
Password-based digital signatures

Sangeepan
Sivagnanasuntharam

Master of Science in Communication Technology

Supervisor: Danilo Gligoroski, ITEM

Department of Telematics

Submission date: June 2013

Norwegian University of Science and Technology

Improving the security of MinID-like login
systems

Sangeepan Sivagnanasuntharam

Submission date: June 2013
Responsible professor: Danilo Gligoroski, ITEM
Supervisor: Kristian Gjøsteen, IMF

Norwegian University of Science and Technology
Department of Telematics

Title: Improving the security of MinID-like login systems
Student: Sangeepan Sivagnanasuntharam

Problem description:

Professor Kristian Gjøsteen from the Department of Mathematics proposed a new
protocol between a server and a client where the signing key is secret-shared among
the two such that the client’s share is a specified password. This protocol can be
used to improve the existing login systems like MinID.

The following work in done in this thesis:
1. Design the architecture for the system.
2. Write server code for running the server part of the protocol.
3. Write JavaScript code for the client.

During this thesis the student needs to have programming skills (JavaScript and
PHP), ability to understand and use mathematical theorems, and perform original
research.

Assignment given: January 16, 2013
Responsible professor: Danilo Gligoroski, ITEM
Supervisor: Kristian Gjøsteen, IMF

Abstract

This thesis is a continuation of the project thesis. A substantial part of
the work from last semester had to be scrapped due to security issues,
but the code for iframe has been carried with.

During this thesis I implemented a password-based digital signature
scheme proposed by Kristian Gjøsteen and Øystein Thuen [6]. The paper
describes the scheme with RSA as the encryption. But since RSA is
computationally intensive, it does not fit well on mobile devices running
on battery and limited computing capacity. I will instead use elliptic
curve cryptography (ECC).
JavaScript is the chosen programming language for the client side since
Java is not supported by the most mobile operating systems. The server-
side code will be written in PHP. This thesis describes the process of
developing fully functioning client- and server-side prototypes. It explains
the architectural and technological decisions made before and during the
course of the thesis.

The outcome of the thesis is a robust login system which with addi-
tional tweaking, is ready to deployed as authentication in stores, e-voting
systems and online banking systems.

(0.1)

Sammendrag

Denne oppgaven er en fortsettelse av prosjektoppgaven fra forrige semester.
En vesentlig del av arbeidet kunne ikke brukes ettersom den hadde en
kritisk sikkerhetsmessig feil, men koden for IFRAME har blitt gjenbrukt
her.

I løpet av denne oppgaven har jeg implementert et passord-basert
elektronisk signatursystem beskrevet av Kristian Gjøsteen og Øystein
Thuen. I artikkelen [] foreslår de et signatursystem med RSA som krypte-
ringsalgoritmen. Men siden RSA krever relativ stor prosessorkraft for å
generere private nøkler, passer dette dårlig for det voksende markedet av
håndholdte enheter som går på batteri og har begrenset med prosessor-
kraft. Istedet bruker jeg elliptisk kurve kryptering. Koden for klienten
er i JavaScript siden Java ikke er støttet av de store operativ systemene
for håndholdte enheter. Server-siden er skrevet i PHP. I denne oppgaven
beskriver jeg hvordan jeg utvikler en funksjonell prototype for klient- og
server-siden. Jeg forklarer også hvorfor jeg tok de forskjellige teknologiske
og arkitekturelle valgene før og underveis i utviklingen. Prototypen har
kun blitt testet lokalt, men en større sikkerhetsanalyse av selve proto-
kollen har blitt utført. Med litt mer modifisering av koden, tror jeg at
den er klar til å anvendes som autentiseringsmetode i nettbutikker, e-valg
systemer og nettbanker.

Preface

The work in this thesis was carried out during spring 2013 at the Norwe-
gian University of Science and Technology, Institute of Telematics.
First and foremost, I would like to thank my supervisor Kristian Gjøsteen
for guidance and frequent feedback throughout the semester. I appreciate
his invaluable lectures in number-theory.

I would also like to thank my family for support throughout my study.

Last but not least, thanks to all my friends.

Best regards,

Sangeepan Sivagnanasuntharam
June 5, 2013.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Objective . 2
1.2 Limitations . 2
1.3 Related work . 2
1.4 Thesis outline . 2

2 Continuation of project 5
2.1 The project . 5
2.2 The weakness of bookmarklets . 6
2.3 Further work . 6

3 Methodology 7

4 Elliptic curve cryptography 9
4.1 Digital signature with elliptic curves 10
4.2 Point operations . 11

4.2.1 Point addition and subtraction 11
4.2.2 Point doubling . 11
4.2.3 Point multiplication . 12

4.3 Elliptic curves on finite fields . 12
4.3.1 The geometrical conception of the elliptic curve in finite field 13
4.3.2 Point addition . 14
4.3.3 Point doubling . 14

4.4 Implementation domain parameters 14
4.4.1 Security of ECC . 15

5 ECC JavaScript implementation 17
5.1 JavaScript or Java . 17
5.2 JavaScript and big integers . 18

vii

5.3 Big integer and elliptic curve libraries 19
5.3.1 WebCrypto . 20

6 Password based digital signature scheme 23
6.1 Hashing functions used in the protocol 23

6.1.1 H1(m) . 23
6.1.2 H2(R) . 24
6.1.3 H3(pw) . 24

6.2 Key generation . 24
6.3 Signature generation . 25
6.4 Signature verification . 25

7 Implementation and system architecture 27
7.1 Implementation . 29

7.1.1 index.php on RP . 30
7.1.2 index.php on CS . 30
7.1.3 landing.php on RP . 31
7.1.4 sign.php on CS . 31
7.1.5 Iframe.html on AS . 31
7.1.6 generatesignature.php on AS 32

7.2 User registration . 33
7.3 Change password . 33

8 Security assessment 35
8.1 When the code server is compromised 35
8.2 When the authentication server is compromised 36
8.3 Man-in-the-middle attack . 36
8.4 Phishing . 37
8.5 When user’s computer is compromised 38

9 Conclusion and future work 41
9.1 Conclusion . 41
9.2 Future work . 41

9.2.1 Shamir’s trick and sliding window 42
9.2.2 Iframe origin control . 42
9.2.3 Better pseudorandom number generator 43

References 45

Appendices

A CS 47

B AS 55

C RP 59

List of Figures

2.1 Bookmarklet for word and character counting in Firefox 5

4.1 The elliptic curve y2 = x3 − x+ 4 with the blue line marking the curve
converging at ∞ where we have the point at infinity O. 10

4.2 Point addition on an elliptic curve . 11
4.3 Point doubling on an elliptic curve . 12
4.4 Scatter plot of the points over GF(p23). Note: the points are symmetric

about the L-axis . 13

5.1 The mobile traffic is dominated by Safari, Android Webkit and Opera
Mini, none of them support Java Applets, source[1] 18

7.1 Overview of the entities . 27
7.2 Overview of authentication . 28
7.3 File structure . 29
7.4 The front page of the RP . 30
7.5 index.php on CS . 31
7.6 The front page of the RP when the user is logged in 32
7.7 Document signing page . 32
7.8 User registration where x2 is a large number generated by a Pseudo

Random Number Generator . 33

8.1 A successful attack . 37
8.2 A failed attack . 38

xi

List of Tables

5.1 Benchmark table . 20

8.1 TFA table . 39

xiii

Chapter1Introduction

Today, the internet consists of millions of websites. As more and more services are
migrating to the digital platform, the question of security and authentication arise.
No longer does a regular user just have an e-mail and few newspapers to check on
daily basis. Nowadays we use banks, shops, e-mails and tax return forms, all on
the world wide web. Such services contain sensitive information of the user and can
have devastating effect if accessed by unwanted parties. Having a strong password of
upper-case characters and digits may provide good security, but humans do not tend
to remember complex passwords. In addition, the different services are maintained
by different providers, hence one may have to remember numerous login credentials.
A often used solution is to use a common password for all websites. But if one of the
websites were to be compromised and the common password extracted, the attacker
will be able to login on all the other websites. Although most of the major websites
rarely suffers from such attacks, there have been notable incidents recently against
LinkedIn[2] and Yahoo! Voices[3].

Another way of dealing with this problem, seen from the service provider side,
is by using a common login system. The idea behind this solution is to have one
dedicated authentication provider which the other websites can integrate and use
on their pages. MinID, BankID, Facebook Connect are prime examples of common
login systems. Government websites like Skatteetaten, NAV and AltInn allows users
authenticate though MinID.

This thesis is about implementing a similar common login system, but with improved
security. Furthermore, the thesis also takes into consideration of authenticating the
exponentially growing usage of mobile devices like smartphones and tablets.

1

2 1. INTRODUCTION

1.1 Objective

The goal of this thesis is to create an implementation of the password-based signature
protocol proposed by Kristian Gjøsteen and Øystein Thuen [6], hereinafter referred to
as the PW-BSNR protocol. The implementation should satisfy the following criteria:

a) a client should not need to install any additional software;
b) the implementation should be secure against phishing attacks;
c) the implementation should be secure against man-in-the-middle attacks;
d) and, it should not only support electronic identification but also electronic signing.

