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Abstract

We propose a novel approach to the implicit dynamics of shear-deformable geometrically

exact beams, based on the isogeometric collocation method combined with the Newmark

time integration scheme extended to the rotation group SO(3). The proposed formulation is

fully consistent with the underlying geometric structure of the configuration manifold. The

method is highly efficient, stable, and does not suffer from any singularity problem due to

the (material) incremental rotation vector employed to describe the evolution of finite rota-

tions. Consistent linearization of the governing equations, variables initialization and update

procedures are the most critical issues which are discussed in detail in the paper. Numerical

applications involving very large motions and different boundary conditions demonstrate the

capabilities of the method and reveal the critical role that the high-order approximation in

space may have in improving the accuracy of the solution.

Keywords: Isogeometric collocation, Implicit dynamics, Geometrically nonlinear

Timoshenko beams, Finite rotations, Newmark method

1. Introduction1

For many complex engineering problems nonlinear beam models, able to accurately re-2

produce large three-dimensional motions, are often the preferred choice due the low com-3

putational cost compared to higher-dimensional models. In pursuing increased efficiency,4
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robustness and geometric capabilities with respect to existing methods, in this work for the5

first time the isogeometric collocation (IGA-C) method is used to solve the implicit dynamic6

problem of geometrically exact beams employing the Newmark time integration scheme ex-7

tended to the rotation group SO(3). The IGA-C method was proposed in [1, 2] with the aim8

of exploiting the higher smoothness of NURBS basis functions used in isogeometric analy-9

sis (IGA) [3, 4] and the low computational cost of collocation. In IGA higher-order basis10

functions with tailorable smoothness, used both for the geometry representation and the11

space discretization of the differential problem, have proven to achieve increased accuracy12

and robustness on a per degree-of-freedom basis compared with standard Finite Element13

Analysis (FEA) [5–8]. Moreover, mesh generation and refinement are significantly simplified14

and, once the initial mesh is generated, refinements do not affect the geometric approxi-15

mation. High-order basis functions require a larger number of quadrature points causing16

a fast growth of the computational cost. Countermeasures against this limitation are still17

being investigated, although significant progress has been made in [9–13]. IGA-C represents18

an extreme remedy since the need for numerical quadrature is completely removed due to19

the discretization of the strong form of the governing equations. IGA-C requires only one20

evaluation point per degree of freedom, regardless of the approximation degree, resulting in21

a much faster method compared to standard Galerkin-based IGA [14].22

IGA-C proved excellent performances in a wide range of applications, such as linear prob-23

lems [1, 2, 14], phase-field modeling [15], contact problems [16, 17], hyperelasticity [17]. New24

relations between Galerkin and collocation methods were found in [18]. Timoshenko beam25

formulations were successfully proposed in [19–23]. Bernoulli-Euler beams and Kirchhoff26

plates were addressed in [24], and Reissner-Mindlin plate and shell problems in [25] and [26],27

respectively. Kirchhoff-Love plate and shell problems were studied in [27]. In [28–30] IGA-C28

was extended to geometrically nonlinear three-dimensional shear-deformable beams. Non-29

linear planar Kirchhoff rods were formulated in [31]. In linear dynamics, an explicit IGA-C30

formulation was introduced in [2] and more recently an explicit higher-order space- and time-31

accurate method for elastodynamics was proposed in [32]. IGA-C methods for the nonlinear32

dynamics of geometrically exact beams, to our best knowledge, have been investigated so far33

only in [33] through an implicit quaternion-based formulation and in [34] through an explicit34
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formulation based on the spatial incremental rotation vector.35

In the present paper we propose an implicit scheme based on a full material description36

of the rotational unknowns. In a three-dimensional Timoshenko beam model, the (finite)37

rotation of each beam cross section is described by a time-depending orthogonal operator38

belonging to the non-commutative Lie group SO(3). On SO(3) rotation updates, namely39

transformations of SO(3) onto itself, are consistently performed by the composition of an40

incremental rotation with the current rotation. Such an operation, called translation, is41

non-additive and non-commutative. The latter attribute leads to a substantial difference42

between right translation (spatial description of the motion) and left translation (material43

description of the motion) on SO(3) [35–37]. Apart from the implicitness of the method,44

the fundamental difference with respect to our previous formulations [28, 30, 34] lies in that45

incremental rotations are now considered in the material setting, therefore rotation updates46

are performed via left translations. This change, necessary for an optimal combination47

with the SO(3)-extended version of the classical Newmark scheme originally proposed in48

[36], requires a new derivation of the linearized equations and new formulas for the update49

procedure. These two central issues are discussed in detail in the present paper.50

In the standard FEA framework, after the seminal papers by Simo & Vu-Quoc [36] and51

Cardona & Geradin [38], several time integration schemes and nonlinear beam formulations52

have been proposed and discussed over the years [33, 37, 39–53]. Our choice of combining53

the SO(3) Newmark scheme with a kinematic model based on the material incremental54

rotation vector is made to endow the formulation with the following attributes: (i) high55

stability; (ii) full geometric consistency, namely the main operations of linearization, variables56

initialization and kinematic update are made consistently with the geometric structure of57

the configuration manifold; (iii) high efficiency, since rotational unknowns are represented58

by a minimum number of variables due to the use of the rotation-vector parameterization.59

Moreover, the time stepping algorithm is used in a full material framework. This is an60

improvement with respect to [36], where the primary rotational unknowns are expressed in61

the spatial form, while the time stepping algorithm is set in the material form. Thus, we62

avoid the repetitive and time-consuming pull-back and push-forward operations between the63

material and spatial manifolds; (iv) absence of singularities, since incremental rotations are64
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always small.65

The outline of the paper is as follows: in Section 2 we briefly review the three-dimensional66

shear-deformable beam kinematics with a focus on the construction of the material tangent67

space. In Section 3 the material strong form of the governing equations is presented in terms68

of kinematic variables only. Strain measures and the constitutive law are also briefly recalled.69

In Section 4 the main features of the Newmark time stepping scheme are discussed. Section 5,70

complemented with Appendix A, addresses the discretization of the governing equations and71

their consistent linearization. In Section 6 we describe the solution procedure focusing on the72

variables initialization and update formulas. In Section 7 we apply the proposed formulation73

to solve problems involving very large displacements and rotations with different boundary74

conditions. Finally, in Section 8, we draw the main conclusions of our work.75

2. The configuration manifold and its (material) tangent space76

In this section we briefly recall the geometric structure underlying the kinematics of the77

Timoshenko beam model.78

The motion of any material particle p ∈ B of a shear-deformable beam is expressed as79

