NTNU - Trondheim
Norwegian University of

Science and Technology

File Detection in Network Traffic Using
Approximate Matching

Vikas Gupta

Master in Security and Mobile Computing
Submission date: August 2013
Supervisor: Danilo Gligoroski, ITEM

Co-supervisor: Christian Jensen, Denmark Technical University, Denmark
Harald Baier, Center for Advanced Security Research Darmstadt,
Germany

Norwegian University of Science and Technology
Department of Telematics

Summary (English)

Virtually every day data breach incidents are reported in the news. Scammers,
fraudsters, hackers and malicious insiders are raking in millions with sensitive
business and personal information. Not all incidents involve cunning and as-
tute hackers. The involvement of insiders is ever increasing. Data information
leakage is a critical issue for many companies, especially nowadays where ev-
ery employee has an access to high speed internet. In the past, email was the
only gateway to send out information but with the advent of technologies like
SaaS (e.g. Dropbox) and other similar services, possible routes have become
numerous and complicated to guard for an organisation.

Data is valuable, for legitimate purposes or criminal purposes alike. An intu-
itive approach to check data leakage is to scan the network traffic for presence
of any confidential information transmitted. The existing systems use slew of
techniques like keyword matching, regular expression pattern matching, crypto-
graphic algorithms or rolling hashes to prevent data leakage. These techniques
are either trivial to evade or suffer with high false alarm rate.

In this thesis, known file content detection in network traffic using approximate
matching is presented. It performs content analysis on-the-fly. The approach is
protocol agnostic and file type independent. Compared to existing techniques,
proposed approach is straight forward and does not need comprehensive config-
uration. It is easy to deploy and maintain, as only file fingerprint is required,
instead of verbose rules.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark, in cooperation with Cen-
ter for Advanced Security Research Darmstadt (Germany) in fulfilment of the
requirements for acquiring an M.Sc. in Security and Mobile Computing.

The thesis deals with the problem of data leakage over an organisation’s network
and proposes a solution for it by performing bitwise content analysis of network
packets using approximate matching.

The thesis consists of 7 Chapters and Appendixes, in which a detailed descrip-

tion of the proposed data leakage prevention method, conducted experiments,
analyses of results and directions for future works are presented.

Lyngby, June 2013-2013

~

\[\v o5 y

Vikas Gupta

Acknowledgements

I thank M.Sc. Frank Breitinger, from Center for Advanced Research Darmstadt
(CASED), for his guidance and supervision in all phases of this thesis work. His
knowledge and advice have been invaluable throughout the course of this work.
I would also like to thank Prof. Christian D. Jensen, Denmark Technical Univer-
sity, Prof. Danilo Gligoroski, Norwegian University of Science and Technology,
and Prof. Harald Baier, CASED, for co-supervising this thesis work.

A special thank to Sebastian Abt for introducing me to Frank and providing
valuable comments and feedback during the thesis project.

Thanks to all my colleagues at CASED specially Jinghua, Elakkiya and Ivan for
making work at CASED fun and keeping me motivated throughout the duration.

Last but not the least, I would like to thank my family for their constant support.

Lyngby, June 30, 2013
Vikas Gupta

Contents

1 Summary (English)

2 Preface

3 Acknowledgements

4 Introduction

Keywords
Problem Description 0oL
Motivation and Benefits
Research Goals, .
Methodology
Contribution o
Notation and Terms
Structure of Thesis

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5 Foundation
Hash Functions
5.2 Cryptographic Hash Functions

5.1

5.3

5.2.1
5.2.2

Requirements and Properties
Problems with Cryptographic Hashes

Approximate Matching oL

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7

Bloom Filters
Evolution of Approximate Matching
Rolling Hash
sdhash o
mrsh-v2o
Other Approximate Matching Algorithms
Properties of Approximate Matching Algorithms

iii

vii

SO UL U O W N =

viii CONTENTS
53.8 UseCases oo e 21

5.4 Communication Networks 21
5.4.1 Network Terminologies 22
5.4.2 OSI Reference Model 22
54.3 TCP/IP Model 23
5.4.4 Maximum Transmission Unit 24
5.4.5 TCP Segmentation Offload 24

5.5 Packet Inspection oo 25
5.5.1 Shallow Packet Inspection 25
5.5.2 Medium Packet Inspection. 26
5.5.3 Deep Packet Inspection 26

5.6 Encoding Schemes L 0. 26
6 Experimental Setup 29
6.1 Infrastructure o 30
6.1.1 Development Environment 30

6.2 FileSet 31
6.3 Network Traffic Generation 32
6.4 Layer Specific Packet Matching 34
6.5 Integrating mrsh-v2 & sdhash into sniffer. 34
6.5.1 sdhash 35
6.5.2 mrsh-v2 35

6.6 Per Packet Processing Time 36
6.7 Proceeding 36
6.7.1 Fingerprint Set Generation 37
6.7.2 Network Traffic Generation 38
6.7.3 Sniffing & Analysing Network Traffic. 38
6.7.4 Result Compilation. 39

7 Experimental Results 41
7.1 Terminology Used 41
7.2 Detection Rate with Random Data 42
7.2.1 Detection Rate for Each Network Layer 42
7.2.2 Processing Time 44
7.2.3 Algorithm and Network Layer to Perform Matching . . . 45

7.3 Detection Rate with Real World Data 46
7.3.1 Results for Different File Types 48
7.3.2 Processing Time 48
7.3.3 Threshold Score 48

7.4 Detection Rate for Encoded Traffic 49
7.5 Detection of Embedded Information 50
7.6 Stream Analysis 50

CONTENTS ix
8 Related Work 53
8.1 Data Loss Prevention Systems 54
8.1.1 Statesof Data 54

8.1.2 Definition 54

8.1.3 Content Analysis Techniques 55

8.2 Intrusion Detection Systems 58
8.3 Comparison 59
8.3.1 RollingHash 99

8.3.2 Keyword Matching oo 61

9 Discussion 63
9.1 Detection Rate 64
9.2 Level of Packet Inspection 64
9.3 Processing Time 65
9.4 Content vs. Context 65
9.5 Filtering/Blocking Traffic 65
9.6 Dealing with Encrypted Traffic 67
9.7 Hardware Implementation 68
9.8 Limitation 68

10 Conclusion & Future Work 69
A Common Subsequence String 71
B Score Distribution for File Types Using mrsh-v2 75
C Hex Dump of a xlIs File 81
Bibliography 85

CONTENTS

List of Tables

5.1
5.2
5.3

5.4

6.1
6.2

7.1
7.2
7.3
7.4
7.5

Bloom filter’s false positive rate variation with bits/element . . .
Relation between block size and hash value length for mrsh-v2

Relative comparison of approximate matching algorithms with
SHA-1 e

ssdeep vs sdhash: True, false, and total known positives

File size statistics for RS and T'S corpus.
Statistics of tb-corpus and test-set TS.

Statistics for 4 network layers for mrsh-v2.
Statistics for 4 network layers for sdhash.
Avg. processing time (in milliseconds) for mrsh-v2 and sdhash. .
Statistics of various file typesin T°'S.
Statistics for Base64 encoded traffic.

14
18

19
20

31
32

43
43
46
48
49

Xii LIST OF TABLES

List of Figures

5.1
5.2

7.1
7.2
7.3

8.1

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8

Working of Bloom filters 15
Packet inspection depths oL 25
Score distribution for random traffic using mrsh-v2. 44
Score distribution for random traffic using sdhash. 45
Score distribution for T'S corpus traffic using mrsh-v2 on appli-

cation layer. L Lo 47
The 3 statesof data 55
Score distribution for doc file types using mrsh-v2. 75
Score distribution for exe file types using mrsh-v2. 76
Score distribution for pdf file types using mrsh-v2. 76
Score distribution for gif file types using mrsh-v2. 7
Score distribution for xls file types using mrsh-v2. 7
Score distribution for ppt file types using mrsh-v2. 78
Score distribution for text file types using mrsh-v2. 78

Score distribution for jpg file types using mrsh-v2. 79

Xiv LIST OF FIGURES

Listings

6.1
6.2
6.3
6.4
6.5
6.6
8.1

Use of valgrind for detecting memory leakage. 30
Linux’s command to generate random files. 31
Code snippet for importing sdhash into sniffer. 35
Code snippet for importing mrsh-v2 into sniffer. 36
mrsh-v2 & sdhash commands to generate hash for a file. 37
Commands to access HTTP, FTP and SMTP traffic. 38

Snort rule using content keyword. 59

Xxvi LISTINGS

CHAPTER 1

Introduction

Industrial revolution marked the onset of industrial age, similarly, digital rev-
olution of past 2 decades has marked the onset of digital age. Humans are
producing and consuming digital information at much higher rate than ever be-
fore. In the past two decades, Internet has spread with a breath taking pace
and has become an inseparable part of modern life. Internet offers world-wide
broadcasting capability, a seamless platform for information dissemination, and
a medium for collaboration and interaction between individuals irrespective of
their geopolitical location. The ease of collaboration, outreach and cost ef-
fectiveness invited organisations to use Internet for performing business. The
productivity of employees have increased manifold as a result of technology.

Email is one of the most important communication mechanism in any organ-
isation and according to an estimate, around 101 billion business emails are
exchanged per day in 2012 [20]. Enterprises are awash with ever-growing data
of all types, easily amassing terabytes of information. As per Harvard Business
Review, Walmart collects more than 2.5 petabytes of data every hour from its

customer transactions !.

Every technology has its own dark side. Defending connected networks have
always been a challenge. Well-known examples of successful attacks against

Thttp://www.hbr.org/2012/big-data-the-management-revolution (last accessed 2013-
June-25).

http://www.hbr.org/2012/big-data-the-management-revolution

2 Introduction

computer networks include Morris Worm in the 1980’s [16], to Chinese hackers
compromising US weapon systems’ designs in 2013. Administrators are facing
a challenge in keeping confidential information from leaving the networks. At
present, there is a constant increase in data breach incidents since 2009. Ac-
cording to Open Security Foundation (OSF), 1605 incidents were reported last
year, which is a steep increase of 45% compared to 2011. Some major data
breach incidents reported within last couple of years? are [8]:

e Attackers were successful in compromising 77 million records of Sony Cor-
poration in April 2011.

e LinkedIn was allegedly hacked of 6.5 million password hashes in June 2012.

e In April 2013, more than 50 million customer’s names, emails, birth dates,
and hashed and salted passwords of LivingSocial were accessed by hackers.

Data is valuable, whether for legitimate or for criminal purposes. Ensuring the
security and privacy of the data is a major challenge. Information leakage,
including company’s intellectual property or user information, is becoming more
frequent. Unauthorized use of information can incur enormous financial cost
to an organisation. As per McAfee, malicious insiders had the largest average
number of compromised records per breach of 72,325 [24].

In order to minimize this risk, an intuitive approach is to scan the network
traffic for known files’ fragments, where known files refers to the files which are
confidential as per company’s policy and not allowed to go outside company’s
network. Traditionally, organisations added keywords like ‘confidential’ or ‘se-
cret’ to ensure that no such file having these keywords leaves the network. But
such keyword based approach is easy to evade. A more foolproof technique is
required, than just looking for a specific keyword.

1.1 Keywords

Approximate matching, similarity hashing, network sniffing, file identification,
known content detection, data leakage prevention, packet content analysis.

?http://datalossdb.org/{index/largest, statistics} (last accessed 2013-June-25).

http://datalossdb.org/{index/largest, statistics}

1.2 Problem Description 3

1.2 Problem Description

One of the main aim of an attack on an organisation’s network is to obtain
confidential information, ranging from the credit card numbers of its customers
to future expansion plans of the company. Today’s network is so voluminous that
manual inspection for data leakage is impractical and an expensive alternative.
In order to address the security issues, companies install intrusion detection and
prevention systems (IDS), firewalls and virus scanners. However, only two-third
of all the data breaches are the result of hacking attacks - according to OSF,
36% of all recorded incidents are involving insiders®.

Data loss prevention systems are developed to check and block outgoing traffic
for known confidential information. These systems perform deep packet analyses
and use multiple methods to detect confidential content in network traffic, for
instance, searching for keywords, patterns or regular expressions. These systems
also use cryptographic hash functions for content identification, like in digital
forensics. But such approach cannot be used in case of network traffic, as file
content is split and spread over many packets.

In this work, a new approach using approximate matching to detect known file
content in network traffic is presented. Approximate matching is a technique
for identifying similarities between some digital objects, like files, storage media,
network streams etc. It is based on the logic of identifying and picking up some
features or attributes which are unique to each object and can be used to identify
and compare them. This collection of features is the signature/fingerprint of the
object under investigation.

The working of the proposed approach is straightforward. For each network
packet sniffed, a fingerprint is generated using approximate matching algorithm.
This packet’s fingerprint is compared against a pre-computed list of fingerprints
of protected/confidential files, if packet’s content matches with content of a
protected file, data breach incident is reported. Unlike existing techniques, the
proposed technique is simple to use and does not need comprehensive configura-
tion. It can be easily deployed and maintained as only fingerprints are required,
unlike providing verbose rules.

The proposed approach can also be used for incoming traffic into a network. For
instance, an adversary can send a malicious code, which is a modification of a
previous known version, to evade IDS or virus scanners, which can be detected
by approximate matching approach.

3http://datalossdb.org/statistics (last accessed 2013-June-25).

http://datalossdb.org/statistics

4 Introduction

1.3 Motivation and Benetfits

Data leakage or information leakage, can be defined as unauthorized transmis-
sion of data (or information) from within an organization to an external des-
tination or recipient [19]. As highlighted in previous section, insiders, whether
intentional or inadvertent, constitute a major source of data leakage. Instant
messages, peer-to-peer file transfer, email, cloud storage etc. are some of the
internet based vectors which are easily accessible in an organisation to cause
a data breach. Further, use of SSL or other encryption technology has made
detecting attempts of data leak practically more difficult.

The current state of practice regarding the technical ability to defend and mon-
itor Internet-based attacks is not sufficient. Attackers use sophisticated tech-
niques to evade from surveillance and it is becoming impossible to defend using
current practices. As per Bendrath [1], "the anonymity enjoyed by today’s cy-
ber attackers poses a great threat to the global information society, the progress
of information based international economy, and the advancement of global col-
laboration and cooperation in all areas of human endeavor".

There exist no detailed previous work addressing the issue of data leakage over
network. The existing data leakage prevention systems are commercial and
closed source and not much information is available about their working or
performance. The prototype developed in this thesis can be used to check data
leakage and catch the malicious insiders. Some of the scenarios where it can be
used are enumerated below [23] [8]:

Scenarios

e Illegal software downloads in a network using peer-2-peer or ftp.

e A confidential bid is leaked by an insider to a competitor through email
or cloud storage services.

e A financial services firm produces valuable research that is forwarded by
an insider to unauthorized distribution channel.

e A spreadsheet containing personal medical data of patients is posted to a
public website and the mistake goes unnoticed for a long time.

e Identifying and blocking webpages, text files or emails dealing with a spe-
cific content. For instance, since January 2011 Russia started a Internet
surveillance plan to protect kids from Internet pedophiles.

1.4 Research Goals 5

e Detecting and deleting malware or spam before it reaches its victim and
uncover self-distributing malware.

1.4 Research Goals

Research goals of this thesis are:

1. Is it feasible to identify known file content in network packets using ap-
proximate matching?

2. Which approximate matching algorithm can be used in such a tool?
3. Develop a prototype using approximate matching algorithm.

4. Keep the network latency introduced by performing such packet inspection
as low as possible.

5. Does present approach have acceptable false alarm rate?

1.5 Methodology

Literature study - in order to find out what is the current state of the art for
data leakage detection in network traffic. To the best of our knowledge
this is the first work to identify known file content in network traffic.
Though, data leakage prevention system is the most relevant technology
to be considered.

Implementation - is carried out in two steps. First, the feasibility of the ap-
proach is established. Secondly, an effort is made to improve the perfor-
mance and detection rate by identifying the core problems and addressing
them.

1.6 Contribution

The main contribution of this work aims at establishing the feasibility whether
approximate matching algorithms can be used in detecting known file content in
network traffic. The focus is to make a working prototype which uses approx-
imate matching and signals presence of known file by reporting the filename

6 Introduction

detected and the source and destination IP address involved in such a transmis-
sion.

Furthermore, tests showed that approximate matching algorithm, mrsh-v2 is
best suited to use for network traffic analyses compared to sdhash. mrsh-v2 is
more efficient in terms of per packet processing time than compared to sdhash.
Also, using mrsh-v2 at application layer, i.e., lower layer headers stripped off,
gives a 100% file detection rate in single packet analysis mode, and more than
98% detection rate in case of stream based analyses mode.

