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Abstract 

Phase field methods have become of great interest for the simulation of droplet and bubble dynamics, moving free 
interfaces and more recently phase change phenomena. One example is the Navier-Stokes-Korteweg (NSK) equa-
tions. With a particular focus on the van der Waals fluid, we present the numerical solution of the NSK system 
with the energy equation included. The least-squares spectral element formulation with a time-stepping procedure, 
a high-order continuity approximation and an element-by-element technique is implemented to provide a general 
and robust solver for the thermal NSK equations. A convergence analysis is conducted to verify our solver. Two 
numerical examples regarding phase transitions of a droplet and thermocapillary convection are provided to vali-
date our solver. 
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1. Introduction 

 

Liquid-vapor two-phase flow occurs in many natural phenomena as well as industrial applications. Particularly 
the applications of liquid-vapor phase transition are extremely wide, ranging over cavitation, boiling, evaporation 
and condensation. In industry, phase transition takes place in the fuel injection system, heat exchangers, and var-
ious pipelines. During phase transition, mass and heat transfer phenomena through the phase interface are gov-
erned by the laws of thermodynamics, and many modeling techniques for the interfacial dynamics are available 
for these transfer processes.  
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As opposed to sharp-interface methods, diffuse-interface methods describe the phase interface as a microscopic 
transition region with continuous variations of physical quantities. The benefits of the diffuse-interface method 
over other approaches are that there is only one set of PDEs to be solved over the entire domain including the 
interface area, and the method can handle the complicated topological changes without ad-hoc procedures [1]. 
Among diffuse-interface methods, the phase-field model, which is based on a convection-diffusion type of equa-
tion, can overcome shortcomings in the interface tracking methods such as volume of fluids or level-set method 
by avoiding the interface smearing problems and improving accuracy of surface tension computation [2]. The 
phase-field methods have been widely used to simulate the flow of two or more fluids such as spinodal decompo-
sition [3-4], head-on droplet collision [5-6], dendritic growth [7] and cancerous tumor growth [8].  

The Navier-Stokes-Korteweg (NSK) equations are one of the most popular phase-field models to date. 
Korteweg proposed a constitutive law for the capillary stress formulation and coupled the van der Waals fluid 
model with hydrodynamics, yielding the NSK equations [9]. Later, the interstitial working term was introduced 
into the energy equation to satisfy the second law of thermodynamics [10]. Owing to the thermodynamically 
consistent nature, the NSK equations have been expected to provide a unified predictive capability for the thermal 
phenomena. Onuki [11] has showed that the NSK equations may accommodate effects of wetting and heating of 
a plane solid wall.  

However, numerical methods for the thermal NSK equations are faced with stability and accuracy issues. The 
NSK equations are third-order PDEs due to the expression of the surface tension effect. Another feature of the 
NSK system is a non-monotone constitutive relation for the pressure, corresponding to a non-convex local part of 
the energy. As can be seen from Figure 1, there is an unphysical region of negative compressibility in phase 
transition, denoted as the phase mixture (PM) region. The non-convex energy function results in a mixed hyper-
bolic-elliptic characteristic of the NSK equations below the critical temperature. Pecenko et al. [4,12] used a 
transformation of variable for the isothermal case, but it is discarded in the thermal case since it leads to a prohib-
itive increase in the complexity of the governing equations, and also restricts the range of applicability of the 
method by increasing the number of constraints on the physical parameter of the fluid. More recently, Liu et al. 
[13] adapted the entropy variable with an isogeometric analysis, and Tian et al. [14] added Lax-Friedrich terms 
for the conservative scheme. However, Diehl et al. [15] and Giesselmann et al. [16] pointed out that adding these 
terms generates parasitic currents at the interface, and these can be removed when the pressure and the Korteweg 
terms are discretized in a non-conservative fashion.  

In the present work, the formulation of [17] for the isothermal NSK equations is extended to the thermal case. 
Besides the isothermal NSK equations, in the thermal NSK equations, a highly non-linear equation for the total 
energy is coupled with the mass and momentum conservation equations, and the dependency of the pressure on 
the temperature is added. The least-squares formulation with C1 Hermite approximation is implemented. The idea 
of this formulation to the NSK equations is to rewrite the original equations as a second order system, and then 
apply the spectral element method with C1 continuity to this second order system. The least-squares spectral ele-
ment method has several desirable numerical properties: (1) it always provides symmetric positive definite system 
even for non-self-adjoint operators; (2) it circumvents compatibility requirements between approximating func-
tion spaces such as the LBB condition; (3) the use of higher continuity discretization improves the approximation 
accuracy of solution at the phase interface. Additionally, in our solver a space-time coupled formulation and an 
element-by-element technique are used to handle a long-term of solution evolution. The generality and robustness 
of the least-squares formulation with high order approximation are demonstrated by showing that it can cope with 
highly complicated energy equation in the thermal NSK system. We provide the verification and validation of our 
solver for the thermal NSK equations. To the author’s best knowledge, this is the first work of applying the least-
squares method into the thermal NSK system. 
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Figure 1. Dimensionless equation of state for van der Waals isothermal fluid at 0.85 of temperature. 𝑃𝑠𝑎𝑡 satura-
tion pressure, VS vapor stable, VM vapor metastable, PM Phase mixture, LM liquid metastable, and LS liquid 
stable. 

 

The rest of this paper is organized as follows. Section 2 presents a derivation and a formulation of the thermal 
NSK equations and their nondimensionalization process. In Section 3, the least-squares spectral element method 
for the governing equations is described. A convergence analysis of our numerical solver can be found in Section 
4. Two numerical examples, evaporation/condensation of a bubble and thermocapillary convection, are presented 
in Section 5. We draw conclusions in Section 6. 

 

2. The van der Waals fluid model 

 

2.1. Korteweg stress tensor from Helmholtz energy 

The phase-field models are formulated based on their own definitions of the Helmholtz free energy density 
Ψ. For the van der Waals fluid [18], it is given by 

Above, Ψ𝑙𝑜𝑐  is the local Helmholtz energy density, 𝜌 is the density, 𝜃 is the temperature, 𝐾 is the capillary 
coefficient, constants 𝑎, 𝑏 and 𝑑 are the van der Waals constants associated with fluid properties, 𝑐 is the spe-
cific heat capacity, 𝑅 is the universal gas constant, and 𝜃0 is a reference temperature.  