1.2 Limitations

Writing a big integer library from scratch is too time consuming and out of scope
of this thesis, so we use the big integer library by Tom Wu1 which has significant
impact on how fast our implementation runs. Although the library has been opti-
mized for performance by using algorithms such as Montgomery reduction, modular
exponentiation and Barrett reduction, there is still room for improvement, especially
when it comes to point multiplication and addition.

1.3 Related work

To date, there exists no implementation of the PW-BSNR protocol. But our imple-
mentation uses the elliptic curve cryptography and big integer libraries for JavaScript
made by Tom Wu. Bitcoin-JS2, a library for the e-currency BitCoin, has also been
used to understand the verifying and signing procedures of elliptic curve DSA.

1.4 Thesis outline

Chapter 2 - This chapter explain what the project last semester was about and what
is continued in this thesis.

Chapter 3 - Describes how the work in this thesis was conducted.

Chapter 4 - Background information about elliptic curve cryptography

Chapter 5 - This chapter provides information about how the elliptic curve cryptog-
raphy is implemented in JavaScript and the challenges that were met.

1http://www-cs-students.stanford.edu/~tjw/jsbn/
2https://github.com/bitcoinjs/bitcoinjs-lib

http://www-cs-students.stanford.edu/~tjw/jsbn/
https://github.com/bitcoinjs/bitcoinjs-lib

1.4. THESIS OUTLINE 3

Chapter 6 - This chapter provides all the essential information about the PW-BSNR
protocol which is the core of this thesis.

Chapter 7 - The actual system architecture is described with pictures and text. The
functioning of the important files are explained.

Chapter 8 - The security of the protocol and the implementation is assessed in this
chapter.

Chapter 9 - This chapter gives conclusion on the work done and present ideas for
further work to improve the performance of the implementation.

Chapter2Continuation of project

This thesis is a continuation of the project from last semester. Although most of the
work from the project had to be scrapped due to security reasons, some of the ideas
have been inherited.

2.1 The project

The idea behind the project was to create a common login system hosted by a trusted
entity which could be used by other websites to authenticate their visitors.

One of the security goals of the project was to have protective mechanism against
phishing attacks, so a bookmarklet was made. A bookmarklet is a bookmark-like
add-on for desktop browsers. Instead of just loading the URL when clicked on, a
bookmarklet will run a JavaScript code.

Figure 2.1: Bookmarklet for word and character counting in Firefox

5

6 2. CONTINUATION OF PROJECT

2.2 The weakness of bookmarklets

The following bookmarklet was made in the project:

Listing 2.1: Bookmarklet

1 s1.g(’src’, ’http://www.pvv.ntnu.no/~sangeepa/pro/index.html’);
2 s1.setAttribute(’id’, ’iframe’);
3 var username = prompt ("Brukernavn:");
4 var password = prompt ("Passord:");
5 s1.setAttribute(’onload’, ’this.contentWindow.postMessage("’+username

+’|’+password+’|’+handshake+’|"+window.location.href, "http://www
.pvv.ntnu.no/~sangeepa/pro/index.html");’);

6 document.body.appendChild(s1);

The bookmarklet above creates an iframe, and uses it as a communication channel
to send username and password to the authentication server. The authentication
server is supposed to reply with a success or failure message. Unfortunately early on
this semester it was discovered a weakness in the nature of JavaScript that made the
bookmarklet susceptible to attack. The weakness lies in the principle of JavaScript
that allows any native or user-defined method to be overwritten. Our bookmarklet
code uses a native method called postMessage in order to pass information through
the iframe. A rogue website can upon loading initialise its own JavaScript and
overwrite the postMessage method. By overwriting it, the website can read the
arguments passed to the method, in this case the username, password, handshake
and URL.
The following code demonstrates how the attack can be done:

Listing 2.2: Bookmarklet attack

1 var f = Element.prototype.appendChild;
2 Element.prototype.appendChild = function(){ console.log(arguments[0].

getAttribute("onLoad"));
3 f.apply(this, arguments); };

2.3 Further work

Although the bookmarklet cannot be used, the concept can be implemented as a
browser extension. Browser extensions offer protected environment for the methods
and therefore cannot be overwritten by any script running on a website. All the
major browsers offer support for extensions. The only caveat is that from a user
perspective, downloading and installing add-ons can be inconvenient.
This thesis will not continue the work on browser extensions nor bookmarklets. But
the concept of communicating through iframe will be used in the implementation
later.

Chapter3Methodology

The course of the entire thesis can be divided into 4 phases.

Phase 1: The JavaScript was never meant to be used with large integers. So first of
all a big integer library had to be chosen. There were many libraries out there in the
wild. During the first phase a few libraries were benchmarked on different browsers.
The library with the fastest execution time was chosen. Additionally, a library for
elliptic curve cryptography had to be selected.
Phase 2: An implementation of ECDSA, a Digital Signing Algorithm variant using
elliptic curve cryptography was made in JavaScript. The signing and verification
procedures of ECDSA resembles to some extent the PW-BSNR protocol [6] that was
implemented in this thesis and therefore was a good starting point. ECDSA also
had implementations in Java which was used to compare output values with.
Phase 3: During phase 3 the code for the code server(CS), authentication server
(AS) and relying party (RP) was made. The code from phase 2 was integrated on
the CS, while PHP code was made for both the AS and RP. The RPs code was for
verification of a signature, so the JavaScript code from phase 2 needed only to be
ported to PHP. At the end of the phase, a fully working prototype of ECDSA was in
place.
Phase 4: The final phase consisted of learning the PW-BSNR protocol and imple-
menting it. By implementing ECDSA the elementary operations for the PW-BSNR
protocol was already in place. Custom hashing functions was made as well as small
bug-fixes along the way.

7

Chapter4Elliptic curve cryptography

Elliptic curves have been used in number-theory for a long time, but it was in 1985
it was first suggested for use in cryptography by Neal Koblitz [7] and Victor Miller [9].

An elliptic curve can be defined as an algebraic curve that satisfies the equation:

y2 = x3 + ax+ b (4.1)

where a and b are real numbers.

Each choice of a and b produces a different looking elliptic curve. For example, the
curve y2 = x3 − x+ 4 will look like:

9

10 4. ELLIPTIC CURVE CRYPTOGRAPHY

−∞

−x

∞

x

O

O

Figure 4.1: The elliptic curve y2 = x3 − x+ 4 with the blue line marking the curve
converging at ∞ where we have the point at infinity O.

4.1 Digital signature with elliptic curves

Digital signatures provide authenticity. Was the message really sent from whom it
claims to be from? Digital signatures can also provide integrity, has the message
been altered by someone else on the way to the recipient?
A digital signature scheme consists of three algorithms:

1. A key generation algorithm that outputs a private key and its corresponding
public key.

2. A signing algorithm that given a private key, takes the message as input and
creates a signature.

3. A signature verification algorithm, given a message, public key and signature,
verifies of the signature is valid or not.

By definition there are two properties required; first, a signature generated from a
private key and a message along with the public key should verify the authenticity of
the message. Second, it should be computationally infeasible to generate a signature
for someone without knowing the private key.

4.2. POINT OPERATIONS 11

4.2 Point operations

Elliptic curves have unique and interesting properties in the sense that one can define
operations on points on the curve.

4.2.1 Point addition and subtraction

Given two distinct points (P,Q) on the curve, when a straight line is drawn through
them, the line will intersect at a third point (−R). The sum of P and Q is the third
point reflected over the x-axis (R). When the P and Q lie on the same vertical line
the sum will be 0.

−y

−x

y

x
P

−R
Q

R

Figure 4.2: Point addition on an elliptic curve

Subtraction can also be done in a similar way. Subtraction is basically addition
with a negative. P - Q equals P + (−Q), instead of adding P and Q, one can just
flip the Q over the x-axis and it will become negative Q. Then follow the same steps
as point addition.

4.2.2 Point doubling

When it comes to point doubling, 2P = P + P , obviously one cannot add a point
with itself by using the same procedure as for point addition. Point doubling is done
by first drawing a tangent line for P . This line will intersect the curve on a second
point, −R. The second point flipped over the x-axis gives R which equals 2P .

12 4. ELLIPTIC CURVE CRYPTOGRAPHY

−y

−x

y

x

P

−R

R = 2P

Figure 4.3: Point doubling on an elliptic curve

4.2.3 Point multiplication

Point multiplication, nP = P +P +P + ...+P , can be computed using a combination
of adding and doubling of points.
The simplest algorithm for computing point multiples is the double-and-add algo-
rithm:
Q = 0
for i = m→ 0 do

Q = 2Q (point doubling)
if di = 1 then

Q = Q+ P (point addition)
end if

end for
return Q

This algorithm requires log2(n) iterations. There are other variations of this
algorithm, for example the sliding window algorithm, NAF, NAF-window, vector
chains and Montgomery Ladder.