1.7 Notation and Terms

This section explains all notations and terms which are used in this thesis.

e Approximate matching, a.k.a similarity hashing previously.

e sniffer refers to the prototype/tool developed during this thesis to test
the approach.

e ‘Known files’ refers to the files/content which an organisations wants to
protect, is confidential, or other way around, an organisation does not
want to enter its network (e.g. a known malware).

e DLPS refers to data leakage and prevention systems.
e IDS refers to intrusion detection systems.
e SPA refers to single packet analysis mode while analysing network traffic.

e STA refers to stream analysis mode while analysing network traffic.

1.8 Structure of Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces concepts
of approximate matching, communication network’s model and network packet
inspection. These concepts are used in designing the prototype, developed for
performing network packet analysis.

Chapter 3 summarises how the implementation and testing is performed. It
discusses about the file set used for emulating known files, how the approximate

1.8 Structure of Thesis 7

matching algorithms are integrated into the prototype and eventually the over-
all proceedings to perform a test. The results thus obtained are elucidated in
chapter 4. The results chapter talks about the average true positive, false posi-
tive and false negative scores and the processing time taken to perform a match
for each packet. An improvement of initial single packet analysis approach is
proposed by using stream based analysis and discussed in the later half of the
chapter.

Chapter 5 gives an overview of the related research and development in the field
of data leakage prevention. Chapter 6 is about the discussion and analyses of
the work performed. While, the thesis is concluded by presenting a conclusion
and future work that could be performed in chapter 7.

Introduction

CHAPTER 2

Foundation

This chapter presents the foundation for the work performed in this thesis.
Section 2.1 gives an overview of hashing, while section 2.2 talks about crypto-
graphic hash functions, their characteristics and properties, and shortcomings of
cryptographic hash functions. Section 2.3 gives an introduction to the concept
of approximate matching. In the initial half of the section, evolution of ap-
proximate matching is presented, while in the later half working of sdhash and
mrsh-v2 is presented. Properties and characteristics of approximate matching
is also presented in this section.

Section 2.4 summarises the communication network models: OSI and TCP/IP
model. Network terminologies used in this work are also defined in this section.
Whereas, section 2.5 and section 2.6 discusses concepts of packet inspection and
encoding schemes respectively.

2.1 Hash Functions

A hash function, is a routine or an algorithm that maps arbitrary strings into
binary strings of fixed length. In simple words, hash functions compresses the
data, i.e, the output is shorter than the input. While a hash is a number that
is generated from some data using an hash function, in such a way that the

10 Foundation

distribution of the numbers look random and there is a low probability that the
same number is re-used. Hash can be interchangeably used with hash value,
hash code, hash sum or checksum.

Hash functions enable quick table lookup or data comparison tasks. Some util-
ity of hash functions are, finding items in database, detecting duplicate or sim-
ilar records in a large file, to build caches when data is stored on slow me-
dia etc. Hash functions can be broadly classified into cryptographic and non-
cryptographic hash functions based on some properties, which are discussed
in Sec. 5.2.1. Some examples of non-cryptographic hash functions are Fowler-
Noll-Vo (FNV) hash function and Java hashCode(), while cryptographic hash
functions can be exemplified by MD5(Message Digest family), SHA1, SHA2,
SHA3 (Secure Hash Algorithm family).

2.2 Cryptographic Hash Functions

Cryptographic hash functions (crypto hash) are most used for message integrity
check and digital signatures. Crypto hash are generally faster than encryption
algorithms, and therefore it is typical to compute the digital signature or in-
tegrity check of some document by applying cryptographic processing to the
document’s hash value, which is small compared to the document itself. Also,
making a digest public does not divulge any information about the content of
the original document. For instance, certain websites provide MD5 or SHA-
1 hashes of the binaries available for download along with the binaries. Such
practice ensures that the binary is authentic and is not compromised by an
attacker.

Next section enumerate the properties and requirements of a hash function to
call it a crypto hash. Note, all the crypto hash functions are hash functions but
not the other way around.

2.2.1 Requirements and Properties

For a hash function to be called as a cryptographic hash function, it should has
the following properties [31]:

Compression: Hash function A(z) should produce a fixed-length output string
s with bit-length n, for any given input string k of any arbitrary finite
length.

2.2 Cryptographic Hash Functions 11

Ease of Computation: Every hash-value of hash function h(z) is efficient to
compute in software and hardware.

Preimage Resistance: It is computationally infeasible to find an input string
z’ (preimage) such that h(z’) = s for any given output string s for which
corresponding input string x is unknown.

Second Preimage Resistance: It is computationally infeasible to find an in-
put string 2’ (second preimage) for any given input string x such that
h(z") = h(z).

Collision Resistance: It is computationally infeasible to find two distinct in-
put strings x and z’ such that h(z) = h(z’).

Non-correlation: Input string x and output string s are not correlated in any
way. Every bit of input string = affects every bit of output string s.

Near-collision Resistance: It is computationally infeasible to find two input
strings = and 2’ such that h(z) and h(z') hardly differ.

Partial-preimage Resistance: It is computationally infeasible to find any
substring of input string = for any given output string s even for any
given distinct substring of input string x.

Computationally infeasible implies that solving the underlying problem is not
possible in polynomial time or constrained memory.

2.2.2 Problems with Cryptographic Hashes

Cryptographic hash functions have found a wide spread use in the industry and
a significant effort is being made to develop more secure hash functions. But
crypto hashes suffer with a few shortcomings, especially to perform known file
filtering. In [42], Roussev enumerated certain scenarios in which crypto hashes
cannot be used as filters:

1. Identification of embedded/trace evidence: A file of one format
is embedded in another file of a different format. For example, a jpg
embedded in pdf file. As per conventional approach, hash of jpg will not
be able to indicate the presence of it in pdf file.

2. Identification of code versions: Softwares are updated and patched
very frequently and thus making it infeasible to maintain crypto hash
inventory of all the files for every single version.

12 Foundation

3. Identification of related documents: Documents undergo transfor-
mations as they are updated. Identifying the original source of document
is not possible with crypto hashes.

4. Correlation of memory and disk sources: During a forensic investiga-
tion it is needed to be able to correlate memory captures and disk images.
The run-time layout and content of an executable/document are different
from the on-disk representation, but still have identifiable commonalities.
Due to this difference, conventional hashes will fail.

5. Correlation of network and disk sources: Files transmitted over
a network are fragmented and interleaved. Current approaches require
time-consuming packet flow reconstruction and protocol parsing to extract
transmitted files before any hash filtering can be applied.

Cryptographic hashes (ideally) depend on every bit of the input, making them
inherently fragile and unsuited for similarity detection. Above stated shortcom-
ings of conventional hash algorithms emphasise the need of an alternative family
of algorithms, which is efficient in solving above problems.

2.3 Approximate Matching

Crypto hashes (by design) can only give simple yes/no answers, e.g. two files
matched using SHA-1 will either match or not. There is a need of an algorithm
which provides a probabilistic answer - a number between 0 and 100, when two
similar files are compared. The confidence score should be low when a small
amount of content in the two files is similar and a high score when ratio of similar
content is high. Approximate matching addresses some of the issues raised in
Sec. 5.2.2.

Before delving into details of approximate matching, ways in which matching
can be performed is presented. Matching can be performed in 3 different ways
and are elaborated below [43]:

Bitwise matching uses only the sequence of bits in a digital object. The
matching is performed irrespective of any structures within the data stream.
Approximate matching algorithms come under this category.

Syntactic matching uses internal structures present in digital objects. For
example, pdf and jpg files have some standard structure and that can be
used during matching.

2.3 Approximate Matching 13

Semantic matching uses contextual attributes of the digital object. This
matching is more closer to the human perception. For instance, a facial
recognition algorithms will look for facial patterns in images. The facial
recognition algorithm works agnostic to the format of the image feed it
uses.

Approximate matching or similarity hashing is a technique for identifying simi-
larities between or some digital objects, like files, storage media, network streams
etc. The underlying logic is to identify and pick some features or attributes from
each object and compare them. This collection of features is the signature of
the object under investigation. The confidence score thus generated should be
based on the number of features shared by the object.

In past few years, an effort has been made and a few such algorithms have been
proposed. ssdeep is known to be first of its kind and was accepted well by the
industry. Services like VirusTotal' uses ssdeep to identify malwares. sdhash is
successor to ssdeep but uses totally different approach for similarity detection.
mrsh-v2 is one of the latest approximate matching algorithm proposed and
have a significant performance advantage over its peers. These algorithms and
evolution of approximate matching is discussed in upcoming sections. But firstly,
we discuss about a special data structure called Bloom filters.

2.3.1 Bloom Filters

Bloom filter is a space-efficient randomized probabilistic data-structure for rep-
resenting a set in order to support membership queries. The concept of Bloom
filters was proposed by Burton Bloom in 1970 [2]. Lets try to understand the
need of Bloom filters with an example. During a forensic analysis, the investi-
gator has a reference hash set of 50 million hashes (Hge). During the investi-
gation, investigator hashes each file he encounters and compares the generated
fingerprint against H,.; to identify known content. For every query in Hg¢, ap-
proximately 26 main memory accesses are expected and each of which causing
a delay of tens of CPU cycles. Such a memory constrained workload severely
underutilizes the CPU, which directly slows down the investigation process.
Bloom filters provide an alternative to increase the speed of lookup operations
and reduce space requirements and in turn increasing the efficiency [40].

Bloom filters find extensive use in the field of computer networks, specifically
in network routing and traffic filtering [10] and in this section, their use in

Lvirustotal.com is a free online service which analyses malwares and urls, and facilitates

quick detection of malicious softwares

14 Foundation

Table 2.1: Bloom filter’s false positive rate variation with bits/element [40].

No. of Hashes 8 10 12 16
4 0.0240 0.0117 0.0064 0.0024
6 0.0216 0.0083 0.0036 0.0009
4 0.0255 0.0081 0.0031 0.0006

cryptographic hashing and approximate matching is discussed.

Working

The working of a bloom filter is straightforward. An empty bloom filter is a bit
array of m bits, all set to 0, used to represent a set S of n elements. A bloom
filter uses k independent hash functions hy, ..., by with range (1,...,m). In order
to insert an element s into the filter, we compute ho(s), ..., hx—1(s) where each
h outputs a value between 0 and m — 1. Thus, each hash function sets the
corresponding bit within the Bloom filter.

To check the presence of an element s’, we compute hg(s'), ..., hx—1(s") and check
if the bits at the corresponding positions are set to one. If all bits are set to one,
s’ is assumed to be a member of S with a high probability. If atleast one of the
bits is set to zero, it could be concluded that s’ is not member of S. The filter
will never return a false negative. However, filter can return a false positive, i.e,
it may return a ‘yes’ for a element which was never inserted [6].

After the insertion of n elements, the probability of Bloom filter returning a
false positive is a nonlinear function of the bit-per-element ratio m/n and the
number of hash functions k. The variation in false positive rate with different
parameter combination is depicted in Table 5.1 [40]. Fig. 5.1 shows an overview
of how a Bloom filter works.

Continuing with the scenario described above, instead of computing k separate
hashes for a given file, file’s cryptographic hash can be split into several non-
overlapping subhashes, and use them as if different hash functions have produced
them. A 128-bit MD5 hash can be split into four 32-bit separate hashes. This
will reduce the memory lookup from 26 to just four. Also, the false positive rate
of less than 0.3 per million doesn’t pose severe practical hindrance.

Bloom Filters also find extensive use in approximate matching algorithms to
represent hash values. Bloom filters allow fast comparison of similarity hashes

2.3 Approximate Matching 15

[ofolofofo]ofofo]o]ofo]o]ofo]o] [o]o]o]

(@) m

h(s)

[1]o]e]

o Leltlofo]t]r]ofofofo]1]ofofo]s] [[e]s]

Figure 2.1: The insertion of two elements into a Bloom filter using four hash
functions: (a)an empty Bloom filter; (b) a Bloom filter after the in-
sertion of one element, S7; and (c) a Bloom filter after the insertion
of a second element, So. Each insertion sets four bits in the filter;
some bits might be selected by different elements, hq(S1) = h3(S3),
which can lead to false positives [40].

using the Hamming distance. sdhash and mrsh-v2 use Bloom filters for per-
forming similarity matching. They are discussed in Sec. 5.3.4 and Sec. 5.3.5
respectively.

2.3.2 Evolution of Approximate Matching

Cryptographic hashes made searching for a object, which is exact copy of refer-
ence object, easy to perform, but searching for a similar object is still a challeng-
ing task. Awvalanche effect? in cryptographic hash functions make them unfit for

2A slight change in input will alter the output significantly, e.g, half the output bits flipped.
It is a desirable property of cryptographic algorithms.

16 Foundation

similarity detection.

The idea of using characteristic features of one object to compare with others
to establish similarity has been there for decades. This idea can be defined as
data fingerprinting, use of more resilient features of an object to identify it. One
of the first attempt for data fingerprinting was done by Michael Rabin in 1981
[37]. His idea was based on random polynomials, and with original purpose “to
produce a very simple real-time string-matching algorithm and a procedure for
securing files against unauthorized changes” [37]. Rabin fingerprint approach is
like a checksum with low, quantifiable collision probabilities that can be used
to efficiently detect identical objects.

Udi Manber’s sif unix tool, developed in 1994, is capable of quantifying simi-
larities among text files [30]. Sergey Brin in his pre-Google years used Rabin
fingerprinting in a copy-detection scheme. Broder et al. applied Rabin finger-
printing to find syntactic similarities among web pages [11].

2.3.3 Rolling Hash

Rolling hash is a hash function where the input is hashed in a window that
moves through the input. The rolling hash functions uses a small context of a
few bytes to procduce a pseudo-random value h,.. The rolling hash maintains a
state solely based on the last few bytes from the input. While processing, each
byte is added to the state and removed from the state after a set number of
other bytes have been processed. Let the input be of n characters, b; be the ith
character of the input. At any position p in the input, the state of the rolling
hash will depend only on the last s bytes of the file. Thus, the value of the
rolling hash, r, can be expressed as a function of the last few bytes as following:
rp = F(bps1,bp,0p—1,..;0p_s)

Rolling hash is used in Rabin Karp string search algorithm [27].

2.3.4 sdhash

sdhash was proposed by Vassil Roussev in 2010 [41]. sdhash uses a totally
different approach for similarity matching. It uses concept of similarity digest
hashing and hence getting its name (sdhash = similarity digest hash). sdhash
extracts statistically improbable features using the Shanon entropy, where a
feature is a byte sequence of 64 bytes. Each of the above selected feature is then
hashed using a cryptographic hash function SHA-1 [18]. When a Bloom filter

2.3 Approximate Matching 17

is full, a new filter is added to accommodate the remaining features. Thus, a
similarity digest consists of a sequence of Bloom filters and its length is about
2-3% of input length.

Bloom filters have predictable probabilistic properties. Thus, for comparison of
two sdhash signatures a Hamming distance-based measure D(e) is calculated.
The match score gives an approximate estimate of the fraction of features that
two filters have in common. To compare two digests, for each of the filters in
the first digest, the maximum match among the filters of the second is found
[42]. The resulting matches are then averaged.

The similarity distance SD(F, G) for digests F' = f1 fa...fn and G = g192.--gm,n <
m, is defined as:

1 n
SD(F,G) = NZmam D(fi,g;) where j =1..m
i=1

sdhash computes a normalized Shannon entropy measure, as emprical proba-
bility of encountering a 64-byte feature can neither be directly estimated nor
could such observation be practically stored and looked up. These normalized
features are placed into 1000 classes of equivalence.

2.3.5 mrsh-v2

Multi-resolution similarity hashing (MRSH) [44], proposed by Roussev et al., is
a variation of ssdeep [28|. mrsh-v2 is updated version of MRSH, proposed by
Breitinger & Baier [6] and is based on the concept of multi-resolution similarity
hashing and context triggered piecewise hashing [28].

mrsh-v2 identifies trigger points in the input byte sequence to divide it into
chunks. This division into chunks uses a pseudo random function prf and a
modulus called block size b. A window of fixed size 7 slides through the whole
input, byte for byte, and prf generates a pseudo random number r at each step
over the window. If r = —1 mod b, the byte sequence in the window is a trigger
point and thus the end of the chunk. The implementation aims at having a
fingerprint length of 0.5% and hence of b = 160 bytes.

Each chunk identified above is hashed using FNV [33]. The hash generated is
of 64 bit. In order to insert a FNV hash into m = 2048 bit Bloom filter, 11
bit sub-hashes are constructed based on the least significant 55 bits of the FNV

18 Foundation

hash. Lastly, each sub-hash sets one bit within the Bloom filter. For example,
if a sub-hash is 100101001pinary = 129%hex = 297decimal, then the bit 297 in the
Bloom filter is set to one.