Mathematically, the equilibrium state in the phase-field method can be found by minimizing a functional of 
Helmholtz energy 𝒴 over the domain subject to conserving a mass functional ℳ. Those functionals are 

Ψ(𝜌, 𝜃) = Ψ𝑙𝑜𝑐(𝜌, 𝜃) +
𝐾
2𝜌

|∇𝜌|2, (2.1) 

Ψ𝑙𝑜𝑐(𝜌, 𝜃) = −𝑎𝜌 + 𝑅𝜃 log (
𝜌

𝑏 − 𝜌
) − 𝑐𝜃 log (

𝜃
𝜃0

) − 𝑑𝜃. (2.2) 

𝒴 = ∫ 𝜌Ψ𝑑𝑉 = ∫ [𝜌Ψ𝑙𝑜𝑐 +
1
2

𝐾|∇𝜌|2] 𝑑𝑉, (2.3) 
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And it leads to the following Euler-Lagrange equation: 

where 𝜆 is the Lagrange multiplier from the constraint of constant mass. Since both functionals 𝒴 and ℳ are 
continuous in time and independent of spatial coordinates, a system has a continuous symmetry property. Accord-
ing to Noether’s theorem [19-20], for such system there is a corresponding quantity N whose value is conserved 
in time: 

Using (2.5), the conserved tensor N becomes that 

The first term in N is defined as the thermodynamic pressure as 

and the rest of the terms are referred to as the Korteweg stress tensor 𝛓: 

Meanwhile, the internal energy e can be defined from of Ψ as 

and the interfacial energy and the kinetic energy are included into the formulation of the total energy ℇ as  

 

2.2. The thermal Navier-Stokes-Korteweg system 

We define the space-time set Ω ∶= Ω𝒙×(0, 𝑇), 𝑇 > 0, for a two-dimensional open domain Ω𝒙 ⊂ ℝ2. The spa-
tial boundary of Ω is denoted as Γ ∶= ∂Ω𝒙×(0, 𝑇), and the unit outward normal vector to Γ is denoted as 𝒏. 
For a thermal flow with compressible and viscous two-phase fluids, the thermal Naiver-Stokes-Korteweg (NSK) 
problem with initial/boundary conditions can be state as follows: find the unknowns 𝜌 = 𝜌(𝒙, 𝑡): Ω → (0, 𝑏), 𝒖
= 𝒖(𝒙, 𝑡): Ω → ℝ2, and 𝜃 = 𝜃(𝒙, 𝑡): Ω → ℝ such that  

ℳ = ∫ 𝜌𝑑𝑉. (2.4) 

𝐾∇2𝜌 −
𝜕(𝜌Ψ𝑙𝑜𝑐)

𝜕𝜌
+ 𝜆 = 0, (2.5) 

∇ ∙ 𝐍 = 0, 

where 𝐍 = ℒ𝐈 − ∇𝜌 ⊗
𝜕ℒ

𝜕(∇𝜌) , ℒ = 𝜌Ψ𝑙𝑜𝑐 +
1
2

𝐾|∇𝜌|2 − 𝜆𝜌. 
(2.6) 

𝐍 = (−𝜌2 ∂Ψ𝑙𝑜𝑐

𝜕𝜌
+ 𝐾𝜌∇2𝜌 +

1
2

𝐾|∇𝜌|2) 𝐈 − 𝐾∇𝜌 ⊗ ∇𝜌. (2.7) 

𝑃 = 𝜌2 ∂Ψ𝑙𝑜𝑐

𝜕𝜌
= 𝑅𝑏

𝜌𝜃
𝑏 − 𝜌

− 𝑎𝜌2, (2.8) 

𝛓 = (𝐾𝜌∇2𝜌 +
1
2

𝐾|∇𝜌|2) 𝐈 − 𝐾∇𝜌 ⊗ ∇𝜌. (2.9) 

𝑒 = Ψ𝑙𝑜𝑐 − 𝜃
𝜕Ψ𝑙𝑜𝑐

𝜕𝜃
= 𝑐𝜃 − 𝑎𝜌, (2.10) 

ℇ = 𝜌 (𝑒 +
1
2

|𝒖|2) +
1
2

𝐾|∇𝜌|2,  (2.11) 

∂𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝒖) = 0    in Ω, (2.12) 
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together with proper boundary conditions for 𝒖 and 𝜃. ℇ can be expressed as a function of 𝜃 based on its 
definition presented in (2.10)-(2.11). Here, 𝜌0: Ω → (0, 𝑏), 𝒖0: Ω → ℝ2 and 𝜃0: Ω → ℝ are given for the initial 
conditions. 𝛕 is the viscous stress tensor for a Newtonian fluid, 𝒒 is the heat, and 𝚷 is the interstitial working 
flux are described as 

where 𝜇 and 𝜈 are the first and second viscosity coefficient, and 𝑘 is the thermal conductivity. Here, a choice 
of 𝜇 > 0 and 𝜈 = −2𝜇/3 is adopted based on the Stokes assumption. The divergence of the Korteweg stress 
tensor 𝛓 can be simplified as 

The first two terms of the momentum conservation equation (2.13) can be rewritten as 

The terms in the square brackets is equal to the terms in the left-hand side of the continuity equation (2.12); hence 
they become zero. Thus, (2.13) reduces to 

 

2.3. Dimensionless form of the governing equations 

The non-dimensionalization of the thermal NSK equations can be performed with the following reference 
variables denoted with a subscript 0 and the non-dimensional quantities denoted with a superscript *: 

We set the reference values of the density, pressure and temperature as their critical values in the van der Waals 
fluid model:  

∂(𝜌𝒖)
𝜕𝑡

+ ∇ ∙ (𝜌𝒖 ⊗ 𝒖) + ∇𝑃 − ∇ ∙ 𝛕 − ∇ ∙ 𝛓 = 0    in Ω, (2.13) 

∂ℇ
𝜕𝑡

+ ∇ ∙ [(ℇ + 𝑃)𝒖] − ∇ ∙ [(𝛕 + 𝛓)𝒖] + ∇ ∙ 𝒒 + ∇ ∙ 𝚷 = 0    in Ω, (2.14) 

∇𝜌 ∙ 𝒏 = 0    on Γ, (2.15) 

𝜌(𝒙, 0) = 𝜌0(𝒙)   in Ω𝒙, (2.16) 

𝒖(𝒙, 0) = 𝒖0(𝒙)   in Ω𝒙, (2.17) 

𝜃(𝒙, 0) = 𝜃0(𝒙)   in Ω𝒙, (2.18) 