ϕ(t,p) = c(t, q) + R(t, q)(p − q) where t is the time, q is the material position of the80

centroid of the beam cross section containing point p. S ⊂ B is the centroid line, namely a81

one-dimensional space containing the centroids of all cross sections of the beam. On S we82

define a coordinate system s : S → [0, L] ⊂ IR, where L is the length of the beam centroid83

line in the initial configuration. The configuration manifold is the set84

C =
{

(c,R) | c : T × S → IR3 ,R : T × S → SO(3)
}
, (1)

where c(t, q) is the spatial location of the center of mass of the beam cross section at time85

t and point q ∈ S, and R(t, q) is the rigid rotation of the same cross section at the same86

time. T = [0, T ] ⊂ IR denotes the time domain.87

As opposed to our previous formulations [28, 30, 34], where the spatial formulation was88

used, here we need to introduce the material form of the tangent space to the configuration89

manifold at point (c,R) ∈ C. The tangent space is denoted by T(c,R)C = TcIR
3 × TR SO(3),90

where TcIR
3, the tangent space to IR3 at c, is simply IR3, namely the set of vectors η91
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applied in c; whereas the (material) tangent space to SO(3) at R is given by TR SO(3) =92 {
RΘ̃ | Θ̃ ∈ so(3) ,R ∈ SO(3)

}
. The construction of the material tangent space is made93

similarly to the spatial case [28] with the difference that the incremented rotation Rε is94

obtained through left translation instead of right translation [35–37]. Namely, the (material)95

tangent space at (c,R) is obtained by (dγ/dε)ε=0 where ε 7→ γ(ε) = (cε,Rε), with ε ∈ IR,96

is a curve on C defined by cε = c + εη (standard translation on IR3) and Rε = R exp(εΘ̃)97

(left translation on SO(3)), such that γ(0) = (c,R). From the kinematic point of view,98

η ∈ IR3 represents an incremental displacement superimposed to the current configuration99

of the centroid line c; whereas Θ̃, such that RΘ̃ ∈ TR SO(3), represents an incremental100

rotation superimposed to the rotation R. Note that in the construction of the curve γ101

we used the exponential map exp : so(3) → SO(3) which maps the line εΘ̃ at so(3) onto102

the one parameter subgroup exp(εΘ̃) ∈ SO(3) [35, p. 160]. This means that exp(εΘ̃) is103

a rotation occurring around the fixed direction Θ = axial(Θ̃)1. A fundamental aspect the104

present formulation relies on is that for SO(3) the exponential map is expressed by an exact105

(Rodrigues) formula [54–57].106

For a more detailed discussion on the construction of tangent spaces to SO(3) reference107

is made to [36–38, 42, 44].108

3. Balance equations in local form109

We start this section by recalling the strong form of the balance equations using the110

material description. Since in this paper we develop a primal formulation, the equations are111

expressed in terms of kinematic quantities only. For this reason, we shortly review also the112

strain measures and the constitutive law.113

The strong form of the balance equations [58] can be written in the material form as

1With the symbol ∼ we denote elements of so(3), that is the set of 3× 3 skew-symmetric matrices that,

in this context, represent infinitesimal incremental rotations. Furthermore, for any skew-symmetric matrix

ã ∈ so(3), a = axial(ã) indicates the axial vector of ã such that ãh = a× h, for any h ∈ IR3 .

5



follows

µRTa = K̃CNΓN + CNΓN,s + RTn̄ , (2)

JA+ W̃JW = K̃CMKM + CMKM,s + RTc,s×CNΓN + RTm̄ , (3)

valid for any s ∈ (0, L) and t ∈ (0, T ]. In the above equations µ is the mass per unit length114

of the beam; a is the spatial acceleration vector of the cross section centroid; K̃ = RTR,s115

is the beam curvature (skew-symmetric tensor) in the material form; ΓN and KM are the116

strain measure vectors in the material form (better detailed later); n̄ and m̄ are the dis-117

tributed external forces and moments per unit length in spatial form; J is the material118

(time-independent) inertia tensor; W̃ = RTṘ is the material skew-symmetric angular veloc-119

ity tensor and W = axial(W̃ ) its axial vector; A = Ẇ is the material angular acceleration120

vector; CN = diag(GA1, EA,GA3) and CM = diag(EJ1, GJ,EJ3), where GA1 and GA3 are121

the shear stiffnesses along the cross section principal axes, EA is the axial stiffness, GJ is122

the torsional stiffness, and EJ1 and EJ3 are the principal bending stiffnesses. Partial deriva-123

tives with respect to the coordinate s : S → [0, L] ⊂ IR are indicated with (),s, whereas (̇)124

indicates the derivative with respect to time.125

Boundary and initial conditions are given as follows

η = η̄c or N = RTn̄c with s = {0, L} , t ∈ [0, T ] , (4)

Θ = Θ̄c or M = RTm̄c with s = {0, L} , t ∈ [0, T ] , (5)

v = v0 with s ∈ (0, L) and t = 0 , (6)

W = W 0 with s ∈ (0, L) and t = 0 , (7)

where N and M are the material internal forces and moments, respectively; n̄c and m̄c126

are the external concentrated forces and moments applied to any of the beam ends in the127

current configuration; v is the spatial velocity vector of the cross section centroid; η̄c and128

Θ̄c are the prescribed displacement (spatial) and rotation (material) vectors at any of the129

beam ends.130

We recall that the deformation measures in the material form are given by [58–60]131

ΓN = Γ− Γ0 = RTc,s−RT
0c0,s and KM = axial(K̃ − K̃0) = K −K0 , (8)
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where Γ = RTc,s−[0 1 0]T and Γ0 = RT
0c0,s − [0 1 0]T. ΓN describes the axial and shear132

strains, whereas KM describes the bending and torsional strains; K̃0 = RT
0R0,s is the beam133

initial curvature (skew-symmetric tensor) in the material form; c0 represents the centroid line134

in the initial configuration; R0 ∈ SO(3) is the rotation operator that expresses the rotation135

of the beam cross section in the initial configuration [59, 60].136

Under the assumption of a Saint Venant-Kirchhoff constitutive model, the material in-137

ternal forces and moments are linearly related to the material strain measures as follows138

[38, 44, 61]139

N = CNΓN and M = CMKM . (9)

4. Implicit time stepping algorithm140

Before addressing the core of the formulation, in this section we review the Newmark time141

integration scheme extended to the rotation group SO(3) [36] and focus on some preparatory142

(but fundamental for the computational formulation) geometric aspects related to the use143

of different tangent spaces to SO(3).144

4.1. The Newmark scheme145

The material form of the Newmark algorithm for SO(3) [36] is given as follows

Rn+1 = Rn exp(Θ̃
n
) , (10)

Θn = hW n + h2
[(

1

2
− β

)
An + βAn+1

]
, (11)

W n+1 = W n + h
[
(1− γ)An + γAn+1

]
. (12)

