 - 03:29,
18:00 - 23:59

00:00 - 07:59,
16:00 - 23:59

Test set 10:00 - 17:59 09:00 - 14:59 08:00 - 15:59 08:00 - 15:59

The faults in Table 4.3 are obtained from the DSO’s event logs. From manual
inspection, we observed that some of the datasets had fluctuations which could
indicate abnormal behavior. However, this behavior is not reported in the event logs.
As we did not want to include these fluctuations in the training sets, we have used
slightly different lengths of training and testing intervals. As a result, the largest
test set contains 33.3% of its total dataset, and the smallest test set contains 25% of
its total dataset.
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4.5.2 Parameters

After the tables included identical features, we scaled the features according
to Equation 4.1. Next, we chose the parameters for the One-Class SVM, before
training these unsupervised classifiers. Identical parameter values were chosen for
both unsupervised classifiers. The parameters passed into the unsupervised classifiers
are noted in Table 4.4.

Table 4.4: Parameters used for the One-Class SVM
One-Class SVM Parameters Value
NU 0.05
Cache Size 200
Degree 3
Kernel projection parameter (coef0) 0.0
Gamma Scale
Kernel RBF
Maximum iterations -1
Random state None
Shrinking True
Tolerance 0.001
Verbose False

Most of the parameters in Table 4.4 are default values from the Scikit-learn
library. The ones worth noting are NU, Gamma, Kernel, and maximum iterations.
The aforementioned NU parameter, discussed in Section 2.4.3, is the upper bound on
the numbers of errors in the training example. As we sat the NU parameter to 0.05,
at most 5% of the training examples are not included in the constructed hypersphere
used for classification.

Our gamma parameter is set to "Scale", which means it uses Equation 4.2 for
calculating gamma. Thus, gamma is dependent on the number of features and the
variance between the set of samples (X), from the training set. Figure 4.7 shows a
simplified illustration of changing the gamma parameter. As illustrated in Figure 4.7
a common effect of increasing gamma is overfitting.

Gamma = 1
Nfeatures · varianceX

(4.2)
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SVM

Small 
Gamma

Large 
Gamma  

Figure 4.7: The difference between a large and small gamma parameter

Kernel functions are algorithms used for pattern analysis. Our kernel is set to
the radial basis function (RBF), which is the most commonly used kernel function
in SVM classification. The maximum iterations default value is -1, implying that
there is no limit. As the running time still is short in our cases (>1s), we kept the
maximum number of iterations to the default value of -1. All the One-Class SVM
parameters were kept the same for both unsupervised procedures.
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4.5.3 Training the Models

First Unsupervised Model

With parameters set, features chosen, and observations scaled, we can train the
model. In the first unsupervised approach, data from S3 are used to teach the model
how a healthy substation behave. We trained the model five separate times, each
time using a sequentially chosen 80% of the dataset from S3. We did this to ensure
that the quality of the data from S3 was consistent and stable. A high variance
between the five models would indicate that the dataset from S3, which is assumed
to represent a healthy substation, contained periods of non-consistent or unstable
data. After having trained the classifiers, we tested each of the five classifiers using
the faulty datasets from S1 and S2.

Second Unsupervised Model

In the second unsupervised model, we trained a total of four models. The training
set from S1 on 27.10.2018 was used to train a model for making predictions on
the test set from the same date in the same substation. Figure 4.5 and Figure 4.6
illustrates the selection of training and test set. Using the same method of selecting
training and test set, we also trained a model for S1 on 01.01.2019, a model for S2
on 27.10.2018 and a model for S2 on 01.01.2019.

The next Chapter, Results and Discussion, provides the results from all models
which were trained in the supervised and unsupervised implementations.
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4.6 Performance Metrics of Prediction Models

It is common to evaluate the accuracy of a classification model by inspecting the
confusion matrix produced by predictions on the test set. Figure 4.8 shows the layout
of a confusion matrix. A classification falling into the square denoted TP or TN
indicates a correctly classified observation. On the opposite, an observation falls into
the square of FP or FN if wrongfully classified.
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TP
True positive

FP
False Positive

FN
False Negative

TN
True Negative

Figure 4.8: Confusion matrix used for visualising model performance

With knowledge about the actual class of an observation, evaluation of a prediction
is trivial. By comparing the predictions to the corresponding actual class, one can
easily calculate a confusion matrix. In the supervised model, an observation is
identified as faulty if the model expects a fault to occur within the next hour. On
the occasion that an observation is identified as faulty by the model, and failure did
happen within the next hour, the prediction is categorized as a true positive. On
the other hand, if a failure did not happen during the next hour, the prediction is
categorized as a false positive. Conversely, if the model predicts a failure will not
take place during the next hour, but failure did occur, the prediction is categorized
as a false negative. A prediction is categorized as a true negative when the model
rightfully predicts that failure will not happen within the next hour.

However, in the unsupervised approaches, to decide whether the detection of
an anomaly should be considered correct or not, is more problematic. The models
trained in the unsupervised approaches are not able to specify the expected time of
a failure, as these models are only trained to detect anomalies. Rather, a detected
anomaly may imply that the substation is in a state where the probability of failure
is higher than usual.
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How long in advance indications of a failure can be detected, is dependent on the
failures root cause. As we are unaware of the root causes, we are unable to manually
label the condition corresponding to an observation as normal or faulty. Hence, there
is no actual class describing the condition of the substation at the given time of the
observation. Therefore, we have chosen two alternative methods for presenting the
results from the unsupervised approaches.

The first method is a simple presentation of the number of anomalies detected
during the hours before failure. In the second method, we calculate the statistical
significance of the number of anomalies detected, based on the chosen NU parameter.
Following is a more detailed description of the two methods.

1. In the first table, we present the number of observations classified in each
of the test sets, along with the number of anomalies detected. In the first
unsupervised approach, the resolution of the observations is one hour. In the
second unsupervised approach, the resolution is one minute. Consequently, the
total number of classifications is higher in the second unsupervised approach
than in the first.

2. In the second table, we present the results of statistical hypothesis testing.
Here, we first determine if the number of anomalies detected before a failure
is significantly higher than the number expected under normal condition. For
each of the failures, we then check whether a statistically significant number of
anomalies were detected before the failure.

The hypothesis statement is that a larger fraction of observations will be classified
as anomalies before failure than during a healthy period. To test this, we use the
number of anomalies detected by the model on the test set. We test the hypothesis
by calculating the probability of obtaining the respective number of anomalies during
a healthy period.

The null hypothesis is that the probability of observing an anomaly is 5% (as
the chosen NU parameter is 0.05). The alternative hypothesis is that the models
will classify more than 5% of the observations before a failure as anomalies. The
hypothesis statement presented in Equation (4.3).
H0: 5% of the observations prior to a failure is classified as anomalies.
H1: More than 5% of the observations prior to a failure is classified as anomalies.