𝛕 = 𝜇(∇𝒖 + ∇𝒖𝑇) + 𝜈(∇ ∙ 𝒖)𝐈, (2.19) 

𝒒 = −𝑘∇𝜃, (2.20) 

𝚷 = 𝐾𝜌(∇ ∙ 𝒖)∇𝜌, (2.21) 

∇ ∙ 𝛓 = 𝐾𝜌∇ ∙ (∇2𝜌). (2.22) 

∂(𝜌𝒖)
𝜕𝑡

+ ∇ ∙ (𝜌𝒖 ⊗ 𝒖) = 𝜌 (
𝜕𝒖
𝜕𝑡

+ 𝒖 ∙ ∇𝒖) + 𝒖 [
𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝒖)]. (2.23) 

𝜌 (
𝜕𝒖
𝜕𝑡

+ 𝒖 ∙ ∇𝒖) + ∇𝑃 − ∇ ∙ 𝛕 − ∇ ∙ 𝛓 = 0. (2.24) 

𝒙∗ =
𝒙
𝐿0

, 𝒖∗ =
𝒖
𝑈0

, 𝜌∗ =
𝜌
𝜌0

, 𝑃∗ =
𝑃
𝑃0

, 𝜃∗ =
𝜃
𝜃0

, ℰ∗ =
ℰ
ℰ0

, 𝒒∗ =
𝒒
𝑞0

, 𝚷∗ =
𝚷
Π0

 (2.25) 
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In this study, the reference velocity is the average sound speed 𝑈0 = √𝑃0/𝜌0, and the reference length is defined 
as 𝐿0 = 𝑈0𝑡0 using the reference time 𝑡0. With these reference values, the Reynold number 𝑅𝑒, the Weber num-
ber 𝑊𝑒 and the scaled heat conductivity 𝑘0 are defined as 

with 𝜎 the surface tension. The dimensionless pressure, total energy, heat and interstitial working flux can be 
expressed as 

With the non-dimensional quantities, the dimensionless form of the balance equations, (2.12), (2.24) and (2.14), 
the viscous stress tensor and the Korteweg stress tensor can be written as 

In this formulation, pressure is viewed as a dependent variable of the density and temperature. For the thermal 
case, the derivative of pressure in (2.33) and (2.34) is expressed as 

To allow the use of C1 continuous element expansions in the least-squares finite element formulation, the third-
order derivative of the density in the Korteweg stress term needs to be recast as a lower-order derivative term. We 
define a new variable 𝜑 to represent the Laplacian of density as 

𝜌0 = 𝜌𝑐 =
𝑏
3

,   𝑃0 = 𝑃𝑐 =
𝑎𝑏2

27
,   𝜃0 = 𝜃𝑐 =

8𝑎𝑏
27𝑅

. (2.26) 

𝑅𝑒 =
𝜌0𝑈0𝐿0

𝜇
,   𝑊𝑒 =

𝐿0
2 𝑈0

2

𝐾𝜌0
=

𝜌0𝑈0
2𝐿0

𝜎
,    𝑘0 =

𝑘𝜃0

𝜌0𝐿0𝑈0
3. (2.27) 

𝑃 = 𝜌0𝑈0
2 [

8𝜌∗𝜃∗

3 − 𝜌∗ − 3𝜌∗2], (2.28) 

ℇ = 𝜌0𝑈0
2 [−3𝜌∗2 + 𝑐𝜌∗𝜃∗ +

1
2𝑊𝑒

|∇∗𝜌∗|2 +
1
2

𝜌∗|𝒖∗|2], (2.29) 

𝒒 = −
𝑘𝜃0

𝐿0
∇∗𝜃∗, (2.30) 

𝚷 =
𝐾𝜌0

2𝑈0

𝐿0
2 𝜌∗(∇∗ ∙ 𝒖∗)∇∗𝜌∗. (2.31) 

𝜌0𝑈0

𝐿0
[
∂𝜌∗

𝜕𝑡∗ + ∇∗ ∙ (𝜌∗𝒖∗)] = 0, (2.32) 

𝜌0𝑈0
2

𝐿0
[𝜌∗ (

∂𝒖∗

𝜕𝑡∗ + 𝒖∗ ∙ ∇∗𝒖∗) + ∇∗𝑃∗ −
1

𝑅𝑒
∇∗ ∙ 𝛕∗ −

1
𝑊𝑒

∇∗ ∙ 𝛓∗] = 0, (2.33) 

𝜌0𝑈0
3

𝐿0
[
∂ℇ∗

𝜕𝑡∗ + ∇∗ ∙ [(ℇ∗ + 𝑃∗)𝒖∗] −
1

𝑅𝑒
∇∗ ∙ (𝛕∗𝒖∗) −

1
𝑊𝑒

∇∗ ∙ (𝛓∗𝒖∗) + 𝑘0∇∗ ∙ 𝒒∗ +
1

𝑊𝑒
∇∗ ∙ 𝚷∗]

= 0, 
(2.34) 

𝛕∗ = ∇∗𝒖∗ + ∇∗𝒖∗𝑇 −
2
3

∇∗ ∙ 𝒖∗𝐈, (2.35) 

𝛓∗ = (𝜌∗∇∗2𝜌∗ +
1
2

|∇∗𝜌∗|2) 𝐈 − ∇∗𝜌∗ ⊗∗ ∇∗𝜌∗. (2.36) 

∇∗𝑃∗ =
𝜕𝑃∗

𝜕𝜌∗ ∇∗𝜌∗ +
𝜕𝑃∗

𝜕𝜃∗ ∇∗𝜃∗ = [
24

(3 − 𝜌∗)2 − 6𝜌∗] ∇∗𝜌∗ +
8𝜌∗

3 − 𝜌∗ ∇∗𝜃∗. (2.37) 
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Dropping out the subscript *, the dimensionless of the thermal NSK equations in terms of the prior variables and 
𝜑 becomes 

where 

 

3. The numerical method 

 

3.1. Least-squares formulation 

The system (2.36)-(2.39) can be viewed as the coupled Navier-Stokes equations, (2.36)-(2.38), and the energy 

𝜑 = ∇2𝜌. (2.38) 

∂𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝒖) = 0, (2.39) 

𝜌 (
∂𝒖
𝜕𝑡

+ 𝒖 ∙ ∇𝒖) + [
24

(3 − 𝜌)2 − 6𝜌] ∇𝜌 −
1

𝑅𝑒
∇ ∙ (∇𝒖 + ∇𝒖𝑇 −

2
3

∇ ∙ 𝒖𝐈) −
1

𝑊𝑒
𝜌∇𝜑

= −
8𝜌

3 − 𝜌
∇𝜃, 

(2.40) 