A maximum of 160 chunks per Bloom filter are allowed in mrsh-v2 by design.
If this limit is reached a new Bloom filter is created. Hence, the final finger-
print obtained is a sequence of Bloom filters. Variable length fingerprints are
generated by mrsh-v2, unlike traditional hash functions [31].

mrsh-v2 Block Size

Block size b is the amount of chunk per Bloom filter. If the block size is small,
then it provides better coverage and higher sensitivity but requires more storage
and processing time. On the other hand, a bigger block size covers less detail
and thus is less processing intensive on comparison.

A trade-off is required to be maintained between the block size and the pro-
cessing time. In Table 5.2 gives an overview of how the hash length varies with
change in block size.

Table 2.2: Relation between block size and hash value length for mrsh-v2 [6].

Blocksize 128 160 256 320 512
Expected length in % 1.250 1.000 0.625 0.500 0.313

Comparison with sdhash

mrsh-v2 is a significant improvement over its predecessors. Computation time
for mrsh-v2 is lower than sdhash, and closest to classical hash function SHA-1.
A relative comparison of computation time is tabulated in Table 5.3.

mrsh-v2 offers better content coverage than sdhash, where coverage in case of
approximate matching means that every byte of the input influence the output

[7].

Additionaly, mrsh-v2 provides two modes for performing a comparison, frag-
ment detection mode and file similarity mode. In case of known content de-
tection in network traffic, each network packet is containing fragment of the
original file. Thus, fragment mode is ideally suited to the thesis goal.

2.3 Approximate Matching 19

Table 2.3: Relative comparison of approximate matching algorithms with
SHA-1 [6].

SHA-1 mrsh-v2 sdhash 2.0 ssdeep 2.8
1.000 2.054 11.236 2.798

In the present work, we will use sdhash and mrsh-v2 for performing matching
on network traffic and establish which one of them is more suitable for real time
deployment.

2.3.6 Other Approximate Matching Algorithms

ssdeep

ssdeep was proposed by Kornblum in 2006 [28]. The tool ssdeep produces con-
text triggered piecewise hashes, commonly referred to as fuzzy hashes. Working
of ssdeep is simple:

1. Break up the file into pieces using the result of a rolling hash functions.
2. Use another hash function to a produce a (small) hash for each piece.

3. Concatenate the results to produce the hash signature for the whole file.

In [42], a comparison of ssdeep and sdhash is presented. Some of the key
comparison results are summarised in Table 5.4. In brief, ssdeep have inferior
detection rate than sdhash and also it is slower than mrsh-v2 and sdhash (see
Table 5.3). By design, ssdeep’s performance is highly dependent on the presence
of a large, continuous chunk of common data, and thus making it unfit to use
for network traffic analysis. ssdeep is not considered as a candidate algorithm
in this work.

bbhash & mvHash-B

Some other candidates which are also considered during the initial phases are:
bbhash [5]| and mvHash-B [4]. But these algorithms have performance issues.
bbhash is to slow and not fit to be used in case of network packet analysis [6].
While, mvHash-B is file type dependent and thus not further considered.

20 Foundation

Table 2.4: ssdeep vs sdhash: True, false, and total known positives [42].

Set ssdeep sdhash Total
TP FP TP FP

pdf 39 28 45 25 46
doc 40 31 o1 7 93
All 653 310 1124 71 1189

2.3.7 Properties of Approximate Matching Algorithms

Inspired from cryptographic hashes, in [6] Breitinger et al. proposed properties
for approximate matching. The properties are divided into two groups: general
and security properties. These properties provide parameters for comparing two
approximate matching algorithms. The properties are discussed below:

General Properties:

1. Compression: The output of approximate matching is much smaller than
the input. The shorter the output the better it is. Unlike conventional
hash algorithms, the output is not a fixed-length hash value. The compres-
sion is a desired quality because, firstly, a short hash value is space-saving
and secondly, the comparison of small hash values is faster.

2. Ease of Computation: Generating a hash value is ‘fast’ for all kind
of inputs. The processing time should be comparable to classical hash
functions like SHA-1. This property ensures the usability in practice.

3. Similarity Score: Comparison of approximate matching hash values is
more complex than compared to traditional hashes, which use Hamming
distance. Input of a comparison function are two hashes to be compared,
returning a score between 0 and X, where X being the maximum match
score. A maximum match score is indicative that two files are identical
or almost identical. Generally similarity score is between 0 and 100 and
represents a percentage value.

Security Properties:

1. Coverage: Every byte of an input should influence the hash value. Sta-
tistically, given a certain byte of the input, the probability that this byte
does not influence the input’s digest is insignificant.

2.4 Communication Networks 21

2. Obfuscation resistance: It should be difficult to achieve a false negative /non-
match. For example, let f be a file under investigation. It should be dif-
ficult to manipulate f to f’ so that a comparison yield a non-match but
they are still very similar.

2.3.8 Use Cases

Approximate matching potentially have extensive use in forensic analysis by
identifying similar objects, malware or junk mail detection. In [6], use of approx-
imate matching is broadly classified into two categories: for file identification
and fragment detection. Each of the use cases are discussed below:

File Identification: In computer forensics a database of fingerprints of known
malware or files from previous investigation is maintained. During the investiga-
tion process, fingerprints of the new identified content is generated and matched
against this database to quickly identify the new content. The segregation of
hashes into known-to-be-good, known-to-be-bad and unknown input can further
simplify the forensic investigation.

Blacklisting. The main challenge for an active adversary is to conceal suspect
files from an automatic identification by investigators, anti-virus software or junk
mail scanner etc. In case of cryptographic hash functions it can be trivially done
by flipping a single bit, but it is not possible in case of approximate matching.

Whitelisting. In case of whitelisting, cryptographic hash functions are the pre-
ferred choice. For instance, an active adversary can manipulate the ssh daemon
of an operating system and include a backdoor. Thus, the original file and
the modified file are very similar although it is a malicious ssh daemon. The
whitelisting is out of scope of consideration, as no adversary will like to manip-
ulate a file to look like a suspect file.

Fragment Detection: An investigator is encounters a hard disk which is for-

matted using quick-mode. The only way to analyse the data is by analysing the
low level hdd blocks. SPH can be used in analysing these file fragments.

2.4 Communication Networks

This section describes network terminology frequently used in this work and
the framework for the specification of network’s physical components and their

22 Foundation

functional organization and configuration. OSI and TCP/IP are two important
reference model for network architecture discussed in Sec. 5.4.2 and Sec. 5.4.3.
TCP/IP model will be used as a reference in this thesis.

2.4.1 Network Terminologies
Some terminologies frequently used with network traffic are described below [3]:

Segment A segment is the unit of end-to-end transmission in the TCP protocol.
A segment consists of a TCP header followed by application data.

IP Datagram An IP datagram is the unit of end-to-end transmission in the IP
protocol. An IP datagram consists of an IP header followed by transport
layer data.

Packet A packet is the unit of data passed across the interface between the
internet layer and the link layer. It includes an IP header and data. A
packet may be a complete IP datagram or a fragment of an IP datagram.

Frame A frame is the unit of transmission in a link layer protocol, and consists
of a link-layer header followed by a packet.

2.4.2 OSI Reference Model

Open System Interconnection (OSI) Model [46] is a conceptual model proposed
in 1983. This model characterizes the internal functions of a communication
system by partitioning it into abstraction layers. As per the model, communi-
cation network can be divided into 7 logical layers. Each layer is a collection
of similar functions. A layer provides services to the layer above it and receives
services from the layer below it. The proposed 7 layers and their respective
functions are discussed below:

Physical Layer This layer defines the electrical and physical specifications for
devices. This layer ensures that if one side sends 1 bit, then the other side
receives 1 bit, not as a 0 bit. In a nutshell, this layer is concerned with
transmitting raw bits over a communication channel.

Data Link Layer At this layer, data packets are encoded and decoded into
bits. It accomplishes this task by having the sender break up the input
data into data frames and transmit the frames sequentially. Acknowledge-
ment frame is returned in confirmation on receiving a correct frame.

2.4 Communication Networks 23

Network Layer This layer is responsible for controlling the operation of the
subnet. Switching and routing technologies are implemented on this layer.

Transport Layer This layer provides transparency in transfer of data between
end users. Transport layer ensures the reliability of a given link through
flow control, segmentation/ de-segmentation, and error control. It is true
end-to-end layer, all the way from the source to the destination.

Session Layer The session layer allows user on different machines to establish
session between them. The operation of setting up a session between two
processes is called Binding. In some protocols this layer is merged with
the transport layer.

Presentation Layer This layer is concerned with the syntax and semantics
of the transmitted information. It ensures the independence from data
representation by translating between application and network formats.

Application Layer This layer is closest to the user. This layer directly in-
teracts with software applications that have a communicating component.
HTTP protocol is works on this layer of the network.

2.4.3 TCP/IP Model

This model was proposed by Cerf and Kahn in 1974 [13] and divides the network
into four layers. Each of these layers are discussed below in detail:

Link Layer TCP/IP model does not discuss much about the link layer. Though,
it is the lowest component layer and ensures that TCP/IP can work on
any hardware. This layer is used to move packets between two hosts on
the network.

The Internet Layer This layer is responsible for injecting the packet into any
network and sending the packet to potentially multiple networks. Internet
layer defines an official packet format and protocol called Internet Protocol
(IP). IP performs two basic functions:

e Host addressing and identification by having hierarchical IP address-
ing system.

e Secondly, packet routing.

ICMP and IGMP are some protocols that are carried over IP.

24 Foundation

Transport Layer This layer allows the peer entities on the source and desti-
nation hosts to perform a conversation. Major responsibility of this layer
are: end-to-end message transfer independent of the underlying network,
along with error control, segmentation, flow control, congestion control,
and application addressing. Two end-to-end transport protocols have been
defined for this layer: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

Application Layer Unlike OSI model, TCP/IP model does not have a session
or presentation layer. Application layer directly interacts with the trans-
port layer to communicate over the network. All the higher level protocols
like FTP, HTTP, SMTP etc. work on this network layer.

In this thesis, TCP/IP model will be used as a reference. All the experiments
and results are reported in accordance to TCP/IP model.

2.4.4 Maximum Transmission Unit

Maximum Transmission Unit (MTU) is defined as the maximum size datagram
that can be transmitted through a network [35]. The MTU depends on the link
layer technology being used for the network. In case of IEEE 802.3 Ethernet,
MTU is 1500 bytes [22].

2.4.5 TCP Segmentation Offload

Large Segment Offload (LSO) technique, it is used to increase the outbound
throughput of high-bandwidth networks by offloading packet processing time
from CPU to the Network Interface Card (NIC). When LSO is applied on TCP,
it is called as TCP Segmentation Offload (T'SO). The working of TSO can be
explained with the help of an example. Let a unit of 65,536 bytes is to be
transmitted by the host device. Assuming MTU of 1500 bytes, this data will
be divided into 46 segments of 1448 bytes each before it is transmitted over
to network through the NIC. Process of dividing the data into segments before
sending it over the network is handed over to NIC instead of CPU. NIC will
break down the data into smaller segments, and add corresponding TCP, IP
and data link layer protocol headers. This significantly reduces the work done
by the CPU. Large Receive Offload (LRO) is a similar technique to GSO, but
applied for incoming traffic [17].

2.5 Packet Inspection 25

Shallow Medium Deep
Level Packet Packet Packet OSI Model
Inspection Inspection Inspection

Application Layer
Presentation Layer
Session Layer
‘Transport Layer

Network Layer

Data Link Layer

Physical Layer

\ A

Figure 2.2: Packet inspection depths [34].
2.5 Packet Inspection

Packet analysis is the technique of analysing the content of the network packet to
search for protocol non-compliance, viruses, spam, intrusions or, for the purpose
of collecting statistical information. One of the first approach to analyse network
packet was static packet inspection. In this approach, as the name suggests,
each packet is considered one at a time and examines each packet based on the
header information like: source IP, destination IP, source port and destination
port. Static packet inspection is very easy to deploy but also very easy to evade.

The next approach in the packet inspection evolution is stateful /dynamic packet
inspection (SPI). SPI is similar to static packet inspection but one main differ-
ence. In this, the packet filter is aware of the new and an established connection
and maintains a state of the connection.

On the basis of network layer of operation, packet inspection can be broadly
classified into three categories: Shallow, medium and deep packet inspection.

2.5.1 Shallow Packet Inspection

In shallow packet inspection, the headers of the network packet are parsed, and
the results are compared to a rule set. In this approach, a tuple of 5 elements
is maintained for each connection. The 5 elements are: Source IP address,
Destination IP address, Source transport layer address, destination transport

26 Foundation

layer address and service type. The rules are defined based on these fields or a
combination of them. The traffic is allowed or denied depending on whether it
adhere to the rules or not [14].

2.5.2 Medium Packet Inspection

Medium packet inspection (MPI)is done by Application Proxies (AP) or gate-
way. These AP are placed inline with network routing equipment and thus
ensuring that all the network traffic pases through these proxies. MPI allows
to parse network traffic on basis of data format types. For example, MPI can
be used to prevent client computers from receiving flash files from YouTube, or
image files from social network files [14].

2.5.3 Deep Packet Inspection

Deep packet inspection (DPI) "is a computer network surveillance technique
that uses device and technologies that inspect and take action based on the
contents of the packet, i.e. it consider the complete paylaod of packet rather
than just the packet header which includes data up to layer 7 of OSI model"
[14].

Fig. 5.2 shows the packet inspection classification with respect to the OSI model.

2.6 Encoding Schemes

Digital systems can store information only in the form of bits. A bit can only
have two values: 1 or 0. In order to convert these stored bits into something
meaningful like English alphabet, numbers and images, one requires an encoding
scheme or encoding. Encoding is a rule which gives some meaning to the data
stored using it.

Encoding is the process of transforming a sequence of characters into a special-
ized format for (efficient) transmission or storage. While decoding is inverse of
encoding and defined as the transformation of an encoded sequence back to the
original one. ASCII, Base64 or Unicode are commonly used encoding schemes.
For example, bit sequence 01100010 is letter b in ASCII encoding. A string of
1s and Os is broken down into parts of eight bit each.

2.6 Encoding Schemes 27

Encoding is used in plethora of ways in network traffic. For instance, SMTP is a
text based protocol and thus sending binary data is prone to getting corrupt. To
circumvent this problem, SMTP binary payload can be encoded with a binary-
to-text encoding schemes like Base64, Basel6 (hexadecimal) or Uuencoding [26].

It can be concluded that, in spite two inputs are completely identical, the un-
derlying byte structure can be different depending on the encoding scheme used
18].

28

Foundation

CHAPTER 3

Experimental Setup

The following chapter summarises the steps to setup the development environ-
ment and to perform the tests. The first section discusses about the tools and
libraries used to create the prototype and to ensure its memory and runtime
efficiency.

Section 6.2 talks about the file set used for emulating the ‘known file’ of an
organisation. A corpus of random data files is used for establishing general
feasibility of the approach and a corpus of commonly used file types is used to
emulate real world data. The protocols and tools used for generating network
traffic containing the ‘known file’ and steps taken to ensure that it mimics the
traffic in an organisation’s network are discussed in Sec. 6.3. Sec. 6.4 describes
how the packet matching is performed for 4 TCP/IP layers.

Sec. 6.5 gives an insight on how mrsh-v2 and sdhash are integrated to perform
network traffic analyses smoothly. While, the last section summarises the overall
procedure followed to perform various tests.

As discussed in Sec. 5.3, mrsh-v2 and sdhash approximate matching algorithms
are used in the developed prototype. In further text, the term sniffer is used
to refer to the prototype/tool developed.

30 Experimental Setup

3.1 Infrastructure

The development and testing is done on a machine running Fedora 17 with
Linux kernel 3.8 on Intel Core 2 Duo (3 Ghz) processor, with 4 GB RAM.
The prototype is implemented in C/C++ in order to have a good runtime
efficiency. Libpcap-1.2! is used for capturing network traffic. Libpcap provides
a system agnostic portable framework for collecting network statistics, security
monitoring and network debugging. Tcpdump, wireshark?, snort® are some
popular open source projects using Libpcap.

3.1.1 Development Environment

The development is carried out in VIM editor, while debugging is performed
using cgdb?. cgdb is a lightweight terminal-based interface to the GNU Debug-
ger (GDB). cgdb provides a split screen view displaying the source code being
debugged, and thus used instead of GDB.