Mathematically, H0 and H1 can be expressed as

H0 : p = 0.05
H1 : p > 0.05

(4.3)
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For calculating whether to accept or reject the null hypothesis, we define a binomial
distribution as a function of the # anomalies detected. This distribution defines
the random variable X. The number of trials n is the total number of observations
prior to a failure, and p is the probability of classifying a healthy observation as an
anomaly. The binomial random variable is presented in Equation (4.4).

X ∼ B(n, p), n ∈ N, p = 0.05 (4.4)

In the second unsupervised approach, the number of classifications (n) is often
large (> 50) and the value of p is small (< 0.2). Consequently, we can use a Poisson
approximation for representing the distribution of X, shown in Equation (4.5). The
expected number of observed anomalies in a test set is denoted λ.

X ∼ Poisson(λ) (4.5)

The p-value is defined as the probability of finding the observed, or more extreme,
results when the null hypothesis (H0) is true [p-v]. In our case, the p-value is the
probability of finding an equal or greater number of anomalies during a healthy
period, than the number detected in the test set. The p-value is given by Equation
(4.6).

P -value = P (X ≥ x) (4.6)

The significance level is the probability of wrongfully rejecting the null hypothesis.
We have chosen a significance level (α) of 1%. If the p-value is less than the
significance level, we reject the null hypothesis (H0).

P -value ≤ α (4.7)

Equation (4.7), will be used for determining if the number of anomalies detected
prior to failure is statistically significant. Further, we will determine if all classi-
fications prior to all failures in the test sets are statistically significant to reject
H0.

This chapter presented the procedures from the data collection phase to imple-
menting and evaluating three machine learning models. The models try to predict
failures in the grid, based on data collected from a major Norwegian DSO. In the
next chapter, we will present the results obtained from these implementations.





Chapter5Results and Discussion

This chapter presents the results obtained from the technical approach, followed by a
discussion of the procedure, the substance of the results, and challenges encountered.

5.1 Results

This section presents the results in the order of which we conducted the implemen-
tation. Hence the results from the supervised implementation are presented first.
Followed by the results from the two unsupervised implementations.

5.1.1 Supervised results

During the implementation of the supervised ML algorithm, we blended data
from the faults in S1 and S2 multiple times into the S3 dataset, which contained
almost a full year of data. This approach resulted in a model tested on the same
data of which it has been trained. Training a model on the same faults multiple
times causes the model to generalize poorly, the outcome is an overfitted model. The
motivation for creating such a model was to develop a framework and a methodology
for performing supervised learning for future work possessing sufficient amounts of
data.

The confusion matrix from the supervised approach seen in Figure 5.1 below,
illustrates the results of an overfitted model. As the same faults occurred in the
training and test set, the predictions become unrealistically good and the results
from the supervised learning predictions unusable. However, the results demonstrate
such an algorithms ability to learn patterns.

57
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Figure 5.1: The confusion matrix for the supervised two-class classification.

5.1.2 Results from Unsupervised Implementations

This section present results obtained from the unsupervised approach described
in the previous chapter. The distributions and predictions presented in Figures 5.2 -
5.4, as well as Tables 5.1 and 5.2 are based on the same prediction model, namely
the one referred to as the "First Unsupervised Implementation". Results presented
in Figure 5.5 and Tables 5.3, 5.4 and 5.5 are based on the prediction model referred
to as the "Second Unsupervised Implementation".

First Unsupervised Implementation

After using One-Class SVM for training the model, the scoring function described
in Section 2.4.3 is used to decide whether or not an observation is classified as an
anomaly. If the scoring function, for a given observation, outputs an absolute value
larger than a given threshold (decided by the NU-value), the observation is an outlier
and classified as an anomaly.

Figure 5.2 shows the distributions of the scoring-functions for the training, and
test data. The text below each plot specifies the test set in the corresponding plot.
The training data is the same for all four plots. The figure illustrates how the different
test sets, compares to the training set, which only contains observations during the
normal state. The blue shaded curve is the distribution of the scoring function of
the training set, the orange curves corresponds to the scoring functions of the test
sets. The vertical red lines indicate the decision boundaries used for classifying an
observation as either an anomaly or as a healthy observation. After manual review
of the data used in Figure 5.2, we learned that the small distinct peaks observed on
the left side of the test data represent the actual faults from the test sets.
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Figure 5.2: Distribution comparison plot with data for all four test sets.

Figure 5.3 and 5.4, presents the models predictions on the test sets from 27.10.2018
and 01.01.2019 compared to the true labels of these observations. As previously
described, an observations true label is set based on whether or not a fault occurred
during the given hour.

In Figure 5.3, the negative "True Label" observed at 12:00 in left column of the
figure indicate faults in both S1 and S2 sometime between 12:00 and 13:00. On the
test set from S1, the model detects an anomaly between 11:00 and 12:00, an hour
before the actual fault. On the test set from S2, the model detects anomalies between
04:00 and 06:00.
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Figure 5.3: Predictions for S1 and S2, 27.10.2018.

Figure 5.4: Predictions for S1 and S2, 01.01.2019.
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Table 5.1: The table presents the results for the first unsupervised approach from
the classifications of observations prior to each failure in the test sets.

S1 S2
27.10.2018 01.01.2019 27.10.2018 01.01.2019

Total number of
hours classified

12 11 12 11

Anomalies
detected

1 0 2 0

Table 5.2: The table presents the results of the hypothesis testing for the first
unsupervised approach.

Actual number of
failures observed

6

Failures with a statistically significant
number of anomalies detected

0

Table 5.1 and 5.2 presents the obtained results based on the definitions from
Section 4.6. Table 5.2 shows that non of the failures had statistically significant
observation prior to the failures in any of the test sets. However as one can observe in
Figure 5.3, the predictions from S2 27.10.2018 shows two consecutive anomalies some
hours before the fault, given that the NU parameter is set to 0.05, one can expect
5% of healthy observations to be detected as anomalies, the probability of observing
two or more anomalies in 12 healthy trials is 11.8%. However, as we defined our
significance level to be 1%, 11.8% is not within our rejection area.
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Table 5.1 shows that a total of three out of 46 hours prior to faults were classified
as anomalies to the normal condition, while 43 hours were considered healthy. In
order to determine if these results are significant, we need to calculate the probability
of seeing three anomalies in a healthy dataset. As the NU parameter is set to 0.05,
the expected number of anomalies observed in a healthy dataset is given by Equation
5.1, with X ∼ B(2.3).