𝑐𝜌 [
∂𝜃
𝜕𝑡

+ (𝒖 ∙ ∇)𝜃] +
8𝜌

3 − 𝜌
(𝒖 ∙ ∇)𝜃 − 𝑘0∇2𝜃 + [

24
(3 − 𝜌)2 ∇𝜌 ∙ 𝒖 +

8𝜌
3 − 𝜌

∇ ∙ 𝒖] 𝜃

= 𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜀, 
(2.41) 

𝛼 = −
1

𝑊𝑒
[
∂𝜌
∂𝑥

(
∂2𝜌

∂𝑥 ∂𝑡
+ 𝑢

∂2𝜌
∂𝑥2 + 𝑣

∂2𝜌
∂𝑥 ∂𝑦

) +
∂𝜌
∂𝑦

(
∂2𝜌

∂𝑦 ∂𝑡
+ 𝑢

∂2𝜌
∂𝑥 ∂𝑦

+ 𝑣
∂2𝜌
∂𝑦2)]

− 𝜌𝑢 (
∂𝑢
∂𝑡

+ 𝑢
∂𝑢
∂𝑥

+ 𝑣
∂𝑢
∂𝑦

) − 𝜌𝑣 (
∂𝑣
∂𝑡

+ 𝑢
∂𝑣
∂𝑥

+ 𝑣
∂𝑣
∂𝑦

) − 3𝜌2 (
∂𝑢
∂𝑥

+
∂𝑣
∂𝑦

)

−
1

2𝑊𝑒
[(

∂𝜌
∂𝑥

)
2

+ (
∂𝜌
∂𝑦

)
2

] (
∂𝑢
∂𝑥

+
∂𝑣
∂𝑦

), 

(2.42) 

𝛽 = −
1

𝑊𝑒
[(

∂𝑢
∂𝑥

+
∂𝑣
∂𝑦

) {(
∂𝜌
∂𝑥

)
2

+ (
∂𝜌
∂𝑦

)
2

+ 𝜌 (
∂2𝜌
∂𝑥2 +

∂2𝜌
∂𝑦2)}

+ 𝜌 {(
∂2𝑢
∂𝑥2 +

∂2𝑣
∂𝑥 ∂𝑦

)
∂𝜌
∂𝑥

+ (
∂2𝑢

∂𝑥 ∂𝑦
+

∂2𝑣
∂𝑦2)

∂𝜌
∂𝑦

}], 
(2.43) 

𝛾 =
1

𝑅𝑒
[𝑢 (

4
3

∂2𝑢
∂𝑥2 +

1
3

∂2𝑣
∂𝑥 ∂𝑦

+
∂2𝑢
∂𝑦2) + 𝑣 (

∂2𝑣
∂𝑥2 +

1
3

∂2𝑢
∂𝑥 ∂𝑦

+
4
3

∂2𝑣
∂𝑦2) +

4
3

(
∂𝑢
∂𝑥

)
2

−
4
3

∂𝑢
∂𝑥

∂v
∂𝑦

+ (
∂𝑢
∂𝑦

)
2

+ (
∂𝑣
∂𝑥

)
2

+ 2
∂𝑢
∂𝑦

∂v
∂𝑥

+
4
3

(
∂𝑣
∂𝑦

)
2

], 
(2.44) 

𝛿 =
1

𝑊𝑒
[𝜌𝑢

∂𝜑
∂𝑥

+ 𝜌𝑣
∂𝜑
∂𝑦

+
∂𝑢
∂𝑥

{𝜌𝜑 −
1
2

(
∂𝜌
∂𝑥

)
2

+
1
2

(
∂𝜌
∂𝑦

)
2

} −
∂𝑢
∂𝑦

∂𝜌
∂𝑥

∂𝜌
∂𝑦

−
∂𝑣
∂𝑥

∂𝜌
∂𝑥

∂𝜌
∂𝑦

]

+
∂𝑣
∂𝑦

{𝜌𝜑 +
1
2

(
∂𝜌
∂𝑥

)
2

−
1
2

(
∂𝜌
∂𝑦

)
2

}, 
(2.45) 

𝜀 = 6𝜌 (
∂𝜌
∂𝑥

𝑢 +
∂𝜌
∂y

𝑣) + 3𝜌2 (
∂𝑢
∂𝑥

+
∂𝑣
∂𝑦

). (2.46) 
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equation (2.39). We design the decoupling solver with a relaxation method, and the terms from previous decou-
pling step are denoted as subscript n. To be illustrate, the velocity 𝑢𝑛 in the n-th decoupling iteration is obtained 
from the previous iteration 𝑢𝑛−1, and the one from the second previous iteration 𝑢𝑛−2, with the relaxation pa-
rameter 𝜔𝑑𝑐 , i.e., 𝑢𝑛 = 𝜔𝑑𝑐𝑢𝑛−1 + (1 − 𝜔𝑑𝑐)𝑢𝑛−2. The L2-norm least-squares energy functional based on the 
residuals of the system (2.36)-(2.38) and (2.39) can be written as follows, respectively: 

where the subscripts 𝑁𝑆 and 𝐸 stand for the Navier-Stokes equations and the energy equation. Let 𝒲1 denote 
the solution space for 𝜌, 𝜑 and 𝜃, and let 𝒲2 denote the solution space for 𝒖. The minimization statement in 
the least-squares sense for the Navier-Stokes equations can be expressed as 

Find (𝜌, 𝒖, 𝜑) ∈ 𝑋𝑁𝑆(Ω) for a given 𝜃𝑛 such that 

where 𝑋𝑁𝑆(Ω) is the space of admissible functions for the variables in the Navier-Stokes equations 

Simultaneously for the energy equation, 

Find 𝜃 ∈ 𝑋𝐸(Ω) for a given (𝜌𝑛, 𝒖𝑛, 𝜑𝑛) such that 

where 𝑋𝐸(Ω) is the space of admissible functions for the variables in the energy equation as 

Equivalently, it is possible to write the necessary condition for the Navier-Stokes equations as 

Find 𝐔𝑁𝑆 = (𝜌, 𝒖, 𝜑) ∈ 𝑋𝑁𝑆(Ω) for a given 𝜃𝑛 such that 

where ℒ𝑁𝑆 represents the Navier-Stokes operator, 𝓖𝑁𝑆 the corresponding source term. Likewise, it is also pos-
sible to write the necessary condition for the energy equation as 