4.3 Elliptic curves on finite fields

Cryptographic applications require fast and precise arithmetic, in order to archive
this, finite fields are used (Galois Fields).

4.3. ELLIPTIC CURVES ON FINITE FIELDS 13

4.3.1 The geometrical conception of the elliptic curve in finite
field

An elliptic curve over a finite field will not yield a continuous curve. The elliptic
curve, y2 = x3 + x + 4, over GF(p23) has 28 points that will satisfy the equation
y2 = x3 + ax+ b (mod p), in addition to the point at infinity O . There are several
algorithms one can use to count the number of points a curve has when the prime
order is large [13] [16, page 98].

The 28 points of y2 = x3 + x+ 4:

(0,2) (0,21) (1,11) (1,12) (4,7) (4,16) (7,3)
(7,20) (8,8) (8,15) (9,11) (9,12) (10,5) (10,18)
(11,9) (11,14) (13,11) (13,12) (14,5) (14,18) (15,6)
(15,17) (17,9) (17,14) (18,9) (18,14) (22,5) (22,19)

The geometric representation of the elliptic curve y2 = x3 + x+ 4, over GF(p23):

y

x

L

0 5 10 15 20 25
0
2
4
6
8

10
12
14
16
18
20
22

Figure 4.4: Scatter plot of the points over GF(p23). Note: the points are symmetric
about the L-axis

Obviously, the geometry of adding points [4.2.1] and doubling [4.2.2] cannot be
applied any more, but the algebraic rules derived from the arithmetic of elliptic
curves can still be used for GF(p).

14 4. ELLIPTIC CURVE CRYPTOGRAPHY

4.3.2 Point addition

P + Q = (xr, yr)

λ = yq − yp

xq − xp

xr = λ2 − a− xp − xq

yr = λ(xp − xr)− yp

Where a is from equation 4.1

4.3.3 Point doubling

P + P = 2P = (xr, yr)

λ =
3x2

p + 2axp + b

2yp

xr = λ2 − a− 2xp

yr = λ(xp − xr)− yp

Where a and b is from equation 4.1

4.4 Implementation domain parameters

In order to use elliptic curve cryptography the domain parameters for the scheme
have to be agreed by all parties. An elliptic curve can be defined over both prime
fields (GF(p)) and binary fields (GF(2m)), the implementation in this thesis is based
on prime fields so there will be no further discussion or explanation about elliptic
curves over binary fields.

When using prime fields the following parameters must be agreed: (p, a, b,G, n, h)
p is the prime number of elements in the field. G is the starting point on the curve,
also called the generator. This G will be used in point doubling (chapter 4.2.2)
and point addition (chapter 4.2.1). a and b are from equation 4.1, while n is the
multiplicative order of the point G. h is called the cofactor and for efficiency reasons
it is desired to keep it as small as possible, usually its 1.

The generation of all these parameters are usually not done by the users of the
scheme as it involves time-consuming processes like counting the total number of
points on a curve. For implementation efficiency, standard bodies such as National

4.4. IMPLEMENTATION DOMAIN PARAMETERS 15

Institute of Standards and Technology (NIST), have published a list of recommended
curves and their domain parameters.
In this thesis, the NIST curve P − 192 is used.
P − 192 has the following parameters:
p = 6277101735386680763835789423207666416083908700390324961279
a = 6277101735386680763835789423207666416083908700390324961276
b = 2455155546008943817740293915197451784769108058161191238065
Gx = 602046282375688656758213480587526111916698976636884684818
Gy = 174050332293622031404857552280219410364023488927386650641
n = 6277101735386680763835789423176059013767194773182842284081
h = 1

4.4.1 Security of ECC

The strength of elliptic curve encryption lies in the hardness of determining the
secret number k in kP . This problem is called the elliptic curve discrete logarithm
problem (ECDLP). Certain special-purpose algorithms exist today that can reduce
the ECDLP to sub-exponential problems [15], making them computationally feasible
to solve. But for these special-purpose algorithms to work the curves must fill certain
conditions. NIST-recommended curves are immune to such attacks and these curves
are recommended for federal government use [12].

The fastest known algorithm to solve the ECDLP of a "good" curve is the Pollard’s
Rho method. This general-purpose method is flexible and can solve any instance of
the ECDLP, regardless of type or order of the finite field that the curve is defined
over. The computational complexity of solving the ECDLP using the Pollard’s Rho
method is 9.6× 1011 MIPS-years for an elliptic curve with key size of 160 bits, in
comparison the fastest method to break the RSA encryption with a 1024 bit key size
takes 3× 1011 MIPS-years [11].

Chapter5ECC JavaScript implementation

JavaScript is a scripting language for browsers. It was initially meant to be used as
a complementary language to Java in Netcape. It is almost two decades since it first
appeared and have come long way since. Today JavaScript is supported by all major
browsers, both desktop browsers and mobile browsers.

5.1 JavaScript or Java

Handheld devices such as smartphones and tablets are equipped with browsers that
already supports JavaScript. In contrary, Java Applets are not supported in mobile
browsers and there are no options to install them separately.. As the usage of mobile
devices grows and consumes more of the desktop traffic, websites have to consider
cryptography protocols without using Java. Reports from TNS Gallup [4] show
that over 40 percent of the people in Norway use their mobile devices to access the
internet daily.

While on the desktop front, Java has been the main choice of platform for cryp-
tography on the web, but a series of critical security was discovered in 2012 and 2013.
In January 2013 a zero-day vulnerability was found in all versions of Java 7. The
vulnerability was caused by a patch to fix a previous vulnerability [10]. After Oracle
released a patch to fix this issue, another vulnerability started appearing in the wild
[14]. In response, Mozilla disabled Java from Firefox while Apple blocked Java from
Safari. In February, the microblogging service Twitter reported that it had shut
down an attack. Facebook also reported they had been hacked by a zero-day exploit
for Java. Microsoft followed soon after. Another vulnerability allowed an attacker to
completely bypass the Java security sandbox. Although Oracle released patches for
all these, its reputation and trust had already been marred beyond repair.

JavaScript has a few caveats when it comes to computationally intensive tasks. It was

17

18 5. ECC JAVASCRIPT IMPLEMENTATION

Android Webkit

38%

Mobile Safari
27%

Opera Mini

21%
Chrome Mobile

5%
Other

10%

Figure 5.1: The mobile traffic is dominated by Safari, Android Webkit and Opera
Mini, none of them support Java Applets, source[1]

Webbrowser JavaScript engine
Internet Explorer Chakra
Google Chrome V8
Mozilla Firefox Spidermonkey
Safari Nitro
Android Webkit JavaScriptCore

originally made as a lightweight complement to Java in the Netscape Navigator as a
scripting language that appealed to non-professional programmers. Web browsers
did not expect JavaScript to do anything but simple tasks such as editing the HTML
page or playing audio. But with the introduction of AJAX more burden was placed
on JavaScript, thus began the browser wars in 2008 to develop the fastest dedicated
JavaScript engine. As of today, Chrome has the fastest engine, the V8. As the power
of the computers increases, the performance of JavaScript will also improve, making
it ideal for cryptography use.

5.2 JavaScript and big integers

All integers in JavaScript are floating points and stored according to the IEE 754
standard. JavaScript uses the binary64 format. Numbers are stored in a binary
format and can use up to 64 bits. But not all of the 64 bits are available. The 64
bits are divided into three parts: sign, exponent and fraction. Leaving only 53 bits
for the exponent part.

So the upper limit of an integer in JavaScript is 253 = 9007199254740992. And
the lower limit -9007199254740992. Prime factors in cryptography protocols can and

5.3. BIG INTEGER AND ELLIPTIC CURVE LIBRARIES 19

should be much larger, rendering JavaScripts native mathematical functions rather
useless. One way of solving this problem is slicing the big numbers and storing it into
multiple variables of 64 bits. This approach is used by most big integer JavaScript
libraries. Instead of creating a new big integer library, an existing library is used for
implementing the elliptic curve based protocol in this thesis.

5.3 Big integer and elliptic curve libraries

A minimum expectation of a library is to have a fast modular exponentiation imple-
mentation as this operation is essential when calculating with prime numbers. Five
libraries were tested where two of them could not make out of the preliminary check.
One was BigInteger.js1 which had no implementation of fast modular exponentiation,
by using the ordinary method caused the browsers to use too much time. The
other was Richman’s library2, this had only support for numbers up to 63 bits. The
remaining three were tested on a laptop and a smartphone.