Memory Leakage

Improper handling of memory allocation in C/C++ may lead to memory leak-
age. Memory leakage can significantly effect program’s performance by reducing
the available memory to the program. In worst case, the program may be ter-
minated by the operating system. Memory leakage might go unnoticed in case
of program that run for short time, as extra memory allocated will be released
soon after the program’s termination. In the present case, the program runs for
a long duration, thus addressing memory leakage is of utmost importance. To
check and prevent memory leakage Valgrind (version 3.8.1) is used. Valgrind
is an open source tool for dynamic analysis, used for memory debugging and
memory leak detection. It is a framework comprising of various tools to perform
dynamic testing. A typical use of valgrind during the prototype development is
shown in Listing 6.1.

valgrind -v --tool=memcheck --leak-check=yes --show-reachable=yes --num-callers
=20 --track-fds=yes --track-origins=yes <executable>

Listing 3.1: Use of valgrind for detecting memory leakage.

www.tcpdump.org (last accessed 2013-June-25).
wireshark.org (last accessed 2013-June-25).
snort.org (last accessed 2013-June-25).

1
2
3
4yww.cgdb.github.io (last accessed 2013-June-25).

www.tcpdump.org
wireshark.org
snort.org
www.cgdb.github.io

3.2 File Set 31

Table 3.1: File size statistics for RS and T'S corpus.

Corpus Total Files Avg. Size Min. Size Max. Size
Random Files 1000 410.12 KB 4.00 KB 14 MB
TS Corpus 3282 487.06 KB 4.00 KB 17 MB

Execution Time Profiling

In order to analyse the execution time of the constituent parts of a program,
gprof is used; available through operating system’s package manager yum. The
programs source code is compiled with -pg option of gcc. A profile file, gmon.out
is created which is used to calculate the amount of time spent in each routine.
gprof gives run-time figures based on a sampling process, so it is subject to
statistical inaccuracy. Inspite of this limitation, it gives a good approximate
idea about the program’s execution times. Linux’s time command provides the
execution time of the overall script/program and cannot be used to determine
the execution time of comprising routines of a program.

3.2 File Set

This section elaborates on the corpus used for emulating ‘known file’ of an
organisation and how it is generated.

Two data sets are developed, one comprising of random data (RS) and other of
real world data (T'S). RS is used for establishing the feasibility of the approach,
while T'S is used to emulate real world scenario.

Random data is generated using Linux’s /dev/urandom/ together with dd com-
mand (Listing 6.2). RS consists of 1000 files with random data.

‘dd if=/dev/urandom of=./dev_random/file bs=1024 count=file_size

Listing 3.2: Linux’s command to generate random files.

TS is developed by modifying ¢5 corpus®. t5 corpus is widely used within digital
forensics and includes commonly used file types, like pdf, doc, jpg etc. t5 does
not contain executables, thus 400 executables from a machine running Windows

Shttp://roussev.net/t5/t5-corpus.zip (last accessed 2013-June-25).

http://roussev.net/t5/t5-corpus.zip

32 Experimental Setup

are included. Also, html files in t5 corpus are omitted, as html files are not
used for transferring confidential information and they are similar to text files.
Results for text files will hold true for html files as well. A general overview of
the file sizes in the corpus is highlighted in Table 6.1.

In case of real world data, it is ensured that the corpus does not contain similar
files. Similar files are detected using all-against-all-comparison of mrsh-v2. Two
files having match score > 0 are called similar and either of the file is removed
from the corpus. The corpus obtained after removing similar files is called test
corpus (T'S) and its constitution is shown in Table 6.2.

Table 3.2: Statistics of t5-corpus and test-set T'S.

jpg gif doc xIs ppt pdf txt exe html

t5 362 69 533 250 368 1073 711 O 1073
TS 358 69 333 212 282 954 674 400 0

3.3 Network Traffic Generation

Network traffic is generated by transmitting RS and TS corpus using various
application layer protocols. During the testing phase, three widely used appli-
cation layer protocols are used: HTTP, FTP, and SMTP. However, the whole
approach of using approximate matching for known file detection is protocol
agnostic.

The network traffic is generated locally and is available for local use only. The
traffic is accessed over the loopback network interface. The outside access to the
generated traffic is blocked by making suitable changes to the respective con-
figuration files and adding rules to the local firewall. The tools and commands
used for generating network traffic for various protocols is discussed in detail
below.

HTTP: httpd package provided with Fedora distribution is used for setting up a
local HTTP server. Underlying httpd is Apache HTTP Server. systemctl is used
for starting and controlling the state of httpd service. To generate network traf-
fic, each file in the corpus is copied to the http server’s directory (/var/www/html
in Fedora) and accessed one at a time using Linux’s curl command.

FTP: FTP traffic is generated by setting up a local FTP server using wvsftpd

3.3 Network Traffic Generation 33

package provided by yum package manager. The traffic is generated by making a
request for each corpus file using Linux’s curl command. Note, FTP can operate
in two modes: binary mode and ASCII mode [21]. The tests are performed using
the binary mode.

SMTP: SMTP traffic is generated using mpack package provided by yum pack-
age manager. mpack encodes the attachments in Base64 encoding. To generate
traffic, an email is sent to a local email address (on the same machine) with a
corpus file as an attachment to it. sendmail command can send emails only
in ASCII (text) format, which is not considered to be a best practice to send
binary files and thus not used for generating and testing SMTP network traffic.

Offline Network Packets

Performing each test by sending same corpus each time is a time intensive pro-
cess. A typical test for generating match scores for mrsh-v2 with 7S takes more
than 16 hours. For each test, the sniffer is started, followed by a sleep time
of 3 seconds, to ensure the fingerprint list is read and ready to be used by the
sniffer. Also, a sleep time of 5 seconds is maintained after generating network
traffic to avoid mixing of traffic between analysis of two files.

In order to bring down the testing time for a single test, network packets are
taken offline and written to the filesystem. sdhash and mrsh-v2 are fast in
performing file-against-file comparison. Running test against offline network
packets reduces testing time for a single test by half. The testing times are
still higher than expected, as ext4 filesystem performance decreases when a
directory contains a large number of files. In this case, a directory contains
more than 290,000 network packets. Though, a slight improvement is achieved
by arranging the packets in sub-directories, and it takes 7.5 hours to perform a
test.

MTU & TSO

In this work, all the traffic for testing is generated on the loopback (lo) network
interface of the device. By default, MTU (see Sec. 5.4.4) for lo is 65,535 bytes.
The MTU is reseted to 1500 bytes using ifconfig lo mtu 1500 command, to
ensure that test environment emulates the real scenario.

Since, TSO (see Sec. 5.4.5) is used at end user machine only and approximate
matching approach is applicable for the routers and other network devices as
well, TSO is disabled for the experimentation. On a Linux host TSO can be

34 Experimental Setup

disabled using ethtool -K tso off command.

3.4 Layer Specific Packet Matching

Packet matching can be performed for any of the 4 TCP/IP network layers
(Sec. 5.4.3). The additional header included in the network packet for a given
payload might effect the detection rate negatively. In theory, the detection rate
for the packet stripped off all the layer specific header, which is effectively file
fragment only, should give the highest possible match score. But detecting each
header’s length and hence stripping it off is a time consuming process. Therefore,
a trade-off has to be made between the match score and processing time.

During the testing, the header for each layer is stripped off individually and
then matching is performed. If the link layer and IP header are stripped to
perform the match, it is called matching at TCP layer. For the remainder of this
thesis, matching is said to be performed at a certain layer if all the headers are
stripped off. For application layer matching, all lower layer headers are stripped
off. Hence, only application layer header and the payload is considered.

For a given network packet, score and processing time for each layer is generated.
Analysing these statistics, the network layer which shows the best behaviour is
decided and is used.

3.5 Integrating mrsh-v2 & sdhash into sniffer

The prototype uses approximate matching tools, mrsh-v2 and sdhash. One
of the method for integrating mrsh-v2 and sdhash is by calling the respective
executables from the sniffer directly. Any change to the internal source code
in the future version of the tools won’t effect the working of the prototype, until
the user interface is changed. But accessing the executable from a program is
a slow process and will introduce unwanted latency in the network traffic. An
alternative to this is to import the source code to the prototype and make the
respective method calls from the program itself. Since, the source code for both
the tools is open source and easily available, approach to import the source code
into the prototype is pursued. Integrating and calling respective algorithms from
the sniffer is simple and described in the following sections.

3.5 Integrating mrsh-v2 & sdhash into sniffer 35

3.5.1 sdhash

sdhash-2.3 is used in the present implementation of the sniffer. sdhash can be
integrated by using the library libsdbf.a generated on compiling and installing
sdhash on a system. In sdhash source code, sdbf class represents a hash of file,
while sdbf set is a vector comprising of list of sdbf objects. A sdbf object is
created for all the ‘known files’ against which the comparison of a network packet
is to be carried out, which all together constitutes a sdbf set (known_ sdbf set).

A new sdbf object is created for each network packet by passing the pointer
to the network packet to the sdbf constructor. This sdbf constructor generates
a sdhash fingerprint for the network packet. sdhash implementation exposes
a method for matching two sdhash sets against each other. Thus, each net-
work packet’s sdbf object is added to a singleton sdbf set (packet sdbf set).
packet sdbf set and known_ sdbf set are compared against each other to ob-
tain the result. The sdhash returns match score as a string, which is parsed
in the sniffer to perform further actions depending on the match score. A
typical implementation of sdhash in the sniffer is shown in Listing 6.3.

/*creating new sdbf object for incoming network packet */
sdbf *sdbf_obj = new sdbf(packet_name, packet, SDHASH_BLOCK_SIZE, packet_length);
sdbf_set *sdbf_query = new sdbf_set();

/*singleton set for the network packet’s sdbf object */
sdbf_query-> add(sdbf_obj);

/* comparing known files set with above created network packet’s sdbf set.*/
result_string = set_known_files—>comapare_to(sdbf_query, SCORE_THRESHOLD,
SHDASH_SAMPLE_SIZE) ;

Listing 3.3: Code snippet for importing sdhash into sniffer.

3.5.2 mrsh-v2

For integrating mrsh-v2, source code is need to be imported and integrated
for making respective function calls to perform packet matching. mrsh-v2 de-
fines a struct FINGERPRINT, which contains mrsh-v2 fingerprint for a file.
The approach with mrsh-v2 is similar to sdhash. FINGERPRINT LIST is a
list of FINGERPRINT. FINGERPRINT is created for each ’known file’ and
put together in a single FINGERPRINT LIST. When a network packet is
received, FINGERPRINT is created for that packet. mrsh-v2 exposes fin-
gerprint_against_all _comparison() method to perform comparison of a single

36 Experimental Setup

FINGERPRINT against a FINGERPRINT LIST. A typical usage of mrsh-v2
usage in sniffer is shown in Listing 6.4.

/*create FINGERPRINT for the incoming network traffick/
FINGERPRINT *fp_pkt = init_empty_fingerprint();

/*hash the packet to generate the correspoding fingerprint */
hashPacketBuffer (fp_pkt,packet, lenght_packet);

/*compare known file’s list with the network packet */
fingerprint_against_list_comparison(known_file_list, fp_packet);

Listing 3.4: Code snippet for importing mrsh-v2 into sniffer.

mrsh-v2 returns a MATCH LIST struct as a result of comparison performed,
which is parsed by the sniffer to perform further operations depending on
match score.

3.6 Per Packet Processing Time

Processing time per packet is the time taken to generate the fingerprint of the
network packet and compare it against the ‘known files’ fingerprints. To per-
form match at layers other then link layer, the lower layer headers have to be
stripped off, which also consumes some processing time and included in the
final processing time for each packet. Time for stripping the header is also in-
cluded in the processing time. In a nutshell, the time taken since the network
packet is received by the sniffer and the corresponding result are reported for
the packet, constitutes per packet processing time. From here on, per packet
processing time will be referred as processing time, if otherwise specified.

Processing time is computed using C'++ clock() function in time.h header file.
clock () returns the processor time consumed by the program, also called CPU
time. The value returned is expressed in clock ticks, which are units of time of
a constant but system-specific length. To calculate the actual processing time
of a program, the value returned by clock is compared to the value returned by
a previous call to the same function.

3.7 Proceeding

This section discusses the working of the prototype in detail. The steps to start a
typical test are highlighted, including fingerprint list generation, network traffic

3.7 Proceeding 37

generation, packet matching and its analysis. The proceeding is straight forward
and the steps involved are discussed in upcoming sections.

3.7.1 Fingerprint Set Generation

A fingerprint set is a list/database containing fingerprints of ‘known files’ gen-
erated by approximate matching algorithm. Two separate fingerprint set are
created for each algorithm. A Shell script is used to automate the processes
of generating fingerprint sets. Each file from the corpus (RS or T'S) is hashed
using mrsh-v2 and sdhash and the hash is added to the respective fingerprint
set.

Listing 6.5 shows the commands used to generate fingerprint for a file using
mrsh-v2 and sdhash.

mrsh-v2: mrsh -p <directory> >> fingerprint.mrsh

sdhash: sdhash <filename> >> fingerprint.sdbf

Listing 3.5: mrsh-v2 & sdhash commands to generate hash for a file.

All the fingerprints with mrsh-v2 are generated with blocksize of 80 (see Sec. 5.3.5),
as in a test scenario with 1000 random files, only 172,167 network packets are
detected with blocksize of 160, while 180,509 packets are detected with blocksize
of 80.

Encoded Traffic

In case for encoded traffic, a separate fingerprint set is to be created. During
the testing, Base64 encoding is used. For creating the fingerprint set, each file
is converted into Base64 format and this Base64 string is hashed using mrsh-v2
and sdhash. It is observed that packets having Base64 encoded data have an
additional newline character at each 72"? position. In order to increase the
detection rate of Base64 encoded files, newline character at every 72"¢ is also
added while creating fingerprint set for encoded traffic. The files are encoded
to Base64 scheme using Python scripts.

38 Experimental Setup

3.7.2 Network Traffic Generation

As discussed in Sec. 6.3, network traffic is generated by starting protocol specific
system daemon. The file is accessed by making protocol specific requests. In
case of HTTP and FTP, requests are made using Linux’s curl command. SMTP
traffic is generated by using mpack command. The length of the content in the
email body is 30 character for all tests. The commands used for generating the
respective traffic are shown in Listing 6.6.

HTTP: curl ‘http://localhost/<file>’ > /tmp
FTP: curl -u <username:password> ‘ftp://localhost/<file_path>’ -o /tmp’
SMTP: mpack -s <subject> -c <content type> <file> <email>

mpack -s "Matching" -c application/pdf 000010.pdf admin@localhost.localdomain

Listing 3.6: Commands to access HTTP, FTP and SMTP traffic.

To calculate true positive, false positive and false negative scores, the sniffer
is executed for one file at a time and all the corresponding packets’ statistics
are written to a file. By doing so, it is ensured that network traffic of two files
is not mixed.

3.7.3 Sniffing & Analysing Network Traffic

sniffer is responsible for sniffing network traffic, hashing the packets using
either mrsh-v2 or sdhash and comparing these network packets against the
set of fingerprints of ‘known files’. Main settings and parameters required by
sniffer are:

-a: Set algorithm mr=mrsh-v2 or sd=sdhash

-1: Input file containing list of hashed files

-0: Redirect the matching score output to a file

-0: read from offline packet dump

-w: write packets to file for offline use

-s: Get statistics of the session

-f: Filter in pcap format to filter sniffer packets.
-d: Network Interface to sniff packets from.

-t: threshold matching score

3.7 Proceeding 39

sniffer on startup, reads the input file containing the list of fingerprints of
‘known files’, created in Sec. 6.7.1, and loads the hashes into the RAM. When a
network packet arrives, its fingerprint is created using the approximate matching
algorithm specified during the startup. This generated fingerprint is compared
against the hashes of ‘known files’. If the match score is more than the specified
threshold score, then the file detected is reported.

In order to keep the latency introduced by sniffer to minimum, the number
of processed packets can be reduced by filtering the network traffic. sniffer
supports pcap filter format for filtering network traffic. While testing protocol
specific packets like TCP’s SYN, FIN and ACK packets, HTTP’s GET requests
are filtered out. Also, these small packets are unlikely to contain file payload.

All the match scores reported by the tool are redirected to a file. After comple-
tion of transmitting all the files in the corpus, the file containing the statistics
is evaluated. Evaluation of such a file is discussed in the next section.