Find U𝐸 = 𝜃 ∈ 𝑋𝐸(Ω) for a given (𝜌𝑛, 𝒖𝑛, 𝜑𝑛) such that 

𝒥𝑁𝑆(𝜌, 𝒖, 𝜑; 𝜃𝑛) =
1
2

(‖
∂𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝒖)‖
0,Ω

2

+ ‖𝜌 (
∂𝒖
𝜕𝑡

+ 𝒖 ∙ ∇𝒖) + [
24

(3 − 𝜌)2 − 6𝜌] ∇𝜌 −
1

𝑅𝑒
∇ ∙ (∇𝒖 + ∇𝒖𝑇 −

2
3

∇ ∙ 𝒖𝐈)

−
1

𝑊𝑒
𝜌∇𝜑 +

8𝜌
3 − 𝜌

∇𝜃𝑛‖
0,Ω

2

+ ‖∇2𝜌 − 𝜑‖0,Ω
2 ), 

(3.1) 

𝒥𝐸(𝜃; 𝜌𝑛, 𝒖𝑛, 𝜑𝑛) =
1
2

(‖𝑐𝜌𝑛 [
∂𝜃
𝜕𝑡

+ (𝒖𝑛 ∙ ∇)𝜃] +
8𝜌𝑛

3 − 𝜌𝑛
(𝒖𝑛 ∙ ∇)𝜃 − 𝑘0∇2𝜃

+ [
24

(3 − 𝜌𝑛)2 ∇𝜌𝑛 ∙ 𝒖𝑛 +
8𝜌𝑛

3 − 𝜌𝑛
∇ ∙ 𝒖𝑛] 𝜃 − 𝛼𝑛 − 𝛽𝑛 − 𝛾𝑛 − 𝛿𝑛 − 𝜀𝑛‖

0,Ω

2

), 
(3.2) 

(𝜌, 𝒖, 𝜑) = argmin
(𝜚,𝒗,𝑄)∈𝑋𝑁𝑆

𝒥𝑁𝑆(𝜚, 𝒗, 𝑄), (3.3) 

𝑋𝑁𝑆(Ω) = {(𝜌, 𝒖, 𝜑)

∈ 𝐿2(𝒲1) ∩ 𝐻1(𝐿2(Ω))×𝐿2(𝒲2) ∩ (𝐻1(𝐿2(Ω)))
𝑛

×𝐿2(𝒲1) ∩ 𝐻1(𝐿2(Ω))}. 
(3.4) 

𝜃 = argmin
𝜓∈𝑋𝐸

𝒥𝐸(𝜓), (3.5) 

𝑋𝐸(Ω) = {𝜃 ∈ 𝐿2(𝒲1) ∩ 𝐻1(𝐿2(Ω))}. (3.6) 

(ℒ𝑁𝑆𝐔𝑁𝑆, ℒ𝑁𝑆𝐕𝑁𝑆)0,Ω = (𝓖𝑁𝑆, ℒ𝑁𝑆𝐕𝑁𝑆)0,Ω   ∀𝐕𝑁𝑆 ∈ 𝑋𝑁𝑆(Ω), (3.7) 
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where ℒ𝐸 represents the energy operator, 𝒢𝐸 the corresponding source term. The Newton linearization method 
is used to cope with the nonlinear terms in the Navier-Stokes equations. For the Navier-Stokes equations in a two-
dimensional spatial domain, the set of partial differential equations with the unknowns 𝐔𝐾

𝑇 = [𝜌 𝑢 𝑣 𝜑] can be 
represented as 

The terms with subscript 𝑙 represent the values from previous iterative steps for linearization. In the same manner, 
for the energy equation in a two-dimensional domain, the set of partial equations with the unknown U𝐸 = 𝜃 can 
be represented as 

For all sets of the equations, the final system with the boundary conditions included can then be expressed as 

where ℬ represents the boundary conditions operator and 𝐔Γ the specified values on the boundaries. In this 
work, the boundary conditions are incorporated into the least-squares functional so that they are also a part of the 
minimization problem, namely 

(ℒ𝐸U𝐸, ℒ𝐸V𝐸)0,Ω = (𝒢𝐸, ℒ𝐸V𝐸)0,Ω   ∀V𝐸 ∈ 𝑋𝐸(Ω), (3.8) 

[
𝜕
𝜕𝑡

+ 𝑢𝑙
𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕
𝜕𝑦

+
𝜕𝑢𝑙

𝜕𝑥
+

𝜕𝑣𝑙

𝜕𝑦
] 𝜌 + [𝜌𝑙

𝜕
𝜕𝑥

+
𝜕𝜌𝑙

𝜕𝑥
] 𝑢 + [𝜌𝑙

𝜕
𝜕𝑦

+
𝜕𝜌𝑙

𝜕𝑦
] 𝑣

= 𝑢𝑙
𝜕𝜌𝑙

𝜕𝑥
+ 𝜌𝑙

𝜕𝑢𝑙

𝜕𝑥
+ 𝑣𝑙

𝜕𝜌𝑙

𝜕𝑦
+ 𝜌𝑙

𝜕𝑣𝑙

𝜕𝑦
, 

(3.9) 

[(
24

(3 − 𝜌𝑙)2 − 6𝜌𝑙)
𝜕

𝜕𝑥
+ (

𝜕𝑢𝑙

𝜕𝑡
+ 𝑢𝑙

𝜕𝑢𝑙

𝜕𝑥
+ 𝑣𝑙

𝜕𝑢𝑙

𝜕𝑦
−

1
𝑊𝑒

𝜕𝜑𝑙

𝜕𝑥
)] 𝜌

+ [𝜌𝑙 (
𝜕
𝜕𝑡

+ 𝑢𝑙
𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕
𝜕𝑦

) −
1

𝑅𝑒
(

4
3

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) + 𝜌𝑙
𝜕𝑢𝑙

𝜕𝑥
] 𝑢

+ [𝜌𝑙
𝜕𝑢𝑙

𝜕𝑦
−

1
3𝑅𝑒

𝜕2

𝜕𝑥𝜕𝑦
] 𝑣 −

1
𝑊𝑒

𝜌𝑙
𝜕𝜑
𝜕𝑥

= 𝜌𝑙
𝜕𝑢𝑙

𝜕𝑡
+ 2𝜌𝑙𝑢𝑙

𝜕𝑢𝑙

𝜕𝑥
+ 2𝜌𝑙𝑣𝑙

𝜕𝑢𝑙

𝜕𝑦
−

1
𝑊𝑒

𝜌𝑙
𝜕𝜑𝑙

𝜕𝑥
−

8𝜌𝑙

3 − 𝜌𝑙

𝜕𝜃𝑛

𝜕𝑥
, 

(3.10) 