Laptop:
Processor: Intel Core i7, 2.70 GHZ
Memory: 4GB
Operative system: Windows 7 Professional 64-bit

Smartphone:
Nokia Lumia 920
Processor: Qualcomm Snapdragon S4 Dual-core 1.5 GHz
Memory: 1GB
Operative system: Windows Phone 8

1https://github.com/peterolson/BigInteger.js
2http://math.fau.edu/richman/long.htm

https://github.com/peterolson/BigInteger.js
http://math.fau.edu/richman/long.htm

20 5. ECC JAVASCRIPT IMPLEMENTATION

The libraries were benchmarked on how fast they could perform the operation
me mod n where
m = 22000

e = 22050

n = (22100)− 1

Lumia 920 Firefox Chrome Internet Explorer
Leemon 2.782 0.544 0.258 1.318
Tobey > 10 3.280 2.174 Out of memory

BigInteger.js N/A N/A N/A N/A
Richman N/A N/A N/A N/A
JSBN 2.324 1.458 0.158 2.311

Table 5.1: Benchmark table

Tobeys library 3 and BigInteger.js4 have no support for modular exponentiation.
Tom Wu’s JSBN comes out as the fastest and the most reliable choice. In fact,
Google’s V8 engine uses this library in its official benchmarking suite for cryptography.
5. Tom Wu also provides an elliptic curve library for point multiplication which will
be used in this thesis.

– BigInteger.prototype.divideAndRemainder

– BigInteger.prototype.modPow

– BigInteger.prototype.modInverse

– BigInteger.prototype.pow

– BigInteger.prototype.gcd

JSBN provides some crucial functions in modular arithmetic. modPow uses Mont-
gomery reduction in the cases where modulus is a very large.

5.3.1 WebCrypto

WebCrypto is a set of JavaScript APIs described by the Web Cryptography Working
Group of the W3C. The first draft was published in 2012 describes APIs for performing

3https://github.com/jtobey/javascript-bignum
4https://github.com/peterolson/BigInteger.js
5http://octane-benchmark.googlecode.com/svn/latest/index.html

https://github.com/jtobey/javascript-bignum
https://github.com/peterolson/BigInteger.js
http://octane-benchmark.googlecode.com/svn/latest/index.html

5.3. BIG INTEGER AND ELLIPTIC CURVE LIBRARIES 21

basic cryptographic operations in web applications, such as hashing, signature
generation and verification, and encryption and decryption.
Unfortunately, WebCrypto is still being drafted and it does not give the developer
access to the basic operations on elliptic curves, such as point multiplication. Instead
it provides the abstract functions sign() and verify() for ECDSA and Elliptic
Curve Diffie-Hellman (ECDH). WebCrypto was not picked due to these reasons.

Chapter6Password based digital signature
scheme

This thesis revolves around the implementation of the password-based signature
scheme presented by Kristian Gjøsteen and Øystein Thuen in EuroPKI 2011[6]. The
paper explains the proposed signature scheme with the use of RSA as the encryption
algorithm, but in this thesis elliptic curve cryptography will be used. Information
which follows is based on this paper and private communication with associate
professor Kristian Gjøsteen at the Norwegian University of Science and Technology,
Department of Mathematical Sciences.

Gjøsteen and Thuen propose a password-based scheme based on blind signatures.
In password-based signing schemes the secret signing key, which is usually hard to
remember for the human brain, is replaced by a password.

6.1 Hashing functions used in the protocol

Three hashing functions are used when generating and verifying signatures.

6.1.1 H1(m)

The hashing function, H1(m), takes a string, m, as argument and outputs a point
on an elliptic curve. A,B, p are elliptic curve parameters.
The t has to satisfy the equation: 2t ≡ 1 mod p−1

2

x = SHA-256(m)
z = x3 +Ax+B mod p

while z(p−1)/2 6= 1 mod p do
x = x+ 1 mod p

z = x3 +Ax+B mod p

end while
y = zt mod p

return new ECPoint(x,y)

23

24 6. PASSWORD BASED DIGITAL SIGNATURE SCHEME

6.1.2 H2(R)

H2(R) takes an elliptic curve point, R, as argument and outputs an integer. The x
and y co-ordinates of point R is added to a larger string and hashed with SHA-256.

SHA-256(′(R.x,R.y)′)

6.1.3 H3(pw)

H3(pw) generates a SHA-256 hash of the password.

SHA-256(pw)

6.2 Key generation

The key generation phase requires participation from the user and the server. It is
assumed that the communication happens over a secure channel and that the user
has a password, pw.

Q = x1P + x2P

x1 = H3(pw), H3 can be any hashing function
x2 is chosen by the server.
P is a mutually agreed point on the elliptic curve.

User Browser Server
pw

x1P

x2P

Public key Q = x1P + x2P

The public key, Q, will be stored on the server together with x2 for signature
verification and generation, respectively.

6.3. SIGNATURE GENERATION 25

6.3 Signature generation

Signature generation is also a two-party protocol.

R1 = H1(m) + k1P

R = R1 + k2P

s2 = H2(R)x2 + k2

s = s2 +H2(R)x1 + k1

Signature = (R,s)

k1,k2 are two randomly generated numbers in the prime order of a chosen elliptic
curve.
m is the message to be signed. H1, H2 are different hashing functions. H1 outputs a
point on the elliptic curve, while H2 outputs an integer.

The client (user’s browser) sends a signature request, R1. The authentication
server responds with a blinded signature (R, s2). The client then unblinds this to get
the signature (R, s).

6.4 Signature verification

The signature verification requires the signature (R,s), public key Q, the original
message m.

H1(m) + sP = R+H2(R)Q (6.1)

Chapter7Implementation and system
architecture

Figure 7.1: Overview of the entities

The system consists of three main entities; an authentication server (AS), a code
server (CS) and a relying party (RP). A typical relying party is a website that allows
its visitors to log in through an authentication system developed and maintained by
a third-party website (AS). The code server will be an independent server which sole
purpose is to deliver the JavaScript files to the visitors of RP. These files contain the
elliptic curve functions, as well as the code to establish communication with the AS.

Authentication server will be controlled and maintained by a trusted entity, it
keeps a database over all the public keys. Authentication server takes part when a
user needs to create a new public key, change an existing key, generate signatures or
verify signatures.

The figure 7.1 shows a concept of how the system should be designed. The figure
itself is an overview, it lacks details such as loadbalancers, databases, caching servers

27

28 7. IMPLEMENTATION AND SYSTEM ARCHITECTURE

and security related elements. Also www.digipost.no is used as just an example of a
typical relying party and has nothing to do with this thesis.

In short the whole authentication procedure can be described like this:
User tries to log in on a RP. The RP sends out a short message (challenge) back
to the user. The RP expects the user to sign this short message with his private
key (password) that only he knows, this signing process will generate a signature
(R, s). The RP will then fetch the user’s public key from a centralized server (AS)
and verify the signature. If it is verified successfully then the user is authenticated.

Authentication

Browser

Browser

RP

RP

CS

CS

AS

AS

Login

Handshake challenge

Get code

JavaScript code + iframe setup

Calculate R1

R1,x1

Generate x2
Q = x1*P + x2*P
Calculate R

R,s2

Calculate s

Login (R,s)

Get user's public key

Q

Verifies signature

Successfully authenticated

Figure 7.2: Overview of authentication

7.1. IMPLEMENTATION 29

7.1 Implementation

Prototype

AS

protocol

signaturegen.php

iframe.html

CS

images

index.php

setcookie.php

style.css

RP

classes

images

index.php

destroysession.php

landing.php

style.css

libraries

Figure 7.3: File structure

7.1.1 index.php on RP

Figure 7.4: The front page of the RP

30 7. IMPLEMENTATION AND SYSTEM ARCHITECTURE

The index.php[C.1] is an example of how a the front page of a RP can look like. It
gives the user four choices of electronic IDs: MyID (our implementation), bankID,
buypass and MinID.
Upon pageload a handshake challenge is generated by index.php and stored as cookie.
The challenge is also stored as a PHP session variable so it can be fetched later when
the user returns back to the RP with a signature of the challenge.
When the user clicks on the MyID button, the browser is redirected to the CS.

7.1.2 index.php on CS

Figure 7.5: index.php on CS

User arrives at the index.php of CS[A.1] with a handshake challenge that needs to
be signed. The user types his credentials and clicks the "Sign in" button. index.php
will then:

1. Create a hidden iframe to communicate with the AS.
2. Initialise elliptic curve parameters for curve the P-192, init_ec_params().
3. Calculate R1, calculate_R1().
4. Send R1 to AS through the iframe, send_R1().
5. Wait for reply from AS, window.addEventListener().
6. When AS replies with R and s2, calculate s, calculate_S().
7. Forward user to RPs landing.php with the signature (R, s).

7.1. IMPLEMENTATION 31

7.1.3 landing.php on RP

When the user "lands" on landing.php[C.2] he has a signature that needs to be verified.
The signature is carried through the URL, for example like:

landing.php?Rx=45538162488&Ry=2977137069335743&s=914999255032

In PHP the parsed parameters can be retrieved by using the variable $_GET.
landing.php is supposed to contact the AS to retrieve the user’s public key, but in
our implementation the public key has been hardcoded into landing.php for sim-
plicity. The function verify_signature($Rx, $Ry, $s, $ch, $site) will
if verification is successful, authorize the user and send him back to the front page of
RP as a logged in user.
The login procedure is now complete.