3.7.4 Result Compilation

The statistics file generated in the previous section is evaluated using Python
scripts. A typical output of sniffer for a single packet looks like:

[*] Packet number:1

[*] Total packet:/corpus/t5/000109.jpg | whole_packet | 095

[*] IP Packet:/corpus/t5/000109.jpg | ip_packet | 097

[x] TCP Packet:/corpus/t5/000109.jpg | tcp_packet | 097

[*] Payload Packet:/corpus/t5/000109. jpg | payload_packet | 100
[*] Total Time: 0.030

The scripts reads output for each packet for all the files tested, and maintains
score on per file basis as well as globally (all files together). The scripts calculates
many parameters, some of the important one are: total number of packets
encountered, match scores for all four network layers for each packet, processing
time for each packet and average scores. The output of the analysis looks like:

THRESHOLD: 25
Total Files:3276
Total Files detected: 3276

6

www.manpagez.com/man/7/pcap-filter (last accessed 2013-June-25).

www.manpagez.com/man/7/pcap-filter

40 Experimental Setup

Packets above threshold count 260230
total packet count: 290314

true positive packet count: 260111
false positive packet count: 41577
false true both count: 41458

false negative packet count: 30084
average true positive score: 95
average false positive score: 58
highest true positive score: 100
lowest true positive score: 26
highest false positive score: 100
lowest false positive score: 26

true positive percentage: 89.59
false positive percentage: 14.32
unique false positive percentage: 0.04
false negative percentage: 10.36

The parameters calculated above are discussed in detail in the next chapter.

CHAPTER 4

Experimental Results

This chapter discusses the results obtained after performing various tests to
establish the feasibility and efficiency of the proposed approach. Initially, the
terminology used in the rest of the chapter is described. Section 4.2 talks about
the results obtained on using random data for emulating ‘known files’. In this
section, feasibility of approximate matching based approach is established and
also motivates which network layer and approximate matching algorithm to use.

Section 4.3 discusses about the results obtained while emulating real world sce-
nario by using T'S corpus. Section 4.4 and section 4.5 discusses the feasibility
of detecting encoded traffic and embedded information using present approach
respectively. While, in the last section stream based analysis approach is pre-
sented.

4.1 Terminology Used

Following terminology is used to describe the results obtained during the various
tests [8].

True Positive (TP) is when a packet of a given file is detected correctly, i.e,

42 Experimental Results

approximate matching algorithm detects the file which is actually there in
the packet.

False Positive (FP) is when approximate matching algorithm reports pres-
ence of another file in a packet of a given file. In simple words, false
detection of a file in a packet.

False Negative (FN) is when approximate matching algorithm does not de-
tect any file in a packet, though the packet is known to be of a file from
the database.

Threshold (t) is the score to classify a match as true positive or false positive.
As we only consider scores equal to or greater 25: 25 < ¢ < 100.

True positive rate (TPR) is the amount of network packets that yield a
score > t when comparing it against the original file digest.

False positive rate (FPR) is the amount of network packets yielding a score
> t but the packet match does not belong to the file. Note, that a false
positive can have I or more matches. For instance, a rate 4% means that
4% of the packets received 1 or more matches with false files.

False positive only rate (FPoR) is the amount of network packets which
have only false positives and no true positive.

False negative rate (FNR): is the amount of network packets yielding a
score < t but the packet actually belongs to a file.

4.2 Detection Rate with Random Data

In a first step, the packet analysis is performed using random data traffic, in
order to establish the feasibility of the whole approach. Preparation and char-
acteristics of random data corpus is discussed in Sec. 6.2. These random files
are used to emulate the network traffic generated on transferring ‘known files’.
The network packet analysis is performed using both mrsh-v2 and sdhash on
all 4 TCP/IP network layers.

4.2.1 Detection Rate for Each Network Layer

A total of 189,509 packets are generated for 1000 random files transferred over
the network while performing the test. Results are computed for all 4 network
layers using both mrsh-v2 and sdhash for each layer. The results obtained are

4.2 Detection Rate with Random Data 43

summarised in Table 7.1 for mrsh-v2 and in Table 7.2 for sdhash. It can be
clearly observed that, the average match scores increases on moving higher in
the network protocol stack. The maximum average score is obtained when the
matching is performed at the application layer. Secondly, the average scores are
higher for mrsh-v2 than compared to sdhash.

A small modification is made to mrsh-v2 algorithm, the first and last bloom
filter created for a packet are ignored while performing a match. By doing so,
the application layer header does not influence the matching score. This slight
modification increased the average scores.

The FNR is low for both the algorithms. The reason for packets going unde-
tected, counted as false negatives, is the low entropy of the content in network
packets. mrsh-v2 and sdhash detects unique features for performing match
based on entropy in the content being analysed. If the entropy is low, the num-
ber of unique features detected will be less and while performing a match, a low
score or no score is possible. An example of a file having low entropy content is
documented in appendix C.

Table 4.1: Statistics for 4 network layers for mrsh-v2.

Layer Avg. TP Score Avg. FP Score TPR FPR FNR

Ethernet 91 29 98.64 3.55 1.34
IP 91 29 98.60 3.59 1.35
TCP 92 29 98.60 3.79 1.39
Payload 95 29 98.48 4.28 1.51

Table 4.2: Statistics for 4 network layers for sdhash.

Layer Avg. TP Score Avg. FP Score TPR FPR FNR

Ethernet 83 55 96.94 6.45 1.30
IP 87 o7 97.15 6.60 1.08
TCP 88 o7 97.18 6.72 1.02
Payload 89 60 97.09 585 2.12

True positive and false positive score distribution for mrsh-v2 is presented in
Fig. 7.1 and for sdhash in Fig. 7.2. In case of mrsh-v2, around 80% of the
packets having a true positive match give a score between 95-100 (78.83% have
score=100), while for sdhash the true positive packets are distributed over the
score >T75 (without modification, mrsh-v2 have similar distribution like sdhash).

44 Experimental Results

8 B True Positive
O False Positive
[T
~
o
a ©
[}
<
Q
I
a
S
n
Y _
g <
IS
8
c
[}
o
5]
o
a 2
0 |
—
© T T]

25 40 55 70 85 100

Match Score

Figure 4.1: Score distribution for random traffic using mrsh-v2.

All the above discussion corresponds to detection of content in a single packet. It
needs to be highlighted that all the files transferred during the experimentation,
all of them are detected successfully. Where, a file is said to be detected, if at
least one packet gives a match for that file.

4.2.2 Processing Time

The processing time (see Sec. 6.6) using mrsh-v2 and sdhash is presented in
Table 7.3. Processing time for link and application layers are only presented in
the table, to keep it less verbose.

The data for both the algorithms is in agreement with the theory, that the pro-
cessing time should increase as one moves up the network layers for performing

4.2 Detection Rate with Random Data 45

S B True Positive
O False Positive

60

Percentage of Packets
45
|

15
|

© T]

25 40 55 70 85 100

Match Score

Figure 4.2: Score distribution for random traffic using sdhash.

a match. Though, the difference in processing time on two extreme layers (link
and application) is very small. Also, it can be observed from the table that the
processing time for mrsh-v2 is about 5 times faster than sdhash, which is also
the conclusion of [9].

The processing time is directly proportional to the number of fingerprints in

the dataset to compare against. The larger the number of fingerprints, more
processing time the matching will take. It is more elaborated in the next chapter.

4.2.3 Algorithm and Network Layer to Perform Matching

Latency refers to the delay incurred while processing the network data. In this
case, latency is the difference between the time when the data has arrived, and

46 Experimental Results

Table 4.3: Avg. processing time (in milliseconds) for mrsh-v2 and sdhash.

Layer Link Payload

mrsh-v2 (.62 0.63
sdhash 3.33 3.36

to the moment it is available to the user. One of the main goals of the work is
to keep the latency as minimum as possible.

In the previous section, it was concluded that processing time for mrsh-v2 is
faster than sdhash. Also, the average scores for mrsh-v2 are higher than com-
pared to sdhash. Considering the better performance of mrsh-v2 over sdhash,
mrsh-v2 is used for performing further tests.

Also, the processing time for application layer is higher than the other lower
layers, but the average scores are higher for the application layer. As a trade-off
between the detection rate and processing time, it is decided to use application
layer for packet matching. Also, at the application layer, the headers of other
layers do not influence the match score and content anlaysis in true sense can
be carried out.

Thus, the further results presented are with using mrsh-v2 on the application
layer. Also, in this section, research goals 1 and 2 are achieved.

4.3 Detection Rate with Real World Data

In the previous section, feasibility of the approach was established using random
data. Also, it was decided to use mrsh-v2 on application layer for performing
packet matching. In this section, the testing is carried using the real world data
(T'S corpus) to emulate ‘known file’ network traffic.

A total of 290,314 packets are generated for 3282 files. A TPR of 86.69%, FPR
of 14.32%, and FNR of 10.31% is obtained. A score distribution histogram
is presented in Fig. 7.3. It is in agreement with the results obtained using
random data. The frequency of true positives is dominated towards the right
of the histogram. Also, the percentage of packets having true positive score in
between 95-100 is also very high.

The FPR with real world data is higher than that with the random data. It is

4.3 Detection Rate with Real World Data a7

so, because of the existence of ‘common subsequence’. For example, common
headers of jpg files, or common headers of pdf files. Hexdump of a typical packet
having header of a jpg is documented in appendix A. Such packets have more
than one false positive match. Since, a jpg image can be present in a doc, a pdf
or a ppt file, cross matching between file types is also observed.

8 B True Positive
O False Positive

Percentage of Packets
30 45 60 75
| | | |

15

©]]]] |

25 40 55 70 85 100

Match Score

Figure 4.3: Score distribution for T'S corpus traffic using mrsh-v2 on applica-
tion layer.

To identify the number of packets having false positive but no true positive, as
‘common subsequence’ give true positive as well, FPoR is used. FPoR gives an
approximate idea of false positives caused without presence of ‘common subse-
quence’. FPoR for present test scenario is 0.04%.

It is important to highlight that, as in case with random data, all files trans-
mitted in this test scenarios are also successfully detected.

48 Experimental Results

Table 4.4: Statistics of various file types in T'S.

File Type TPR FPR FPoR FNR

ipg 96.92 11.85 0.02 3.05
gif 97.79 1054 0.00 2.20
doc 7411 14.96 0.09 25.80
xls 81.61 18.56 0.02 18.36
ppt 92.07 14.34 0.02 7.90
pdf 95.25 12.40 0.04 4.69
txt 87.63 14.80 0.08 12.35
exe 84.85 1859 0.07 15.07
total 86.69 14.32 0.04 10.31

4.3.1 Results for Different File Types

As stated in previous section, all the files transmitted are detected successfully.
In this section, detection rates for the various file types in T'S are presented in
order to identify which file types are best detected.

Though all the files are detected, but statistics for all the file types in the T'S
corpus are also calculated and compiled in Table 7.4, in order to identify which
file types are easy to detect over the others. Pdf, jpg, gif have data in binary
format and good TPR for them indicates that approximate matching approach
is better than the existing ones. Existing approach are only good for detecting
text data, this is discussed further in Chapter 8. Score distribution histograms
for various file types are documented in appendix B.

4.3.2 Processing Time

In case of T'S corpus, the number of fingerprints to compare against has in-
creased to 3282. As per the expectation, the processing time is increased to
2.32 milliseconds.

4.3.3 Threshold Score

Till now the packets giving match score > 25 are only considered. From Fig. 7.3,
it can be observed that for score > 85 the percentage of packets having false

4.4 Detection Rate for Encoded Traffic 49

Table 4.5: Statistics for Base64 encoded traffic.

Layer TPR FPR FPoR FNR
Payload 99.97 0.004 0.0002 0

positive is less than the percentage of packets having true positive. By increasing
the match score’s lower limit, the chances of encountering a true positive will be
higher than a false positive. Also, the number of packets to process will reduce
significantly and in turn helping to decrease the processing time. Section 7.6
talks about using stream based analysis in order to detect files and it uses the
idea of higher threshold score just discussed.

4.4 Detection Rate for Encoded Traffic

Section 5.6 discusses the need for encoding network traffic. In an organisation
there are plethora of applications used. Certain applications require to encode
the data to work efficiently or are designed to use a specific encoding scheme.
One such example is SMTP protocol. When the data is encoded, approximate
matching approach is ineffective in detecting the ‘known files’. In this section,
a work around for such a scenario is proposed.

The naive approach is to identify the encoding used in the network traffic in real
time and then decode the data and perform the match to identify known content.
But this approach will be slow and processing intensive. To circumvent this
problem, following approach is used and tested with SMTP protocol. A file is
attached to the email and the attached file is encoded using Base64 scheme. The
‘known files’ are encoded using Base64 scheme and fingerprints are generated
for each encoded file. The detection rate observed is shown in Table 7.5. The
test comprised of only 500 files, randomly chosen from T'S. All the 500 files are
successfully detected using this approach.

In an organisation, it is trivial for an administrator to identify encoding scheme
used by an application. The encoding specific fingerprint set can be created for
the ‘known files’ and that can be used to detect data leakage by sniffing the
application specific traffic.

50 Experimental Results

4.5 Detection of Embedded Information

Approximate matching based approach can also be used for detecting embedded
objects as well. An embedded file is a file that is hidden or store in another
file. For example, a jpg file in a pdf or a video in a ppt. If the underlying
byte structure of the embedded content is not significantly altered, i.e. the bit
stream of the included content is unaltered, then it can be easily detected using
the present approximate matching based approach.

To verify such a scenario, pdf and doc files are created by embedding a jpg file
in each. These modified files are transmitted over the network and sniffed using
the sniffer. The comparison is made against the fingerprint set of T'S corpus.
Notably, all the embedded files are successfully detected.

In a nutshell, if the underlying bit stream is not altered, then embedded files
can be easily detected using approximate matching based approach. Detection
of files in case of zipping them is out of the picture, as the raw byte structure is
altered.

4.6 Stream Analysis

Till now, single packet analysis (SPA) approach is used for detecting files. In
SPA, a file is declared to be detected if at least a single packet for a given file
is matched. But there is a shortcoming to this approach. Due to ‘common
subsequence’, many false positives are reported and thus causing a file to be
falsely detected. To circumvent this problem, stream analysis (STA) is proposed.

STA determines the presence of a file in network traffic by considering match
results from more than one packet of a connection stream. It is observed in
SPA that, if a single packet gives a false positive, then that packet will give
more than one false positive matches. The very low rate of FPoR supports this
observation. This observation is used in defining two important parameters for
STA. These parameters are defined below:

match_per packet A threshold for the maximum number of matches a packet
can have. If the number of matches are higher than this, then the packet
is neglected. For instance, let match per packet = 2. Then, if a packet
returns a true positive and a false positive, the match count is 2 for the
packet and the packet is ignored.

4.6 Stream Analysis 51

packets per file A threshold for the minimum number of packets containing
‘known file’ content, required to declare a file to be detected. For instance,
let packets per file=2. In network traffic, if 2 packets containing content
of file A are detected, then this file A is declared to be detected.

The process for testing STA is similar to SPA. The files are sent over the network
and the traffic is sniffed and analysed by the sniffer. In STA, a connection
table is defined for each network connection stream. A connection table’s row, is
a tuple of {Source IP, Destination IP, Source Port, Destination Port, Detection
Status}, where Detection Status is a table with each row is tuple of {File De-
tected, packet count}. Whenever a packet arrives, if the entry for the particular
connection stream is not in the table, a new entry is added, else the correspond-
ing entry in the table is updated. If the number of matches for a packet is more
than match_per packet, that packet is ignored. For a given file, if the number
of matching packets = packets per_file, the file is declared to be detected and
all the counters are cleared for that connection stream.

In the test scenario, threshold match score = 100 is taken, as the number of
matches with 100 are high (see Fig. 7.3). Also, a high confidence score reflects
the certainty of the files presence. While match_per packet = 5 and pack-
ets_per_file = 2 are taken. Motivation for taking match_per packet =5 is,
in SPA it is observed that the minimum number of matches per packet is 1,
followed by 5. Value 1 is true for all packets and hence 5 is taken.

Value of packets per file parameter depends on many factors. If the ‘known
file’ database consists of many small sized files, then for a given file, the number
of network packets generated are less. For instance, a file of 3 KB will generate
only 2 packets of 1500 Bytes (ideally) size. If a database have similar files, then
a packet will generate more than one false positive for one packet, though it is
because of similar content rather than ‘common subsequence’. Packets having
high number of matches might be ignored and effectively reducing the number
of packets available to detect a file. For instance, a file with size 4.5 KB will
generate 3 packets of 1500 Bytes. If two packets match with more than one file,
then detecting such file is difficult.

In the test scenario, ¢ = 100 is taken. Traffic is generated for randomly selected
383 files from the T'S corpus, with minimum file size of 4.8 KB. In this test
scenario a true positive detection rate of 98.69% files is achieved.

STA has following advantages over SPA: Firstly, files can be detected with more
confidence as false file detection, because of ‘common subsequence’, is avoided
by using match_per packet parameter. Secondly, as soon as a file is detected,
the connection stream can be dropped, inhibiting the further file transfer. But

52 Experimental Results

this approach might not be able to detect small files, where the minimum file
size depends on the parameter packets per file parameter.