The superscript n = 0, 1, . . . is used to denote any temporal discrete and approximate quan-

tity at time tn = nh, where h is the time step size. β ∈ [0, 1
2

] and γ ∈ [0, 1] are the standard

Newmark parameters. It is convenient for the developments in the next sections to express

angular acceleration and velocity at time tn+1 in terms of quantities at tn. By exploiting

Eqs. (11) and (12) we have

An+1 =
1

βh2
Θn −An

∗ , (13)

W n+1 =
γ

βh
Θn +W n

∗ , (14)

7



where we have set

An
∗ =

1

hβ
W n + (

1

2β
− 1)An , (15)

W n
∗ = (1− γ

β
)W n + (1− γ

2β
)hAn . (16)

The algorithm used to integrate the motion of the beam centroid line is the standard

Newmark for nonlinear dynamics, which, for the sake of completeness, is reported in the

following

cn+1 = cn + ηn , (17)

ηn = hvn + h2
[(

1

2
− β

)
an + βan+1

]
, (18)

vn+1 = vn + h
[
(1− γ)vn + γan+1

]
. (19)

As done for the rotational quantities, using Eqs. (18) and (19), angular acceleration and

velocity at time tn+1 can be expressed as follows

an+1 =
1

βh2
ηn − an∗ , (20)

vn+1 =
γ

βh
ηn + vn∗ , (21)

where we have set

an∗ =
1

hβ
vn + (

1

2β
− 1)an , (22)

vn∗ = (1− γ

β
)vn + (1− γ

2β
)han . (23)

4.2. Relation between different tangent spaces to SO(3)146

The numerical formulation we employ crucially relies on the correct identification of the147

tangent space the incremental rotations belong to [36, 37]. Roughly speaking, the tangent148

space is a geometric structure which permits to approximate locally the nonlinear manifold149

(SO(3) in our case) with a vector space (IR3 in our case) where standard (additive and150

commutative) operations can be performed. The local nature of the tangent space represents151

the main complexity behind the numerical schemes involving finite rotations.152
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Starting from Eq. (10), an incremented rotation from Rn+1 can be obtained in two

different ways, in both cases by using left (material) translation, as follows

Rn+1
ε = Rn+1 exp(εδΘ̃

n+1
) , (24)

Rn+1
ε = Rn exp(Θ̃

n
+ εδΘ̃

n
) . (25)

Note that δΘ̃
n+1

and δΘ̃
n

are both incremental rotations but they refer to two different153

tangent spaces, namely δΘ̃
n+1
∈ TRn+1 SO(3), whereas δΘ̃

n
∈ TRn SO(3). By exploiting154

Eq. (10) and the orthogonality property of the rotation operators, the two above equations155

lead to156

exp(Θ̃
n
) exp(εδΘ̃

n+1
) = exp(Θ̃

n
+ εδΘ̃

n
) . (26)

As demonstrated in [38], the above equation provides the relation between the incremental157

rotations belonging to two different tangent spaces. Namely, there exists a linear invertible158

mapping T(Θn) : TRn SO(3)→ TRn+1 SO(3) such that2159

δΘn+1 = T(Θn)δΘn and δΘn = T−1(Θn)δΘn+1 . (27)

Given the fundamental role of T−1(Θn), as it will appear clear in the next section, we160

report its explicit expression leaving the details of the derivation in [38, 62]161

T−1(Θn) = en ⊗ en +
||Θn||/2

tan(||Θn||/2)
(id− en ⊗ en) +

1

2
Θ̃
n
, (28)

where en = Θn/||Θn||.162

As regards the translational motion of the cross section centroid, the mapping T turns163

out to be the identity map, namely δηn+1 and δηn coincide.164

5. Discretization of the governing equations and consistent linearization165

In this section we first introduce the time discretized version of the governing equations.166

Then we proceed with the consistent linearization of the equations and finally we introduce167

the spatial discretization. Importantly, we remark that, unlike in [36] where the problem168

2An abuse of notation is made here since the operator T(Θn) actually maps axial vectors and not the

associated skew-symmetric matrices.
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is solved in the spatial setting and the time integration is performed in the material frame,169

here we propose a procedure which is fully carried out in the material setting, resulting in170

an increased efficiency since the numerous pull-backs and push-forwards between the two171

settings are avoided.172

5.1. Time-discretized governing equations173

The balance equations (2) and (3) together with the Neumann boundary conditions

Eqs. (4) and (5) must be satisfied at each time instant. We write the equations at tn+1 as

follows

−µRTn+1an+1 + K̃
n+1

CNΓn+1
N + CNΓn+1

N,s + RTn+1n̄n+1 = 0 , (29)

−(JAn+1 + W̃
n+1
JW n+1) + K̃

n+1
CMK

n+1
M +

CMK
n+1
M,s + RTn+1c,n+1

s ×CNΓn+1
N + RTn+1m̄n+1 = 0 , (30)

CNΓn+1
N −RTn+1n̄n+1

c = 0 , (31)

CMK
n+1
M −RTn+1m̄n+1

c = 0 . (32)

5.2. Linearization of the time-discretized governing equations174

Linearizations are performed making use of the directional derivatives reported in Ap-175

pendix A. With the symbol (̂·) we denote any quantity evaluated at the configuration tn+1
176

around which the linearization takes place. We start with the linearization of the transla-177

tional equations and then proceed with the rotational equations. For the sake of clarity, we178

proceed systematically term by term.179

5.2.1. Translational equations180

The linearization of the inertia term of Eq. (29) leads to

L[µRTn+1an+1] = µR̂Tn+1ân+1 + µ
d

dε

(
RTn+1

ε an+1
ε

)
ε=0

=

µR̂Tn+1ân+1 + µ
˜(

R̂Tn+1ân+1
)
δΘn+1 +

µ

h2β
R̂Tn+1δηn+1 . (33)

Note that to obtain the above result we used the directional derivative of the acceleration181

given as follows182

d

dε

(
an+1
ε

)
ε=0

=
δηn+1

βh2
, (34)
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where use of Eq. (20) has been made.183

Linearization of the second term of Eq. (29) is made as follows

L[K̃
n+1

CNΓn+1
N ] =

ˆ̃
K

n+1

CN Γ̂
n+1

N +
d

dε

(
K̃

n+1

ε CNΓn+1
Nε

)
ε=0

=

ˆ̃
K

n+1

CN Γ̂
n+1

N +

[
ˆ̃
K

n+1

CN

˜(
R̂Tn+1ĉ,n+1

s

)
−

˜(
CN Γ̂

n+1

N

)
ˆ̃
K

n+1
]
δΘn+1−

˜[
CN Γ̂

n+1

N

]
δΘ,n+1

s +

[
ˆ̃
K

n+1

CNR̂Tn+1

]
δηn+1,s , (35)

where we have used Eqs. (A.7) and (A.13).184

Linearization of the third term of Eq. (29) is made as follows

L[CNΓn+1
N,s ] = CN Γ̂

n+1

N,s +
d

dε

(
CNΓn+1

Nε,s

)
ε=0

=

CN Γ̂
n+1

N,s + CN

[
˜(

R̂Tn+1ĉ,n+1
ss

)
−

˜(
ˆ̃
K(R̂Tn+1ĉ,n+1

s )