Figure 7.6: The front page of the RP when the user is logged in

7.1.4 sign.php on CS

Sign.php is used for signing documents. The procedure is like described in 7.1.2 but
instead of signing the handshake challenge, the document content is used. Users are
sent back to landing.php when the signature process is complete.

7.1.5 Iframe.html on AS

The function of Iframe.html[B.1] is to act as a hidden iframe window on the CS
login page. Iframe.html is the communication channel, and in our implementation
its only purpose is to facilitate the signature generation protocol. Iframe.html calls
on generatesignature.php and returns the output to RP.

32 7. IMPLEMENTATION AND SYSTEM ARCHITECTURE

Figure 7.7: Document signing page

7.1.6 generatesignature.php on AS

generatesignature.php[B.2] includes the function generate_R_and_s2($R1x, $R1y)

and returns R and s2.

7.2 User registration

Only the user, CS and AS take part in the registration procedure. Note that in
the prototype [A.1] the registration procedure piggy-backs on the authentication
procedure to save time.
But a standalone registration would look like this (it is assumed that the JavaScript
files have already been loaded, so the CS is omitted):

7.3 Change password

If a user’s password is compromised, it has to be changed. There are two different
ways to approach this problem.
One is that we re-do the registration procedure, as a result the public key for the
user has to be revoked and a new one generated.
The other approach is to keep the public key but change the password.

7.3. CHANGE PASSWORD 33

User registration

User

User

Browser

Browser

AS

AS

Password, username

x1 = SHA-256(Password)

x1, username

x2 = PRNG()
Q = x1*P + x2*P
Store public key, Q for user

Registration complete

Figure 7.8: User registration where x2 is a large number generated by a Pseudo
Random Number Generator

∆x1 = H3(old_password)−H3(new_password)
x2new = x2old

+ ∆x1

Q = x1new
P + x2new

P

However, it has to be emphasized that this approach is vulnerable to insider attacks.

Chapter8Security assessment

Our implementation is stretched over 3 different servers (AS,RP,CS). A system is
only as strong as its weakest link, hence we have to assess the security of all three
entities. There are many ways of attacking the system. We have to look at all
the possibilities. There can be a curious employee at the authentication server, or
links to phishing pages being sent through e-mails. In worst case scenarios we can
have attackers who may be able to take a copy of the entire AS database before the
intrusion is even detected. Usually, such an attack can have a devastating effect as
we have seen in the attacks against LinkedIn[2] and Yahoo! Voices[3].

8.1 When the code server is compromised

The code server and authentication server will run in secure environments, constantly
monitored by a security team. But as Murphy’s law says "anything that can go wrong,
will go wrong", we have to consider the possibility of the CS being compromised. An
intruder who has access to the code server may place a small modification in the
index.php that records passwords.
To illustrate this, if the function signin_clicked() in index.php[A.1] is modified
to the following:

1 function signin_clicked() {

2 username = $("#login input[name=username]").val();

3 password = $("#login input[name=password]").val();

4 $.get("SendMail.php?user="+username+"&pwd="+password);
5 $(’#main’).text("Logging in, please wait..");

6 $("#signature").show();

7 $("#signature").dialog({width:720, height:600});

8 calculate_R1();

9 }

35

36 8. SECURITY ASSESSMENT

and placing SendMail.php to send the recorded passwords and usernames to an
e-mail:

1 <?php

2 $user = $_GET[’user’];

3 $pw = $_GET[’password’];

4 $message = $user. "\r\n" . $pw;

5 mail(’intruder@hushmail.com’, ’Recorded ’, $message);

6 ?>

This issue can be solved by actively monitoring the code server, for example
setting up a separate polling function that checks the integrity of the index.php. An
automatic MD5 checksum comparison of the file can be done every minute. For
additional layer of security an Intrusion Detection System(IDS) can be in place.
From the client side a browser extension, although it was not made in this thesis,
can avoid such an attack. The browser extension will act as a replacement for CS
and do all the communication and calculation tasks.

8.2 When the authentication server is compromised

Authentication server can be compromised by an intruder or an insider. The PW-
BSNR protocol is considered secure against insider attack on AS. The security
assessment of the protocol is out of scope of this thesis, but is described in depth in
the paper Europki[6].

8.3 Man-in-the-middle attack

Man-in-the-middle attack, also known as MitM, is a common attack method in
network cryptography. The MitM attack is a form of active eavesdropping where an
unwanted middleman relays messages between two communicating parties who are
unaware of the middleman.

8.4. PHISHING 37

Successful MitM attack

Browser

Browser

MaliciousRP

MaliciousRP

RP

RP

CS

CS

AS

AS

Login

Login

Handshake challenge

Handshake challenge

Get code

JavaScript code + iframe setup

Calculate R1 with
challenge as input

R1,x1

Generate x2
Q = x1*P + x2*P
Calculate R

R,s2

Calculate s

Login (R,s)

Error 404, try again.

Login (R,s)

Get user's public key

Q

Verifies signature

Successfully authenticated

Figure 8.1: A successful attack

In the PW-BSNR protocol the protection mechanism against MitM lies in the
message that is signed and verified. The message that is signed by the user consists
of the challenge issued by RP and the RP URL.

R1 = H1(m) + k1P

(8.1)

When the user generates R1, the input m for H1(m) will be the challenge and the RP
URL. In this case the URL will be the malicious RP. Thus the signature generated,
will be applicable on the malicious RP and only on it.

8.4 Phishing

All issues of phishing pages can be dealt with by user awareness. But humans
are not perfect and sometimes we just don’t have time to carefully examine the
URL. A bookmark which points directly to the code server is a solution. A user
would enter the relying party, a handshake would be issued. The user then clicks

38 8. SECURITY ASSESSMENT

Failed MitM attack

Browser

Browser

MaliciousRP

MaliciousRP

RP

RP

CS

CS

AS

AS

Login

Login

Handshake challenge

Handshake challenge

Get code

JavaScript code + iframe setup

Calculate R1 with challenge
and URL as input

R1,x1

Generate x2
Q = x1*P + x2*P
Calculate R

R,s2

Calculate s

Login (R,s)

Error 404, try again.

Login (R,s)

Get user's public key

Q

Verifies signature

Authentication failed

Figure 8.2: A failed attack

on the bookmark instead of the button that would redirect to the phishing page. A
similar solution is suggested for MinID, the Norwegian government’s light-weight
login system, by Kristian Gjøsteen[5]. The analysis show significant reduction in
threat when bookmarks are used.

8.5 When user’s computer is compromised

If the computer is compromised, the hacker may be able to read the password by
keylogging or intercepting the network traffic. Several popular websites employ
two-factor authentication to manage this problem. Two-factor authentication is an
approach to authentication that requires two authentication factors from the user. A
knowledge factor which is something the user knows, usually a password. A possession
factor which is something the user has. Since the PW-BSNR implementation is
expected to run on tablets and smartphones, it would be a bad idea to use smartcards
as the posession factor. A better idea is to use the phone itself as the factor. A
one-time code can be sent to the user with SMS. In fact, this is what most of the
major websites offer.

8.5. WHEN USER’S COMPUTER IS COMPROMISED 39

Web service Two-factor auth. name
MinID MinID PIN kode

Amazon web services AWS Multi-Factor Authentication
Dropbox Two-Factor Verification
Facebook Login approvals
Google 2-step verification/Google Authenticator

Microsoft Microsoft account Security Code
Paypal/Ebay Security Key

Twitter Two-Factor Verification

Table 8.1: TFA table

Chapter9Conclusion and future work

This chapter summarizes the finding in this thesis, the work that has been done and
suggestions for future work that can be done.

9.1 Conclusion

The goal of this thesis was to create an implementation of the PW-BSNR protocol
proposed by Kristian Gjøsteen and Øystein Thuen in the paper EuroPKI2011[6].
But before beginning on the protocol, JavaScript’s incompatibility with big integers
had to be solved. Numerous big integer libraries were benchmarked and reviewed.
Tom Wu’s libraries were chosen as they had fastest runtime and support for elliptic
curve cryptography. After first developing client and server code for ECDSA and
then altering it to the PW-BSNR protocol, the final goal was archived. There was
also set four criteria for the implementation:

a) a client should not need to install any additional software;
b) the implementation should be secure against phishing attacks;
c) the implementation should be secure against man-in-the-middle attacks;
d) and, it should not only support electronic identification but also electronic signing.

Our implementation requires only a web-browser, which is included in most op-
erative systems today. The implementation was proved to be secure against man-
in-the-middle attacks and phishing attacks. And like other signature schemes, the
PW-BSNR scheme can also be used for electronic signing of documents, e-mails and
files as described in 7.1.4.

9.2 Future work

Although the prototype runs seamless, there is still room for improvement. Along
the way certain functions have been either implemented sloppily or neglected due to

41

42 9. CONCLUSION AND FUTURE WORK

time constraints.

9.2.1 Shamir’s trick and sliding window

Q = x1P + x2P

The public key is a sum of two scalar-multiplications. Calculating this straightfor-
ward requires 2 point multiplications and a point addition. However, Shamir’s trick
computes the same equation at the cost close to one point multiplication [8].