All the testing for STA is done using offline packets, therefore exact processing
time in live situation are is not available for this approach.

CHAPTER 5

Related Work

This chapter summarizes the related work for this thesis. Though not much
previous work for data leakage prevention over an organisation’s network is
available. Most of the systems used are commercial and closed source, therefore
information about their internal working, performance and detection rate are
not available. Most of the information acquired is through the whitepapers
published by McAfee and Securosis, which gives only an overview about the
state of the art.

The organisation of the chapter is as following: Sec. 8.1 gives an overview of
data leakage prevention systems and various content analysis technique used in
them. These systems specialise in preventing data leakage and most relevant to
the work proposed in this thesis.

Section 8.2 discusses how content matching is performed in intrusion detection
systems. Though, these systems does not specialise in known content detection,
but a simple string matching technique is used to detect malicious text/binary
constructs in a network packet payload. A brief overview of signature matching
is presented.

54 Related Work

5.1 Data Loss Prevention Systems

The present work concentrates on the content analysis, thus in the following
section a general overview of Data Loss Prevention Systems (DLPS) is given,
while the various content analysis technique used by them is discussed in detail.
For detailed information on DLPS, refer to [25]. Firstly, the three states of data
are defined and this knowledge is further used to define DLPS.

5.1.1 States of Data

According to [29], the data of an organisation can be classified into 3 main
states:

e Data In Motion (DIM) It comprises of data which is in the process of
being transmitted over the network. It includes emails, instant messages,
web traffic and so on.

e Data In Use (DIU) The data at a network endpoint, like desktop or
USB device, comes under this category.

e Data At Rest (DAR) Information in the storage comprises DAR. For
instance, data in FTP server or file systems.

The 3 states of data are also summarised in Fig. 8.1.

5.1.2 Definition

Data Loss Prevention Systems (DLPS) is a mechanism that identifies senstive
information by content in DIM, DAR, or DIU, and prevent leakage to outside
of an organisation [29].

DLPS helps organisations to comply with government regulations pertaining
to privacy, the protection of sensitive data, and the maintenance of records.
According to [25], key defining characteristics of DLPS are :

e Deep content analysis,

e Central policy management,

5.1 Data Loss Prevention Systems 55

Data in Use: . - Data in Motion:
Active data under Data in Data_ in Data that is
constant change Use Motion traversing a network

stored physically in ™~ or temporarily
databases, data i E residing in computer
warehouses, é_‘ . memory to be read
spreadsheets etc. RIS or updated.

Data at
Rest

Data at Rest:
Inactive data stored physically in databases,
data warehouses, spreadsheets, archives,
tapes, off-site backups etc.

Figure 5.1: The 3 states of data®.

%https://en.wikipedia.org/wiki/Data_at_Rest (last accessed 2013-June-25).

e Broad content coverage across multiple platforms and locations.

By defining policies, a DLPS can automatically ensures that no sensitive data
is stored, sent or accessed by an unauthorized person. Unlike white and black-
listing, DLPS blocks the activities involving leakage of sensitive data.

5.1.3 Content Analysis Techniques

In this thesis, various content analysis techniques used by DLPS are analysed
and compared against the proposed approximate matching based approach. Ac-
cording to [25], there are following approaches used in DLPS for content analysis:

1. Rule-Based/Regular Expressions: This is the most common analysis
technique offered by various content discovery tools. In this technique, the
content is analysed for specific rules, e.g, 16 digits credit card numbers,
social security numbers etc.

https://en.wikipedia.org/wiki/Data_at_Rest

56

Related Work

Best for: For detecting structured data like credit card numbers, health-
care codes/records. It is generally the first filter which is used while fil-
tering data.

Strengths: Regular expression rules can be processed quickly and also easy
to configure. It is a widely used technique, hence well understood and also
easy to incorporate into diverse products.

Weakness: False positive rate is high. Also, inability to identify unstruc-
tured data.

. Database Fingerprinting: In this technique, database dump or live

data from database is used and only exact matches are reported. For
example, a policy which looks only for credit card number in the organi-
sation’s customer base, thus ignoring employees of the organisation while
buying online.

Best for: This technique is best used for detecting structured data from
databases.

Strengths: A very low false positive rate is offered, as only exact matches
are reported. This also enables protection of customer /sensitive data while
ignoring other similar data used by the employees of the organisation.

Weakness: Nightly dumps of the database won’t contain transaction data
since the last extract. On the other hand, live connection to the database
will negatively effect the performance.

. Exact File Matching: In this technique, cryptographic hash functions

are used to generate fingerprint of the sensitive files. The content being
monitored is also hashed using the same hash function, if the fingerprints
match exactly, then the activity is reported.

Best for: This technique is best used for media files or binaries where
textual analysis is not feasible.

Strengths: It is agnostic to file type, and have negligible false positive rate.

Weakness: Evading such monitoring is trivial. Flipping a single byte in
the file will change the fingerprint of the file, thus making it worthless for
editable files like office documents and text files.

. Partial Document Matching (PDM): This technique looks for a com-

plete or a partial match of sensitive content. Rolling hash technique is
often used and was discussed in Sec. 5.3.3. When outbound content is en-
countered, it is run through the same hash technique, and the hash values
are compared for matches.

Best for: This technique is useful for protecting unstructured content. For
example, CAD files and source code files.

5.1 Data Loss Prevention Systems 57

Strength: Effectively protect unstructured data, and have a low false posi-
tive rate. Doesn’t rely on complete matching of large documents; can find
policy violations on even a partial match.

Weakness: Common phrases in a protected document may trigger false
positives. Trivial to avoid (ROT1) encryption is sufficient. It is not most
efficient in detecting non-text files.

5. Statistical Analysis: Machine learning, Bayesian analysis and other sta-
tistical techniques are used to analyse the content and determine possible
policy violations.

Best for: Unstructured content where deterministic techniques, like partial
document matching, would be ineffective. For example, a repository of
engineering plans where partial document matching will be impractical
because of high volatility or massive volume.

Weakness: 1t is prone to false positives and false negatives. Also, requires
a large corpus of source content.

6. Conceptual/Lexicon: This technique uses a combination of dictionar-
ies, rules, and other analyses techniques to protect nebulous content that
resembles an "idea". For example, traffic resembling to insider trading,
sexual harassment, running a private business from a work account.

Best for: Completely unstructured ideas that cannot be categorized into
known documents, databases or other registered sources.

Strength: Can be used to detect content with loosely defined policy viola-
tions.

Weakness: In general, it is really hard to define such rule-set and requires
considerable time and effort to develop a rule-set. It is very prone to high
false positives.

7. Categories: Categories, also known as compliance templates, use combi-
nation of above described methods to detect certain types of content. For
example, 1 credit card number + 1 partial date + expiry date keywords.
If such a combination of information is find in the outbound data, the
message is flagged.

Best for: Any type of content which can be described as a category. Use-
ful in case of content related to privacy regulations, or industry-specific
guidelines.

Strengths: It is extremely simple to configure and also saves considerable
policy generation time.

Weakness: 1t is only good for easily categorized rules and content.

58 Related Work

The PDM technique is the most relevant of them all, and its comparison with
approximate matching based approach is discussed in next chapter.

5.2 Intrusion Detection Systems

An intrusion detection system (IDS) inspects all the inbound and outbound
network activity and identifies suspicious patterns that may indicate an attack
on the network as a whole or on a system in the network. IDS help informa-
tion systems prepare for, and deal with attacks. This is achieved by collecting
information from various systems and network sources, and then analysing the
information for possible security problems. In short, IDS acts like a ‘burglar
alarm’.

In this section, only the features which enable IDS to detect network packet
content are discussed. For detailed information of IDS please refer to [15].

Network Intrusion Detection Systems (NIDS) are IDS which perform analysis for
the passing traffic on the entire subnet. NIDS work in promiscuous mode, and
matches the traffic that is passed on the subnets to the library of known attacks.
Snort is one of the most popular NIDS. It is a cross-platform, lightweight IDS
tool that can be deployed to monitor small TCP/IP networks and detect a wide
variety of suspicious network traffic as well as outright attacks [39].

Whenever NIDS encounter a network packet, it performs a match against a
predefined signature set in order to determine whether the packet is malicious
or not. This step is called signature matching. Signature matching consists
of two distinct operations: packet classification, which involves examining the
values of a packet header fields, and deep packet inspection, in which the packet
payload is matched against a set of predefined patterns.

Signatures for snort are specified using simple rule-based language. Payload
detection rule options are the most relevant to content matching. Specifically,
content keyword is the most interesting of them all.

By using content keyword, snort checks the payload content. "Whenever content
options pattern match is performed, the Boyer-Moore pattern match function
is called and the test is performed against the packet content" [38]. Such a test
is successful only when the argument data string matches exactly with content
in the packet’s payload. snort can match both text and binary content.

Listing 8.1 shows a snort rule using content keyword. In this particular snort

5.3 Comparison 59

rule, content keyword argument is binary data and ensuring the detection of
PNG file’s ‘magic’ sequence.

alert tcp $EXTERNAL_NET $FILE_DATA_PORTS -> $HOME_NET any (msg:"FILE-IDENTIFY PNG
file magic detection"; flow:to_client,established; file_data; content:"|89]|
PNG|OD OA 1A OA|"; within:8; fast_pattern; flowbits:set,http.png; flowbits:
noalert; classtype:misc-activity; sid:20478; rev:1;)

Listing 5.1: Snort rule using content keyword.

Using content keyword for content detection is only good for matching small
text or binary data, for example detecting a malicious string construct in a
file transferred over the network. IDS does not specialize in preventing data
leakage from a database of files. Detecting large file content will make the rules
complicated and also severely slow down the processing speed.

5.3 Comparison

This section discusses how the approximate matching based approach compare
against the other existing approaches. A comparison is made against the rolling
hash approach and keyword based approach. The other methods, like using
cryptographic hash functions and regular expressions are either easy to evade
or not meant for detecting leakage of a document as a whole, therefore not
discussed in this section.

5.3.1 Rolling Hash

Partial Document Matching (PDM) technique discussed in Sec. 8.1.3, internally
uses rolling hash to compare documents and detect leakage. An introduction to
rolling hash is presented in Sec. 5.3.3. As mentioned earlier, most of the DLPS
are commercial and closed source and thus not considered for testing purposes.
MyDLP! is an open source DLPS. To test detection rate of rolling hash, MyDLP
Community Edition is used.

MyDLP is installed on a server and this server is used as a network proxy. All
the traffic pases through this proxy and analysed by MyDLP for potential data
leakage. For testing purposes, MyDLP is installed on a Ubuntu Server running
in a Virtual Machine (VM). All the test traffic is diverted through this VM in

Thttp://wuw.mydlp.org (last accessed 2013-June-25).

http://www.mydlp.org

60 Related Work

order to be analysed by MyDLP. Though, post installation, the tool did not
work smoothly and frequently broke down and required re-installation to make
it work again.

MyDLP’s PDM feature is only tested. Procedure to use PDM is described in
[32]. During the test it is observed that MyDLP can only detect files which
contain texts, like pdf, doc, txt, and not good for preventing leakage through
other binary formats like, exe, jpg, gif etc. Rigorous tests to establish detection
rate cannot be performed on MyDLP, as there were problems faced in running
the tool reliably.

Drawbacks of Rolling Hash

Rolling hash based approach suffers with certain drawbacks. These drawbacks
and how rolling hash compare against approximate matching based appraoch is
disccused below.

For a given file there will be large number of rolling hashes generated. The
number of hashes generated for a file depends on the size of the file and the
window size used to generate rolling hashes. Due to large number of hashes
generated for a given file, the number of lookups to perform a comparison is
also large and thus slowing down the comparison process. Also, rolling hashes
occupy large memory as one file have many hashes. Consequently, for a large
database of confidential files, it is possible that all the rolling hashes cannot
be loaded into RAM simultaneously and might effect the overall performance
negatively.

In case of xls and doc files, it is observed that they contain large sequences of 0
and 1, called 0 run and 1 run respectively. With rolling hash, such runs could
give large number of false positives. Hex dump of a xIs having 0 and 1 run is
documented in appendix C.

On the other hand, in approximate matching based approach, only one finger-
print is generated for one file or packet. Thus, requiring significantly less number
of lookups to perform a comparison. Also, the length of a fingerprint of a file
is small and can be easily loaded into the RAM and perform quick matches.
Lastly, approximate matching algorithms detect unique features for a digital
object by determining the entropy of the content. Thus, 0 and 1 run in doc and
xls file would not cause false positive matches in this approach.

5.3 Comparison 61

5.3.2 Keyword Matching

In this approach, important words in a document are determined by using some
machine learning algorithms. These words from various files in the database are
put together to make one big dictionary. While analysing network packets, if
words from this dictionary occurs, then that connection is declared suspicious.

Drawbacks

Maintaining such a word dictionary is cumbersome. Adding and deleting a
file is not straightforward, as the corresponding words need to be added or
deleted from the dictionary. Also, a word in the dictionary could occur both in
confidential and junk file simultaneously and thus can have high false positive
rate. In case of approach proposed in this thesis, there is no dictionary required.
Only a list of fingerprints for the files to protected is maintained. The false
positive rate, as observed in the previous chapter is not so high.

To summarise, approximate matching approach is better than existing approaches
as it is file type agnostic and easy to maintain. One file will have only one fin-
gerprint and thus a file can be simply added or deleted by adding or deleting
its corresponding fingerprint from the database. Also, calculating a fingerprint
of a file is effortless.

62

Related Work

CHAPTER 6

Discussion

This chapter discusses some general issues about the proposed approach. Ini-
tially, a discussion about the detection rate of the approach is presented. In the
next section, classification of the approach based on level of packet analysis is
discussed.

Section 6.3 looks into the statistics of processing time using mrsh-v2 for packet
analysis. A difference between content and context analysis is given in section
6.4 and elucidates that the present approach performs content analysis.

Section 9.5 discusses how to block the traffic once ‘known file’ content is detected
in the network traffic. Whereas, Sec. 9.6 looks into the problem of how to
successfully deal with encrypted traffic and ensure that protected data is not
leaked.

Approximate matching based approach is an ingenuous way to deal with data
leakage. As highlighted in Chapter 8, that the existing approaches are mostly
commercial and closed source, and there exist not much prior work in detecting
‘known file’ in the network traffic robustly. The proposed approach is one of the
first comprehensive work to deal with problem of data leakage.

Many DLPS uses cryptographic and rolling hash functions to check for data
leakage. As mentioned previously, it is trivial to evade crypto hash based check-

64 Discussion

ing. Rolling hash holds some promise to acknowledge the problems with other
approaches, but it suffers with certain drawbacks as well. Though, only MyDLP
could be analysed for performance of rolling hash, which showed that not all
file types can be detected using rolling hash. For instance, doc and pdf are de-
tected but jpg and exe are not. Also, with rolling hash the number of look-ups
performed in order to detect a match are high.

6.1 Detection Rate

The eventual goal of a data leakage prevention system is to stop the transfer
of confidential information out of the network. In this work, transferring of
file as a whole is considered. To ensure the detection rate is high, comparison
is performed only for the application layer data and mrsh-v2 is preferred over
sdhash. Also, mrsh-v2 is modified to ensure that application layer header does
not influence the match score. During the testing with random data and real
world data using SPA, all the files are detected successfully. While in STA, the
detection rate of 98.69% is achieved. The low detection rate for STA is due
to the presence of small files in the database and thus not generating enough
packets to perform analyses. Since, none of the existing tools could be analysed
thoroughly, the detection rate of them is not available. Consequently, a relative
comparison of false detection rate cannot be made. Thus, the research goal 5 is
considered to be partially achieved.

6.2 Level of Packet Inspection

The proposed approach analyses the content of the network packet, to determine
whether ‘known file’ is being transmitted in the communication stream under
investigation. As per the classification of packet inspection technology discussed
in Sec. 5.5, present approach can be classified as deep packet inspection tech-
nique. The lower layer headers are used to get the source and destination IP
address and ports and this information is used to maintain a table of ‘known
files’ detected in the connection. While, lower layer headers - link, IP and TCP
layer, are completely stripped to perform content analysis.

6.3 Processing Time 65

6.3 Processing Time

Major constituent of processing time in present approach is the time spent
in iterating over the list of fingerprints to compare a given network packet.
While analysing processing time for 61,700 network packets with mrsh-v2 using
gprof, it is found that 99.8% is spent comparing a network packet against the
list of fingerprints (3280), while only 0.2% of the time is spent in hashing a
network packet. If the number of fingerprints of ‘known files’ increases, then the
processing time will also increase.