E(X) = 0.05 ∗ 46 = 2.3 (5.1)

P (X ≥ 3) = 1− P (X < 3) (5.2)

P (X ≥ 3) = 1− [P (X = 2) + P (X = 1) + P (X = 0)] (5.3)

P (X ≥ 3) = 0.406 (5.4)

As there is approximately 40% chance of obtaining three or more anomalies from
a random sample of "healthy" data (data from the training set), the results cannot
be considered statistically significant, thus we cannot reject the null hypothesis.
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Second Unsupervised Implementation

In the second unsupervised approach, we trained four separate prediction models.
Each of the prediction models stems from training data at a specific date and
substations.

Figure 5.5 shows the distributions of the scoring functions for the four predic-
tion models. When inspecting the test set curves one can notice two interesting
observations. The upper right plot includes the scoring function distribution for the
test set of S2 on 27.10.2018. The left-most peak is due to the actual faults that
day. However, there is also a very distinct peak closer, from the vertical decision
boundary line, belonging to the anomalies detected between 04:00 and 06:00. The
other interesting observation is seen in the bottom left plot, showing the distributions
of test and training set for S1 01.01.2019. We observe that the test set is noteworthy
right-shifted compared to the training set.

Figure 5.5: Distribution comparison plot with data for all four training and test
sets.
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Table 5.3: The table presents the results from the second unsupervised approach.

S1 S2
27.10.2018 01.01.2019 27.10.2018 01.01.2019

Total number of
hours classified

154 610 154 369

Anomalies
detected

6 52 4 29

P (X ≥ x) (P-value) 0.7797 0.0003 0.9482 0.0139

Table 5.4: Hypothesis Test Results for the second unsupervised prediction model,
using minute values.

Actual number of
failures observed

8

Failures with a statistically significant
number of anomalies detected

2

Table 5.3 and 5.4 shows the results related to the second unsupervised approach.
Table 5.4 shows that there are eight failures in the training sets in the second
unsupervised model, while the first unsupervised model only included six. This is
because two of the faults occurred within the same hour.

Table 5.3 show that a total of 91 out of 1287 observed minutes prior to outages, are
marked as anomalies to the normal condition. Hence, the model predicts 91/1287 ≈
7% anomalies. Given the nu-value of 0.05, we expect 5% of healthy observations
to be predicted as anomalies. The probability of obtaining 7% anomalies out of
randomness is computed by calculating the cumulative probability for P(X ≥ 91).
When calculating this, according to the Poisson distribution formula, we get a p-value
of 4.6×10−4, which indicates that predicting such a large number of anomalies out of
pure randomness is 0.046%. According to these results, there is evidence to suggest
that the percentage of observations prior to an outage marked as anomalies is greater
than 5%.

Table 5.4 indicates that two of the faults observed in the test set had statistically
significant observations before the failure occurred. Both of the statistically significant
observations belong to faults which occurred January 1, 2019. Both S1 and S2 had
a statistically significant number of anomalies detected during the hours prior to this
fault. Table 5.5 show all the faults p-value scored on the hypothesis testing. The
scores are calculated using Poisson distributions. Two of the p-values in Table 5.5
are smaller than the set significance level of 0.01.
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Table 5.5: Obtained p-value in hypothesis test results for the second unsupervised
prediction model, using minute values. With H0 being that 5% of the observations
prior to a failure is classified as anomalies, and the p-value is the probability of
finding the observed, or more extreme, results when the null hypothesis (H0) is true.

Fault S1 S2
27.10.2018 (12:34-12:40) 0.7797 0.9482
01.01.2019 (10:33-10:35) 0.00001 0.3587
01.01.2019 (11:01-12:07) 0.7135 0.7135
01.01.2019 (14:50-14:51) 0.5609 0.0008

5.2 Interpretation of Results

In this section, we review, interpret, and discuss the results presented in the previous
section. We evaluate the results in terms of validity and substance before we review
and discuss the results in accordance with the research questions. We present the
interpretation of the results in the same order of which they were obtained, starting
with the supervised approach, followed by the two unsupervised approaches.

The results obtained by the supervised approach gives a perfect confusion matrix,
presented in Figure 5.1. The perfect confusion matrix is a result of the model
overfitting to the observations from the training set. The model was tested on the
same faults of which it was trained. The results from this approach do, as previously
mentioned, not replicate how a model would behave to previously unseen data.

Hence, the supervised results do not provide any real-world value — however, the
method of labeling the data with a sliding window technique. In combination with a
random forest classification method, proves its ability to recognize patterns. Such a
model with extensive amounts of data could provide valuable results for predicting
grid faults, and might even be able to classify the type of fault observed if given
a large enough training set. The approach followed in the supervised model could
serve as an inspiration for future work.

On the other hand, the results obtained by the unsupervised models presented in
this thesis are more exciting. We start with an interpretation of the results obtained
from the first unsupervised implementation. Already in the distribution plots of
the score function between the training set and the test set, in Figure 5.2 there are
interesting observations to be made. The first is that the test set from S2 looks
more skewed to the left than that of S1. Which might indicate that the substations
have individual attributes, that may play a part in how the test set compares to the
training set.



66 5. RESULTS AND DISCUSSION

Secondly, the wideness of the score distribution of the test sets indicates that
their score function contains a more significant variance than that of the scores from
the training sets. The significant variance might imply that the condition in the
substations is more fluctuating during the faulty days. The predictions for S1 and S2
presented in Figure 5.3 from 27.10.2018 show that the model observes anomalies for
both S1 and S2 prior to the fault. At first glance, the observation from S1 in Figure
5.3 looks promising, as it observes an anomaly during the hour prior to the fault.
Such observations are what we want a predictive maintenance model to consistently
provide. Nevertheless, this observation could be a result of randomness, as 5% of the
healthy training data are classified as anomalies.

Moreover, one may discuss the healthiness of the training data and argue that
a predicted anomaly means that the observation is outside 95% of the training
sets hypersphere. Thus, the training data may not be entirely representative of a
healthy dataset; for example, there might be anomalies in the training set, which
has not yet resulted in a fault. This would imply that the anomalies detected in
the training set are real. Observing S1 in Figure 5.2 the curve of the test set looks
rather normally distributed. However, the small bump to the left of the red decision
boundary demonstrates that the anomaly is rather significant compared to the rest
of the test set. Which might indicate that anomaly detected the hour prior to the
fault did not occur by chance.

Table 5.1 shows that out of the 46 hours observed before the faults 27.10.2018
and 01.01.2019, only three of these were classified as anomalies, not a very promising
result. However, the fact that all three observations stem from the same date could
be an indication that this fault is possible to predict with the data at hand. While
the fault observed 01.01.2019 is not. Also, the data resolution might be decisive of
what types of errors are predictable.

As our results show, the test sets with hour resolution provides better results
for the faults that took place on October 27. While the minute resolution used
in the second approach provides better predictions on the faults from January 1.
Knowing the root cause of the faults at hand would be helpful in order to better
understand the relationship between sample resolution and classification of faults.
Further analyses of this topic are required.