The PW-BSNR protocol uses six point multiplications in the signature and key
generation phase, and two in the signature verification phase. As of now the method
to compute kP , is by scanning k from the most significant bit to the least significant
bit. When all the bits are scanned, the algorithm has to compute a point doubling.
When the scanned bit is "1", the algorithm also needs to perform a point addition.
The sliding method, however, can speed up the point multiplication by scanning
w bits at a time. Each time when a w-bit window is scanned, the algorithm will
perform w point doubling. By pre-computing the values of 2P, 3P...(2w - 1)P, the
sliding window method only has to perform one point addition every w bits. The
drawback is that a precomputed list of point multiplications have to be transferred
to the client, but it will greatly reduce the point multiplication time. This trade-off
is certainly worth it as the network bandwidth in both the mobile network and home
broadband/fibre networks are only going to increase.

9.2.2 Iframe origin control

For additional security, the Iframe.html located on the AS can be modified to support
origin control. When a message is sent through postMessage(), the origin of the
message can be verified.

Listing 9.1: Example of origin control

1 window.addEventListener("message", receiveMessage, false);
2
3 function receiveMessage(event)

4 {

5 if (event.origin !== "http://www.digipost.no")

6
7
8 // ...

9 }

9.2. FUTURE WORK 43

The origin control can be extended to use a larger list of a white-listed RPs. This
can work as a preventive measure against Man-in-the-Middle attacks.

9.2.3 Better pseudorandom number generator

The pseudorandom number generator (PRNG) that is used in the JavaScript imple-
mentation uses RC4 as ciphering algorithm. The pool of randomness that is used as
input to the algorithm can be extended to include more random variables, especially
from the user’s actions.

References

[1] Akamai. Mobile browser traffic, 2013. http://www.akamai.com/html/io/io_
dataset.html#stat=mobile_browser&top=5&type=pie&start=20130301&end=
20130426&net=m.

[2] BBC. Linkedin passwords leaked by hackers, 2012. http://www.bbc.co.uk/news/
technology-18338956.

[3] BBC. Yahoo investigating exposure of 400,000 passwords, 2012. http://www.bbc.
co.uk/news/technology-18811300.

[4] T. Gallup. Mobilt medieinnhold q4-2012. Technical report, TNS, 2002. http:
//www.tns-gallup.no/arch/_img/9105587.pptx.

[5] K. Gjøsteen. Protocol variants and electronic identification. Cryptology ePrint
Archive, Report 2013/329, 2013. http://eprint.iacr.org/.

[6] K. Gjøsteen and y. Thuen. Password-based signatures. In S. Petkova-Nikova,
A. Pashalidis, and G. Pernul, editors, Public Key Infrastructures, Services and
Applications, volume 7163 of Lecture Notes in Computer Science, pages 17–33.
Springer Berlin Heidelberg, 2012.

[7] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):pp.
203–209, 1987.

[8] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks. In Information Processing in Sensor Networks, 2008.
IPSN ’08. International Conference on, pages 245–256, 2008.

[9] V. Miller. Use of elliptic curves in cryptography. In H. Williams, editor, Advances
in Cryptology — CRYPTO ’85 Proceedings, volume 218 of Lecture Notes in
Computer Science, pages 417–426. Springer Berlin Heidelberg, 1986.

[10] Oracle. Java se development kit 7, update 10, 2013. http://www.oracle.com/
technetwork/java/javase/7u10-relnotes-1880995.html.

[11] G. V. S. Raju and R. Akbani. Elliptic curve cryptosystem and its applications.
In Systems, Man and Cybernetics, 2003. IEEE International Conference on,
volume 2, pages 1540–1543 vol.2, 2003.

45

http://www.akamai.com/html/io/io_dataset.html#stat=mobile_browser&top=5&type=pie&start=20130301&end=20130426&net=m
http://www.akamai.com/html/io/io_dataset.html#stat=mobile_browser&top=5&type=pie&start=20130301&end=20130426&net=m
http://www.akamai.com/html/io/io_dataset.html#stat=mobile_browser&top=5&type=pie&start=20130301&end=20130426&net=m
http://www.bbc.co.uk/news/technology-18338956
http://www.bbc.co.uk/news/technology-18338956
http://www.bbc.co.uk/news/technology-18811300
http://www.bbc.co.uk/news/technology-18811300
http://www.tns-gallup.no/arch/_img/9105587.pptx
http://www.tns-gallup.no/arch/_img/9105587.pptx
http://eprint.iacr.org/
http://www.oracle.com/technetwork/java/javase/7u10-relnotes-1880995.html
http://www.oracle.com/technetwork/java/javase/7u10-relnotes-1880995.html

46 REFERENCES

[12] C. Research. Sec 2: Recommended elliptic curve domain parameters. Technical
report, STANDARDS FOR EFFICIENT CRYPTOGRAPHY, 2000. http://www.
secg.org/collateral/sec2_final.pdf.

[13] R. Schoof. Counting points on elliptic curves over finite fields. Theorie des
Nombres, 1995.

[14] Seclist. Java 7 update 11 confirmed to be vulnerable, 2013. http://seclists.org/
fulldisclosure/2013/Jan/142.

[15] M. Wang, X. Wang, and T. Zhan. The fault attack ecdlp revisited.

[16] L. C. Washington. Elliptic Curves: Number Theory and Cryptography. Taylor
and Francis, 2008.

http://www.secg.org/collateral/sec2_final.pdf
http://www.secg.org/collateral/sec2_final.pdf
http://seclists.org/fulldisclosure/2013/Jan/142
http://seclists.org/fulldisclosure/2013/Jan/142

AppendixACS

Listing A.1: index.php on CS

1 <?php

2 $cookie_site = $_COOKIE["site"];

3 $cookie_ch = urldecode($_COOKIE["ch"]);

4 ?>

5
6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN

" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

">

7 <html xmlns="http://www.w3.org/1999/xhtml">

8 <head>

9 <meta http-equiv="Content-Type" content="text/html; charset=

utf-8" />

10 <title>MyID login</title>

11 <link href="style.css" rel="stylesheet" type="text/css" />

12 <link href="http://code.jquery.com/ui/1.10.3/themes/

smoothness/jquery-ui.css" rel="stylesheet" type="text/css"

/>

13
14 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery

-1.7.2.min.js" type="text/javascript"></script>

15 <script src="http://code.jquery.com/ui/1.10.3/jquery-ui.js"

type="text/javascript"></script>

16 <script language="JavaScript" type="text/javascript" src="../

libraries/jsbn.js"></script>

17 <script language="JavaScript" type="text/javascript" src="../

libraries/jsbn2.js"></script>

18 <script language="JavaScript" type="text/javascript" src="../

libraries/prng4.js"></script>

19 <script language="JavaScript" type="text/javascript" src="../

libraries/rng.js"></script>

47

48 A. CS

20 <script language="JavaScript" type="text/javascript" src="../

libraries/ec.js"></script>

21 <script language="JavaScript" type="text/javascript" src="../

libraries/sec.js"></script>

22 <script language="JavaScript" type="text/javascript" src="../

libraries/sha256.js"></script>

23
24
25 <script type="text/javascript">

26 var site = ’<?php echo($cookie_site); ?>’;

27 var ch = ’<?php echo($cookie_ch); ?>’;

28 var username;

29 var password;

30 var iframe;

31
32 //EC and PW-BSNR protocol variables

33 var c;

34 var n;

35 var G;

36 var p;

37 var curve;

38 var prng;

39 var Q;

40 var H1;

41 var h2;

42 var R1;

43 var R;

44 var s;

45 var s2;

46 var k1;

47 var x1;

48
49
50
51 $(document).ready(

52 function() {

53 $(’#main’).text(site);

54 iframe = document.getElementById("iframe");

55 init_ec_params();

56 }

57);

58
59
60 function init_ec_params() {

61 c = getSECCurveByName("secp192r1");

49

62 n = c.getN();

63 G = c.getG();

64 p = c.getP(); //added to JSBN library by me

65 curve = c.getCurve();

66 prng = new SecureRandom();

67 }

68
69 function signin_clicked() {

70 username = $("#login input[name=username]").val();

71 password = $("#login input[name=password]").val();

72 $(’#main’).text("Logging in, please wait..");

73 $("#signature").show();

74 $("#signature").dialog({width:720, height:600});

75
76 generate_R1();

77 }

78
79 function send_R1() {

80 $("#debug").append("
");

81 $("#debug").append("Curve for elliptic curve: secp192r1");

82 $("#debug").append("Y^2 = X^3 + Ax + B where");

83 $("#debug").append("\nA= "+ curve.getA().x.toString());

84 $("#debug").append("\nB= "+ curve.getB().x.toString());

85
86 var a = curve.getA().toBigInteger();

87 var b = curve.getB().toBigInteger();

88 var three = new BigInteger("3");

89 var z;

90 var exp;

91 var t = new BigInteger("