If it is possible to index mrsh-v2 fingerprints, then the processing time can be
reduced in comparing fingerprints. An mrsh-v2 fingerprint is simply the Bloom
filters’ value, generated for the given file. At present there is no known way to
index this information. This could be part of the future work.

6.4 Content vs. Context

In order to understand the intricacy of content and context, example of a letter
and its envelope can be used. In such a case, the letter will be the content,
whereas the envelope and environment around it will constitute the context.
Context is inferred using the source, destination, size, recipients, sender, header
information, metadata, time, format etc. Contextual analysis is a highly useful
approach, like in detecting insider trading attempts.

While content analysis involves looking inside containers and analysing the con-
tent itself. Use of content analysis does not restrict the analysis to a certain
specified context. If a data is declared to be confidential, it should be protected
everywhere - not just in obviously sensitive container [25].

Content analysis is more difficult and time consuming than basic contextual
analysis. In this thesis, the approach proposed performs a bitwise content anal-
ysis to detect the ‘known data’ and the results observed are promising.

6.5 Filtering/Blocking Traffic

The sole aim of using any data leakage tool is to block the traffic which is
potentially leaking data. Most of the communication performed is synchronous
and in real time. Thus actively monitoring the data and blocking is of utmost

66 Discussion

importance. In this section, some of the probable approaches are discussed
which can be used to block traffic.

Bridge

A bridge is a device that connects two or more local area networks, or two
or more segments of the same network [45]. A bridge can be used to filter
network traffic. With a bridge, there is a system with two network cards which
performs content analysis in the middle. If there is some malicious content (as
per policy) being transferred, the bridge is capable to break the connection for
that session. Bridging can be used in the present scenario for blocking traffic
when known content is detected. But it suffers with a small drawback, i.e, it
might not stop all the bad traffic before it leaks out the content. By the time
content analyser gets enough traffic to make an intelligent decision, the good
part of the content might have already been transferred. Considering the above
shortcoming, it is not the best possible solution, but it holds the advantage that
such an arrangement is protocol agnostic [25].

TCP Poisoning

Another possible approach to block or filter traffic is to use TCP poisoning. In
TCP poisoning, TCP reset flag is used to terminate the connection. TCP reset
flag is mostly set to 0 and has no effect, but when this bit is set to 1, it indicates
the receiving endpoint should immediately halt using the TCP connection. The
further packet received for the corresponding port number are also discarded by
the end system. In a nutshell, TCP reset kills a TCP connection instantly [36].

The traffic is constantly monitored and as soon as data transfer against the
policy is detected, the connection is terminated by sending TCP reset. This
solution is simple to use, but have some disadvantages. Firstly, this works only
for protocols based on TCP. Secondly, it is inefficient in case of protocols which
keep trying to get the traffic through after a failed try. For instance, after TCP
poisoning a single email message, the email server will keep trying to send it for
3 days, as often as every 15 minutes (as per settings). Lastly, the same issue as
with bridging. By the time some nefarious activity is detected, some part of the
traffic has already passed through.

6.6 Dealing with Encrypted Traffic 67

Proxy

Each network packet can broadly be divided into address area and data area.
Where, data area contains information written by the application program that
created the packet and address area contains information to ensure that the
packet is delivered to the right system and right application in the system [45].
Proxy servers (or application-level gateway) operate by examining incoming or
outgoing packets not only for their source or destination addresses but also for
information carried within the data area (as opposed to the address area) of
each network packet. A proxy could be protocol/application specific and queues
up network traffic before passing it and in turn allowing for deeper analysis of
the traffic [25]. Since the traffic is being queued and analysed, it ensures that
no part of the data is leaked in case some information is being leaked out.

Such gateway proxies can also be used as a reverse SSL proxy to sniff encrypted
connections and discussed in detail in the next section.

6.6 Dealing with Encrypted Traffic

Many organisations in order to ensure a secure communication over the network
use encryption. HTTPS, SSH, SFTP etc are some widely used protocols which
support encryption. On an encrypted channel, the content is scrambled and the
underlying bit stream is altered. In such a situation, detecting and preventing
egress of ‘known file’ is difficult, unless the content is decrypted.

To circumvent this problem, man-in-the-middle (MITM) approach can be de-
ployed. A proxy server is used to intercept the communication, which acts as a
reverse proxy and launches a man-in-the-middle attack. Such an arrangement
is well documented in case of HT'TPS [12]. In an organisation environment, net-
work administrator have enough authority to setup a reverse proxy server for
intercepting encrypted traffic and checking network traffic content for known
data.

In a desktop environment, MITM approach to intercept encrypted traffic can
be tested using OWASP WebScarab!. WebScarab is a framework for analysing
applications that communicate using HT'TP and HTTPS protocol and supports
MITM for HTTPS.

Lyww . owasp.org/index. php/OWASP_WebScarab (last accessed 2013-June-25).

www.owasp.org/index.php/OWASP_WebScarab

68 Discussion

6.7 Hardware Implementation

Implementing the traditional cryptographic hash functions into hardware is a
common practice these days. Performing hashing in a dedicated hardware is
more efficient than doing to on a CPU. mrsh-v2 performs many low level op-
erations, like bit shifting, to generate fingerprint of a content. Also, there exist
hardwares which maintain network connection tables, e.g. routers. Thus, in the-
ory it is possible to implement the proposed arrangement at the hardware level.
This will significantly reduce the processing time. This could be an interesting
future work to test for.

6.8 Limitation

During the design, implementation and testing phase no major limitations have
been encountered for the proposed approach. Some minor limitations are enu-
merated below:

e Approximate matching based approach cannot detect a confidential file
zipped and then transferred over the network. As discussed earlier, if
the underlying bit stream is changed, approximate matching algorithms
cannot detect the content.

e Malicious insider can take snapshots of the confidential data and transfer
these snapshots. The present approach can not stop such data leakage
attempt.

e If the minimum file size in the ‘known file’ database is small, then the
file detection using stream based analysis might not always be reliable, as
discussed in Sec. 7.6.

e The surveillance can be evaded by sending out files by encoding them, like
using Base64 scheme. Since, the underlying original bitstream is altered
by doing so. If encoding is being performed by some application, then
such a situation can be dealt easily in an orgnisation’s environment. Ad-
ministrators can sniff the application specific traffic and check it against
the ‘known file’ fingerprint set created for encoded traffic, discussed in
Sec. 6.7.1.

CHAPTER 7

Conclusion & Future Work

The problem of data loss has become an important problem and a robust solu-
tion is need of the hour. Possible routes of data loss have become complicated
and numerous, making countermeasures difficult to develop and deploy. The in-
creased incidents of involvement of insiders in data leakage has raised a serious
question on confidentiality of organisation’s internal information, like intellec-
tual property. In this work, the problem of identifying files in network traffic is
considered. The problem with the existing technology is highlighted and need
of open source tools and techniques needed to solve this problem is emphasised.

In order to solve this problem, bitwise content analysis of data in motion using
approximate matching is proposed. Each packet is analysed for containing the
‘known file’. It is successfully established that it is possible to detect files using
this approach. To validate the technique and implementation, several scenarios
are considered and tested. In a first step, random data is used to explore feasi-
bility and establish a benchmark for what to expect from such a methodology.
The tests with real world data showed promising results as well. Both binary
and text based files can be easily detected using this approach. However, with
real world data, problem of ‘common substrings’ persists. Wherefore, a easy
extension is proposed of using stream based analysis.

In stream based analysis, a table is maintained for each connection stream.
After analysing the results of single packet based approach, certain parameters

70 Conclusion & Future Work

are determined in order to prevent false positives caused by ‘common substrings’.
In this approach, a connection table of tuple: {Source IP, Destination IP, Source
Port, Destination Port, Detection Status}, is maintained for each stream. After
detecting a certain pre-defined number of packets, a file is declared to be detected
in that stream. In such a case, the connection can be terminated immediately.

Compared to existing techniques, approach presented in this work is simple,
straight forward and application layer protocol agnostic. The detection rate
does not vary much for different file types and during testing all the files of
various file types were detected successfully. In theory, the present approach is
file type independent. Also, using such a tool is simple, as only the fingerprint
of the file to be protected is needed. Thus, adding or deleting a file from the
database is not cumbersome.

Future Work

In order to promote this approach further, there are several next steps. Some
of the possible future work is enumerated below:

A detail analysis of performance in high bandwidth network is required.
Does in such situation, performance is comparable to existing methods?
To enhance the performance, implementing this solution in hardware could
be an alternative and was also discussed in previous chapter.

e What is the detection rate in case the database has similar files? How can
the stream based analysis parameters be determined so that the detection
of content is accurate.

e How accurate is this approach in detecting information leakage if partial
content of a file is being transmitted.

e Analysis of commercial DLPS products and how the proposed approach
fare against them.

e Can mrsh-v2 fingerprints be indexed and in turn reduce the processing
times?

e Finally, is it possible to tune approximate matching algorithms further, in
order to receive better results?

APPENDIX A

Common Subsequence

String

Hex dump of a packet containing ‘common subsequence’ and thus generates
more than one false positive.

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:
0000090:
00000a0:
00000b0:
00000c0:
00000d0:
00000e0:
00000£0:
0000100:
0000110:
0000120:
0000130:

0000
0000
0000
5a20
0000
38f5
6299
0000
7363
7470
0000
7474
0000
0000
0000
7363
3936
5247
2024
0000

0000
0000
0000
0000
5859
0000
0000
0000
0000
3a2f
0000
703a
0000
0000
0000
0000
362d
4220
2073
2e49

0000
0000
£351
0000
5a20
0390
b785
24a0
0000
2f77
0000
2f2f
0000
0000
0000
0000
322e
636f
5247
4543

0000
0000
0001
0000
0000
5859
0000
0000
0000
77T
0000
TTTT
0000
0000
0000
0000
3120
6c6f
4200
2036

0000
0000
0000
0000
0000
5a20
18da
0£84
0016
2e69
0000
772e
0000
0000
0000
002e
4465
7572
0000
3139

0000
5859
0001
0000
0000
0000
5859
0000
4945
6563
1649
6965
0000
0000
0000
4945
6661
2073
0000
3636

0000
5a20
16cc
0000
6fa2
0000
5a20
b6cf
4320
2e63
4543
632e
0000
0000
0000
4320
756¢
7061
0000
2d32

0000
0000
5859
0000
0000
0000
0000
6465
6874
6800
2068
6368
0000
0000
6465
3631
7420
6365
0000
2e31

966-2.1 Default
RGB colour space

...IEC 61966-2.1

72 Common Subsequence String

0000140: 2044 6566 6175 6¢c74 2052 4742 2063 6f6c Default RGB col
0000150: 6£f75 7220 7370 6163 6520 2d20 7352 4742 our space - sRGB
0000160: 0000 0000 0000 0000 0000 0000 0000 0000
0000170: 0000 0000 0000 6465 7363 0000 0000 0000 desc......
0000180: 002c 5265 6665 7265 6e63 6520 5669 6577 .,Reference View
0000190: 696e 6720 436f 6e64 6974 696f 6e20 696e ing Condition in
00001a0: 2049 4543 3631 3936 362d 322e 3100 0000 IEC61966-2.1...
00001b0: 0000 0000 0000 0000 2c52 6566 6572 656e ,Referen
00001c0: 6365 2056 6965 7769 6e67 2043 6f6e 6469 ce Viewing Condi
00001d0: 7469 6f6e 2069 6e20 4945 4336 3139 3636 tion in IEC61966
00001e0: 2d32 2e31 0000 0000 0000 0000 0000 0000 -2.1............
00001f0: 0000 0000 0000 0000 0000 0000 0000 7669 vi
0000200: 6577 0000 0000 0013 ad4fe 0014 5f2e 0010 ew.......... ..
0000210: cf14 0003 edcc 0004 130b 0003 5c9e 0000 \...
0000220: 0001 5859 5a20 0000 0000 004c 0956 0050 ..XYZ L.V.P
0000230: 0000 0057 1fe7 6d65 6173 0000 0000 0000 ...W..meas......
0000240: 0001 0000 0000 0000 0000 0000 0000 0000
0000250: 0000 0000 028f 0000 0002 7369 6720 0000 sig ..
0000260: 0000 4352 5420 6375 7276 0000 0000 0000 ..CRT curv......
0000270: 0400 0000 0005 000a 000f 0014 0019 00le
0000280: 0023 0028 002d 0032 0037 003b 0040 0045 .#.(.-.2.7.;.@.E
0000290: 004a 004f 0054 0059 005e 0063 0068 006d .J.0.T.Y.".c.h.m
00002a0: 0072 0077 007c 0081 0086 008b 0090 0095 .r.w.|l..........
00002b0: 009a 009f 00a4 00a9 00ae 00b2 O0b7 O00bc
00002c0: 00cl 00c6 00cb 00dO 00d5 00db 00e0 00e5
00002d0: 00eb 00f0 00f6 00fb 0101 0107 0104 0113
00002e0: 0119 011f 0125 012b 0132 0138 013e 0145 %h.+.2.8.>.E
00002f0: 014c 0152 0159 0160 0167 O16e 0175 017c .L.R.Y.‘.g.n.u.|
0000300: 0183 018b 0192 019a Olal 01a9 01bl 01b9
0000310: 01cl 01c9 01dl 01d9 Olel 01e9 01f2 Oifa
0000320: 0203 020c 0214 021d 0226 022f 0238 0241 &./.8.A
0000330: 024b 0254 025d 0267 0271 027a 0284 028e .K.T.]l.g.q.z....
0000340: 0298 02a2 02ac 02b6 02cl 02cb 02d5 02e0
0000350: 02eb 02f5 0300 030b 0316 0321 032d 0338 1.-.8
0000360: 0343 034f 035a 0366 0372 037e 038a 0396 .C.0.Z.f.r.~....
0000370: 03a2 03ae 03ba 03c7 03d3 03e0 03ec 03f9
0000380: 0406 0413 0420 042d 043b 0448 0455 0463-.;.H.U.c
0000390: 0471 047e 048c 049a 04a8 04b6 04c4 04d3 .q9.7............
00003a0: 04el 04f0 04fe 050d 051c 052b 053a 0549 +.:.1
00003b0: 0558 0567 0577 0586 0596 05a6 05b5 05c5 .X.g.w..........
00003c0: 05d5 05e5 05f6 0606 0616 0627 0637 0648 ’>.7.H
00003d0: 0659 066a 067b 068c 069d 06af 06cO0 06d1 .Y.j.{..........
00003e0: 06e3 06f5 0707 0719 072b 073d 074f 0761 +.=.0.a
00003f0: 0774 0786 0799 O07ac O7bf 07d2 07e5 07f8 .t..............
0000400: 080b 081f 0832 0846 085a 086e 0882 0896 2.F.Z.n....
0000410: 08aa 08be 08d2 08e7 08fb 0910 0925 093a %ot
0000420: 094f 0964 0979 098f 09a4 09ba 09cf 09e¢5 .0.d.y..........
0000430: 09fb 0all 0a27 0a3d 0ab4 Oab6a 0a81 0a98 ’.=.T.j....
0000440: Oaae Oacb Oadc 0af3 ObOb 0b22 Ob39 Ob51 ".9.Q
0000450: 0b69 0b80 0b98 ObbO Obc8 Obel Obf9 0cl2 .i..............
0000460: Oc2a 0c43 Oc5c 0c75 Oc8e Oca7 OccO 0cd9 .*.C.\.u........
0000470: 0cf3 0d0d 0d26 0440 0db5a 0474 0d8e 0da9 &.0.Z.t....

73

0000480:
0000490:
00004a0:
00004b0:
00004c0:
00004d0:
00004e0:
00004£0:
0000500:
0000510:
0000520:
0000530:
0000540:
0000550:
0000560
0000570:
0000580
0000590:
00005a0:

0dc3
0e9%b
0f7a
1061
114f
1245
1343
1449
1556
166c
1789
18af
19dd
1b14
1cb2
1d99
lee9
2041
21al

Odde
Oeb6
0f96
107e
116d
1264
1363
146a
1578
168f
17ae
18d5
1a04
1b3b
1c7b
1dc3
1£13
206¢
21ce

0df8
Oed2
0fb3
109b
118c
1284
1383
148b
159b
16b2
17d2
18fa
la2a
1b63
1ca3
1dec
1f3e
2098
21fb

0el3
Oeee
Ofcf
10b9
11aa
12a3
13a4
14ad
15bd
16d6
17£7
1920
1ab1
1b8a
lccc
lel6
169
20c4
2227

Oe2e
0£09
Ofec
1047
11c9
12c3
13ch
l4ce
15e0
16fa
181b
1945
1a77
1bb2
1cfb
1e40
1£94
20f0

0e49
0f25
1009
10£5
11e8
12e3
13eb
140
1603
1714
1840
196b
1la%e
1bda
ldle
le6a
1fbf
211c

Oe64
0f41
1026
1113
1207
1303
1406
1512
1626
1741
1865
1991
lach
1c02
1447
1e94
1fea
2148

Oe7f
0f5e
1043
1131
1226
1323
1427
1534
1649
1765
188a
19b7
laec
1c2a
1d70
lebe
2015
2175

........... I.4..
........... %. A"
A &.C
T - 1
Ome oo, &
Edoooaaaaaa #
CiCciviiiinnn. ’
B 4
Voxooooooa, &. I
N A.e
........... Q.e
....... E.k..
..... *Q.w......
B *
RA{......... G.p
......... Q.j
..... D R
Al !.1H!u

74

Common Subsequence String

APPENDIX B

Score Distribution for File
Types Using mrsh-v2

centage of Packets

Match Score

Figure B.1: Score distribution for doc file types using mrsh-v2.