)]
δΘn+1 + CN

˜[
R̂Tn+1ĉ,n+1

s

]
δΘ,n+1

s −

CN

[
ˆ̃
K

n+1

R̂Tn+1

]
δη,n+1

s +CN

[
R̂Tn+1

]
δη,n+1

ss , (36)

where we have used Eq. (A.14).185

Linearization of the fourth term of Eq. (29) is made as follows

L[RT
ε
n+1n̄n+1] = R̂Tn+1n̄n+1 +

˜[
R̂Tn+1n̄n+1

]
δΘn+1 , (37)

where Eq. (A.4) has been used.186

Linearization of the first term of the boundary condition (31) is made as follows

L[CNΓn+1
N ] = CN Γ̂

n+1

N +
d

dε

(
CN Γ̂

n+1

Nε

)
ε=0

= (38)

CN Γ̂
n+1

N + CN

˜(
R̂Tn+1ĉ,n+1

s

)
δΘn+1 + CNR̂Tn+1δη,n+1

s , (39)

where Eq. (A.13) has been used.187

Linearization of the last term of boundary condition (31) is made as follows

L[RTn+1n̄n+1
c ] = R̂Tn+1n̄n+1

c +
d

dε

(
RT
ε
n+1n̄n+1

c

)
ε=0

= (40)

R̂Tn+1n̄n+1
c +

˜(
R̂Tn+1n̄n+1

c

)
δΘn+1 , (41)

where Eq. (A.4) has been used.188
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5.2.2. Rotational equations189

Linearization of the inertia term of Eq. (30) is given as follows

L[JAn+1 + W̃
n+1
JW n+1] = JÂ

n+1
+

ˆ̃
W

n+1

JŴ
n+1

+
d

dε

(
JAn+1

ε + W̃
n+1

ε JW n+1
ε

)
ε=0

=

JÂ
n+1

+
ˆ̃
W

n+1

JŴ
n+1

+

[
1

βh2
J − γ

βh

(
J̃Ŵ

n+1
− ˆ̃
W

n+1

J

)]
T−1(Θ̂

n
)δΘn+1 . (42)

Note that to obtain the above results we used the directional derivative of the angular velocity

and accelerations. We first note that

An+1
ε =

Θn + εδΘn

βh2
−An

∗ , (43)

W n+1
ε =

γ (Θn + εδΘn)

βh
+W n

∗ , (44)

from which it follows that

L[W n+1
ε ] = Ŵ

n+1
+

γ

βh
δΘn = Ŵ

n+1
+

γ

βh
T−1(Θ̂

n
)δΘn+1 , (45)

L[An+1
ε ] = Â

n+1
+

1

βh2
δΘn = Â

n+1
+

1

βh2
T−1(Θ̂

n
)δΘn+1 , (46)

where we have used Eq. (27).190

Linearization of the second term of Eq. (30) is made as follows

L[K̃
n+1

CMK
n+1
M ] =

ˆ̃
K

n+1

CMK̂
n+1

M +
d

dε

(
K̃

n+1

ε CMK
n+1
Mε

)
ε=0

=

ˆ̃
K

n+1

CMK̂
n+1

M +

[
ˆ̃
K

n+1

CM
ˆ̃
K

n+1

−
˜(

CMK̂M

)
ˆ̃
K

]
δΘn+1+[

ˆ̃
K

n+1

CM −
˜(

CMK̂M

)]
δΘ,n+1

s , (47)

where we used Eqs. (A.7) and (A.8).191

Linearization of the third term of Eq. (3) is given by

L[CMK
n+1
M,s ] = CMK̂

n+1

M,s +
d

dε

(
CMK

n+1
Mε,s

)
ε=0

=

CMK̂
n+1

M,s + CM
ˆ̃
K,n+1

s δΘn+1 + CM
ˆ̃
K

n+1

δΘ,n+1
s +CMδΘ,

n+1
ss , (48)

where we used Eq. (A.12).192
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Linearization of the fourth term of Eq. (30) is made as follows

L[RTn+1c,n+1
s ×CNΓn+1

N ] = R̂Tn+1ĉ,n+1
s ×CN Γ̂

n+1

N +
d

dε

(
RT
ε
n+1cn+1

ε,s × CNΓn+1
Nε

)
ε=0

=

R̂Tn+1ĉ,n+1
s ×CN Γ̂

n+1

N +

[
˜(

R̂Tn+1ĉ,n+1
s

)
CN − ˜(CNΓn+1

N

)] ˜(
R̂Tn+1ĉ,n+1

s

)
δΘn+1+[

˜(
R̂Tn+1ĉ,n+1

s

)
CN − ˜(CNΓn+1

N

)]
R̂Tn+1δη,n+1

s , (49)

where use has been made of Eqs. (A.4), (A.1) and (A.13).193

Linearization of the last term of Eq. (30) is made as follows

L[RTn+1m̄n+1] = R̂Tn+1m̄n+1 +
d

dε

(
RT
ε
n+1m̄n+1

)
ε=0

=

R̂Tn+1m̄n+1 +
˜(

R̂Tn+1m̄n+1
)
δΘn+1 , (50)

where use has been made of Eq. (A.4).194

Linearization of the first term of boundary condition (32) is made as follows

L[CMK
n+1
M ] = CMK̂

n+1

M +
d

dε

(
CMK

n+1
Mε

)
ε=0

= (51)

CMK̂
n+1

M + CM
ˆ̃
K

n+1

δΘn+1 + CMδΘ,
n+1
s , (52)

where we used Eq. (A.8).195

Linearization of the last term of boundary condition (32) is made as follows

L[RTn+1m̄n+1
c ] = R̂Tn+1m̄n+1

c +
d

dε

(
RT
ε
n+1m̄n+1

c

)
ε=0

= (53)

R̂Tn+1m̄n+1
c +

˜(
R̂Tn+1m̄n+1

c

)
δΘn+1 , (54)

where we used Eq. (A.4).196

5.3. Space discretization of the linearized equations197

The linearized governing equations discussed above are written at time tn+1 but in space

are still valid for any point q ∈ S. The linearized problem is turned into an algebraic

system of equations first by discretizing the primary variables δΘn+1 and δηn+1 and then
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by collocating the time and space discretized equations in a set of points named collocation

points. Space discretization is made using NURBS basis functions as follows

cn+1(u) =
n∑
j=0

Rj,p(u)p̌n+1
j with u ∈ Iu , (55)