For the second unsupervised implementation, we witness some interesting obser-
vations in Figure 5.5. Figure 5.5 shows the scoring functions for the four prediction
models. The prediction model from S1 on 01.01.2019 is right-shifted compared to
the training set. The other three test sets show quite similar distributions as their
training set. However, some anomalies in the form of small bumps to the left of the
training set distribution are possible to observe in the Figure 5.5.
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The fact that the distribution of the test set is right-shifted compared to the
training set, in S1 from 01.01.2019 in Figure 5.5, may be a result of the model
training on unhealthy data. It is hard to determine how long prior to an outage
anomalies starts to occur. According to [RBC+09], mentioned in the Related Work
chapter, anomalies may be observed intermittently for at least six days prior to an
outage. Thus all training sets used in this approach might already contain a large
number of anomalies, which contributes to a wrongly trained model.

Another indication that the training sets might contain unhealthy data is the
small bumps which might be observed left of the training sets main distributions
in Figure 5.5. These bumps indicate anomalies in the training data. The bumps
are apparent in all four distributions. The idea of training and testing the model on
data from the same substation is an excellent approach for incorporating individual
differences between substations into the model. However, it is unfortunate that we
obtained what possibly already is "unhealthy" data from the same day as a failure
occurred to the dataset.

Table 5.4, which belongs to the second unsupervised approach, indicates that two
out of eight of the faults had statistically significant observations prior to the fault
in the test sets. Both of the faults indicated as statistically significant belong to the
same day (01.01.2019). One of the statistically significant observations occurs before
the first, of many, fault this day. The fact that there were repeating failures this day
may indicate that the DSO did not manage to get the situation under control. So
the fault might be a result of a harmful component, which required staff to inspect
and replace physically.

If the fault from 01.01 was a result of a predictable fault. Then it is difficult to
argue that the training set does not contain any faults. If the training set contains
many anomalies, the results do not replicate "real-world" results, which might have
yielded better results with a sufficient dataset. The two failures with a statistically
significant number of anomalies detected presented in Table 5.4 rejects the null
hypothesis, by a large margin. These results are extraordinary but might be too
good to be true, as this could be a result of training on an unhealthy dataset.

Table 5.3, shows that out of the 1287 minutes inspected prior to failures, the
model detects a total of 91 anomalies. These results are statistically significant. This
may be an indication of large variances in the test sets compared to the training sets.
However, a too small training set compared to the training set could result in many
anomalies. We trained on data from approximately 16 hours a day and tested on
data from eight hours a day. A better approach might be to have a train-test ratio
of 80-20. It is also worth noting that the results would not be as remarkable if it
were not for the anomalies observed prior to the two statistically significant failures.
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The results from the two unsupervised approaches are exciting and show somewhat
different results. The first unsupervised model predicts better on the fault from
27.10, while the second approach showed significant results on the fault from 01.01.
Perhaps a result of the different resolutions used in the two approaches, maybe in
combination with the type of fault that occurred, unfortunately data on what caused
the failure is not available to us. Therefore, one cannot draw definite conclusions
from these results, due to the lack of sufficient amounts of data.

It should be of interest to Grid operators in Norway to invest more resources into
research related to predictive maintenance in grid operation. Providing researchers
with necessary data and domain knowledge to come up with more precise results
into how best to detect and classify failures in the grid. Our results imply that there
are potential using sensor data in combination with machine learning for predictive
maintenance in operations of the Norwegian power grid. However, due to the lack of
data, a finite conclusion cannot be drawn from these results.
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5.2.1 Assumptions

After collecting the data, we made several assumptions on the behavior of the
system studied. In order to evaluate the validity of our results, it is necessary to
state the assumptions made when conducting the experiments and consider how
these compare to the real world. While some of these assumptions are reasonable,
others might differ from reality.

During the supervised approach, we combined observations from S1, S2, and
S3 to build a single prediction model, without including any individual attributes
of the substations in the feature-set. Relevant individual attributes could be the
number of customers connected to a substation, age of the substation, or suppliers of
components. No such information was included in the datasets. Hence, we regard
these substations as equal and implicitly assume no individual differences between
them.

In the first unsupervised approach, we trained a prediction model on data from S3,
to make predictions on S1 and S2. Hence, the same assumption as in the supervised
approach is made, that there are no individual differences between S1, S2, and S3.
As we never received any information on individual attributes of substations, it is
difficult to compare this assumption to the real world.

The second unsupervised approach takes individual differences between substa-
tions into account. By building separate prediction models for S1 and S2, each
trained only on observations from themselves. In this approach, we trained the pre-
diction model on observations collected from a day containing faults. An observation
from a substation is included in the training set as long as no faults occur less than
three hours before or after that observation is made. Hence we assume that faults
do not cause anomalous measurements for more than three hours in advance. This
assumption was necessary to make due to the limited availability of observations
from prolonged periods of normal condition.

As described in the section on Data Collection, we were not able to collect
information on the root causes of the faults in our dataset from S1 and S2. As a
result, we cannot be sure that the faults we are trying to predict are possible to
predict. Hence, for all approaches, we also assumed that the faults which occurred
are possible to predict.

Some of the assumptions we made are difficult to compare to real-world behaviour,
as more domain knowledge is needed to make these comparisons. Although such
domain knowledge could have strengthened our results, we do not consider the
absence of this knowledge to be decisive in the validation of the results.
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5.2.2 Substance

We differentiate between the substance and validity of the results obtained through
the experiments performed and the substance of the research as a whole.

The results obtained are promising. However, due to the lack of sufficient amounts
of data and metadata, we made assumptions about the data, and cannot draw any
valid conclusions on which ML algorithm that performs better or how one should
implement such an alarm system with live data from sensors. Nor, to what extent
prediction is possible. Hence, the substance of the results obtained is limited.

However, the fact that predictive maintenance in the Norwegian power grid has
not been tested before. In combination with results showing significant observations
on such a limited dataset should convince operators to be more willing to share data
and domain knowledge with researchers.

The main contribution of our work is that we provide a fundamental for utilizing
historical sensor data for constructing ML algorithms for maintenance purposes in
the Norwegian power grid. We have paved the way for others wanting to conduct
similar studies, so they are better prepared to face the challenges we faced, learn from
the background research conducted and may utilize our approaches as a framework.
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5.3 Review of Research Questions

In this section, we look back at the research questions stated in the introduction.
We have researched and conducted experiments to provide answers to the questions
listed below.

1. Why should machine learning and predictive maintenance be of in-
terest to Norwegian grid companies?

The answer to the first research question is that the massive installation of
new data sources provides operators with more data. The increase in available data
in combination with cheap computational power provides an opportunity for grid
operators to look into how best to utilize the data they now have at hand. The
fact that Norwegian operators pay hundreds of millions NOK per year in CENS,
for unplanned outages. Combined with results from our and other related research,
which suggests that prediction is possible on some types of faults, should be enough
to draw DSOs attention towards this field of study.