[(
24

(3 − 𝜌𝑙)2 − 6𝜌𝑙)
𝜕

𝜕𝑦
+ (

𝜕𝑣𝑙

𝜕𝑡
+ 𝑢𝑙

𝜕𝑣𝑙

𝜕𝑥
+ 𝑣𝑙

𝜕𝑣𝑙

𝜕𝑦
−

1
𝑊𝑒

𝜕𝜑𝑙

𝜕𝑦
)] 𝜌 + [𝜌𝑙

𝜕𝑣𝑙

𝜕𝑥
−

1
3𝑅𝑒

𝜕2

𝜕𝑥𝜕𝑦
] 𝑢

+ [𝜌𝑙 (
𝜕
𝜕𝑡

+ 𝑢𝑙
𝜕

𝜕𝑥
+ 𝑣𝑙

𝜕
𝜕𝑦

) −
1

𝑅𝑒
(

𝜕2

𝜕𝑥2 +
4
3

𝜕2

𝜕𝑦2) + 𝜌𝑙
𝜕𝑣𝑙

𝜕𝑦
] 𝑣 −

1
𝑊𝑒

𝜌𝑙
𝜕𝜑
𝜕𝑦

= 𝜌𝑙
𝜕𝑣𝑙

𝜕𝑡
+ 2𝜌𝑙𝑢𝑙

𝜕𝑣𝑙

𝜕𝑥
+ 2𝜌𝑙𝑣𝑙

𝜕𝑣𝑙

𝜕𝑦
−

1
𝑊𝑒

𝜌𝑙
𝜕𝜑𝑙

𝜕𝑦
−

8𝜌𝑙

3 − 𝜌𝑙

𝜕𝜃𝑛

𝜕𝑦
, 

(3.11) 

[
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2] 𝜌 − 𝜑 = 0. (3.12) 

[𝑐𝜌𝑛 (
∂
∂𝑡

+ 𝑢𝑛
∂

∂𝑥
+ 𝑣𝑛

∂
∂𝑦

) +
8𝜌𝑛

3 − 𝜌𝑛
(𝑢𝑛

∂
∂𝑥

+ 𝑣𝑛
∂

∂𝑦
) − 𝑘0 (

∂2

∂𝑥2 +
∂2

∂𝑦2)

+ {
24

(3 − 𝜌𝑛)2 (
∂𝜌𝑛

∂𝑥
𝑢𝑛 +

∂𝜌𝑛

∂𝑦
𝑣𝑛) +

8𝜌𝑛

3 − 𝜌𝑛
(

∂𝑢𝑛

∂𝑥
+

∂𝑣𝑛

∂𝑦
)}] 𝜃

= 𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛 + 𝛿𝑛 + 𝜀𝑛. 

(3.13) 

ℒ𝐔 = 𝓖    in Ω, (3.14) 

ℬ𝐔 = 𝐔Γ   on Γ, (3.15) 
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or equivalently,  

Find 𝐔 ∈ 𝑋(Ω) such that 

with 

where 𝒜: 𝑋×𝑋 → ℝ is a symmetric, positive definite bilinear form and ℱ: 𝑋 → ℝ is a continuous linear form. 

The inclusion of the boundary residual allows the use of spaces 𝑋(Ω) that are not constrained to satisfy the 
boundary conditions. If the boundary terms are omitted, the boundary conditions must be strongly enforced in the 
definition of the space 𝑋(Ω). Restricting the variational problem (3.17) to a finite dimensional space 𝑋ℎ(Ω), i.e., 
𝐔ℎ ∈ 𝑋ℎ(Ω) ⊂ 𝑋(Ω), the least-squares formulation can be stated as 

Find 𝐔ℎ ∈ 𝑋ℎ(Ω) such that 

Both nonlinear and decoupling convergences are declared when the relative norm of the residual, i.e., 
‖∆ℛ‖0/‖ℛ‖0, is less than 10−6, with the residual defined as 

 

3.2. Spectral element discretization 

The computational domain Ω is divided into 𝑁𝑒 non-overlapping sub-domains Ω𝑒 such that  

A time-space coupled formulation with the time-stepping procedure is used, i.e., the transient solution is approx-
imated on consecutively aligned space-time strips, and a strip is composed of only one element in time, Ω𝑒 =
Ω𝑒

𝒙×Ω𝑒
𝑡 = (𝒙𝑒, 𝒙𝑒+1)×(𝑡𝑛, 𝑡𝑛+1) with the time step size ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛. By an invertible mapping, each subdo-

main is mapped onto the unit cube (𝜉, 𝜍, 𝜂) = [−1,1]3 for a two-dimensional spatial domain. This time-stepping 
scheme is unconditionally stable, but the accuracy depends on ∆𝑡 [21]. 

The use of higher continuity discretization in the least-squares method has shown a significant improvement in 
the accuracy of evolutions for Riemann shock tube problem [22]. In order to describe the interfacial solution with 
high gradient, C1 p-version hierarchical approximation functions, particularly Hermite polynomials, are used to 
approximate the local solution in each element Ω𝑒, 𝒖𝑒

ℎ. A basis function for a two-dimensional space and time 
domain can be written as a tensor product of one-dimensional basis functions with the same order, i.e., 
𝚽𝑚(𝜉, 𝜍, 𝜂) = 𝜙𝑖(𝜉) ⊗ 𝜙𝑗(𝜍) ⊗ 𝜙𝑘(𝜂), with 𝑚 = 𝑖 + 𝑗(𝑝 + 1) + 𝑘(𝑝 + 1)2 where 0 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑝. Thus, the 
local approximation 𝒖𝑒

ℎ can be expressed in a linear combination of 𝚽𝑚 as  

𝒥(𝐔) =
1
2

‖ℒ𝐔 − 𝓖‖0,Ω
2 +

1
2

‖ℬ𝐔 − 𝐔Γ‖0,Γ
2 , (3.16) 

𝒜(𝐔, 𝐕) = ℱ(𝐕)  ∀𝐕 ∈ 𝑋(Ω), (3.17) 

𝒜(𝐔, 𝐕) = (ℒ𝐔, ℒ𝐕)0,Ω + (ℬ𝐔, ℬ𝐕)0,Γ, (3.18) 

ℱ(𝐕) = (𝓖, ℒ𝐕)0,Ω + (𝐔Γ, ℬ𝐕)0,Γ, (3.19) 

𝒜(𝐔ℎ, 𝐕ℎ) = ℱ(𝐕ℎ)    ∀𝐕ℎ ∈ 𝑋ℎ(Ω). (3.20) 

‖ℛ‖0,Ω
2 = ∫[ℒ𝐔ℎ − 𝓖]2 𝑑Ω. (3.21) 

Ω = ∑ Ω𝑒

𝑁𝑒

𝑒=1

    Ω𝑖⋂Ω𝑗 = ∅,     𝑖 ≠ 𝑗. (3.22) 
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with the expansion coefficient U𝑒
𝑚. The same basis functions and construction approach have been used in our 

previous study [23-24].  