δΘn+1(u) =
n∑
j=0

Rj,p(u)δΘ̌
n+1

j with u ∈ Iu , (56)

δηn+1(u) =
n∑
j=0

Rj,p(u)δη̌n+1
j with u ∈ Iu , (57)

where Iu = [0, 1] is the normalized one-dimensional domain of the jth NURBS basis function198

Rj,p. p̌
n+1
j is the jth control point defining the centroid line; δΘ̌

n+1

j and δη̌n+1
j are the jth199

incremental control variables of the kinematic fields, which for j = 0, . . . , n, form the set of200

2× 3× (n + 1) unknowns of the algebraic system.201

Recent studies proposed alternative choices for collocation points that can achieve im-202

proved convergence rates [18, 63–65]; however, in the present study we collocate at the203

standard Greville points [1].204

6. Step by step description of the time integration scheme205

At the time instant tn+1 the solution of the linearized problem must be searched for it-206

eratively until convergence is achieved within a classical Newton-Raphson scheme. In this207

section we present the two fundamental steps that need to be accomplished: the initializa-208

tion of the variables and the update procedure. Both operations must be performed in a209

geometrically consistent way.210

Note that in the following we use the subscript i to denote the ith collocation point (of211

parametric coordinate uci), whereas superscripts n, k are used to denote the time step and212

the iteration counter, respectively.213

6.1. Initialization of variables at tn+1
214

A correct initialization of the system matrix, namely the initialization of all (̂·) quantities215

appearing in the linearized equations, has a crucial role in the reliability of the method.216

Assume that configuration (cni ,R
n
i ), velocities W n

i ,v
n
i , accelerations An

i ,a
n
i , and the strain217

14



measures Γn
Ni ,K

n
Mi (and their derivatives) are known at tn in each collocation point uci with218

i = 0, . . . , n.219

First Θn
i and ηni are initialized by using the predictors in Eqs. (11) and (18) as follows

Θn,0
i = hW n

i + h2
(

1

2
− β

)
An
i , (58)

ηn,0i = hvni + h2
(

1

2
− β

)
ani , (59)

With Eqs. (58) and (59) at hand, all kinematic quantities can be initialized at time tn+1
220

as follows:221

• The configuration is initialized as follows

p̌n+1,0
j = p̌nj + η̌n,0j , (60)

Rn+1,0
i = Rn

i exp(Θ̃
n,0

i ) , (61)

where incremental displacements η̌n,0j are obtained from the corresponding collocated222

quantities ηn,0i given in Eq. (59).223

• Accelerations and velocities are initialized by making use of Eqs. (13), (14), (20) and

(21) as follows

An+1,0
i =

1

βh2
Θn,0
i −An

∗i , (62)

W n+1,0
i =

γ

βh
Θn,0
i +W n

∗i , (63)

an+1,0
i =

1

βh2
ηn,0i − an∗i , (64)

vn+1,0
i =

γ

βh
ηn,0i + vn∗i . (65)

• Curvature tensors. By recalling the definition of the material curvature tensor, which

in the time discretized form reads K̃
n+1,0

= RTn+1,0R,n+1,0
s , and knowing that Rn+1,0 =

Rn exp(Θ̃
n,0

), we obtain at the ith collocation point

K̃
n+1,0

i = exp(−Θ̃
n,0

i )K̃
n

i exp(Θ̃
n,0

i ) + d exp
Θ̃

n,0
i

(Θ̃
n,0

i,s ) . (66)

In the above formula we made use of the rule (exp(Θ̃(s)),s = exp(Θ̃)(d expΘ̃)Θ̃,s,224

where the operator d expΘ̃ is expressed by a series involving nested Lie bracket (see225

[28, Appendix B] and [66, p. 15] for further details).226
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In a similar way the initialization formula for the derivative of the material curvature

tensor is obtained as follows

K̃
n+1,0

i,s = exp(−Θ̃
n,0

i )d exp−Θ̃n,0
i

(−Θ̃
n,0

i,s )K̃
n

i exp(Θ̃
n,0

i )+

exp(−Θ̃
n,0

i )K̃
n

i,s exp(Θ̃
n,0

i )+

exp(−Θ̃
n,0

i )K̃
n

i exp(Θ̃
n,0

i )d exp
Θ̃

n,0
i

(Θ̃
n,0

i,s )+(
d exp

Θ̃
n,0
i

(Θ̃
n,0

i,s )
)
,s . (67)

The series expressing the operator d expΘ̃ permits also to compute the second derivative227

of the exponential map (d expΘ̃ Θ̃,s ),s appearing in Eq. (67) keeping terms up to the228

desired order. The derivatives of the incremental rotation appearing in the above229

formulas are computed by using the discretization Θn,0 =
∑n

j=0Rj,p(u)Θ̌
n,0

j , where the230

incremental rotations Θ̌
n,0

j are obtained from the corresponding collocated quantities231

Θn,0
i given in Eq. (58)3.232

• Strain measures defined in Eq. (8) and their derivatives are initialized using the above

quantities as follows

Γn+1,0
Ni = Γn+1,0

i − Γ0i (68)

Γn+1,0
Ni,s = Γn+1,0

i,s − Γ0i,s (69)

K̃
n+1,0

Mi = K̃
n+1,0

i − K̃0i (70)

K̃
n+1,0

Mi,s = K̃
n+1,0

i,s − K̃0i,s (71)

where Γn+1,0
i = RT

i
n+1,0cn+1,0

i,s −[0 1 0]T and Γn+1,0
i,s = −K̃

n+1,0

i RT
i
n+1,0cn+1,0

i,s +RT
i
n+1,0cn+1,0

i,ss .233

Derivatives of the centroid position are calculated by using the initialized control points234

given in Eq. (59) .235

3First and second-order derivatives with respect to the physical coordinate s ∈ [0, L] need to be calculated

taking into account the change of parameterization required since NURBS basis functions are defined on

the normalized domain Iu = [0, 1]. Namely, for any quantity g : S → IR3, we have that g,s = g,u /0 and

g,ss = g,uu /
2
0 − g,u (c0,u · c0,uu)/40, where 0 = ||c0,u|| is the jacobian and · indicates the scalar product.
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6.2. Update procedure236

Once the initialization procedure described in the above section has been accomplished,237

the iteration procedure starts. Assume that at the kth iteration (with k = 0, 1, 2 . . .) the238

configuration (cn+1,k
i , RT

i
n+1,k) and all other relevant kinematic variables are known. The239

solution of the system matrix provides control incremental rotation and displacement vectors240

δΘ̌
n+1,k

j , δη̌n+1,k
j . With a procedure similar to the one used in [28], but with the fundamental241

difference that here we employ the material incremental rotation vector, the geometrically242

consistent update procedure is performed as follows.243

Control points are updated by exploiting the standard translation in IR3
244

p̌n+1,k+1
j = p̌n+1,k

j + δη̌n+1,k
j , (72)

from which we update the configuration of the centroid line245

cn+1,k+1
i =

n∑
j=0

Rj,p(u
c
i)p̌

n+1,k+1
j . (73)