Successful implementation of predictive maintenance would improve asset man-
agement, decrease the percentage of unplanned outages. Planned outages may be
performed during beneficial hours, such as during nighttime, rather than having
unplanned outages during "rush-hours" when more people are affected. If one could
predict and thus prevent an outage – this would ensure increased availability, more
reliable operation, and improved safety.

2. Which external data sources can be combined with grid data to in-
crease insight on the distribution grid?

Regarding the second research question, we found that the literature mostly
suggests using exogenous variables, such as weather data, especially wind and rain.
Hence, we implemented our solution accordingly. Additionally, metadata such as the
root cause for failure could also be helpful. Further, substation specific information,
such as the number of connected customers, age of various components, and mean
time between failure of components would also increase insight. However, due to
the limited data at hand, we did not get the chance to test whether such metadata
would improve the accuracy of such an algorithm. Furthermore, due to the general
uncertainty of our results, we did not find it useful enough to test the effect of
implementing ML algorithms with versus without weather data.
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3. What is the potential of using sensor data and machine learning tech-
niques for predictive maintenance in operation of the Norwegian distri-
bution grid?

As for the third research question, we were not able to draw an exact conclusion
due to the lack of data. However, after the research conducted in this thesis, we
believe that components do give away early signs of deterioration, if operators monitor
the right features, prediction should be possible. However, due to the limited data and
the assumptions we were forced to make, we cannot provide good enough evidence
to back up this hypothesis. On the other hand, the results does not conclude the
opposite, hence there is still reason to believe that based on data provided from
sensors already installed in the power grid, prediction is possible.
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5.4 Challenges and Limitations

In this section, we address the challenges and limitations faced during the work
on this thesis. The primary challenge faced during this thesis has been the lack of
sufficient amounts of data. Further, the lack of proper domain knowledge has lead
to challenges during the process. Additionally, an assumption we have made is that
data from our DSO are similar to that of other DSOs. Hence, we assume that grid
data collected from all providers are similar, which is a limitation to our study.

5.4.1 Process of Data Collection

As described in chapter 4, the process of collecting data from DSOs proved to be a
more significant challenge than initially expected. Firstly, there was the challenge that
the operators did not have sufficient amounts of faults in the substations containing
sensors. Additionally, there were challenges when trying to export the collected data.

During the last 12 months of operation, only three out of the approximately 30
sensor-instrumented substations experienced faults. Ideally, we would have been
able to collect data containing hundreds of faulty observations, as well as prolonged
periods with normal condition data. When we became aware of the rareness of
faults in their dataset, we requested data from more extended periods with healthy
observations. Unfortunately, technical difficulties prevented the DSO from being
able to export data of such quantities. However, the DSO was able to share data
from the year 2018 from S3, as they had previously exported this data for other
purposes. The process of exporting more extended periods of data from the DSOs
SCADA-systems, where the sensor measurements are stored was slow. According to
the DSO, this process took up to weeks and included manual labor for exporting the
chosen data to excel files. We are unaware of why this task is such a demanding one.

We underestimated the process of extracting data for operators. Also, it was our
impression was that operators held data from more faults than what they actually did.
The fact that there were difficulties extracting the data, indicates that implementing
PdM might not be the next step in making the grid smarter for DSOs. Rather, DSOs
should first focus on support for remote controlling and self-healing functionality
which operators currently are researching.
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When remote controlling and self-healing elements are in place, the operators
will be running algorithms based on real-time sensor data. Next, implementing a
well-functioning PdM program should be on their agenda. However, before this, an
optimal ML algorithm should be in place. Thus there should be research into how
data is stored. The most critical criteria for data storage is the security element.
However, ease of data retrieving should be of top priority in order to simplify data
collection for further work on topics such as predictive maintenance.

It is apparent that DSOs does not collect data for PdM. However, DSOs should
have an idea of the purpose of their data collection. Awareness of why they collect
data would give a better idea of what resolution of data to collect and where to best
store it.

5.4.2 Quality and Quantity of Collected Data

Scarcity of failure event data conditioned the effectiveness of the employed machine
learning algorithms. Preferably we should have had somewhere between 200 and
2000 interruptions rather than 8, for implementing a ML algorithm which could
provide value to the DSO. However, this was limited by the number of substations
which are instrumented. Thus the number of faults the DSO has measurements from,
as well as the difficulties for the DSO to extract the data which they had measured.

We obtained limited amounts of observations. Hence, it was difficult to know
whether the observations we used for training the model were truly healthy. In the
unsupervised approaches, we assumed parts of the data from S1 and S2 were healthy,
although these observations were registered in periods close to grid faults.

Another challenge faced during the process was that the various substations, track
different features. For instance, one of the substations tracks oil-temperature, while
the other two does not. The process would be significantly easier if all substations
had measurements of similar features. The fact that various substations measure
different things resulted in that we had to drop some features, such as a power
measurement which seemed relevant; however, as it was not present in all substations,
we had to drop this feature.

Furthermore, substation information could be relevant, such as the number of
connected substations or customers. As well as the age of the substations, the time
elapsed since last maintenance, and length of incoming and outgoing lines. We
expected that such information added to the features could potentially improve the
model.
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5.5 Evaluation of Methodology

This section discusses the methodology used throughout the thesis. First, we discuss
the methodology around the conversations with the DSO. Then we discuss the
approaches taken in the technical implementation.

5.5.1 Conversation with the Distribution System Operators

The conversations with the DSOs were performed in a manner of semi-structured
interviews. We underestimated the difficulties of obtaining data from DSOs, and
thought that sending emails to two of the larger DSOs in the CINELDI project
should be sufficient. In the emails, we explained our plan and thoughts to why we
believed that researching PdM would be of interest to them as well as being open for
suggestions for other use-cases of ML in the power grid.

One of the DSOs was quick with sharing some data, and we sat up a live meeting
for discussing the meaning of the shared data. During this meeting, the DSO
expressed their concern toward us not being able to predict "unpredictable" events,
such as birds damaging the lines and water entering the pipes. However, the DSO
stated that they would try to fetch more data for our purpose, however, this could
take some time, as it required manual labor. Nevertheless, after some months, we
received an email stating that they were not able to download any more data, as
there were challenges regarding the access to their SCADA system.