The assembly matrix in an element level can be written as 

The Gaussian rule on the GLL-roots are used for the numerical integration, and larger number of quadrature points 
𝑄 than the expansion order 𝑝, 𝑄 = 𝑝 + 3, is used to improve the convergence rate of the solution [25]. 

The conjugated gradient method with the Jacobi preconditioner is used to solve the algebraic equation. A Matlab 
code and Matlab MPI are developed at our group as the main setup and for parallel computing. The global ap-
proximation 𝒖ℎ are constructed by a combination of the local approximations 𝒖𝑒

ℎ as 

 

4. Convergence analysis based on the manufactured solution 

 

In order to verify our solver, the following manufactured solution for the thermal NSK equations, expressed as 
products of trigonometrical functions, is used:  

The extrema of the density solution are set to be the densities of bulk phases at 𝜃 = 0.85 to assure the stability 
of the equilibrium state. The corresponding force terms to the manufactured solution are added to the right-hand 
side of the discretized equations. The initial and boundary conditions are given by the manufactured solution; 
Dirichlet boundary conditions for the velocities and temperature and Neumann boundary condition for the density. 
The L2-norm of the difference between the approximated solution 𝐔ℎ and the manufactured solution 𝐔𝑚, i.e., 
‖𝐔ℎ − 𝐔𝑚‖0,Ω is chosen as an error indicator, and it is written as 

The governing equations are solved over a domain Ω𝒙 = [0,1]2 and a single element time slab with Δ𝑡 =
0.05, until 𝑡 = 5.0 (2.5 periods). The Courant-Friedrich-Lewy (CFL) condition is used to define the time-step 

𝒖𝑒
ℎ = ∑ U𝑒

𝑚𝚽𝑒
𝑚

(𝑝+1)3

𝑚=1

, (3.23) 

𝓐𝑒 = ∫ [ℒ(𝚽0) … ℒ(𝚽𝑁𝑒−1)]𝑇[ℒ(𝚽0) … ℒ(𝚽𝑁𝑒−1)]𝑑Ω𝑒
Ω𝑒

, (3.24) 

𝓕𝑒 = ∫ [ℒ(𝚽0) … ℒ(𝚽𝑁𝑒−1)]𝑇𝓖𝑑Ω𝑒
Ω𝑒

. (3.25) 

𝒖ℎ = ⋃ 𝒖𝑒
ℎ

𝑁𝑒

𝑒=1

. (3.26) 

𝜌(𝑥, 𝑦, 𝑡) = 1.0647 + 0.7453 sin(𝜋𝑥) sin(𝜋𝑦) cos(𝜋𝑡), 

𝑢(𝑥, 𝑦, 𝑡) = cos(𝜋𝑥) sin(𝜋𝑦) cos(𝜋𝑡), 

𝑣(𝑥, 𝑦, 𝑡) = − sin(𝜋𝑥) cos(𝜋𝑦) cos(𝜋𝑡), 

𝜃(𝑥, 𝑦, 𝑡) = 0.85 + 0.1 sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑡). 

(4.1) 

‖𝐔ℎ − 𝐔𝑚‖0,Ω
2 = ∫[𝐔ℎ − 𝐔𝑚]2 𝑑Ω. (4.2) 
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size: 

where the stable time-step size is generated as CFL < 1. In the verification study, the CFL ranges from 0.25 to 
0.75 with 𝑈0 of 0.5. 

Figure 2 presents the errors in time for the number of spatial elements 𝑁𝑒 = 152 and the expansion order of 
𝑝 = 3, and the errors at 𝑡 = 5.0 from the h-refinement study of 𝑁𝑒 = 102, 152, 202, 252, 302 and with 𝑝 = 3. 
The errors oscillate in time depending on the solution values, but the amplitudes of the oscillation are stable. The 
errors in the h-refinement study show the expected linear convergence with slope 4, as theoretically predicted for 
a fixed expansion order 𝑝 = 3. 

 

 

Figure 2. Errors in time with 𝑁𝑒 = 152  and 𝑝 = 3  (left) and h-refinement study of 𝑁𝑒 =
102, 152, 202, 252, 302 with 𝑝 = 3 (right), manufactured solution. 

 

5. Numerical examples 

 

We validate the implemented code with two numerical examples: evaporation/condensation of a single bubble 
and thermocapillary convection. For all simulations, the initial condition for the density is given as close to the 
profile at the equilibrium state, and it is expressed as 

for bulk liquid density 𝜌𝑙 and bulk vapor density 𝜌𝑣, and with the z-coordinate chosen along the gradient of 
density. This hyperbolic function is used as the initial profile in many numerical examples [13-15, 17]. In our 
previous work [17], the bulk densities at each temperature were estimated, and they are presented in Table 1. The 
densities were obtained by the equal area rule [15], and the equilibrium states at corresponding temperature were 
confirmed by our solver. 

 

Table.1 The liquid and vapor densities at the equilibrium state at different temperatures. 

𝜃 0.80 0.85 0.90 0.95 

Δ𝑡 =
CFL×ℎ

𝑈0
, (4.3) 

𝜌0 =
𝜌𝑙 + 𝜌𝑣

2
+

𝜌𝑙 − 𝜌𝑣

2
tanh (

𝑧
2 √𝑊𝑒), (5.1) 
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𝜌𝑙 1.932 1.810 1.656 1.463 
𝜌𝑣 0.2397 0.3194 0.4244 0.5806 

 

5.1. Evaporation and condensation of a single bubble 

In this example, a single bubble with a radius of 0.25 is located at the center of the computational domain 
[0,1]2, and it is evaporated or condensed by constant wall temperature. Initially the entire domain is at the equi-
librium state with 𝜃0 = 0.85 , corresponding bulk densities 𝜌𝑙 = 1.810  and 𝜌𝑣 = 0.3194 , and four different 
cases with 0.80, 0.85, 0.90, 0.95 of wall temperatures are considered. The simulation parameters we used here 
are 𝑁𝑒 = 202, 𝑝 = 4, Δ𝑡 = 0.05, 𝑅𝑒 = 1000, 𝑊𝑒 = 4000, 𝑘0 = 1  and 𝑐 = 1 . The simulations run until they 
reach their equilibrium states, and the equilibrium state is declared when 𝐿∞-norm of maximum difference of 
pointwise density between the current time step and the previous time step is lower than 10−4 , i.e., 
𝑚𝑎𝑥(𝜌𝑛 − 𝜌𝑛−1) <  10−4. 