For the rotation variables, we compute the incremental material rotation vector246

δΘn+1,k
i =

n∑
j=0

Rj,p(u
c
i)δΘ̌

n+1,k

j , (74)

then the rotation operator is consistently updated as follows247

Rn+1,k+1
i = Rn+1,k

i exp(δΘ̃
n+1,k

i ) . (75)

Update of the curvature tensor and its derivative is made through formulas similar to

those used for their initialization (see Eqs. (66) and (67)). Namely we have

K̃
n+1,k+1

i = exp(−δΘ̃
n+1,k

i )K̃
n+1,k

i exp(δΘ̃
n+1,k

i ) + d exp
Θ̃

n+1,k
i

(δΘ̃
n+1,k

i,s ) , (76)

and

K̃
n+1,k+1

i,s = exp(−δΘ̃
n+1,k

i )d exp−δΘ̃n+1,k
i

(−δΘ̃
n+1,k

i,s )K̃
n+1,k

i exp(δΘ̃
n+1,k

i )+

exp(−δΘ̃
n+1,k

i )K̃
n+1,k

i,s exp(δΘ̃
n+1,k

i )+

exp(−δΘ̃
n+1,k

i )K̃
n+1,k

i exp(δΘ̃
n+1,k

i )d exp
δΘ̃

n+1,k
i

(δΘ̃
n+1,k

i,s )+(
d exp

δΘ̃
n+1,k
i

(δΘ̃
n+1,k

i,s )
)
,s . (77)
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The above updating formulas are obtained by following a very similar procedure used for248

Eqs. (66) and (67) with the difference that in this case K̃
n+1,k+1

= RTn+1,k+1R,n+1,k+1
s where249

Rn+1,k+1 = Rn+1,k exp(δΘ̃
n+1,k

).250

The updates of the strain measure vectors Kn+1,k+1
Mi and Γn+1,k+1

Ni and their derivatives251

are made straightforwardly by using the updated kinematic variables presented above.252

Finally we need to update accelerations and velocities. Making use of Eqs. (13) and (14)

expressed once in terms of Θn,k and once in terms of Θn,k+1, see [36] for the details, we

obtain the following update formulas

An+1,k+1
i = An+1,k

i +
1

βh2

(
Θn,k+1
i −Θn,k

i

)
, (78)

W n+1,k+1
i = W n+1,k

i +
γ

βh

(
Θn,k+1
i −Θn,k

i

)
, (79)

where Θn,k
i is known from the previous iteration, whereas we still have to compute Θn,k+1

i .

To this end we recall that Θn,k+1
i is such that

Rn+1,k+1
i = Rn

i exp(Θ̃
n,k+1

) , (80)

from which we extract the incremental rotation vector by making use of the inverse of the

exponential operator [36, 37, 67] as follows

Θ̃
n,k+1

i = exp−1
(
RT
i
nRn+1,k+1

i

)
, (81)

where RT
i
n+1,k is given by Rn+1,k

i exp(δΘ̃
n+1,k

).253

In a similar way, but without the complexity related to SO(3), update formulas for linear

acceleration and velocity are given by

an+1,k+1
i = an+1,k

i +
1

βh2
δηn+1,k

i , (82)

vn+1,k+1
i = vn+1,k

i +
γ

βh
δηn+1,k

i . (83)

Once all kinematic variables are consistently updated k + 1 → k and a new system254

matrix and residual vector can be defined. The algorithm proceeds until the L2 norm of the255

incremental vector [δΘ̌
n+1,k

j , δη̌n+1,k
j ]T is reduced below a given tolerance; after that n+1→ n256

and a new time step starts with the initialization procedure discussed at the beginning of257

this section.258
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7. Numerical results and discussion259

In this section we present the results of three numerical examples selected to test the260

capabilities of the proposed formulation in different conditions, including very fast dynamics261

with high-frequency vibrations, very large two- and three-dimensional deformations as well262

as different boundary conditions. In all cases we use β = 0.25 and γ = 0.5 to ensure263

second-order time-accuracy.264

7.1. Cantilever beam265

We begin with the case of the cantilever beam that we analyzed in [34] with an IGA-C ex-266

plicit formulation. The test, originally proposed in [68], consists of a beam of length 1 m and267

with a square cross section with side 0.01 m. The Young’s modulus is E = 210× 109 N/m2,268

the Poisson’s ratio is ν = 0.2 and the material density is ρ = 7800 kg/m3. With respect269

to a Cartesian reference system (x1, x2, x3), initially the beam axis is placed along x2 and270

the deformation occurs in the (x2, x3) plane due to a constant concentrated transversal tip271

force n̄c3 . In Figure 1 the time histories of the beam tip displacements are shown. Two load272

intensities: n̄c3 = −10 N and n̄c3 = −100 N, the same as in [68] and [34], respectively, are273

considered. The loads are applied with constant intensity for a duration of 0.5 s through a274

step-function without any ramp. For both cases p = 4 and n = 20. An excellent agreement275

is found with [68] (for the small amplitude vibrations case) and with [34] for both small276

and large amplitude vibrations cases. The present implicit formulation appears particularly277

efficient since it is able to reproduce very fast nonlinear dynamics with impulsive loads (no278

load ramp functions are applied to any of the two load intensities) with a time step 500 times279

larger than the explicit formulation. Note that four iterations per time step are required in280

the Newton-Raphson algorithm with a tolerance on the L2 norm of the incremental vector281

of 10−10 .282
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Figure 1: Tip displacement of a cantilever beam subjected to a tip transversal load F3 with two different

intensities. In both cases p = 4 and n = 20. Comparisons are made with results obtained in Marino et al

2019 [34] and Gravouil & Combescure 2001 [68].
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7.2. Swinging flexible pendulum283

Unlike in the previous numerical application, where a very stiff beam is considered, in this284

second example we study a highly flexible beam moving like a pendulum. The performance285

of the present formulation is analyzed through a direct comparison with the results obtained286

in [33, 46] and with our results obtained in [34] through an explicit formulation. The test287

consists of an initially straight beam of length 1 m with a circular cross section of diameter288

0.01 m. The Young’s modulus is E = 5× 106 N/m2, the Poisson’s ratio is ν = 0.5 and289

the material density is ρ = 1100 kg/m3. With respect to a Cartesian reference system290

(x1, x2, x3), the beam, initially placed along x2, is hinged at the end located at (0, 0, 0) and291

is free at the other end. The motion occurs in the (x2, x3) plane under the effect of the292

gravity only acting along the x3 direction. The distributed external force per unit length is293

n̄ = [0, 0,−0.8475]T N/m.294

Figure 2 shows eleven snapshots taken from time 0 to 1 s with increments of 0.1 s. Results295

associated with different combinations of basis function degrees, number of collocation points296

and time step sizes are shown. Furthermore, considering the solution with p = 6, n =297