76

Score Distribution for File Types Using mrsh-v2

B True Positive
O False Positive

Percentage of Packets

25 40 55 70 85 100

Match Score

Figure B.2: Score distribution for exe file types using mrsh-v2.

90
|

B True Positive
O False Positive

60 75
1 1

Percentage of Packets
45
|

15
1

< T T T

25 40 55 70 85 100

Match Score

Figure B.3: Score distribution for pdf file types using mrsh-v2.

77

90
|

Percentage of Packets
0 15 30 45 60 75
| | | | |

25 40 55 70 85 100

Match Score

Figure B.4: Score distribution for gif file types using mrsh-v2.

90
|

Percentage of Packets
30 45 60 75
| | |

15
1

Match Score

Figure B.5: Score distribution for xIs file types using mrsh-v2.

78

Score Distribution for File Types Using mrsh-v2

Percentage of Packets

Figure B.6:

Percentage of Packets

Figure B.T:

90
|

B True Positive
O False Positive

45

30
1

15
1

< T T T T 1
25 40 55 70 85 100

Match Score

Score distribution for ppt file types using mrsh-v2.

90
|

B True Positive
O False Positive

w |

©

o _|

)

w |

<

o _|

™

v |

=

< T T T

25 40 55 70 85 100

Match Score

Score distribution for text file types using mrsh-v2.

79

90
|

Percentage of Packets
30 45 60 75
| | | |

15
1

i T T T T
25 40 55 70 85 100

Match Score

Figure B.8: Score distribution for jpg file types using mrsh-v2.

80

Score Distribution for File Types Using mrsh-v2

APPENDIX C

Hex Dump of a xIs File

Hex dump of 003444 .xls file from T'S corpus showing 0 and 1 run.

0000050: ffff ffff ffff ffff ££Fff £f£f £££F ££FF
0000060: ffff ffff ffff ffff ££ff £f£f £££F ££FF
0000070: ffff ffff ffff ffff ££Fff £f£f £££F ££FF
0000080: ffff ffff ffff ffff ££ff £fff £££F ££FF
0000090: ffff ffff ffff ffff ££ff £f£f £££F ££FF
00000a0: ffff ffff ffff ffff ££ff £f£f £££F ££FF
00000b0: ffff ffff ffff ffff ffff £f£ff £f£f ££FF
00000cO: ffff ffff ffff ffff £££ff £££f £££F ££FF
00000d0: ffff ffff ffff ffff f£fff £££ff £f£f £££F
00000e0: ffff ffff ffff ffff ££ff £f£f £££F ££FF
00000£0: ffff ffff ffff ffff ffff £f£ff £fff £££F
0000100: ffff ffff f£fff ffff ££ff £f£f £££F ££FF
0000110: ffff ffff ffff ffff f£fff £££ff £fFf £££F
0000120: ffff ffff f£fff ffff £££ff £££f £££F ££FF

0001650: 2200 2000 cOff ffff ffff ffff ff£ff ££££f ".
0001660: ffff ffff ffff ffff ££ff £fff £££F ££FF
0001670: ffff f£fff 0a00 0000 0000 0000 0000 0000
0001680: 0000 0000 0000 0000 0000 0000 0000 0000
0001690: 0000 0000 0000 0000 0000 0000 0000 0000
00016a0: 0000 0000 0000 0000 0000 0000 0000 0000
00016b0O: 0000 0000 0000 0000 0000 0000 0000 0000
00016c0: 0000 0000 0000 0000 0000 0000 0000 0000

82

Hex Dump of a xIs File

00016d0:
00016e0:
00016£0:
0001700:
0001710:
0001720:
0001730:
0001740:
0001750:
0001760:
0001770:
0001780:
0001790:
00017a0:
00017b0:
00017c0:
00017d0:
00017e0:
00017£0:
0001800:
0001810:
0001820:
0001830:
0001840:
0001850:
0001860:
0001870:
0001880:
0001890:
00018a0:
00018b0:
00018c0:
00018d0:
00018e0:
00018£0:
0001900:

00037£0:
0003800:
0003810:
0003820:
0003830:
0003840:
0003850:
0003860:
0003870:
0003880:
0003890:
00038a0:
00038b0:
00038c0:
00038d0:

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
feff
0000
f94f
c400
0400
1200
0c00
1300
1e00
204d
4c6f
1e00
7420
f113
4000
0000
0000

0000
0100
0500
0900
0400
1100
1500
1900
feff
ffff
ffff
ffff
ffff
ffff
ffff

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
6810
0000
0000
0000
0000
0000
0000
4152
636b
0000
4578
bfo1
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
ffff
ffff
ffff
ffff
ffff
ffff
ffff

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0400
0000
ab9o1l
0800
5000
8000
a400
bc00
1000
5449
6865
1000
6365
4000
00d6
0000
0000

0000
0200
0600
0a00
0e00
1200
1600
1a00
fEfff
ffff
ffff
ffff
ffff
ffff
ffff

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0200
0000
0800
0000
0000
0000
0000
0000
0000
4e00
6564
0000
6c00
0000
£d65
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
ffff
ffff
ffff
ffff
ffff
ffff
ffff

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0100
2b27
0100
0800
0b00
0d00
0200
4caf
1e00
204d
4d69
4000
808c
fd6e
0000
0000

0000
0300
0700
feff
0£00
feff
1700
feff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
b3d9
0000
0000
0000
0000
0000
434b
0000
6172
6372
0000
2019
c101
0000
0000

0000
0000
0000
ffff
0000
ffff
0000
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
e085
3000
4800
6800
9800
1000
e404
4845
1000
7469
6£73
00eb
3f6a
0300
0000
0000

0000
0400
0800
0c00
1000
1400
1800
fdff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

83

00038e0:
00038£0:
0003900:
0003910:
0003920:
0003930:
0003940:
0003950:
0003960:
0003970:
0003980:
0003990:
00039a0:
00039b0:
00039c¢0:
00039d0:
00039e0:
00039£0:
0003a00:
0003a10:
0003a20:
0003a30:
0003a40:
0003a50:
0003a60:
0003a70:
0003a80:
0003a90:
0003aa0:
0003ab0:

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
5200
7200
0000
0000
1600
1008
0000
fdée
4200
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
6£00
7900
0000
0000
0501
0200
0000
cl01
6£00
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
6£00
0000
0000
0000
ffff
0000
0000
feff
6£00
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
7400
0000
0000
0000
ffff
0000
0000
ffff
6b00
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
2000
0000
0000
0000
ffff
c000
0000
0000
0000
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
4500
0000
0000
0000
ffff
0000
0000
0000
0000
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
6e00
0000
0000
0000
0200
0000
8074
0000
0000
0000
0000
0000

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
7400
0000
0000
0000
0000
0046
afae
0000
0000
0000
0000
0000

84

Hex Dump of a xIs File

Bibliography

(1]

2]

3]

4]

5]

6]

7]

18]

Ralf Bendrath. Global technology trends and national regulation: Explain-
ing variation in the governance of deep packet inspection. In International
Studies Annual Convention, February, pages 15-18, 2009.

Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422-426, 1970.

R. T. Braden. RFC 1122: Requirements for Internet hosts — communica-
tion layers, October 1989. Status: STANDARD.

Frank Breitinger, Knut Petter Astebgl, Harald Baier, and Christoph Busch.
mvhash-B - a new approach for similarity preserving hashing. 7th Inter-

national Conference on IT Security Incident Management & IT Forensics
(IMF), 2013.

Frank Breitinger and Harald Baier. A fuzzy hashing approach based on
random sequences and hamming distance. 7th annual Conference on Digital
Forensics, Security and Law (ADFSL), pages 89-101, 2012.

Frank Breitinger and Harald Baier. Similarity preserving hashing: Eligible
properties and a new algorithm mrsh-v2. 4th International ICST Confer-
ence on Digital Forensics & Cyber Crime (ICDF2C), 4, 2012.

Frank Breitinger, Harald Baier, and Jesse Beckingham. Security and imple-
mentation analysis of the similarity digest sdhash. 1st International Baltic
Conference on Network Security & Forensics (NeSeFo), August 2012.

Frank Breitinger and Vikas Gupta. File detection in network traffic us-
ing similarity hashing. In Annual Computer Security Applications Confer-
ence(ACSAC), August 2013. [Under review].

86

BIBLIOGRAPHY

19]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

20]

21]

Frank Breitinger and Kaloyan Petrov. Reducing time cost in hashing oper-
ations. Ninth Annual IFIP WG 11.9 International Conference on Digital
Forensics (IFIP W(G11.9), January 2013.

Andrei Broder and Michael Mitzenmacher. Network applications of bloom
filters: A survey. Internet Mathematics, 1(4):485-509, 2004.

Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey
Zweig. Syntactic clustering of the web. Computer Networks and ISDN
Systems, 29(8):1157-1166, 1997.

Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle
attack to the https protocol. Security & Privacy, IEEE, 7(1):78-81, 20009.

Vinton G Cerf and Robert E Icahn. A protocol for packet network in-
tercommunication. ACM SIGCOMM Computer Communication Review,
35(2):71-82, 2005.

Ajay Chaudhary and Anjali Sardana. Software based implementation
methodologies for deep packet inspection. In Information Science and Ap-
plications (ICISA), 2011 International Conference on, pages 1-10. IEEE,
2011.

Roberto Di Pietro and Luigi V. Mancini. Intrusion Detection Systems.
Springer Publishing Company, Incorporated, 1 edition, 2008.

Ted Eisenberg, David Gries, Juris Hartmanis, Don Holcomb, M Stuart
Lynn, and Thomas Santoro. The Cornell commission: on Morris and the

worm. In Computers under attack: intruders, worms, and viruses, pages
253-259. ACM, 1991.

Linux Foundation. http://www.linuxfoundation.org/collaborate/
workgroups.networking/gso. [Online; accessed 25-June-2013].

Patrick Gallagher and Acting Director. Secure Hash Standard (SHS). Tech-
nical report, National Institute of Standards and Technologies, Federal In-
formation Processing Standards Publication 180-1, 1995.

Peter Gordon. Sans institute whitepaper: Data leakage - threats and miti-
gation. [Online; accessed 25-June-2013].

The Radicati Group. Email Statistics Report: 2012-2016.
http://www.radicati.com/wp/wp-content/uploads/2012/04/
Email-Statistics-Report-2012-2016-Executive-Summary.pdf. [On-
line; accessed 25-June-2013|.

Per Gunningberg, Mats Bjorkman, Erik Nordmark, Stephen Pink, Peter
Sjodin, and J-E Stromquist. Application protocols and performance bench-
marks. Commaunications Magazine, IEEE, 27(6):30-36, 1989.

http://www.linuxfoundation.org/collaborate/workgroups.networking/gso
http://www.linuxfoundation.org/collaborate/workgroups.networking/gso
http://www.radicati.com/wp/wp-content/uploads/2012/04/Email-Statistics-Report-2012-2016-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2012/04/Email-Statistics-Report-2012-2016-Executive-Summary.pdf

BIBLIOGRAPHY 87

[22] C. Hornig. RFC 894: Standard for the transmission of IP datagrams over
Ethernet networks, April 1984. Status: STANDARD.

[23] InDorse Technologies Inc. Emerging solutions for strengthening data
loss prevention (dlp). http://www.indorse-tech.com/sites/default/
files/InDorse%20DLP%20White),20Paper.pdf. [Online; accessed 25-June-
2013].

[24] Mcafee Inc. Data loss by the numbers. http://www.mcafee.com/us/
resources/white-papers/wp-data-loss-by-the-numbers.pdf. [On-
line; accessed 25-June-2013|.

[25] SANS Institute. Understanding and selecting a data loss prevention solu-
tion, 2010.

[26] S. Josefsson. The Basel6, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard), October 2006.

[27] Richard M Karp and Michael O Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development,
31(2):249-260, 1987.

[28] Jesse Kornblum. Identifying almost identical files using context triggered
piecewise hashing. digital investigation, 3:91-97, 2006.

[29] George Lawton. New technology prevents data leakage. IEEE Computer,
41(9):14-17, 2008.

[30] Udi Manber et al. Finding similar files in a large file system. In Proceedings
of the USENIX winter 1994 technical conference, volume 1. San Fransisco,
CA, USA, 1994.

[31] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography, volume 5. CRC Press, August 2001.

[32] MyDLP.com. Mydlp administration guide. http://www.mydlp.com/
wp-content/uploads/MyDLP-Administration-Guide.pdf, 2012. [Online;
accessed 25-June-2013].

[33] Landon Curt Noll. Fnv hash. http://www.isthe.com/chongo/tech/comp/
fnv/index.html, 1994-2012. [Online; accessed 25-June-2013].

[34] Christopher Parsons. Deep Packet Inspection in Perspective: Tracing its
lineage and surveillance potentials. Queen’s University, Surveillance Studies
Centre, 2008.

[35] J. Postel. RFC 793: Transmission control protocol, September 1981. Status:
STANDARD.

http://www.indorse-tech.com/sites/default/files/InDorse%20DLP%20White%20Paper.pdf
http://www.indorse-tech.com/sites/default/files/InDorse%20DLP%20White%20Paper.pdf
http://www.mcafee.com/us/resources/white-papers/wp-data-loss-by-the-numbers.pdf
http://www.mcafee.com/us/resources/white-papers/wp-data-loss-by-the-numbers.pdf
http://www.mydlp.com/wp-content/uploads/MyDLP-Administration-Guide.pdf
http://www.mydlp.com/wp-content/uploads/MyDLP-Administration-Guide.pdf
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html

88

BIBLIOGRAPHY

(36]

37]

38

39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

J. Postel. RFC 793: Transmission control protocol, September 1981. Status:
STANDARD.

Michael O Rabin. Fingerprinting by random polynomials. Center for Re-
search in Computing Techn., Aiken Computation Laboratory, Univ., 1981.

Martin Roesch. Snort users manual 2.9.4. http://manual.snort.org.
[Online; accessed 25-June-2013].

Martin Roesch et al. Snort-lightweight intrusion detection for networks.
In Proceedings of the 13th USENIX conference on System administration,
pages 229-238. Seattle, Washington, 1999.

Vassil Roussev. Hashing and data fingerprinting in digital forensics. Secu-
rity & Privacy, IEEFE, 7(2):49-55, 2009.

Vassil Roussev. Data fingerprinting with similarity digests. In Advances in
Digital Forensics VI, pages 207-226. Springer, 2010.

Vassil Roussev. An evaluation of forensic similarity hashes. digital investi-
gation, 8:534-541, 2011.

Vassil Roussev, Simson Garfinkel, Frank Breitinger, John Delaroderie, Bar-
bara Guttman, John Kelsey, Jesse Kornblum, Mary Laamanen, Michael
McCarrin, Clay Shields, Douglas White, John Tebbutt, and Joel Young.
The NIST Definition of Approximate Matching. Technical report, National
Institute of Standards and Technologies, 2013 (to appear).

Vassil Roussev, Golden G. Richard III, and Lodovico Marziale. Multi-
resolution similarity hashing. Digital Investigation, 4:105-113, September
2007.

Cisco Systems. Traffic regulators: Network interfaces, hubs, switches,
bridges, routers, and firewalls. https://learningnetwork.cisco.com/
servlet/JiveServlet/previewBody/2810-102-1-7611/primch5.pdf.
[Online; accessed 25-June-2013].

Hubert Zimmermann. OSI reference model-The ISO model of architecture
for open systems interconnection. Communications, IEEE Transactions on,
28(4):425-432, 1980.

http://manual.snort.org
https://learningnetwork.cisco.com/servlet/JiveServlet/previewBody/2810-102-1-7611/primch5.pdf
https://learningnetwork.cisco.com/servlet/JiveServlet/previewBody/2810-102-1-7611/primch5.pdf