1569275433846670190958947355801916604020977175097581240320

"); // in order to find this use modInverse

92 //and make sure that a and b are coprime by using GCD(a,b

) which should equal 1, look wikipedia "

Modular_multiplicative_inverse"

93 var x = new BigInteger(sha256_digest(ch), 16);

94 $("#debug").append("\nSHA256(challenge)= "+ x.toString

(16));

95 var pre_z = x.pow(three).add(a.multiply(x)).add(b);

96 z = pre_z.mod(p);

97 exp = p.subtract(BigInteger.ONE).divide(new BigInteger("2

"));

98 var remainder = z.modPow(exp, p);

99 while (remainder != 1) {

100 var x = x.add(BigInteger.ONE);

50 A. CS

101 var pre_z = x.pow(three).add(a.multiply(x)).add(b);

102 z = pre_z.mod(p);

103 exp = p.subtract(BigInteger.ONE).divide(new
BigInteger("2"));

104 remainder = z.modPow(exp, p);

105 }

106 var y = z.modPow(t, p);

107 H1 = new ECPointFp(curve, curve.fromBigInteger(x.mod(p)),

curve.fromBigInteger(y));

108 R1 = H1.add(G.multiply(k1));

109 $("#debug").append("\nH1= "+ "("+H1.getX().x.toString()+"

,"+H1.getY().x.toString()+")");

110 $("#debug").append("\nR1= "+ "("+R1.getX().x.toString()+"

,"+R1.getY().x.toString()+")");

111 $("#debug").append("\nSending R1 and x1 to Authentication

server...");

112 $("#debug").append("\n");

113 $("#debug").append("\n");

114 iframe.contentWindow.postMessage(R1.getX().x.toString() +

"|" + R1.getY().x.toString() + "|" + x1.toString() +

"|" + window.location.href + "|" + site, "http://folk.

ntnu.no/sangeepa/allersiste/AS/iframe.html");

115 }

116
117 function generate_prng() {

118 x1 = new BigInteger(sha256_digest(password),16);

119 k1 = new BigInteger(1024, prng).mod(p);

120 $("#debug").append("\nx1 (hash av passordet)= "+ x1.toString

(16));

121 $("#debug").append("\nk1 (PRNG)= "+ k1.toString());

122 }

123
124 function generate_R1 () {

125 $("#debug").append("\n Generating k1 and hashing

password");

126 generate_prng();

127 send_R1();

128 }

129
130 $(function(){
131 $("#cerceve").hide().fadeIn(500);

132 $(".show").hide();

133 $(".close").click(function(){
134 $("#cerceve").hide(500);

135 $(".show").fadeIn(500);

51

136 });

137 $(".show").click(function(){
138 $("#cerceve").fadeIn(500);

139 $(".show").hide(500);

140 });

141 });

142
143
144 function generate_S (landing_url) {

145 var input = "(" + R.getX().x.toString() + "," + R.getY().

x.toString() + ")";

146 h2 = new BigInteger(sha256_digest(input), 16);

147 $("#debug").append("\nHash_2 (SHA-256 of point R)= "+ h2.

toString(16));

148 s = s2.add(h2.multiply(x1)).add(k1);

149 $("#debug").append("\ns= "+ s2.toString());

150 $("#debug").append("\nRedirecting to Relying Point in 5

seconds..............");

151 window.setTimeout(function() {

152 window.location.href = landing_url + "landing.php?"+"Rx="

+R.getX().x.toString()+"&Ry="+R.getY().x.toString()+"&

s="+s.toString();

153 }, 5000);

154 }

155
156
157 //this "hook" is used when a message is received from the AS

158 window.addEventListener("message",

159 function (e) {

160 $("#debug").append("\nReceived R and s2 from Authentication

Server");

161 var input = e.data.split("|");

162 R = new ECPointFp(curve, curve.fromBigInteger(new
BigInteger(input[0])), curve.fromBigInteger(new
BigInteger(input[1])));

163 s2 = new BigInteger(input[2]);

164 $("#debug").append("\nR= "+ "("+R.getX().x.toString()+","+R

.getY().x.toString()+")");

165 $("#debug").append("\ns2= "+ s2.toString());

166 $("#debug").append("\nGenerating S...");

167 $("#debug").append("\n");

168 $("#debug").append("\n");

169 generate_S(input[3]);

170 },

171 false);

52 A. CS

172
173 </script>

174
175
176
177 </head>

178 <body>

179
180 <div class="formbody" id="signature" style="display: none;"

title="DEBUG information">

181 <textarea id="debug" rows="40" style="font-size:12px" cols="

108">

182 Starting debug log

183 Protocol PW-BS Nyberg-Rueppel variant by K.GjÃ¸steen and Ã˜.

Thuen.

184 </textarea>

185 </div>

186
187 <div class="show">
188
189 </div>

190 <div id="cerceve">

191 <div class="header">
192 <div class="text" ID ="main" style="float:left">MyID login

</div>

193 </div>

194 <div class="formbody" id="login">

195 testbruker/hemmelig

196 <form action="" onsubmit="signin_clicked(); return false;"

method="post">

197 <input type="text" name="username" id="username" placeholder=

"Username" class="text" style="background:url(images/

username.png) no-repeat;" />

198 <input type="password" name="password" id="password"

placeholder="*********" class="text" style="background:url

(images/password.png) no-repeat;" />

199 <input type="submit" value="Sign In" class="submit" style="

background:url(images/login.png) no-repeat;" />

200 Lost password?

201 </form>

202 </div>

203 </div>

204 <iframe id="iframe" style="visibility:hidden;display:none"

height="1px" width="1px" src="../AS/iframe.html"></iframe>

205 </body>

53

206 </html>

AppendixBAS

Listing B.1: Iframe.html on AS

1
2
3 <html>

4 <head>

5 <title>Authentication server IFrame</title>

6
7 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery

-1.7.2.min.js" type="text/javascript"></script>

8 <script type="text/javascript">

9
10
11
12 window.addEventListener("message",

13 function (e) {

14 var input = e.data.split("|");

15 $.post("protocol/signature_gen.php", {R1x : input[0], R1y :

input[1]}, function (output) {

16 top.postMessage(output + "|" + input[4], input[3]);

17 });

18 },

19 false);
20 </script>

21
22 </head>

23 <body>

24
25
26 </body>

27 </html>

55

56 B. AS

Listing B.2: signaturegen.php on AS

1 <?php

2
3 function __autoload($f) {

4 //load the interfaces first otherwise contract errors

occur

5 $interfaceFile = "classes/interface/" . $f . "Interface.

php";

6
7 if (file_exists($interfaceFile)) {

8 require_once $interfaceFile;

9 }

10
11 //load class files after interfaces

12 $classFile = "classes/" . $f . ".php";

13 if (file_exists($classFile)) {

14 require_once $classFile;

15 }

16
17 //if utilities are needed load them last

18 $utilFile = "classes/util/" . $f . ".php";

19 if (file_exists($utilFile)) {

20 require_once $utilFile;

21 }

22 }

23
24
25 if(extension_loaded(’gmp’) && !defined(’USE_EXT’)){

26 define (’USE_EXT’, ’GMP’);

27 }else if(extension_loaded(’bcmath’) && !defined(’USE_EXT’)){

28 define (’USE_EXT’, ’BCMATH’);

29 }

30
31 $post_R1x = $_POST["R1x"];

32 $post_R1y = $_POST["R1y"];

33 $post_x1 = $_POST["x1"]; // this is used to create the public

key, but since we have hardcoded it, its not necessary to

deal with this.

34
35
36
37 //elliptic curve parameters

38 $Qx = ’

6174796913462593303486602434131194488337606921407879712879

’; //public key x til BOB med passord ’hemmelig’

57

39 $Qy = ’

4571935574014424850307214357578070306631117006599250439368

’; //public key y til BOB

40 $G = NISTcurve::generator_192(); //generator

41 $curve_192 = NISTcurve::curve_192(); //We use NIST

recommended curve P-192

42 $Q = new Point($curve_192, $Qx, $Qy); //public key for BOB

43
44
45
46 function generate_R_and_s2 ($x, $y) {

47 global $G, $curve_192;

48 $R1 = new Point($curve_192, $x, $y); //public point

49 $k2 = rand(0, 99999);

50 // $k2 =

’266534496353336689597505767135253851561332439464211122018’;

51 $x2 = bcmath_Utils::bchexdec(hash(’sha256’, ’serverhemmelig’

, false)); //this is the other half of the ’shared-

password" setup.