30, h = 5× 10−3 s (see black line in the figure) as the most accurate one among the six298

analyses performed, some additional observations can be made. Up to approximately 0.5 s,299

the differences between all cases are almost indistinguishable. After that time, the results300

with p = 4 exhibit some loss of accuracy, while the results with p = 6 are always very301

accurate, also when using a coarser mesh (red line) or when doubling the time step size302

(green line), indicating that the error due to the space discretization dominates and can be303

easily (and efficiently) reduced by order elevation. In the IGA-C context, where efficiency304

is one of the major goals, such an attribute is highly desirable since order elevation is made305

almost at no additional computational cost.306

The time history of the tip displacement is shown in Figure 3, where an excellent agree-307

ment with the results obtained in [33, 34, 46] is found.308

7.3. Three-dimensional flying beam309

The third numerical example has been chosen to assess the capabilities of the present310

formulation when very large and complex three-dimensional deformations occur. The test,311
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Figure 2: Snapshots of a swinging flexible pendulum from time 0 to 1 s with increments of 0.1 s for different

basis function degrees, number of collocation points and time step spans.
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Figure 3: Vertical tip displacement of a swinging flexible pendulum. Comparisons are made with results

obtained in Marino et al 2019 [34], Lang et al 2011 [46] and Weeger et al 2017 [33]. Results of the present

formulation are obtained with p = 6, n = 30, h = 5× 10−3 s.
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(a) Flying flexible beam subjected to tip

force and moments.

0 2.5 5
-200

0

20

100

(b) Loads time histories for the flying flexible beam.

Figure 4: Flying flexible beam: initial configuration and loads.

proposed originally by Simo & Vu-Quoc in [36] and later studied also in [48, 49, 53, 69, 70],312

consists of an initially straight free beam with length L = 10 placed in the plane (x2, x3) (see313

Figure 4(a)) subjected at the lower end to three different time-varying concentrated loads314

applied simultaneously (see Figure 4(b)). Under these loads the beam undergoes a forward315

translation due to n̄c2 , a forward tumbling due to m̄c1 and an out-of-plane deformation due316

to m̄c3 .317

First we test the high order accuracy of the formulation. The convergence curves of the318

L2 norm of the error evaluated at t = 2 s vs. the number of collocation points are shown319

in Figure 5. The error is calculated as errL2 = ||ur − uh||L2/||ur||L2 , where uh and ur320

are the approximate and reference displacements, respectively. The reference solution ur is321

obtained with p = 8, n = 200 (approximately 2.3 on the abscissa of Figure 5) and h = 0.1 .322

Very good convergence rates are observed up to p = 5. They are p for even degrees and323

p−1 for odd degrees, which is the typical behavior in isogeometric collocation using Greville324

points [1, 2, 30]. For higher degrees, especially for p = 8, as the number of collocation325

points increases, the temporal error becomes dominant and slightly affects the quality of the326

convergence rate.327
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Figure 5: L2 norm of the error evaluated at t = 2 s vs. the number of collocation points for the free

flying beam for NURBS basis functions of degrees p = 2, . . . , 8. Dashed lines indicate reference orders of

convergence. Reference solution computed with p = 8, n = 200, h = 0.1 .
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Figure 6: L2 norm of the error vs. time step sizes of 0.05, 0.1, 0.2 for the free flying beam. The error is

evaluated by comparing the beam configuration at t = 5 with a reference solution obtained with h = 0.01.

In all cases p = 6 and n = 60.

With our choice of β and γ, the standard Newmark time integration scheme is second-328

order accurate in time [36]. To verify that this attribute is preserved in the present IGA-C329

formulation on SO(3), we show in Figure 6 the error in L2 norm associated with time step330

sizes of 0.05, 0.1, and 0.2. The error is evaluated by comparing the beam configuration at331

t = 5 with a reference solution obtained with h = 0.01. In all cases p = 6 and n = 60. A332

perfectly quadratic rate is observed.333

The correctness of the linearization procedure and the construction of the tangent matrix334

is confirmed by the convergence curves of the L2 norm of the incremental vector during the335

iterations of the Newton-Raphson algorithm shown in Figure 7. Two cases are considered:336
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one with with h = 0.1 (left panel) and one with h = 0.2 (right panel). Both simulations are337

performed with p = 6 , n = 60 and are 5 time units long. The color of the curves shades from338

light gray (initial time steps) to darker gray (last time steps). Second order convergence rate339

is observed for all time instants and for both time step sizes. With h = 0.1 the tolerance340

of 10−10 is reached always in four iterations, whereas with h = 0.2 for some time steps five341

iterations are needed to achieve the same tolerance. When at the (k + 1)th iteration the342

norm of the incremental vector is already pretty small (around 10−9 ), at the next iteration343

a lower bound around 10−12 is observed. This bound is due to multiple reasons, such as the344

truncation error of the series used to express the derivatives of the exponential map involved345

in the beam curvature and its derivative (see Section 6.1) and the effect of the condition346

number on the machine precision.
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(a) Time step size h = 0.1 (50 curves).
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(b) Time step size h = 0.2 (25 curves).

Figure 7: Convergence curves of the L2 norm of the incremental vector during the Newton-Raphson iterations.

The color of the curves shades from light gray (initial time steps) to darker gray (last time steps). Dashed line

indicates the quadratic reference rate. Both simulations are obtained with p = 6 ,n = 60. Total simulation

time equals 5.

347
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Figures 8 and 9 show some snapshots of the beam centroid line projected on the (x2, x3)348

and (x1, x3) planes, respectively; a three-dimensional view is shown in Figure 10. In all the349

figures, results associated with five combinations of p and h are shown. Note that in some350

cases snapshots at slightly different time instants with respect to [36] have been selected351

since we considered, in addition to h = 0.1, the case with h = 0.2 . When the largest time352

step is considered (h = 0.2), as expected, the temporal error dominates the spatial one.353

Reducing the time step size to 0.1, the accuracy increases significantly. The beneficial effect354

of p = 6 over p = 4 for both time steps can be qualitatively appreciated at a magnified scale355

(see Figure 9).

Figure 8: Snapshots of the free flying beam in the early tumbling stage projected on the (x2, x3) plane for

different combinations of polynomial degrees, number of collocation points, and time step sizes. Gray dashed

and dotted lines indicate the trajectories of the beam end points.