We should have done a more thorough job preparing conversations with multiple
DSOs. An idea would be sending a questionnaire to multiple DSOs for surveying
which areas of research the DSOs believe that best utilize the data collected from
the sensors. Furthermore, more physical meetings to discuss the problem area would
be beneficial. In the following parts of the methodology evaluation, we discuss the
technical approach taken in this thesis.
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5.5.2 One Complex Model vs Many Separate Models

When applying ML to solve problems, one usually prefers to train one general
model, rather than to tailor many models to specific tasks. A notable contrast
between the two unsupervised approaches in our experiment was that in the second
implementation, we build separate prediction models for each substation. Thus,
rather than building one model for all substations, we build one per substation. With
the characteristics of the data collected in this thesis, the latter seems like the most
reasonable approach. However, when the accessibility of measurement data and
individual attributes of substations improves, the choice between these approaches
may change. This choice depends mainly on the amount and type of data available.
While it is difficult to foresee what type of data that will become available in the
future, suitable approaches for different cases may still be discussed.

First, we consider the approach of training one model on data from multiple
substations. Accuracy of a prediction model based on unsupervised learning is
highly dependent on being built by using a training set that is representative of the
measurements observed during normal condition. For a model trained on observations
from substation A to be able to make predictions on substation B, the individual
differences of the substations need to be negligible, or the individual attributes need
to be included in the feature-set. It is unlikely that the individual differences between
two randomly selected substations are small enough to be considered negligible.
Hence, the inclusion of individual attributes of the substations in the feature-set is
necessary for building a common prediction model.

Now we consider the second approach, which the second unsupervised implemen-
tation in our experiment uses. In this case, each of the substations trains only on
data from itself. Because all measurements now stem from the same substation, no
individual attributes needs to be included in the feature-set. An advantage of this
approach is that the prediction model will be less complex than a common model,
and it will be easier to understand the rules that it uses. Naturally, a prerequisite
for using this approach is that data from the specific substation already exists. This
means that for new substations, an extended period of collecting measurement data
is needed before a model can be fitted to the substation.
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Although building separate models seems to be the most reasonable approach in
our experiment, a common model might have more advantages in other cases. The fact
that faults in substations occur as rarely as they do suggests that building a common
model could be more feasible than separate models. Also, the implementation of a
common model in a new substation could be rapidly set up as the model already
exists. The same process would take more time with separate models. However, the
approach of a common model requires individual attributes of each of the substations
to be known. Before such a model is built, an analysis should be conducted to
research what these attributes need to describe about a substation. Without access
to these attributes, the potential of using a common prediction model is reduced.

5.5.3 Considerations of Technical Implementation

This section discusses some of the choices made during the technical implementa-
tion of the experiment and how these affect our results, as well as alternative choices.
Also, we discuss resolution and trends in the measurements.

The first and second conducted experiment used training data with hourly
aggregated measurements to build a prediction model. While in the third experiment,
the training data contained measurements aggregated over one minute. The decision
on what time resolution is most relevant for the prediction of component failure
depends on the component and type of failure. Time granularity is critical when
trying to detect intermittent failures leading to permanent faults. A component might
show patterns, indicating imminent failure; however, when aggregated at a resolution
of one minute or one hour, these patterns might no longer be detectable. At the
same time, other components might require the measurements to be aggregated at a
resolution of one hour, or even more, for showing patterns indicating failure to be
detected by a prediction model. Thus, an optimized prediction model needs to be
able to detect patterns appearing at different levels of resolution.

Patterns indicating upcoming failures may appear as particular combinations of
the different measured values in one observation, or they may appear when inspecting
consecutive measurements of specific values. For detecting the latter, looking at
multiple consecutive observations at the same time is necessary. In the models built
in our experiments, consecutive observations were not inspected together. As an
example, the effect from a heavy rainfall might have a significant delay from the time
the rainfall happens, until the time when underground cables may be affected.
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Hence, these models will not be able to detect patterns appearing over multiple
observations. For the first and second experiment, only patterns appearing inside one
hour of measurements may be picked up. For the third experiment, the model may
only recognize patterns appearing inside one minute of measurements. Although lim-
ited, the observations provided to our models include aggregated values of minimum,
maximum, and average over the respective time resolution. Thus, some patterns
appearing inside the given time intervals may still be picked up. Nevertheless, pro-
viding more aggregated statistics from each time interval, like variance, is expected
to increase the chances of the model learning other patterns than the ones learned in
our experiments.

ML is a field with numerous use cases related to the power grid. Although ML has
seen rapid development during the last decade, the need for domain knowledge when
trying to solve specific problems will always be crucial. Previously, we mentioned the
challenges of choosing an adequate resolution of aggregation, as well as understanding
what data is needed for detecting different patterns which may indicate faults.
Technical knowledge from the power grid domain would provide beneficial insight
into the process solving such challenges. In the same way, as domain knowledge is
valuable for building better prediction models, more domain knowledge is needed to
interpret the performance of the models. After our experiment, understanding and
deciding exactly how to interpret the results suitably was time-consuming. Different
metrics for defining the accuracy could have been used. For example, the predictions
made by the model could have been weighed heavier for observations closer to the
time of the actual fault.
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6.1 Conclusion

Successful implementation of a predictive maintenance program should be of interest
to Norwegian grid operators, as this could substantially reduce the cost of operation
for DSOs. Predicting grid failures and having a crew replace faulty components
before they result in outages will improve grid reliability and security of electricity
supply. Henceforth, the implementation of such a solution should be a priority for
grid operators.

We have presented two machine learning models using unsupervised learning
techniques. The purpose of these models is to detect anomalous measurements in
power grid data. Additionally, we created a framework for building machine learning
models through a supervised approach. Such models may be used for predicting
upcoming failures in the power grid.

We found that the unsupervised approach using a one-class SVM for anomaly
detection, with minute resolution, provided the most promising results. This al-
gorithm marked a statistically significant number of anomalies prior to two of the
eight failures observed. The relatively small number of failures in the power grid in
general, might indicate that an algorithm trained to distinguish normal condition
data from faulty condition data could be useful when operating the power grid. Such
an anomaly detecting algorithm could be implemented and used in an alarm system,
to alert personnel of situations where substations should be manually inspected.

79
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Due to limitations in the data obtained, we were forced to make several as-
sumptions when creating the two algorithms and the framework. These limitations
concerned missing information about individual differences between substations
and the root causes of the failures. Limited knowledge on the behavior of faulty
components prior to a failure required further assumptions during implementation.
Research remains incomplete as we were not able to demonstrate that practical
applications of a predictive maintenance solution are precise enough to be trusted.

We propose that data which may be used for predictive purposes are stored in
easily accessible databases. Such data include sensor measurements and information
about the cause of failures. Solutions for improving data accessibility will make it
easier for operators to participate in future similar projects. Also, a joint effort and
close collaboration between analysts and domain experts, would be beneficial in the
process of selecting parameters which may indicate deterioration of components.

6.2 Future Work

Future work should implement similar models with larger datasets containing signifi-
cantly more failures than ours. In order to obtain such datasets, future work could
collect data from multiple DSOs. Further, failures should be labeled with the root
cause, if such information is available. Implementation of a trained model, able to
operate with real-time weather and grid data, would be a significant contribution
towards providing tools for intelligent decision support to the grid operators.