The radius of single bubble at the equilibrium state can be predicted analytically as follows: with the initial 
equilibrium state at 𝜃0 = 0.85 and the initial bubble radius of 0.25, the total mass ℳ can be calculated as  
ℳ = 𝜌𝑣×𝜋×0.252 + 𝜌𝑙×(1 − 𝜋×0.252). With the total mass maintained constant, the radius of the bubble at the 
equilibrium state, denoted as 𝑅𝑒, can be estimated with the same equation but with different bulk densities for 
each wall temperature, by assuming that the equilibrium temperature is equal to the wall temperature. Together 
with 𝑅𝑒, the radius of the bubble from our simulations, denoted as 𝑅𝑠, are presented in Table 2. The equilibrium 
radii have close agreement with the estimated radii, and for 𝜃 = 0.95 only liquid phase is left. The density pro-
files for each wall temperature are given in Figure 3. Our results also have good agreement with the results from 
[26]. This example shows that our solver provides the result with stable equilibrium states and the mass conser-
vation. 

 

Table 2. Estimated bulk densities and radius of evaporating/condensing bubble at equilibrium state. 

𝜃 𝜌𝑙 𝜌𝑣 𝑅𝑠 𝑅𝑒 
0.80 1.932 0.2397 0.2793 0.2791 
0.85 1.810 0.3194 0.2500 0.2500 
0.90 1.656 0.4244 0.1893 0.1906 
0.95 1.463 0.5806 - - 

  

 

Figure 3. Density profiles of evaporating/condensing single bubble for each wall temperature. 

 

5.2. Thermocapillary convection 
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The Marangoni effect is induced by surface tension gradient at the interface between two fluids. Among many 
forces inducing the Marangoni effect, the temperature gradient can be one of them in such a way that the increase 
of local temperature increases surface tension, and then the imbalance of surface tension drives the bubble toward 
higher temperature. This motion due to the temperature gradient is referred to as the thermocapillary convection 
or Benard-Marangoni convection [27]. Such convection is critical in understanding welding, crystal growth and 
electron beam melting.  

Initially a single bubble with a radius of 0.25 is located at the center of a square domain Ω𝒙 = [0,1]2. The 
initial condition and the boundary condition for the velocity field are fixed to zero. The initial equilibrium tem-
perature is set to 𝜃0 = 0.85. The top and bottom walls are insulated, i.e., 𝜕𝜃/𝜕𝑦 = 0, and on the left and right 
walls the temperature is fixed to 0.85 and 0.90, respectively. The mesh size is taken to be ℎ = 0.025 with 𝑁𝑒 =
402 and 𝑝 = 4. The time step size is set to Δ𝑡 = 0.025, corresponding to unity CFL. The Reynold number and 
the flow properties are chosen as 𝑅𝑒 = 1000 , 𝑘0 = 1  and 𝑐 = 1 . We vary the Weber number as 𝑊𝑒 =
2000, 4000 and 8000 to investigate the effect of this parameter. 

Figure 4 shows the evolution of temperature for 𝑊𝑒 = 2000 and the velocity field with the interface line, 
located as the points with density equal to the average density 𝜌 = (𝜌𝑙 + 𝜌𝑣)/2, are, for 𝑊𝑒 = 2000, 4000 and 
8000. Note that for 𝑊𝑒 = 2000 data at 𝑡 = 0.05, 4.5 and 9.0 are presented with the data for 𝑊𝑒 = 4000 
with two times longer time intervals, at 𝑡 = 0.1, 9.0 and 18.0 and for 𝑊𝑒 = 8000 with four times longer time 
intervals, at 𝑡 = 0.2, 18.0 and 36.0. In all three cases the bubble moves in the positive thermal gradient direction. 
We can also see the motion with 𝑊𝑒 = 2000 is two times and four times faster than the one with 𝑊𝑒 = 4000 
and 𝑊𝑒 = 8000, respectively. Thus, it can be concluded that the speed induced by thermocapillary convection 
is proportional to 𝑊𝑒−1. Since the same time step size is used for each simulation case and the reference values, 
presented in (2.24), are based on the fluid properties, we can see the surface tension 𝜎 is proportional to 𝑊𝑒−1 
with the definition of the Weber number in (2.25). Therefore, we can conclude the bubble speed induced by the 
thermocapillary convection is proportional to the surface tension in our simulation, and this result can be demon-
strated by the experimental study of [28] - the steady state velocity of a spherical drop in a constant temperature 
gradient field for two fluids of equal thermal conductivity is proportional to the surface tension.  
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Figure 4. Evolution of density and temperature of 𝑊𝑒 = 2000 and the velocity fields with interface line (𝜌 =
1.0647 ) of 𝑊𝑒 = 2000  and 8000 . 𝑊𝑒 = 2000  is at 𝑡 = 0.05, 4.5  and 9.0 , and 𝑊𝑒 = 8000  is at 𝑡 =
0.2, 18.0 and 36.0. 

 

6. Conclusion 
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We presented the least-squares spectral element scheme for thermal Navier-Stokes-Korteweg (NSK) system. 
The equations were recast as the second order PDEs to be approximated by C1 Hermite polynomials, and rewritten 
along with the least-squares formulation. A time-stepping procedure, Newton linearization and the element-by-
element technique were implemented. The convergence analysis based on manufactured solution was conducted 
to verify our solver. It is confirmed that our solver follows the van der Waals fluid model with an example of the 
evaporation and condensation of a single bubble by showing the equilibrium state is close enough to the theoret-
ically predicted state. Thermocapillary convection was handled with our solver. The imbalance of surface tension 
due to the temperature gradient drove the bubble toward higher temperature, and the effect of the surface tension 
on traveling speed was demonstrated by validation with experimental observations from the literature.  
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