52 $R = Point::add($R1,Point::mul($k2, $G));

53 $hashinput = ’(’. $R->getX(). ’,’ . $R->getY(). ’)’;

54 $h2 = bcmath_Utils::bchexdec(hash(’sha256’, $hashinput ,

false));

55 $s2 = bcadd(bcmul($h2, $x2), $k2);

56 return $R->getX().’|’.$R->getY().’|’.$s2;

57 }

58
59
60
61 echo generate_R_and_s2($post_R1x, $post_R1y);

62
63
64 ?>

AppendixCRP

Listing C.1: index.php on RP

1 <?php

2 session_start();

3
4 if (isset($_SESSION[’auth’]))

5 {

6 $auth = $_SESSION[’auth’];

7 }

8
9

10
11 $fp = fopen(’/dev/urandom’,’rb’);

12 if ($fp !== FALSE) {

13 $pre_challenge = fread($fp, 16);

14 fclose($fp);

15 } else {

16 die("Could not generate challenge.");

17 }

18
19
20
21 $challenge = sha1($pre_challenge);

22 $_SESSION[’ch’] = $challenge;

23 $site = substr($_SERVER[’SCRIPT_URI’], 0, strrpos($_SERVER[’

SCRIPT_URI’], ’/’) + 1);

24 $finalstring = ’../CS/setcookie.php?ch=’.$challenge.’&site=’.

$site;

25
26 ?>

27
28

59

60 C. RP

29
30 <html>

31 <head>

32 <meta http-equiv="Content-Type" content="text/html; charset=

utf-8" />

33 <title>Relying party mainpage</title>

34
35 <link rel="stylesheet" type="text/css" href="styles.css" />

36 <script type="text/javascript" src="http://ajax.googleapis.

com/ajax/libs/jquery/1.4.1/jquery.min.js"></script>

37
38 <script type="text/javascript">

39 function logout() {

40 window.location.href = "destroysession.php";}

41
42 function myID_click() {

43 location.href = "../CS/";

44 }

45
46 $(document).ready(function(){
47
48 var auth = ’<?php echo($auth); ?>’;

49 $(’#content’).hide();

50
51 if (auth == "true") {

52 $(’#cookiebutton’).hide();

53 $(’#content’).show();

54 $(’#box_myid’).hide();

55 $(’#box_bankid’).hide();

56 $(’#box_buypass’).hide();

57 $(’#box_minid’).hide();

58 $(’h1’).text(’You have been succesfully logged in’);

59 }

60 else {$(’#cookiebutton’).append(’"<button type="submit

" style="visibility:hidden" ><img src="<?php echo

$finalstring?>"></button>’);}

61
62
63 $(’.selectorClass’).hover(

64 function(){
65 $(this).stop().fadeTo(’slow’,0.4);
66 },

67 function(){
68 $(this).stop().fadeTo(’slow’,1);
69 });

61

70
71 $(’.selectorClass2’).mouseenter(function(){
72 $(this).stop().fadeTo(’slow’,0.4);
73 }).mouseleave(function(){
74 $(this).stop().fadeTo(’slow’,1);
75 });

76
77 $(’.selectorClass3’).hover(function(){
78 this.check = this.check || 1;

79 $(this).stop().fadeTo(’slow’,this.check++%2==0 ? 1 : 0.4)

;

80 });

81
82 });

83 </script>

84
85 </head>

86
87 <body>

88 <h1>Select an electronic ID:</h1>

89
90 <div id="content">

91 <div onClick="logout()">[Logout]</div>

92 </div>

93
94 <div id="box_myid" class="example">
95
96 <div class="demo">
97
98 <div onClick="myID_click();" class="selectorClass

demoObjectMyID"></div>

99
100 </div>

101 <div class="clear"></div>
102 </div>

103
104
105 <div class="example" id="box_bankid">

106
107 <div class="demo">
108
109 <div class="selectorClass demoObject"></div>

110
111 </div>

112 <div class="clear"></div>

62 C. RP

113 </div>

114
115
116 <div class="example" id="box_buypass">

117
118 <div class="demo">
119
120 <div class="selectorClass demoObjectBuyPass"></div>

121
122 </div><div class="clear"></div>
123 </div>

124
125
126
127 <div class="example" id="box_minid">

128
129 <div class="demo">
130
131 <div class="selectorClass demoObjectMinID"></div>

132
133 </div>

134 <div class="clear"></div>
135 </div>

136 <div id="cookiebutton">

137
138 </div>

139 </body>

140 </html>

63

Listing C.2: landing.php on RP

1 <?php

2
3 session_start();

4
5 function __autoload($f) {

6 //load the interfaces first otherwise contract errors

occur

7 $interfaceFile = "classes/interface/" . $f . "Interface.

php";

8
9 if (file_exists($interfaceFile)) {

10 require_once $interfaceFile;

11 }

12
13 //load class files after interfaces

14 $classFile = "classes/" . $f . ".php";

15 if (file_exists($classFile)) {

16 require_once $classFile;

17 }

18
19 //if utilities are needed load them last

20 $utilFile = "classes/util/" . $f . ".php";

21 if (file_exists($utilFile)) {

22 require_once $utilFile;

23 }

24 }

25
26
27 if(extension_loaded(’gmp’) && !defined(’USE_EXT’)){

28 define (’USE_EXT’, ’GMP’);

29 }else if(extension_loaded(’bcmath’) && !defined(’USE_EXT’)){

30 define (’USE_EXT’, ’BCMATH’);

31 }

32
33
34
35
36 $Qx = ’

6174796913462593303486602434131194488337606921407879712879

’;

37 $Qy = ’

4571935574014424850307214357578070306631117006599250439368

’;

38 $G = NISTcurve::generator_192();

64 C. RP

39 $curve_192 = NISTcurve::curve_192();

40 $Q = new Point($curve_192, $Qx, $Qy);

41
42
43
44 function verify_signature($Rx, $Ry, $s, $ch) {

45 GLOBAL $curve_192, $Q, $G;

46
47 $H1 = hash_1($ch);

48 $h2_input = ’(’. $Rx . ’,’ . $Ry. ’)’;

49 $h2 = bcmath_Utils::bchexdec(hash(’sha256’, $h2_input, false)

);

50 $R = new Point($curve_192, $Rx, $Ry);

51 $left = Point::add($H1, Point::mul($s, $G));

52 $right = Point::add($R, Point::mul($h2,$Q));

53 if ($left->x == $right->x && $left->y == $right->y) {return

true;}

54 else return false;

55 }

56
57
58
59 function hash_1($ch){

60 GLOBAL $G, $curve_192;

61
62 $a = $curve_192->getA();

63 $b = $curve_192->getB();

64 $p = $curve_192->getPrime();

65 $hash = bcmath_Utils::bchexdec(hash(’sha256’, $ch, false));

66 $t = ’

1569275433846670190958947355801916604020977175097581240320

’;

67 $exp = bcdiv(bcsub($p,’1’),’2’);

68 $pre_z = bcadd(bcadd(bcpow($hash,"3"), bcmul($a,$hash)),$b);

69 $z = bcmod($pre_z, $p);

70 $remainder = bcpowmod($z, $exp, $p);

71
72 while ($remainder != 1) {

73 $hash = bcadd($hash,’1’);

74 $pre_z = bcadd(bcadd(bcpow($hash,"3"), bcmul($a,$hash)),$b);

75 $z = bcmod($pre_z, $p);

76 $remainder = bcpowmod($z, $exp, $p);

77 }

78
79 $y = bcpowmod($z, $t, $p);

65

80 return new Point($curve_192, bcmod($hash,$p), $y);

81
82 }

83
84
85 if (!isset($_SESSION[’ch’]))

86 {

87 die(’No challenge detected for current session’);

88 }

89
90 if (!isset($_GET[’Rx’]) || !isset($_GET[’Ry’]) || !isset(

$_GET[’s’]))

91 {

92 die(’missing signature’);

93 }

94
95
96
97 $sigver = verify_signature($_GET[’Rx’], $_GET[’Ry’], $_GET[’s

’], $_SESSION[’ch’]);

98 if ($sigver === true) {

99 $_SESSION[’auth’] = "true";

100 header("Location: index.php");}

101 else die(’signature verification failed!’);

102
103 ?>

	List of Figures
	List of Tables
	Introduction
	Objective
	Limitations
	Related work
	Thesis outline

	Continuation of project
	The project
	The weakness of bookmarklets
	Further work

	Methodology
	Elliptic curve cryptography
	Digital signature with elliptic curves
	Point operations
	Point addition and subtraction
	Point doubling
	Point multiplication

	Elliptic curves on finite fields
	The geometrical conception of the elliptic curve in finite field
	Point addition
	Point doubling

	Implementation domain parameters
	Security of ECC

	ECC JavaScript implementation
	JavaScript or Java
	JavaScript and big integers
	Big integer and elliptic curve libraries
	WebCrypto

	Password based digital signature scheme
	Hashing functions used in the protocol
	H1(m)
	H2(R)
	H3(pw)

	Key generation
	Signature generation
	Signature verification

	Implementation and system architecture
	Implementation
	index.php on RP
	index.php on CS
	landing.php on RP
	sign.php on CS
	Iframe.html on AS
	generatesignature.php on AS

	User registration
	Change password

	Security assessment
	When the code server is compromised
	When the authentication server is compromised
	Man-in-the-middle attack
	Phishing
	When user's computer is compromised

	Conclusion and future work
	Conclusion
	Future work
	Shamir's trick and sliding window
	Iframe origin control
	Better pseudorandom number generator

	References
	CS
	AS
	RP