Statnetts measure of instantaneous balance in the power system should be further
explored. Information on sudden changes in electricity production or consumption
may provide valuable insight for building similar prediction models. Historical data
on instantaneous balance was not available at our hand during the creation of the
models in our experiments.

Technically, future work should investigate how trends in sensor measurements
can be analyzed to improve the model. For instance, measurement statistics from
the last minute, hour, week and month could be included in the same feature-set.
To provide a broader knowledge of how failing components may be detected, many
alternative ways of analyzing trends should be explored. Also, an investigation of
the optimal resolution of grid measurements for predictive maintenance is needed.

Furthermore, future work should not underestimate the challenges related to
obtaining sufficient amounts of data, and should realize the value of having close
collaboration with DSOs.
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AppendixAPython Code

The appendix includes some of the code used for implementing the machine learning
algorithms. The code was modified during the process to accommodate for the
various algorithms we made. However, presented below is some of the code used
throughout this project.
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A.1 Import and Reform Dataframes From S1, S2 and S3

import numpy as np
#Importing S3 dataset
df_s3_max = pd.read_csv('s3_timeSnitt_2018_max.csv')
df_s3_max = df_1103_max.iloc[196:, [36, 34,

68, 70, 72, 74, 76, 78, 86, 88, 90,
92, 94, 96, 104, 106, 108, 110, 112,
114, 122, 124, 126, 128, 130, 132,
80, 82, 84, 134, 136, 138]]

df_s3_min = pd.read_csv('s3_timeSnitt_2018_min.csv')
df_s3_min = df_1103_min.iloc[196:, [36, 34,

68, 70, 72, 74, 76, 78, 86, 88, 90,
92, 94, 96, 104, 106, 108, 110, 112,
114, 122, 124, 126, 128, 130, 132,
80, 82, 84, 134, 136, 138]]

#Concat min max
df_s3 = pd.concat([df_s3_min, df_s3_max], axis = 1)
#Time on index
date_rng = pd.date_range('01/09/2018', '01/01/2019', freq = 'H')
date_rng = date_rng.delete(8568)
df_s3['dateTime'] = date_rng
df_s3.set_index(pd.to_datetime(df_1103['dateTime']), inplace=True, drop=True)
df_s3 = df_s3.drop(['dateTime'], axis = 1)

#Append wind and rain
windRain = pd.read_csv('windRain2018.csv')
windRain = windRain.set_index(pd.to_datetime(windRain['referenceTime']))
windRain = windRain.drop('referenceTime', axis = 1)
windRain = windRain.fillna(windRain.mean())
windRain = windRain.iloc[191:,:]
df_s3 = pd.concat([df_s3, windRain], axis = 1)
df_s3 = df_s3.fillna(windRain.mean())

#remove repeating values
df_s3_1 = df_s3.iloc[:3264,:]
df_s3_2 = df_s3.iloc[5304:,:]
df_s3_stripped = pd.concat([df_s3_1, df_s3_2])
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#import S1 and S2
#importing the datasets and extracting the features of interest
df_2710_s1 = pd.read_csv('Data_2710_s1.csv', sep=',', encoding='utf-8')
df_2710_s1 = df_2710_0912.iloc[4:, [6, 60,

42, 44, 46, 48, 50, 52, 68, 70, 72,
74, 76, 78, 92, 94, 96, 98, 100, 102,
116, 118, 120, 122, 124, 126,
54, 56, 58, 128, 130, 132]]

df_0101_s1 = pd.read_csv('Data_0101_s1.csv', sep=',', encoding='utf-8')
df_0101_s1 = df_0101_0912.iloc[4:, [6, 60,

42, 44, 46, 48, 50, 52, 68, 70, 72,
4, 76, 78, 92, 94, 96, 98, 100, 102,
116, 118, 120, 122, 124, 126,
54, 56, 58, 128, 130, 132]]

df_2710_s2 = pd.read_csv('Data_2710_s2.csv', sep=',', encoding='utf-8')
df_2710_s2 = df_2710_6358.iloc[4:, [6, 34,

16, 18, 20, 22, 24, 26, 44, 46, 48,
50, 52, 54, 68, 70, 72, 74, 76, 78,
92, 94, 96, 98, 100, 102,
28, 30, 32, 104, 106, 108]]

df_0101_s2 = pd.read_csv('Data_0101_s2.csv', sep=',', encoding='utf-8')
df_0101_s2 = df_0101_6358.iloc[4:, [6, 34,

16, 18, 20, 22, 24, 26, 44, 46, 48,
50, 52, 54, 68, 70, 72, 74, 76, 78,
92, 94, 96, 98, 100, 102,
28, 30, 32, 104, 106, 108]]

#Weatherdata from 27/10 and 01/01
windRain0101 = pd.read_csv('windRain010119.csv', sep=',', encoding='utf-8')
windRain0101.index = windRain0101['referenceTime']
windRain0101 = windRain0101.drop('referenceTime', axis = 'columns')

windRain2710 = pd.read_csv('windRain271018.csv',
delimiter = ',', encoding='utf-8')

windRain2710.index = windRain2710['referenceTime']
windRain2710 = windRain2710.drop('referenceTime', axis = 1)
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#fixing the dataframe
def reform(df, date = ['10/27/2018', '10/28/2018'], freq = 'H'):

date_rng = pd.date_range(date[0], date[1], freq='S')
date_rng = date_rng.delete(86400)

df['datetime'] = date_rng
df.set_index(pd.to_datetime(df['datetime']), inplace=True, drop=True)
df = df.drop(['datetime'], axis = 1)
df = df.apply(pd.to_numeric) #all columns of DataFrame to numerics

#Resampling to hourly samples
#meanHour = df.resample('1H').mean()
maxHour = df.resample(freq).max()
minHour = df.resample(freq).min()

#Create a frame containing min and max values
dfHour = [minHour, maxHour]
dfHour = pd.concat(dfHour, axis = 1)
dfHour.columns = ['Outdoor temp min',

'Indoor temp min',
'0.4 T1-NRG SPENNING L1-L2 min',
'0.4 T1-NRG SPENNING L1-N min',
'0.4 T1-NRG SPENNING L2-L3 min',

.

.