356

Figure 11 shows the material stress resultantsN andM (see Eq. (9)) at t = 2.5 for p = 6,357

n = 60, h = 0.1. No oscillatory behavior is observed and almost identical results have been358

obtained with more refined meshes as well as with smaller time step sizes (these results are359

not reported here as they are almost indistinguishable in the figure). The good convergence360
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Figure 9: Snapshots of the free flying beam in the early tumbling stage projected on the (x1, x3) plane for

different combinations of polynomial degrees, number of collocation points, and time step sizes. Gray dashed

lines indicate the trajectories of the beam end points.
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Figure 10: Snapshots of the free flying beam in the early tumbling stage in a three-dimensional view for

different combinations of polynomial degrees, number of collocation points, and time step sizes. Gray dashed

and dotted lines indicate the trajectories of the beam end points.
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Figure 11: Free flying beam: stress resultants (N ,M , see Eq. (9)) at t = 2.5 (maximum load intensities)

over the beam length in the material setting.

rates observed in Figure 5 along with the smooth behavior of the stress resultants indicate361

that the results are not affected by locking effects.362

Note that at x2 = 10 and at time t = 2.5 the stress resultants shown in Figure 11, once363

rotated to the spatial setting through n̄ = RN and m̄ = RM , coincide with the assigned364

loads given in Figure 4(b).365

The performance of the formulation is also assessed for long simulations. Different views366

of a series of configurations taken with time increments of 0.1 up to a final time of 11.5 are367

shown in Figure 12.368

Finally, we remark that the investigation of conserving properties is out of the scope369

of the present paper. However, since the Newmark scheme does not conserve energy nor370

momentum, loss of accuracy may occur for long-term simulations. The study of energy371

preserving schemes for nonlinear beams, see for example [43, 53, 71–75], is definitely an372

important direction for the future developments of this work.373
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(a) Projections on the (x2, x3) plane.

(b) Projections on the (x1, x2) plane.

(c) Three-dimensional view with observer at (135◦, 15) (azimuth and vertical elevation).

Figure 12: Free flying beam: snapshots from time 0 to 11.5 with increments of 0.1.
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8. Conclusions374

With this paper we extended the field of applicability of the isogeometric collocation375

method to the dynamics of geometrically exact shear-deformable beams using a SO(3)-376

consistent version of the implicit Newmark scheme. The central issues of consistent lin-377

earization of the governing equations, variables initialization and update procedures are378

discussed in detail. In addition to very high stability, the proposed formulation ensures full379

consistency with the underlying geometric structure of the configuration manifold, is highly380

efficient due to the use of the rotation-vector parameterization, avoids the repetitive use of381

pull-backs and push-forwards since it is entirely formulated in the material setting, and is382

singularity free due to the use of the incremental rotation instead of the total rotation vector.383

We applied the proposed formulation to problems involving very large rotations and differ-384

ent boundary conditions. Correctness of the linearization and update procedures is proved385

by the quadratic convergence rate of the Newton-Raphson algorithm obtained in cases in-386

volving complex and large rotations even with a large time step size. In all cases a very387

good agreement with literature results is obtained. We observed that the method is stable388

and accurate also in cases where impulsive motions occur with loads applied without any389

ramp function. In addition, order elevation improves the overall accuracy significantly. In a390

context where efficiency is one of the major goals, this is a remarkable feature considering391

that order elevation is made at almost no additional computational cost. It is well known392

that the Newmark scheme does not conserve neither energy nor momentum and this can be393

a problem for long-term simulations. Future works should be oriented towards energy and394

momentum preserving methods with isogeometric collocation.395
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Appendix A. Directional derivatives400

In this Appendix we provide the complete set of directional derivatives needed for the lin-401

earization of the governing equations discussed in Section 5. Directional derivatives are402

carried out using the incremental rotation vector δΘ in the material form. Thus, this Ap-403

pendix complements the formulas provided in Appendix A of [28], where the spatial form of404

the incremental rotation vector was used.405

Directional derivative of c,s.

d

dε
(cε,s)ε=0 =

d

dε
[(c+ εδη) ,s ]ε=0 = δη,s . (A.1)

Directional derivative of c,ss.

d

dε
(cε,ss)ε=0 = δη,ss . (A.2)

Directional derivative of R.

d

dε
(Rε)ε=0 =

d

dε

(
R exp(εδΘ̃)

)
ε=0

= RδΘ̃ . (A.3)

Directional derivative of RT.

d

dε

(
RT
ε

)
ε=0

=
d

dε

(
exp(−εδΘ̃)RT

)
ε=0

= −δΘ̃RT . (A.4)

Directional derivative of R,s.

d

dε
(Rε,s)ε=0 = RK̃δΘ̃ + RδΘ̃,s . (A.5)

Directional derivative of RT,s.

d

dε

(
RT
ε,s

)
ε=0

= δΘ̃K̃RT − δΘ̃,s RT . (A.6)

Directional derivative of K̃. Making use of (A.4) and (A.5), we obtain406

d

dε

(
K̃ε

)
ε=0

=
d

dε

(
RT
εRε,s

)
ε=0

= [K̃, δΘ̃] + δΘ̃,s , (A.7)

where the Lie bracket has been used [K̃, δΘ̃] = K̃δΘ̃ − δΘ̃K̃ .407

The corresponding axial vector is found by exploiting the Jacobi identity
(
K̃δΘ̃ − δΘ̃K̃

)
h =408

K̃δΘ × h for any h ∈ IR3, which leads to409

d

dε
(Kε)ε=0 = K̃δΘ + δΘ,s . (A.8)
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Directional derivative of R,ss.

d

dε
(Rε,ss)ε=0 = R

(
K̃

2
+ K̃,s

)
δΘ̃ + 2RK̃Θ̃,s +RδΘ̃,ss . (A.9)

Directional derivative of K,s. We start with the derivative of K̃,s and recall that

K̃ε,s = (RT
εRε,s),s = RT

ε,sRε,s + RT
εRε,ss , (A.10)

from which, by making use of equations (A.6), (A.5), (A.4), and (A.9), and after some

manipulations, we obtain

d

dε

(
K̃ε,s

)
ε=0

=
[
K̃, δΘ̃,s

]
+
[
K̃,s , δΘ̃

]
+ δΘ̃,ss , (A.11)

where again the Lie bracket have been used.410

Again, by exploiting the Jacobi identity, the corresponding axial vector is obtained as411

follows412

d

dε
(Kε,s)ε=0 = K̃δΘ,s +K̃,s δΘ + δΘ,ss . (A.12)

Directional derivative of ΓN . Making use of (A.4) and (A.1), it follows that413

d

dε
(ΓNε)ε=0 =

d

dε
(Γε − Γ0)ε=0 = RTη,s + ˜(RTc,s )δΘ . (A.13)

Directional derivative of ΓN ,s.

d

dε

(
ΓNε,s

)
ε=0

=
(
−δΘ̃,s +δΘ̃K̃

)
RTc,s−K̃RTη,s−δΘ̃RTc,ss−RTη,ss . (A.14)
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