.
'22 F53 current L1 max',
'22 F53 current L2 max',
'22 F53 current L3 max']

if (date == ['10/27/2018', '10/28/2018']):
dfHour = pd.merge(dfHour, windRain2710, how='left', left_index = True,

right_index = True).fillna(windRain2710.mean())
elif (date == ['01/01/2019', '01/02/2019']):

dfHour = pd.merge(dfHour, windRain0101, how='left', left_index = True,
right_index = True).fillna(windRain0101.mean())

dfHour.to_csv(path_or_buf = 'ReformedData.csv')
return dfHour

#Reform imported minute-files
df_2710_0912_hours = reform(df_2710_0912,
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date = ['10/27/2018', '10/28/2018'], freq = 'H')
df_2710_6358_hours = reform(df_2710_6358,

date = ['10/27/2018', '10/28/2018'], freq = 'H')
df_0101_0912_hours = reform(df_0101_0912,

date = ['01/01/2019', '01/02/2019'], freq = 'H')
df_0101_6358_hours = reform(df_0101_6358,

date = ['01/01/2019', '01/02/2019'], freq = 'H')

df_2710_0912_minutes = reform(df_2710_0912,
date = ['10/27/2018', '10/28/2018'], freq = 'T')

df_2710_6358_minutes = reform(df_2710_6358,
date = ['10/27/2018', '10/28/2018'], freq = 'T')

df_0101_0912_minutes = reform(df_0101_0912,
date = ['01/01/2019', '01/02/2019'], freq = 'T')

df_0101_6358_minutes = reform(df_0101_6358,
date = ['01/01/2019', '01/02/2019'], freq = 'T')
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A.2 Preprocessing and Fit the three models

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from datetime import datetime
from collections import Counter
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics

dataset_substation_s3_max = pd.read_csv('/CSVfiles/1103_timeSnitt_2018_max.csv'
, sep=',', encoding='utf-8')

N = dataset_substation_s3.iloc[196:, [34, 36, 70, 74, 78, 88, 92, 96,
106, 110, 114, 124, 128, 132]]

#Label the data
def f(row):

if (row['F51 L1-N min']<1 or
row['F52 L1-N min']<1 or
row['F53 L1-N min']< 1):
val = -1 #fault = -1

else:
val = 1 #healthy = 1

return val

df_X['label'] = df_X.apply(f, axis=1)

df_X['label'] = df_X['label'].shift(-1) #Shifting the labels up
df_X = df_X.dropna() #Dropping bottom row

df_X.to_csv(path_or_buf = 'StromOgLabels.csv')

#Split labels from features
X = df_1103_weather.iloc[:,:-1]
Y = df_1103_weather.iloc[:,-1]

# Feature Scaling
sc_X = StandardScaler()
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X = sc_X.fit_transform(X) #returns an array
X = pd.DataFrame(data = X)

# Splitting the dataset into the Training set and Test set
splitPoint = 7104 #index 7104 = 1 November(00:00)
X_train = X.iloc[:splitPoint, : ]
X_test = X.iloc[splitPoint:, : ]
y_train = Y.iloc[:splitPoint]
y_test = Y.iloc[splitPoint:]

#Random Forest Classification
#Fitting Random Forest Regression to the dataset
regressor = RandomForestClassifier(n_estimators = 100, random_state = 0)
regressor.fit(X_train, y_train)

#Make predictions on the test set
predictions = regressor.predict(X_test)
y_test_float = np.float64(y_test).flatten()

# =============================================================================
# ONE class SVM
# =============================================================================

df_2710_0912_labels_run = repeatingSVM(df_1103_stripped,
df_2710_0912_hours,
df_2710_0912_labels)

df_2710_6358_labels_run = repeatingSVM(df_1103_stripped,
df_2710_6358_hours,
df_2710_6358_labels)

df_0101_0912_labels_run = repeatingSVM(df_1103_stripped,
df_0101_0912_hours,
df_0101_0912_labels)

df_0101_6358_labels_run = repeatingSVM(df_1103_stripped,
df_0101_6358_hours,
df_0101_6358_labels)
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def repeatingSVM(df_train, df_test, df_labels):
df_test_labels = pd.DataFrame(pd.np.empty((24, 0)))
df_test_labels['True Label'] = df_test_labels.join(df_labels)
sc_X = StandardScaler()
df_train_sc = sc_X.fit_transform(df_train)
df_train_sc = pd.DataFrame (data = df_train_sc)
df_test_sc = sc_X.fit_transform(df_test)
df_test_sc = pd.DataFrame (data = df_test_sc)

for i in range(0,5):
X_train, X_test = train_test_split(df_train_sc)
#X_train=random75% of df_train
clf = svm.OneClassSVM (nu = 0.05, gamma = 'scale')
clf.fit(X_train)
df_pred = clf.predict(df_test_sc)
df_pred = pd.DataFrame(data = df_pred)
df_test_labels[str(i)] = df_pred[0]

return df_test_labels

# =============================================================================
# Below – Second unsupervised approach: Minute measurements
# =============================================================================

#splitting to train and test
df_2710_0912_t_train = df_2710_0912_minutes.iloc[:600,:]
df_2710_0912_t_train = df_2710_0912

_minutes.append(df_2710_0912_minutes.iloc[1080:,:])
df_2710_0912_t_test = df_2710_0912_minutes.iloc[600:1080,:]

df_2710_6358_t_train = df_2710_6358_minutes.iloc[:480,:]
df_2710_6358_t_train = df_2710_6358

_minutes.append(df_2710_6358_minutes.iloc[900:,:])
df_2710_6358_t_test = df_2710_6358_minutes.iloc[480:900,:]

df_0101_0912_t_train = df_0101_0912_minutes.iloc[:210,:]
df_0101_0912_t_train = df_0101_0912

_minutes.append(df_0101_0912_minutes.iloc[1080:,:])
df_0101_0912_t_test = df_0101_0912_minutes.iloc[210:1080,:]

df_0101_6358_t_train = df_0101_6358_minutes.iloc[:480,:]
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df_0101_6358_t_train = df_0101_6358
_minutes.append(df_0101_6358_minutes.iloc[960:,:])

df_0101_6358_t_test = df_0101_6358_minutes.iloc[480:960,:]

def OCSVM(df_train, df_test):
#Scale
sc_X = StandardScaler()
df_train_sc = sc_X.fit_transform(df_train)
df_train_sc = pd.DataFrame(data = df_train_sc)
df_test_sc = sc_X.fit_transform(df_test)
df_test_sc = pd.DataFrame(data = df_test_sc)
#Create classifier
clf = svm.OneClassSVM (nu = 0.05, gamma = 'scale')
clf.fit(df_train_sc)
#Make predictions
df_pred = clf.predict(df_test_sc)
df_pred = pd.DataFrame(data = df_pred)
df_pred.index = df_test.index
pred_score = clf.score_samples(df_test_sc)
train_score = clf.score_samples(df_train_sc)
dec_func = clf.decision_function(df_train_sc)

return df_pred, pred_score, train_score, dec_func

df_test = df_0101_0912_minutes.iloc[480:960,:]
df_train = df_0101_0912_minutes.iloc[:480,:]
df_train = df_train.append(df_0101_0912_minutes.iloc[960:,:])

df_pred, pred_score, train_score, dec_func = OCSVM(df_train, df_test)
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